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1. Introduction

Misspecification tests are frequently used in empirical studies. When the presence of outliers is suspected, these tests
are also performed after the removal of outliers. This is useful as valid inference in regression analysis after outlier removal
depends on the distributional assumptions on the good errors. Normality is usually tested. We show that standard cumulant-
based normality tests on the clean sub-sample are not valid in i.i.d. settings and develop test statistics that deliver x2
inference.

Two procedures for outlier removal are considered. First, we study the robustified least squares (RLS) procedure, where
the model is first estimated using ordinary least squares (OLS). Least squares residuals are then used to identify outliers
and remove them from the sample. Finally, OLS is applied again on the clean sub-sample. This method is commonly used
although it is not fully robust. It has been labelled as the ‘data analytic strategy’ (Welsh and Ronchetti, 2002), ‘rejection-
plus-least squares’ (Hadi and Simonoff, 1993), or ‘rejection-estimation procedures’ (Hampel, 1985).

Second, we consider the least trimmed squares procedure (LTS), where the model is estimated by the LTS estimator of
Rousseeuw (1984). For a given number of good observations, say h, in a sample of size n, the LTS estimator is least squares
on the h sub-sample that minimizes the squared residuals, delivering in this way an estimated set of outliers. The robustness
properties of the LTS estimator makes this second procedure more appealing when outliers are suspected in the first place.

Asymptotic theory for the RLS estimator with i.i.d. errors has been studied by Johansen and Nielsen (2009). They show
that asymptotic inference requires consistency and efficiency corrections in order to be valid. These correction factors depend
on the underlying distribution of the error term.
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Asymptotic theory for the LTS estimator with i.i.d. errors has been studied by Butler (1982), Rousseeuw (1985), Croux
and Rousseeuw (1992), Cizek (2005), Visek (2006), Johansen and Nielsen (2016b). These papers show that appropriate (albeit
different from RLS) correction factors are also required in this case. Again, these correction factors depend on the underlying
distribution of the error term.

One important aspect of the results derived in this paper is that the standard moment based normality test on the RLS
or LTS residuals is not valid in an i.i.d. setting. Specifically, we show that the standardization of the sample moments depend
on the truncation imposed at the outlier removal stage and the estimation method being used. The intuition behind this
result is easily illustrated when there is no contamination and all errors are normally distributed. In that case, removing
outliers from the sample implies that the regression errors are truncated and their underlying distribution is no longer
normal but truncated normal. Hence, the standardizations used when assuming (untruncated) normality are not the right
ones. We derive the correct standardizations, which bring back x?2 inference. In this sense, the analyzed statistics can be
seen as tests for truncated normality.

The intuition from the non-contamination case actually extends to contaminated samples where the retained observa-
tions have truncated normal errors. This means that inferences are valid under a particular type of contamination, which
we term e-tail contamination. Specifically, in an i.i.d. setting, the errors have a distribution which is normal in the middle
but can have non-normal tails. It is a special case of an e-Lévy neighbourhood (Huber and Ronchetti, 2009, p. 18), but dif-
fers from the gross error model or e-contamination (Huber, 1964). The e-tail contamination scheme represents the model
behind standard practice when using the LTS estimator. In practical applications of LTS, it is common to implement correc-
tion factors for non-contaminated, normal errors. This imposes, de facto, an e-tail contamination structure: normality in the
retained central observations with unmodelled tails. We develop normality tests in the LTS context that provide guidance
on the validity of this choice.

In practice, one encounters many types of contamination. Bad leverage points are particularly worrysome. The LTS re-
gression estimator is robust with respect to such points, whereas the RLS regression estimator is not. However, bad lever-
age points cannot be generated through an i.i.d. model. Instead, Berenguer-Rico et al. (2023); Berenguer-Rico and Nielsen
(2023) propose and analyze a model termed the LTS model. This model has a proportion of good observations with i.i.d.
normal errors, while the remaining errors have support outside the realized range of the good errors. This model permits
bad leverage points. The LTS estimator is maximum likelihood in this model and has the same asymptotic distribution as
the infeasible least squares estimator on the good observations. These properties are rather different from those discussed
above for the i.i.d. model. It is therefore desirable to test which, if any, of the models are relevant for the data at hand.
The normality test presented in this paper addresses this empirical need. The analyzed statistics will detect deviations from
e-tail contamination (or truncated normality), hence, guiding applied researchers in their data analysis allowing them to
conduct valid subsequent inference.

We examine the theoretical results through simulation. We show that the normality test statistics that account for trun-
cation (or outlier removal) have empirical sizes approaching the nominal size in large samples. This confirms the x?2 asymp-
totics.

We study, analytically and by simulation, the power of these statistics to detect deviations from (truncated) normality.
Specifically, we study the power of the tests to detect Cauchy distributions, the e-contamination scheme and the LTS model.
The simulation results show that the tests analyzed in this paper have empirical power approaching to one (as the sample
size grows) in the different models considered.

In practice, one would also need misspecification tests for other aspects of the maintained model. In a related analysis,
Berenguer-Rico and Wilms (2021) study the effect of outlier removal on heteroscedasticity testing and show that standard
inference can be applied if the errors are symmetric.

Outline: Section 2 describes the model and test statistics. Section 3 derives the asymptotic properties of the test statis-
tics. The theory is explored through simulations in Section 4. Section 5 contains an empirical illustration. Finally, Section 6
concludes. Proofs are collected in the Appendix.

2. Model and test statistics

We consider the linear model for
yi=Bx+e i=1,....n (1)
where 8 and x; are k vectors. The variables satisfy the following structure.

Assumption 2.1. Let 7, be an array of filtrations so that F;_; , C Fj, and &;_;,x; are F;_; p-adapted. Let &;/0 be indepen-
dent of F;_; , with distribution function F and scale o.

Assumption 2.1 jointly with Assumptions 3.1 or 3.2 below allow for a wide variety of regressors that can be both depen-
dent and/or heterogeneously distributed. These include cross-sections, stationary, random walk and fractionally integrated
time series. Indicator variables and structural breaks are also allowed. In the time series context, these regressors can be
lagged dependent variables, hence, covering autoregressions and error correction models. While Assumption 2.1 allows for
a wide range of regressor types, it assumes that the standardized errors are i.i.d. and independent of ¥;_; , hence, avoiding
endogeneity and heteroscedasticity.
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Table 1

Normality test for robust regressions. Normalization factors under normality.
1§ =P(ley/o| <c) 05 0.95 0.99 0.999 0.9999 099999 1
c 0.67 1.96 2.58 3.29 3.89 4.42 o0
¢! 2.6477 11480  1.0399  1.0059 1.0008 1.0001 1
ABLS = pATS 0.0379  1.3501  2.2750  2.8381 2.9709 2.9954 3
ARLS 0.0111  0.8865 24986  4.6725 5.6472 5.9250 6
ATS 0.0041 0.8313 24908 4.6724 5.6472 5.9250 6
MRS 0.0012  1.1211  4.5439  12.9758 19.7877  22.7983 24
ALES. 0.0013  1.6066  6.9538  16.5596  21.8304 23.5115 24

We define the data analytic strategy for removing outliers. Given initial estimators B,&, residuals &; = y; —X;B are
formed. Observations satisfying |£;/6| < c, for a user chosen cut-off c, are selected and a regression is run on those ob-
servations so that

-1

n n
B =12 xxlgese1=0 D _XVil(assi<o (2)
i=1 i=1

This leads to updated residuals & =y; — x:B and residual variance estimator,

-1
n n

A2 -2 a2

62 =c 21> Vqessizo {2 _EilGassi=o (3)
i=1 i=1

where the consistency factor g2 is defined as follows. Let
T; = E(S]/O‘)pl(‘gl/[ﬂsc) for c > 0, (4)

denote two-sided truncated moments. In particular, T§ = P(|e1/0| < ¢). Let Tp = T5°. The consistency factor g2 in (3) is then
defined as ¢? = t5/1§.

We note that when F = & is the standard normal distribution function then,

5,1 =0. 5, ={@p-DIP(x3,,, <c*) for peNo, (5)
where the odd factorial is 2p —1)!! = Hle (2¢ — 1) with the convention that (2p — 1)!! =1 for p = 0. To see this, integrate
uP with respect to ®, substitute u? = v and note T'{(p + 1)/2} = l“(l/2)]'[ffl{(2£ —1)/2} by the gamma functional equation.
Barr and Sherrill (1999) has similar formulas for 7{, ;. Insert ¢ = co in (5) to get the usual moments: 79 =17, =1, 74 =3,
Tg = 15,75 = 105. The normal density satisfies (3/0u){—ug(u)} = (u? — 1)@ (u), so that =5 = [ u?@(u)du = 7§ — 2ce(c).

Table 1 gives numerical values for ¢2 under the hypothesis of normal errors without outliers. The above estimators are
referred to as 1-step Huber-skip estimators and are analyzed in Johansen and Nielsen (2009, 2013, 2016a, 2016b).

In Section 3.1, we initialize the data analytic strategy with the full sample least squares estimator so that ,3 = BOLS. This
gives the robustified least squares estimator and we write BRLS for ,3 We note that the least squares estimator arises when
¢ =oo. In Section 3.3, we initialize with the Least Trimmed Squares estimator. In that case, we choose the indicators in
(2) differently, which we ignore while establishing notation. R

We consider the moment based normality test on the second stage residuals &; =y; —x/8 for the retained observations.
Let s denote the estimation procedure being used and define the conditional sample moments

-1

n n
Woe =1 Vaseizo ¢ 2 Ei/6)P (a6  for peN. (6)
i=1 i=1
We then study the following truncated normality test statistics

Bo=n'2p3,/050"%  To=n"2( ~ 250/ (50", (7)

where A3 , A .. A3, . (to be formally defined in Section 3) are normalizing constants depending on the selection method.
We note that when ¢ = oo there is no selection and the statistics reduce to the standard cumulant based normality test
statistics based on least squares with A{!S =300 =6 and A9%° = 24. The resulting test has a long history going back to

Thiele, Pearson and Fisher. In econometrics it is often called the Jarque-Bera test.
3. Asymptotic properties

In this section, we study the effect of removing outliers from the sample on the cumulant based normality test described
in Section 2. In practice, it is unknown whether the data are uncontaminated or not. Therefore, we first study the uncon-
taminated case in Section 3.1. In this context, we analyze the properties of the test when the procedure is initialized by
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the OLS estimator, what we call robustified least squares (RLS). In Section 3.2, we introduce a new contamination scheme,
which we term e-tail contamination. This has non-normal tails while the central part of the distribution is normal. Then,
in Section 3.3, we study the properties of the test in this contaminated setting, when the procedure is initialized robustly
using the LTS estimator. Power of both tests is discussed analytically in Section 3.4.

3.1. Robustified least squares

We consider the normality test based on the truncated empirical moments in (6) where B.6 are full sample least squares
estimators and 8,6 are the 1-step Huber skip estimators with residuals &; =y; —x{8 and &; = y; — x{B.

In the context of i.i.d. normal errors, Johansen and Nielsen (2009, 2016b) study the asymptotic properties of the RLS
estimator, 8, and show that n'/2(8 — B) is asymptotically N(O, ngo?x 1) where (7§)?ng = 75 + {4cp(c) 5} + {2c0()}? de-
pends on the cut-off value c. This dependence is carried into the test statistics T£L, Tﬁs.

The normalizing constants A8, AR RIS - for the test statistics TR, TRS in (7) are computed as follows. Define the
vectors

(Ei/U)Bl(Is'/akc) (8i/a);}(|gi/0‘sc) B T‘é
7= (81‘/‘7>1(Isi/<r|<_c) L 2= (8i/(-17) (eyol=o) = T2 (8)
’ (&i/0) ' (/1= — To
' (i/0)? -

For standard normal &; these vectors are uncorrelated. The Central Limit Theorem shows that n=1/23%, z§,; and
n-12y°n z; are asymptotically normal and independent with variances 5, Q given by

o C+C C CrC c C C c
Tgc_r‘ét‘é t(%—'czcl;é r‘é(l 75) tﬁc—t%
‘L'CG -7 té‘ tél - tzrcz ‘L'zc(l - tc) téé - 7:25
s(1-15) t(-15) t5(1-1§) 7T5—-71§

c c C
L
T T

C C
uono 1 6 — T, i -1 5 -1 2
We compute the vectors
RS — {1, =37$/75, 2(c% = 355 /78)cp (o) Y, (9)
Cae = {1 -27j/75. T/, (¢ = 21/75 + T4/ 75)cp ()} (10)

and define the normalizations, for s = RLS,
)"g,c = TX/IOC* )‘?i,c = {;’CQEQ’;C/(‘[OC)Z, A'§4,C = gj/cgigic/(tg)z (11)

Numerical values are given in Table 1. We note that these normalizations depend substantially on the choice of c.

We introduce a deterministic normalization matrix N and define x;, = N'x;. The normalization N is chosen so that
>iL1 XinX}, has a positive definite limit. Examples include N = n~1/72], for stationary regressors, N = n~'I, for random walk
regressors, while N = diag(n~1/2, n=3/2) if x; = (1,i)’.

Assumption 3.1. Suppose (i) &/o are iid. N(0,1); (i) max;., E[n'/2x;,)?** =0(1) for some «k >0;
(i) (1 XinX[y» i1 Xin&i) B (2,U), where £ % 0 may be random.

Theorem 3.1. Let Assumptions 2.1, 3.1 hold. Let ¢ > 0 be fixed. Then, for p = 3,4,

Tﬁls_{(gp )QC(CRLS)} 1/2(§p )/ 71/22}Z +0p(1)

are asymptotically independent standard normal and Z;‘:3 (13555)2 is asymptotically x3.

Remark 3.1. The normalizations A%, AR5, AL in (11) differ from the traditional values 3, 6, 24. Those values are com-
ARLS

monly applied in practice. This leads to severe size distortions, when there are no outliers, as we compare MRLS and i,
with N(0, 6/n) and N(3,24/n) distributions rather than N(0, Af!/n) and N(AB, ARIS /n). The 3™ moment test is under-
sized while the 4" moment test has asymptotic size of unity. Indeed, suppose we set ¢ = 2.58 corresponding to a 1% trim-
ming and let n = 100. Incorrect normalizations give 95% sampling regions of [—0.48,0.48] and [2.04,3.96] instead of the
correct [—0.30, 0.30] and [1.86,2.69], leading to sizes of 0.24% and 13.5%, respectively. For n = 200, 400 the 4" moment test
has size 62.0% and 98.9%, respectively.
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3.2. e-tail contamination

We introduce a new contamination scheme. We term this e-tail contamination since the tails of the distribution are left
unspecified while the central part is assumed normal.

Definition 1. Let 0 <€ < 1 and let ¢ = ®~1(1 — €/2) be the standard normal 1 — €/2 quantile. A distribution function that
is differentiable on an open interval containing [—ce, cc] with standard normal density on that interval is an e-tail contami-
nated normal distribution function.

The e-tail contaminated normal distribution allows for outliers, while preserving truncated normality. This provides an
appropriate theoretical framework to test for normality after the removal of outliers, in which both contaminated or uncon-
taminated settings are allowed. It is worth noting that the definition can be extended to other reference distributions. For
instance, one could be interested in e-tail contaminated t-distributions. We also note that an e-tail contaminated normal
distribution need neither be continuous nor symmetric, while the support can be bounded. It is a special case of an e-
Lévy neighbourhood (Huber and Ronchetti, 2009, p. 18), but differs from the gross error model, also called e-contamination,
which has support on R (Huber, 1964).

3.3. Least trimmed squares

Next, we initialize the data analytic strategy robustly with the LTS estimator. The LTS estimator is defined as follows
(Rousseeuw, 1984). The user chooses a h < n. For a given 8 compute the absolute residuals &;(8) = |y; — x/8| with increasing

order statistics &) (8). The LTS estimator is then the minimizer Birs = arg ming ZL “;‘(Zi) B).
If we let & = & (Brs) with order statistics §(,-) we can write the LTS estimator as

n n

A3 _ N1 - - -1 P

Birs — B = [ 21 szil{g,-ggm}] ;Xlg'l{&z&m}‘ (12)
i= 1=

The corresponding scale estimator includes the consistency factor ¢2 = TALE
n n -
6127'5 = (‘L'g/‘l,’zc) [ Z 1{§i§§~m)}:|_1 Z(y’ - X’{'BLTS)Z‘I{giié(h)}’ (13)
i=1 i=1

We now consider the data analytic strategy initialized by the LTS estimator. Replace B and &¢ with Bjrs and é(h) =
é(h)(ﬁns) in (2) and (3), respectively. This selects the same observations as before, so that BLTS = Birs and &rs = 61rs.

Robust estimators are often scaled to be consistent in normal samples. The validity of this scaling depends on the as-
sumed model for the regression errors. As LTS trims the tails, the scaling is valid when the central part of the error dis-
tribution is truncated normal. This is the case of the e-tail contamination where the full set of errors are i.i.d. as described
in Section 3.2. In contrast, if the retained observations are i.i.d. untruncated normal as in the LTS model of Berenguer-Rico
et al. (2023), scaling should not be used. Here, we focus on the e-tail contaminated case, but return to the LTS model in the
power simulations in Section 4.2.3.

The available theory for the LTS estimator in an i.i.d. setting shows that under certain regularity conditions, n!/2(8;rs — B)
is asymptotically normal with a variance depending on the error distribution. In particular, for the case of normal errors the
limiting distribution is N(O, 2*102/@). This is proved by Butler (1982) for the location-scale case where the errors have a
smooth distribution function. The case with regressors is analyzed by Cizek (2005), Visek (2006), requiring that the errors
are symmetric with smooth distribution function and fourth moments, fixed regressors and boundedness of the estimator.
All these papers have i.i.d. errors and allow e-tail contamination. Recently, Berenguer-Rico and Nielsen (2023) have given
general conditions for boundedness. In line with these results, we assume the following high level asymptotic expansion.

Assumption 3.2. Let h be the largest integer not exceeding n{®(c) — ®(-c)}. Suppose (i)&;/o are e-tail contaminated
normal and 0 < ¢ < ¢¢; (if) max;, E[n'/2x;; [>** = 0(1) for some i > 0; (iii) (Zn, Un) = {E1L; XinX]y,, i1 Xin€il (16, /<)) B
(Z,U) and = % 0; (iv) The LTS estimator has expansion N~1(Birs — 8) = (T5Zn)Wn + 0p(1).

In the LTS case, we define TS, THS in (7) using the cut-off £ instead of &,

3¢’
115 ={1.2¢(c)/T5 - 3,0}, (14)
tic =11, -275/75, 207 /75 — ¢, 0Y', (15)

and normalizations ATS as in (11) that are tabulated in Table 1. For larger values of c, the values for RLS and LTS are not
that different.
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Theorem 3.2. Suppose Assumption 2.1, 3.2. Let ¢ be fixed. Then, for p = 3,4,
n
To2 = {(G53) QY2 (6212 2 4+ 0p(1)
i=1
are asymptotically independent standard normal and Zj}=3 (T'J.LES)2 is asymptotically x2.

3.4. Power

We consider the power of the kurtosis test based on T§ . = n"/2(25 . — A5 )/(A3, )'/2. Suppose the alternative hypothesis

s 24.c
of interest is a distribution F. Write A3, and A3, for A3 _and A3, , respectively, and let A3 . be the corresponding limiting

. d 24cd 24.c’
term under F. Then, rewrite the kurtosis statistic as
12¢ 1 1/2
Bs n'/ (Mflc B )‘icF) n/ (}‘ch — }‘éc@)

4c — 1/2 1/2
(A3ac0) (A3ace)"/

(16)

The first term in (16) is properly demeaned under the alternative distribution F. Hence, this term converges. The second
term in (16) is a non-centrality term. The test is consistent when A . # A3 4.
Next, we study local power by analyzing the non-centrality term for the two procedures considered above, RLS and LTS.
Suppose that the alternative of interest is that the innovations ¢;/o are i.i.d. with a symmetric, continuous, e-contaminated
distribution function F = (1 — €)® + €G with four moments and satisfying a local Lipschitz condition in neighbourhoods of
the cut-off ¢, see Remark A.1. Such distributions are covered by the LTS theory by Cizek (2005) and Visek (2006) and the
present appendix.
Let r;q) and T denote the truncated moments under normality and under G. For the RLS procedure, the numerator of
the non-centrality term satisfies
c c c c 2
205 - 85 = nie e (TS g D6y N6 ) 4 co ()| (rze) - 1}(% ~2o- %)} +o(n'2e), (17)
0o 40 20 00 40 20 00
see the derivation in (D) in Appendix D. Similarly, for the LTS procedure the numerator of the non-centrality terms satisfies,
see (D.3) in Appendix D,

1721 ITS _ 3 LTS 12, Yo ( Tig T3 |, Toe 12

/ _ —nl/2, 40 [ 4G _ 972G _0G /

nE (A3 — Azp) =n/7€—¢ (‘[C 21‘ + e ) +o(n'/“e). (18)
0o \ 40 20 oo

The results show that, for both procedures RLS and LTS, the relevant local power rate for € is n='/2 as in Heretier and
Ronchetti (1994). It is interesting to note that the RLS expression has an additional term relative to the LTS expression. This
has consequences for power properties. We illustrate them with a few examples.

First, suppose that G = ® so that F = ® and, hence, there is no contamination. In this case Toe = rg(p and 52 =1, so
that both non-centrality terms are zero. This matches the results in Theorem 3.1 and Theorem 3.2 with € = 0.

Second, suppose G is e-tail contaminated normal with 758 # 1. Thus, G has a normal density on the interval [—c, c]. In
this case tlgG = tlgq) and the non-centrality parameter for the LTS procedure is zero. This matches the result in Theorem 3.2.
Note however that since f(c) = ¢(c) # 0 and 75 # 1 the non-centrality parameter for the RLS statistic is non-zero, so that
it declares G as contamination.

Third, suppose G only has probability mass in the tails with zero probability for the interval [—c, c] and ¢ > 1. In this case
75 =0 while f(c) = (1 —€)@(c) and 7528 > ¢ > 1. Thus, the non-centrality term is zero for the LTS statistic but non-zero
for the RLS statistic. The conclusions are the same as in case two.

Finally, suppose G has a general form so that rgG is neither zero nor r;cb. In this case both tests will have power.

4. Simulations

Fori=1,..,nlety; =1+x;+ ¢ where x; is scalar, i.i.d. N(0, 1) and independent of ¢;. To illustrate the above results, we
consider different models for &;. Throughout, we use a significance level of 5%. The number of replications is 105 when using
the OLS procedure and 10 when using the computationally intensive LTS procedure. All simulations are run in Matlab. LTS
is implemented using mlts.m (Argullo et al., 2008).

4.1. Size

We start by considering Theorem 3.1, where there is no contamination and the robustified least squares (RLS) procedure
is used. Hence, in the first data generating process (DGP 1) ¢; is i.i.d.N(0, 1). The empirical size of the normality test is
reported in the upper panel of Table 2. We consider sample sizes n = {50, 100, 200, 400, 800, 1600} and cut-off values c =
{0.67,1.03,1.96, 2.58, 3.29, 3.89, 4.42}. In small samples, the empirical size varies with the cut-off values, c, but approches

6
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Table 2
Size of RLS & LTS procedures. DGP 1.

n=>50 100 200 400 800 1600

RLS(c) 0.67 0.142 0.109 0.084 0.068 0.059 0.055
1.03  0.104 0.081 0.067 0.059 0.055 0.052
1.96  0.057 0.054 0.053 0.051 0.050  0.050
2.58 0.043 0.046 0.048 0.049 0.049 0.049
329 0.044 0.043 0.045 0.047 0.048 0.048
3.89 0.043 0.046 0.046 0.046 0.048 0.048
442  0.038 0.044 0.046  0.047 0.048 0.048

LTS(y) 05 0.085 0.069 0.058 0.045 0.046  0.049
0.4 0.071 0.059 0.053 0.048 0.053 0.054
0.3 0.070 0.055 0.056 0.052 0.047 0.050
0.2 0.062 0.048 0.052 0.049 0.049 0.053
0.1 0.052 0.050 0.049 0.053 0.050 0.048
0.05 0.049  0.052 0.051 0.052  0.050
0.01 0.051 0.051 0.051 0.052  0.050

& is 1.i.d.N(0, 1). c is the cut-off value for the RLS procedure. y is the trimming
proportion for the LTS procedure.

Table 3

Size of the LTS(y) procedure. DGPs 2-8.
DGPs y n=50 100 200 400 800 1600
2 0.5 0.088 0.069 0.057 0.054 0.055 0.054
3 0.4 0.079 0.060 0.060 0.051 0.051 0.050
4 0.3 0.071 0.060 0.053 0.053 0.050 0.048
5 0.2 0.063 0.058 0.056 0.054 0.049 0.050
6 0.1 0.053 0.051  0.051 0.048 0.053  0.053
7 0.05 0.051  0.051 0.050 0.047 0.048
8 0.01 0.053 0.054 0.054 0.051 0.051

&; is i.i.d. e-tail contaminated normal with € = y.

Table 4

RLS(c) procedure. DGP 2.

DGPs ¢ n=50 100 200 400 800 1600 5000
2 0.67 0.139 0.110 0.089 0.080 0.082 0.098 0.193

g; is i.i.d. e-tail contaminated normal with € = 2{1 — ®(c)}.

the nominal value of 5% in larger samples. Overall, these results indicate that the test, when properly normalized using the
standardizations derived in Theorem 3.1, has the expected size properties.

Next, we consider Theorem 3.2, where the errors are e-tail contaminated normal and the LTS procedure is used. We start
by choosing € = 0, so that there is actually no contamination and the errors are standard normal as in DGP 1. We use the
LTS procedure with a trimming proportion, y = {0.5,0.4,0.3,0.2,0.1,0.05, 0.01}. This corresponds to retaining h = n(1 — y)
observations in the LTS estimation. To avoid rounding in the implementation of the LTS procedure, we only report results
when h =n(1 - y) is an integer and omit the combinations (0.05,50) and (0.01,50). The empirical size of the normality test
is reported in the lower panel of Table 2. A pattern similar to the RLS procedure is observed, indicating that the size of the
test is controlled, for large samples, when using the normalizing constants derived in Theorem 3.2.

With DGPs 2-8 and Table 3, we study the performance of the LTS procedure under e-tail contamination, as analyzed in
Theorem 3.2. We consider seven contamination proportions € = {0.5,0.4,0.3,0.2,0.1,0.05,0.01}. Let v; be standard normal
and n; standard exponential. Let A = {1 — ®(c¢)}/¢p(cc) with @ and ¢ denoting the standard normal CDF and PDF, respec-
tively. Then, the errors & = v;1(jy, <) + (Ce + Aeni)sgn(Vi) 1y, ¢, have distribution function satisfying P(¢; < v) = ®(v) for
[V <ce and P(g; <v) =1— {1 — ®(ve)}exp{— (v —ce)/A} for v > cc. The density is normal in the centre and thus e-tail
contaminated so that Assumption 3.2(i) holds.

Empirical sizes of the LTS normality test are reported in Table 3. As expected, the empirical size approaches the nominal
size as the sample size grows, supporting that the normalizing constants derived in Theorem 3.2 deliver x2 inference, also
in the e-tail contaminated case. Values of y that trim the sample more than ¢ will deliver more favourable sizes. Here, we
focus on the most stringent case where y = €.

The power analysis in Section 3.4 revealed that the RLS procedure declares the e-tail model as contamination. The sim-
ulations of DGP 2 reported in Table 4 confirm this.
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Table 5
Power of RLS & LTS procedures. DGP 9.

n=50 100 200 400 800 1600

RLS(c) 0.67 0914 0994 1.000 1.000 1.000 1.000
1.03 0971 0.999 1.000 1.000 1.000 1.000
1.96  0.989 1.000 1.000 1.000 1.000 1.000
2.58 0.983 0999 1.000 1.000 1.000 1.000
329 0973 0.999 1.000 1.000 1.000 1.000
389 0972 0.999 1.000 1.000 1.000 1.000
442 0975 0999 1.000 1.000 1.000 1.000

LTS(y) 0.5 0.106 0.110 0.156 0.275 0519  0.845
0.4 0.144 0215 0395 0.684 0.951 0.999
0.3 0.284 0497 0.808  0.981 1.000 1.000
0.2 0.591 0.867 0989 1.000 1.000 1.000
0.1 0.904 0993 1.000 1.000 1.000 1.000
0.05 0999 1.000 1.000 1.000 1.000
0.01 1.000 1.000 1.000 1.000 1.000

g is i.id.ty.

Table 6
Power RLS & LTS procedures. DGP 10.

n=50 100 200 400 800 1600

RLS(c) 0.67 0.248 0330 0493 0749 0956  0.999
1.03  0.389 0583 0.825 0978 0999  1.000
1.96  0.650 0.877 0986 0999 1.000 1.000
2.58  0.708 0922 0994 1.000 1.000 1.000
329 0.757 0953  0.998 1.000 1.000 1.000
3.89 0.804 0.971 0999 1.000 1.000 1.000
442 0837 0980 0999 1.000 1.000 1.000

LTS(y) 05 0.085 0.071 0.061 0.059 0.065 0.064
0.4 0.080 0.069 0.066 0.067 0085 0.114
0.3 0.077 0.077 0.083 0.111 0.171 0.290
0.2 0.113 0.131 0.190 0308 0.535 0.820
0.1 0.359 0517  0.725  0.921 0.995 1.000
0.05 0.867 0979  0.999 1.000 1.000
0.01 0985 0999 1.000 1.000 1.000

&~ (1-€)N(0,1)+€N(2,9) with € =0.2.

4.2. Power

Previous studies have simulated the power of the standard cumulant normality test for full sample OLS residuals. For
instance, Jarque and Bera (1987) considered Beta, Student’s t, Gamma and Log-normal distributions while Thadewald and
Biining (2007) considered the e-contamination model of Huber (1964). Thus inspired, we consider the power of the RLS and
LTS procedures for the following error distributions: Cauchy; the e-contamination model; and the LTS model of Berenguer-
Rico et al. (2023). We use the asymptotic critical values from Theorems 3.1 and 3.2.

4.2.1. Cauchy distribution

In DGP 9, ¢; is Cauchy distributed. Table 5 reports power results. The RLS procedure is very powerful even in small
samples. In contrast, the empirical power of the LTS procedure depends highly on the trimming parameter y. For y = 0.5
or y = 0.4, the procedure requires larger samples to achieve adequate levels of rejection frequencies. When y < 0.1 more
observations of the fat tails of the distribution are retained and the power is high in small samples.

4.2.2. e-contamination

In DGP 10, ¢; ~ (1 —€)N(0,1) +€eN(2,9) with € = 0.2, so the errors are e-contaminated in the sense of Huber (1964).
Table 6 reports power results. First, as expected, the empirical power of the RLS procedure increases with sample size
and cut-off, c. When n = {50, 100} the procedure has low power for small values of c. In larger samples, say n > 800, the
procedure attains empirical power of (nearly) one for all c. Second, the empirical power of the LTS procedure depends highly
on the trimming parameter y. For y = 0.5, the empirical power remains low even when n = 1600. When y = 0.5, the LTS
procedure trims 50% of the sample although there is only € = 20% contamination. Hence, the low power. For y = 0.3, the
empirical power grows only slowly with the sample size. For smaller trimming proportions, y < 0.2, the LTS procedure
performs much better with empirical power close to one for n = 100 or larger.
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Table 7
Power of RLS & LTS procedures. DGP 11.

n=50 100 200 400 800 1600

RLS(c) 0.67 0.186 0204 0278 0479 0812  0.990
1.03  0.287 0456 0.748 0973 0999  1.000
1.96 0384 0.807  0.993 1.000 1.000 1.000
2.58 0.187 0512 0922 0999 1.000 1.000
329 0.100 0.234 0558 0943 0999 1.000
3.89 0.066 0.153 0357 0.780  0.995 1.000
442  0.057 0.133 0308 0.705 0989  1.000

LTS(y) 0.5 0.084 0.078 0.069 0.072 0.092 0.138
0.4 0.085 0.079 0.099 0.127 0224 0421
0.3 0.105 0.143 0239 0435 0.732  0.960
0.2 0.258 0.610 0.949  0.999 1.000 1.000
0.1 0.307 0.787  0.993 1.000 1.000 1.000
0.05 0.668  0.983 1.000 1.000 1.000
0.01 0320 0.778 0.996 1.000  1.000

&; ~ LTS model with h = ne, € = 0.8. No separation: v =v~ =0

Table 8
Power of RLS & LTS procedures. DGP 11.

n=50 100 200 400 800 1600

RLS(c) 0.67  0.362 0.554 0835 0990 1.000 1.000
1.03  0.620 0.880  0.993 1.000 1.000 1.000
1.96  0.987 1.000 1.000 1.000 1.000 1.000
2,58 0973 0999 1.000 1.000 1.000 1.000
329 0.865 0.998 1.000 1.000 1.000 1.000
3.89 0.742 0985 1.000 1.000 1.000 1.000
442  0.698 0973 1.000 1.000 1.000 1.000

LTS(y) 05 0.084 0.078 0.069 0.073 0.092 0.138
0.4 0.088 0.079 0.100 0.127 0224 0421
0.3 0.112 0.144 0239 0435 0.732  0.960
0.2 0.505 0.823 0986  0.999 1.000 1.000
0.1 0.986 1.000 1.000 1.000 1.000 1.000

0.05 1.000 1.000 1.000 1.000 1.000
0.01 0.999 1.000 1.000 1.000 1.000
&; ~ LTS model with h = ne, € = 0.8. Separation: v =3, v~ = —1.

4.2.3. LTS Model

In DGP 11, the error term follows the LTS model of Berenguer-Rico et al. (2023). This is a model where LTS is maximum
likelihood. Errors satisfy the following structure. Let ¢ be a set with h = ne elements from 1,...,n with € =0.8. For i € ¢,
let & be i.i.d. N(0,1). For j ¢ ¢, let &; be i.i.d. with distribution function G;j(x) for x e R where G; is continuous at 0. The
outlier errors are

gj = (HEX& +&) 100 + (fgi{ﬂ&‘ + &)1, <0)- (19)

The LTS model differs from e-tail contamination as introduced in Section 3.2. The e-tail contamination model has i.i.d.
errors and the uncontaminated part is truncated normal. The LTS models does not have i.i.d. errors due to the construction
(19), but the uncontaminated part is (untruncated) normal.

To study the power, we set §; — V+1(gj>0) + u*1(§j<0) to be i.i.d. N(0, 1). We consider two cases. First, we let vt = v~ =0
so that there is no separation between good and outlier observations. Second, we let v* =3 and v~ = —1 to allow for
separation.

Table 7 reports power results for DGP 11, when v™ = v~ = 0. The RLS procedure is not very powerful in small samples
but power tends to one as the sample size increases for all cut-off values c. The empirical power is low for the LTS pro-
cedure when y = 0.5, even when n = 1600. For smaller values of y, the power approaches one in the larger sample sizes
considered.

Table 8 reports power results for DGP 11, when vt =3 and v~ = —1. RLS is markedly more powerful with separation
than without for all values of c, n. The LTS procedure is also notably more powerful for y < 0.2. For most values of c, in the
RLS case, or y, in the LTS case, the power approaches one even in moderate sample sizes.

5. Empirical illustration

We illustrate the test for truncated normality using the stars data of Rousseeuw and Leroy (1987, Table 2.3). For further
discussion, see also Berenguer-Rico et al. (2023), BR23 henceforth. Figure 1 shows observations on log light intensity and
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Fig. 1. Star data and fit by LTS for different h. Log light intensity against log temperature. Bullets are estimated good observations for h = 42. Circle with

cross is the F-star. Two bullets with crosses are declared outliers by RLS procedure.

Table 9
Estimates by LTS for the full sample.
Trunc. model LTS model
h W Bl BZ Gtrunc Tr’r'%? Girs TLr;osrm

25 0.50000 -13.62 422 048 245 0.18 1.72
36 0.75000 -11.49 3.71 0.46 1.97 0.27 1.98
37 0.77274 -9.00 3.16  0.46 3.60 028 249
40  0.84092 -8.58 3.07 045 2.44 0.31 2.13
41 0.83365 -8.50 3.05 0.46 235 0.33 1.26
42 0.88638 -7.40 2.80 049 5.82 037 039
43 0.90910 -4.06 2.05 0.51 0.52 040  0.69
44 093183 1.89 0.70  0.59 2.78 049 049
45  0.95456 734 -053 0.60 5.54 0.51 2.94
46 0.97728 692 -044 059 4.99 0.53 274
47  1.00000 6.79  -0.41 0.56 3.40 055 275

log temperature for the Hertzsprung-Russell diagram of the star cluster CYG OB1 containing n = 47 stars. From the right,

the first four stars are giant of M-type, the fifth star is of F-type, the next 31 stars (1 doublet) are of B-type, and the last 11

stars (1 doublet) are of O-type. We apply the suggested tests for truncated normality noting that the power will be low in a

sample as small as this. Hence, detecting departures from the null requires strong evidence against truncated normal errors.
We start with the robustified least squares procedure, RLS. The initial least squares estimators are

log.light = 6.79 — 0.41 log.Te. (20)
(seoLs) (121)  (0.28)
[t—stators] [5.61] [-1.48]

The full sample OLS estimation is influenced by the M-stars. Proceeding with a cut-off of ¢ = 1.96, which is the normal
97.5% quantile, RLS declares that observations 14 and 17, marked with circles and crosses in Figure 1, are outliers. The RLS
estimates are

log.light = 7.34 — 0.53 log.Te, THE™ = 4.83. 21)
(septs) (1.44)  (0.33)
[t—statgs]  [5.08]  [~1.58]

Thus, the RLS estimation remains influenced by the M-stars in line with the analysis of Welsh and Ronchetti (2002). The
test statistic for truncated normality is asymptotically X22 with 90% quantile of 4.60 and 95% quantile of 5.99. Hence, the
test THY™ = 4.83 rejects at the 10% significance level, showing some evidence against the null.

We now turn to the LTS procedure. Figure 1 shows lines fitted by LTS for different values of h. There is not much differ-
ence between the fits for h = 25 and h = 42. The slope starts turning from h = 42 onwards. The four M-stars are arguebly
bad leverage points. The F-star may also be an outlier, but can have a masking effect (BR23).

For inference, we will refer to two models, both depending on the choice of h. The truncated normal model is an i.i.d. e-
tail contaminated model where the central h observations are truncated normal. In the LTS model, the central h observations
are untruncated i.i.d. normal (BR23). These models require different scale estimators. We let G¢unc be the scale estimator
in the e-tail contaminated model and &;7s the scale estimator in the LTS model. More specifically, &trync is the standard LTS
estimates with a consistency correction as in (3), while 675 has no consistency correction.

Table 9 shows the estimated coefficients when fitting LTS for different h values. Two test statistics are reported, T'™

trunc

and TJ%™. Both combine third and fourth residual cumulants. 9" uses the new normalizations for the truncated normal

10
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Table 10
Estimates by LTS for the sample excluding the F-star.
Trunc. model LTS model
h w Bl BZ Gtrunc T[’EZZ.’Z' Girs Tl.r;osrm

25 052274 -13.62 422 048 3.11 0.18 1.72
36 077274  -11.49 3.71 0.45 2.12 0.27 1.98
37  0.79546 -9.00 3.16  0.44 3.78 028 249
40  0.86365 -8.58 3.07 043 2.67 0.31 2.13
41 0.88637 -8.50 3.05 044 1.04 0.33 1.26
42 0.90910 -7.40 2.80 047 4.57 037 039
43 0.93183 788 -0.65 0.60 4.79 049 257
44  0.95456 7.74 -062 059 5.20 0.51 2.76
45  0.97728 7.58 -059 059 4.99 0.53 273
46 1.00000 712 -049 056 3.45 0.55 283

model. T/J%™ has the standard normalizations and tests for untruncated normality of the good errors in the LTS model. Both
test statistics are asymptotically X22 with 90% quantile of 4.60 and 95% quantile of 5.99. It should be noted that T7%™ has
not been analyzed formally under the LTS model. The test statistics should be interpreted in a pointwise fashion.

Table 10 is applied to the sample where the F-star is removed. Otherwise, it has the same structure as Table 9. This is
to disentangle the masking effect of the F star already pointed out in BR23.

We need to assume a model to conduct inference. Given the doublets, the data are not consistent with the assumption
of a continuous distribution. Most likely, the doublets arise from rounding, so we disregard this point. Given the graphical
evidence in Figure 1 of having four potential outliers in this data set, the M-stars, we start by considering a truncated normal
model with h =43. The LTS estimator declares, precisely, the four M-stars as outliers in this case. The test for truncated
normality in Table 9 with h =43 is T = 0.52, therefore, it does not reject. Removing the F-star from the sample alters

this conclusion. The test based on Table 10 with h =42 gives T9"" = 4.57, which rejects the null hypothesis at the 10%
significance level, giving some evidence against the null. This suggests a masking effect of the F-star. Including the possibly
outlying F-star as good introduces noise and may explain these differences.

Given these results, next we consider a truncated normal model with h = 42 leaving the four M-stars and the F-star as
outliers. Table 9 has T — 5.82. Again, it rejects the null hypothesis of truncated normality at the 10% significance level.
The test statistic is actually very close to the critical value at 5% significance level, showing stronger evidence against the
null.

Finally, we consider an (untruncated) LTS normal model with h =42. Tables 9, 10 both have T¥™ = 0.39, so that nor-
mality cannot be rejected. Moreover, BR23 suggest that for LTS location-scale models, h can be estimated consistently by
minimizing TJ%™ over h. Both tables have h = 42 as minimizer. This conclusion is clearest in Table 10 and somewhat fragile
in Table 9, possibly due to a masking effect of the F-star.

Overall, there is some evidence against the two truncated normal models, whereas the LTS model cannot be rejected.
With h = 42, the estimated truncated normal model and LTS model along with both sets of standard errors and t-statistics

dare

log.light =- 740 + 2.80 log.Te. (22)
(serrs)/[t—statyrs] (2.09)/[-3.54]  (0.48)/[5.09]
(setrunc) /[t —Staterunc] (343)/[-2.16]  (0.78)/[3.59]

Going along with the suggestion that the tests for normality and truncated normality give more confidence in the LTS model
than the e-tail contamination model, we should favour the smaller standard errors and larger t-statistic marked LTS, which
gives more confidendence that the slope is significant than those marked trunc.

6. Discussion

Conducting inference on the unknown parameters of regression models when accounting for the presence of outliers
requires knowledge of the distributional properties of the data at hand. Normality of the good errors is often considered
in practice. Yet, the good errors could be truncated normal, as implicitly assumed by standard practice when using the LTS
estimator of Rousseeuw (1984), or untruncated normal as in the LTS model of Berenguer-Rico et al. (2023); Berenguer-Rico
and Nielsen (2023). Test statistics that deliver valid inference differ in each model. Hence, assessing which model better
describes a given dataset is key in applied work. We have derived a test for truncated normality of the good errors that
delivers standard x?2 inference. We have applied the test statistic to the stars data of Rousseeuw and Leroy (1987, Table 2.3)
and found some evidence against truncated normality and in favour of untruncated normal good errors.
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A. Empirical processes
Al. The main empirical process results

We are interested in the weighted and marked empirical distribution functions, for ¢ > 0,
~ n A A
GiP(c) = n_]Z,_ (n"%xi0)®9(81/8)P1 (12,5 <) (A1)
where v®0 = 1, v®1 =y, ¥®2 = v/ for the vector v = n'/2x;,. We refer to w;, = (n'/%x;,)®7 as the weight and to (£;/6)P as
the mark. We will use the (g, p)-combinations
9 =1{(0,0),(0,2),(0,3),(0,4),(1,1)} aswell as (2,0). (A.2)
Define the normalized estimation errors @ = n'/2(6 — o')/o and b=nN-1 (B — B)/o, so that xg(ﬁ -B) = xlanU. Similarly,
define d=n'2(6 —o0)/o and b=N-1(B — 8)/o. The standardized residuals satisfy
—xB  &—-XxNN'B-B) e/o-xb
6 T o+n12n12(6 —o) T 1+n12a°

QI\S?I

Let 6 = (d b, d,b) and G4P(4,c) = GIP(c). When analyzing GIP(f,c), we can replace § with deterministic values 6 =
(ay, by, ap, bp) varying in some set due to the next result. Subscripts indicate association with indicator or mark.

Lemma Al. If Ve > 0, 3 a compact set © so limy_,o P(F € ©°) < € then P{|Gn(f,¢)| > €} < P{supy.e |Gn(0,¢)| > €} + € for
large n.

Proof. Intersect the set {|G, (@, c)| > €} with the set (§ € ©) and its complement. O

The processes of interest are therefore, with w;, = (n1/2x;,)®? and el =¢i/o,

x.b
) n-1 p
6170, =13 ({1 e *3)
~4.r -1 bp p
G, @.c)=n ZWIHEI 1 (m) 1(\Sf’—xlfnbllsc-%—n*”zuﬂ)’ (A4)

where E;_; is the 7;_; , conditional expectation. The weights wy, are F;_; , adapted. In particular, using (4), we have

—0,
Gy (0,¢) = E(67)P1 (o7 <) = Tj- (A.5)
Next, define the empirical process
GIP(@.¢) =n'{GI7 (0. 0) -Gy (8. o)}, (A.6)
which is a martingale. Define also the bias terms
n
gfn’”(e, C) = chq)(c)nle(nl/me)@LI{](p even)C1 + 1(p odd)nule{nbl}v (A-7)
i=1
n
gm?(e’ C) = pni]Z(nUinn)@q{](p even)f;gap + 1(p odd)qunl/ZX;nbp}- (A~8)

i=1
The asymptotic analysis requires the next assumption. Remark A.1 below outlines how part (i) can be relaxed.

Assumption A.l. Suppose Assumption 2.1 and (i)ef =¢;/o are e-tail contaminated normal and 0 <c<c,
(ii)maxy <i-; E[n1/2x;,|>+¢ = 0(1) for some x > 0.

We will need the following asymptotic results.

Theorem A.2. Suppose Assumption A.(ii). Let ¢=0,1,2 and p=0,1,....4. Then (a)G%P(0,c) = op(n'/2); (b)GiP(0.¢) =
1Y win TS = 0p(1).

Theorem  A3. Suppose  Assumption  Al, then for all B>0, (a)supjp _p|Gr°(61.c) —Gr0(0.0)| = 0p(1);
20 20
(b)supyg, 1< |Gy (61, ¢) — G, (0, ©)| = op(1).

Theorem Ad4. Suppose Assumption A.l. Let (q.p)e Q. Then, VB> O0.(a)supjg|GLP(0.c)—GiP(0.c)| =op(1),
(b)supyg, < In"/2{Gy (6. ¢) = Gy (0.0)} — {12 (6. ©) — GER (0. )}| = 0p ().

To see the usefulness of Theorem A.4 decompose
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nY2{GIP(0,c) — GpP (0, 0)} = n'2{GP(0,¢) — G 7 (0, 0)}
+GIP(,c) —GLP(0,c) + n'2{GrP (6. c) —GrP(0,0)). (A9)

Combining the two statements of Theorem A.4, we get

n'2{GIP (0. ¢) — G;P(0,0)} = n'2{GIP(0,¢) —= G, (0, ©)} + {G]:P (0. ©) — GER (0. ©)} + 0p (1). (A.10)
In turn, normalizing and applying Theorem A.2, we get
GIP(0.¢c) =GrP(0,¢) + 0p(1). (A11)

In the case of LTS estimation, the cut-off is the order statistics S(h) We will show that 5(11) is consistent for o c for h being
the largest integer not exceeding n{®(c) — ®(—c)}. We can always write £)/0 = ¢ +n~"/2d where d = n'/?{£ /0 — c}. In
our analysis, the cut-off c is fixed. It is therefore equivalent to think of the estimation uncertainty in the order statistic as a
scale estimation error since &g /0 = c(1+n~"/2d/c). Thus, introduce the notation ¢4 = c+n~"/2d and 6, = (d/c.0,0,0) to
get GiP(0,¢cy) =GP (B,.¢) and GIP (0, cq) = GIP (O + 6. ¢). The uncertainty d will show up in the bias term G1P, but not
in GLP. This results in the following expansions, uniformly in |0], |d| < B. First, Theorem A.4(a) gives

n'2{Gy" (0. ¢q) — Gy P(0.0)} = GIP(64: ) + 0p (1); (A12)

Next, the expansions (A.10), (A.11) imply
n'2{GIP(0, cq) — Ga¥(0,0)} = nAH{GLP(0,¢) — GoP(0,0)} + {GEP(6 + 64, ¢) — GEE (O, 0)} + 0p (1); (A13)
GEP(0.¢q) = Gy P (0,¢) +0p(1). (A14)

A2. Preliminary Lemmas

The following lemmas are useful in proving the main empirical processes results.

Lemma A.5. Suppose max i, E[n/2x;,|>** = 0(1) for some « > 0. Define the sets D; = (|n'/?x;,| < n*) where 1/2 +«) <
A < 1/2. Let v;,(01) be random variables. Then, for all € > 0 and large n,

Z Vin (91 )

>e}<P{sup >e}+e

161]<B

{ sup Z Uin(61)1p,

1611<B
Proof. Let A = {supjg,|<p| Y iL1Vin(01)] > €} and define D =N D;, so that
P(A) =P(AND)+P(AND) <P(AND)+P(D). (A15)
We find P(D°). Note that D¢ = U}, Df. By Boole’s and Markov’s inequalities
n n n
P(DY) = P{Jn"2xin| > n*)} < Y P(In'2x;n| > n*) < n 2 EHO N g0t 2x, |24
i=1 i=1 i=1

Taking maximum over the summands gives P(D¢) < n'~*@+) max; _;_, E[n'/2x;,|>+*. Since the maximum of expectations
is assumed bounded while A > 1/(2 + k), we get that P(D¢) — 0. Thus, P(D°) < € for large n. Insert this in (A.15). Rewrite
(AND) = {supyg, g | XiL1 Vin(01)|1p > €}. As D =] D; then D C D; for all i. Thus, (AND) C {supjg,|<p | Xisy Vin (01)1p,] >
€}. Insert in (A.15). O

Lemma A.6. Let [;(6) = 1 (g0 — 1(je0|<c) SO that [;(0) = 0. Let
i L

—xj by|=c+en=1/2a;)
Ji®o, 61) = V(c_n-v2ayc-5,,60.61) <67 —x, bo=c+n-12ac-rsi (Bo.60)) F 1 (—en=12a0c—5i0 (60,61 <67 —x, bo<—c+n-2agc+s,, (60,61}
where s, (89, 61) = cn=12|ay — ag| + |xin||b1 — bo. Then

[;(61) — Li(6o)| < Ji(6o, 01), (A.16)

Proof. The second indicator in the definition of I; cancels when taking difference. Thus,
Ii (01) - Ii (90) = {1(5;7§C+n*1/2u1c+xlf"b]) - 1(8? 5c+n*1/2aoc+x,f"bg)} - {1 (67 <—c—n="2ajc+x),by) — 1(5;’s—c—n*‘/zaocﬁ—x;"bg)}'

For the first term, we note that ¢+ n~'/2a;c +x] by is located in the interval with midpoint ¢ + n='/2agc + x] by and radius
Sin(6g, 61). Thus, the first term is bounded in absolute value by the indicator on that interval. This is the first term of
Ji(6p, 01). The second term is bounded in a similar fashion. O

13
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Lemma A.7. Suppose F is e-tail contaminated normal with 0 < c <cc. Let p=0,1,2,...,8. Let s=c or s= —c. Then, YO < § <
Ce =€ 3C>0,Vs—8 <51 <5 <5+3, we have (a)Ei_qe] [P1(5, g0 <) < (52 = 51)C (D)[Einq (67 )P {1 (0 <5)) = V(ep <)} — (51 —
$)sP(s)| < (s —5)*C.

Remark A.1. Lemma A.7 has the only argument requiring Assumption A.1(i) that F is e-tail contaminated normal and 0 <
¢ < ce. Inspection of the proof shows that it suffices that (1 + |s|8)f(s) is locally bounded and Lipschitz in neighbourhoods of
c and —c, see also Berenguer-Rico et al. (2019, Lemma A.6). Under those conditions the result holds with the normal density
¢ replaced by f in part (ii).

Proof. Part (a). For a function H with derivative h, the mean value theorem gives H(sy) = H(s7) + (s, — s1)h(s*) for an
intermediate point $; < S, < S,. Thus

$2
Eale] Plmerasy = [ PRI = (52 = 51)ls.PF(6.).

$1
Since s —§ <s, <s+J we can take f as the normal density ¢. We bound [s,[Pf(s.) < SUPs_ss, <515 |S«|P@(S4) < o0.

Part (b). Follow the same steps and apply a second order mean value theorem, so that H(s;) = H(s) + (s —s)h(s) +
(1/2)(s; — $)2h(s,). Use that for the normal density, |s,|Pf(s,) has a bounded derivative locally around s. O

Lemma AS8. Let max.jc, E[nV/2x;,|? =0(1). Let D;= (In'/2x;| <n*) for A <1/2. Recall wy, = (n'/2x;,)®9. Then
(@En~ 'YL, (1 4+ [n'2x;,1%) = 0(1); (DEn 'L, [wiy| =0(1) for ¢=0,1,2; (OEn~' YL, [wy|>=0(1) for ¢=0,1;
(En-2 3L, [wip|*1p, = 0(1) for ¢=0,1,2.

Proof. Part (a). Swap expectation and summation and take maximum over expectations to bound En~—'Y7  (1+
[n/2x;,|2) < 14 maxy ;- E|n'/2x;,|2, which is bounded.

Part (b). For q =0, 1,2, we get that [w;,| < 2(1 + |n1/2x;,|?). Apply part (a).

Part (c). For g =0, 1, we get that |w;,|2 < 2(1 + |n1/2x;,|%). Apply part (a).

Part (d). For q=0,1,2, we get |w;|lp, <2(1+ [n'/2x;|?)1p, <Cn?*. Thus, we can bound En=2 Y}, |w|?1p, <
Cn?*~1En~1 Y"1 | |wjy|. This vanishes as 24 < 1 and the expecation is bounded by part (b). O

A3. Proofs of empirical process results

Proof of Theorem A2. Part (a). Let n='2GEP(0,¢) =n~1 Y1 wy,v; with v; = (67 )P1 (g0 |<c) — Tp- This is a martingale

Lemma A.5 using Assumption A.1(ii) and where D; = (|n'/2x;,| < n*) with 1/(2 + ) < A < 1/2 shows that it suffices that
the martingale n=! y°1 , WiV 1p,; vanishes.

The Chebyshev inequality shows that it suffices that £ = E[n~1 31, w,-nv,-lpi|2 vanishes. By the martingale property, £ =
n=2 "L E|wi,|*v?1p,. Apply the law of iterated expectations and note E;_;v? is constant and finite by the truncation. Thus,
E<CEn2Yy, |win|219i, which vanishes by Lemma A.8(d) using Assumption A.1(ii).

Part (b). The identity Gy " (0.¢) =n~! Y1, w;, 7§ follows from (A.4), (A.5).

Lemma A.8 (b) using Assumption A.1(ii), shows that En~! Y"1 | |wy,| is bounded. O

Proof of Theorem A3. Let Vy(6;)=G20(0;.0) — G20(0.c) = X, vjn(61) and Vn(6;) = Go(6;.0) — G2 (0.0) =
Sh Eii1Vin(01) with v,(61) = n~nx,x] I;(6;) and [;(6;) = lesso—x byl<cran-12ay) ~ L(lei/ol <o) We need to show that
Vo(01) and V,,(6;) vanish uniformly in |0;| < B. Throughout, C > 0 denotes a generic constant.

Apply Lemma A.5 using Assumption A.1(ii) and where D; = (|n'/2x;,| < n*) with 1/(2 + k) < A < 1/2. It suffices to show
VP(61) =31 [vin(61)]1p, and Vf(91) =311 Ei_1|vin(61)|1p, vanish uniformly. We will find a bound |v,(61)|1p, < v uni-
formly in 6. Thus, Esupg, V;”(61) and Esupg, Vf(@l) are both bounded by EY"!' ; v, = EX"IL; Ei_1V;,, which we will show
to be vanishing.

By Lemma A.6 with 8y = 0 and defining s;,(6;) = n=1/2|ay|c + |x;||b1], we have

(O] < Ji(O1) = Tieos, 01)<e7 <ctsi,00)) T 1 {mc-sin@) <67 <—c5,01))-

On D; we have that |x;,| < n*~1/2 with A < 1/2. Since |0;] < B, c is fixed, we get s;,(0;) < Cn*~1/2 = 5,,. Having exploited D;,
we then bound 1p, <1 to get

|:(61)] 1p, <Ji= l(c—sngsg’ <ctsp) T 1(—c—sn§e;’§—c+sn)v

uniformly in 6;. Thus, |v;,(61)[1p, < n~'[n1/2x;;|%J; = v;, uniformly in 6;. Now, apply Lemma A.7 using Assumption A.1(i) to

get E;_1J; < Csp = Cn*~1/2_ In turn, we find that EY! ; E;_qv;, < Cn*~1/2En~1 31 . |n=1/2x,,|? vanishes since the expectation
i—1Ji i=1 =i—1Vin i=1 in

is bounded by Lemma A.8(a) using A.1(ii) while A <1/2. O

Theorem A.4 compares the empirical process and the compensator at & and 0. We introduce an intermediate point
01 = (ay, by, 0,0) representing the situation with estimation error in the indicator but not in the mark and 6, = (0, 0, ap, bp)

14
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representing the situation with estimation error in the mark but not in the indicator. We decompose
GRP(0,0) = GyP(0,0) = {GFP(0, ) =GP (61, O} +{G1P (01, ©) — GP(0, 0} (A7)
We analyze the two terms in (A.17) separately. For the compensator term in Theorem A.4, we decompose
n'2{Gy P (0. 0) — G P(0,0)} — (617 (0. ) — G (6, 0))
=n2{GyP(0,0) — Gy (01,0} + GEE (0, ©) + nVHGY (61, ¢) = Gy P(0,0)} — GEP(01,¢).  (A18)
As with (A.17), we analyze the compensator comparing 6 to 6; and the one comparing 6; to 0 in (A.18) separately.

Lemma A.9. Suppose Al let q=0,1 and p=0,1,....,4 Then, VB>0 and for 6;=(ar,b,0,0),
(@supjg, <5 IN"/2{GP (B1.¢) — GaP (0. )} — GEP (61, ¢)| = 0p(1); (B)Sup|g, <5 IGEP (1. ¢) — GLP(0. )| = 0p(1).

The proof adapts that of Theorem 1.17 of Johansen and Nielsen (2009). More general results that are also uniform in the
cut-off ¢ are given by Johansen and Nielsen (2016a), Jiao and Nielsen (2017), Berenguer-Rico et al. (2019).

Proof. Let [;(6;) = 1(|8;7*X,{nb1|55+n71/2a15) — 1(jeg |<c)» While C > 0 is a generic constant.

Part (a). We show that V,(0;) = n1/2{G1? (6. ¢) — GiP(0, ¢)} — G1F(61, ¢) vanishes uniformly in |6;] < B. Write V,,(6;) =
S Uin(B1) where Ty, (601) = n=12win[Ej_1(67)PL(01) — 2cP () {n~12a1¢1 (p even) + Xiyb11(p odd)})-

Apply Lemma A.5 using Assumption A.1(ii) and where D; = (|n!/2x;,| < n*) with 1/(2 + &) < A < 1/2. We show Vf(01) =
> iL1 Vin(01)1p; vanishes uniformly in |6;| < B.

Consider & = E;_1 (& )Pl;(61)1p,. Write [;(01) =J;(01) —Jip(61) where J;(01) = 1(5;75“”71/201[”1{”%) — o< and
Jn(61) = 1(835%7,171/2016“1{“1,1) —1(er ). Since |61] < B, ¢ is fixed, and on D; we have that |x;,| < n*=1/2 then n=1/2|a; |c +
|X;5||b1] < Cn*~1/2 for A < 1/2. Lemma A.7 using Assumption A.1(i) then gives

Ei_1(e7)P)i (01)1p, = (n2ayc + x},b1)cPe(c)1p, + Riy (61) 1, (A19)

Ei1(e7)Pn(01)1p, = (—n""2asc + X,b1) (—¢)P@(—C) 1p, + Rip (61) 1, (A.20)

where R;;(01)1p, < C(n"V2|ay|c + || [b1])2. We now collect the first order terms on the right hand side of (A.19), (A.20).
We note that the normal density is symmetric so that ¢(c) = ¢(—c) and write (—c)? = cP{1} even) — 1(p oda)}- This gives

(n"2arc+x;,b1)cPp(c) — (=0 Parc + x,b1) (=€) Pp (=) = 2P () {n™2a1¢1  even) + Xiub11(p 0da) )
which matches the bias term in v, (6;). Thus, we can bound

n n

=D —

Vo 0] =1 Tin(01)1p,| <0723 " [win| (IRit (01) + [Ri2 (01) ) 1,
i=1 i=1

We bound the sum of remainder terms. For g =0, 1, then |w;,| < (1 + |n'/2x;,]), so that |w;,| < Cn* on D;. By the Jensen
inequality and the construction |al,|b| <B, then |R;j(f1)| <Cn~'(1+ |n/2x;]?). Thus, |Vf(91)| <Cn*12p7 1y (1 +
|n1/2x;,|%). This vanishes since the average is bounded in expectation by Lemma A.8(a) using Assumption A.1(ii) while
A <1/2.

Part (b). Let Vp(61) = GFP(61,¢) — GLP(0,¢) = Y11 0in(61) with 7,(61) = n="2w;p{(7 )PLi(61) — Ei_q (87 )PL;(61)}. Ap-
ply Lemma A.5 using Assumption A.1(ii) and where D; = (|n!/2x;,| < n*) with 1/(2+«) < A < 1/2. We show VP (6;) =
> it Uin(01)1p, vanishes uniformly in |6 < B.

To tackle the uniformity in 6;, we use the following chaining argument and inequality. Given a small € > 0, we can
choose a (small) radius of size M according to (A.26) below and cover the set |#;| < B with a finite number, K, of balls with
centres 6y, for k=1, ..., K. The balls are given by

Bk = (91 : |91 —9]k| < M, |91| < B)
The chaining inequality uses that any 6; belongs to some ball with index k. Thus,
V2 0] < V2 (011 + [V (61) = V7 (O10)| < m,f‘X|‘7r?(91k)| +maxesug V2 (61) — VP (0. (A21)
1€Dbg

The term max, [VP(6;)| in (A.21). We show P, = P{max |V’ (0;;)| = €} — 0, for any € > 0. Here max is a union of

events. The Boole and Chebyshev inequalities give
Ko K B LA
P =P TP @] > €} = Y PUV 010l > €} = 5 D EVP @0l (A22)
k=1 k=1 k=1
Here, VP(6y;) is a scalar for q=0 and a vector for q=1. Moreover, it is a sum of martingale differences P (01) =
Uin (01x)1p, and thus a sum of mean zero and uncorrelated terms. Therefore, by iterated expectations,
n n
EIVY (010 1? = Y ElTR B> = > EEi1[T] (B10) 1% (A.23)
i=1

i=1
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Using the definition of 712 (6;;), we find

Eia U5 B 1> = " {win |15, Ei_1 { (67 )PLi(@yk. b1) — Eiq (67 )Pi(ayy, by) Y
< nHwi P 15,Ei 1 [(7 )?P{Li(ay, bu) 1P]- (A.24)
Lemma A6 with 69 = 0 shows that [[;(ay. bi)| <Ji(O1) = 1{jer —c|=s;, 0,0} + L{le0 +cl=s;, (0y0) WItD Sin (Ori0) = en~12ay | +

|Xin||b1s]. Since |61;] < B, c fixed and on D;, we have that s;,(0;,) < Cn*~1/2, uniformly in 6;;. The Jensen inequality shows
{l:(@14. b1p)}? < 2Ji(014). Lemma A.7(a) using Assumption A.1(i) then shows

Eia[(e7)?P{L(ay. by Y] < Cn*=172 (A.25)

Insert (A.25) in (A.24), (A.23), (A.22) to get Py < € 2KCn*~1/2En~1 Y1 ; |w;y|>1p,, which vanishes since € and K are fixed,
A < 1/2 and the expectation is bounded by Lemma A.8(c) using Assumption Al (ii). :

The term maxsupg, cp, [Zn(01p. 01)] in (A21) where Zy(6y,01) = VP(01) —VP(6y). and write Zp(0yy, 6;) =
Y 1{zin (O1, 01) — Ei12in (04, 61)} with summands

Zin (1. 01) = 012wy (67 )P{li (a1, by) — (@, byp)}.

Apply Lemma A.5 using Assumption A.1(ii) and where D; = (|n'/2x;,| <n*) with 1/(2+«) <A <1/2. We show
ZP (01, 61) = 1L {2 (B1k. 01) — Ei_125 (B4, 01)} vanishes uniformly in 6y, 6y, where z[ (6. 6;) =2z, (0.61)1p,. By
Lemma A.6, then |zD(91k 01)] < n—1/2|wm||e i/0|PJ; (6. 61)1p,, where

.]i (Gik’ 91) = 1{c—n*1/2a]kc—sm (011,01) <67 =X by <c+n=12ay,c+5i (011,01) } + l{—c—n*”zalkc—sin(Olk,G])56;’—x;nb]kg—c+n*1/za1kC+sfn (611,61)}

with s;, (01, 01) < n712|agy — ag|c + |Xin||byy — by |. Since |0, — 01| < M, ¢ fixed and on D;, we have that s;, (014, 0) < s;; uni-
formly in 6y, 61, where s;;, = Cn=1/2M(1 + |n'/2x;,|), Thus, J; (O, 61) < Ji, where

Jik = ](c—nfl/za]kc—smsag’ =X}, bye<c+n=12ayc+si) + l(—c—nfl/zalkc—smseg’ =X}, by <—c+n=12ayc45in)>

uniformly in 8; € B;. We then get Izﬁ O1r. 01 < Z = n=172 |wy,| |e7 |PJi1p;. By the triangle inequality

ik —

ZD (O 01) < 3@+ Eiazl) = 3@~ Eiazh) + 3 Eiazh =2 + 2y
i=1 i=1 i=1

say. It suffices to show that each of 2{1 . and ?’nk vanishes uniformly in k.

The term f{ﬂ(. On Dj, then s;, < Cn'/2=* which vanishes uniformly in k. Thus, Lemma A.7(a) using Assumption A.1(i)
shows that EHz{k < Cn~12|w;y|1p,5;y. The weight wy, is 1 or n'/2x;, so that |wj,| <1+ [n!/2x;,|. Then the Jensen in-
equality shows |wi, |si,1p, < CMn=1/2(1 + |n'/2x;,|?) and we get E,-_lsz < CMn~1(1+ |n'/2x;,|2). Thus, Z{m <CMn- 'y, (1+
|n1/2x;,|2) uniformly in k. The Markov inequality shows that

_m -
P(mkaxZ{ﬂ< >€) < 7Emax kS —En' Y (14 [n'2x;0]?) <€, (A.26)
i=1
since the expectation is bounded by Lemma A.8(a) using A.1(ii) and since, for given € > 0, we can choose M freely.

The term Z{]k. We show P; = P{max; |Z{]k| > €} — 0 for an € > 0. As in (A.22), write max, as a union then use Boole’s
and Chebyshev’s inequalities to get

Pz_PU(|sz| >€)<ZP(| ) =€) < —ZE(ZIR)Z (A27)
k= k=
We note that ank =Yr, (z{k Z{k) is a martingale with z{k = n*1/2|w,-n||ef’|1’]iklpi. Thus it has uncorrelated summands,
which shows
. n n
E(Z,)* =) E(Z)? =n"" Y EnEi(2)°. (A28)
i=1 i=1

We proceed as for f{m. Note that ]lk < 2J; by the Jensen inequality. Thus, Lemma A.7(a). using Assumption A.1(i) shows
that nE;_;(z,)? < Clw;y|*1p,5in. As before, s;,1p, < Cn*~V/2. Thus, nE; 4|2, |> < Cn*~1/2|w;, 2. Insert in (A.28), (A.27), to get
Pze—2KCn*~1/2En~1 3L | |wj,|2. This vanishes for ¢, K, since A < 1/2 and the expectation is bounded by Lemma A.8(c) using
Assumption A.1(ii). O
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For the first term in (A.17) with mark estimation error, we need a further result.

Lemma A.10. Suppose Assumption A.l. Let (q,p) € Q. Then,ﬁVB> 0 and for 6 = (a;, by, am,bm) and 6; = (a;, by1,0,0),
(@supyg|p [GFP (6. ¢) = GLP (61, 0)| = 0p (1); (B)supjg < |n"/2{Gy"(B.0) = Gy ” (61, )} + GHE (6. ©)| = 0p (1).
Proof. Notation. Let v;(0) = {(g87)P — (7)1 (o0 b|<cin-12q,c) Where &7 =eg;/o and e = (g;/0 — ) bm)/(1 +
1 n -
n=12ap). Define a¥, and b, through
gabo _ oo 8? _X;nb"' o _n—l/2am o Xl{nbm

= — &Y = o _ —1/2 % o0 /
! P 1+n_1/2(1m & 1+n—1/2am81 ‘1+n—1/2am L +mem- (A29)

=n

Note that given a B > 0 a B* > 0 exists so that |a},|, |b%,| < B* for |am|, |bm| < B.
Finally, the mean value theorem with |e{* — | < |sl€1”‘7 —¢&7| shows that

1
(&P = (67)7 = 15=1) P — &7 ) (] )P + Tp22)5P(P~ D)(ef™ —ef)*(e7)" 2. (A30)

Part (a). We must show that V,(0) =n!/2{G¥P(0,c) — GIP(0;,c)} vanishes uniformly in 6. We have V,(0) =
n V230 win{vi(0) — Ei_qvi(0)).
Decomposition. Using the above expansions write v;(6) = Zfﬂ Vi (@) where

11i(0) = 1(p31)p(8?bg - 8?)(8?)11_]1(\sf’—xgnh|§c+n*1/2a1c)’
1 D
1,5i(0) = 1(1732)517(17 — 1) (e — £7)*(e7*)P 21(|ai"—x§"b1|§c+n*1/zalc)~

Let Vp(0) = Y2_; Vsn(9) with Vs (8) = n=125° 1w, {v(0) — Ei_1v(0)}. By the triangle inequality, it suffices to show that
each Vg, is op(1) uniformly in 6.
The term Vy,(6). Since £%7 — £ = n=12a3,e9 + X/, by by (A.29), we can write
Vin(0) = 2p{GFP (61, )y, + GFTPT (61, )by )
for p> 1. We argue that G,(6;,¢) = Gy (0, ¢) + op(n'/2) uniformly in ;. Apply Theorem A.3 for (q+1,p—1) = (2,0) and
Lemma A.9(b) for all other cases. Both use Assumption A.1. Theorem A.2 using Assumption A.1(ii) shows @g‘f(o, c) =
op(n'/2). Thus, V1, (0). vanishes due to the factor n—1/2 and since |az,|, |b%,| < B*.

The term V,,(6). Since p>2 then q=0 for all (q,p) € Q, see (A2), thus we can set w;; =1 and V,,(0) =
=125 {v5(0) — Ei_1vs3;(0)}. Apply Lemma A.5 using Assumption A.1(ii) and where D; = (|n/2x;,| < n*) with 1/(2 +
k) <A <1/2. We show VD (0) = n=V2 Y1 {15;(0) — E;_11;(8)}1p, vanishes.

By the triangle inquality, [V3 (0)] <n=V2 Y1 {[v5;(0)| + Ei_1|12i(8) [} 1p,.

We bound v;(6). By Jensen’s inequality |e7*|P=% < C(|e{* — & |[P=2 + [e |[P=2). Thus,

b 2 ) -2
[12i(0)] <Clef™ — el |*(|e* — 7 |P* + |7 |P Yl —x by <ctn-172a,0)-
By (A.29) then |e7* — 7| < |e07 —e?| < n~12|a}||e7 | + |Xiy||bjn|. Here, |ajy. |bjy| < B*, so that |e* —e?| <Cn~1/2(1+

[n12x;,1)(1 + €7 ]). We need two further bounds. First, by the Jensen inequality, |e7* — &% |2 <Cn~1(1 + |n"/2x;,|2) (1 +
1 1 1
le9|2). Second, |x;,| < n*~1/2 on D; where A < 1/2, so that [e7* — &7 | < n*~1/2C < 1 for large n. In combination

|U2i(9)|‘l'pX <Cn™! a+ |n1/2xin|2)(4l + |5?|2)(1 + |81q|p72)1(Isf—x;nbl|§C+n"/za1c)19i

By Jensen’s inequality, (1+ [ [%)(1+ |£l€’|p*?) <C(1+1gZ|P). Further, on D; we have n=1/2|aj|c+ |x;||b5| < Cn*~1/2, s0
that 1(‘8?4;”,)1‘5””,1/2“15) < 1(|E;,‘SC+CM,1/2). Finally, we bound 1p, < 1. Thus
sup V21 (@) 10, < Cn (1 + 023 [*) (1 + 17 1P)1 (g0 | <cocnimrr2)-
<B*
Take conditional expectation, apply Lemma A.7 using Assumption A.1(i). We get
i1 sup [v2:(0)[1p, < Cn~' (1 + [n'/2x;, ).
<B*

Return to the sum and bound

n n
E sup Vo (0)] < En'2 > "By sup |v5(0)[1p, < CnV2En~1 Y (14 [n'2x;0]%),
|6|<B*

i=1 |0]<B* i=1

which vanishes as the expecation is bounded by Lemma A.8(a) with Assumption A.1(ii).
Part (b). Decomposition. We show Vy(6) =n'/2{Gy* (0, ¢) — GrP(6;.¢)} + G%P (6. ¢) vanishes uniformly in 6. Use (A.5),
(A.8) and note 75 = 0 when p is odd and 1'571 =0 when p is even and write V;,(§) = n~1/2 >, wi?;(6) where

vl(g) =Ei [{(8;1’30)1J - (Sg)p}l(k;’—xl’"bl\§C+n*1/2alc) + Sip(Sf)p71](‘€m§c)],
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with s; = n=12ame? + x[ bm. Apply the expansion (A.30) to v;(9) and add and subtract s,»p(s;’)Pfll(lggfxg by |<ctn-112a,c) 1O
1 m -
get 1;(0) = zf:] Ui () where
11i(0) = —Ei_1[sip(e7 )P {1 (o7 - by con120,0) = 1jer =0 } ]

75i(0) = 1(p21)Ei_1{(8?b“ —&f +Si)P(Ef)‘H1(\s;ux;nbl|5c+n4/2a1c)}y
_ 1 _
U3i(0) = 1(p32)jp(p - ])Eifl (E,Pbg - 8;7)2(8,‘0*)13 2](|s;’—x;nb1|§c+n*‘/2alc)’

for |ef* —¢ef| < Isfbf’ — &7 |. We analyze the terms Vs (0) = n=125°1  w;,Ug(0) in turn.

The term V1,(0). We note p > 1 so that g < 1. Thus, by the definition of s;, we have V1, (0) = {6',;""(01, ) —6,';"’(0, o)lam +
{Cﬂ”*p’1(91,c) —Cﬁ“’pf] (0, ¢)}bm. We find that Gp(0,c) = op(1) uniformly in 6; by applying Theorem A.3(b) for (q+
1,p—1) = (2,0) and Lemma A.9(b) for all other cases. Both use Assumption A.1. Since || < B, we find that V1,(@) vanishes.

The term V,,(6). Expand using (A.29) to get

etbo g9 45 =n"V2{e? (ak + am) + n'/2x, (bl 4 bm)}.
From (A.29), we get @}, = —am/(1+n~"2ay) so that aj, + am = —n~V2a},ap. Similarly b}, + by = —n~"2a}by. Thus, e%° —
7 +5; = —n~{e? am + n'/2x] by} aj,.

The sum of interest is V,,(0) = —n—1/2{GIP(6;.c)am -f—Gﬂ,f,“’ILFl (01, ¢)bm}ar,. We find Vp,(0) = —n~12{V1,(0) +
Gﬂ;’”(o, c)am +€g+1"’71 (0,c)br}az, by adding and subtracting Cﬂ’p(o, c). Here, V{,(0) was found to vanish above;
Theorem A.2(b) using Assumption A.1(ii) shows that Cﬁ"’(o, ¢) is bounded; and |an|, |ak,|. |bm| are bounded. Thus, V,,(0)
vanishes due to the n=1/2 factor.

The term V3,(f). Since p>2 then wy, =1. Note that v3;(0)=E;_11,;(0). We get that Esupy|V3,(0)| =
Esupy | Y iq Ei_1v2i(0)] < EX 4 Ei_q supy |1;(6)], which was found to vanish for the term 15,(0) above. O

Proof of Theorem A4. Use the decompositions (A.17), (A.18) for G#P and Cﬁ"’ along with Lemmas A.9, A.10. O
B. Normality testing initialized by OLS

B1. Preliminary Results on Estimators

Lemma B.1. Let x; = (1, zl’.)’ while my, vy, are random sequences and
" n n
N7 (B = B) = (Q_XinXjy) ™' D _XinMi + Vn. (B1)
i=1 i=1

Then, 31 X[(B — B) = Y I1m; + Un X i X,

Proof. Use x;, = N'x; and x; = (1,z])". We get >1;x/ = (1,0)}_{L ] and 2}1=1xlf(3 -B)= (1,03 xx;NN! B -pB). In-
sert expansion (B.1) for B Cancel normalizations and sums of squares of x;. Use that (1,0)x; =1. O

Lemma B.2. Let 8.6 be full sample least squares estimators of B, o. Suppose Assumption 3.1(iii). Then

NYB = B)/o = (O i) "D _xin&f = Op(1), (B.2)
i=1 i=1
n'2(6 -0) = (6/2)11"/22”:{(8?)2 — 1} +0p(1) = 0p(1). (B.3)

i=1

Proof. (B.2) follows from Assumption 3.1(iii). For (B.3) note that n'/2(52 — o) =n~12y_I, (¢? — 02) — n~1/2Q, where Q, =
Shieix{ (O xix)) "1y L x;e;. The first term is asymptotically normal since &; are independent normal by Assumption 3.1(i).
The term n~1/2Q, is op(1) by (B.2) and Assumption 3.1(iii). A Taylor expansion of (1 +x)1/2 with x = 6%2/02 — 1 shows that
6 —0 =(0/2)(6%/0% —1) +0p(62 — 62). The main term is asymptotically normal. O

The estimators satisfy an improved version of Jiao and Nielsen (2017, Theorem 1).

Lemma B.3. Let ¢ > 0. Suppose Assumptions 2.1, 3.1 hold. Then

N (RS — B) /o = (20p(Q) /TSN (B = B)/0 + (3§D XinXiy) S Xinef 1 ez <) + 0p (1), (B.4)

i=1 i=1
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n'?(6" — o) = {c( — 15 /75)p(c) /1532 (G — o) + {0/ 2T)In 2 {(67)? — T5/T5} jer <) + 0p (1),
i=1
(B.5)

where the initial estimators B, & have expansions given in Lemma B.2.

Proof. We apply Theorems A.2, A.3, A4 using Assumptions 2.1, 3.1(i, ii)

Expression (B.4). Write N-1(BRS — B) /0 = {620(c)}~1{n!/2G} 1 (c)}. By Assumption 3.1(iii), the initial estimator converges
in probability. Thus, by Lemma A.1 it suffices to analyze {Gﬁ'o(el, 0)}~1{n'/2G}1(6;,c)} uniformly in |6;| < B, where 6; =
(a1,b1,0,0) with a; =n'2(6 —o0)/o and by =N-1(B - B)/o.

The denominator. By Theorem A.3, G%‘0(01, c) = G%’O(O, ¢) +op(1). By Theorem A.2, G%’O(O, c) = Cﬁ’O(O, c) +op(1), where
=2.0 cxn /

G (0,0) = T§ Xinq XinXjy,-

The numerator. By Theorem A.2 and since ty=0 then 6,11’1 (0,c) =0. By Theorem A4, see also (A.9),
(A10), n'2G}1(0,¢) =GL1(0,0) +G];1(B1.¢) — Ghn (By,¢). Here, GL'(0.0) =31, Xin€{ 1(e0|<c)  While Gl (0.0 =
2cp(0) YL 1XinX},by by (A.7), and g,}ﬂ} (01,¢) =0 by (A.8). Combine these elements and scale by o to get (B.4).

Expression (B.5). Proceed along the same lines. See also the proof of Jiao and Nielsen (2017, Theorem 1). O

B2. Proof of results for the RLS procedure

Consider the truncated moments (6). Here, the superscript RS is ignored. Let §; = (d, b) where d=n'/2(6 —o)/o, b=
N-1(B — B)/o are full sample least squares estimation errors. Let also §, = (& b) where & =n'/2(6 —o)/o, b=N"1( -
B)/o are the least squares estimation errors for the selected sub-sample. In combination, § = (4;, ép), which was analyzed
in Lemmas B.2, B.3. We expand vap(é, c) for p=3,4 in terms of the vectors Z;,i given in (8).

Lemma B4. Let Assumptions 2.1, 3.1, hold. Recall §3RLCS, (RLS defined in (9), (10). Then, uniformly in c > cq for some cy > 0, we
get (@) GOO(A.0) = 1 +op(1); (b) n12GY3(B.0) = ((RSYn-1250 25 +0p(1); (©) n2{G24(6. ) — (x5/76)GR0(0. )} =
CF M2z + op(1).

Proof. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1(i,ii) and Lemma A.l noting that d, b are bounded by
Assumption 3.1(iii), while @, b are bounded by Lemma B.3 using Assumptions 2.1, 3.1.

(a) Apply Lemma A.1 and Theorem A.4 with (A]l) as well as d,""(o 0) =15§.
(b) Let N3 c = G23(0.,¢) — Go” (0, ¢) where Go” (0, ¢) = E(e7)*1(jeg|<c) = 0. By Lemma A1, Theorem A.4 and (A.10),

n'2Ns = n'{G23(0. ¢) — Gp(0,0)} + %3 (8. ¢) + 0p(1). (B.6)
Theorem A.4 and (A.7), (A.8) show that the bias term is

n n
G93(0.0) =2p(c)n 2y K, b - 3t5n 12y X b.
i=1 i=1

Let  vg=(1,0,0)7g=(0,0.1) and g ={0.1/1§.2cp(c)/t§}, so that RS =vg+2c30(0)g — 315G =
{1, -375/1§, 2(c2 = 37§ /t§)cp(0)Y as in (9) We show that n'/2N3 o = (¢f55)/n=1/2 1L 125, + op(1).

We have that G)?(0, ¢) = vgn 21,7 ; and G?(0,¢) = 0. For the bias terms, given expansions for b, b in (B.2), (B.4),
Lemma B.1 implies Zi=1xmb =YrLef = vgn‘”zzl-:]zgj and YILx[ b= (1/t)X L, 71 (g |<c) + {2c0(c)/T{I T 87 +
op(1) so that Zlegnbf %nfmz;;]zg,i. Jnsert these expressions in (B.6).

(¢) Let Ngc = Go* (0, ¢) — (15/7§)Gy° (8. ¢). Due to Lemma A.1 and Theorem A.4 with (A.10), we get, for p = 0.4,

{67 (0, ) - G, " (0,0)) = "GP (0, ¢) — G, (0, 0} + G5 (6, ©) + 0p (1),
with compensators CS’F(O, c) = Es,gl(ls;’\sc) =75. We note the equation 62’4(0, c) — (rj/tg)Cg’o(O, O =15—-1§T5/15 =0
Therefore we can write
n'"’Nyc = (G*(0.0) + G0, 0} — (T /T){G(0,¢) + G7°(6., ©)} + 0p (1).
Proceed as in (b). Let vg4=(1,0,0,0) and vgo = (0,0,1,0), so that Gi(0,c) = v n n-1/2y°1 124 for j=0,4. Let

vg.0 = 2cg(c) (0, 0,0,1/2)". From Theorem A4 we have G2%(d,c)=2co(c)d. As @ satisfies (B.3) we get G0%(d,c) =
Vot 23125 4+ 0p(1). Let Ug 4 = 2c%0(c)(0,0,0,1/2) — 2(7f/T5H{0, 1, —(t5/15), c(c® — T5/T§)@(c)}. Theorem A4 shows

g,?“(@ ¢) = 2c%¢(c)d — 4td. Since d and d satisfy (B.3) and (B.5) we get gp* (9. ¢) = v, ;012511125 + op(1). Insert these
expressions in the expansion of n'/2N, . noting that {5 = v 4 +vg 4 — (75/7§) (Vg0 + Vg.0) to get (10). O
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Proof of Theorem 3.1. Throughout, we use Theorem A.4 using Assumptions 2.1, 3.1.

1. Write fipc = GyP(0.¢)/GY° (8. c) for p=3.4. Let TR, = (NS Q5 (B2 (RS n 12 25

2. Denominator. Lemma B.4(a) shows Gﬁ’o(é, c) —15=o0p(1).

3. Third moment. Lemma B.4(b) shows n'/2G)3(0,¢) = ¢§ n~12 Y1 25+ op(1). Note that (z§)?Aec = Var{(£3.)'%,} to
get T3,c = nl/zﬂB,c/)‘(li/cz = T3,c,n + OP(l)-

4. Fourth moment. Expand the demeaned moment n'/?(fls . — t§/7§) as n'/2{Gy*(0. ¢) — (r5/7§)G°(0.0)}/Go° (D, ¢).
Expand the numerator as g“icn‘”z > zf“-i—op(l) using Lemma B.4(c). Proceed as in item 3 to see that T4,C =Tyen+

Op(l).
5. Distributions. The Central Limit Theorem shows that the finite dimensional distributions of T3 ., T4, converge jointly
to zero mean normal distributions with unit marginal variances. O

C. Normality testing initialized by LTS
C1. Preliminary Results on Estimators

We analyze the order statistics of the LTS residuals and the LTS variance estimator. We follow the analysis in Section D.4
of Johansen and Nielsen (2016a), henceforth JN16. Let &ys = &(;,)/0 be the hth smallest order statistic of & = |y; — X, Brsl,

where ELTS = Nfl (3LTS — ,8)/0' Let éLTS = (0, Eu's, 0, ELTS)' Then,
. . 1< hy . 0.0/4 h
Cirs = mf{c: - ;l(laiﬂfxgngmlsc) > ﬁ} = 1nf{c 1 Gy (Orrs, ©) = ﬁ}

and Gy° (fyrs. &r5) = h/n. Similarly, if & is the hth order statistic of |7 | then G3-°(0, &) = h/n. Finally, let G be the distri-
bution function of |¢7| and let Gy = {n'2(E1s/c—1),0,0,0)}.

Lemma C.1. Let c € (0,cc) and h = |nG(c) . Suppose Assumptions 2.1, 3.2. Then
n'2 (s — ) = —{2f(0)}'G2°(0. ¢) + 0p(1), (C1)

n'2 (s — 0) = (0/2t5)n">{G* (0. ¢) — 2GH°(0. 0)} + 0p(1). (C2)

Proof. Suppress the index IS, Lemma A.1 and Theorem A.4 are used repeatedly. This requires Assumption 3.2(i, ii).
Quantiles of &;/c. From Bahadur (1966), we have 2f(c)n!/2(¢ — ¢) = —G%°(0, ¢) + op(1), which is then Op(1) by the
Central Limit Theorem.
Initial assessment of & We argue that n'/2(é — c¢) = Op(1). Lemma D.6 of JN16 shows that n'/2|¢ — c| < 2|b| max; i, |X-
Assumption 3.2(ii, iii, iv) gives the bounds b= N-1(8 — B)/o = Op(1) and maxj<j<p |Xin| = 0p (1), see also Lemma A.5.
Result (C.1). Follow the proof of Theorem D.7 in JN16 for fixed c. By construction

h/n=6%4,6)=6%@ +0;.c), and  h/n=:6%0(0,&) = G2, c).
Equating the two expressions we have
0=n"2{G3°(6.¢) - G3°(6,. 0)}.

Here, b = Op (1) by assumption while nl/2(¢ — ¢), n'/2(éy — ¢) = Op(1) for fixed c as argued above. Thus, using Lemma A.1,
we can replace these estimation errors with deterministic terms and apply Theorem A.4 with the expansion (A.13) to each
of the G%¥ functions. Deleting common terms in the two expansions then shows that

0=000(0 +64.0) + 9 (6. ©) + 0p (1).

Thus, by the expression for gf;f in (A.7) we get op(1) = 2cf(c){(C/c — 1) — (Eg/c — 1)} so that 2¢f(c) (€ — ¢) = 2cf(c)(Ey —C) +
op(1). Last, insert the expansion for ¢j. R
The result (C.2). Recall that &; = |¢f —x] (8 — B)|. We have that

-15n  x219 5 o~
s (Lff)n YL, 202(35) G0,
‘[25 n*l ZL] ]{é'Sé(h)} TZC GS.O (9’ E) ’

when using the empirical process notation with b = n!/2 (B - B)/o as well as 6 = (0,b,0,b) and 9~d ={n"2(¢-c),b,0,0}.
Normalize to get

-EC
n2(62 — g2) = Uz(fo)

C
2

n2{G3%(0, &) — (5/7$)Gy°(0, &)}
G0(@,¢) '
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By assumption b = Op(1). Applying Lemma A.1, Theorem A.4 with (A.14) to the denominator shows G20(4, E) %0, 0) +
op(1). By (A.5) we have that GoP(0,¢) = 7 so that GY0(6.¢) = 7§ + 0p(1) as well as G*%0,¢) - (5 /Tg)G %0,¢) =0. In
combination,

~ —0,2 ~ o —0,0
w2 0% =o?(1) n'2{Gh%(6.8) ~G7(0.0)) — (rg/T)n {6 ° (6.8 ~ G (0.0}
5 75 +op(1)
Now, the expansion in Lemma A.1, Theorem A.4 with (A.13) shows that
n'2{G0P(0,8) -G P(0,¢)} = GIP(0,¢) + G%P(0 + 0, ¢) — GSE (D + 6y, ©).

For p=0,2 we get from (A.7), (A.8) that g] P(@ + 8y, ¢) = 2cP+1p(c)n'/2(¢/c — 1) and ¢%P (@ + 6, c) = 0. The expansion in
(C.1) shows that 2¢(c)n'/2(¢ — c) = —=G2°(0, ¢) + op (1). Insert all this above to get

n'2(G2 - 0?) = ( £ )[G“(o o) — (%)Ggo(o, 0 - (c2 - %)GS-O(O, c)] +op(1).

Cancel the (z5/7§) terms and use that n!/2(6 — o) =n'/2(62 — 02)/(20) + 0p(1) by the 5-method. O

C2. Proof of results for the LTS procedure

Consider the truncated moments (6). Define estimation errors djrs = n'/2(6rs — o)/ and byrg = N~1 (BLTS - B)/o. Let
Cirs be the h quantile of |y; — x;, Birs|.

Lemma C.2. Suppose Assumptions 2.1, 3.2 hold. Recall §3LTCS, ;“LTS from (14) and (15) and z§, zi; from (8).
Let irs = (0. byrs. dirs. birs). Then ()G (Pirs. Eirs) = 7§ + 0p(1); (b)n1/2603(17LT5 Eirs) = (¢3T5) =230 125+ op(1);

(©n'2{GY* (Dirs, Eirs) — T5 /7560 (Dirs. Eirs)} = (CHS)n=12y1 25 zg;+top(1).

Proof. Let éd = {Tll/2 (fLTS/C - 1), 0,0, 0)} Note Gg'p(é]_'[s, ELTS) = Gg’p(éLTs + éd’ c). Note that ELTS is Op(l) due to
Assumptions 3.2(iii, iv), while éd, dirs are Op(1) due to Lemma C.1 using Assumptions 2.1, 3.2. Lemma A.1 shows that we
can replace random estimation errors with determiniatic quanties in a compact set. We then apply Theorem A.4 using
Assumptions 3.2(i, if). Suppress the sub- index ITS throughout.

(a) Apply Theorem A.4 with (A 14) and G° G, (O c) =1§.

(b) Let N3C_GO3(19 ) -Gy (O c) with Gn (0 ¢)=0. Lemma A.l and Theorem A4 with (A.13) show n'/2N;, =
G93(0,¢) + 623 (F +0,, ¢) + 0p(1).

Define vg = (1,0,0)’ and vg = (t£)~1{2c3¢(c) — 375}(0,1,0)’ so that {3, =vg + Vg = [1,{2c3p(c) — 375}/75, 0]’ as in
(14). We show that n'/2N3 . = ¢§ . ‘1/221 125+ op(1).

First, G23(0, €) =vgn- 1/2lelzgi. Second, Theorem A.4 with (A.10), (A.11) shows 92’3(0 +64.¢) ={230(c) -
3r§}n*1/22?:1x§n5. The estimation error b = N-! (,5 — B) has an expansion given in Assumption 3.2(iv) and is of the form
considered in Lemma B.1. Therefore, Y x] b= (t5)~1Y1, (87)1(jeg|<c) +0p(1). In turn, G023 +04.0) =Y 25+

op(1). ~ B o
(c) Let Ny o = {Gh*(8,8) — 75/7§Gy°(F, ©)}.Lemma A.1 and Theorem A.4 with (A.13) give, for j = 0,4, that n'/2{G},(8,¢) —

GL(0,0)} = GL(0,0) + GI(F + 84, ¢) + 0p(1). Due to the identity Gy (0, ¢) — (z5/7E)Gy (0, ) = 7§ — TETE/TE = 0, we write
n'2Ny e = {G4(0,0) + G0 (D + 64,0} — (25/t){GR0(0.0) + G (D +04.©) } + 0p (1).

Let vg 4 = (1,0,0,0)" and vg o = (0,0,1,0) for p=0,4, so that GOP(0, c) = Vg o~V 25 ;- From Theorem A.4 with
(A.10), (A.11) we get biases g] 0§ +8,,c) =2¢(c)n'/2(¢-c) and g1 1 +0;.0) = 2c4¢(c)n1/2(c— ) —4tiola.

Let vg0 = (0,0,—1,0)" and vg 4 = {(0,0, —c*,0) — 2(t£/7$)(0, 1, —c2, 0)}'. Then, the expansions for @ n'/2(¢ - ¢) in (C.1),
(C.2) give gl P +6840) = VG p2in1Zy

Insert these expressions in the above expansion of n!'/2N4 . noting that {4 = Vg4 + Vg 4 — (t5/75) (Vg0 + Vg,0) giving the
expression in (15). O

PrROOF OF Theorem 3.2. As the proof of Theorem 3.1 replacing Lemma B.4 by Lemma C.2.0J
D. Power expansions for the kurtosis statistics

The kurtosis statistic ch was expanded in (16). Here, we consider the numerator of the non-centrality term, that is
Ao — Mp Where Af o is the limiting value of 45, as defined in (6). We let rgcp and rgF denote the truncated moments

under normality and F.
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Least trimmed squares limits. The initial and updated LTS scale estimators defined in (13) satisfy
~2 A2 P2, 2 2
Ofrs = Ofrs = 0°/W¢ where ol = (Tor/T36) (T30/ To0)s

see Lemma C.1. The fourth moment estimator defined in (6) then satisfies

A LTS 4 Z?=1{éf/(&”SwC)}éll(Is";lséfh) P TS 4 Tae
K4 = ¢ mq _))"3CF:wc.[Tv
iz a8, oF
by Lemma C.2. We expand the numerator of the non-centrality in (16) as
5 5 & T5 7§ T4 173
TS TS 49 af t4 0o 40 0 4 20 \2
it - = oot (G2) (32) -} =2 | GE) GE) G ) 1) (01
00 40 OF 00 00 49 2F
Since F = (1 — €)® + €G, we get that tgF =(1- e)rgq> +€'L’£G. Rearrange to get
T T
pF pG
I —tve( S -1). (D2)
pd pd

Insert the expression (D.2) in (D.1) to get
ALTS _ 1S _ @[{1 + €(156/Tge — DH1 + €(1f /T — D} _ 1]

3P T3 T e {1+e(t5 /5 — D2
Tie [ TS 5 &
= et (Hs 56 4 06) 4 o(e). (D3)
6 \ 1, T
0P 4P 20 0d

Robustified least squares limits. The initial least squares estimator satisfies

~ P
o> o0%/m?  where wl=w?=1/15.

The updated least squares scale estimator satisfies

n a2 c/w
62 = Too 2im1 &1 1{jal < Gosm) (/) P Lz where 52— (TOF ><Tzc<1>>
- n ~ 2 c = .
To Lict W& l<Gasm)c/m))  Dé LTSN
The fourth moment estimator defined in (6) then satisfies
ARLS _ = 42?:1 {éi/(O,:RLSﬁC)}‘ll{\51\5(50513)@/117)} P ARLS — 7 4Téfl/ﬁw (D.4)
4 = D T = A3k = D¢~ .
Zi:l {1&|<(Gos ) (c/m)} TOF
by Lemma B.4. We expand the numerator of the non-centrality term in (16) as
c/w o/ /o
ARLS _ 3 RIS 2@{574(7# )(T&b)fl}:@{(fw )<T4F )(fzccb )271} (D.5)
e i, T, 5" Too L\ Tgo Tio / \T5L7

We expand the truncated moments evaluated in a distorted cut-off. First, note that p is even and, then, apply the mean
value theorem to get

c/w c/m c/w 1
Top = /4/&-; uPdF(u) = Ty +2/C uPdF (u) = 5 +2(C*)pf(c*)c<5 3 1).

It is convenient to let y = (z5¢) — 1. Combine with (D.2) to get

/@ -[C/wd €
E = () () - {1+ /e oy o6e) | 1+ €l(xformie) -]

Tpc T o
—1 +e{T S @(c)y} +o(e). (D6)
T T
pd p®
Insert the expression (D.6) in (D.5) to get
TC
Mg = (11 + €t/ Ta) = 1+ cO@/T50 )]

1+ e{(tis/The) —1+CP(O)y/Tie)
[1+€{(t55/75) — 1+ P(O)y/ T34}

Expand for small € and use that y = (52) — 1 to get the final expression

1) +o(€).

ARLS _ RIS _ETXQD Tic 2‘[ch e cd(0){(132) - 1 c* 2 ¢ 1 0(€)
L A A A Y
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