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1. Introduction 

Misspecification tests are frequently used in empirical studies. When the presence of outliers is suspected, these tests 

are also performed after the removal of outliers. This is useful as valid inference in regression analysis after outlier removal

depends on the distributional assumptions on the good errors. Normality is usually tested. We show that standard cumulant- 

based normality tests on the clean sub-sample are not valid in i.i.d. settings and develop test statistics that deliver χ2 

inference. 

Two procedures for outlier removal are considered. First, we study the robustified least squares (RLS) procedure, where 

the model is first estimated using ordinary least squares (OLS). Least squares residuals are then used to identify outliers 

and remove them from the sample. Finally, OLS is applied again on the clean sub-sample. This method is commonly used

although it is not fully robust. It has been labelled as the ‘data analytic strategy’ ( Welsh and Ronchetti, 2002 ), ‘rejection-

plus-least squares’ ( Hadi and Simonoff, 1993 ), or ‘rejection-estimation procedures’ ( Hampel, 1985 ). 

Second, we consider the least trimmed squares procedure (LTS), where the model is estimated by the LTS estimator of 

Rousseeuw (1984) . For a given number of good observations, say h , in a sample of size n , the LTS estimator is least squares

on the h sub-sample that minimizes the squared residuals, delivering in this way an estimated set of outliers. The robustness

properties of the LTS estimator makes this second procedure more appealing when outliers are suspected in the first place. 

Asymptotic theory for the RLS estimator with i.i.d. errors has been studied by Johansen and Nielsen (2009) . They show

that asymptotic inference requires consistency and efficiency corrections in order to be valid. These correction factors depend 

on the underlying distribution of the error term. 
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Asymptotic theory for the LTS estimator with i.i.d. errors has been studied by Butler (1982) , Rousseeuw (1985) , Croux

and Rousseeuw (1992) , Čížek (2005) , Víšek (2006) , Johansen and Nielsen (2016b) . These papers show that appropriate (albeit

different from RLS) correction factors are also required in this case. Again, these correction factors depend on the underlying 

distribution of the error term. 

One important aspect of the results derived in this paper is that the standard moment based normality test on the RLS

or LTS residuals is not valid in an i.i.d. setting. Specifically, we show that the standardization of the sample moments depend

on the truncation imposed at the outlier removal stage and the estimation method being used. The intuition behind this 

result is easily illustrated when there is no contamination and all errors are normally distributed. In that case, removing 

outliers from the sample implies that the regression errors are truncated and their underlying distribution is no longer 

normal but truncated normal. Hence, the standardizations used when assuming (untruncated) normality are not the right 

ones. We derive the correct standardizations, which bring back χ2 inference. In this sense, the analyzed statistics can be 

seen as tests for truncated normality. 

The intuition from the non-contamination case actually extends to contaminated samples where the retained observa- 

tions have truncated normal errors. This means that inferences are valid under a particular type of contamination, which 

we term ε-tail contamination. Specifically, in an i.i.d. setting, the errors have a distribution which is normal in the middle

but can have non-normal tails. It is a special case of an ε-Lévy neighbourhood ( Huber and Ronchetti, 2009 , p. 18), but dif-

fers from the gross error model or ε-contamination ( Huber, 1964 ). The ε-tail contamination scheme represents the model 

behind standard practice when using the LTS estimator. In practical applications of LTS, it is common to implement correc- 

tion factors for non-contaminated, normal errors. This imposes, de facto, an ε-tail contamination structure: normality in the 

retained central observations with unmodelled tails. We develop normality tests in the LTS context that provide guidance 

on the validity of this choice. 

In practice, one encounters many types of contamination. Bad leverage points are particularly worrysome. The LTS re- 

gression estimator is robust with respect to such points, whereas the RLS regression estimator is not. However, bad lever- 

age points cannot be generated through an i.i.d. model. Instead, Berenguer-Rico et al. (2023) ; Berenguer-Rico and Nielsen 

(2023) propose and analyze a model termed the LTS model. This model has a proportion of good observations with i.i.d.

normal errors, while the remaining errors have support outside the realized range of the good errors. This model permits 

bad leverage points. The LTS estimator is maximum likelihood in this model and has the same asymptotic distribution as 

the infeasible least squares estimator on the good observations. These properties are rather different from those discussed 

above for the i.i.d. model. It is therefore desirable to test which, if any, of the models are relevant for the data at hand.

The normality test presented in this paper addresses this empirical need. The analyzed statistics will detect deviations from 

ε-tail contamination (or truncated normality), hence, guiding applied researchers in their data analysis allowing them to 

conduct valid subsequent inference. 

We examine the theoretical results through simulation. We show that the normality test statistics that account for trun- 

cation (or outlier removal) have empirical sizes approaching the nominal size in large samples. This confirms the χ2 asymp- 

totics. 

We study, analytically and by simulation, the power of these statistics to detect deviations from (truncated) normality. 

Specifically, we study the power of the tests to detect Cauchy distributions, the ε-contamination scheme and the LTS model. 

The simulation results show that the tests analyzed in this paper have empirical power approaching to one (as the sample

size grows) in the different models considered. 

In practice, one would also need misspecification tests for other aspects of the maintained model. In a related analysis, 

Berenguer-Rico and Wilms (2021) study the effect of outlier removal on heteroscedasticity testing and show that standard 

inference can be applied if the errors are symmetric. 

Outline: Section 2 describes the model and test statistics. Section 3 derives the asymptotic properties of the test statis-

tics. The theory is explored through simulations in Section 4 . Section 5 contains an empirical illustration. Finally, Section 6

concludes. Proofs are collected in the Appendix. 

2. Model and test statistics 

We consider the linear model for 

y i = β ′ x i + ε i i = 1 , . . . , n, (1) 

where β and x i are k vectors. The variables satisfy the following structure. 

Assumption 2.1. Let F in be an array of filtrations so that F i −1 ,n ⊂ F in and ε i −1 , x i are F i −1 ,n -adapted. Let ε i /σ be indepen-

dent of F i −1 ,n with distribution function F and scale σ . 

Assumption 2.1 jointly with Assumptions 3.1 or 3.2 below allow for a wide variety of regressors that can be both depen-

dent and/or heterogeneously distributed. These include cross-sections, stationary, random walk and fractionally integrated 

time series. Indicator variables and structural breaks are also allowed. In the time series context, these regressors can be 

lagged dependent variables, hence, covering autoregressions and error correction models. While Assumption 2.1 allows for 

a wide range of regressor types, it assumes that the standardized errors are i.i.d. and independent of F i −1 ,n , hence, avoiding

endogeneity and heteroscedasticity. 
2 
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Table 1 

Normality test for robust regressions. Normalization factors under normality. 

τ c 
0 = P (| ε 1 /σ | < c) 0.5 0.95 0.99 0.999 0.9999 0.99999 1 

c 0.67 1.96 2.58 3.29 3.89 4.42 ∞ 

ς −1 
c 2.6477 1.1480 1.0399 1.0059 1.0008 1.0001 1 

λRLS 
3 ,c = λLT S 

3 ,c 0.0379 1.3501 2.2750 2.8381 2.9709 2.9954 3 

λRLS 
6 ,c 0.0111 0.8865 2.4986 4.6725 5.6472 5.9250 6 

λLT S 
6 ,c 0.0041 0.8313 2.4908 4.6724 5.6472 5.9250 6 

λRLS 
24 ,c 0.0012 1.1211 4.5439 12.9758 19.7877 22.7983 24 

λLT S 
24 ,c 0.0013 1.6066 6.9538 16.5596 21.8304 23.5115 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We define the data analytic strategy for removing outliers. Given initial estimators ˜ β, ˜ σ , residuals ˜ ε i = y i − x ′ 
i 

˜ β are

formed. Observations satisfying | ̃  ε i / ̃  σ | ≤ c, for a user chosen cut-off c, are selected and a regression is run on those ob-

servations so that 

ˆ β = 

{ 
n ∑ 

i =1 

x i x 
′ 
i 1 (| ̃ ε i / ̃ σ |≤c) 

} −1 
n ∑ 

i =1 

x i y i 1 (| ̃ ε i / ̃ σ |≤c) (2) 

This leads to updated residuals ˆ ε i = y i − x ′ 
i 

ˆ β and residual variance estimator, 

ˆ σ 2 = ς 

−2 
c 

{ 
n ∑ 

i =1 

1 (| ̃ ε i / ̃ σ |≤c) 

} −1 
n ∑ 

i =1 

ˆ ε 2 i 1 (| ̃ ε i / ̃ σ |≤c) , (3) 

where the consistency factor ς 

2 
c is defined as follows. Let 

τ c 
p = E (ε 1 /σ ) p 1 (| ε 1 /σ |≤c) for c > 0 , (4) 

denote two-sided truncated moments. In particular, τ c 
0 

= P (| ε 1 /σ | ≤ c) . Let τp = τ∞ 

p . The consistency factor ς 

2 
c in (3) is then

defined as ς 

2 
c = τ c 

2 
/τ c 

0 
. 

We note that when F = 
 is the standard normal distribution function then, 

τ c 
2 p+1 = 0 , τ c 

2 p = { (2 p − 1)!! } P (χ2 
2 p+1 ≤ c 2 ) for p ∈ N 0 , (5) 

where the odd factorial is (2 p − 1)!! = 

∏ p 
� =1 

(2 � − 1) with the convention that (2 p − 1)!! = 1 for p = 0 . To see this, integrate

u p with respect to 
, substitute u 2 = v and note �{ (p + 1) / 2 } = �(1 / 2) 
∏ p/ 2 

� =1 
{ (2 � − 1) / 2 } by the gamma functional equation.

Barr and Sherrill (1999) has similar formulas for τ c 
1 
, τ c 

2 
. Insert c = ∞ in (5) to get the usual moments: τ0 = τ2 = 1 , τ4 = 3 ,

τ6 = 15 , τ8 = 105 . The normal density satisfies (∂ /∂ u ) {−uϕ(u ) } = (u 2 − 1) ϕ(u ) , so that τ c 
2 

= 

∫ c 
−c u 

2 ϕ(u ) du = τ c 
0 

− 2 cϕ(c) . 

Table 1 gives numerical values for ς 

2 
c under the hypothesis of normal errors without outliers. The above estimators are 

referred to as 1-step Huber-skip estimators and are analyzed in Johansen and Nielsen (2009, 2013, 2016a, 2016b) . 

In Section 3.1 , we initialize the data analytic strategy with the full sample least squares estimator so that ˜ β = 

˜ βOLS . This

gives the robustified least squares estimator and we write ˆ βRLS for ˆ β . We note that the least squares estimator arises when

c = ∞ . In Section 3.3 , we initialize with the Least Trimmed Squares estimator. In that case, we choose the indicators in

(2) differently, which we ignore while establishing notation. 

We consider the moment based normality test on the second stage residuals ˆ ε i = y i − x ′ 
i 

ˆ β for the retained observations.

Let s denote the estimation procedure being used and define the conditional sample moments 

ˆ μs 
p,c = 

{ 
n ∑ 

i =1 

1 (| ̃ ε i / ̃ σs |≤c) 

} −1 
n ∑ 

i =1 

( ̂  ε i / ̂  σs ) 
p 1 (| ̃ ε i / ̃ σs |≤c) for p ∈ N . (6) 

We then study the following truncated normality test statistics 

ˆ T s 3 ,c = n 

1 / 2 ˆ μs 
3 ,c / (λ

s 
6 ,c ) 

1 / 2 , ˆ T s 4 ,c = n 

1 / 2 ( ̂  μs 
4 ,c − λs 

3 ,c ) / (λ
s 
24 ,c ) 

1 / 2 , (7) 

where λs 
3 ,c 

, λs 
6 ,c 

, λs 
24 ,c 

(to be formally defined in Section 3 ) are normalizing constants depending on the selection method. 

We note that when c = ∞ there is no selection and the statistics reduce to the standard cumulant based normality test

statistics based on least squares with λOLS 
3 , ∞ 

= 3 , λOLS 
6 , ∞ 

= 6 and λOLS 
24 , ∞ 

= 24 . The resulting test has a long history going back to

Thiele, Pearson and Fisher. In econometrics it is often called the Jarque-Bera test. 

3. Asymptotic properties 

In this section, we study the effect of removing outliers from the sample on the cumulant based normality test described

in Section 2 . In practice, it is unknown whether the data are uncontaminated or not. Therefore, we first study the uncon-

taminated case in Section 3.1 . In this context, we analyze the properties of the test when the procedure is initialized by
3 
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the OLS estimator, what we call robustified least squares (RLS). In Section 3.2 , we introduce a new contamination scheme,

which we term ε-tail contamination. This has non-normal tails while the central part of the distribution is normal. Then, 

in Section 3.3 , we study the properties of the test in this contaminated setting, when the procedure is initialized robustly

using the LTS estimator. Power of both tests is discussed analytically in Section 3.4 . 

3.1. Robustified least squares 

We consider the normality test based on the truncated empirical moments in (6) where ˜ β, ˜ σ are full sample least squares

estimators and 

ˆ β, ˆ σ are the 1-step Huber skip estimators with residuals ˜ ε i = y i − x ′ 
i 

˜ β and ˆ ε i = y i − x ′ 
i 

ˆ β . 

In the context of i.i.d. normal errors, Johansen and Nielsen (2009, 2016b) study the asymptotic properties of the RLS 

estimator, ˆ β , and show that n 1 / 2 ( ̂  β − β) is asymptotically N (0 , ηβσ 2 �−1 ) where (τ c 
0 
) 2 ηβ = τ c 

2 
+ { 4 cϕ(c) τ c 

2 
} + { 2 cϕ(c) } 2 de-

pends on the cut-off value c. This dependence is carried into the test statistics ˆ T RLS 
3 ,c 

, ˆ T RLS 
4 ,c 

. 

The normalizing constants λRLS 
3 ,c 

, λRLS 
6 ,c 

, λRLS 
24 ,c 

, for the test statistics ˆ T RLS 
3 ,c 

, ˆ T RLS 
4 ,c 

in (7) are computed as follows. Define the 

vectors 

z c 3 ,i = 

{ 
(ε i /σ ) 3 1 (| ε i /σ |≤c) 

(ε i /σ )1 (| ε i /σ |≤c) 

(ε i /σ ) 

} 
, z c 4 ,i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(ε i /σ ) 4 1 (| ε i /σ |≤c) − τ c 
4 

(ε i /σ ) 2 1 (| ε i /σ |≤c) − τ c 
2 

1 (| ε i /σ |≤c) − τ c 
0 

(ε i /σ ) 2 − 1 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. (8) 

For standard normal ε i , these vectors are uncorrelated. The Central Limit Theorem shows that n −1 / 2 
∑ n 

i =1 z 
c 
3 ,i 

and 

n −1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

are asymptotically normal and independent with variances �c 
3 
, �c 

4 
given by 

( 
τ c 

6 τ c 
4 τ c 

4 

τ c 
4 τ c 

2 τ c 
2 

τ c 
4 τ c 

2 1 

) 
, 

⎛ 

⎜ ⎝ 

τ c 
8 − τ c 

4 τ
c 
4 τ c 

6 − τ c 
2 τ

c 
4 τ c 

4 (1 − τ c 
0 ) τ c 

6 − τ c 
4 

τ c 
6 − τ c 

2 τ
c 
4 τ c 

4 − τ c 
2 τ

c 
2 τ c 

2 (1 − τ c 
0 ) τ c 

4 − τ c 
2 

τ c 
4 (1 − τ c 

0 ) τ c 
2 (1 − τ c 

0 ) τ c 
0 (1 − τ c 

0 ) τ c 
2 − τ c 

0 

τ c 
6 − τ c 

4 τ c 
4 − τ c 

2 τ c 
2 − τ c 

0 2 

⎞ 

⎟ ⎠ 

. 

We compute the vectors 

ζ RLS 
3 ,c = { 1 , −3 τ c 

2 /τ
c 
0 , 2(c 2 − 3 τ c 

2 /τ
c 
0 ) cϕ(c) } ′ , (9) 

ζ RLS 
4 ,c = { 1 , −2 τ c 

4 / τ
c 
2 , τ

c 
4 / τ

c 
0 , (c 4 − c 2 2 τ c 

4 / τ
c 
2 + τ c 

4 / τ
c 
0 ) cϕ(c) } ′ , (10) 

and define the normalizations, for s = RLS, 

λs 
3 ,c = τ c 

4 /τ
c 
0 , λs 

6 ,c = ζ s ′ 
3 ,c �

c 
3 ζ

s 
3 ,c / (τ

c 
0 ) 

2 , λs 
24 ,c = ζ s ′ 

4 ,c �
c 
4 ζ

s 
4 ,c / (τ

c 
0 ) 

2 . (11) 

Numerical values are given in Table 1 . We note that these normalizations depend substantially on the choice of c. 

We introduce a deterministic normalization matrix N and define x in = N 

′ x i . The normalization N is chosen so that∑ n 
i =1 x in x 

′ 
in 

has a positive definite limit. Examples include N = n −1 / 2 I k for stationary regressors, N = n −1 I k for random walk

regressors, while N = diag (n −1 / 2 , n −3 / 2 ) if x i = (1 , i ) ′ . 

Assumption 3.1. Suppose (i ) ε i /σ are i.i.d. N (0 , 1) ; (ii ) max i ≤n E | n 1 / 2 x in | 2+ κ = O(1) for some κ > 0 ;

(iii ) ( 
∑ n 

i =1 x in x 
′ 
in 

, 
∑ n 

i =1 x in ε i ) 
D → (�, U) , where �

a.s. 
> 0 may be random. 

Theorem 3.1. Let Assumptions 2.1 , 3.1 hold. Let c > 0 be fixed. Then, for p = 3 , 4 , 

ˆ T RLS 
p,c = { (ζ RLS 

p,c ) 
′ �c 

p (ζ
RLS 
p,c ) } −1 / 2 (ζ RLS 

p,c ) 
′ n 

−1 / 2 
n ∑ 

i =1 

z c p,i + o P (1) 

are asymptotically independent standard normal and 
∑ 4 

j=3 ( ̂  T RLS 
j,c 

) 2 is asymptotically χ2 
2 

. 

Remark 3.1. The normalizations λRLS 
3 ,c 

, λRLS 
6 ,c 

, λRLS 
24 ,c 

in (11) differ from the traditional values 3, 6, 24. Those values are com-

monly applied in practice. This leads to severe size distortions, when there are no outliers, as we compare ˆ μRLS 
3 ,c 

and ˆ μRLS 
4 ,c 

with N (0 , 6 /n ) and N (3 , 24 /n ) distributions rather than N (0 , λRLS 
6 ,c 

/n ) and N (λRLS 
3 ,c 

, λRLS 
24 ,c 

/n ) . The 3 rd moment test is under-

sized while the 4 th moment test has asymptotic size of unity. Indeed, suppose we set c = 2 . 58 corresponding to a 1% trim-

ming and let n = 100 . Incorrect normalizations give 95% sampling regions of [ −0 . 4 8 , 0 . 4 8] and [2.04,3.96] instead of the

correct [ −0 . 30 , 0 . 30] and [1.86,2.69], leading to sizes of 0.24% and 13.5%, respectively. For n = 20 0 , 40 0 the 4 th moment test
has size 62.0% and 98.9%, respectively. 

4
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3.2. ε-tail contamination 

We introduce a new contamination scheme. We term this ε-tail contamination since the tails of the distribution are left 

unspecified while the central part is assumed normal. 

Definition 1. Let 0 ≤ ε < 1 and let c ε = 
−1 (1 − ε/ 2) be the standard normal 1 − ε/ 2 quantile. A distribution function that

is differentiable on an open interval containing [ −c ε , c ε ] with standard normal density on that interval is an ε-tail contami-

nated normal distribution function. 

The ε-tail contaminated normal distribution allows for outliers, while preserving truncated normality. This provides an 

appropriate theoretical framework to test for normality after the removal of outliers, in which both contaminated or uncon- 

taminated settings are allowed. It is worth noting that the definition can be extended to other reference distributions. For 

instance, one could be interested in ε-tail contaminated t-distributions. We also note that an ε-tail contaminated normal 

distribution need neither be continuous nor symmetric, while the support can be bounded. It is a special case of an ε-

Lévy neighbourhood ( Huber and Ronchetti, 2009 , p. 18), but differs from the gross error model, also called ε-contamination,

which has support on R ( Huber, 1964 ). 

3.3. Least trimmed squares 

Next, we initialize the data analytic strategy robustly with the LTS estimator. The LTS estimator is defined as follows 

( Rousseeuw, 1984 ). The user chooses a h ≤ n . For a given β compute the absolute residuals ξi (β) = | y i − x ′ 
i 
β| with increasing

order statistics ξ(i ) (β) . The LTS estimator is then the minimizer ˜ βLT S = arg min β
∑ h 

i =1 ξ
2 
(i ) 

(β) . 

If we let ˜ ξi = ξi ( ̃  βLT S ) with order statistics ˜ ξ(i ) we can write the LTS estimator as 

˜ βLT S − β = 

[ n ∑ 

i =1 

x i x 
′ 
i 1 { ̃ ξi ≤ ˜ ξ(h ) } 

] 
−1 

n ∑ 

i =1 

x i ε i 1 { ̃ ξi ≤ ˜ ξ(h ) } . (12) 

The corresponding scale estimator includes the consistency factor ς 

2 
c = τ c 

2 
/τ c 

0 
: 

˜ σ 2 
LT S = (τ c 

0 /τ
c 
2 ) 
[ n ∑ 

i =1 

1 { ̃ ξi ≤ ˜ ξ(h ) } 
] 

−1 
n ∑ 

i =1 

(y i − x ′ i ˜ βLT S ) 
2 1 { ̃ ξi ≤ ˜ ξ(h ) } . (13) 

We now consider the data analytic strategy initialized by the LTS estimator. Replace ˜ β and ˜ σ c with 

˜ βLT S and 

˜ ξ(h ) = 

ξ(h ) ( ̃  βLT S ) in (2) and (3) , respectively. This selects the same observations as before, so that ˆ βLT S = 

˜ βLT S and ˆ σLT S = ˜ σLT S . 

Robust estimators are often scaled to be consistent in normal samples. The validity of this scaling depends on the as-

sumed model for the regression errors. As LTS trims the tails, the scaling is valid when the central part of the error dis-

tribution is truncated normal. This is the case of the ε-tail contamination where the full set of errors are i.i.d. as described

in Section 3.2 . In contrast, if the retained observations are i.i.d. untruncated normal as in the LTS model of Berenguer-Rico

et al. (2023) , scaling should not be used. Here, we focus on the ε-tail contaminated case, but return to the LTS model in the

power simulations in Section 4.2.3 . 

The available theory for the LTS estimator in an i.i.d. setting shows that under certain regularity conditions, n 1 / 2 ( ̃  βLT S − β)

is asymptotically normal with a variance depending on the error distribution. In particular, for the case of normal errors the

limiting distribution is N (0 , �−1 σ 2 /τ c 
2 
) . This is proved by Butler (1982) for the location-scale case where the errors have a

smooth distribution function. The case with regressors is analyzed by Čížek (2005) , Víšek (2006) , requiring that the errors

are symmetric with smooth distribution function and fourth moments, fixed regressors and boundedness of the estimator. 

All these papers have i.i.d. errors and allow ε-tail contamination. Recently, Berenguer-Rico and Nielsen (2023) have given 

general conditions for boundedness. In line with these results, we assume the following high level asymptotic expansion. 

Assumption 3.2. Let h be the largest integer not exceeding n { 
(c) − 
(−c) } . Suppose (i ) ε i /σ are ε-tail contaminated

normal and 0 < c < c ε ; (ii ) max i ≤n E | n 1 / 2 x in | 2+ κ = O(1) for some κ > 0 ; (iii ) (�n , U n ) = { ∑ n 
i =1 x in x 

′ 
in 

, 
∑ n 

i =1 x in ε i 1 (| ε i /σ |≤c) } D →
(�, U) and �

a.s. 
> 0 ; (i v ) The LTS estimator has expansion N 

−1 ( ̃  βLT S − β) = (τ c 
2 
�n ) 

−1 U n + o P (1) . 

In the LTS case, we define ˆ T LT S 
3 ,c 

, ˆ T LT S 
4 ,c 

in (7) using the cut-off ˜ ξ(h ) instead of ˜ σ c, 

ζ LT S 
3 ,c = { 1 , 2 c 3 ϕ(c) /τ c 

2 − 3 , 0 } ′ , (14) 

ζ LT S 
4 ,c = { 1 , −2 τ c 

4 /τ
c 
2 , 2 c 2 τ c 

4 /τ
c 
2 − c 4 , 0 } ′ , (15) 

and normalizations λLT S as in (11) that are tabulated in Table 1 . For larger values of c, the values for RLS and LTS are not

that different. 
5 
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Theorem 3.2. Suppose Assumption 2.1 , 3.2 . Let c be fixed. Then, for p = 3 , 4 , 

ˆ T LT S 
p,c = { (ζ LT S 

p,c ) 
′ �c 

p (ζ
LT S 
p,c ) } −1 / 2 (ζ LT S 

p,c ) 
′ n 

−1 / 2 
n ∑ 

i =1 

z c p,i + o P (1) 

are asymptotically independent standard normal and 
∑ 4 

j=3 ( ̂  T LT S 
j,c 

) 2 is asymptotically χ2 
2 

. 

3.4. Power 

We consider the power of the kurtosis test based on 

ˆ T s 
4 ,c 

= n 1 / 2 ( ̂  μs 
4 ,c 

− λs 
3 ,c 

) / (λs 
24 ,c 

) 1 / 2 . Suppose the alternative hypothesis

of interest is a distribution F . Write λs 
3 c


and λs 
24 c


for λs 
3 ,c 

and λs 
24 ,c 

, respectively, and let λs 
3 cF 

be the corresponding limiting

term under F . Then, rewrite the kurtosis statistic as 

ˆ T s 4 c = 

n 

1 / 2 ( ̂  μs 
4 c − λs 

3 cF ) 

(λs 
24 c


) 1 / 2 
+ 

n 

1 / 2 (λs 
3 cF − λs 

3 c
) 

(λs 
24 c


) 1 / 2 
. (16) 

The first term in (16) is properly demeaned under the alternative distribution F . Hence, this term converges. The second

term in (16) is a non-centrality term. The test is consistent when λs 
3 cF 

	 = λs 
3 c


. 

Next, we study local power by analyzing the non-centrality term for the two procedures considered above, RLS and LTS. 

Suppose that the alternative of interest is that the innovations ε i /σ are i.i.d. with a symmetric, continuous, ε-contaminated 

distribution function F = (1 − ε)
 + εG with four moments and satisfying a local Lipschitz condition in neighbourhoods of 

the cut-off c, see Remark A.1 . Such distributions are covered by the LTS theory by Čížek (2005) and Víšek (2006) and the

present appendix. 

Let τ c 
p


and τ c 
pG denote the truncated moments under normality and under G . For the RLS procedure, the numerator of 

the non-centrality term satisfies 

n 

1 / 2 (λRLS 
3 cF − λRLS 

3 c
) = n 

1 / 2 ε
τ c 

4


τ c 
0


{ ( τ c 
4 G 

τ c 
4


− 2 

τ c 
2 G 

τ c 
2


+ 

τ c 
0 G 

τ c 
0


)
+ c
(c) 

{
(τ∞ 

2 G ) − 1 

}( c 4 

τ c 
4


− 2 

c 2 

τ c 
2


+ 

1 

τ c 
0


)} 
+ o(n 

1 / 2 ε) , (17) 

see the derivation in (D) in Appendix D . Similarly, for the LTS procedure the numerator of the non-centrality terms satisfies,

see (D.3) in Appendix D , 

n 

1 / 2 (λLT S 
3 cF − λLT S 

3 c
) = n 

1 / 2 ε
τ c 

4


τ c 
0


( τ c 
4 G 

τ c 
4


− 2 

τ c 
2 G 

τ c 
2


+ 

τ c 
0 G 

τ c 
0


)
+ o(n 

1 / 2 ε) . (18) 

The results show that, for both procedures RLS and LTS, the relevant local power rate for ε is n −1 / 2 as in Heretier and

Ronchetti (1994) . It is interesting to note that the RLS expression has an additional term relative to the LTS expression. This

has consequences for power properties. We illustrate them with a few examples. 

First, suppose that G = 
 so that F = 
 and, hence, there is no contamination. In this case τ c 
pG = τ c 

p

and τ∞ 

2 G = 1 , so

that both non-centrality terms are zero. This matches the results in Theorem 3.1 and Theorem 3.2 with ε = 0 . 

Second, suppose G is ε-tail contaminated normal with τ∞ 

2 G 	 = 1 . Thus, G has a normal density on the interval [ −c, c] . In

this case τ c 
pG = τ c 

p

and the non-centrality parameter for the LTS procedure is zero. This matches the result in Theorem 3.2 .

Note however that since f(c) = ϕ(c) 	 = 0 and τ∞ 

2 G 	 = 1 the non-centrality parameter for the RLS statistic is non-zero, so that

it declares G as contamination. 

Third, suppose G only has probability mass in the tails with zero probability for the interval [ −c, c] and c > 1 . In this case

τ c 
pG = 0 while f(c) = (1 − ε) ϕ(c) and τ∞ 

2 G > c 2 > 1 . Thus, the non-centrality term is zero for the LTS statistic but non-zero

for the RLS statistic. The conclusions are the same as in case two. 

Finally, suppose G has a general form so that τ c 
pG is neither zero nor τ c 

p

. In this case both tests will have power. 

4. Simulations 

For i = 1 , ..., n let y i = 1 + x i + ε i where x i is scalar, i.i.d. N (0 , 1) and independent of ε i . To illustrate the above results, we

consider different models for ε i . Throughout, we use a significance level of 5% . The number of replications is 10 6 when using

the OLS procedure and 10 4 when using the computationally intensive LTS procedure. All simulations are run in Matlab. LTS 

is implemented using mlts.m ( Argullo et al., 2008 ). 

4.1. Size 

We start by considering Theorem 3.1 , where there is no contamination and the robustified least squares (RLS) procedure 

is used. Hence, in the first data generating process (DGP 1) ε i is i.i.d. N (0 , 1) . The empirical size of the normality test is

reported in the upper panel of Table 2 . We consider sample sizes n = { 50 , 100 , 200 , 400 , 800 , 1600 } and cut-off values c =
{ 0 . 67 , 1 . 03 , 1 . 96 , 2 . 58 , 3 . 29 , 3 . 89 , 4 . 42 } . In small samples, the empirical size varies with the cut-off values, c, but approches
6 
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Table 2 

Size of RLS & LTS procedures. DGP 1. 

n = 50 100 200 400 800 1600 

RLS( c) 0.67 0.142 0.109 0.084 0.068 0.059 0.055 

1.03 0.104 0.081 0.067 0.059 0.055 0.052 

1.96 0.057 0.054 0.053 0.051 0.050 0.050 

2.58 0.043 0.046 0.048 0.049 0.049 0.049 

3.29 0.044 0.043 0.045 0.047 0.048 0.048 

3.89 0.043 0.046 0.046 0.046 0.048 0.048 

4.42 0.038 0.044 0.046 0.047 0.048 0.048 

LTS( γ ) 0.5 0.085 0.069 0.058 0.045 0.046 0.049 

0.4 0.071 0.059 0.053 0.048 0.053 0.054 

0.3 0.070 0.055 0.056 0.052 0.047 0.050 

0.2 0.062 0.048 0.052 0.049 0.049 0.053 

0.1 0.052 0.050 0.049 0.053 0.050 0.048 

0.05 0.049 0.052 0.051 0.052 0.050 

0.01 0.051 0.051 0.051 0.052 0.050 

ε i is i.i.d. N (0 , 1) . c is the cut-off value for the RLS procedure. γ is the trimming 

proportion for the LTS procedure. 

Table 3 

Size of the LTS (γ ) procedure. DGPs 2-8. 

DGPs γ n = 50 100 200 400 800 1600 

2 0.5 0.088 0.069 0.057 0.054 0.055 0.054 

3 0.4 0.079 0.060 0.060 0.051 0.051 0.050 

4 0.3 0.071 0.060 0.053 0.053 0.050 0.048 

5 0.2 0.063 0.058 0.056 0.054 0.049 0.050 

6 0.1 0.053 0.051 0.051 0.048 0.053 0.053 

7 0.05 0.051 0.051 0.050 0.047 0.048 

8 0.01 0.053 0.054 0.054 0.051 0.051 

ε i is i.i.d. ε-tail contaminated normal with ε = γ . 

Table 4 

RLS (c) procedure. DGP 2. 

DGPs c n = 50 100 200 400 800 1600 50 0 0 

2 0.67 0.139 0.110 0.089 0.080 0.082 0.098 0.193 

ε i is i.i.d. ε-tail contaminated normal with ε = 2 { 1 − 
(c) } . 

 

 

 

 

 

 

 

 

 

 

 

 

 

the nominal value of 5% in larger samples. Overall, these results indicate that the test, when properly normalized using the

standardizations derived in Theorem 3.1 , has the expected size properties. 

Next, we consider Theorem 3.2 , where the errors are ε-tail contaminated normal and the LTS procedure is used. We start

by choosing ε = 0 , so that there is actually no contamination and the errors are standard normal as in DGP 1. We use the

LTS procedure with a trimming proportion, γ = { 0 . 5 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 0 . 01 } . This corresponds to retaining h = n (1 − γ )

observations in the LTS estimation. To avoid rounding in the implementation of the LTS procedure, we only report results 

when h = n (1 − γ ) is an integer and omit the combinations (0.05,50) and (0.01,50). The empirical size of the normality test

is reported in the lower panel of Table 2 . A pattern similar to the RLS procedure is observed, indicating that the size of the

test is controlled, for large samples, when using the normalizing constants derived in Theorem 3.2 . 

With DGPs 2-8 and Table 3 , we study the performance of the LTS procedure under ε-tail contamination, as analyzed in

Theorem 3.2 . We consider seven contamination proportions ε = { 0 . 5 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 0 . 01 } . Let v i be standard normal

and ηi standard exponential. Let λε = { 1 − 
(c ε ) } /φ(c ε ) with 
 and φ denoting the standard normal CDF and PDF, respec-

tively. Then, the errors ε i = v i 1 (| v i | <c ε ) + (c ε + λεηi ) sgn (v i ) 1 (| v i | >c ε ) have distribution function satisfying P (ε i ≤ v ) = 
(v ) for

| v | ≤ c ε and P (ε i ≤ v ) = 1 − { 1 − 
(v ε ) } exp {−(v − c ε ) /λ} for v > c ε . The density is normal in the centre and thus ε-tail

contaminated so that Assumption 3.2 (i ) holds. 

Empirical sizes of the LTS normality test are reported in Table 3 . As expected, the empirical size approaches the nominal

size as the sample size grows, supporting that the normalizing constants derived in Theorem 3.2 deliver χ2 inference, also 

in the ε-tail contaminated case. Values of γ that trim the sample more than ε will deliver more favourable sizes. Here, we

focus on the most stringent case where γ = ε. 

The power analysis in Section 3.4 revealed that the RLS procedure declares the ε-tail model as contamination. The sim- 

ulations of DGP 2 reported in Table 4 confirm this. 
7 
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Table 5 

Power of RLS & LTS procedures. DGP 9. 

n = 50 100 200 400 800 1600 

RLS( c) 0.67 0.914 0.994 1.000 1.000 1.000 1.000 

1.03 0.971 0.999 1.000 1.000 1.000 1.000 

1.96 0.989 1.000 1.000 1.000 1.000 1.000 

2.58 0.983 0.999 1.000 1.000 1.000 1.000 

3.29 0.973 0.999 1.000 1.000 1.000 1.000 

3.89 0.972 0.999 1.000 1.000 1.000 1.000 

4.42 0.975 0.999 1.000 1.000 1.000 1.000 

LTS( γ ) 0.5 0.106 0.110 0.156 0.275 0.519 0.845 

0.4 0.144 0.215 0.395 0.684 0.951 0.999 

0.3 0.284 0.497 0.808 0.981 1.000 1.000 

0.2 0.591 0.867 0.989 1.000 1.000 1.000 

0.1 0.904 0.993 1.000 1.000 1.000 1.000 

0.05 0.999 1.000 1.000 1.000 1.000 

0.01 1.000 1.000 1.000 1.000 1.000 

ε i is i.i.d. t 1 . 

Table 6 

Power RLS & LTS procedures. DGP 10. 

n = 50 100 200 400 800 1600 

RLS( c) 0.67 0.248 0.330 0.493 0.749 0.956 0.999 

1.03 0.389 0.583 0.825 0.978 0.999 1.000 

1.96 0.650 0.877 0.986 0.999 1.000 1.000 

2.58 0.708 0.922 0.994 1.000 1.000 1.000 

3.29 0.757 0.953 0.998 1.000 1.000 1.000 

3.89 0.804 0.971 0.999 1.000 1.000 1.000 

4.42 0.837 0.980 0.999 1.000 1.000 1.000 

LTS( γ ) 0.5 0.085 0.071 0.061 0.059 0.065 0.064 

0.4 0.080 0.069 0.066 0.067 0.085 0.114 

0.3 0.077 0.077 0.083 0.111 0.171 0.290 

0.2 0.113 0.131 0.190 0.308 0.535 0.820 

0.1 0.359 0.517 0.725 0.921 0.995 1.000 

0.05 0.867 0.979 0.999 1.000 1.000 

0.01 0.985 0.999 1.000 1.000 1.000 

ε i ∼ (1 − ε) N (0 , 1) + εN (2 , 9) with ε = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

4.2. Power 

Previous studies have simulated the power of the standard cumulant normality test for full sample OLS residuals. For 

instance, Jarque and Bera (1987) considered Beta, Student’s t, Gamma and Log-normal distributions while Thadewald and 

Büning (2007) considered the ε-contamination model of Huber (1964) . Thus inspired, we consider the power of the RLS and

LTS procedures for the following error distributions: Cauchy; the ε-contamination model; and the LTS model of Berenguer- 

Rico et al. (2023) . We use the asymptotic critical values from Theorems 3.1 and 3.2 . 

4.2.1. Cauchy distribution 

In DGP 9, ε i is Cauchy distributed. Table 5 reports power results. The RLS procedure is very powerful even in small

samples. In contrast, the empirical power of the LTS procedure depends highly on the trimming parameter γ . For γ = 0 . 5

or γ = 0 . 4 , the procedure requires larger samples to achieve adequate levels of rejection frequencies. When γ ≤ 0 . 1 more

observations of the fat tails of the distribution are retained and the power is high in small samples. 

4.2.2. ε-contamination 

In DGP 10, ε i ∼ (1 − ε) N (0 , 1) + εN (2 , 9) with ε = 0 . 2 , so the errors are ε-contaminated in the sense of Huber (1964) .

Table 6 reports power results. First, as expected, the empirical power of the RLS procedure increases with sample size 

and cut-off, c. When n = { 50 , 100 } the procedure has low power for small values of c. In larger samples, say n ≥ 800 , the

procedure attains empirical power of (nearly) one for all c. Second, the empirical power of the LTS procedure depends highly

on the trimming parameter γ . For γ = 0 . 5 , the empirical power remains low even when n = 1600 . When γ = 0 . 5 , the LTS

procedure trims 50% of the sample although there is only ε = 20% contamination. Hence, the low power. For γ = 0 . 3 , the

empirical power grows only slowly with the sample size. For smaller trimming proportions, γ ≤ 0 . 2 , the LTS procedure

performs much better with empirical power close to one for n = 100 or larger. 
8 
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Table 7 

Power of RLS & LTS procedures. DGP 11. 

n = 50 100 200 400 800 1600 

RLS( c) 0.67 0.186 0.204 0.278 0.479 0.812 0.990 

1.03 0.287 0.456 0.748 0.973 0.999 1.000 

1.96 0.384 0.807 0.993 1.000 1.000 1.000 

2.58 0.187 0.512 0.922 0.999 1.000 1.000 

3.29 0.100 0.234 0.558 0.943 0.999 1.000 

3.89 0.066 0.153 0.357 0.780 0.995 1.000 

4.42 0.057 0.133 0.308 0.705 0.989 1.000 

LTS( γ ) 0.5 0.084 0.078 0.069 0.072 0.092 0.138 

0.4 0.085 0.079 0.099 0.127 0.224 0.421 

0.3 0.105 0.143 0.239 0.435 0.732 0.960 

0.2 0.258 0.610 0.949 0.999 1.000 1.000 

0.1 0.307 0.787 0.993 1.000 1.000 1.000 

0.05 0.668 0.983 1.000 1.000 1.000 

0.01 0.320 0.778 0.996 1.000 1.000 

ε i ∼ LTS model with h = nε, ε = 0 . 8 . No separation: ν+ = ν− = 0 

Table 8 

Power of RLS & LTS procedures. DGP 11. 

n = 50 100 200 400 800 1600 

RLS( c) 0.67 0.362 0.554 0.835 0.990 1.000 1.000 

1.03 0.620 0.880 0.993 1.000 1.000 1.000 

1.96 0.987 1.000 1.000 1.000 1.000 1.000 

2.58 0.973 0.999 1.000 1.000 1.000 1.000 

3.29 0.865 0.998 1.000 1.000 1.000 1.000 

3.89 0.742 0.985 1.000 1.000 1.000 1.000 

4.42 0.698 0.973 1.000 1.000 1.000 1.000 

LTS( γ ) 0.5 0.084 0.078 0.069 0.073 0.092 0.138 

0.4 0.088 0.079 0.100 0.127 0.224 0.421 

0.3 0.112 0.144 0.239 0.435 0.732 0.960 

0.2 0.505 0.823 0.986 0.999 1.000 1.000 

0.1 0.986 1.000 1.000 1.000 1.000 1.000 

0.05 1.000 1.000 1.000 1.000 1.000 

0.01 0.999 1.000 1.000 1.000 1.000 

ε i ∼ LTS model with h = nε, ε = 0 . 8 . Separation: ν+ = 3 , ν− = −1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. LTS Model 

In DGP 11, the error term follows the LTS model of Berenguer-Rico et al. (2023) . This is a model where LTS is maximum

likelihood. Errors satisfy the following structure. Let ζ be a set with h = nε elements from 1 , ..., n with ε = 0 . 8 . For i ∈ ζ ,

let ε i be i.i.d. N (0 , 1) . For j 	∈ ζ , let ξ j be i.i.d. with distribution function G j (x ) for x ∈ R where G j is continuous at 0. The

outlier errors are 

ε j = ( max 
i ∈ ζ

ε i + ξ j )1 (ξ j > 0) + ( min 

i ∈ ζ
ε i + ξ j )1 (ξ j < 0) . (19) 

The LTS model differs from ε-tail contamination as introduced in Section 3.2 . The ε-tail contamination model has i.i.d.

errors and the uncontaminated part is truncated normal. The LTS models does not have i.i.d. errors due to the construction

(19) , but the uncontaminated part is (untruncated) normal. 

To study the power, we set ξ j − ν+ 1 (ξ j > 0) + ν−1 (ξ j < 0) to be i.i.d. N (0 , 1) . We consider two cases. First, we let ν+ = ν− = 0

so that there is no separation between good and outlier observations. Second, we let ν+ = 3 and ν− = −1 to allow for

separation. 

Table 7 reports power results for DGP 11, when ν+ = ν− = 0 . The RLS procedure is not very powerful in small samples

but power tends to one as the sample size increases for all cut-off values c. The empirical power is low for the LTS pro-

cedure when γ = 0 . 5 , even when n = 1600 . For smaller values of γ , the power approaches one in the larger sample sizes

considered. 

Table 8 reports power results for DGP 11, when ν+ = 3 and ν− = −1 . RLS is markedly more powerful with separation

than without for all values of c, n . The LTS procedure is also notably more powerful for γ ≤ 0 . 2 . For most values of c, in the

RLS case, or γ , in the LTS case, the power approaches one even in moderate sample sizes. 

5. Empirical illustration 

We illustrate the test for truncated normality using the stars data of Rousseeuw and Leroy (1987 , Table 2.3). For further

discussion, see also Berenguer-Rico et al. (2023) , BR23 henceforth. Figure 1 shows observations on log light intensity and
9 
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Fig. 1. Star data and fit by LTS for different h . Log light intensity against log temperature. Bullets are estimated good observations for h = 42 . Circle with 

cross is the F -star. Two bullets with crosses are declared outliers by RLS procedure. 

Table 9 

Estimates by LTS for the full sample. 

Trunc. model LTS model 

h ψ ˆ β1 
ˆ β2 ˆ σtrunc T norm 

trunc ˆ σLT S T norm 
LT S 

25 0.50000 -13 .62 4 .22 0.48 2.45 0.18 1.72 

36 0.75000 -11 .49 3 .71 0.46 1.97 0.27 1.98 

37 0.77274 -9 .00 3 .16 0.46 3.60 0.28 2.49 

40 0.84092 -8 .58 3 .07 0.45 2.44 0.31 2.13 

41 0.83365 -8 .50 3 .05 0.46 2.35 0.33 1.26 

42 0.88638 -7 .40 2 .80 0.49 5.82 0.37 0.39 

43 0.90910 -4 .06 2 .05 0.51 0.52 0.40 0.69 

44 0.93183 1 .89 0 .70 0.59 2.78 0.49 0.49 

45 0.95456 7 .34 -0 .53 0.60 5.54 0.51 2.94 

46 0.97728 6 .92 -0 .44 0.59 4.99 0.53 2.74 

47 1.00000 6 .79 -0 .41 0.56 3.40 0.55 2.75 

 

 

 

 

 

 

 

 

 

 

 

 

log temperature for the Hertzsprung-Russell diagram of the star cluster CYG OB1 containing n = 47 stars. From the right,

the first four stars are giant of M-type, the fifth star is of F -type, the next 31 stars (1 doublet) are of B -type, and the last 11

stars (1 doublet) are of O -type. We apply the suggested tests for truncated normality noting that the power will be low in a

sample as small as this. Hence, detecting departures from the null requires strong evidence against truncated normal errors. 

We start with the robustified least squares procedure, RLS. The initial least squares estimators are 

l og.l ight 
( se OLS ) 

[ t−stat OLS ] 

= 6 . 79 

(1 . 21) 

[5 . 61] 

− 0 . 41 

(0 . 28) 

[ −1 . 48] 

log .T e. (20) 

The full sample OLS estimation is influenced by the M-stars. Proceeding with a cut-off of c = 1 . 96 , which is the normal

97.5% quantile, RLS declares that observations 14 and 17, marked with circles and crosses in Figure 1 , are outliers. The RLS

estimates are 

l og.l ight 
( se RLS ) 

[ t−stat RLS ] 

= 7 . 34 

(1 . 44) 

[5 . 08] 

− 0 . 53 

(0 . 33) 

[ −1 . 58] 

log .T e, T norm 

RLS = 4 . 83 . (21) 

Thus, the RLS estimation remains influenced by the M-stars in line with the analysis of Welsh and Ronchetti (2002) . The

test statistic for truncated normality is asymptotically χ2 
2 

with 90% quantile of 4.60 and 95% quantile of 5.99. Hence, the 

test T norm 

RLS 
= 4 . 83 rejects at the 10% significance level, showing some evidence against the null. 

We now turn to the LTS procedure. Figure 1 shows lines fitted by LTS for different values of h . There is not much differ-

ence between the fits for h = 25 and h = 42 . The slope starts turning from h = 42 onwards. The four M-stars are arguebly

bad leverage points. The F -star may also be an outlier, but can have a masking effect (BR23). 

For inference, we will refer to two models, both depending on the choice of h . The truncated normal model is an i.i.d. ε-

tail contaminated model where the central h observations are truncated normal. In the LTS model , the central h observations

are untruncated i.i.d. normal (BR23). These models require different scale estimators. We let ˆ σtrunc be the scale estimator 

in the ε-tail contaminated model and ˆ σLT S the scale estimator in the LTS model . More specifically, ˆ σtrunc is the standard LTS

estimates with a consistency correction as in (3) , while ˆ σLT S has no consistency correction. 

Table 9 shows the estimated coefficients when fitting LTS for different h values. Two test statistics are reported, T norm 

trunc 

and T norm 

LT S 
. Both combine third and fourth residual cumulants. T norm 

trunc uses the new normalizations for the truncated normal
10 
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Table 10 

Estimates by LTS for the sample excluding the F -star. 

Trunc. model LTS model 

h ψ ˆ β1 
ˆ β2 ˆ σtrunc T norm 

trunc ˆ σLT S T norm 
LT S 

25 0.52274 -13 .62 4 .22 0.48 3.11 0.18 1.72 

36 0.77274 -11 .49 3 .71 0.45 2.12 0.27 1.98 

37 0.79546 -9 .00 3 .16 0.44 3.78 0.28 2.49 

40 0.86365 -8 .58 3 .07 0.43 2.67 0.31 2.13 

41 0.88637 -8 .50 3 .05 0.44 1.04 0.33 1.26 

42 0.90910 -7 .40 2 .80 0.47 4.57 0.37 0.39 

43 0.93183 7 .88 -0 .65 0.60 4.79 0.49 2.57 

44 0.95456 7 .74 -0 .62 0.59 5.20 0.51 2.76 

45 0.97728 7 .58 -0 .59 0.59 4.99 0.53 2.73 

46 1.00000 7 .12 -0 .49 0.56 3.45 0.55 2.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model. T norm 

LT S 
has the standard normalizations and tests for untruncated normality of the good errors in the LTS model. Both

test statistics are asymptotically χ2 
2 with 90% quantile of 4.60 and 95% quantile of 5.99. It should be noted that T norm 

LT S 
has

not been analyzed formally under the LTS model. The test statistics should be interpreted in a pointwise fashion. 

Table 10 is applied to the sample where the F -star is removed. Otherwise, it has the same structure as Table 9 . This is

to disentangle the masking effect of the F star already pointed out in BR23. 

We need to assume a model to conduct inference. Given the doublets, the data are not consistent with the assumption

of a continuous distribution. Most likely, the doublets arise from rounding, so we disregard this point. Given the graphical 

evidence in Figure 1 of having four potential outliers in this data set, the M-stars, we start by considering a truncated normal

model with h = 43 . The LTS estimator declares, precisely, the four M-stars as outliers in this case. The test for truncated

normality in Table 9 with h = 43 is T norm 

trunc = 0 . 52 , therefore, it does not reject. Removing the F -star from the sample alters

this conclusion. The test based on Table 10 with h = 42 gives T norm 

trunc = 4 . 57 , which rejects the null hypothesis at the 10%

significance level, giving some evidence against the null. This suggests a masking effect of the F -star. Including the possibly

outlying F -star as good introduces noise and may explain these differences. 

Given these results, next we consider a truncated normal model with h = 42 leaving the four M-stars and the F -star as

outliers. Table 9 has T norm 

trunc = 5 . 82 . Again, it rejects the null hypothesis of truncated normality at the 10% significance level.

The test statistic is actually very close to the critical value at 5% significance level, showing stronger evidence against the

null. 

Finally, we consider an (untruncated) LTS normal model with h = 42 . Tables 9, 10 both have T norm 

LT S 
= 0 . 39 , so that nor-

mality cannot be rejected. Moreover, BR23 suggest that for LTS location-scale models, h can be estimated consistently by 

minimizing T norm 

LT S 
over h . Both tables have h = 42 as minimizer. This conclusion is clearest in Table 10 and somewhat fragile

in Table 9 , possibly due to a masking effect of the F -star. 

Overall, there is some evidence against the two truncated normal models, whereas the LTS model cannot be rejected. 

With h = 42 , the estimated truncated normal model and LTS model along with both sets of standard errors and t-statistics

are 

log .light 
( se LT S ) / [ t−stat LT S ] 

( se trunc ) / [ t−stat trunc ] 

= − 7 . 40 

(2 . 09) / [ −3 . 54] 

(3 . 43) / [ −2 . 16] 

+ 2 . 80 

(0 . 48) / [5 . 09] 

(0 . 78) / [3 . 59] 

log .T e. (22) 

Going along with the suggestion that the tests for normality and truncated normality give more confidence in the LTS model

than the ε-tail contamination model, we should favour the smaller standard errors and larger t-statistic marked LTS, which 

gives more confidendence that the slope is significant than those marked trunc. 

6. Discussion 

Conducting inference on the unknown parameters of regression models when accounting for the presence of outliers 

requires knowledge of the distributional properties of the data at hand. Normality of the good errors is often considered 

in practice. Yet, the good errors could be truncated normal, as implicitly assumed by standard practice when using the LTS

estimator of Rousseeuw (1984) , or untruncated normal as in the LTS model of Berenguer-Rico et al. (2023) ; Berenguer-Rico

and Nielsen (2023) . Test statistics that deliver valid inference differ in each model. Hence, assessing which model better 

describes a given dataset is key in applied work. We have derived a test for truncated normality of the good errors that

delivers standard χ2 inference. We have applied the test statistic to the stars data of Rousseeuw and Leroy (1987 , Table 2.3)

and found some evidence against truncated normality and in favour of untruncated normal good errors. 
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A. Empirical processes 

A1. The main empirical process results 

We are interested in the weighted and marked empirical distribution functions, for c > 0 , 

ˆ G 

q,p 
n (c) = n 

−1 
∑ n 

i =1 
(n 

1 / 2 x in ) 
�q ( ̂  ε i / ̂  σ ) p 1 (| ̃ ε i / ̃ σ |≤c) , (A.1) 

where v �0 = 1 , v �1 = v , v �2 = vv ′ for the vector v = n 1 / 2 x in . We refer to w in = (n 1 / 2 x in ) 
�q as the weight and to ( ̂  ε i / ̂  σ ) p as

the mark . We will use the (q, p) -combinations 

Q = { (0 , 0) , (0 , 2) , (0 , 3) , (0 , 4) , (1 , 1) } as well as (2 , 0) . (A.2)

Define the normalized estimation errors ˜ a = n 1 / 2 ( ̃  σ − σ ) /σ and 

˜ b = N 

−1 ( ̃  β − β) /σ, so that x ′ 
i 
( ̃  β − β) = x ′ 

in 
˜ b σ . Similarly,

define ˆ a = n 1 / 2 ( ̂  σ − σ ) /σ and 

ˆ b = N 

−1 ( ̂  β − β) /σ . The standardized residuals satisfy 

˜ ε i 
˜ σ

= 

y i − x ′ 
i 

˜ β

˜ σ
= 

ε i − x ′ 
i 
N N 

−1 ( ̃  β − β) 

σ + n 

−1 / 2 n 

1 / 2 ( ̃  σ − σ ) 
= 

ε i /σ − x ′ 
in 

˜ b 

1 + n 

−1 / 2 ˜ a 
. 

Let ˜ θ = ( ̃  a , ̃  b , ̂  a , ̂  b ) and G 

q,p 
n ( ̃  θ, c) = 

ˆ G 

q,p 
n (c) . When analyzing G 

q,p 
n ( ̃  θ, c) , we can replace ˜ θ with deterministic values θ =

(a 1 , b 1 , a p , b p ) varying in some set due to the next result. Subscripts indicate association with indicator or mark. 

Lemma A.1. If ∀ ε > 0 , ∃ a compact set � so lim n →∞ 

P ( ̃  θ ∈ �c ) < ε then P {| G n ( ̃  θ, c) | > ε} ≤ P { sup θ∈ � | G n (θ, c) | > ε} + ε for

large n . 

Proof. Intersect the set {| G n ( ̃  θ, c) | > ε} with the set ( ̃  θ ∈ �) and its complement. �

The processes of interest are therefore, with w in = (n 1 / 2 x in ) 
�q and ε σ

i 
= ε i /σ , 

G 

q,p 
n (θ, c) = n 

−1 
n ∑ 

i =1 

w in 

( ε σ
i 

− x ′ 
in 

b p 

1 + n 

−1 / 2 a p 

)
p 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) , (A.3) 

G 

q,p 

n (θ, c) = n 

−1 
n ∑ 

i =1 

w in E i −1 

( ε σ
i 

− x ′ 
in 

b p 

1 + n 

−1 / 2 a p 

)
p 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) , (A.4) 

where E i −1 is the F i −1 ,n conditional expectation. The weights w in are F i −1 ,n adapted. In particular, using (4) , we have 

G 

0 ,p 

n (0 , c) = E (ε σi ) 
p 1 (| ε σ

i 
|≤c) = τ c 

p . (A.5) 

Next, define the empirical process 

G 

q,p 
n (θ, c) = n 

1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 

n (θ, c) } , (A.6) 

which is a martingale. Define also the bias terms 

G q,p 
1 n 

(θ, c) = 2 c p ϕ(c) n 

−1 
n ∑ 

i =1 

(n 

1 / 2 x in ) 
�q { 1 (p even ) ca 1 + 1 (p odd ) n 

1 / 2 x ′ in b 1 } , (A.7) 

G q,p 
mn (θ, c) = pn 

−1 
n ∑ 

i =1 

(n 

1 / 2 x in ) 
�q { 1 (p even ) τ

c 
p a p + 1 (p odd ) τ

c 
p−1 n 

1 / 2 x ′ in b p } . (A.8) 

The asymptotic analysis requires the next assumption. Remark A.1 below outlines how part (i ) can be relaxed. 

Assumption A.1. Suppose Assumption 2.1 and (i ) ε σ
i 

= ε i /σ are ε-tail contaminated normal and 0 < c < c ε ,

(ii ) max 1 ≤i ≤n E | n 1 / 2 x in | 2+ κ = O(1) for some κ > 0 . 

We will need the following asymptotic results. 

Theorem A.2. Suppose Assumption A.1 (ii ) . Let q = 0 , 1 , 2 and p = 0 , 1 , . . . , 4 . Then (a ) G 

q,p 
n (0 , c) = o P (n 1 / 2 ) ; (b) G 

q,p 
n (0 , c) =

n −1 
∑ n 

i =1 w in τ
c 
p = O P (1) . 

Theorem A.3. Suppose Assumption A.1 , then for all B > 0 , (a ) sup | θ1 | <B | G 

2 , 0 
n (θ1 , c) − G 

2 , 0 
n (0 , c) | = o P (1) ;

(b) sup | θ1 | <B | G 

2 , 0 
n (θ1 , c) − G 

2 , 0 
n (0 , c) | = o P (1) . 

Theorem A.4. Suppose Assumption A.1 . Let (q, p) ∈ Q . Then, ∀ B > 0 , (a ) sup | θ |≤B | G 

q,p 
n (θ, c) − G 

q,p 
n (0 , c) | = o P (1) ,

(b) sup | θ1 |≤B | n 1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 
n (0 , c) } − {G q,p 

1 n 
(θ, c) − G q,p 

mn (θ, c) }| = o P (1) . 

To see the usefulness of Theorem A.4 decompose 
12 
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n 

1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 

n (0 , c) } = n 

1 / 2 { G 

q,p 
n (0 , c) − G 

q,p 

n (0 , c) } 
+ G 

q,p 
n (θ, c) − G 

q,p 
n (0 , c) + n 

1 / 2 { G 

q,p 

n (θ, c) − G 

q,p 

n (0 , c) } . (A.9)

Combining the two statements of Theorem A.4 , we get 

n 

1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 

n (0 , c) } = n 

1 / 2 { G 

q,p 
n (0 , c) − G 

q,p 

n (0 , c) } + {G q,p 
1 n 

(θ, c) − G q,p 
mn (θ, c) } + o P (1) . (A.10)

In turn, normalizing and applying Theorem A.2 , we get 

G 

q,p 
n (θ, c) = G 

q,p 

n (0 , c) + o P (1) . (A.11) 

In the case of LTS estimation, the cut-off is the order statistics ˜ ξ(h ) . We will show that ˜ ξ(h ) is consistent for σ c for h being

the largest integer not exceeding n { 
(c) − 
(−c) } . We can always write ˜ ξ(h ) /σ = c + n −1 / 2 ˜ d where ˜ d = n 1 / 2 { ̃  ξ(h ) /σ − c} . In
our analysis, the cut-off c is fixed. It is therefore equivalent to think of the estimation uncertainty in the order statistic as a

scale estimation error since ˜ ξ(h ) /σ = c(1 + n −1 / 2 ˜ d /c) . Thus, introduce the notation c d = c + n −1 / 2 d and θd = (d/c, 0 , 0 , 0) to

get G 

q,p 
n (0 , c d ) = G 

q,p 
n (θd , c) and G 

q,p 
n (θ, c d ) = G 

q,p 
n (θ + θd , c) . The uncertainty d will show up in the bias term G q,p 

1 n 
, but not

in G q,p 
mn . This results in the following expansions, uniformly in | θ | , | d| ≤ B . First, Theorem A.4 (a ) gives 

n 

1 / 2 { G 

q,p 

n (0 , c d ) − G 

q,p 

n (0 , c) } = G q,p 
1 n 

(θd ; c) + o P (1) ; (A.12) 

Next, the expansions (A.10), (A.11) imply 

n 

1 / 2 { G 

q,p 
n (θ, c d ) − G 

q,p 

n (0 , c) } = n 

1 / 2 { G 

q,p 
n (0 , c) − G 

q,p 

n (0 , c) } + {G q,p 
1 n 

(θ + θd , c) − G q,p 
mn (θ, c) } + o P (1) ; (A.13) 

G 

q,p 
n (θ, c d ) = G 

q,p 

n (0 , c) + o P (1) . (A.14) 

A2. Preliminary Lemmas 

The following lemmas are useful in proving the main empirical processes results. 

Lemma A.5. Suppose max 1 ≤i ≤n E | n 1 / 2 x in | 2+ κ = O(1) for some κ > 0 . Define the sets D i = (| n 1 / 2 x in | ≤ n λ) where 1 / (2 + κ) <

λ < 1 / 2 . Let v in (θ1 ) be random variables. Then, for all ε > 0 and large n , 

P 

{ 
sup 

| θ1 |≤B 

∣∣∣ n ∑ 

i =1 

v in (θ1 ) 

∣∣∣ > ε
} 

≤ P 

{ 
sup 

| θ1 |≤B 

∣∣∣ n ∑ 

i =1 

v in (θ1 )1 D i 

∣∣∣ > ε
} 

+ ε. 

Proof. Let A = { sup | θ1 |≤B | ∑ n 
i =1 v in (θ1 ) | > ε} and define D = ∩ 

n 
i =1 

D i , so that 

P (A ) = P (A ∩ D) + P (A ∩ D 

c ) ≤ P (A ∩ D) + P (D 

c ) . (A.15)

We find P (D 

c ) . Note that D 

c = ∪ 

n 
i =1 

D 

c 
i 
. By Boole’s and Markov’s inequalities 

P (D 

c ) = P { 
n ⋃ 

i =1 

(| n 

1 / 2 x in | > n 

λ) } ≤
n ∑ 

i =1 

P (| n 

1 / 2 x in | > n 

λ) ≤ n 

−λ(2+ κ) 
n ∑ 

i =1 

E | n 

1 / 2 x in | 2+ κ . 

Taking maximum over the summands gives P (D 

c ) ≤ n 1 −λ(2+ κ) max 1 ≤i ≤n E | n 1 / 2 x in | 2+ κ . Since the maximum of expectations

is assumed bounded while λ > 1 / (2 + κ) , we get that P (D 

c ) → 0 . Thus, P (D 

c ) ≤ ε for large n . Insert this in (A.15) . Rewrite

(A ∩ D) = { sup | θ1 |≤B | ∑ n 
i =1 v in (θ1 ) | 1 D > ε} . As D = ∩ 

n 
i =1 

D i then D ⊂ D i for all i . Thus, (A ∩ D) ⊂ { sup | θ1 |≤B | ∑ n 
i =1 v in (θ1 )1 D i | >

ε} . Insert in (A.15) . �

Lemma A.6. Let I i (θ1 ) = 1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ cn −1 / 2 a 1 ) 
− 1 (| ε σ

i 
|≤c) so that I i (0) = 0 . Let 

J i (θ0 , θ1 ) = 1 { c−n −1 / 2 a 0 c−s in (θ0 ,θ1 ) ≤ε σ
i 

−x ′ 
in 

b 0 ≤c+ n −1 / 2 a 0 c+ s in (θ0 ,θ1 ) } + 1 {−c−n −1 / 2 a 0 c−s in (θ0 ,θ1 ) ≤ε σ
i 

−x ′ 
in 

b 0 ≤−c+ n −1 / 2 a 0 c+ s in (θ0 ,θ1 ) } , 

where s in (θ0 , θ1 ) = cn −1 / 2 | a 1 − a 0 | + | x in || b 1 − b 0 | . Then 

| I i (θ1 ) − I i (θ0 ) | ≤ J i (θ0 , θ1 ) , (A.16) 

Proof. The second indicator in the definition of I i cancels when taking difference. Thus, 

I i (θ1 ) − I i (θ0 ) = { 1 (ε σ
i 

≤c+ n −1 / 2 a 1 c+ x ′ in b 1 ) − 1 (ε σ
i 

≤c+ n −1 / 2 a 0 c+ x ′ in b 0 ) } − { 1 (ε σ
i 

≤−c−n −1 / 2 a 1 c+ x ′ in b 1 ) − 1 (ε σ
i 

≤−c−n −1 / 2 a 0 c+ x ′ in b 0 ) } . 
For the first term, we note that c + n −1 / 2 a 1 c + x ′ 

in 
b 1 is located in the interval with midpoint c + n −1 / 2 a 0 c + x ′ 

in 
b 0 and radius

s in (θ0 , θ1 ) . Thus, the first term is bounded in absolute value by the indicator on that interval. This is the first term of

J (θ , θ ) . The second term is bounded in a similar fashion. �
i 0 1 
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Lemma A.7. Suppose F is ε-tail contaminated normal with 0 < c < c ε . Let p = 0 , 1 , 2 , . . . , 8 . Let s = c or s = −c. Then, ∀ 0 < δ <

c ε − c, ∃ C > 0 , ∀ s − δ ≤ s 1 ≤ s 2 ≤ s + δ, we have (a ) E i −1 | ε σi | p 1 (s 1 ≤ε σ
i 

≤s 2 ) 
≤ (s 2 − s 1 ) C; (b) | E i −1 (ε 

σ
i 
) p { 1 (ε σ

i 
≤s 1 ) 

− 1 (ε σ
i 

≤s ) } − (s 1 −
s ) s p ϕ(s ) | ≤ (s 1 − s ) 2 C. 

Remark A.1. Lemma A.7 has the only argument requiring Assumption A.1 (i ) that F is ε-tail contaminated normal and 0 <

c < c ε . Inspection of the proof shows that it suffices that (1 + | s | 8 ) f(s ) is locally bounded and Lipschitz in neighbourhoods of

c and −c, see also Berenguer-Rico et al. (2019 , Lemma A.6). Under those conditions the result holds with the normal density

ϕ replaced by f in part (ii ) . 

Proof. Part (a ) . For a function H with derivative h , the mean value theorem gives H (s 2 ) = H (s 1 ) + (s 2 − s 1 ) h (s ∗) for an

intermediate point s 1 ≤ s ∗ ≤ s 2 . Thus 

E i −1 | ε σi | p 1 (s 1 ≤ε σ
i 

≤s 2 ) = 

∫ s 2 

s 1 

| v | p f(v ) dv = (s 2 − s 1 ) | s ∗| p f(s ∗) . 

Since s − δ ≤ s ∗ ≤ s + δ we can take f as the normal density ϕ. We bound | s ∗| p f (s ∗) ≤ sup s −δ≤s ∗≤s + δ | s ∗| p ϕ(s ∗) < ∞ . 

Part (b) . Follow the same steps and apply a second order mean value theorem, so that H (s 1 ) = H (s ) + (s 1 − s ) h (s ) +
(1 / 2)(s 1 − s ) 2 ˙ h (s ∗) . Use that for the normal density, | s ∗| p f(s ∗) has a bounded derivative locally around s . �

Lemma A.8. Let max 1 ≤i ≤n E | n 1 / 2 x in | 2 = O(1) . Let D i = (| n 1 / 2 x in | ≤ n λ) for λ < 1 / 2 . Recall w in = (n 1 / 2 x in ) 
�q . Then

(a ) E n −1 
∑ n 

i =1 (1 + | n 1 / 2 x in | 2 ) = O(1) ; (b) E n −1 
∑ n 

i =1 | w in | = O(1) for q = 0 , 1 , 2 ; (c) E n −1 
∑ n 

i =1 | w in | 2 = O(1) for q = 0 , 1 ;

(d) E n −2 
∑ n 

i =1 | w in | 2 1 D i = o(1) for q = 0 , 1 , 2 . 

Proof. Part (a ) . Swap expectation and summation and take maximum over expectations to bound E n −1 
∑ n 

i =1 (1 +
| n 1 / 2 x in | 2 ) ≤ 1 + max 1 ≤i ≤n E | n 1 / 2 x in | 2 , which is bounded. 

Part (b) . For q = 0 , 1 , 2 , we get that | w in | ≤ 2(1 + | n 1 / 2 x in | 2 ) . Apply part (a ) . 

Part (c) . For q = 0 , 1 , we get that | w in | 2 ≤ 2(1 + | n 1 / 2 x in | 2 ) . Apply part (a ) . 

Part (d) . For q = 0 , 1 , 2 , we get | w in | 1 D i ≤ 2(1 + | n 1 / 2 x in | 2 )1 D i ≤ Cn 2 λ. Thus, we can bound E n −2 
∑ n 

i =1 | w in | 2 1 D i ≤
n 2 λ−1 E n −1 

∑ n 
i =1 | w in | . This vanishes as 2 λ < 1 and the expecation is bounded by part (b) . �

A3. Proofs of empirical process results 

Proof of Theorem A2. Part (a ) . Let n −1 / 2 
G 

q,p 
n (0 , c) = n −1 

∑ n 
i =1 w in v i with v i = (ε σ

i 
) p 1 (| ε σ

i 
|≤c) − τ c 

p . This is a martingale 

Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 + κ) < λ < 1 / 2 shows that it suffices that

the martingale n −1 
∑ n 

i =1 w in v i 1 D i vanishes. 

The Chebyshev inequality shows that it suffices that E = E | n −1 
∑ n 

i =1 w in v i 1 D i | 2 vanishes. By the martingale property, E =
n −2 
∑ n 

i =1 E | w in | 2 v 2 i 
1 D i . Apply the law of iterated expectations and note E i −1 v 2 i 

is constant and finite by the truncation. Thus,

E ≤ CE n −2 
∑ n 

i =1 | w in | 2 1 D i , which vanishes by Lemma A.8 (d) using Assumption A.1 (ii ) . 

Part (b) . The identity G 

q,p 
n (0 , c) = n −1 

∑ n 
i =1 w in τ

c 
p follows from (A.4), (A.5) . 

Lemma A.8 (b) using Assumption A.1 (ii ) , shows that E n −1 
∑ n 

i =1 | w in | is bounded. �

Proof of Theorem A3. Let V n (θ1 ) = G 

2 , 0 
n (θ1 , c) − G 

2 , 0 
n (0 , c) = 

∑ n 
i =1 v in (θ1 ) and V n (θ1 ) = G 

2 , 0 
n (θ1 , c) − G 

2 , 0 
n (0 , c) =∑ n 

i =1 E i −1 v in (θ1 ) with v in (θ1 ) = n −1 nx in x 
′ 
in 

I i (θ1 ) and I i (θ1 ) = 1 (| ε i /σ−x ′ 
in 

b 1 |≤c+ cn −1 / 2 a 1 ) 
− 1 (| ε i /σ |≤c) . We nee d to show that

 n (θ1 ) and V n (θ1 ) vanish uniformly in | θ1 | ≤ B . Throughout, C > 0 denotes a generic constant. 

Apply Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 + κ) < λ < 1 / 2 . It suffices to show

 

D 
n (θ1 ) = 

∑ n 
i =1 | v in (θ1 ) | 1 D i and V 

D 
n (θ1 ) = 

∑ n 
i =1 E i −1 | v in (θ1 ) | 1 D i vanish uniformly. We will find a bound | v in (θ1 ) | 1 D i ≤ v in uni-

formly in θ1 . Thus, E sup θ1 
V D n (θ1 ) and E sup θ1 

V 
D 
n (θ1 ) are both bounded by E 

∑ n 
i =1 v in = E 

∑ n 
i =1 E i −1 v in , which we will show

to be vanishing. 

By Lemma A.6 with θ0 = 0 and defining s in (θ1 ) = n −1 / 2 | a 1 | c + | x in || b 1 | , we have 

| I i (θ1 ) | ≤ J i (θ1 ) = 1 { c−s in (θ1 ) ≤ε σ
i 

≤c+ s in (θ1 ) } + 1 {−c−s in (θ1 ) ≤ε σ
i 

≤−c+ s in (θ1 ) } . 

On D i we have that | x in | < n λ−1 / 2 with λ < 1 / 2 . Since | θ1 | ≤ B , c is fixed, we get s in (θ1 ) ≤ Cn λ−1 / 2 = s n . Having exploited D i ,

we then bound 1 D i ≤ 1 to get 

| I i (θ1 ) | 1 D i ≤ J i = 1 (c−s n ≤ε σ
i 

≤c+ s n ) + 1 (−c−s n ≤ε σ
i 

≤−c+ s n ) , 

uniformly in θ1 . Thus, | v in (θ1 ) | 1 D i ≤ n −1 | n 1 / 2 x in | 2 J i = v in , uniformly in θ1 . Now, apply Lemma A.7 using Assumption A.1 (i ) to

get E i −1 J i ≤ Cs n = Cn λ−1 / 2 . In turn, we find that E 

∑ n 
i =1 E i −1 v in ≤ Cn λ−1 / 2 E n −1 

∑ n 
i =1 | n −1 / 2 x in | 2 vanishes since the expectation

is bounded by Lemma A.8 (a ) using A.1 (ii ) while λ < 1 / 2 . �

Theorem A.4 compares the empirical process and the compensator at θ and 0. We introduce an intermediate point 

θ1 = (a 1 , b 1 , 0 , 0) representing the situation with estimation error in the indicator but not in the mark and θp = (0 , 0 , a p , b p )
14 
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representing the situation with estimation error in the mark but not in the indicator. We decompose 

G 

q,p 
n (θ, c) − G 

q,p 
n (0 , c) = { G 

q,p 
n (θ, c) − G 

q,p 
n (θ1 , c) } + { G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) } . (A.17)

We analyze the two terms in (A.17) separately. For the compensator term in Theorem A.4 , we decompose 

n 

1 / 2 { G 

q,p 

n (θ, c) − G 

q,p 

n (0 , c) } − {G q,p 
1 n 

(θ, c) − G q,p 
mn (θ, c) } 

= n 

1 / 2 { G 

q,p 

n (θ, c) − G 

q,p 

n (θ1 , c) } + G q,p 
mn (θp , c) + n 

1 / 2 { G 

q,p 

n (θ1 , c) − G 

q,p 

n (0 , c) } − G q,p 
1 n 

(θ1 , c) . (A.18)

As with (A.17) , we analyze the compensator comparing θ to θ1 and the one comparing θ1 to 0 in (A.18) separately. 

Lemma A.9. Suppose A.1 . Let q = 0 , 1 and p = 0 , 1 , . . . , 4 . Then, ∀ B > 0 and for θ1 = (a 1 , b 1 , 0 , 0) ,

(a ) sup | θ1 |≤B | n 1 / 2 { G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) } − G q,p 

1 n 
(θ1 , c) | = o P (1) ; (b) sup | θ1 |≤B | G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) | = o P (1) . 

The proof adapts that of Theorem 1.17 of Johansen and Nielsen (2009) . More general results that are also uniform in the

cut-off c are given by Johansen and Nielsen (2016a) , Jiao and Nielsen (2017) , Berenguer-Rico et al. (2019) . 

Proof. Let I i (θ1 ) = 1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) 
− 1 (| ε σ

i 
|≤c) , while C > 0 is a generic constant. 

Part (a ) . We show that V n (θ1 ) = n 1 / 2 { G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) } − G q,p 

1 n 
(θ1 , c) vanishes uniformly in | θ1 | ≤ B . Write V n (θ1 ) =∑ n 

i =1 v in (θ1 ) where v in (θ1 ) = n −1 / 2 w in [ E i −1 (ε 
σ
i 
) p I i (θ1 ) − 2 c p ϕ(c) { n −1 / 2 a 1 c1 (p even ) + x ′ 

in 
b 1 1 (p odd ) } ] . 

Apply Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 + κ) < λ < 1 / 2 . We show V 
D 
n (θ1 ) =∑ n 

i =1 v in (θ1 )1 D i vanishes uniformly in | θ1 | ≤ B . 

Consider E i = E i −1 (ε 
σ
i 
) p I i (θ1 )1 D i . Write I i (θ1 ) = J i 1 (θ1 ) − J i 2 (θ1 ) where J i 1 (θ1 ) = 1 (ε σ

i 
≤c+ n −1 / 2 a 1 c+ x ′ in b 1 ) 

− 1 (ε σ
i 

≤c) and

J i 2 (θ1 ) = 1 (ε σ
i 

≤−c−n −1 / 2 a 1 c+ x ′ in b 1 ) 
− 1 (ε σ

i 
≤−c) . Since | θ1 | ≤ B , c is fixed, and on D i we have that | x in | < n λ−1 / 2 , then n −1 / 2 | a 1 | c +

| x in || b 1 | ≤ Cn λ−1 / 2 for λ < 1 / 2 . Lemma A.7 using Assumption A.1 (i ) then gives 

E i −1 (ε 
σ
i ) 

p J i 1 (θ1 )1 D i = (n 

−1 / 2 a 1 c + x ′ in b 1 ) c p ϕ(c)1 D i + R i 1 (θ1 )1 D i (A.19) 

E i −1 (ε 
σ
i ) 

p J i 2 (θ1 )1 D i = (−n 

−1 / 2 a 1 c + x ′ in b 1 )(−c) p ϕ(−c)1 D i + R i 2 (θ1 )1 D i (A.20) 

where R i j (θ1 )1 D i ≤ C(n −1 / 2 | a 1 | c + | x in || b 1 | ) 2 . We now collect the first order terms on the right hand side of (A .19), (A .20) .

We note that the normal density is symmetric so that ϕ(c) = ϕ(−c) and write (−c) p = c p { 1 (p even ) − 1 (p odd ) } . This gives 

(n 

−1 / 2 a 1 c + x ′ in b 1 ) c p ϕ(c) − (−n 

−1 / 2 a 1 c + x ′ in b 1 )(−c) p ϕ(−c) = 2 c p ϕ(c) { n 

−1 / 2 a 1 c1 (p even ) + x ′ in b 1 1 (p odd ) } , 
which matches the bias term in v in (θ1 ) . Thus, we can bound 

| V 

D 
n (θ1 ) | = | 

n ∑ 

i =1 

v in (θ1 )1 D i | ≤ n 

−1 / 2 
n ∑ 

i =1 

| w in | (| R i 1 (θ1 ) | + | R i 2 (θ1 ) | )1 D i . 

We bound the sum of remainder terms. For q = 0 , 1 , then | w in | ≤ (1 + | n 1 / 2 x in | ) , so that | w in | ≤ Cn λ on D i . By the Jensen

inequality and the construction | a | , | b| ≤ B , then | R i j (θ1 ) | ≤ Cn −1 (1 + | n 1 / 2 x in | 2 ) . Thus, | V D n (θ1 ) | ≤ Cn λ−1 / 2 n −1 
∑ n 

i =1 (1 +
| n 1 / 2 x in | 2 ) . This vanishes since the average is bounded in expectation by Lemma A.8 (a ) using Assumption A.1 (ii ) while

λ < 1 / 2 . 

Part (b) . Let ˜ V n (θ1 ) = G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) = 

∑ n 
i =1 ̃ v in (θ1 ) with 

˜ v in (θ1 ) = n −1 / 2 w in { (ε σi ) p I i (θ1 ) − E i −1 (ε 
σ
i 
) p I i (θ1 ) } . Ap-

ply Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 + κ) < λ < 1 / 2 . We show 

˜ V D n (θ1 ) =∑ n 
i =1 ̃  v in (θ1 )1 D i vanishes uniformly in | θ1 | ≤ B . 

To tackle the uniformity in θ1 , we use the following chaining argument and inequality. Given a small ε > 0 , we can

choose a (small) radius of size M according to (A.26) below and cover the set | θ1 | ≤ B with a finite number, K, of balls with

centres θ1 k for k = 1 , ..., K. The balls are given by 

B k = (θ1 : | θ1 − θ1 k | ≤ M, | θ1 | ≤ B ) . 

The chaining inequality uses that any θ1 belongs to some ball with index k . Thus, 

| ̃  V 

D 
n (θ1 ) | ≤ | ̃  V 

D 
n (θ1 k ) | + | ̃  V 

D 
n (θ1 ) − ˜ V 

D 
n (θ1 k ) | ≤ max 

k 
| ̃  V 

D 
n (θ1 k ) | + max 

k 
sup 

θ1 ∈ B k 
| ̃  V 

D 
n (θ1 ) − ˜ V 

D 
n (θ1 k ) | . (A.21)

The term max k | ̃  V D n (θ1 k ) | in (A.21) . We show P n = P { max k | ̃  V D n (θ1 k ) | ≥ ε} → 0 , for any ε > 0 . Here max is a union of

events. The Boole and Chebyshev inequalities give 

P n = P 

K ⋃ 

k =1 

{| ̃  V 

D 
n (θ1 k ) | > ε} ≤

K ∑ 

k =1 

P {| ̃  V 

D 
n (θ1 k ) | > ε} ≤ 1 

ε2 

K ∑ 

k =1 

E | ̃  V 

D 
n (θ1 k ) | 2 . (A.22)

Here, ˜ V D n (θ1 k ) is a scalar for q = 0 and a vector for q = 1 . Moreover, it is a sum of martingale differences ˜ v D 
in 
(θ1 k ) =

˜ v in (θ1 k )1 D i and thus a sum of mean zero and uncorrelated terms. Therefore, by iterated expectations, 

E | ̃  V 

D 
n (θ1 k ) | 2 = 

n ∑ 

i =1 

E | ̃ v D in (θ1 k ) | 2 = 

n ∑ 

i =1 

EE i −1 | ̃ v D in (θ1 k ) | 2 . (A.23) 
15 
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Using the definition of ˜ v D 
in 
(θ1 k ) , we find 

E i −1 | ̃ v D in (θ1 k ) | 2 = n 

−1 | w in | 2 1 D i E i −1 { (ε σi ) p I i (a 1 k , b 1 k ) − E i −1 (ε 
σ
i ) 

p I i (a 1 k , b 1 k ) } 2 
≤ n 

−1 | w in | 2 1 D i E i −1 [(ε 
σ
i ) 

2 p { I i (a 1 k , b 1 k ) } 2 ] . (A.24) 

Lemma A.6 with θ0 = 0 shows that | I i (a 1 k , b 1 k ) | ≤ J i (θ1 k ) = 1 {| ε σ
i 

−c|≤s in (θ1 k ) } + 1 {| ε σ
i 

+ c|≤s in (θ1 k ) } with s in (θ1 k ) = cn −1 / 2 | a 1 k | +
| x in || b 1 k | . Since | θ1 k | ≤ B , c fixed and on D i , we have that s in (θ1 k ) ≤ Cn λ−1 / 2 , uniformly in θ1 k . The Jensen inequality shows

{ I i (a 1 k , b 1 k ) } 2 ≤ 2 J i (θ1 k ) . Lemma A.7 (a ) using Assumption A.1 (i ) then shows 

E i −1 [(ε 
σ
i ) 

2 p { I i (a 1 k , b 1 k ) } 2 ] ≤ Cn 

λ−1 / 2 (A.25) 

Insert (A.25) in (A.24), (A.23), (A.22) to get P n ≤ ε−2 KCn λ−1 / 2 E n −1 
∑ n 

i =1 | w in | 2 1 D i , which vanishes since ε and K are fixed,

λ < 1 / 2 and the expectation is bounded by Lemma A.8 (c) using Assumption A.1 (ii ) . 

The term max k sup θ1 ∈ B k | Z n (θ1 k , θ1 ) | in (A.21) where Z n (θ1 k , θ1 ) = 

˜ V D n (θ1 ) − ˜ V D n (θ1 k ) . and write Z n (θ1 k , θ1 ) =∑ n 
i =1 { z in (θ1 k , θ1 ) − E i −1 z in (θ1 k , θ1 ) } with summands 

z in (θ1 k , θ1 ) = n 

−1 / 2 w in (ε 
σ
i ) 

p { I i (a 1 , b 1 ) − I i (a 1 k , b 1 k ) } . 
Apply Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 + κ) < λ < 1 / 2 . We show

Z D n (θ1 k , θ1 ) = 

∑ n 
i =1 { z D in 

(θ1 k , θ1 ) − E i −1 z 
D 
in 
(θ1 k , θ1 ) } vanishes uniformly in θ1 k , θ1 , where z D 

in 
(θ1 k , θ1 ) = z in (θ1 k , θ1 )1 D i . By

Lemma A.6 , then | z D 
in 
(θ1 k , θ1 ) | ≤ n −1 / 2 | w in || ε i /σ | p J i (θik , θ1 )1 D i , where 

J i (θik , θ1 ) = 1 { c−n −1 / 2 a 1 k c−s in (θ1 k ,θ1 ) ≤ε σ
i 

−x ′ 
in 

b 1 k ≤c+ n −1 / 2 a 1 k c+ s in (θ1 k ,θ1 ) } + 1 {−c−n −1 / 2 a 1 k c−s in (θ1 k ,θ1 ) ≤ε σ
i 

−x ′ 
in 

b 1 k ≤−c+ n −1 / 2 a 1 k c+ s in (θ1 k ,θ1 ) } 

with s in (θ1 k , θ1 ) ≤ n −1 / 2 | a 1 k − a 1 | c + | x in || b 1 k − b 1 | . Since | θ1 k − θ1 | ≤ M, c fixed and on D i , we have that s in (θ1 k , θ ) ≤ s in uni-

formly in θ1 k , θ1 , where s in = Cn −1 / 2 M(1 + | n 1 / 2 x in | ) , Thus, J i (θik , θ1 ) ≤ J ik , where 

J ik = 1 (c−n −1 / 2 a 1 k c−s in ≤ε σ
i 

−x ′ 
in 

b 1 k ≤c+ n −1 / 2 a 1 k c+ s in ) + 1 (−c−n −1 / 2 a 1 k c−s in ≤ε σ
i 

−x ′ 
in 

b 1 k ≤−c+ n −1 / 2 a 1 k c+ s in ) , 

uniformly in θ1 ∈ B k . We then get | z D 
in 
(θ1 k , θ1 ) | ≤ z 

J 

ik 
= n −1 / 2 | w in || ε σi | p J ik 1 D i . By the triangle inequality 

Z D n (θ1 k , θ1 ) ≤
n ∑ 

i =1 

(z J 
ik 

+ E i −1 z 
J 

ik 
) = 

n ∑ 

i =1 

(z J 
ik 

− E i −1 z 
J 

ik 
) + 

n ∑ 

i =1 

E i −1 z 
J 

ik 
= 

˜ Z J 
nk 

+ Z 
J 

nk , 

say. It suffices to show that each of ˜ Z 
J 

nk 
and Z 

J 

nk vanishes uniformly in k . 

The term Z 
J 

nk . On D i , then s in ≤ Cn 1 / 2 −λ, which vanishes uniformly in k . Thus, Lemma A.7 (a ) using Assumption A.1 (i )

shows that E i −1 z 
J 

ik 
≤ Cn −1 / 2 | w in | 1 D i s in . The weight w in is 1 or n 1 / 2 x in so that | w in | ≤ 1 + | n 1 / 2 x in | . Then the Jensen in-

equality shows | w in | s in 1 D i ≤ CMn −1 / 2 (1 + | n 1 / 2 x in | 2 ) and we get E i −1 z 
J 

ik 
≤ CMn −1 (1 + | n 1 / 2 x in | 2 ) . Thus, Z 

J 

nk ≤ CMn −1 
∑ n 

i =1 (1 +
| n 1 / 2 x in | 2 ) uniformly in k . The Markov inequality shows that 

P ( max 
k 

Z 
J 

nk > ε) ≤ 1 

ε
E max 

k 
Z 

J 

nk ≤
CM 

ε
E n 

−1 
n ∑ 

i =1 

(1 + | n 

1 / 2 x in | 2 ) < ε, (A.26) 

since the expectation is bounded by Lemma A.8 (a ) using A.1 (ii ) and since, for given ε > 0 , we can choose M freely. 

The term 

˜ Z 
J 

nk 
. We show P Z = P { max k | ̃  Z 

J 

nk 
| ≥ ε} → 0 for an ε > 0 . As in (A.22) , write max k as a union then use Boole’s

and Chebyshev’s inequalities to get 

P Z = P 

K ⋃ 

k =1 

(| ̃  Z J 
nk 

| ≥ ε) ≤
K ∑ 

k =1 

P (| ̃  Z J 
nk 

| ≥ ε) ≤ 1 

ε2 

K ∑ 

k =1 

E ( ̃  Z J 
nk 

) 2 . (A.27) 

We note that ˜ Z 
J 

nk 
= 

∑ n 
i =1 (z 

J 

ik 
− E i −1 z 

J 

ik 
) is a martingale with z 

J 

ik 
= n −1 / 2 | w in || ε σi | p J ik 1 D i . Thus it has uncorrelated summands,

which shows 

E ( ̃  Z J 
nk 

) 2 = 

n ∑ 

i =1 

E (z J 
ik 
) 2 = n 

−1 
n ∑ 

i =1 

E n E i −1 (z J 
ik 
) 2 . (A.28) 

We proceed as for Z 
J 

nk . Note that J 2 
ik 

≤ 2 J ik by the Jensen inequality. Thus, Lemma A.7 (a ) . using Assumption A.1 (i ) shows

that n E i −1 (z 
J 

ik 
) 2 ≤ C| w in | 2 1 D i s in . As before, s in 1 D i ≤ Cn λ−1 / 2 . Thus, n E i −1 | z J nk 

| 2 ≤ Cn λ−1 / 2 | w in | 2 . Insert in (A .28), (A .27) , to get

P Z ε
−2 KCn λ−1 / 2 E n −1 

∑ n 
i =1 | w in | 2 . This vanishes for ε, K, since λ < 1 / 2 and the expectation is bounded by Lemma A.8 (c) using

Assumption A.1 (ii ) . �
16 
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For the first term in (A.17) with mark estimation error, we need a further result. 

Lemma A.10. Suppose Assumption A.1 . Let (q, p) ∈ Q . Then, ∀ B > 0 and for θ = (a 1 , b 1 , a m 

, b m 

) and θ1 = (a 1 , b 1 , 0 , 0) ,

(a ) sup | θ |≤B | G 

q,p 
n (θ, c) − G 

q,p 
n (θ1 , c) | = o P (1) ; (b) sup | θ |≤B | n 1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 
n (θ1 , c) } + G q,p 

mn (θ, c) | = o P (1) . 

Proof. Notation . Let v i (θ ) = { (ε abσ
i 

) p − (ε σ
i 
) p } 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) 

where ε σ
i 

= ε i /σ and ε abσ
i 

= (ε i /σ − x ′ 
in 

b m 

) / (1 +
n −1 / 2 a m 

) . Define a ∗m 

and b ∗m 

through 

ε abσ
i − ε σi = 

ε σ
i 

− x ′ 
in 

b m 

1 + n 

−1 / 2 a m 

− ε σi = 

−n 

−1 / 2 a m 

1 + n 

−1 / 2 a m 

ε σi − x ′ 
in 

b m 

1 + n 

−1 / 2 a m 

= n 

−1 / 2 a ∗m 

ε σi + x ′ in b ∗m 

. (A.29) 

Note that given a B > 0 a B ∗ > 0 exists so that | a ∗m 

| , | b ∗m 

| ≤ B ∗ for | a m 

| , | b m 

| ≤ B . 

Finally, the mean value theorem with | ε σ ∗
i 

− ε σ
i 
| ≤ | ε abσ

i 
− ε σ

i 
| shows that 

(ε abσ
i ) p − (ε σi ) 

p = 1 (p≥1) p(ε abσ
i − ε σi )(ε 

σ
i ) 

p−1 + 1 (p≥2) 

1 

2 

p(p − 1)(ε abσ
i − ε σi ) 

2 (ε σ ∗
i ) p−2 . (A.30)

Part (a ) . We must show that V n (θ ) = n 1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 
n (θ1 , c) } vanishes uniformly in θ . We have V n (θ ) =

n −1 / 2 
∑ n 

i =1 w in { v i (θ ) − E i −1 v i (θ ) } . 
Decomposition . Using the above expansions write v i (θ ) = 

∑ 2 
s =1 v si (θ ) where 

v 1 i (θ ) = 1 (p≥1) p(ε abσ
i − ε σi )(ε 

σ
i ) 

p−1 1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) , 

v 2 i (θ ) = 1 (p≥2) 

1 

2 

p(p − 1)(ε abσ
i − ε σi ) 

2 (ε σ ∗
i ) p−2 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) . 

Let V n (θ ) = 

∑ 2 
s =1 V sn (θ ) with V sn (θ ) = n −1 / 2 

∑ n 
i =1 w in { v si (θ ) − E i −1 v si (θ ) } . By the triangle inequality, it suffices to show that

each V sn is o P (1) uniformly in θ. 

The term V 1 n (θ ) . Since ε abσ
i 

− ε σ
i 

= n −1 / 2 a ∗m 

ε σ
i 

+ x ′ 
in 

b ∗m 

by (A.29) , we can write 

V 1 n (θ ) = n 

−1 / 2 p{ G 

q,p 
n (θ1 , c) a 

∗
m 

+ G 

q +1 ,p−1 
n (θ1 , c) b 

∗
m 

} 
for p ≥ 1 . We argue that G n (θ1 , c) = G n (0 , c) + o P (n 1 / 2 ) uniformly in θ1 . Apply Theorem A.3 for (q + 1 , p − 1) = (2 , 0) and

Lemma A.9 (b) for all other cases. Both use Assumption A.1 . Theorem A.2 using Assumption A.1 (ii ) shows G 

q,� 
n (0 , c) =

o P (n 1 / 2 ) . Thus, V 1 n (θ ) . vanishes due to the factor n −1 / 2 and since | a ∗m 

| , | b ∗m 

| ≤ B ∗. 

The term V 2 n (θ ) . Since p ≥ 2 then q = 0 for all (q, p) ∈ Q , see (A.2) , thus we can set w in = 1 and V 2 n (θ ) =
n −1 / 2 

∑ n 
i =1 { v 2 i (θ ) − E i −1 v 3 i (θ ) } . Apply Lemma A.5 using Assumption A.1 (ii ) and where D i = (| n 1 / 2 x in | < n λ) with 1 / (2 +

κ) < λ < 1 / 2 . We show V D 
2 n 

(θ ) = n −1 / 2 
∑ n 

i =1 { v 2 i (θ ) − E i −1 v 2 i (θ ) } 1 D i vanishes. 

By the triangle inquality, |V D 2 n (θ ) | ≤ n −1 / 2 
∑ n 

i =1 {| v 2 i (θ ) | + E i −1 | v 2 i (θ ) |} 1 D i . 
We bound v 2 i (θ ) . By Jensen’s inequality | ε σ ∗

i 
| p−2 ≤ C(| ε σ ∗

i 
− ε σ

i 
| p−2 + | ε σ

i 
| p−2 ) . Thus, 

| v 2 i (θ ) | ≤ C| ε abσ
i − ε σi | 2 (| ε σ ∗

i − ε σi | p−2 + | ε σi | p−2 )1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) . 

By (A.29) then | ε σ ∗
i 

− ε σ
i 
| ≤ | ε abσ

i 
− ε σ

i 
| ≤ n −1 / 2 | a ∗m 

|| ε σ
i 
| + | x in || b ∗m 

| . Here, | a ∗m 

| , | b ∗m 

| < B ∗, so that | ε σ ∗
i 

− ε σ
i 
| ≤ Cn −1 / 2 (1 +

| n 1 / 2 x in | )(1 + | ε σ
i 
| ) . We need two further bounds. First, by the Jensen inequality, | ε σ ∗

i 
− ε σ

i 
| 2 ≤ Cn −1 (1 + | n 1 / 2 x in | 2 )(1 +

| ε σ
i 
| 2 ) . Second, | x in | ≤ n λ−1 / 2 on D i where λ < 1 / 2 , so that | ε σ ∗

i 
− ε σ

i 
| ≤ n λ−1 / 2 C ≤ 1 for large n . In combination 

| v 2 i (θ ) | 1 D i ≤ Cn 

−1 (1 + | n 

1 / 2 x in | 2 )(1 + | ε σi | 2 )(1 + | ε σi | p−2 )1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) 1 D i 

By Jensen’s inequality, (1 + | ε σ
i 
| 2 )(1 + | ε σ

i 
| p−2 ) ≤ C(1 + | ε σ

i 
| p ) . Further, on D i we have n −1 / 2 | a ∗1 | c + | x in || b ∗1 | ≤ Cn λ−1 / 2 , so

that 1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) 
≤ 1 (| ε σ

i 
|≤c+ Cn λ−1 / 2 ) . Finally, we bound 1 D i ≤ 1 . Thus 

sup 

| θ |≤B ∗
| v 2 i (θ ) | 1 D i ≤ Cn 

−1 (1 + | n 

1 / 2 x in | 2 )(1 + | ε σi | p )1 (| ε σ
i 
|≤c+ Cn λ−1 / 2 ) . 

Take conditional expectation, apply Lemma A.7 using Assumption A.1 (i ) . We get 

E i −1 sup 

| θ |≤B ∗
| v 2 i (θ ) | 1 D i ≤ Cn 

−1 (1 + | n 

1 / 2 x in | 2 ) . 

Return to the sum and bound 

E sup 

| θ |≤B ∗
|V 2 i (θ ) | ≤ E n 

−1 / 2 
n ∑ 

i =1 

E i −1 sup 

| θ |≤B ∗
| v 2 i (θ ) | 1 D i ≤ Cn 

−1 / 2 E n 

−1 
n ∑ 

i =1 

(1 + | n 

1 / 2 x in | 2 ) , 

which vanishes as the expecation is bounded by Lemma A.8 (a ) with Assumption A.1 (ii ) . 

Part (b) . Decomposition . We show V n (θ ) = n 1 / 2 { G 

q,p 
n (θ, c) − G 

q,p 
n (θ1 , c) } + G q,p 

mn (θ, c) vanishes uniformly in θ . Use (A.5),

(A.8) and note τ c 
p = 0 when p is odd and τ c 

p−1 
= 0 when p is even and write V n (θ ) = n −1 / 2 

∑ n 
i =1 w in v i (θ ) where 

v i (θ ) = E i −1 

[{ (ε abσ
i ) p − (ε σi ) 

p } 1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) + s i p(ε σi ) 
p−1 1 (| ε σ

i 
|≤c) 

]
, 
17 
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with s i = n −1 / 2 a m 

ε σ
i 

+ x ′ 
in 

b m 

. Apply the expansion (A.30) to v i (θ ) and add and subtract s i p(ε σ
i 
) p−1 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) 

to

get v i (θ ) = 

∑ 3 
s =1 v si (θ ) where 

v 1 i (θ ) = −E i −1 

[
s i p(ε σi ) 

p−1 
{

1 (| ε σ
i 

−x ′ 
in 

b 1 |≤c+ n −1 / 2 a 1 c) − 1 (| ε σ
i 
|≤c) 

}]
, 

v 2 i (θ ) = 1 (p≥1) E i −1 

{(
ε abσ

i − ε σi + s i 
)

p(ε σi ) 
p−1 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) 

}
, 

v 3 i (θ ) = 1 (p≥2) 

1 

2 

p(p − 1) E i −1 (ε 
abσ
i − ε σi ) 

2 (ε σ ∗
i ) p−2 1 (| ε σ

i 
−x ′ 

in 
b 1 |≤c+ n −1 / 2 a 1 c) , 

for | ε σ ∗
i 

− ε σ
i 
| ≤ | ε abσ

i 
− ε σ

i 
| . We analyze the terms V sn (θ ) = n −1 / 2 

∑ n 
i =1 w in v si (θ ) in turn. 

The term V 1 n (θ ) . We note p ≥ 1 so that q ≤ 1 . Thus, by the definition of s i , we have V 1 n (θ ) = { G 

q,p 
n (θ1 , c) − G 

q,p 
n (0 , c) } a m 

+
{ G 

q +1 ,p−1 
n (θ1 , c) − G 

q +1 ,p−1 
n (0 , c) } b m 

. We find that G n (0 , c) = o P (1) uniformly in θ1 by applying Theorem A.3 (b) for (q +
1 , p − 1) = (2 , 0) and Lemma A.9 (b) for all other cases. Both use Assumption A.1 . Since | θ | ≤ B , we find that V 1 n (θ ) vanishes.

The term V 2 n (θ ) . Expand using (A.29) to get 

ε abσ
i − ε σi + s i = n 

−1 / 2 { ε σi (a ∗m 

+ a m 

) + n 

1 / 2 x ′ in (b ∗m 

+ b m 

) } . 
From (A.29) , we get a ∗m 

= −a m 

/ (1 + n −1 / 2 a m 

) so that a ∗m 

+ a m 

= −n −1 / 2 a ∗m 

a m 

. Similarly b ∗m 

+ b m 

= −n −1 / 2 a ∗m 

b m 

. Thus, ε abσ
i 

−
ε σ

i 
+ s i = −n −1 { ε σ

i 
a m 

+ n 1 / 2 x ′ 
in 

b m 

} a ∗m 

. 

The sum of interest is V 2 n (θ ) = −n −1 / 2 { G 

q,p 
n (θ1 , c) a m 

+ G 

q +1 ,p−1 
n (θ1 , c) b m 

} a ∗m 

. We find V 2 n (θ ) = −n −1 / 2 { V 1 n (θ ) +
G 

q,p 
n (0 , c) a m 

+ G 

q +1 ,p−1 
n (0 , c) b m 

} a ∗m 

by adding and subtracting G 

q,p 
n (0 , c) . Here, V 1 n (θ ) was found to vanish above;

Theorem A.2 (b) using Assumption A.1 (ii ) shows that G 

�,p 
n (0 , c) is bounded; and | a m 

| , | a ∗m 

| , | b m 

| are bounded. Thus, V 2 n (θ )

vanishes due to the n −1 / 2 factor. 

The term V 3 n (θ ) . Since p ≥ 2 then w in = 1 . Note that v 3 i (θ ) = E i −1 v 2 i (θ ) . We get that E sup θ | V 3 n (θ ) | =
E sup θ | ∑ n 

i =1 E i −1 v 2 i (θ ) | ≤ E 

∑ n 
i =1 E i −1 sup θ | v 2 i (θ ) | , which was found to vanish for the term V 2 n (θ ) above. �

Proof of Theorem A4. Use the decompositions (A.17), (A.18) for G 

q,p 
n and G 

q,p 
n along with Lemmas A.9, A.10 . �

B. Normality testing initialized by OLS 

B1. Preliminary Results on Estimators 

Lemma B.1. Let x i = (1 , z ′ 
i 
) ′ while m n , v n are random sequences and 

N 

−1 ( ̂  β − β) = ( 
n ∑ 

i =1 

x in x 
′ 
in ) 

−1 
n ∑ 

i =1 

x in m i + v n . (B.1) 

Then, 
∑ n 

i =1 x 
′ 
i 
( ̂  β − β) = 

∑ n 
i =1 m i + v n 

∑ n 
i =1 x 

′ 
in 

. 

Proof. Use x in = N 

′ x i and x i = (1 , z ′ 
i 
) ′ . We get 

∑ n 
i =1 x 

′ 
i 
= (1 , 0) 

∑ n 
i =1 x i x 

′ 
i 

and 

∑ n 
i =1 x 

′ 
i 
( ̂  β − β) = (1 , 0) 

∑ n 
i =1 x i x 

′ 
i 
N N 

−1 ( ̂  β − β) . In-

sert expansion (B.1) for ˆ β . Cancel normalizations and sums of squares of x i . Use that (1 , 0) x i = 1 . �

Lemma B.2. Let ˜ β, ̃  σ be full sample least squares estimators of β , σ . Suppose Assumption 3.1 (iii ) . Then 

N 

−1 ( ̃  β − β) /σ = ( 
n ∑ 

i =1 

x in x 
′ 
in ) 

−1 
n ∑ 

i =1 

x in ε 
σ
i = O P (1) , (B.2) 

n 

1 / 2 ( ̃  σ − σ ) = (σ / 2) n 

−1 / 2 
n ∑ 

i =1 

{ (ε σi ) 2 − 1 } + o P (1) = O P (1) . (B.3) 

Proof. (B.2) follows from Assumption 3.1 (iii ) . For (B.3) note that n 1 / 2 ( ̃  σ 2 − σ 2 ) = n −1 / 2 
∑ n 

i =1 (ε 
2 
i 

− σ 2 ) − n −1 / 2 Q n where Q n =∑ n 
i =1 ε i x 

′ 
i 
( 
∑ n 

i =1 x i x 
′ 
i 
) −1 
∑ n 

i =1 x i ε i . The first term is asymptotically normal since ε i are independent normal by Assumption 3.1 (i ) .

The term n −1 / 2 Q n is o P (1) by (B.2) and Assumption 3.1 (iii ) . A Taylor expansion of (1 + x ) 1 / 2 with x = ˆ σ 2 /σ 2 − 1 shows that

ˆ σ − σ = (σ / 2)( ̂  σ 2 /σ 2 − 1) + o P ( ̂  σ
2 − σ 2 ) . The main term is asymptotically normal. �

The estimators satisfy an improved version of Jiao and Nielsen (2017 , Theorem 1). 

Lemma B.3. Let c > 0 . Suppose Assumptions 2.1 , 3.1 hold. Then 

N 

−1 ( ̂  βRLS − β) /σ = { 2 cϕ(c) /τ c 
0 } N 

−1 ( ̃  β − β) /σ + (τ c 
0 

n ∑ 

i =1 

x in x 
′ 
in ) 

−1 
n ∑ 

i =1 

x in ε 
σ
i 1 (| ε σ

i 
|≤c) + o P (1) , (B.4) 
18
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n 

1 / 2 ( ̂  σ RLS − σ ) = { c(c 2 − τ c 
2 /τ

c 
0 ) ϕ(c) /τ c 

2 } n 

1 / 2 ( ̃  σ − σ ) + { σ/ (2 τ c 
2 ) } n 

−1 / 2 
n ∑ 

i =1 

{ (ε σi ) 2 − τ c 
2 /τ

c 
0 } 1 (| ε σ

i 
|≤c) + o P (1) , 

(B.5) 

where the initial estimators ˜ β, ˜ σ have expansions given in Lemma B.2 . 

Proof. We apply Theorems A.2, A.3, A.4 using Assumptions 2.1, 3.1 (i, ii ) 

Expression (B.4) . Write N 

−1 ( ̂  βRLS − β) /σ = { ̂  G 

2 , 0 
n (c) } −1 { n 1 / 2 ˆ G 

1 , 1 
n (c) } . By Assumption 3.1 (iii ) , the initial estimator converges

in probability. Thus, by Lemma A.1 it suffices to analyze { G 

2 , 0 
n (θ1 , c) } −1 { n 1 / 2 G 

1 , 1 
n (θ1 , c) } uniformly in | θ1 | < B , where θ1 =

(a 1 , b 1 , 0 , 0) with a 1 = n 1 / 2 ( ̃  σ − σ ) /σ and b 1 = N 

−1 ( ̃  β − β) /σ . 

The denominator. By Theorem A.3 , G 

2 , 0 
n (θ1 , c) = G 

2 , 0 
n (0 , c) + o P (1) . By Theorem A.2 , G 

2 , 0 
n (0 , c) = G 

2 , 0 
n (0 , c) + o P (1) , where

G 

2 , 0 
n (0 , c) = τ c 

0 

∑ n 
i =1 x in x 

′ 
in 

. 

The numerator. By Theorem A.2 and since τ c 
1 

= 0 then G 

1 , 1 
n (0 , c) = 0 . By Theorem A.4 , see also (A.9),

(A.10) , n 1 / 2 G 

1 , 1 
n (0 , c) = G 

1 , 1 
n (0 , c) + G 1 , 1 

1 n 
(θ1 , c) − G 1 , 1 mn (θ1 , c) . Here, G 

1 , 1 
n (0 , c) = 

∑ n 
i =1 x in ε 

σ
i 

1 (| ε σ
i 
|≤c) while G 1 , 1 

1 n 
(θ1 , c) =

2 cϕ(c) 
∑ n 

i =1 x in x 
′ 
in 

b 1 by (A.7) , and G 1 , 1 mn (θ1 , c) = 0 by (A.8) . Combine these elements and scale by σ to get (B.4) . 

Expression (B.5) . Proceed along the same lines. See also the proof of Jiao and Nielsen (2017 , Theorem 1). �

B2. Proof of results for the RLS procedure 

Consider the truncated moments (6) . Here, the superscript RLS is ignored. Let ˜ θ1 = ( ̃  a , ̃  b ) where ˜ a = n 1 / 2 ( ̃  σ − σ ) /σ , ˜ b =
N 

−1 ( ̃  β − β) /σ are full sample least squares estimation errors. Let also ˜ θp = ( ̂  a , ̂  b ) where ˆ a = n 1 / 2 ( ̂  σ − σ ) /σ, ˆ b = N 

−1 ( ̂  β −
β) /σ are the least squares estimation errors for the selected sub-sample. In combination, ˜ θ = ( ̃  θ1 , 

˜ θp ) , which was analyzed

in Lemmas B.2, B.3 . We expand G 

0 ,p 
n ( ̃  θ, c) for p = 3 , 4 in terms of the vectors z c 

p,i 
given in (8) . 

Lemma B.4. Let Assumptions 2.1 , 3.1 , hold. Recall ζ RLS 
3 ,c 

, ζ RLS 
4 ,c 

defined in (9) , (10) . Then, uniformly in c ≥ c 0 for some c 0 > 0 , we

get (a ) G 

0 , 0 
n ( ̃  θ, c) = τ c 

0 
+ o P (1) ; (b) n 1 / 2 G 

0 , 3 
n ( ̃  θ, c) = (ζ RLS 

3 ,c 
) ′ n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

+ o P (1) ; (c) n 1 / 2 { G 

0 , 4 
n ( ̃  θ, c) − (τ c 

4 
/τ c 

0 
) G 

0 , 0 
n ( ̃  θ, c) } =

(ζ RLS 
4 ,c 

) ′ n −1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

+ o P (1) . 

Proof. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1 (i, ii ) and Lemma A.1 noting that ˆ a , ̂  b are bounded by 

Assumption 3.1 (iii ) , while ˜ a , ̃  b are bounded by Lemma B.3 using Assumptions 2.1, 3.1 . 

(a ) Apply Lemma A.1 and Theorem A.4 with (A.11) as well as G 

0 , 0 
n (0 , c) = τ c 

0 
. 

(b) Let N 3 ,c = G 

0 , 3 
n ( ̃  θ, c) − G 

0 , 3 
n (0 , c) where G 

0 , 3 
n (0 , c) = E (ε σ

i 
) 3 1 (| ε σ

i 
|≤c) = 0 . By Lemma A.1, Theorem A.4 and (A.10) , 

n 

1 / 2 N 3 ,c = n 

1 / 2 { G 

0 , 3 
n (0 , c) − G 

0 , 3 

n (0 , c) } + G 0 , 3 n ( ̃  θ, c) + o P (1) . (B.6)

Theorem A.4 and (A.7), (A.8) show that the bias term is 

G 0 , 3 n ( ̃  θ, c) = 2 c 3 ϕ(c) n 

−1 / 2 
n ∑ 

i =1 

x ′ in ˜ b − 3 τ c 
2 n 

−1 / 2 
n ∑ 

i =1 

x ′ in ˆ b . 

Let v G = (1 , 0 , 0) ′ ˜ v G = (0 , 0 , 1) ′ and 

ˆ v G = { 0 , 1 /τ c 
0 
, 2 cϕ(c) /τ c 

0 
} ′ , so that ζ RLS 

3 ,c 
= v G + 2 c 3 ϕ(c) ̃ v G − 3 τ c 

2 ̂
 v G =

{ 1 , −3 τ c 
2 
/τ c 

0 
, 2(c 2 − 3 τ c 

2 
/τ c 

0 
) cϕ(c) } ′ as in (9) . We show that n 1 / 2 N 3 ,c = (ζ RLS 

3 ,c 
) ′ n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

+ o P (1) . 

We have that G 

0 , 3 
n (0 , c) = v ′ G n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

and G 

0 , 3 
n (0 , c) = 0 . For the bias terms, given expansions for ˜ b , ˆ b in (B.2), (B.4) ,

Lemma B.1 implies 
∑ n 

i =1 x 
′ 
in 

˜ b = 

∑ n 
i =1 ε 

σ
i 

= ̃

 v ′ G n −1 / 2 
∑ n 

i =1 z 
c 
3 ,i 

and 

∑ n 
i =1 x 

′ 
in 

ˆ b = (1 /τ c 
0 
) 
∑ n 

i =1 ε 
σ
i 

1 (| ε σ
i 
|≤c) + { 2 cϕ(c) /τ c 

0 
} ∑ n 

i =1 ε 
σ
i 

+
o P (1) so that

∑ n 
i =1 x 

′ 
in 

ˆ b = ̂

 v ′ G n −1 / 2 
∑ n 

i =1 z 
c 
3 ,i 

. Insert these expressions in (B.6) . 

(c) Let N 4 ,c = G 

0 , 4 
n ( ̃  θ, c) − (τ c 

4 
/τ c 

0 
) G 

0 , 0 
n ( ̃  θ, c) . Due to Lemma A.1 and Theorem A.4 with (A.10) , we get, for p = 0 , 4 , 

n 

1 / 2 { G 

0 ,p 
n ( ̃  θ, c) − G 

0 ,p 

n (0 , c) } = n 

1 / 2 { G 

0 ,p 
n (0 , c) − G 

0 ,p 

n (0 , c) } + G 0 ,p 
n ( ̃  θ, c) + o P (1) , 

with compensators G 

0 ,p 
n (0 , c) = E ε σ

i 
1 (| ε σ

i 
|≤c) = τ c 

p . We note the equation G 

0 , 4 
n (0 , c) − (τ c 

4 
/τ c 

0 
) G 

0 , 0 
n (0 , c) = τ c 

4 
− τ c 

0 
τ c 

4 
/τ c 

0 
= 0 .

Therefore we can write 

n 

1 / 2 N 4 ,c = { G 

0 , 4 
n (0 , c) + G 0 , 4 n ( ̃  θ, c) } − (τ c 

4 /τ
c 
0 ) { G 

0 , 0 
n (0 , c) + G 0 , 0 n ( ̃  θ, c) } + o P (1) . 

Proceed as in (b) . Let v G , 4 = (1 , 0 , 0 , 0) ′ and v G , 0 = (0 , 0 , 1 , 0) ′ , so that G 

j 
n (0 , c) = v ′ 

G , j 
n −1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

for j = 0 , 4 . Let

v G, 0 = 2 cϕ(c)(0 , 0 , 0 , 1 / 2) ′ . From Theorem A.4 we have G 0 , 0 n ( ̃  θ, c) = 2 cϕ(c) ̃  a . As ˜ a satisfies (B.3) we get G 0 , 0 n ( ̃  θ, c) =
v ′ G, 0 

n −1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

+ o P (1) . Let v G, 4 = 2 c 5 ϕ(c)(0 , 0 , 0 , 1 / 2) ′ − 2(τ c 
4 
/τ c 

2 
) { 0 , 1 , −(τ c 

2 
/τ c 

0 
) , c(c 2 − τ c 

2 
/τ c 

0 
) ϕ(c) } . Theorem A.4 shows

G 0 , 4 n ( ̃  θ, c) = 2 c 5 ϕ(c) ̃  a − 4 τ c 
4 ̂

 a . Since ˜ a and ˆ a satisfy (B.3) and (B.5) we get G 0 , 4 n ( ̃  θ, c) = v ′ G, 4 n 
−1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

+ o P (1) . Insert these

expressions in the expansion of n 1 / 2 N 4 ,c noting that ζ RLS 
4 ,c 

= v G , 4 + v G, 4 − (τ c 
4 
/τ c 

0 
)(v G , 0 + v G, 0 ) to get (10) . �
19 
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Proof of Theorem 3.1. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1 . 

1. Write ˆ μp,c = G 

0 ,p 
n ( ̃  θ, c) / G 

0 , 0 
n ( ̃  θ, c) for p = 3 , 4 . Let T RLS 

p,c,n = { (ζ RLS 
p,c ) 

′ �c 
p (ζ

RLS 
p,c ) } −1 / 2 (ζ RLS 

p,c ) 
′ n −1 / 2 

∑ n 
i =1 z 

c 
p,i 

. 

2. Denominator. Lemma B.4 (a ) shows G 

0 , 0 
n ( ̃  θ, c) − τ c 

0 
= o P (1) . 

3. Third moment . Lemma B.4 (b) shows n 1 / 2 G 

0 , 3 
n ( ̃  θ, c) = ζ ′ 

3 ,c 
n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

+ o P (1) . Note that (τ c 
0 
) 2 λ6 ,c = Var { (ζ3 ,c ) 

′ z c 
3 ,i 

} to
get ˆ T 3 ,c = n 1 / 2 ˆ μ3 ,c /λ

1 / 2 
6 ,c 

= T 3 ,c,n + o P (1) . 

4. Fourth moment . Expand the demeaned moment n 1 / 2 ( ̂  μ4 ,c − τ c 
4 
/τ c 

0 
) as n 1 / 2 { G 

0 , 4 
n ( ̃  θ, c) − (τ c 

4 
/τ c 

0 
) G 

0 , 0 
n ( ̃  θ, c) } / G 

0 , 0 
n ( ̃  θ, c) .

Expand the numerator as ζ ′ 
4 ,c 

n −1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

+ o P (1) using Lemma B.4 (c) . Proceed as in item 3 to see that ˆ T 4 ,c = T 4 ,c,n +
o P (1) . 

5. Distributions. The Central Limit Theorem shows that the finite dimensional distributions of T 3 ,c,n , T 4 ,c,n converge jointly 

to zero mean normal distributions with unit marginal variances. �

C. Normality testing initialized by LTS 

C1. Preliminary Results on Estimators 

We analyze the order statistics of the LTS residuals and the LTS variance estimator. We follow the analysis in Section D.4

of Johansen and Nielsen (2016a) , henceforth JN16. Let ˜ c LT S = 

˜ ξ(h ) /σ be the h th smallest order statistic of ˜ ξi = | y i − x ′ 
in 

˜ βLT S | ,
where ˜ b LT S = N 

−1 ( ̂  βLT S − β) /σ . Let ˜ θLT S = (0 , ̃  b LT S , 0 , ̃  b LT S ) . Then, 

˜ c LT S = inf 

{ 
c : 

1 

n 

n ∑ 

i =1 

1 

(| ε σ
i 

−x ′ 
in 

˜ b LT S |≤c) 
≥ h 

n 

} 
= inf 

{ 
c : G 

0 , 0 
n ( ̃  θLT S , c) ≥ h 

n 

} 
and G 

0 , 0 
n ( ̃  θLT S , ̃  c LT S ) = h/n . Similarly, if ˆ c 0 is the h th order statistic of | ε σ

i 
| then G 

0 , 0 
n (0 , ̂  c 0 ) = h/n . Finally, let G be the distri-

bution function of | ε σ
i 
| and let ˜ θd = { n 1 / 2 ( ̃ c LT S /c − 1) , 0 , 0 , 0) } . 

Lemma C.1. Let c ∈ (0 , c ε ) and h = � n G (c) � . Suppose Assumptions 2.1 , 3.2 . Then 

n 

1 / 2 ( ̃  c LT S − c) = −{ 2 f(c) } −1 
G 

0 , 0 
n (0 , c) + o P (1) , (C.1) 

n 

1 / 2 ( ̃  σLT S − σ ) = (σ / 2 τ c 
2 ) n 

−1 / 2 { G 

0 , 2 
n (0 , c) − c 2 G 

0 , 0 
n (0 , c) } + o P (1) . (C.2) 

Proof. Suppress the index LT S . Lemma A.1 and Theorem A.4 are used repeatedly. This requires Assumption 3.2 (i, ii ) . 

Quantiles of ε i /σ . From Bahadur (1966) , we have 2 f(c) n 1 / 2 ( ̂ c 0 − c) = −G 

0 , 0 
n (0 , c) + o P (1) , which is then O P (1) by the

Central Limit Theorem. 

Initial assessment of ˜ c . We argue that n 1 / 2 ( ̃ c − c) = O P (1) . Lemma D.6 of JN16 shows that n 1 / 2 | ̃ c − c| ≤ 2 | ̃ b | max 1 ≤i ≤n | x in | .
Assumption 3.2 (ii, iii, i v ) gives the bounds ˜ b = N 

−1 ( ̃  β − β) /σ = O P (1) and max 1 ≤i ≤n | x in | = o P (1) , see also Lemma A.5 . 

Result (C.1) . Follow the proof of Theorem D.7 in JN16 for fixed c. By construction 

h/n = G 

0 , 0 
n ( ̃  θ, ̃  c ) = G 

0 , 0 
n ( ̃  θ + 

˜ θd , c) , and h/n = G 

0 , 0 
n (0 , ̂  c 0 ) = G 

0 , 0 
n ( ̃  θd , c) . 

Equating the two expressions we have 

0 = n 

1 / 2 { G 

0 , 0 
n ( ̃  θ, ̃  c ) − G 

0 , 0 
n ( ̃  θd , c) } . 

Here, ˜ b = O P (1) by assumption while n 1 / 2 ( ̃ c − c) , n 1 / 2 ( ̂ c 0 − c) = O P (1) for fixed c as argued above. Thus, using Lemma A.1 ,

we can replace these estimation errors with deterministic terms and apply Theorem A.4 with the expansion (A.13) to each

of the G 

0 , 0 
n functions. Deleting common terms in the two expansions then shows that 

0 = G 0 , 0 
1 n 

( ̃  θ + 

˜ θd , c) + G 0 , 0 
1 n 

( ̃  θd , c) + o P (1) . 

Thus, by the expression for G 0 , 0 
1 n 

in (A.7) we get o P (1) = 2 cf(c) { ( ̃ c /c − 1) − ( ̂ c 0 /c − 1) } so that 2 cf(c)( ̃ c − c) = 2 cf(c)( ̂ c 0 − c) +
o P (1) . Last, insert the expansion for ˆ c 0 . 

The result (C.2) . Recall that ξi = | ε σ
i 

− x ′ 
in 
( ̂  β − β) | . We have that 

˜ σ 2 = 

(τ c 
0 

τ c 
2 

)n 

−1 
∑ n 

i =1 ˜ ε 
2 
i 
1 { ̃ ξi ≤ ˜ ξ(h ) } 

n 

−1 
∑ n 

i =1 1 { ̃ ξi ≤ ˜ ξ(h ) } 
= σ 2 
(τ c 

0 

τ c 
2 

)
G 

0 , 2 
n ( ̃  θ, ̃  c ) 

G 

0 , 0 
n ( ̃  θ, ̃  c ) 

, 

when using the empirical process notation with 

˜ b = n 1 / 2 ( ̂  β − β) /σ as well as ˜ θ = (0 , ̃  b , 0 , ̃  b ) and 

˜ θd = { n 1 / 2 ( ̃ c − c) , ̃  b , 0 , 0 } .
Normalize to get 

n 

1 / 2 ( ̃  σ 2 − σ 2 ) = σ 2 
(τ c 

0 

τ c 
2 

)
n 

1 / 2 { G 

0 , 2 
n ( ̃  θ, ̃  c ) − ( τ c 

2 / τ
c 
0 ) G 

0 , 0 
n ( ̃  θ, ̃  c ) } 

G 

0 , 0 ( ̃  θ, ̃  c ) 
. 
n 
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By assumption 

˜ b = O P (1) . Applying Lemma A.1, Theorem A.4 with (A.14) to the denominator shows G 

0 , 0 
n ( ̃  θ, ̃  c ) = G 

0 , 0 
n (0 , c) +

o P (1) . By (A.5) we have that G 

0 ,p 
n (0 , c) = τ c 

p so that G 

0 , 0 
n ( ̃  θ, ̃  c ) = τ c 

0 
+ o P (1) as well as G 

0 , 2 
(0 , c) − (τ c 

2 
/τ c 

0 
) G 

0 , 0 
(0 , c) = 0 . In

combination, 

n 

1 / 2 ( ̃  σ 2 − σ 2 ) = σ 2 
(τ c 

0 

τ c 
2 

)
n 

1 / 2 { G 

0 , 2 
n ( ̃  θ, ̃  c ) − G 

0 , 2 
(0 , c) } − ( τ c 

2 / τ
c 
0 ) n 

1 / 2 { G 

0 , 0 
n ( ̃  θ, ̃  c ) − G 

0 , 0 
(0 , c) } 

τ c 
0 

+ o P (1) 
. 

Now, the expansion in Lemma A.1, Theorem A.4 with (A.13) shows that 

n 

1 / 2 { G 

0 ,p 
n ( ̃  θ, ̃  c ) − G 

0 ,p 
(0 , c) } = G 

0 ,p 
n (0 , c) + G 0 ,p 

1 n 
( ̃  θ + 

˜ θd , c) − G 0 ,p 
mn ( ̃  θ + 

˜ θd , c) . 

For p = 0 , 2 we get from (A .7), (A .8) that G 0 ,p 
1 n 

( ̃  θ + 

˜ θd , c) = 2 c p+1 ϕ(c) n 1 / 2 ( ̃ c /c − 1) and G 0 ,p 
mn ( ̃  θ + 

˜ θd , c) = 0 . The expansion in

(C.1) shows that 2 ϕ(c) n 1 / 2 ( ̃ c − c) = −G 

0 , 0 
n (0 , c) + o P (1) . Insert all this above to get 

n 

1 / 2 ( ̃  σ 2 − σ 2 ) = 

(
σ 2 

τ c 
2 

)[ 
G 

0 , 2 
n (0 , c) −

(τ c 
2 

τ c 
0 

)
G 

0 , 0 
n (0 , c) −

(
c 2 − τ c 

2 

τ c 
0 

)
G 

0 , 0 
n (0 , c) 

] 
+ o P (1) . 

Cancel the (τ c 
2 
/τ c 

0 
) terms and use that n 1 / 2 ( ̃  σ − σ ) = n 1 / 2 ( ̃  σ 2 − σ 2 ) / (2 σ ) + o P (1) by the δ-method. �

C2. Proof of results for the LTS procedure 

Consider the truncated moments (6) . Define estimation errors ˜ a LT S = n 1 / 2 ( ̃  σLT S − σ ) /σ and 

˜ b LT S = N 

−1 ( ̃  βLT S − β) /σ . Let

˜ c LT S be the h quantile of | y i − x ′ 
in 

˜ βLT S | . 
Lemma C.2. Suppose Assumptions 2.1 , 3.2 hold. Recall ζ LT S 

3 ,c 
, ζ LT S 

4 ,c 
from (14) and (15) and z c 

3 ,i 
, z c 

4 ,i 
from (8) .

Let ˜ ϑ LT S = (0 , ̃  b LT S , ̃  a LT S , ̃
 b LT S ) . Then (a ) G 

0 , 0 
n ( ̃  ϑ LT S , ̃  c LT S ) = τ c 

0 
+ o P (1) ; (b) n 1 / 2 G 

0 , 3 
n ( ̃  ϑ LT S , ̃  c LT S ) = (ζ LT S 

3 ,c 
) ′ n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

+ o P (1) ;

(c) n 1 / 2 { G 

0 , 4 
n ( ̃  ϑ LT S , ̃  c LT S ) − τ c 

4 
/τ c 

0 
G 

0 , 0 
n ( ̃  ϑ LT S , ̃  c LT S ) } = (ζ LT S 

4 ,c 
) ′ n −1 / 2 

∑ n 
i =1 z 

c 
4 ,i 

+ o P (1) . 

Proof. Let ˜ θd = { n 1 / 2 ( ̃ c LT S /c − 1) , 0 , 0 , 0) } . Note G 

0 ,p 
n ( ̃  θLT S , ̃  c LT S ) = G 

0 ,p 
n ( ̃  θLT S + 

˜ θd , c) . Note that ˜ b LT S is O P (1) due to

Assumptions 3.2 (iii, i v ) , while ˜ θd , ˜ a LT S are O P (1) due to Lemma C.1 using Assumptions 2.1, 3.2 . Lemma A.1 shows that we

can replace random estimation errors with determiniatic quanties in a compact set. We then apply Theorem A.4 using 

Assumptions 3.2 (i, ii ) . Suppress the sub-index LT S throughout. 

(a ) Apply Theorem A.4 with (A.14) and G 

0 , 0 
n (0 , c) = τ c 

0 
. 

(b) Let N 3 , ̂ c = G 

0 , 3 
n ( ̃  ϑ , ̃  c ) − G 

0 , 3 
n (0 , c) with G 

0 , 3 
n (0 , c) = 0 . Lemma A.1 and Theorem A.4 with (A.13) show n 1 / 2 N 3 , ̂ c =

G 

0 , 3 
n (0 , c) + G 0 , 3 n ( ̃  ϑ + 

˜ θd , c) + o P (1) . 

Define v G = (1 , 0 , 0) ′ and v G = (τ c 
2 
) −1 { 2 c 3 ϕ(c) − 3 τ c 

2 
} (0 , 1 , 0) ′ so that ζ3 ,c = v G + v G = [1 , { 2 c 3 ϕ(c) − 3 τ c 

2 
} /τ c 

2 
, 0] ′ as in

(14) . We show that n 1 / 2 N 3 ,c = ζ ′ 
3 ,c 

n −1 / 2 
∑ n 

i =1 z 
c 
3 ,i 

+ o P (1) . 

First, G 

0 , 3 
n (0 , c) = v ′ G n −1 / 2 

∑ n 
i =1 z 

c 
3 ,i 

. Second, Theorem A.4 with (A .10), (A .11) shows G 0 , 3 n ( ̃  ϑ + 

˜ θd , c) = { 2 c 3 ϕ(c) −
3 τ c 

2 
} n −1 / 2 

∑ n 
i =1 x 

′ 
in 

˜ b . The estimation error ˜ b = N 

−1 ( ̃  β − β) has an expansion given in Assumption 3.2 (i v ) and is of the form

considered in Lemma B.1 . Therefore, 
∑ n 

i =1 x 
′ 
in 

˜ b = (τ c 
2 
) −1 
∑ n 

i =1 (ε 
σ
i 
)1 (| ε σ

i 
|≤c) + o P (1) . In turn, G 0 , 3 n ( ̃  ϑ + 

˜ θd , c) = v ′ G 
∑ n 

i =1 z 
c 
3 ,i 

+
o P (1) . 

(c) Let N 4 , ̂ c = { G 

0 , 4 
n ( ̃  θ, ̃  c ) − τ c 

4 
/τ c 

0 
G 

0 , 0 
n ( ̃  θ, ̃  c ) } . Lemma A.1 and Theorem A.4 with (A.13) give, for j = 0 , 4 , that n 1 / 2 { G 

j 
n ( ̃  θ, ̃  c ) −

G 

j 
n (0 , c) } = G 

j 
n (0 , c) + G j n ( ̃  ϑ + 

˜ θd , c) + o P (1) . Due to the identity G 

0 , 4 
n (0 , c) − (τ c 

4 
/τ c 

0 
) G 

0 , 0 
n (0 , c) = τ c 

4 
− τ c 

0 
τ c 

4 
/τ c 

0 
= 0 , we write 

n 

1 / 2 N 4 , ̂ c = 

{
G 

0 , 4 
n (0 , c) + G 0 , 4 

1 n 
( ̃  ϑ + 

˜ θd , c) 
}

− (τ c 
4 /τ

c 
0 ) 
{
G 

0 , 0 
n (0 , c) + G 0 , 0 

1 n 
( ̃  ϑ + 

˜ θd , c) 
}

+ o P (1) . 

Let v G , 4 = (1 , 0 , 0 , 0) ′ and v G , 0 = (0 , 0 , 1 , 0) ′ for p = 0 , 4 , so that G 

0 ,p 
n (0 , c) = v ′ 

G ,p n 
−1 / 2 
∑ n 

i =1 z 
c 
4 ,i 

. From Theorem A.4 with

(A .10), (A .11) we get biases G 0 , 0 
1 n 

( ̃  ϑ + 

˜ θd , c) = 2 ϕ(c) n 1 / 2 ( ̃ c − c) and G 0 , 4 
1 n 

( ̃  ϑ + 

˜ θd , c) = 2 c 4 ϕ(c) n 1 / 2 ( ̃ c − c) − 4 τ c 
4 
σ−1 ˜ a . 

Let v G, 0 = (0 , 0 , −1 , 0) ′ and v G, 4 = { (0 , 0 , −c 4 , 0) − 2(τ c 
4 
/τ c 

2 
)(0 , 1 , −c 2 , 0) } ′ . Then, the expansions for ˜ a , n 1 / 2 ( ̃ c − c) in (C.1),

(C.2) give G 0 ,p 
1 n 

( ̃  ϑ + 

˜ θd , c) = v ′ G,p 

∑ n 
i =1 z 

c 
4 ,i 

. 

Insert these expressions in the above expansion of n 1 / 2 N 4 ,c noting that ζ4 ,c = v G , 4 + v G, 4 − (τ c 
4 
/τ c 

0 
)(v G , 0 + v G, 0 ) giving the

expression in (15) . �

Proof of Theorem 3.2 . As the proof of Theorem 3.1 replacing Lemma B.4 by Lemma C.2 . �

D. Power expansions for the kurtosis statistics 

The kurtosis statistic ˆ T s 
4 c 

was expanded in (16) . Here, we consider the numerator of the non-centrality term, that is 

λs 
3 c


− λs 
3 cF 

, where λs 
3 cF 

is the limiting value of ˆ μs 
4 c 

as defined in (6) . We let τ c 
p


and τ c 
pF denote the truncated moments

under normality and F . 
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Least trimmed squares limits . The initial and updated LTS scale estimators defined in (13) satisfy 

˜ σ 2 
LT S = ˆ σ 2 

LT S 

P → σ 2 /� 

2 
c where � 

2 
c = (τ c 

0 F /τ
c 
2 F )(τ

c 
2
/τ c 

0
) , 

see Lemma C.1 . The fourth moment estimator defined in (6) then satisfies 

ˆ μLT S 
4 c = � 

4 
c 

∑ n 
i =1 { ̂  ε i / ( ̂  σLT S � c ) } 4 1 

(| ̃ ε i |≤ ˜ ξh ) ∑ n 
i =1 1 

(| ̃ ε i |≤ ˜ ξh ) 

P → λLT S 
3 cF = � 

4 
c 

τ c 
4 F 

τ c 
0 F 

, 

by Lemma C.2 . We expand the numerator of the non-centrality in (16) as 

λLT S 
3 cF − λLT S 

3 c
 = 

τ c 
4


τ c 
0


{ 
� 

4 
c 

( τ c 
4 F 

τ c 
4


)(τ c 
0


τ c 
0 F 

)
− 1 

} 
= 

τ c 
4


τ c 
0


{ ( τ c 
0 F 

τ c 
0


)( τ c 
4 F 

τ c 
4


)(τ c 
2


τ c 
2 F 

)
2 − 1 

} 
(D.1) 

Since F = (1 − ε)
 + εG , we get that τ c 
pF = (1 − ε) τ c 

p

+ ετ c 

pG . Rearrange to get 

τ c 
pF 

τ c 
p


= 1 + ε
( τ c 

pG 

τ c 
p


− 1 

)
. (D.2) 

Insert the expression (D.2) in (D.1) to get 

λLT S 
3 cF − λLT S 

3 c
 = 

τ c 
4


τ c 
0


[ { 1 + ε( τ c 
0 G / τ

c 
0
 − 1) }{ 1 + ε( τ c 

4 G / τ
c 
4
 − 1) } 

{ 1 + ε( τ c 
2 G / τ

c 
2


− 1) } 2 − 1 

] 
= ε

τ c 
4


τ c 
0


( τ c 
4 G 

τ c 
4


− 2 

τ c 
2 G 

τ c 
2


+ 

τ c 
0 G 

τ c 
0


)
+ o(ε) . (D.3) 

Robustified least squares limits . The initial least squares estimator satisfies 

˜ σ 2 
OLS 

P → σ 2 /� 

2 where � 

2 = � 

2 
∞ 

= 1 /τ∞ 

2 F . 

The updated least squares scale estimator satisfies 

ˆ σ 2 
RLS = 

τ c 
0


∑ n 
i =1 ˆ ε 

2 
i 
1 {| ̃ ε i | < ( ̃ σOLS � )(c/� ) } 

τ c 
2


∑ n 
i =1 1 {| ̃ ε i | < ( ̃ σOLS � )(c/� ) } 

P → 

σ 2 

˜ � 

2 
c 

where ˜ � 

2 
c = 

(τ c/� 

0 F 

τ c/� 

2 F 

)(τ c 
2


τ c 
0


)
. 

The fourth moment estimator defined in (6) then satisfies 

ˆ μRLS 
4 c = ˜ � 

4 
c 

∑ n 
i =1 { ̂  ε i / ( ̂  σRLS ˜ � c ) } 4 1 {| ̃ ε i |≤( ̃ σOLS � )(c/� ) } ∑ n 

i =1 1 {| ̃ ε i |≤( ̃ σOLS � )(c/� ) } 
P → λRLS 

3 cF = ˜ � 

4 
c 

τ c/� 

4 F 

τ c/� 

0 F 

, (D.4) 

by Lemma B.4 . We expand the numerator of the non-centrality term in (16) as 

λRLS 
3 cF − λRLS 

3 c
 = 

τ c 
4


τ c 
0


{ 
˜ � 

4 
c 

(τ c/� 

4 F 

τ c 
4


)( τ c 
0


τ c/� 

0 F 

)
− 1 

} 
= 

τ c 
4


τ c 
0


{ (τ c/� 

0 F 

τ c 
0


)(τ c/� 

4 F 

τ c 
4


)( τ c 
2


τ c/� 

2 F 

)
2 − 1 

} 
(D.5) 

We expand the truncated moments evaluated in a distorted cut-off. First, note that p is even and, then, apply the mean

value theorem to get 

τ c/� 

pF = 

∫ c/� 

−c/� 

u 

p dF (u ) = τ c 
pF + 2 

∫ c/� 

c 

u 

p dF (u ) = τ c 
pF + 2(c ∗) p f(c ∗) c 

(
1 

� 

− 1 

)
. 

It is convenient to let y = (τ∞ 

2 G ) − 1 . Combine with (D.2) to get 

τ c/� d 

pF 

τ c 
p


= 

(τ c/� d 

pF 

τ c 
pF 

)( τ c 
pF 

τ c 
p


)
= 

{
1 + (ε/ τ c 

p
) c p+1 
(c) y + o(ε) 
}[

1 + ε{ ( τ c 
pG / τ

c 
p
) − 1 } ]

= 1 + ε
{ τ c 

pG 

τ c 
p


− 1 + 

1 

τ c 
p


c p+1 
(c) y 
} 

+ o(ε) . (D.6) 

Insert the expression (D.6) in (D.5) to get 

λRLS 
3 cF − λRLS 

3 c
 = 

τ c 
4


τ c 
0


(
[1 + ε{ ( τ c 

0 G / τ
c 
0
) − 1 + c
(c) y/ τ c 

0
} ] 1 + ε{ ( τ c 
4 G / τ

c 
4
) − 1 + c 5 
(c) y/ τ c 

4
} 
[1 + ε{ ( τ c 

2 G / τ
c 
2


) − 1 + c 3 
(c) y/ τ c 
2


} ] 2 − 1 

)
+ o(ε) . 

Expand for small ε and use that y = (τ∞ 

2 F ) − 1 to get the final expression 

λRLS 
3 cF − λRLS 

3 c
 = ε
τ c 

4


τ c 
0


{ ( τ c 
4 G 

τ c 
4


− 2 

τ c 
2 G 

τ c 
2


+ 

τ c 
0 G 

τ c 
0


)
+ c
(c) 

{
(τ∞ 

2 G ) − 1 

}( c 4 

τ c 
4


− 2 

c 2 

τ c 
2


+ 

1 

τ c 
0


)} 
+ o(ε) . 
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