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Abstract 

Background  There is strong incentive to model behaviour-dependent habitat selection, as this can help delineate 
critical habitats for important life processes and reduce bias in model parameters. For this purpose, a two-stage mod-
elling approach is often taken: (i) classify behaviours with a hidden Markov model (HMM), and (ii) fit a step selection 
function (SSF) to each subset of data. However, this approach does not properly account for the uncertainty in behav-
ioural classification, nor does it allow states to depend on habitat selection. An alternative approach is to estimate 
both state switching and habitat selection in a single, integrated model called an HMM-SSF.

Methods  We build on this recent methodological work to make the HMM-SSF approach more efficient and general. 
We focus on writing the model as an HMM where the observation process is defined by an SSF, such that well-known 
inferential methods for HMMs can be used directly for parameter estimation and state classification. We extend 
the model to include covariates on the HMM transition probabilities, allowing for inferences into the temporal and 
individual-specific drivers of state switching. We demonstrate the method through an illustrative example of plains 
zebra (Equus quagga), including state estimation, and simulations to estimate a utilisation distribution.

Results  In the zebra analysis, we identified two behavioural states, with clearly distinct patterns of movement and 
habitat selection (“encamped” and “exploratory”). In particular, although the zebra tended to prefer areas higher in 
grassland across both behavioural states, this selection was much stronger in the fast, directed exploratory state. We 
also found a clear diel cycle in behaviour, which indicated that zebras were more likely to be exploring in the morning 
and encamped in the evening.

Conclusions  This method can be used to analyse behaviour-specific habitat selection in a wide range of species and 
systems. A large suite of statistical extensions and tools developed for HMMs and SSFs can be applied directly to this 
integrated model, making it a very versatile framework to jointly learn about animal behaviour, habitat selection, and 
space use.
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Introduction
Wildlife conservation requires an understanding of ani-
mal movement and space use [36]. To prioritise areas of 
conservation interest, it is important to know what habi-
tat features animals use for crucial life processes. These 
habitat choices (termed ‘habitat selection’) have been 
studied extensively to understand how animals respond 
to foraging resources [5], environmental risks (e.g., pred-
ators, roads; [15, 38]), and other landscape features or 
resources (e.g., slope, terrain; [11, 15]). Habitat selection 
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can vary between behaviours, which often require dif-
ferent resources [30]. For example, preferred foraging 
resources may be different from the habitat features that 
are best suited for other behaviours, such as travelling or 
resting. Therefore, models for jointly estimating behav-
iour switching and habitat selection are needed to delin-
eate critical areas for biologically important behaviours.

Step selection functions (SSFs) are a popular frame-
work to jointly model animal movement and habitat 
selection [2]. SSFs assess how animals select habitat 
by comparing the spatial features (e.g., resources and 
movement metrics) of selected steps to the surrounding 
environment [2, 14]. Although SSFs are used to analyse 
time series data covering long time periods, they usually 
assume that the selection patterns are constant through-
out the movement track. It has been shown that pool-
ing habitat selection parameters over periods that span 
multiple behavioural states can bias estimates [41], but 
most analyses still ignore this issue. Interactions between 
movement and habitat covariates can be included to 
give some insights into how habitat selection varies with 
movement, but this does not explicitly account for the 
animal’s behavioural state [2].

Hidden Markov models (HMMs) are commonly used 
to identify distinct states from animal telemetry data [19, 
29]. These states are generally defined based on move-
ment characteristics (e.g., step length or directional per-
sistence), and their dynamics are governed by transition 
probabilities (e.g., animals may be more likely to stay in 
their current state than switch). Usually, the estimated 
states are interpreted as behavioural states, such as rest-
ing or travelling (although this will be study-specific; 
[28]). It is also common to assess how covariates influ-
ence the probability of switching between states [19, 31]. 
This is the most common way to incorporate environ-
mental covariates into an HMM (see examples in [28, 
29, 31]), and can further be used to investigate how other 
temporal (e.g., hour, day of year; [47, 48]) or individual-
specific factors (e.g., sex or size; [3]) affect animals’ 
activity. Although this approach is useful to identify the 
drivers of behaviours, it falls short of capturing habitat 
selection directly, as it does not explicitly model indi-
vidual movement decisions based on habitat features. 
Therefore, most commonly-used HMMs are inadequate 
to describe animals’ space use [16].

To assess behaviour-specific habitat selection, some 
applied studies have employed a two-stage design, in 
which HMMs are used sequentially with SSFs (e.g., [7, 
11, 32, 44]). In this case, the animal path is segmented 
into discrete behavioural states using an HMM, and seg-
ments of each behaviour are jointly analysed with an SSF 
to produce state-dependent habitat selection parameters. 
This two-stage approach is convenient as it uses two 

widely-used methods, both with user-friendly software 
and literature [23, 28, 43]. However, this approach does 
not properly account for the uncertainty in behavioural 
classification, but rather treats the estimated states as 
data. Further, the state classification is obtained indepen-
dently of habitat selection. Therefore, the model cannot 
capture behaviours that are jointly defined by movement 
and habitat selection, and this may lead to bias or under-
estimated uncertainty in the habitat selection parameters.

Despite the benefits, it remains complex to analyse 
habitat selection and behaviour in a unified framework. 
Nicosia et  al. [30] proposed an integrated model that 
combines an HMM with an SSF (termed the HMM-SSF, 
also explored further in [37]). The HMM-SSF accounts for 
multiple sources of uncertainty and has greater flexibility 
than HMMs or SSFs on their own (and see the preprint 
by [34], for a  full comparison to the two-stage method). 
The SSF component of the model can be used to estimate 
both movement and habitat selection parameters, and 
thereby classifies states based on more information than a 
typical HMM (with only movement covariates). We write 
this model as a standard HMM with an SSF governing 
the observation process, and in this paper, we take advan-
tage of this formulation to implement convenient compu-
tational methods and extensions. We propose fitting the 
model using direct numerical maximisation of the likeli-
hood, based on an efficient iterative algorithm called the 
forward algorithm. We then extend the model of Nico-
sia et al. [30] by including covariates on the state transi-
tion probabilities, which allows us to estimate effects of 
external or internal factors on behavioural dynamics. We 
describe how standard state decoding (i.e., classification 
into behaviours) can be applied in this context, and show 
how this spatially-explicit formulation of an HMM can 
be used to derive space use. Lastly, we present an illus-
trative analysis of plains zebra (Equus quagga) telemetry 
data as a guide to the application and interpretation of 
the model. To further make these methods accessible to 
ecologists, we have provided all necessary R code with 
the manuscript.

The HMM-SSF model can viewed in two different ways, 
and we think that each will appeal to many researchers. It 
can be viewed as an extension of SSFs, with the addition 
of behavioural switching, which will be useful to biolo-
gists who would like to improve their habitat selection 
inferences and avoid the pitfalls highlighted by Roever 
et al. [41]. Alternatively, the HMM-SSF can be described 
as an extension of the HMMs typically used in animal 
movement ecology, with the inclusion of habitat selection 
variables (in addition to movement variables such as step 
lengths and turning angles). This spatial HMM formula-
tion will be more appropriate in cases where practition-
ers are interested in capturing animals’ space use [16].
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Methods
Step selection functions
Consider a set of bivariate animal locations with negligi-
ble measurement error {y1, y2, . . . , yT } at observed times 
t = 1, 2, . . . ,T  , which can be at any regular interval that 
is appropriate for the scale of the biological process of 
interest. An SSF assumes that the probability of an animal 
taking a given step is determined by both movement con-
straints and habitat features, such that the likelihood of a 
step ending at yt+1 given that it started as yt is

where w is a weighting function (evaluated for the step 
from yt to yt+1 ) that describes habitat selection, φ is a 
movement kernel that models the movement patterns of 
the animal, and � is the study area [14]. The denominator 
is a normalising constant, which ensures that the SSF is 
a probability density function with respect to yt+1 [35]. 
The weighting function w is specified as a function of rel-
evant covariates, and the movement kernel φ is typically 
used to model distributions of step lengths and turning 
angles. Both w and φ can take many forms, but as iden-
tified by Forester et  al. [14] and Avgar et  al. [2], it has 
advantages to specify them both as exponential models 
(discussed below). Therefore, the entire SSF (which we 
define as Eq.  1, although the nomenclature is inconsist-
ent in the literature) models the step density, based on 
both movement and habitat, and represents the relative 
attractiveness of the selected endpoint yt+1 compared to 
the surrounding habitat.

Defining both w and φ as log-linear models allows move-
ment and habitat covariates to be combined into a single 
selection function (termed an “integrated” SSF; [2]). That is, 
the SSF takes the form,

where ch(yt , yt+1) and cm(yt , yt+1) are vectors of habitat 
and movement covariates (respectively), βh and βm are 
the associated vectors of selection coefficients, and · is 
the dot product. Through factorisation, this can be sim-
plified to

where

(1)p(yt+1 | yt) =
w(yt , yt+1)φ(yt+1 | yt)
∫

z∈� w(yt , z)φ(z | yt)dz

(2)

p(yt+1 | yt) =
exp{ch(yt , yt+1) · βh} exp{cm(yt , yt+1) · βm}
∫

z∈� exp{ch(yt , z) · βh} exp{cm(yt , z) · βm}dz

(3)p(yt+1 | yt) =
exp{c(yt , yt+1) · β}

∫

z∈� exp{c(yt , z) · β}dz

(4)c(yt , yt+1) =

(

ch(yt , yt+1)

cm(yt , yt+1)

)

and β = (βh,βm) . This formulation makes the depend-
ence between movement and habitat selection clear, and 
explicitly allows interactions between the two [2]. The 
SSF parameters for habitat covariates indicate the ani-
mal’s preference (i.e., positive coefficient) or avoidance 
(i.e., negative coefficients) of environmental features. 
For a coefficient β , exp(β) is the multiplicative effect to 
the SSF of an increase of one unit in the corresponding 
covariate, all else being constant. This quantity is called 
the relative selection strength (RSS; [1]), and is com-
monly used to interpret habitat selection models. Habitat 
covariates can be any spatial feature that affects how ani-
mals move and use space. There is a wide range of poten-
tial covariates, such as foraging resources (e.g., vegetation 
type, prey density), features that affect the ease of move-
ment (e.g., forest cover, elevation), or proxies of risk (e.g., 
distance to roads, predator density).

SSFs can be parametrised in such a way that the coef-
ficients for movement covariates represent the param-
eters of step length and turning angle distributions. 
It has been shown that the SSF parameter associated 
with the cosine of the turning angle (denoted βθ ) is an 
unbiased estimator of the concentration parameter of 
a von Mises distribution [2, 9], with a mean of 0 or π 
(depending on the sign of βθ ; full details in Additional 
file 1: Appendix A). That is, βθ can be translated to the 
mean µθ and angular concentration κ of the von Mises 
distribution as,

In this formulation, the mean of the turning angle dis-
tribution can only be zero (directional persistence) or π 
(reversion in direction); in practice, this is not very limit-
ing because these are the most common scenarios found 
in animal movement data [28].

Similarly, step lengths can be modelled with various 
distributions in the exponential family, via the inclusion 
of specific covariates in the SSF. The general idea is to 
take the probability density function of yt+1 | yt that 
would arise from a given distribution of step lengths, 
and write it in the form of Eq. 3 to identify the relevant 
covariates cm . In this paper, we focus on implementing 
a gamma distribution of step lengths, but many other 
distributions could be used. For example, Forester et al. 
[14] shows how to model steps with a Weibull distri-
bution, and Avgar et al. [2] extends this to other expo-
nential family members (e.g., a half-normal distribution 
can accomodate step lengths of zero). Additional file 1: 
Appendix A, and Avgar et  al. [2] derive the suitable 
covariates, and it is shown that step length and its log 
can be used to model a gamma distribution of step 

(5)µθ =
0 if βθ ≥ 0
π if βθ < 0

, and κ = |βθ |.
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lengths. The associated coefficients, βL and βlog(L) , are 
related to the mean µL and standard deviation σL of the 
gamma distribution through

Note that the parameters of a gamma distribution are 
stricly positive, whereas the βm coefficients are typically 
estimated with no constraints. As a result, the estimated 
parameters may sometimes not correspond to a valid 
step length distribution; in such cases, it may be neces-
sary to use a different distribution, or to constrain the 
parameters during model fitting.

State‑switching SSFs
Following Nicosia et  al. [30], we formulate a state-
switching version of an SSF using HMMs. HMMs are 
doubly stochastic models, in which observation vari-
ables {Y 1,Y 2, . . . ,Y T } arise from state-dependent dis-
tributions determined at each time t ∈ {1, 2, . . . ,T } by 
the latent state variable St ∈ {1, 2, . . . ,K } [50]. The num-
ber of states K is not estimated, but is chosen based on 
expert knowledge, research questions, and model check-
ing (see [33], for guidance on the number of states). The 
estimated states are typically considered to represent 
behavioural states of the animal (e.g., encamped, forag-
ing, travelling), but it is up to the practitioner to draw 
these inferences based on the estimated state parameters 
[28, 29]. A basic, first-order HMM assumes that the hid-
den states are a Markov chain, where the state at time t is 
dependent only on the previous state at time t − 1 . This 
state process is characterised by the transition probabili-
ties, given as a K × K  matrix

where γij = Pr(St+1 = j | St = i) is the probability of 
switching from state i to state j over one time interval 
[19]. The observation model describes how the data are 
related to the hidden states. We denote the density of 
observation yt in state k as pk(yt) = p(Y t = yt | St = k).

The HMM-SSF is a special case of an HMM, where 
the distributions pk are given as SSFs with state-spe-
cific parameters. At each time t, an animal selects a step 
according to one of K SSFs, as determined by the state at 
t, where each SSF has its own set of selection coefficients 
(defining movement patterns and habitat preferences in 
that state). Therefore, the density of a step ending at yt+1 
given that it is in state k and started at yt is given by the 
following log-linear SSF,

(6)µL =
βlog(L) + 2

βL
, and σL = −

√

βlog(L) + 2

βL
.

(7)Ŵ =







γ11 · · · γ1K
...

. . .
...

γK1 · · · γKK







where c is a vector of covariates and β(k) are the associ-
ated selection coefficients in state k. The likelihood is 
also conditional on yt−1 if turning angle is included, as 
three successive locations are required for its calcula-
tion. Throughout the paper, we focus on the exponential 
SSF, as this is most common and allows flexible move-
ment-habitat interactions via the selection function (e.g., 
state-specific movement speed may depend on habitat 
features; [2]). An interaction term within the state-spe-
cific SSF can be viewed analogously to including covari-
ates on the observation parameters (e.g., step length 
mean) of a standard HMM. However, note that the state-
specific SSFs do not have to follow Eq. 8, and can take any 
valid SSF form (e.g., with flexible distributions of φ and 
w; [14]).

The HMM-SSF relaxes the usual assumption of SSF 
models that successive steps are independent, by induc-
ing dependence through the state process. That is, 
although standard SSFs capture some dependence 
between locations through movement covariates, the 
HMM-SSF explicitly models additional dependence 
between successive steps through the Markov chain. This 
can capture temporal correlation in movement and habi-
tat selection patterns. For example, high probabilities on 
the diagonal of the transition matrix might imply that a 
step with high selection for a particular resource is likely 
to be followed by another step with a similar level of 
selection (and likewise for movement correlation). There-
fore, the HMM-SSF improves inferences from using step 
selection analysis on its own, where selection is averaged 
over all steps. In the rest of this paper, we describe how 
well-known algorithms and extensions developed for 
HMMs and SSFs can be adapted to the present context.

Time‑varying transition probabilities
We extend the model of Nicosia et  al. [30] to include 
covariates on the transition probabilities. At time t, each 
transition probability is linked to covariates using a mul-
tinomial logit link

with the linear predictor for P covariates {ω(t)
1
,ω

(t)
2
, . . . ,ω

(t)
P
} 

given as

(8)

p(yt+1 | St = k , yt) =
exp{c(yt , yt+1) · β

(k)}
∫

z∈� exp{c(yt , z) · β
(k)}dz

(9)γ
(t)
ij = Pr(St+1 = j | St = i) =

exp(η
(t)
ij )

∑K
k=1 exp(η

(t)
ik )

(10)η
(t)
ij =

{

α
(ij)
0 +

∑P
p=1 α

(ij)
p ω

(t)
p if i �= j

0 otherwise.
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For each transition probability, α(ij)
0  is an intercept 

parameter, and α(ij)
p  measures the effect of the p-th covar-

iate ωp [28]. Note that transition probability covariates 
will be different to those included in the SSF. Generally, 
SSF covariates are spatial features that affect step-level 
movement decisions, whereas covariates included on the 
transition probabilities are expected to determine the 
probability of moving into each behavioural state. Among 
others, transition probability covariates could be tempo-
ral variables (e.g., time of day, season), individual-level 
attributes (e.g., body condition, sex, age), or habitat fea-
tures (Patterson et al. 2009, Langrock et al. 2012). Transi-
tion probability covariates are not “selected” or “avoided” 
by animals, but they may affect habitat selection behav-
iour, and this is captured by Eq. 10.

In some cases, there might be good reasons to include 
a covariate either in the SSF (i.e., as c(yt , yt+1) in Eq. 6), 
or on the transition probabilities (i.e., as w(t)

p  in Eq.  8), 
which would lead to different interpretations. For exam-
ple, a food resource could be perceived as triggering an 
animal’s transition into a foraging behavioural state, or 
the foraging behaviour could be defined as selection for 
that food resource. Although the covariate could in prin-
ciple be included in both model components, this might 
cause estimation problems if the two effects cannot be 
adequately separated. We suggest using biological knowl-
edge to decide where in the model to include the covari-
ate, and note that this will likely affect the interpretation 
of the states.

Recently, Prima et al. [37] also modelled the transition 
probability of an HMM-SSF as a function of covariates, 
but did so in a two-stage approach. They defined a binary 
response based on the probability that the animal tran-
sitioned at each time step, which was modelled with a 
binomial generalised linear model with an environmen-
tal predictor. This two-stage approach is not uncommon 
in HMM analyses (e.g., [6]), but it can be problematic 
because it does not account for the uncertainty in state 
classification and it does not allow the state categorisa-
tion to depend on environmental covariates. Therefore, 
direct inclusion of covariates on the transition prob-
abilities is preferable, and relatively straightforward using 
standard HMM approaches [19, 21, 31].

Implementation
There are two main components to the implementation 
of the HMM-SSF: (i) approximation of the SSF likelihood, 
and (ii) maximum likelihood estimation of the HMM-
SSF parameters via the forward algorithm. In the next 
two sections, we compute approximate state-specific SSF 
likelihoods for all steps based on numerical integration, 

and these are used as the state-dependent densities in the 
HMM likelihood. All implementation code is accessible 
in the Additional file 1.

Integration in the SSF likelihood
In practice, the integral in the denominator of Eq.  8 is 
analytically intractable [39]. However, we can use Monte 
Carlo integration (i.e., evaluating the function at random 
points) to get an approximation of the likelihood [17, 
35]. In SSFs, this is often referred to as a “case–control” 
design, in which random locations (i.e., the controls) 
are matched spatially and temporally to each observed 
location (i.e., the case) to approximate each step like-
lihood. For each time step t, we sample N control loca-
tions {z1t , z2t , . . . , zNt} and the state-dependent density is 
approximated as,

with z0t = yt+1 . The term 1/(N + 1) in the denominator 
is often omitted when it is constant; here, we include it 
explicitly as the number of valid control locations may 
vary between steps due to missing covariate data. In gen-
eral, the choice of N will impact how well the function 
is approximated, where as N → ∞ the approximation 
approaches the true likelihood.

The method to generate control locations in an SSF is 
an important choice, with potential implications on the 
precision of the estimation. Equation  11 requires that 
controls be sampled uniformly over � . In practice, it is 
more common to simulate control locations on a disc 
that is sufficiently large to encompass the vast major-
ity of the probability mass, as increasing radius size 
much beyond the maximum observed step does little 
to improve the estimation [18]. However, uniform sam-
pling can require a large number of random locations 
to achieve low error, as animals are generally unlikely to 
take long step lengths and many of the sample controls 
will have a likelihood close to zero. One way to increase 
computational efficiency and the precision of the approx-
imation is to preferentially sample where the likelihood 
is expected to be highest, using importance sampling. If 
the random locations zit are generated from a distribu-
tion with probability density function h (which typically 
also depends on the previous observed location yt ), we 
can write the approximate likelihood as,

(11)

p̃(yt+1 | St = k , yt) =
exp{c(yt , yt+1) · β

(k)}

1
N+1

∑N
i=0 exp{c(yt , zit) · β

(k)}

(12)

p̃(yt+1 | St = k , yt) =
exp{c(yt , yt+1) · β

(k)}

1
N+1

∑N
i=0 exp{c(yt , zit) · β

(k)}/h(yt , zit)
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where z0t = yt+1 . For example, random locations could 
be generated based on gamma-distributed distances from 
yt , to take advantage of the animal’s tendency to favour 
short steps, and h would be the corresponding two-
dimensional spatial distribution (Additional file 1: Equa-
tion 2 of Appendix A.1).

Direct likelihood maximisation via the forward algorithm
We evaluate the likelihood of the HMM-SSF using a 
recursive algorithm (i.e., the forward algorithm), which 
efficiently accounts for all possible state sequences based 
on the dependence structure of the model [19, 28]. The 
model likelihood can be written as

where δ = (Pr(S1 = 1), . . . , Pr(S1 = K )) is the initial dis-
tribution of the state process, P(yt , yt+1) is a diagonal 
matrix with k-th element given as the approximate tran-
sition density p̃(yt+1 | St = k , yt) (obtained via Monte 
Carlo integration or importance sampling; Eq. 11 or 12), 
β is a vector of the SSF parameters, α is a vector of the 
transition probability parameters, and 1′ is a column vec-
tor of ones. If there are missing observations, we account 
for these by defining the corresponding P as the identity 
matrix [19]. The initial distribution δ is often susceptible 
to identifiability issues and, to avoid numerical problems 
in the estimation, we fix it to be the stationary distribu-
tion of the transition probability matrix at time t = 1 [28]. 
The Markov chain is not stationary if there are covariates 
included on the transition probabilities but, even in that 
case, we assume that the stationary distribution of Ŵ(1) 
is a good heuristic choice for the initial distribution. To 
prevent underflow, we implement the forward algorithm 
for the “scaled” negative log-likelihood of the HMM-SSF, 
following Zucchini et al. [50]. In the case of multiple indi-
viduals in the same data set, we assume that all individu-
als share the same parameters (“complete pooling”; [19, 
28]).

To obtain estimates of all parameters, the negative 
log-likelihood of the model can then be minimised with 
respect to α and β using a numerical optimiser, and we 
use optim in R. This approach stands in contrast with 
the expectation-maximisation (EM) algorithm proposed 
by Nicosia et al. [30] to fit the HMM-SSF. Although the 
two methods will generally converge to the same esti-
mates, it has been argued that direct likelihood maximi-
sation is often faster and easier to implement for HMMs 
[21, 22, 50]. Parameter standard errors can then be com-
puted as the square root of the diagonal elements of the 
inverse Hessian matrix [50]. For covariate-dependent 

(13)L(y1, . . . , yT | β ,α) = δP(y1, y2)Ŵ
(2)P(y2, y3) · · ·Ŵ

(T−1)P(yT−1, yT )1
′

transition probabilities, confidence intervals are obtained 
using the delta method [49]. Reliable optimization in 
HMMs can be sensitive to choice of initial parameter 
values [28]. A common solution is to generate many sets 
of initial values, use each to fit the model, and finally 
keep the solution with the lowest negative log-likelihood 
(implemented in Sect.  2.4). Another approach could be 
to use the two-stage approach (HMM then SSF, e.g., [32, 
41]) to find reasonable starting values, and this could be 
particularly important for complex model formulations 
or to aid in variable selection. However, this prelimi-
nary model exploration would assume that the states are 
largely defined by movement, and although this is likely 
in many cases, it should be used cautiously. We used 

simulations to check that our model fitting procedure can 
recover all model parameters when the true data generat-
ing process is known. Full details are given in Additional 
file 1: Appendix B.

State decoding
In many situations, it is of interest to estimate the state 
process St , a procedure called state decoding. We expect 
that state decoding will be relevant to most HMM-SSF 
analyses as a method to identify behavioural phases 
from movement data. The two main approaches to tackle 
this problem for HMMs are global and local decoding 
[50]. Global decoding consists of identifying the state 
sequence that is most likely to have given rise to the 
observed data, and can be computed using an efficient 
iterative algorithm (“Viterbi algorithm”; [50]). The out-
put is a sequence of state indices, which can be used to 
subset or spatially visualise the locations by state. Alter-
natively, local decoding provides probabilities of occu-
pying each state at each observation time (i.e., the state 
probabilities), which is often more informative about the 
uncertainty in state classification (where values close to 
0.5 indicates high uncertainty in the state process). Here, 
we suggest computing the local state probabilities with 
the forward-backward algorithm [50]. Note that this is 
equivalent to the approach described by Nicosia et  al. 
[30] to obtain the state probabilities as a by-product 
of their expectation-maximisation algorithm. A state 
sequence can be obtained from local state probabilities, 
by taking the state with highest probability at each time 
step. Although this is usually very similar to the Viterbi 
sequence, it is generally not identical, because they solve 
different optimisation problems (i.e., global decoding 
optimises over the full state sequence, rather than at each 
time step; [50]).
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Simulating space use
A proposed application of SSFs is to simulate from the 
fitted model to estimate the utilisation distribution of 
the animal [42], and a similar method can be used for the 
HMM-SSF. This can give information about areas that 
are important for different behaviours, which is typically 
not possible with standard HMM approaches [16]. There 
are several ways to simulate utilisation distributions, 
which range from generating a single long track (i.e., the 
steady-state distribution) or several shorter tracks (i.e., 
a transient distribution; [42]). In this paper, we do not 
intend to provide guidelines for best simulation prac-
tice, but we present an algorithm to simulate data from 
the HMM-SSF (Additional file  1: Appendix B), which 
can then be used to estimate utilisation distributions. 
The general steps of the algorithm are to first simulate a 
state sequence based on the estimated transition prob-
abilities, and then for each time step, simulate the next 
location from the SSF corresponding to the current state. 
In practice, this is done by proposing many possible next 
locations (within a disc), and selecting with probabil-
ity proportional to their state-specific SSF (Eq.  9). Note 
that the number of proposed end points depends on the 
size of the disc, and it should be high enough to ensure 
good sampling coverage, so that bias is not introduced 
through the simulation. As implemented in Forester 
et al. [14], it would also be possible to simulate endpoints 
from an importance distribution h, which may be more 
computationally efficient. This would require a correc-
tion step (i.e., to re-weight the endpoints by their impor-
tance density) within the simulation procedure. In either 
case, the utilisation distribution can then be estimated 
using a method such as kernel density estimation on the 
simulated locations. This can be either an overall distri-
bution based on all locations, or a behaviour-specific dis-
tribution if only locations in a given state are kept. The 
simulations should be designed to best capture the study 
system, and we provide one example in the next section, 
with more specific parameters and settings.

Illustrative example
We provide an example to demonstrate the workflow 
for implementing and interpreting the HMM-SSF. We 
analysed a track of plains zebra locations collected at 
a 30-minute resolution from January - April 2014 in 
Hwange National Park in Zimbabwe [27]. The time-
series consisted of 7246 observations, with 125 missing 
locations. We fitted a two-state HMM-SSF, where the 
SSF component captured selection for a combination of 
habitat and movement covariates, and the HMM compo-
nent captured behaviour change as a function of time of 
day. Two states are commonly used in movement analy-
ses, which typically correspond to slow (i.e., encamped) 

and fast (i.e., exploratory) behavioural states (which have 
been previously identified in zebras; [37]). We included a 
categorical covariate for vegetation type, with four levels: 
grassland (reference category), bushed grassland, bush-
land, and woodland (Fig.  1). We modelled step lengths 
with a gamma distribution (i.e., with step and its log as 
covariates), and turning angle with a von Mises distribu-
tion (i.e., with the cosine of turning angle as a covariate). 
For transition probabilities, we included time of day τ as a 
cyclic covariate (following [48]), such that the linear pre-
dictor in Eq. 10 becomes

for i, j ∈ {1, 2} . All fitting was done with the implementa-
tion methods described in Sect.  2.3. To approximate the 
integral (via importance sampling), we generated N = 25 
control locations for each case location. Control step 
lengths were generated as random draws from a gamma 
distribution with the mean and standard deviation of the 
observed data, and turning angles were generated as ran-
dom draws from a uniform distribution. To ensure conver-
gence of the estimation procedure, we fitted the model with 
several sets of initial values, spanning different patterns of 
selection, and chose the model with the lowest negative log 
likelihood. Lastly, we derived the relative selection strength 
(RSS) of grassland (i.e., reference category) compared to 
habitat type j as 1/ exp(βj) , where βj is the selection coef-
ficient for habitat type j. The RSS for grassland can be inter-
preted as how much more likely a zebra is to take a step in 
grassland, compared to the other habitat type.

We determined the most likely sequence of states using 
the Viterbi algorithm, and the state probabilities at each 
time step using the forward-backward algorithm [28, 50]. 
In addition to the transition probabilities, we derived 

(14)
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Michelot et al. [27]
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stationary state probabilities as functions of the time of 
day. For a given time of day, these provide some indication 
of the probability of being in each state, which is often 
useful for interpretation [31]. In practice, they are derived 
as the stationary distribution of the transition probability 
matrix for each time of day. Based on the fitted model, 
we also simulated a utilisation distribution. We gener-
ated five long tracks of 100,000 locations at a 30-minute 
interval. First, the state sequence was simulated based on 
the time of day, which was initialised as the first observed 
time. Then, each location was selected (with probabili-
ties given by their SSF values) from a possible 10,000 
endpoints on a disc with the radius r = max(L)× 1.1 , 
where max(L) is the maximum observed step length. We 
chose to run five tracks (rather than one long track), so 
that we could run each simulation in parallel. The start-
ing location of each track was chosen randomly from the 
observed data, and we removed the first 1000 locations 
of each track to reduce the effect of this choice. We used 
a reflective boundary condition, in which each simulated 
track was constrained to stay within the study area by fix-
ing the SSF of any point outside the boundaries to zero. 
We then estimated the utilisation distribution by apply-
ing kernel density estimation (bandwidth = 2) to the sim-
ulated locations.

Results
The simulation results (in Additional file  1: Appendix B) 
suggested that all components of the model were generally 
estimated well, including step length, turning angle, and 
habitat selection parameters, as well as transition prob-
abilities as functions of a covariate. However, one habitat 
selection parameter was estimated poorly, which indicated 
that bias can arise when the spatial scale of covariate auto-
correlation is much larger than the scale of movement.

In the zebra analysis, we identified two states with dis-
tinct movement and habitat selection patterns. Table  1 
provides a full list of selection parameter estimates with 
uncertainty, but here, we discuss these in terms of the 
parameters of the state-specific step length distribution 
(gamma with mean µ(k)

L  and standard deviation σ (k) ; both 
in km) and von Mises distribution (angular concentration 
κ(k) and mean µ(k)

θ ∈ {0,π} ). State 1 was identified as a 
slow state ( µ(1)

L = 0.06 , σ (1) = 0.07 ) with no directional 
persistence ( µ(1)

θ = π , κ(1) = 0.01 ). State 2 was character-
ised by faster movement ( µ(2)

L = 0.43 , σ (2) = 0.37 ) with 
higher directional persistence ( µ(2)

θ = 0 , κ(1) = 1.46 ) 
(Fig.  2a, b). We consider these to be encamped and 
exploratory behaviours, respectively [29].

Table 1  Estimated parameters from the HMM-SSF fitted to zebra telemetry data

Note, these are the untransformed β estimates and do not directly represent the mean and variance of the assumed gamma distribution; the turning angle (given by 
θ ) parameter represents the angular concentration of the von Mises distribution. L is the step length (km) and τ is the hour of the day.

State/transition Covariate Estimate (95% CI)

Movement (SSF) Encamped Step length L β
(1)
1

−13.6 (−14.8, −12.3)

log(L) β
(1)
2

−1.18 (−1.21, −1.15)

cos(θ) β
(1)
3

−0.01 (−0.07, 0.04)

Exploratory Step length L β
(2)
1

−3.11 (−3.36, −2.86)

log(L) β
(2)
2

−0.65 (−0.78, −0.53)

cos(θ) β
(2)
3

1.46 (1.33, 1.59)

Habitat (SSF) Encamped Bushed grassland β
(1)
4

0.21 (0.03, 0.39)

Bushland β
(1)
5

−0.19 (−0.46, 0.08)

Woodland β
(1)
6

−0.56 (−1.08, −0.05)

Exploratory Bushed grassland β
(2)
4

−1.00 (−1.16, −0.83)

Bushland β
(2)
5

−2.19 (−2.42, −1.96)

Woodland β
(2)
6

−1.96 (−2.26, −1.66)

Transition probabilities (HMM) Encamped − exploratory Intercept α
(1,2)
0

−1.83 (−1.98, −1.69)

cos
(

2πτ
24

)

α
(1,2)
1

0.03 (−0.14, 0.21)

sin
(

2πτ
24

)

α
(1,2)
2

0.81 (0.63, 0.99)

Exploratory − encamped Intercept α
(2,1)
0

−1.26 (−1.40, −1.12)

cos
(

2πτ
24

)

α
(2,1)
1

0.15 (−0.02, 0.33)

sin
(

2πτ
24

)

α
(2,1)
2

0.14 (−0.04, 0.32)
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Habitat selection patterns varied between the two 
states, although both showed generally high selection for 
the habitat types with higher grassland cover (Fig.  2c). 
In the encamped state, the zebra selected for grassland 
over all habitat types, except for bushed grassland, which 
had a positive selection coefficient. Compared to bushed 
grassland, the grassland (i.e., reference) RSS was 0.8 (i.e., 
the zebra was 0.8 times as likely to select grassland than 
bushed grassland). When encamped, the zebra was more 
likely to choose grassland over bushland and woodland: 
the RSS was 1.2 compared to bushland, and 1.8 compared 
to woodland. Only bushland coefficient had a 95% CI that 
overlapped zero, but the uncertainty was generally high 
and the other CIs were also close to overlapping zero 
(Fig. 2c).

Habitat selection was stronger in the exploratory state, 
where there was clear avoidance of all habitat types 
relative to grassland and no CIs overlapped zero. The 

grassland RSS was 2.7, 8.9, and 7.1 for bushed grassland, 
bushland, and woodland (respectively). Positive selec-
tion for grassland is consistent with previous results from 
Michelot et al. [27], and may represent selection for their 
main foraging resources. However, neither state seems to 
fully capture foraging behaviour in this example, which 
may explain the selection for grassland or bushed grass-
land in both states. This may suggest that a 3-state model 
might be better able to distinguish between biological 
behaviours in this example [33].

We found an effect of time of day on the transition 
probabilities and on the stationary state probabilities 
(Fig. 3). There was an increase in the probability of tran-
sitioning into exploratory in the morning (highest at 
approximately 07:00), but no strong effect on the prob-
ability of transitioning from exploratory to encamped 
(Fig.  3a). The stationary probability of being in the 
encamped state was highest between 15:00 and 23:00 

Fig. 2  Movement and habitat selection estimates in zebra analysis. Estimated a step length and b turning angle distributions, weighted by 
the number of observations predicted to be in each state. The histograms show the empirical distributions of the data. The step length (x-axis) 
was truncated to the 99th percentile for visualisation purposes. c Habitat type parameter estimates (grassland is the reference category, i.e., 
corresponding to zero)
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(peak at roughly 19:00), and lowest between 03:00 and 
11:00 (trough at roughly 07:00; Fig.  3b). This suggests 
that this zebra was less active in the late afternoon and 
evening, and more active in the morning. Maps of the 

locations classified in each state by the Viterbi algorithm 
confirm that the encamped state tended to be localised 
and clustered, where the exploratory state was more spa-
tially diffuse (Fig.  4a). The local state probabilities were 

encamped exploratory
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in agreement with the Viterbi sequence, and the highest 
state probability was larger than 0.75 for about 85% of 
time steps (Fig. 4b).

We showed that it is possible to estimate large-scale 
space use from the HMM-SSF, via simulation (Fig.  5). 
The SSF parameter indicated that movement was driven 
by selection for grassland and bushed grassland, and 
this was clearly captured in the simulated utilisation 
distribution.

Discussion
In this paper, we improved the flexibility and applied util-
ity of the HMM-SSF, building on recent works by Nicosia 
et al. [30] and Prima et al. [37]. Depending on the aims 
and experience of the practitioner, the HMM-SSF can 
be viewed as a standard HMM with a habitat selection 
observation process, or as an SSF that allows for state-
switching dynamics. Below, we further describe how the 
HMM-SSF extends these popular modelling frameworks, 
and discuss the associated implementation challenges 
and potential extensions.

Combining HMMs and SSFs
Viewing this model as a standard HMM opens the way 
for a wide range of computational tools and extensions, 
including direct optimisation of the likelihood with the 
forward algorithm, local and global decoding of the state 
process, and covariate effects on the transition prob-
abilities. Including additional observation variables in 
HMMs has been advocated as a method to identify bio-
logically-relevant behavioural states [24], but most HMM 
analyses still focus solely on movement. In the HMM-
SSF, the animals’ behaviour within each state is defined 
by both movement and habitat selection characteristics. 
This approach will be particularly effective when habitat 
variables are closely linked to behaviour (e.g., a foraging 
resource will help identify foraging behaviour), and when 
state transitions depend on temporal or individual-spe-
cific factors (e.g., behaviours occur seasonally, or vary by 
sex, age, etc.).

The HMM-SSF can also be viewed as an improve-
ment over SSFs, via the inclusion of multiple behavioural 
states. The state-specific SSFs retain the flexibility of 
other SSF approaches, and can incorporate movement-
habitat interactions and temporal effects [2, 40], and the 
parameter interpretation remains the same (e.g., relative 
selection strength, following [1]). The ability to separate 
behavioural states better accounts for temporal autocor-
relation in the data, and can reveal nuanced patterns of 
habitat selection that would disappear in a standard SSF 
(e.g., an animal alternating between selection and avoid-
ance of some spatial feature). Deriving space use from 
SSFs is a commonly desired application, as large-scale 

patterns of interest arise from small-scale movement 
decisions [36, 42]. Space use from the HMM-SSF consid-
ers non-homogeneous selection parameters, and should 
be an improvement on single-state SSFs. Although we 
focused on deriving an overall distribution, there are 
likely to be many cases where the state-specific distribu-
tions are of interest (i.e., when resource selection varies 
strongly between states), and these are straightforward to 
derive from the simulated data. We intend our simulation 
to be a simple illustration, and more refined stochastic 
and analytical methods could be explored for the HMM-
SSF (e.g., methods to upscale from SSFs are reviewed in 
[36]).

Avgar et al. [2] showed how the exponential form of the 
SSF can be beneficial when estimating movement and 
habitat selection simultaneously (i.e., to include move-
ment interactions and implement the SSF as conditional 
logisitic regression). However, this approach reduces 
flexibility in the possible movement distributions, as they 
must be from the exponential family and the angular 
mean of the von Mises distribution is constrained to be 
zero or π . There may be scenarios in which these assump-
tions are not realistic, and other distributions would be 
more suitable. For example, turning angles are some-
times better modelled by the wrapped Cauchy distribu-
tion (which cannot be written in the exponential form; [8, 
28]), possibly with multimodality [4]. The HMM-SSF can 
be formulated to accommodate a wide range of move-
ment distributions, by specifying the movement kernel φ 
of the SSF as any parametric distribution of step length 
and turning angles [14], or by including movement vari-
ables as separate data streams in the HMM. However, 
these approaches may preclude movement-habitat inter-
actions, and the latter assumes that movement variables 
are independent of the SSF variables given the state 
(which may bias SSF parameters; [14]). Therefore, these 
drawbacks need to be weighed against the benefits of 
more flexible movement modelling in each study-specific 
context.

Implementation challenges
The model we presented inherits some of the limitations 
of SSFs and HMMs, such as scale dependence and imple-
mentation challenges. The HMM-SSF is formulated in 
discrete time, where the estimated parameters are scale-
dependent and only describe movement, behaviour, and 
habitat selection at the time interval of the observed 
movement step (a known problem in movement ecol-
ogy: [13, 26]). Additionally, if the SSF is implemented 
with Monte Carlo integration, it is important to consider 
how the sampling scheme may affect the precision of 
the estimation. To improve the approximation, we sug-
gest using importance sampling based on observed step 
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length distribution. State-specific Monte Carlo sampling 
may be more suitable in cases where the states have 
very different movement characteristics, but this would 
likely be very computationally intensive. Future work 
could explore how the inferences and performance of the 
HMM-SSF are affected by the chosen method of integra-
tion and scale of observations.

The flexibility of the HMM-SSF requires a large num-
ber of parameters. Therefore, inference may be more 
numerically unstable and computationally costly than 
standard SSFs or two-stage approaches (e.g., [2, 32]). In 
particular, the HMM-SSF cannot be rewritten as a spe-
cial case of conditional logistic regression (CLR), and 
model fitting requires implementing a custom likelihood 
function based on the forward algorithm (or integrating 
a weighted CLR routine within the EM algorithm, as in 
[30]). This increases computational cost compared to fast 
CLR software typically used for step selection analysis 
(e.g., clogit in the package survival; [45]). Further, 
although direct numerical likelihood optimisation is gen-
eral to a broad range of model formulations, numerical 
stability might depend on model and landscape complex-
ity. Models with many states, spatially autocorrelated 
habitats, or complex covariate interactions may be more 
difficult to fit. In such cases, practitioners may consider 
simulating data from the fitted model to assess numeri-
cal stability across multiple model fits. Simulations could 
also be used for model checking, where summary metrics 
of simulated data could be compared to the real data in 
an approach similar to those proposed for SSFs [12] and 
HMMs [25, 29]. Developing proper model checking tech-
niques for the HMM-SSF will be important, and we note 
that a large sample of locations may be needed to ensure 
enough information is available from the data to reliably 
identify latent behavioural states.

Conclusion
As data sets become larger and more varied with techno-
logical innovation, we expect the utility of the HMM-SSF 
to keep increasing. There are many possible extensions 
to this framework to study complex ecological phenom-
ena, often with minimal changes to the implementation. 
The flexible HMM framework could be used to incorpo-
rate extensions, such as higher-order dependence (i.e., 
memory dynamics; [19]), feedback mechanisms [19, 20], 
and additional data streams (such as physiological or 
accelerometer data; [21]). Additional information about 
the state or observation process could be incorporated 
by formulating the model as a semi-supervised HMM 
(i.e., where states are known a priori; [21]). This frame-
work could also be used to add a behavioural compo-
nent in more general SSF formulations, including recent 
work on memory [46] and movement energetics [10, 18]. 

Therefore, a state-switching habitat selection model has 
many purposes in ecological research, while remaining 
accessible and interpretable.
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