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Quantum steering as a resource for secure tripartite quantum state sharing
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Quantum state sharing (QSS) is a protocol by which a (secret) quantum state may be securely split into
shares, shared between multiple potentially-dishonest players, and reconstructed. Crucially, the players are each
assumed to be dishonest, and so QSS requires that only a collaborating authorized subset of players can access
the original secret state; any dishonest unauthorized conspiracy cannot reconstruct it. We analyze a QSS protocol
involving three untrusted players and demonstrate that quantum steering is the required resource enabling the
protocol to proceed securely. We analyze the level of steering required to share any single-mode Gaussian secret
which enables the states to be shared with the optimal use of resources.
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I. INTRODUCTION

Secret sharing is a cryptographic process which splits in-
formation between several players such that it is inaccessible
to any individual player but can be accessed when players
collaborate [1–3]. By requiring collaboration, secret sharing
provides guaranteed security against small groups of dishon-
est actors. Secret-sharing schemes might be used, for example,
by a bank manager to share the vault combination between
their staff such that a number of them are required to access it.

Quantum state sharing (QSS) [4] translates this scheme to
act on quantum secrets: the information describing a single
quantum state (not known to the dealer) is shared between
the modes of a larger multipartite system. Since no individual
mode contains enough information to reconstruct the original
state, only certain authorized subsets of players can access the
original state through collaboration [5,6]. As in the classical
case, quantum state sharing then provides security against
small groups of dishonest parties.

This class of protocol aims at a variety of future uses in
diverse quantum technology schemes. In secure distributed
quantum computing, computations could be performed on
each share individually without any single quantum computer
having direct access to the underlying information [7]. The
shares from different computers could then be recombined
to produce the computation outcome. This form of so-called
blind quantum computation allows untrusted quantum com-
puters to be used securely without fear of data loss. Quantum
state sharing may also find use in loss-tolerant quantum in-
formation distribution as a form of quantum error correction
analogous to Reed-Solomon codes [8], potentially forming
a crucial building block to a future quantum internet [9] or
finding uses within a quantum computing stack [10].

The prototypical quantum-state-sharing scheme is (k, n)-
threshold QSS, in which the secret state is split into n shares
with a predefined threshold number of shares k required to
reconstruct it. Any subset of shares meeting this threshold can
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then reconstruct the state. While this may initially present as
a limited form of QSS, more complex schemes—in which a
different number of shares is required depending on which
shares are involved—can be built simply by distributing an
uneven number of shares to each player. The primary re-
striction on this approach is common to any QSS scheme: to
avoid breaking the no-cloning theorem a reconstruction is not
possible with fewer than half of all shares. For illustration,
in this paper we will consider the simplest nontrivial case:
(2,3)-threshold QSS, in which any two of a total of three
shares may reconstruct the original state.

Quantum state sharing was first formalized in the
continuous-variable regime by Tyc and Sanders [11] with
some possible implementations of (2,3)-threshold QSS uti-
lizing two-mode squeezed-state resources later demonstrated
and discussed by Lance et al. [12–14]. In this paper, we
present a generalized version of Lance et al.’s protocol which
allows for the use of any generally asymmetric Gaussian
resource state. The previous protocol can be obtained as a
special symmetric case of the one presented here. In con-
trast to previous works, we model the reconstruction process
simply as a quantum channel, leaving the choice of physical
implementation free. Finally, we also consider the use of this
scheme for the sharing of any arbitrary single-mode Gaussian
state, providing a complete image of tripartite Gaussian QSS.

For any quantum information task to be useful in a
real-world setting, it must provide guaranteed security. For
quantum state sharing, this means that the honest collabo-
rating parties must be able to reconstruct a better copy of
the original state than any adversaries in every case. With
perfect entanglement, this protocol is secure for the shar-
ing of any single-mode Gaussian state. However, increasing
entanglement requires greater quantum resources and adds
cost to the implementation. With the quantum technology
era emerging, the thrifty and careful use of these quantum
resources is becoming imperative. To that end, we analyze
here the minimum required conditions under which a fully
Gaussian (2,3)-threshold QSS can be considered secure and
demonstrate that quantum steering is the resource required. In
particular, we show that any two-mode state which is one way
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steerable can be used as a resource to securely share a coherent
state, and we analyze the strength of steering required to share
a general single-mode Gaussian state. In previous discussion
of the security of continuous-variable QSS [12], the secu-
rity was derived from the inclusion of classically-correlated
Gaussian noise in the shares. While such noise can reduce
the amount of information obtainable from a single share to
an arbitrarily small degree, it leaves the protocol vulnerable
to eavesdropping in the classical-noise-generation stage in a
way that a fully quantum approach does not. In this paper, we
consider only security derived from the no-cloning theorem,
which can be further augmented by the inclusion of classical
noise but is not reliant on it.

After briefly reviewing the entanglement properties of two-
mode Gaussian states in Sec. II, we outline the details of
the (2,3)-threshold quantum-state-sharing scheme under dis-
cussion in Secs. III and IV. We then discuss the security of
the protocol for coherent states in Sec. V and for general
single-mode Gaussian states in Sec. VI. Additional technical
results may be found in the Supplemental Material [15].

II. GAUSSIAN RESOURCE STATES

We begin with a brief review of the properties of en-
tangled two-mode Gaussian states, which form the resource
for this protocol. At this stage, we first wish to clarify the
sense in which we use the term “resource” in this paper.
We depart from the formal definition used in resource the-
ory [16] of a property that cannot be created at will by the
participants using only local operations. Under that definition,
this protocol would require no resource as the resource-state
preparation could equivalently be absorbed into the protocol.
Instead, we take a looser, more experiment-inspired definition
of the resource as that property which enables the quantum
advantage—and thus the resource state as that state which
provides this property.

A Gaussian state is one whose Wigner function is Gaussian
and, consequently, is fully characterized by its mean vector
r̄ ∈ R2n and covariance matrix V ∈ R2n×2n [17]. We define
elements of the covariance matrix as Vi, j = 〈{�2X̂i ; �2X̂ j}〉,
where {· · · } represents the anticommutator, �2(Ô) = 〈Ô2〉 −
〈Ô〉2 represents the variance of operator Ô, and X̂ + = (â† +
â)/

√
2 and X̂ − = i(â† − â)/

√
2 represent the position X̂ + and

the momentum X̂ − quadratures of each mode, respectively.
As we show in Sec. V, secure QSS requires a strict form

of entanglement in which the measurement of one mode can
affect the state of the second mode. This is known as Einstein-
Podolsky-Rosen (EPR) steering [18,19]. The ability of one
mode of a two-mode state to EPR steer the other is quantified
through the steering parameter [20]

E1|2(g) = �(X̂ +
1 − g+X̂ +

2 )�(X̂ −
1 + g−X̂ −

2 ), (1)

where X̂ ±
i represents the quadrature operators for each mode

and �(Ô) :=
√

�2(Ô) =
√

〈Ô2〉 − 〈Ô〉2 represents the square
root of the variance of Ô. Mode 2 can steer mode 1 whenever
there exists a g = (g+, g−)T ∈ R2 such that E1|2(g) < 1 with
greater EPR steering as E1|2 → 0. Notably, this quantity is
directional, so a state may be steerable from mode 2 → 1 but

FIG. 1. Quantum-state-sharing schemes consist of two distinct
subprotocols. In (2, 3)-threshold QSS, the secret state ψ is originally
passed to a dealer who mixes it with an entangled resource state
to produce three shares (dealer protocol), none of which contain a
suitable amount of information about the secret state. Any two of
these shares can then be recombined with a suitable reconstruction
protocol to recover the original secret state.

not from 1 → 2. A state is said to be two-way steerable when
it is steerable in both directions.

The steering parameter measures the correlation between
X̂ ±

1 and g±X̂ ±
2 , in which g± represents an effective scaling

between the modes. Equivalently, E1|2(g) represents the extent
to which the two resource modes cancel when mixed as

X̂ +
1 − g+X̂ +

2 , X̂ −
1 + g−X̂ −

2 , (2)

quantified by the smallness of the corresponding uncertainties.
For simplicity, we restrict our discussion to those resource

states which exhibit equivalent entanglement properties in
each quadrature, the (X − P)-balanced states. For such states,
the steering parameter reduces to

E1|2(g) = �2(X̂ +
1 − gX̂ +

2 ) = �2(X̂ −
1 + gX̂ −

2 ) (3)

for g+ = g− := g. Although this condition is presented here
for any g ∈ R, it can be shown that steering is only possible for
g ∈ (0,

√
2), and so it is this range that we will consider in this

paper [21]. One common example of an (X − P)-balanced
state is the two-mode squeezed vacuum state with squeezing
ζ , which has steering parameter

E1|2(g) = (1 + g2) cosh(2ζ ) − 2g sinh(2ζ ). (4)

III. TRIPARTITE QUANTUM STATE SHARING

We now turn our attention to the specific QSS protocol
we are interested in. Threshold quantum state sharing con-
sists of two distinct stages: the dealer protocol, in which
the single-mode secret is split into multiple shares, and the
reconstruction protocol, in which a subset of these shares is
recombined to reproduce the original secret state. Neither of
these participants has any knowledge about the secret state. In
(2,3)-threshold QSS, the dealer mixes the secret state with one
mode of the two-mode resource state to produce an entangled
system of three modes. Any two of these modes can then be
used to reconstruct the original secret state, through a sub-
protocol which we denote {i, j} reconstruction when modes i
and j are used. An overview of the QSS protocol is shown in
Fig. 1, and an illustration of the Wigner functions representing
each stage of the process is shown in Fig. 2.

a. Dealer protocol. The dealer constructs the three shares
by interfering the secret state on a balanced beam splitter
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FIG. 2. Wigner functions at each stage of the QSS process: (a) input state, (b) intermediate distributed share, and (c) reconstructed output
state. A single intermediate share does not contain enough information for a dishonest party to recover the original state. By combining any
two shares, however, the original state can be reconstructed to a reasonable fidelity, as seen by comparing (c) to (a). This figure shows the
sharing of a coherent-state secret with mean r̄ = (2, 2)T utilizing a two-mode squeezed vacuum resource state with 13-dB squeezing.

with one mode of the two-mode entangled resource. The three
output states are then related to the input states by

X̂ ±
1 = 1√

2
(X̂ ±

ψ + X̂ ±
r1 ), (5)

X̂ ±
2 = 1√

2
(X̂ ±

ψ − X̂ ±
r1 ), (6)

X̂ ±
3 = X̂ ±

r2, (7)

where X̂ ±
ψ are the quadrature operators representing the secret

state and X̂ ±
ri represents each mode of the resource state.

Crucially, none of X̂ ±
1,2,3 individually contain enough informa-

tion to accurately reconstruct the original state. As shown in
Ref. [13], the information obtainable from each share could be
further reduced with the addition of correlated classical noise
without impacting the reconstructed state. Each of the three
modes are distributed to a player as labeled.

b. {1,2} reconstruction. Players 1 and 2 may trivially re-
construct their state by passing each share through a second
balanced beam splitter. This will effectively reverse the beam
splitter used in the dealer protocol, reproducing the original
separable system and leaving in one of the beam-splitter out-
puts the state

X̂ ±
out = 1√

2
(X̂ ±

1 + X̂ ±
2 ) = X̂ ±

ψ . (8)

In the ideal case, with no transmission or component losses,
X̂ ±

ψ will be reconstructed perfectly regardless of the resource
state used.

c. {1,3} and {2,3} reconstruction. Reconstructing the
original state using share 3 requires a more complex disen-
tanglement process to separate X̂ ±

ψ from the resource state.
We focus here on {1, 3} reconstruction; the {2, 3} case fol-
lows with only minor changes. Recalling from Eq. (3) that
the resource state is entangled such that the modes cancel
maximally when mixed with ratio X̂ ±

r1 ∓ gX̂ ±
r2 for some g ∈ R,

it becomes clear that in order to recover X̂ ±
ψ we wish to

implement the transformation

X̂ ±
out → η[X̂ ±

ψ + (X̂ ±
r1 ∓ gX̂ ±

r2 )]

= η(
√

2X̂ ±
1 ∓ gX̂ ±

3 ), (9)

where η ∈ R represents an amplification of the output state
which is required to preserve the canonical commutation rela-

tions. The players can control g by adjusting the parameters of
the reconstruction process (see the Supplemental Material for
an example setup [15]), and so its value also acts as a unique
label for a specific reconstruction setup.

This transformation produces a state with mean r̄ = ηr̄ψ

and covariance matrix V = η2Vψ + η2E1|2(g)I: an amplified,
generally noisy copy of the input state. We show in the
Supplemental Material [15] that to preserve the canonical
commutation relations, and thus satisfy the uncertainty theo-
rem, this reconstruction must impose a gain of η = 1/

√
2 − g2

on the secret state. Clearly, then, this reconstruction protocol
amplifies the original state for all g > 1 and deamplifies it
for all g < 1—the original state is reproduced with unity gain
only for g = 1.

IV. UNITY-GAIN QUANTUM STATE SHARING

When the protocol is implemented for g = 1, the output
state ρ̂out is reproduced with the same mean r̄ψ as the secret
state and with covariance matrix Vout = Vψ + E1|2(g = 1)I.
The accuracy of this reconstruction can be quantified by the
fidelity F = 〈ψ |ρ̂out|ψ〉 between the original secret state ψ

and the output state. When the output and input states have
the same mean amplitude r̄, this fidelity can be expressed in
terms of the covariance matrices as F = 2/

√
det(Vψ + Vout).

The ideal fidelity for QSS implemented for g = 1 is then

Fg=1 = 2

2 + E1|2(g = 1)
. (10)

In general, for g �= 1, the protocol as outlined in Sec. III
will not reproduce the mean r̄ of the input state exactly. To
correct for the change in r̄ introduced by the protocol and
thus reconstruct the original state with unity gain, we augment
it with an additional preamplification or postattenuation step.
These are corrections similar to those introduced for quantum
teleportation in Ref. [22], and so we also describe them as
late-stage-attenuation (LSATT) and early-stage-amplification
(ESA) QSS.

A. Late-stage attenuation

When the output state is an amplified copy of the in-
put state (when η > 1, g > 1), the optimum correction is to
attenuate the output state after the QSS reconstruction proto-
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col. Modeling this attenuation as an ideal beam splitter with
transmissivity τ = 1/η2 with a vacuum environment imple-
ments the transformation X̂ ±

out → 1
η
X̂ ±

out +
√

1 − 1
η2 X̂ ±

vac. The
corrected output state then has mean r̄out = r̄in and covariance
matrix Vout = Vin + [E1|2(g) + 1 − 1/η2]I.

For the specific case of a coherent state secret with co-
variance matrix Vin = I, the secret state is reproduced with
a fidelity of

FLSATT = 2

3 − 1/η2 + E1|2(g)
. (11)

B. Early-stage amplification

When the output state is a deamplified copy of the input
state (when η < 1, g < 1), the optimum correction is instead
to amplify the input secret state prior to the dealer protocol.
We model this process as an ideal amplifying channel; in
practice such an amplification could be achieved by a phase-
insensitive amplifier [17]. Denoting the original secret state
by ψ , the amplified input to the QSS protocol can be writ-
ten as X̂ ±

in = 1
η
X̂ ±

ψ +
√

1
η2 − 1X̂ ±

vac, where 1/η > 1. Following
the deamplifying QSS protocol, the output state will have
mean r̄out = ηr̄in = r̄ψ and covariance matrix Vout = η2Vin +
η2E1|2(g)I = Vψ + [η2E1|2(g) + 1 − η2]I.

For a coherent-state secret, the secret state is reproduced
with a fidelity of

FESA = 2

3 − η2 + η2E1|2(g)
. (12)

Of course, the introduction of an amplification stage prior
to the dealer protocol would require a corresponding deampli-
fication correction for {1, 2} reconstruction. However, since,
under equal conditions, {1, 2} reconstruction will always have
higher fidelity than {2, 3} or {1, 3} reconstruction, this would
not affect our analysis of the security of the protocol.

V. SECURITY ANALYSIS FOR COHERENT-STATE QSS

For a quantum-state-sharing scheme to be considered se-
cure it must be guaranteed that the collaborating parties obtain
more information about the original secret than any adversary
can. This security requirement can be certified through the
uncertainty theorem, which imposes that only one copy of
a single quantum state can exceed a fidelity of F = 2/3, a
condition termed the no-cloning limit [23]. Should the col-
laborators reconstruct the state with fidelity above this limit,
it follows immediately that no other party can obtain as much
information as them and so the protocol is secure. The optimal
fidelity F = 2/3 for duplication of a coherent state (1 → 2
cloning) and its extension to N → M cloning has been studied
in [24]. In this paper we assume any eavesdroppers are limited
to Gaussian operations; it has been shown that with the use of
non-Gaussian operations, coherent states can be cloned with
fidelity up to F ≈ 0.68, and so loosening this assumption
would slightly increase the following entanglement require-
ments [25].

To certify security for the whole protocol, each possi-
ble reconstruction ({1,2}, {1,3}, {2,3}) must individually be
provably secure. Since the reconstruction fidelity obtained

using shares 1 and 2 is strictly greater than any reconstruction
involving share 3, it suffices to check the fidelity only for the
latter case.

We have seen that whenever player 3 is involved, the gen-
eral reconstruction fidelity for a given resource state, using
the optimal unity-gain reconstruction protocols discussed in
Sec. IV, is

F =

⎧⎪⎨
⎪⎩

2/[3 − η2 + η2E1|2(g)] g < 1 (η < 1),
2/[2 + E1|2(g)] g = 1 (η = 1),

2/[3 − 1/η2 + E1|2(g)] 1 < g<
√

2 (η > 1),

(13)

where η(g) = 1/
√

2 − g2 and g ∈ (0,
√

2) is chosen to maxi-
mize fidelity.

Comparing this reconstruction fidelity to the no-cloning
limit, F > 2/3, we reach our first result defining the entan-
glement requirements for secure QSS.

Result 1. A sufficient condition for a two-mode resource
state to be useful for secure (2,3)-threshold QSS with a
coherent-state secret is that a g ∈ (0,

√
2) exists such that the

steering parameter satisfies

E1|2(g) <

{
1 g � 1,

2 − g2 g > 1.
(14)

Notably, while this result shows that any resource state
exhibiting EPR steering for some g � 1 is useful for secure
QSS, a greater magnitude of steering is required when the
resource is steerable only for g > 1. This seeming asymmetry
is due to where in the process the amplification correction is
implemented. In LSATT QSS setups, the secret state is first
mixed with the resource mode, with both amplified by the
QSS scheme before being attenuated afterwards, leaving both
secret and resource contributions with no net amplification.
However, in ESA QSS setups, the amplification correction oc-
curs before the secret is mixed with the resource, and so the re-
source contribution is deamplified by the QSS protocol with-
out a corresponding amplification. The secret state is repro-
duced with unity gain while the resource contributions are at-
tenuated, reducing their impact on the noise in the output state.
Consequently, a higher fidelity can be achieved through ESA.

For a strict implementation of this protocol as described
in Sec. III, the dealer has access to both resource modes and
may choose which mode to mix with the secret state. This free
choice of resource mode (i.e., a choice of relabeling modes
1 ↔ 2) allows the dealer to decide in which direction this
protocol utilizes the steering of the resource state, leading to a
more general view on the requirements for secure QSS.

Result 2. All EPR-steerable states (one way and two way)
are useful for the secure sharing of a coherent-state secret with
a suitable dealer allocation of resource modes.

Proof. All resource states steerable from mode 2 to mode
1 for some g � 1 are useful for secure QSS from Result 1.
Suppose instead the state is steerable only for g > 1: such a
state is steerable in the opposite direction for ḡ = 1/g < 1.
Hence, this state can be made useful for secure QSS simply
by swapping the modes used in the dealer protocol. �

This result requires the dealer to be able to arbitrarily swap
resource modes, which we assume is possible in most imple-
mentations and discuss further in the Supplemental Material
[15]. We note that when such swapping is not permitted,
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(a) (b)

FIG. 3. (a) The minimum resource-state steering E1|2(g) that guarantees secure QSS for squeezed states. Lower values indicate greater
steering, with E1|2(g) = 0 representing perfect steering. Increasing the squeezing parameter increases the resource requirements for secure
QSS. There is a clear preference for symmetric resource states, for which the optimal setup is at g = 1, with greater degrees of steering
required to securely share the same squeezed states for asymmetric resources. (b) The fidelity achievable from a QSS setup using a symmetric
resource state (g = 1) with steering parameter E1|2(g) = 1

2 . Higher values indicate a more faithful reconstruction, with F = 1 representing a
perfect copy. Increasing squeezing in the secret state results in reduced reconstruction fidelity, while increasing the thermal photon number
allows for a better reconstruction with the same resources.

Result 2 does not imply that any EPR-steerable state can be
used for secure QSS. For example, if distributing one mode of
the resource state prior to the other being used in the dealer
protocol were desired, one would need to be careful in the
choice of resource mode and of any asymmetric degradation
of the shares during distribution.

The lower steering requirement when g � 1 also hints at
another asymmetry: we show in the Supplemental Material
[15] that whenever a resource state is steerable in one direction
for some g > 1, it is always preferable to swap the modes and
instead utilize steering in the opposite direction for ḡ = 1/g.

VI. SHARING OTHER GAUSSIAN SECRETS

The quantum-state-sharing scheme outlined above gener-
alizes naturally to the sharing of any single-mode Gaussian
state. In this section we explore the effectiveness of this proto-
col for some more general classes of Gaussian state: squeezed
coherent states and squeezed thermal states.

A. Sharing arbitrary pure Gaussian states

A squeezed state is a Gaussian state in which the uncer-
tainty in one quadrature has been reduced below the standard
quantum limit at the expense of a corresponding increase
in the other quadrature. These states have covariance matrix
defined by the squeezing parameter ζ , V = diag(e−2ζ , e2ζ ). In
general, this squeezing may be along any angle in phase space.
As this protocol is phase independent, however, we may ne-
glect the squeezing angle and thus assume for convenience
that the states are squeezed along the X̂ + and X̂ − quadratures.

We consider in this section the use of our QSS protocol for
the sharing of squeezed coherent states, the most general pure

Gaussian state. We show in the Supplemental Material [15]
that after QSS these states can be reconstructed with fidelity

F = 2√
(2e2ζ + χ )(2e−2ζ + χ )

, (15)

where

χ =
{

η2E1|2(g) + 1 − η2 g � 1 (ESA),

E1|2(g) + 1 − 1
η2 g � 1 (LSATT)

(16)

represents the g-dependent component introduced by the am-
plification correction. Increasing the squeezing ζ in the secret
state reduces the achievable reconstruction fidelity. This fi-
delity for squeezed Gaussian states is shown along the n̄ = 0
axis in Fig. 3(b).

We now turn to the question of security. It is, in general,
more difficult to clone states with an unknown squeezing than
coherent states, with strategies optimal for cloning coherent
states unable to achieve F = 2/3 cloning fidelity when ap-
plied to states with unknown squeezing [26]. The optimal
protocol for cloning squeezed states is not known, and so
reaching the F > 2/3 bound may not be necessary for secu-
rity. However, the cloning fidelity for squeezed states remains
upper bounded by F = 2/3, and so this condition is still suf-
ficient for security [27]. In the absence of an optimal protocol,
here we use this upper bound as our threshold for guaranteed
security.

From this fidelity threshold we can derive the following
sufficient condition for the protocol’s security.

Result 3. A QSS protocol for the sharing of a pure Gaussian
secret state with squeezing of up to ζmax is secure if the
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resource state used has steering of

E1|2(g) <

{
1 − 1

η2 	(ζmax) g � 1 (η � 1),
1
η2 − 	(ζmax) g � 1 (η � 1),

(17)

for some g ∈ (0,
√

2), where 1/η2 = 2 − g2 and

	(ζ ) = 1 + 2 cosh(2ζ ) −
√

4 cosh2(2ζ ) + 5 � 0 (18)

is a monotonically increasing function of ζ with 	(0) = 0.
This result is shown in Fig. 3(a). Comparing this con-

dition to that for coherent states in Eq. (14), the effect of
squeezing the secret state on QSS becomes apparent. Securely
sharing a secret state with one quadrature squeezed below
the vacuum limit requires a corresponding increase in en-
tanglement above what is necessary for coherent states. The
preference for symmetric resources, for which g = 1, remains,
with less-entangled resources capable of securely sharing
more squeezing when utilized symmetrically. Notably, the

required extra steering tends to 	 = 1 as ζ → ∞, so even
highly squeezed states and, in the limit, quadrature states can
be shared securely with a suitably entangled resource state.

B. Sharing arbitrary mixed Gaussian states

Finally, we briefly discuss the potential use of this protocol
for squeezed displaced thermal states: the most general pos-
sible single-mode Gaussian state. These thermal states have
covariance matrix V = ñ diag( exp(−2ζ ), exp(2ζ )), where
ñ = (2n̄ + 1) represents the average number of thermal pho-
tons n̄ in the state prior to displacement and ζ again represents
the degree to which the state is squeezed.

We show in the Supplemental Material [15] that the fidelity
when sharing such states using a given resource state increases
with increasing thermal photon number n̄ and decreases with
increasing squeezing ζ . As before, it does not depend on
the mean amplitude r̄. Utilizing the appropriate amplification
correction after the QSS stage, this protocol can achieve a
reconstruction fidelity of

F = 2√
[ñχ + (ñ2 + 1)e2ζ ][ñχ + (ñ2 + 1)e−2ζ ] −

√
(ñ2 − 1)[ñ2 + χ2 + 2ñχ cosh(2ζ ) − 1]

, (19)

where χ represents the impact of the amplification correction
like before and is dependent on the value of g. This represents
the most general measure of ideal reconstruction fidelity for
the sharing of any single-mode Gaussian state. The impact of
both squeezing and the average thermal photon number on the
reconstruction fidelity is shown in Fig. 3(b).

Once one considers states with added thermal noise above
the uncertainty limit, a greater cloning fidelity is achievable
and so reaching the F > 2/3 threshold is no longer sufficient
for security. Consequently, we do not present a condition on
the security of this scheme for thermal states. Some work has
been done on the question of cloning thermal states [26,28],
but optimality has not yet been shown for cloning fidelity. The
use of this scheme for thermal states should then be carefully
considered because security may not be guaranteed.

VII. CONCLUSION

We have shown here that the secure sharing of coher-
ent states between three players is possible using a resource
state exhibiting any form of EPR steering. Notably, this is
a looser requirement than those for secure quantum telepor-
tation, where a resource state must be two-way steerable to
be useful [20]. Consequently, QSS could be considered a
competitive alternative to quantum teleportation for secure
state distribution when a set of communication channels can
be trusted only collectively.

Going beyond coherent states, we have analyzed this
QSS protocol for any single-mode Gaussian state, includ-

ing squeezed states and thermal states. We have shown
that while increased resource steering is required to share
squeezed states, any pure single-mode Gaussian state is se-
curely sharable with a suitably entangled resource state.
Future work on this subject could involve a generalization
to securely share the wider class of multimode Gaussian se-
cret states. In such a case it will be of critical importance
to preserve correlations between modes of the secret state.
Additionally, the practical implementations of the analogous
(k, n)-threshold QSS should be considered.

There is potential for QSS schemes to find uses in blind
quantum computation [7] or as quantum Reed-Solomon codes
for error correction [8]. By splitting the original state into
shares and transmitting the shares separately, the original state
can be reconstructed even if some of the shares lose fidelity
in the transmission. Quantum error correction is an important
subroutine both in quantum computing and in quantum state
distribution. QSS schemes then may contribute to the practical
implementation of a future quantum internet [9].
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