

Editors

Siu-cheung KONG

The Education University of Hong Kong, Hong Kong

Diana ANDONE

Politehnica University of Timisoara, Romania

Gautam BISWAS

Vanderbilt University, The United States

Tom CRICK

Swansea University, The United Kingdom

Heinz Ulrich HOPPE

University of Duisburg-Essen, Germany

Ting-chia HSU

National Taiwan Normal University, Taiwan

Ronghuai HUANG

Beijing Normal University, People’s Republic of China

Robert Kwok-yiu LI

City University of Hong Kong, Hong Kong

Chee-kit LOOI

 Nanyang Technological University, Singapore

Marcelo MILRAD

Linnaeus University, Sweden

Josh SHELDON

Massachusetts Institute of Technology, The United States

Ju-ling SHIH

National University of Tainan, Taiwan

Kuen-fung SIN

The Education University of Hong Kong, Hong Kong

Mike TISSENBAUM

Massachusetts Institute of Technology, The United States

Jan VAHRENHOLD

Westfälische Wilhelms-Universität Münster, Germany

Copyright 2018 The Hong Kong Jockey Club

All rights reserved.

ISBN: 978-988-77034-5-7

ISSN: 2664-035X (CD-ROM) / 2664-5661 (online)

Publisher

The Education University of Hong Kong

Preface

International Conference on Computational Thinking Education 2018 (CTE2018) is the second international conference

organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created

by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.

CoolThink@JC strives to inspire students to apply digital creativity in their daily lives and prepare them to tackle future

challenges in any fields. Computational thinking (CT) is considered as an indispensable capability to empower students to

move beyond mere technology consumption and into problem-solving, creation and innovation. This 4-year initiative will

educate over 26,000 upper primary students at 32 pilot schools on computational thinking through coding education.

Through intensive professional training, the Initiative will develop teaching capacity of over 100 local teachers and help

them master coding and computational thinking pedagogy. Over time, the project team targets to make greater impact by

sharing insights and curricular materials beyond the pilot schools.

This year, the event is emerged with a 4-day Coding Fair to further outreach parents and students. The first two days are

open for schools while the last two days are open for public. Through a series of coding and STEM workshops offered by

32 pilot schools and STEM partners, students aged 4-12 will go through an exciting journey of coding and computational

thinking enlightenment. Teachers and students of the pilot schools will also get a chance to showcase their learning

outcomes through booth exhibition. As support from parents are always the most important factor in determining the

success of education, parent seminars with panel discussions are thus included at the Coding Fair to inspire parents to adapt

and master computational thinking as a new bridge for parent-child communication. Over 6500 enthusiastic parents and

students are going to join us at the Fair.

 “Computational Thinking Education” is the main theme of CTE2018 which aims to keep abreast of the latest development

of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT

development in school education. CTE2018 gathers educators and researchers around the world to share implementation

practices and disseminate research findings on the systematical teaching of computational thinking and coding across

different educational settings. There are 15 sub-themes under CTE2018, namely:

Computational Thinking

Computational Thinking and Unplugged Activities in K-12

Computational Thinking and Coding Education in K-12

Computational Thinking and Subject Learning and Teaching in K-12

Computational Thinking and IoT

Computational Thinking Development in Higher Education

Computational Thinking and STEM/STEAM Education

Computational Thinking and Non-formal Learning

Computational Thinking and Psychological Studies

Computational Thinking and Special Education Needs

Computational Thinking and Evaluation

Computational Thinking and Early Childhood Development

Computational Thinking in Educational Policy

Computational Thinking and Teacher Development

General Submission to Computational Thinking Education

The conference received a total of 60 papers (28 full papers, 22 short papers and 10 poster papers) by authors from 16

countries (see Table 1).

Table 1: Distribution of paper submissions for CTE2018

Country/Region No. of submissions Country/Region No. of submissions

China 10 Malaysia 2

Taiwan 10 Australia 1

The United States 8 Canada 1

Germany 6 India 1

South Korea 6 Norway 1

Hong Kong 5 Spain 1

Singapore 5 Turkey 1

Croatia 2 Total 60

Each paper with author identification anonymous was reviewed by three International Program Committee (IPC) members.

Related sub-theme Chairs conducted meta-reviews and made recommendation on the acceptance of papers based on IPC

members’ reviews. With the comprehensive review process, 44 accepted papers are presented (12 full papers, 23 short

papers and 9 poster papers) (see Table 2) at the conference.

Table 2: Review results of submission acceptance for CTE2018

The conference comprises keynote, invited speeches and forum by internationally renowned scholars; seminar, workshop,

as well as academic paper and poster presentations.

Keynote and Invited Speeches

There are three keynote and two invited speeches at CTE2018:

Keynote Speeches

1. “Beyond Computational Thinking: Coding, Designing, and Making in the 21st Century” by Prof. Yasmin B. KAFAI,

University of Pennsylvania, The United States

2. “The Power behind the Power Point®” by Prof. Judith GAL-EZER, The Open University of Israel, Israel

3. “What Lies Beneath? Towards the Cognitive Underpinnings of Computational Thinking” by Prof. Judy ROBERTSON,

University of Edinburgh, The United Kingdom

Sub-theme Full paper Short paper Poster paper Total

CT 2 2

CT and Unplugged Activities in K-12 1 1 2

CT and Coding Education in K-12 2 3 2 7

CT and Subject Learning and Teaching in K-12 1 1 1 3

CT and IoT 1 1

CT Development in Higher Education 2 2

CT and STEM/STEAM Education 2 4 1 7

CT and Special Education Needs 1 1 2

CT and Evaluation 1 5 6

CT and Teacher Development 2 6 2 10

General Submission to CT Education 1 1 2

TOTAL 12 23 9 44

Invited Speeches

1. “Computational Thinking for Social Change” by Mr. Nawneet RANJAN, Dharavi Diary, India

2. “Computational Thinking Goes to Science and Math Class: The Case for STEM+C” by Ms. Linda SHEAR, SRI

International, The United States

Computational Thinking and Future Education Forum

Pioneers and experienced frontline practitioners in local and international education sectors formed a panel to exchange

views and ideas on computational thinking and future education.

Panelists:

Principal Tsz-wing CHU, Baptist Rainbow Primary School, Hong Kong

Prof. Heinz Ulrich HOPPE, University of Duisburg-Essen, Germany

Prof. Chee-kit LOOI, Nanyang Technological University, Singapore

Moderator:

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong

CoolThink@JC Senior Primary Coding Curriculum Dissemination Seminar

To make greater impact by sharing insights and curricular materials to more schools in Hong Kong, CoolThink@JC sheds

light on the curriculum, how schools can adopt it and what supports they will get. Pilot schools teachers also share their

experience in this seminar.

Speakers:

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong

Mr. Tony LAM, Marymount Primary School, Hong Kong

Mr. Lee LAU, Baptist Rainbow Primary School, Hong Kong

Mr. Andy LI, Po Leung Kuk Dr. Jimmy Wong Chi-Ho (Tin Sum Valley) Primary School, Hong Kong

Workshop on “Interact with real world: MIT App Inventor and IoT (Internet of Things)”

Massachusetts Institute of Technology conducts a workshop on App Inventor and IoT (Internet of Things), in which the

instructor guides participants to design their smart phone app by using MIT App Inventor.

Instructor:

Mr. David Chi-hung TSENG, Massachusetts Institute of Technology, The United States

Academic Paper and Poster Presentations

There are 10 sessions of academic paper presentation and an academic poster presentation with 44 papers (12 full papers,

23 short papers, 9 poster papers) in the conference. Worldwide scholars present and exchange the latest research ideas and

findings highlighting the importance and pathways of computational thinking education covering K-12 education, special

education, teacher development and STEM/STEAM education etc.

On behalf of the Conference Organizing Committee, we would like to express our gratitude towards all speakers, panelists,

as well as paper presenters for their contribution to the success and smooth operation of CTE2018.

We sincerely hope everyone would enjoy and get inspired from CTE2018.

On Behalf of CoolThink@JC

Siu-cheung KONG

The Education University of Hong Kong, Hong Kong

Conference Chair of CTE2018

Tsz-wing CHU

Baptist Rainbow Primary School, CoolThink@JC Resource School, Hong Kong

Conference Chair of CTE2018

Table of Contents
COMPUTATIONAL THINKING ... 1

Full Paper

A Complementary View for Better Understanding the Term Computational Thinking

Marc JANSEN, Dan KOHEN-VACS, Nuno OTERO, Marcelo MILRAD .. 2

The Use of Computational Thinking Concepts in Early Primary School

Ivica BOTICKI, Danica PIVALICA, Peter SEOW .. 8

COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12 14

Short Paper

不插电的计算思维教学活动在高中课堂教学中的应用 ——以《二进制卡牌》课程为例

杨冰清，张进宝 ... 15

Poster

Design A Computational Thinking Board Game Based on Programming Elements

Sheng-yi WU, Jia-cen FANG, Shu-mei LIAN ... 19

COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12 .. 21

Full Paper

Analysis of Learner's Self-efficacy using Coding Education Support System for Understanding Complex

Problem-Solving Steps

In-seong JEON, Hyeon-jeong JEONG, Ki-sang SONG ... 22

Computational Concepts, Practices, and Collaboration in High School Students’ Debugging Electronic

Textile Projects

Gayithri JAYATHIRTHA, Deborah A. FIELDS, Yasmin B. KAFAI ... 27

Short Paper

A School-wide Approach to Infusing Coding in the Curriculum

Sirajutheen Shahul HAMEED, Chee-wah LOW, Poh-tin LEE, Nur Illya Nafiza MOHAMED ,Wuay-boon

NG, Peter SEOW, Bimlesh WADHWA ... 33

Learning to Code—Does It Help Students to Improve Their Thinking Skills?

Ronny SCHERER, Fazilat SIDDIQ, Bárbara SÁ NCHEZ VIVEROS ... 37

To Improve the Computational Thinking of Elementary School Students by Scaffolding

Chien-i LEE, Sheng-chuan CHUANG, Shu-min WU .. 41

Poster

A Curriculum and Contents of Programming Education for Computational Thinking

Hyojin BYUN, Miyoung RYU, Sungwan HAN ... 45

Comparing with Scratch and Python in CT Concepts

Tae-ryeong KIM, Sun-gwan HAN .. 47

COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12 49

Full Paper

Students’ Attitude Changes through Integrating Computational Thinking into English Dialogue Learning

Xiaojing WENG .. 50

Short Paper

基于 DBR的高中生计算思维的培养——以信息技术课程为例

苏幼园，马秀麟，毛荷，王翠霞 ... 56

Poster

Promoting Computational Thinking and Collaborative Skills in Primary Robotics Classes

Hyungshin CHOI, Jeongmin LEE .. 60

COMPUTATIONAL THINKING AND IOT ... 62

Short Paper

A Design-based Approach to Implementing a Computational Thinking Curriculum with App Inventor and

the Internet of Things

Chi-hung TSENG, Mike TISSENBAUM, Wen-hsuan KUAN, Feng-chih HSU, Ching-chang WONG ... 63

COMPUTATIONAL THINKING DEVELOPMENT IN HIGHER EDUCATION 67

Short Paper

The Use of Computational Thinking to Advance Learning in the Pre-university Subject of Digital Literacies

Ildiko VOLCZ ... 68

應用 Scratch 之運算思維教材設計與教學成效分析

楊智為，李政軒，郭伯臣，謝承晏 ... 72

COMPUTATIONAL THINKING AND STEM/STEAM EDUCATION .. 76

Full Paper

A DSML for a Robotics Environment to Support Synergistic Learning of CT and Geometry

Nicole HUTCHINS, Timothy DARRAH, Hamid ZARE, Gautam BISWAS .. 77

Introducing Computational Thinking Across the Curriculum with Virtual Reality

Merijke COENRAAD, David WEINTROP ... 83

Short Paper

A Development of a SW-STEAM Education Program using the Flipped Learning

Hae-nam SONG, Sun-gwan HAN .. 89

Development of BIC-Science Module: An Interdisciplinary Approach of Computer Science and Primary

Science Education

Tracy MENSAN, Kamisah OSMAN .. 93

Thinking in Parts and Wholes: Part-Whole-Thinking as an Essential Computational Thinking Skill in

Computer Science Education

Nils PANCRATZ, Ira DIETHELM .. 97

創客奇航-遊戲任務導向之運算思維活動設計初探

黃淑賢，陳虹如，葉芯妤，蔡一帆，施如齡 ... 101

Poster

Examining a Secondary School Computational Action Curriculum Using App Inventor and the Internet of

Things

Mike TISSENBAUM, Josh SHELDON, Hal ABELSON, Mark SHERMAN ... 104

COMPUTATIONAL THINKING AND SPECIAL EDUCATION NEEDS ... 106

Full Paper

The Application of Minecraft in Education for Children with Autism in Special Schools

Wen-wen MU, Kuen-fung SIN ... 107

Poster

結合運算思維在國小特殊教育需求的數學教學活動之發展

廖晨惠，郭伯臣，白鎧誌，鄔珮甄 ... 112

COMPUTATIONAL THINKING AND EVALUATION ... 114

Full Paper

Evaluating Computational Thinking in Jupyter Notebook Data Science Projects

Clara SORENSEN, Eni MUSTAFARAJ .. 115

Short Paper

Assessment of Computational Thinking

Nikolina BUBICA, Ivica BOLJAT ... 121

Cross Comparison of Multiple Computational Thinking Activities: a Grey-based approach

Meng-leong HOW, Chee-kit LOOI .. 125

On Tools that Support the Development of Computational Thinking Skills: Some Thoughts and Future

Vision

Gregorio ROBLES, Jean Carlo Rossa HAUCK, Jesús MORENO-LEÓ N, Marcos ROMÁ N-GONZÁ LEZ,
Roberto NOMBELA, Christiane Gresse von Wangenheim.. 129

计算思维评估的研究现状综述（2013-2017）

张安琦，陈桄，刘昱辛，程薇 ... 133

基於專家知識地圖引導慕課學習思維

曾建維，黃能富，李加安 ... 137

COMPUTATIONAL THINKING AND TEACHER DEVELOPMENT .. 140

Full Paper

Computational Thinking Reshapes the Teachers’ Perspective on Human Mind towards Teaching and

Learning Process

Hew-mee CHEAH .. 141

Teacher’s Perceptions and Readiness to Teach Coding Skills: A Comparative Study between China, Finland

and Singapore

Chee-kit LOOI, Jari MULTISILTA, Longkai WU, Pauliina TUOMI .. 147

Short Paper

“It Opens Up a New Way of Thinking, but…”: Implications from Pre-Service Teachers’ Introduction to

Computational Thinking

Yu-hui CHANG, Lana PETERSON ... 153

The Readiness of Computational Thinking Education in Taiwan: Perspectives from the K-12 Principals in

2017

Ting-chia HSU .. 157

Two Studies of Perceived and In-Situ Readiness for Implementing the Computing Education in Singapore

Longkai WU, Chee-kit LOOI, Meng-leong HOW, Liu LIU .. 161

中學資訊科技教師運算思維學科教學能力調查

蔡旻穎，吳正己，游志弘 ... 165

基于计算思维培养的教师培训课程设计与实践

刘昱辛，陈桄，查思雨，张安琦 ... 169

國小師資生 Code.org運算思維課程實作與成效探討

李政軒，楊智為，郭伯臣 ... 173

Poster

Designing Computational Thinking Assessment: A Case Study of a Pre-Service Teacher Course in Korea

Mi Song KIM, Hyungshin CHOI .. 177

Which Parts of Computer Science Concepts Do Future Teachers Identify? First Results of a Part-Whole-

Thinking Analysis in Computer Science Education

Nils PANCRATZ, Ira DIETHELM .. 179

GENERAL SUBMISSION TO COMPUTATIONAL THINKING EDUCATION 181

Full Paper

Developing a Framework for Computational Thinking from a Disciplinary Perspective

Joyce MALYN-SMITH, Irene A. LEE, Fred MARTIN, Shuchi GROVER, Michael A. EVANS, Sarita

PILLAI .. 182

Poster

Virtuality Literacy: On the Representation of Perception

Andreas DENGEL .. 187

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

1

Computational Thinking

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

2

A Complementary View for Better Understanding the Term Computational

Thinking

Marc JANSEN1,2, Dan KOHEN-VACS2,3, Nuno OTERO2,4, Marcelo MILRAD2

1 University of Applied Sciences Ruhr West, Bottrop, Germany

2 Linneaus University, Växjö, Sweden

3 Holon Institute of Technology (HIT), Holon, Israel
4 Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

marc.jansen@hs-ruhrwest.de, dan.kohen@lnu.se, nuno.otero@lnu.se, marcelo.milrad@lnu.se

ABSTRACT

The term Computational Thinking is closely related to

efforts connected to teach a systematic and well-structured

way of problem solving that includes a set of tools and

techniques used in Computer Science. While substantial

research in this field has shown promising outcomes

concerning distinct intervention programs and teaching

initiatives, the term Computational Thinking itself requires

to be revised in order to get a wider consensus about its

meaning and purpose. This paper contributes to the ongoing

quest concerning the definition of the term by starting with

a fundamental perspective on computational theory and

corresponding concepts in order to describe the theoretical

building blocks of a systematic view to further elaborate on

an approach for teaching and learning about Computational

Thinking. Additionally, based on this foundational effort,

more advanced concepts are presented and discussed in

order to better understand this domain. Finally, the paper

identifies and discusses a set of relevant challenges taking a

cognitive psychology perspective on Computational

Thinking.

KEYWORDS

Computational Thinking, 21st century skills, computability,

cognitive psychology, knowledge transfer, multiple

external representations.

1. INTRODUCTION
Many developed countries are experiencing significant

changes concerning organizational structures, work

processes and daily routines. Technological innovations

impact daily practices regarding the ways people socialize,

work and administrate their activities (Kulkarni, 2017).

Many of these changes have been enabled and are supported

by new Information and Communication Technologies

(ICT) (Horizon Report, 2017). The demands that this

changing societal context pose are being reflected in new

educational programs that aim at offering students an

updated set of skills identified as crucial for the 21th century

(Trilling & Fadel, 2009). In fact, competences concerning

critical thinking as well as problem solving are seen as

central in contrast to other competences often considered

less useful to cope with the fast pace of current changes.

Some researchers suggest that the, acquisition of these skills

should be provided in authentic settings (Doleck et al.,

2017), where technologically supported creative

collaborative activities are proposed (Kong, 2014; Mishra

et al., 2013).

In line with these developments, computer and learning

scientists have been proposing that these skills can be

fostered through educational programs involving computer

programming and miming how computer scientists

approach problem solving (Wing, 2014), including the

expression of a solution in a computer solvable way. The

term Computational Thinking (CT) has emerged to reflect

this particular view on this topic. However, although the

term is widely used, it requires to be revised in order to get

a wider consensus about its meaning and purpose within the

scientific community (Selby & Wollard, 2014).

This paper starts with a section describing the state of the

art, after which we reflect on the term CT from a computer

science theory perspective. We do so in order to identify the

basic building blocks that allow problems to be framed and

solved computationally. Thereafter, the next section

discusses more advanced computer science topics related to

CT. Concrete examples are shown and discussed in order to

elaborate on the proposed ideas. We proceed by discussing

the core ideas presented in the paper in order to widen the

definition of Computational Thinking. Finally, we proceed

by identifying and describing a set of relevant challenges

for CT teaching and learning from a cognitive psychology

perspective. We conclude the paper with a section providing

an outlook describing our future efforts.

2. STATE OF THE ART
The benefits of computer programming for students’

cognitive development have been explored and are well

recognized. Clements & Gullo (1984), foresaw the

important role of ICT in daily routines. They also examined

the effects of computer programming on children while

indicating on advantages in terms of development of

cognitive skills (Papert, 1980). Additional approaches that

would nowadays be gathered under the term CT have been

made way before the definition of the term itself (Brennan,

2012; Resnick et al., 1998).

In addition, the benefits of computer programming were

also recognized in terms of its potentials to foster creativity

and meta-cognitive skills exercised as part of development

tasks. More than 30 years ago, Pea & Kurland (1984)

published the results of their research exploring aspects that

are crucial for incorporating computer programming in

educational studies. They pointed over challenges while

expressing their concern about practicing such skill among

mailto:marc.jansen@hs-ruhrwest.de
mailto:dan.kohen@lnu.se
mailto:nuno.otero@lnu.se
mailto:marcelo.milrad@lnu.se

3

young ages. They also addressed goal definitions aligned to

the requirements and knowledge that are needed prior and

during the development of cognitive skills supported by

computer languages. Additionally, they investigated the

benefits of such skills in the light of individual work versus

collaborative one.

As implied, nowadays, our daily routines are

technologically enhanced in a way that emphasize the

important role of programming as a tool to aid structured

thinking processes as well as a tool for the implementation

of solutions based on ICT. Consequently, Computational

Thinking as an innovative approach for solving problems is

increasingly recognized and incorporated in educational

programs that need to be implemented across different

subject matters and levels (Kong, 2014). This solution could

be conceptualized and formulated in the form of a computer

program expressing logical procedures towards a refined

solution. CT offers the opportunity to exercise a generic and

iterative process consisting of three steps. In the first step,

students are provided with an educational opportunity to

identify and formulate a problem or challenge on an abstract

level. Thus, students can formulate the problem in a more

generalized (and at the same time easier) way and try to

solve this more general problem first. During the second

phase, they can continue and express a possible solution to

it. Finally and in the third phase, this solution is executed

and evaluated as a part of the iteration enabling continues

refinement aspiring to optimized problem definition

adapted with best solution.

Often, learning environments and activities guided by the

ideas behind Computational Thinking incorporate

motivational tools like robots (Bers et al., 2014) in order to

increase students ́motivation to work in a structured way

and to provide procedures that support the solution of a

given problem. Although Computational Thinking could be

applied already to very early ages, significant efforts have

also been undertaken in relation to older students, which

have been proven successful also (Grover and Pea, 2013;

Touretzky et al., 2013).

Nevertheless, as Selby & Wollard (2014) have described,

the term Computational Thinking has several different

connotations and it is used throughout literature in very

different ways. Those different ways basically differ in the

understanding of CT in terms of the definition of thinking,

problem solving, computer science and imitation.

Therefore, this paper makes an attempt to provide a distinct

and complementary perspective to CT, based on

computational theory. Starting from computational theory

concepts, we move on by taking a step forward to more

advanced topics that derive from the field of programming,

based on the theory mentioned above.

3. THEORETICAL BACKGROUND
As already indicated earlier in the paper, one interpretation

of the term “Computational Thinking” is that it refers to

solving computational problems in the way computers do.

In order to define what these kinds of problems are, it is

worth looking to the definition of Alan Turing about

computability (Turing, 1937). While Gödel (1931) already

proved that there are theories in every axiom system that are

not provable, and therefore not computational, Turing

proposed a formal definition of computational theorems by

the definition of the Turing Computable Functions also

referred to as Turing complete functions. Here, Turing

Complete Functions, are functions that could be solved by

a Turing Machine. According to the Church’s theorem

(Turing, 1939) the set of naive computable functions equals

the set of Turing Computable Functions. Therefore, it could

be said that every problem that is solvable, could be solved

by a Turing Machine. Hence, one complementary

perspective to the existing one on CT could be to have a

look at the mechanisms that are used by Turing Machines

and other approaches to computability in order to solve

those kinds of problems. Especially, the theory of μ-

recursive functions, loop-, while- and goto-computability

are those under consideration. Analyzing these fundamental

theories of computational functions, it shows that there are

a couple of concepts necessary in order to address and tackle

problems that are solvable by computers:

 conditions - as in Turing Machines in the form of

the transition function

 loops - as in loop- and while-computable functions

 goto / subroutines - as in goto-computable

functions

 recursion - as in μ-recursive

The following subsections will provide a short overview on

the implications that the different concepts might have for

teaching and learning Computational Thinking.

3.1. Conditions

Conditions basically allow for the distinction of cases.

Usually also referred to as if-this-then-that (IFTTT),

conditions allow to treat different states of a (sub)problem

differently. States are usually expressed / modelled in the

form of Boolean expressions. Often, those conditions also

have an else part, that is executed if a certain Boolean

expression does not hold. It could easily be shown, that the

existence of an else part does not yield to more functions

that are computable. A simple example for a condition that

checks if a given number is even could be implemented in

Scratch as shown in Figure 1. Scratch will be our visual

programming language of choice for the remaining

examples also, since we believe that it is widely accepted

and at the same time easy enough to understand even if the

reader does not have any pre-knowledge here.

Figure 1. A simple condition in a visual programming language.

Interestingly, the way to model computer programs as a set

of IFTTT expressions lately became more and more

prominent, e.g., in the field of the Internet-of-Things (IoT)

and / or blockchain based technologies. Both examples

provide highly up to date questions, in which a large number

of scenarios could be implemented based on simple IFTTT

4

conditions. This underlines the importance and power of

this kind of modelling.

3.2. Loops

Loops are a means for repeating a certain task. Usually, two

different types of loops are used in computational theory:

count controlled loops (in which a certain task is executed

defined times) and condition-controlled loops (in which the

task is executed as long as a certain condition holds). It

could easily be shown that count controlled loops could be

expressed also as case-controlled loops, but not the other

way around. Therefore, it could be said that the concept of

case-controlled loops is richer than the concept of count

controlled loops. Nevertheless, count controlled loops are

often easier to understand since counting is a very basic

task, while conditions are a bit trickier.

An easy to implement example based on a count-controlled

loop is the Fibonacci number. A Scratch based

implementation might look similar to the block shown in

Figure 2.

Figure 2. A count controlled loop in a visual programming

language.

3.3. Goto / subroutines

Another class (equivalent to the condition-controlled loops)

are Goto Computable Functions. Goto constructs basically

allow to jump to certain parts of a program, while in contrast

Turing Machines need to work sequentially through their

memory. Although, as said before, the class of Goto

Computable Functions are equivalent to the class of

functions that can be computed with condition-controlled

loops, the concept is worth noticing, because it provides a

first way for implementing subroutines. Historically, this

could best be seen in languages like Basic, which

introduced (at least in some dialects) an additional keyword

gosub (beside Goto) in order to allow for subroutines in

Basic programs.

Subroutines are usually used in order to allow a re-use of

the implemented functionality. Taking the example from

above for checking if a given number is even or not, a

subroutine that could be re-used could be implemented as

new block in Scratch as shown in Figure 3.

Figure 3. A subroutine defined as a block in a visual

programming language.

3.4. Recursion

Finally, after discussing that conditions and loops are the

basic control structures of computational functions, another

mechanism also needs to be discussed. Although recursion

is at first a mathematical mechanism used for functions that

call themselves, it could also be used as a control structure

since it influences order commands executed by a program.

Beside this, it is a very powerful mechanism to describe

some mathematical functions, e.g., the famous Fibonacci

number. It could be shown that the class of primitive

recursive functions is equivalent to the class of functions

computable by count-controlled loops, which especially

means that every primitive recursive function could also be

expressed as a count-controlled loop. Taking up the

example of the Fibonacci numbers based on a count-

controlled loops as shown in 2, the corresponding

implementation based on recursion looks like presented in

Figure 4.

Figure 4. A recursive function implemented in a visual

programming language.

Here, an interesting task from a CT perspective could be to

switch the representation of simple functions from their

recursive representation to a solution based on a count-

controlled loop and vice-versa, in order to foster the

understanding of both concepts. It is further known that the

class of μ-recursive functions is equivalent to the class of

function computable by condition-controlled loops.

As mentioned at the beginning of this section, the concepts

presented here can be seen as the building blocks for

enabling to frame a complementary way to solve problems

from a computational perspective. Therefore, in contrast to

more traditional views to CT that take a standpoint from

social and behavioral sciences our approach results from a

computational theory perspective. This proposed view aims

to expand the current definition of CT by bringing central

ideas and views based on this theory. In other words, the

concepts discussed here are the fundamental tools that allow

computer scientists think with in order to frame problems

and explore solutions (and the fact that computational

approaches are being used in very different domains with

success supports its value). One of the key ideas behind CT

is that this specific way of framing problems can be

introduced to learners from an early stage and as such it has

the potential to enhance their problem-solving skills in a

variety of domains. The next section further elaborates on

other useful concepts that extend this perspective.

4. MORE ADVANCED TOPICS BASED

ON THE DESCRIBED THEORY
In the previous section, we presented stepping stones

enabling the framing for solving problems taking a

computational theory perspective. In this section, we go

beyond the stepping stones referred to in the previous

section and present a set of additional concepts to be offered

to learners as tools applicable for their reasoning process on

problems. More specifically, the more advanced topics that

will be discussed are Object Orientation, Frameworks and

5

Design Patterns. The presentation and discussion of these

ideas are illustrated through the implementation of an

algorithm known as bubble sort capable of sorting a set of

objects in a given list. The sorting process is achieved

through repeated steps in which a pair of objects are

compared and if necessary swapped. As implied, bubble

sort includes steps that use the concepts previously

introduced including conditions and loops. This particular

example is provided in order to illustrate our particular and

complementary view on CT.

4.1. Object Orientation

In this subsection, we address Object Oriented structures

including their properties and functions built based upon

concepts previously presented. Specifically, we propose to

use them in order to describe objects that may interplay in

cases in which learners aim to solve a given problem.

Here, an object is basically a combination of a data

structure, together with methods operating on the data

structure. Figure 5 shows an object representing a sorter

responsible sort a list of numbers. Figure 5, provides an

example of an Object-Oriented implementation made in

Scratch. In this implementation, we included a method that

gradually sort neighbor pairs of numbers till the list is

completely sorted. In each iteration, a pair of number is

sorted by another function operating according to the swap

principal demonstrates in the previous subsection.

Figure 5. A simple object of a sorter in a visual programming

language.

4.2. Frameworks

Frameworks are referred to an abstraction level in a way that

enables to provide generic functionality that could be

altered, deployed, implemented and reused to satisfy

specific aspects of a problem. When discussing frameworks

in the context of programming, this may include various

components including libraries, compilers and APIs

consolidated in order to enable development of complete

systems. In our case, a sorter algorithm could be offered as

a generic framework which represents a service

implementable in systems requiring such kind of

functionality.

4.3. Design Patterns

Design patterns represent general and reusable problem

solution pairs for commonly occurring problems. The

notion of sorting strategies in the light of Design Patterns

has been discussed by Nguyen & Wong (2001), while

indicating on best ways to apply different strategies for

sorting challenges. They specifically addressed different

aspects of a typical sorting challenge including the interplay

between involved objects, the selection of an optimized

solution for sorting and ways to visualize the result of this

sorting. They emphasized on the Model–view–controller

(MVC) pattern enabling a separation of concerns between

models (data to be sorted and the sorting algorithm itself),

views (presentation layer for presenting the solution of a

sort algorithm) and controller (logic layer responsible for

connecting the model and the view).

In the last two sections, we present our perspective

addressing various and central concepts later elaborated

through advanced topics reflecting additional tools and

techniques used in Computer Science. In the next section,

we elaborate on the challenges related to cognitive

perspectives on Computational Thinking. These ideas take

into consideration the fact that CT approaches need to be

implemented across different levels and subject matters.

5. CHALLENGES FROM A COGNITIVE

PSYCHOLOGY PERSPECTIVE
We need to be aware that empirical evidence clearly

showing the connection between learning how to program

and improving reasoning and analytical skills is still scarce

(see for example, Pea & Kurland, 1984, or Salomon &

Perkins, 1987, for detailed reviews concerning the previous

efforts on psychology of programming). Although CT goes

beyond teaching how to program we must take on board the

issues raised and incorporate these in a research program.

Although revisiting all these topics is beyond the scope of

this paper, when considering the teaching of a particular

subject matter, a cognitive psychology perspective needs to

account for two basic interconnected issues: what to teach

at distinct stages of human development and how to teach

it. However, the teaching of Computational Thinking poses

particular challenges because it is not only a subject matter

per se but it is intended to be a thinking tool that allows a

distinct way to frame and tackle problems emerging from

different disciplines. In other words, it is close to what has

been termed as a transdisciplinary effort.

In relation to the concepts to teach and its suitability in

relation to the different stages of human development, we

have identified two main challenges:

1) Identify suitable and meaningful problems to the

age group, enabling the introduction of the main

concepts at an early stage and be able to iteratively

refine them with increased levels of complexity.

2) Find appropriate ways to ensure transfer of

knowledge between domain areas that utilized

concepts from computational thinking.

Regarding the identification of suitable and meaningful

problems for a certain age group, this stance clearly aligns

itself with the early proposals by Bruner (1960) and Papert

(1980) that rejected closed notions of development stages,

considering that such approaches might miss the

opportunity to introduce concepts at early stages and be able

to leverage from it (see for example, Bruner, 1960; Papert,

6

1980; Pea & Kurland, 1984, Resnick, 1984; Resnick et al.,

1998). Actually, current experiences with spiral approaches

to programming curriculum development suggest that this

is indeed possible (Armoni, Meerbaum-Salant & Ben-Ari,

2015). In relation to the problem of ensuring efficient

transfer of knowledge, this is indeed an old question with

distinct theories and conceptual approaches being proposed

(a proper review of the theme is beyond the scope of this

paper, however, see for example, Bransford & Schwartz,

1999) but CT might be, in fact, an enabler since it provides

the necessary conceptual tools for connecting across

domains. Nevertheless, a successful knowledge transfer

approach for CT will need to include the following aspects:

a) encourage the use of analogies so that the learners are

stimulated to explore potential connections between subject

matters, b) avoid excessive focus on the contextualization

of problems so that learners are not submerged on detail and

fail to abstract, and c) provide the necessary tools that

facilitate abstraction in relation to the core concepts of

computation.

Two other crucial aspects concern how to teach the different

concepts and which tools seem suitable to support this

process. In our perspective, the teaching of computational

thinking needs to be closely tied to the learning activity of

modelling distinct phenomena. Encouraging students to

construct models of different phenomena is a well-

established educational activity (see for example, Milrad,

Spector & Davidsen, 2002 and Pinkwart, 2005). However,

models can be of very distinct types, from qualitative to

quantitative, using graphical/pictorial symbolisms and/or

formal notations. From a psychological perspective, there is

an ongoing debate regarding the way the distinct types of

models can and should be integrated, not only in relation to

the age group of the learner but also to the actual stage of

problem comprehension. Considering the different notion

involving computational thinking we need to assume that at

some point learners will need to specify the model in such

a way that it is amenable to computing. Thus, we believe, it

requires some fair degree of formalization and such will

need to be in line with the cognitive skills of the learners.

Relevant questions that can be posed are then:

What are the appropriate levels of formalization for the

models considering the age group, cognitive skills and

previous knowledge of the learners?

How to ensure that the increasing levels of formalisms

sophistication are clearly followed through by learners (in

other words, do the learners understand the connections

between the distinct formalisms)?

In fact, the aspect concerning learners' understanding of the

distinct levels of formalisms sophistication also connects

with the notion of using multiple external representations to

foster the learning of computational thinking. The

transdisciplinary nature of computational thinking themes

clearly suggests the use of a varied range of external

representations (some connected with computational

concepts and some connected with the particular domains

under scrutiny). But as previous research pointed out being

able to establish the connections between distinct external

representations is far from trivial (Ainsworth, 1999;

Ainsworth & Van Labeke, 2004). Research needs to

account on how different external representations combine,

looking for synergies and clearly justify cost/benefits of

using them. Nevertheless, multiple external representations

can support deeper understanding by promoting processes

such as abstraction, extension or generalization of

knowledge especially if efficient highlighting of the links

between different representations is in place. Finally, the

evaluation of computational thinking approaches need to

consider not only the outcomes of learning events but also

the processes. Relevant questions are: a) How to capture the

learners’ skills regarding the transfer of knowledge? b) How

to capture and understand learners’ representational skills in

different educational contexts? c) What methods are

particularly suited to account for a) and b) at distinct stages

of human development?

6. OUTLOOK AND FUTURE WORK
This paper revisited the core concepts of computational

theory and how these are related to the notion of CT. By

doing so, we contributed to the clarification of the ongoing

discussion around the term "Computational Thinking".

While most common definitions result from an elaboration

that takes social and behavioral sciences as a point of

departure, we have used a computer science theory view

and added a cognitive psychology perspective afterwards.

In some sense, this might help us to re-focus on the

fundamental concepts to be taught from a subject matter

perspective. Then, we can identify, based on existing

literature and empirical evidence produced, how to teach

these. Additionally, we provided concrete computationally

relevant instantiations of the concepts discussed in section

3 including conditions, loops, goto/subroutines and

recursion. In this respect, we also addressed more advanced

topics including Object Orientation, Frameworks and

Design-Pattern.

The issues that have emerged from our reflections regarding

these themes lead us to consider the following key broad

steps: (a) identify the topics in distinct subject matters that

are particularly suitable to be included in an initial

curriculum sketch that implements the core computational

concepts we referred to. This task should be carried out in

close collaboration with experts in distinct subject matters

and teachers of learners in different key stages; (b) reflect

and create a pedagogical approach that takes into

consideration the different issues stated as challenges from

a psychological perspective and provide solid empirical

evidence. In relation to relevant empirical studies we are

considering starting with issues related to knowledge

transfer and the use of different representations to support

it; (c) design an intervention in order to evaluate how a

pedagogical approach can be successfully implemented in

an authentic context; and (d) implement a comparative

evaluation study that will endeavor to clarify the putative

benefits of the approach and contribute with empirical data

to facilitate further refinements. Focusing on the subjects of

Mathematics, Natural Science and Technology in grades 4-

9, we are currently exploring and validating the ideas

described in this paper in our ongoing projects with

elementary school in- service teachers.

7

Acknowledgement
The work reported in this paper was partially funded by the

EU project eCraft2Learn (Grant Agreement no. 731345).

7. REFERENCES
Ainsworth, S. (1999a). A functional taxonomy of multiple

representations. Computers and Education, 33(2-3),

131–152.

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of

dynamic representation. Learning and Instruction, 14(3),

241–255.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015).

From Scratch to “Real” Programming. Trans. Comput.

Educ., 14(4), 25:1–25:15.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D.

C., & Marshall, K. S. (2011, March). Recognizing

computational thinking patterns. In Proceedings of the

42nd ACM technical symposium on Computer science

education (pp. 245-250). ACM.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.

(2014). Computational thinking and tinkering:

Exploration of an early childhood robotics curriculum.

Computers and Education, 72(C), 145–157.

http://doi.org/10.1016/j.compedu.2013.10.020

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking

transfer: A simple proposal with multiple implications.

Rev Res Educ, 24, 61–100.

Brennan, K., of, M. R. O. T. 2. A. M., 2012. (n.d.). New

frameworks for studying and assessing the development

of computational thinking. Scratched.Gse.Harvard.Edu.

Bruner, J. S. (1960). The Process of education Cambridge,

Mass.: Harvard University Press..

Clements, D. H., & Gullo, D. F. (1984). Effects of

computer programming on young children's cognition.

Journal of educational psychology, 76(6), 1051.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., &

Basnet, R. B. (2017). Algorithmic thinking,

cooperativity, creativity, critical thinking, and problem

solving: exploring the relationship between

computational thinking skills and academic performance.

Journal of Computers in Education, 4(4), 355-369.

Gödel, K. (1931). Ü ber formal unentscheidbare Sätze der

Principia Mathematica und verwandter Systeme I.

Monatshefte für Mathematik und Physik, Band: 38,

Nummer: 1, 173-198.

Grover, S., Pea, R. (2013). Computational Thinking in

K12 A Review of the State of the Field. Educational

Researcher 42(1), 38-43

Horizon report, (2017). Retrieved from

http://cdn.nmc.org/media/2017-nmc-horizon-report-he-

EN.pdf

Kong, S. C. (2014). Developing information literacy and

critical thinking skills through domain knowledge

learning in digital classrooms: An experience of

practicing flipped classroom strategy. Computers &

Education, 78, 160-173.

Kulkarni, C. (2017, January 3). 15 Trends Every Business

Leader Should Watch in 2017. Retrieved January 01,

2018, from http://fortune.com/2017/01/03/2017-tech-

trends/

Milrad, M., Spector, J. M., & Davidsen, P. I. (2002).

Model Facilitated Learning. Learning and Teaching with

Technology: Principles and Practices (pp. 13–27).

London, UK and Sterling, VA, USA: Kogan Page

Publishers, UK.

Mishra, P., Yadav, A., & Deep-Play Research Group.

(2013). Rethinking technology & creativity in the 21st

century. TechTrends, 57(3), 10-14.

Nguyen, D., & Wong, S. B. (2001). Design patterns for

sorting (Vol. 33, No. 1, pp. 263-267). ACM.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York: Basic Books.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive

effects of learning computer programming. New ideas in

psychology, 2(2), 137-168.

Pinkwart, N. (2005). Collaborative modeling in graph

based environments (pp. I-VIII). University of Duisburg-

Essen, Germany.

Resnick, M. (1994). Turtles, Termites, and Traffic

Jams.Cambridge, MA: MIT Press.

Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella,

V., Kramer, K., & Silverman, B. (1998). Digital

Manipulatives - New Toys to Think With. Chi, 281–287.

http://doi.org/10.1145/274644.274684

Selby, C. & Wollard, J. (2014). Refining an understanding

of computational thinking. Retrieved 01, 08, 2018 from

http://eprints.soton.ac.uk/id/eprint/372410

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., &

Ni, L. (2013). Accelerating K-12 computational thinking

using scaffolding, staging, and abstraction. Sigcse, 609.

http://doi.org/10.1145/2445196.2445374

Trilling, B., & Fadel, C. (2009). 21st century skills:

Learning for life in our times. John Wiley & Sons.

Turing, A.M. (1937). On Computable Numbers, with an

Application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society. Vol 42, 230–265.

Turing, A.M. (1939). Systems of Logic Based on Ordinals.

Princeton University. p. 8.

Wing, J. (2014). Computational thinking benefits society.

40th Anniversary Blog of Social Issues in Computing,

2014.

http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://eprints.soton.ac.uk/id/eprint/372410
http://eprints.soton.ac.uk/id/eprint/372410
https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

8

The Use of Computational Thinking Concepts in Early Primary School

Ivica BOTICKI1*, Danica PIVALICA1, Peter SEOW2

1 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

2 National Institute of Education, Nanyang Technological University, Singapore

ivica.boticki@fer.hr, danica.pivalica@fer.hr, peter.seow@nie.edu.sg

ABSTRACT

This paper presents a study on the use of computational

thinking (CT) in early primary school. First grade primary

school students were using a custom designed CT tool as

part of their school lessons. The tool allowed for designing

and delivering digital tasks with CT content coming from

three subject areas with the goal of finding out how well

students complete such tasks. The tasks were aligned with

course contents and the curriculum and required students to

choose, set or order CT primitives in an adequate way. The

tool allowed for automated task solution evaluation in form

of animations and visualizations reflecting the exact steps

chosen by the students and prompting them to revise their

choice if needed. The analysis of students’ task completion

process reveals that CT tasks including object properties and

problems with loops were the most demanding, and that

prior mathematics and reading skills impact early primary

students’ CT task completion performance across school

subjects.

KEYWORDS
computational thinking, mobile learning, early primary school,

student performance, mathematics

1. INTRODUCTION
Mindstorms is a book written by Seymour Papert in which

he argues for the benefits of teaching computer literacy

(Papert, 1983). It was in this book that the term

computational thinking (CT) was coined and since then

modern CT initiatives have become the subject of worldwide

attention. Due to the profound transformation of today’s

society sparked by the rapid progress of digital technology,

many educators and leaders started becoming interested in

incorporating CT into education.

Even though CT has a rich history, its broader recognition

began in 2006 with an essay by Jeannette Wing (Wing,

2006) in which she revived the previously coined CT phrase.

CT was described as a general-purpose thinking tool which

builds on natural and artificial information processes, and is

about acknowledging limits in available resources, reducing

problems to smaller parts, abstracting information and

choosing appropriate problem and (or) solution

representations. A few years later, the Cuny-Synder-Wing

definition was proposed describing CT as “the thought

processes involved in formulating problems and their

solutions so that the solutions are represented in a form that

can be effectively carried out by an information-processing

agent” (Wing, 2010).

Brennan and Resnick (Brennan & Resnick, 2012) argue

there are three dimensions of CT: computational concepts,

computational practices and computational perspectives.

Computational concepts are congruent with the fundamental

concepts of programming languages. Computational

practices refer to practices developed during CT activities

while computational perspectives show in what way has

learner’s viewpoint changed after engaging in CT activities.

Regardless of CT receiving considerable attention

nowadays, there is little agreement on how it should be

integrated and used in primary and secondary education.

This paper aims at discussing the use of key CT concepts as

proposed within Brennan and Resnick’s framework

(Brennan & Resnick, 2012) with young primary school

learners, with a special emphasis on the computational

concepts dimension. A custom CT tool for early primary

school learners along with the accompanying CT tasks

covering the subject area of Mathematics, Science and

Croatian language is proposed. This study examines how

early primary school students completed CT tasks which

include a variety of CT concepts and which were designed

to cover the three subjects’ contents.

2. COMPUTATIONAL THINKING

CONCEPTS
Some researchers have adopted an assessment approach to

evaluating computational thinking through code generated

by students. Brennan and Resnick proposed that students’

computational thinking competencies can be assessed

through how they engage with computational concepts

found in Scratch programming environment. The

computational concepts are sequences, loops, parallelism,

data, events, and conditionals (Brennan & Resnick, 2012).

These computational concepts convey relevant vocabularies

and notations to be used to describe computational processes

such as ordering a list or how to do multiplication (Lu &

Fletcher, 2009). For example, multiplication can be

described as the number of loop iterations needed to add up

the same number.

Students use computational concepts to develop projects

such as stories, animations, games, tutorials and musical

instruments through programming (Resnick et al., 2009;

Ruthmann, Heines, & Greher, 2010). Based on this,

Moreno-León and his colleagues developed Dr Scratch to

give feedback on different dimensions of computational

thinking competency to teachers and students in their

Scratch projects. The dimensions measured are abstraction,

logical thinking, parallelism, data representation and

algorithmic sequencing (Román-González, Pérez-González,

& Jiménez-Fernández, 2017).

9

Table 1. CT tasks organized into five CT task groups. Each task covers one or two school subjects and up to several CT concepts.

Group

number

Task number in

group

School subjects CT concepts

1 1 Croatian language,

Science

Sequence, algorithm, recognition and

removal of unnecessary steps

2 Croatian language,

Science

Sequence

3 Croatian language,

Science

Sequence, algorithm

4 Croatian language Sequence, algorithm

5 Croatian language Sequence

2 1

Science

Object and its properties (sparrow)

2 Object and its properties (frog)

3 Object and its properties (bat)

4 Object and its properties (hedgehog)

5 Object and its properties (rabbit)

6 Sequence, object and its properties

3 1 - 4
Mathematics

Problem task

(selecting steps of a path)

5 - 8
Croatian language,

Mathematics

Problem task

(selecting the right steps of a path and

identifying the correct goal)

9 - 10
Croatian language,

Mathematics

Problem task with loops (selecting the

right steps of a path and identifying the

correct goal)

4 1 - 8 Mathematics Problem task (numbers 1-10)

5 1 - 3 Mathematics Problem task (numbers 11-19)

4 - 7
Mathematics

Problem task with loop

(numbers 11-19)

8
Mathematics

Problem task with combining two loops

(numbers 11-19)

This study focuses on the computational concepts CT

dimension and examines several CT concepts implemented

as CT Mathematics, Science and Croatian language subject

tasks. Table 1 shows five groups of CT tasks which are

aligned with the school subjects. By building on the

presented state-of-the-art research in the field, a CT tool in

form of a scaffolded environment with visualization and

animation feedback on the proposed CT task solutions is

designed, implemented and examined in early primary

school contexts.

3. METHODS AND TOOLS
The study was conducted on a sample of 23 primary first

grade students 7 to 8 years old, who study in a neighborhood

primary school in Croatia. There were 12 female and 11

male students in this study. The study included five groups

of computational thinking tasks (Table 1) and was carried

out within the period of two months (May-June 2017), with

each task group taking place on a single day and taking 2-3

hours of direct student time. Each student was using an

individual tablet of his or her choice (an Android, iOS or

Windows tablet) to complete the tasks.

Multiple tasks per group were designed with the help of the

class teacher, so that they relate to the courses taught in first

grade of Croatian primary schools and make use more

contextualized and meaningful to the students.

To scaffold task delivery and collect usage data, a CT tool

in form of a block-based visual environment in which

students drag-and-drop blocks into a scripting pane to build

a solution was designed. Such an environment is inspired by

similar research targeting young children (Wilson & Moffat,

2010) and should reduce the efforts and challenges of

learning programming and the underlying computational

concepts such as sequence or objects. The tool included a

narrative in form of a virtual character named Matko the

robot, guiding students in the CT tool usage.

Figure 1. Left hand side: user interface of the CT tool

presented in this study; right side: enlarged toolbox - an

extraneous element not to be used in completing the task

(in red color).

The tool was built on top of Blockly.js framework and its

user interface is composed of the following elements: the

toolbox (the surface with blocks available for use in the

10

current task), the working area (the surface on which

students provide the solution), control button for starting the

current task evaluation process, control button for deleting

all blocks on the working area and the control button for

displaying or hiding the current CT task text (Figure 1, left-

hand side, blue button).

Since the participants were young and English was not their

mother tongue, the tool interfaces were developed in

Croatian language. Each student task attempt as well as the

sequence of steps undertaken in solving a task were recorded

(logged) (i.e. types of blocks she used, how did she connect

them, when did she use them etc).

4. USING THE COMPUTATIONAL

THINKING TOOL
The CT tool designed as part of this study is typically used

by engaging in these steps: (1) the identification of suitable

computational primitives from the toolbox, (2) placement

and sequencing of the primitives onto the working area, (3)

starting the solution evaluation via the control button, (4)

examining the evaluation (visualization or animation)

provided by the system, (5) modifying the primitives choice

via the control buttons and (6) using the control buttons to

open the next task (Figure 2).

Figure 2. The CT tool usage process.

After a student identifies the suitable primitives in the step

1), and places blocks as part of the solution onto the working

area in the step 2), and presses the control button to start the

evaluation (step 3)), the tool automatically evaluates all

student actions and data and provides feedback information

about the current solution in form of an animation or

visualization (step 4)) consisting of multiple steps to

represent the chosen sequence of CT primitives.

In the first task group (see Table 1 for all task groups and the

corresponding CT tasks), students were given sets of steps

of certain well known algorithms, such as the recipe for

making bread, as CT primitives, and were asked to place

them in order. Some tasks had extraneous steps listed, which

students needed to recognize and eliminate from their final

solution (Figure 1, right-hand side). Once CT primitives are

chosen and sequenced, the animation or visualization is run

to represent the solution proposed by the student (Figure 3).

It is to be noted that in the case of an incorrect step choice or

sequencing done by the student, the displayed animation will

reflect the incorrect choice (i.e. recipe/algorithm for making

bread will intentionally be displayed in the wrong sequence

and an indication to students will be given – right hand side

of Figure 7).

Figure 3. An animation displayed to a student

following the choice of primitives and their placement and

sequencing on the working area (task group 1 – recipe for

making bread task).

Each task from the second task group had a dedicated animal

well known to the students. To correctly solve a task,

students needed to recognize which properties belong to an

animal set in the task, for instance how many legs a frog has.

In this task group, following a student primitives choice,

animal properties are visualized step by step (Figure 4) in

the central working area, prompting students to examine and

reiterate their initial object property choice if needed.

Figure 4. Choosing animal properties within an animal

frog object representation (left hand side). A visualization

displayed to a student following the choice of primitives on

the working area (task group 2 – legs and feathers as

incorrectly chosen properties of a frog).

To correctly complete a task from the third task group,

students needed to define the path a bunny should use to get

to the goal. In this task group, feedback provided to the

students, after they submitted their task solution, consists of

an animated bunny traversing the map according to the

primitives sequence provided by the student (Figure 5).

Some of the tasks from the third task group had multiple

goals drawn, and the students needed to distinguish which

goal should their bunny reach based on the supplied task

text. The text specified whether the goal was the

largest/smallest or left/right in relation to their bunny on the

displayed map, which students needed to read, comprehend

and apply in their solution.

The fourth and fifth task groups consisted of mathematics

tasks where the students were given a start value and asked

to supply the correct sequence of steps corresponding to

adding or subtracting the pre-selected numbers to reach the

correct end solution. Although in this task group the students

needed to reach the correct solution by applying

mathematical formulae, they were required to choose the

right loop CT primitive to reach the final solution. The steps

were selected by choosing the right blocks, where some of

11

the blocks were simple operations (e.g. “Create number 11”,

“Add 5”), while the others included repetitions (e.g. “Repeat

two times”). The fourth task group included the addition and

subtraction of numbers from 1 to 10, while the fifth group

included the addition and subtraction of numbers from 10 to

19. In both task groups, animated visual representations of

mathematical equation elements related to each solution step

of the calculation are shown to students (Figure 6). The right

hand side the Figure 6 shows one of the expressions being

calculated (1+1), currently chosen number to be added (+1

in blue color), and the end result (=2 in purple color).

Figure 5. An animation displayed to a student

following the choice of primitives and their placement and

sequencing on the working area (task group 3 – guiding a

bunny towards the goal).

Figure 6. The animation displayed to a student

following the choice of primitives and their placement and

sequencing on the working area (task group 4 and 5 –

assembling a formula and providing its result).

In all task groups, after a solution has been visualized or

animated to a student, a message about its correctness is

shown to the student completing the task (Figure 7). If the

task was solved correctly, student should continue with the

next task should one be available. If the provided solution is

incorrect, student should choose to complete the task again.

Figure 7. Feedback message after evaluating solution

proposed by a student (left hand side – a correctly

completed task, right hand side – an incorrectly completed

task).

5. ANALYSIS AND RESULTS
The CT tool presented in this paper allowed for detailed data

collection of students’ usage and performance data for each

CT task group and its corresponding subjects and tasks. The

collected data for each student for all five CT task groups

included (1) the time students needed to complete a task, (2)

the total number of attempts for a task, (3) the number of

successful attempts for a task and (4) the number of

unsuccessful attempts for a task (Table 2).

Table 2. Overall statistics of the collected data for all

tasks across all five CT task groups.

 Mean SD

Single task completion time (per

student) (seconds)
62.49 19.14

Task completions (attempts per

student)
78 25

Successful task completions

(attempts per student)
35 12

Unsuccessful task completions

(attempts per student)
43 18

The analysis indicates that, on average, students engaged in

a single task for about one minute and, on average completed

more than 70 tasks over the course of all 5 lessons and, on

average, had slightly more unsuccessful attempts than the

successful ones, with the mean success rate being M=0.46

(SD=0.11, N=23). The total time students spent on dealing

with repeated solutions attempts amounted to only around

15% of the overall task completion time.

Table 3 indicates students spent most of time on engaging in

the Science subject and on completing science tasks. What

is more, in the Science subject students had the most

successful and unsuccessful per-task attempts, with the

unsuccessful attempts reaching high value of 2.48 attempts

per task. These figures come with large standard deviation

(SD) values indicating large between-student differences.

On average students spent as much as 243 seconds on

completing CT tasks with object properties and only 68

seconds on completing problem tasks (the time includes all

attempts in completing a single task). The difference is

notable in per-task completion time as well, which is around

two times larger in favor of object properties. The analysis

indicates that the CT concept of object properties had the

largest values of successful and unsuccessful task attempts,

with substantial SD observed. SDs both in the case of object

properties and problem tasks were high.

When solving tasks related to the sequence and object

properties CT concepts a high number of successful and

unsuccessful attempts was exhibited by the students. In the

case of recognition and removal of unnecessary steps CT

concept, SD for the total completion time was extremely

high, indicating large differences in student performance.

12

Table 3. The analysis of total completion time, per task time and the number of successful and unsuccessful attempts for

school subjects and specific CT concepts (time is indicated in seconds).

Total

completion

time (mean)

Total

completion

time (SD)

Per task

completion

time (mean)

Per task

completion

time (SD)

Succ.

attempts

(mean)

Succ.atte

mpts

(SD)

Unsucc.

attempts

(mean)

Unsucc.

attempts

(SD)

Croatian language 143.67 49.46 62.76 23.31 0.99 0.58 0.97 0.43

Mathematics 94.72 49.59 41.79 21.93 0.85 0.38 0.76 0.49

Science 208.19 88.50 65.18 33.49 1.19 0.54 2.48 1.75

Sequence 167.42 78.12 68.34 38.35 1.11 0.97 1.01 0.68

Algorithm 161.60 130.02 70.27 50.11 0.75 0.44 1.00 0.92

Recogn. and rem.

of unnec. steps

137.46 154.92 53.63 48.24 0.87 0.63 1.17 1.70

Object properties 242.57 103.09 69.79 36.93 1.36 0.72 3.25 2.64

Problem task 68.28 62.00 33.76 23.23 0.85 0.35 0.64 0.58

Problem task with

loops

166.48 109.53 63.61 46.86 0.86 0.54 1.09 1.00

In the remainder of the analysis, the time and the number of

successful and unsuccessful attempts were correlated with

the students’ skills in mathematics and the prior reading

difficulty variable to check how student academic

performance relates to their CT task performance. The

teacher was asked to assess students’ knowledge of

mathematics on a scale from 1 to 10 prior to the study onset.

The mean value for all students’ mathematics knowledge

was M=7.91 (SD=1.62). Reading difficulty was indicated by

the teacher in 6 out of 23 students.

The correlation analysis, presented in Table 4, shows that

students with good prior mathematics skills on general take

more time and have more successful attempts in solving

language CT tasks. On the other hand, students with

identified reading difficulty are less successful in language

task. For the Science subject, mathematics skills contribute

to shorter completion time, while the students with reading

difficulty spent more time on Science tasks. Interestingly,

there were no correlations of mathematics and reading skills

with the students’ Mathematics subject performance.

In regards to the CT concepts, students with better

mathematics skills are in general more successful in

algorithms and have fewer unsuccessful attempts in solving

problems tasks CT concept tasks. They spend less time on

object properties and problem tasks. Students with reading

difficulty had less successful attempts in algorithm tasks and

take more time in completing object properties and problem

tasks. Surprisingly, students with reading difficulty were

more successful and took less time in problem tasks with

loops, however this result warrants for more research.

6. DISCUSSION
Early primary school children participating in this study

were very enthusiastic about solving computational thinking

tasks and were able to learn how to use the CT tool almost

instantly. Researchers observed that children love the

narrative of a robot named Matko which was the main avatar

in the utilized CT tool. When solving the CT tasks, students

on average failed slightly more times than they were

successful, but they completed the repeated attempts very

quickly and helped each other in the process.

One of the key findings of this study is the identified

relationship between students’ mathematics and language

skills in completing CT tasks. Young primary school

children are just beginning their schooling and some of them

still lack reading and mathematics skills which is found to

affect their performance in the Croatian language and

Science CT tasks.

Table 4. The correlation of school subjects and CT concepts with students’ mathematics skills and reading difficulty.

Subject/CT concept Mathematics skills Reading difficulty

Croatian language Avg. completion time r=0.419*

Num. of successful attempts r=0.470*

Num. of successful attempts r=-0.453*

Science Tot. completion time r=-0.521* Tot. completion time r=0.438*

Algorithms Num. of successful attempts r=0.478* Num. of successful attempts r=-0.503*

Object properties Avg. completion time r=-0.501*

Tot. completion time r=-0.638**

Tot. completion time r=0.564**

Problem tasks Avg. completion time r=-0.461*

Tot. completion time r=-0.547**

Num. of unsuccessful attempts r=-0.434*

Avg. completion time r=0.435*

Tot. completion time r=0.481*

Problem tasks with

loops

Num. of successful attempts r=0.563** Tot. completion time r=-0.446*

Num. of successful attempts r=-0.463*

*p<0.05, **p<0.001

13

Young primary school children need to have adequate

reading skills to interact with CT primitives used in courses

other than Mathematics more successfully (this was

especially the case with the Science subject). Classroom

observations during the in-class CT activities show students

had less issues with using the tool interfaces and

understanding how to manipulate the primitives than with

understanding and applying some of the used vocabulary

(i.e. the words up/down/left/right). This extended the

students’ time in completing the CT tasks and indicates that

more interactive forms of content representation such as the

puzzles or board games might be suitable for young

students. Nevertheless, the identified gap proved as a great

opportunity for teacher or peer facilitation of student work,

whereby students get engaged in the task completion

process even more.

In this study prior mathematics skills are identified as an

important prerequisite in young children’s successful and

timely CT task completion across all subjects. With almost

all CT concepts (algorithms, object properties and problem

tasks) better mathematics skill was related to more success

in solving CT tasks, and usually in less time. Such findings

indicate conceptual similarities between the areas of

mathematics and CT skills and warrant an adequate

curriculum alignment of the Mathematics subject and other

subjects using CT.

Students were fast and successful in completing

mathematics CT tasks, with the exception of mathematics

problems with the double loop CT concept, which proved

to be fairly complex for young primary school learners. The

CT concept of object properties caused misconceptions

leading to most time spent and the largest proportion of

successful and unsuccessful attempts. Classroom

observations indicate students often reverted to trial and

error method of completing such tasks since they found

them both conceptually difficult and challenging to read and

process.

The presented findings consistently indicate large

differences between young students in solving CT tasks. It

seems some students still struggle with basic language

knowledge and basic mathematics, even though they are in

the second semester of the 1st grade. On the other hand,

some students are already doing well in language and

mathematics, or were exposed to computer games and other

computational tools at home or in kindergarten, leading to

better CT task success. Such differences were alleviated

with a small amount of scaffolding from the teachers or

classmates, with all students being able to catch-up, excel

and have inspiring aha-moments connecting previously

unknown task elements.

7. CONCLUSIONS
The paper presented a study on computational thinking use

in early primary school. The findings indicate reading and

mathematics skills play an important role in students’ CT

task performance. Mathematics skills are of great

importance and they help students in completing CT tasks

in subjects such as language and science. Reading difficulty

presents an issue when young children are to process more

complex CT tasks, warranting for contingency in terms of

teacher and peer scaffolding. Large variation in students’

performance seeks for an approach in which CT tasks of

varied difficulty are used.

8. ACKNOWLEDGMENT
This work has been fully supported by Croatian Science

Foundation under the project UIP-2013-11-7908. The

authors would like to thank the staff of Primary School Tin

Ujevic, especially Ines Falak, for their partnership in the

realization of the study presented in this paper.

9. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of

computational thinking. Annual American Educational

Research Association Meeting, Vancouver, BC, Canada,

1–25. http://doi.org/10.1.1.296.6602

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about

computational thinking. ACM SIGCSE Bulletin, 41(1),

260. http://doi.org/10.1145/1539024.1508959

Papert, S. (1983). Mindstorms: Children, computers and

powerful ideas. New Ideas in Psychology (Vol. 1).

http://doi.org/10.1016/0732-118X(83)90034-X

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,

N., Eastmond, E., Brennan, K., … Kafai, Y. (2009).

Scratch: Programming for All. Communications of the

ACM, 52, 60–67.

http://doi.org/10.1145/1592761.1592779

Román-González, M., Pérez-González, J. C., & Jiménez-

Fernández, C. (2017). Which cognitive abilities underlie

computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human

Behavior, 72, 678–691.

http://doi.org/10.1016/j.chb.2016.08.047

Ruthmann, A., Heines, J., & Greher, G. (2010). Teaching

computational thinking through musical live coding in

scratch. SIGCSE ’10 Proceedings of the 41st ACM

Technical Symposium on Computer Science Education,

351–355. http://doi.org/10.1145/1734263.1734384

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to

introduce younger schoolchildren to programming.

Proceedings of the 22nd Annual Workshop of the

Psychology of Programming Interest Group, 64–75.

Wing, J. M. (2006). Computational Thinking.

Communications of the Association for Computing

Machinery (ACM), 49, 33–35.

http://doi.org/https://www.cs.cmu.edu/~15110-

s13/Wing06-ct.pdf

Wing, J. M. (2010). Computational Thinking: What and

Why? Thelink - The Magaizne of the Varnegie Mellon

University School of Computer Science, (March 2006),

1–6. Retrieved from

http://www.cs.cmu.edu/link/research-notebook-

computational-thinking-what-and-why

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

14

Computational Thinking and

Unplugged Activities in K-12

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

15

不插电的计算思维教学活动在高中课堂教学中的应用

——以《二进制卡牌》课程为例

杨冰清
＊
，张进宝

北京师范大学教育学部

bingqingbnu@mail.bnu.edu.cn, zhangjb@bnu.edu.cn

摘要

计算思维在 21 世纪备受关注，培养计算思维能力的教

学活动设计与开发是教育学者关注的热点问题。不插

电的计算思维教学活动主要在K12低年级阶段开展，缺

乏在高年级实施不插电教学活动的研究。经分析发现，

高中阶段计算机科学概念类知识的学习，传统的教学

方法效率相对较低，并且容易造成学生对计算思维的

误解，而任务驱动模式教学不仅能够避免这些发生，

还能促进提升学习成效。本研究以基于计算思维的任

务驱动教学模式为指导，在高中进行实践。结果表明，

相对于传统教学，不插电教学活动更能激起学习兴趣，

提升学生的计算思维能力。除此之外，学生在活动中

体验乐趣，并表明非常乐意在未来的学习中参与不插

电的计算思维教学活动课程。

關鍵字

计算思维；不插电活动；课堂教学；任务驱动

1. 研究背景

随着科学研究的发展和进步，计算机作为重要工具，

已经成为现在和未来学习中必不可少的工具，计算机

与人日常的交互使计算机的操作方法开始逐渐影响并

引领人的思维。计算思维能力被称为 21 世纪全球人类

必须具有的基本素养之一(Bocconi, S. & A. Chioccariello,

et al, 2016)，计算思维的培养在 K12 教育领域受到了愈

发多的关注。人们多过的关注计算机工具的使用而忽

视了其中蕴含的计算思维，计算思维真正受到广泛关

注始于 2006 年，周以真将计算思维定义为是运用计算

机科学的基础概念进行问题求解、系统设计以及人类

行为理解等涵盖计算机科学之广度的一系列思维活动

(Wing, 2006)，是所有人必须掌握的思维技能。周以真

的观点引发了学界对“计算思维”的热烈探讨，极大地推

动了计算思维的理论和实践研究领域的发展。

在K12阶段的相关研究中，已有足够多的研究关注环境

的设置，工具的开发以及课程设计，现在更加需要的

是针对真实教学环境的实践研究。开展计算思维教学

多以计算机科学，信息学知识为基点，以计算机作为

辅助工具进行编程或者以不插电教学活动两种形式展

开。Matthias 等人指出，相对不插电来说，编程教育是

困难的，因为它要求学生掌握和理解抽象(Matthias H.

A., 2018)，另外，由于资源有限，中国仅有少部分地区

能够为K12阶段的学生提供足够多的资源实现计算机支

持的编程教育，而不插电的教学可以随时随地进行，

不受资源限制。在K12阶段不插电的教学活动更能提升

学生兴趣，加强学习效果。值得一提的是，虽然计算

思维多与编程联系起来，但理解编程更加重要，正如

周以真教授所说，“像计算机科学家一样思考比有计算

机编程能力重要的多。”不止编程能够锻炼计算思维，

还有更多的方式。研究表明，非编程的方法是实用的

而且简单易操作，不插电的教学活动不仅让学生理解

了计算机科学的概念，更重要的是提升了学生的思维

能力(王芬与何聚厚, 2017)，而非编程的方法更能吸引

学生进行计算思维的学习，而学生的收获也超出计算

机编程学习。

2. 文献综述

2.1 计算思维

计算思维的相关研究可以追溯到 20 世纪 50 年代，麻省

理工学院终身教授西蒙•派珀特（Seymour Papert）在

《认知器演算法》中提出了“计算思维”。由于当时计算

机教育的发展有限，这一概念没有引起相关研究领域

的广泛关注。而如今，由于计算思维与计算机科学，

信息学，数字素养密切相关，计算思维能力的培养有

助于学生解决实际问题，教育工作者越来越关注计算

思维并将其融入到课堂教学中。

计算思维引入到课堂教学给学生的学习带来了积极影

响（Yihua L,1998）。培养计算思维能力的课程包括计

算机科学，信息技术，计算课程等。国内以计算机科

学课程和信息技术课程为主，低年级阶段的信息技术

课程关注技能的培养，高年级阶段聚焦计算思维能力

的培养。相关课程在K12阶段有不同的着重点，小学阶

段注重实践和信息技术的应用，K7-K9阶段注重信息技

术的应用及如何利用计算思维解决问题，高中阶段注

重通过探索计算机科学的概念来使学生理解计算思维

并培养计算思维能力。高中阶段计算机科学概念的学

习，计算机科学家和教师有不同意见。Chiu-fan 等人针

对中学生计算机科学概念的学习态度做了调研，教师

相对于计算机科学家来说，更加赞同中学生接触计算

机科学概念的学习，因为教师知道如何将复杂的概念

简单化并教授给学生，计算机科学家们则显得较为保

守，他们认为计算机科学概念应该在大学阶段学习

（Hu,C.,Wu,C.,&Wang,A,2017）。实际上，计算机科学

的学习不仅限于大学，将复杂的计算机科学概念简化，

融入中学课堂是非常必要的。

在中学计算机科学概念类学习课程中最大的问题是，

传统教学方式针对概念类知识的学习，主张讲解和记

忆，忽视了思维能力的培养，枯燥的概念学习和强硬

16

的背诵记忆造成学生不仅对课程反感，对计算思维也

产生了误解。Debroah 等人的研究表明，高中计算机科

学课程中，运用适当的教学策略，能够使中学生有效

地学习计算机科学概念，改变对计算思维的误解，从

多方面提升学生的计算思维能力，让计算思维更加实

用（Flelds, D. A., Debora, L. U. I., & Kafai, Y. B.2017）。

虽然，K12 阶段的课程培养有不同的着重点，但不插电

的计算机科学活动适合不同学段和任何国家的学生

（ Bell, T., Alexander, J., Freeman, I., & Grimley, M.

2009），不插电的教学活动形式非常适合计算机科学

概念的学习。这种形式的教学受到学生的青睐，它不

仅能消除编程障碍，使学生直接通过活动学习计算机

科学和信息学的基本概念和原理；再者，不插电的计

算思维教学使学生不局限于电脑前，有充分的活动空

间；另外，不插电的教学方式使学生沉浸在活动情境

中，在具体的实践中培养学生解决问题的能力。

2.2 不插电的计算思维

不插电的计算机科学教学活动由新西兰的 Tim Bell，

Lan H.Written 和 Mike Fellowes 三位老师发起，指的是

通过有趣的游戏、谜题来让学生理解计算机科学的概

念，提高学生对计算机科学的兴趣，达到不用打开计

算机就可以很好的理解计算机科学的概念。过去的几

年，由Tim研究团队发起的不插电的计算机科学项目受

到国际多个国家的吸收和使用，并且受到美国的关注

并加入了 ACM 义务教育 K12 阶段的课程。将计算思维

融入到K12教学中的一个途径是任务的设计与描述，计

算思维教学的任务应该区分于其他教学任务 (Barr, V., &

Stephenson, C. 2011)。任务驱动的计算思维教学模式具

有可行性和高效性（吕会庆、张巍，2012），牟琴等

人提出了基于计算思维的任务驱动教学模式（TDMCT）

并进行实践，结果表明这种教学模式在培养学习者的

自我建构和创新思维上有较大的进步，不仅能够提高

学习效率，而且可以培养学习者的计算思维能力。

基于以上分析，本研究以二进制卡牌课程为例，以不

插电的形式开展教学。并提出假设：假设 1，不插电的

计算思维教学活动相对于传统教学方式，能够帮助学

生学习理解计算机科学的概念并提升学习兴趣，使概

念的学习不止停留在抽象阶段而变得更加有形。假设 2，

任务驱动的学习在高中阶段是可行的，能够提升学生

的高阶计算思维能力。

3. 研究设计

3.1 研究方法和工具

本研究是实证研究，主要用课堂观察法和问卷调查法。

课堂观察的目的指向学生学习的改善，在课堂活动中

观察学生学习状态。问卷法是通过由一系列问题构成

的调查表收集资料以测量人的行为和态度的心理学基

本研究方法之一，利用问卷调研收集学生学习反馈数

据，采用李克特五维量表(Likert Scale)，主要从课程体

验、课程满意度，未来学习偏好三个维度对学生进行

调研，经检验问卷量表 α系数为 0.71，符合信效度要求。

复杂的任务由多个学生一同完成最为合适，将学生分

小组进行课堂活动，主要用到二进制卡牌和小组任务

表。卡牌作为在课堂活动中为小组完成十进制和二进

制的相互转化的任务提供辅助和支撑，每小组成员一

副二进制卡牌。

3.2 不插电的教学活动设计

二进制卡牌课程已经有许多实践，本次课程基于计算

思维的任务驱动教学模式对进行教学设计，将教师和

学习者之间通过任务连接，教学过程以任务为主线，

教师作为引导，学生为主体运用计算思维方法来完成

任务。二进制算法和不同进制之间转换的算法是大学

的内容，以抽象化的概念在计算机科学课程中体现，

但本课程以二进制卡牌作为辅助工具，将抽象的算法

简化后，使其能够在高中展开教学。课程教学设计，

主要包括课堂引入，小组任务，总结拓展三个阶段。

小组任务包含三个任务，小组活动任务表内容如表 1 所

示。

表 1 小组任务表

初级任务

任务 1
十进制转化为

二进制

任务 2
二进制转化为

十进制

高级任务 任务 3

符号表示的二

进制转化为十

进制数值

任务 1 和任务 2 在情境引入之后，其目的是让学生利用

工具，实现十进制和二进制的相互转化。前两个任务

是初级任务，能够调动学生学习的主动性，利用卡牌

完成任务的同时，能对二进制算法与十进制算法的相

互转换有基本了解。接下来是高级任务，任务 3。在前

两个任务的基础上，完成此任务，其内容是识别符号

表示的二进制并进行转换，目的是为了检验所学，并

提升学生的高阶计算思维能力，任务三需要学生能够

通过符号抽象进行转换，激发学生思考，提升计算思

维中的抽象思维能力，完成所有任务后，进入课堂总

结阶段，由教师带领学生一起探讨和归纳不同进制数

的共同规律。

3.3 研究对象及过程

课程的参与者是某高中二年级的学生，共 52 人参与课

程（男 34 女 18）。课程进行之前对学生参与课程进行

情意调研，80%以上的学生在此次课程前参与过有趣的

教学活动。个别同学在高中以前，曾多次参与有趣的

教学活动。但是由于高中课程紧张，同学们基本没再

参与有趣的教学活动，对于本次课程学生非常期待参

与。将班级的 52 名同学分成 24 个小组，2-3 人一组。

每组成员之间相互熟悉，这更利于合作探究学习的开

展，以及小组任务的完成。

高中阶段学生很大程度上对计算机科学有一定误解，

认为学计算机就是编程或者学习枯燥的概念。实际上，

不插电的计算思维教学活动能够让计算机科学的原理

和概念以有趣的活动的方式展现，不插电的课堂活动

旨在给学生带来好的学习体验，引起学生兴趣，在一

定程度上纠正其对计算机科学不正确的认识。高中阶

段学生已经有整体的逻辑思维能力，有效的教学方法

对培养计算思维能力的培养起着至关重要的作用 (丁玲,

2017)。另外，学生对于十进制非常熟悉，关于二进制，

17

所有同学都知道二进制计数法存在，对其具体算法并

不了解，同学们对所学内容充满好奇并带着兴趣和好

奇心进入课程。

4. 结果与讨论

课程以学生为中心开展，学生是学习的主体，所以课

程中最主要的教学活动即小组合作完成任务的活动，

小组活动期间有教师仅作为指导者参与，通过对问卷

数据的分析，以及对两个假设的分析进行讨论。

首先通过问卷数据收集进行分析。在课程体验方面，

我们发现与Nicole等人的研究类似，计算思维的学习领

域男生和女生表现出不同的自信等级（Hutchins, N. M.,

Zhang, N., & Biswas, G. 2017）。虽然在小组合作的过程

中，无论是男生还是女生，都能够互帮互助一起完成

任务，有良好的交互。但在学生的课程体验方面，男

生在活动中更加自信，如表 2 所示。

表 2 男女生自信等级（%）

 高 较高 正常 低

男生 14.71 76.47 5.88 2.49

女生 11.11 50.09 38.89 0

在课程满意度方面，80%以上的学生对课程非常满意，

在未来学习偏好方面，超过 84%的学生在未来的学习

中愿意再次参与课程，有同学说：“高中紧张的学习期

间，有一些新颖的课堂活动是很好的，对于这次课程，

既可以通过活动学习知识，又丰富‘学业生活’，可谓两

全其美，希望老师常来。”有学生说：“我认为这样的课

程应多讲一些，既可以锻炼与同学的合作能力，又可

以学习新的知识，我十分赞同多开展几次。”班级原授

课教师也惊叹学生从未如此认真地参与到教学活动中。

再者，对于假设 1。通过课堂观察和对比，不插电的教

学方式，确实更能够提升学生的学习兴趣和参与度，

在传统教学方式讲授二进制算法及其与十进制相互转

化的课程中，由于课程内容与高考无关，50%以上的学

生学习不专注或者做其他学科的任务，学生对枯燥的

概念和复杂的算法并不感兴趣，甚至认为是课程内容

加重了学习负担。但在本次课程中，所有同学都参与

到教学活动中，并且认真主动完成任务并对其算法进

行小组探究，对二进制的理解不仅是抽象的概念，而

转化成了可用的算法工具，在完成任务后寻找不同进

制的算法规律，进行归纳演绎，所有同学都能归纳出

不同进制数值算法的一般规律。实际上，学生不仅学

会了二进制的概念，同时也提升了如抽象和归纳的高

阶计算思维能力。

对于假设 2，任务驱动的学习在高中阶段是可行的，运

用任务驱动的教学策略能够提升学生学习主动性，并

提升学生的计算思维能力。针对课堂活动进行分析。

从活动过程来看，活动开展之前，课堂引入生活的小

问题成功地引起了学生的兴趣，调动学生的积极性，

为下面小组任务的开展和探究二进制计数法的活动奠

定了基础。小组成员进行合作，依次完成小组的三个

任务。期间教师仅作为指导者，帮助学生解答疑惑，

帮助学生解决问题，继续完成小组任务。从学习结果

来看，教学活动三个任务的其正确率如下圖所示。

圖 1 任务表结果

尽管任务难度逐渐增加，但三个任务的正确率几乎呈

现直线增长。在二进制和十进制相互转化的初级任务

中，第一个任务的小组任务结果正确率为 87.50%，在

最后一个高级任务中，正确率以及达到 95%。小组的

任务完成后，学生已经基本掌握利用工具将二进制和

十进制进行转换，并且能够抽象理解二进制数。

小组任务结束后，进入学生提问阶段和课堂总结活动。

经过课堂的总结和拓展，学生了解到计数法不止有二

进制十进制，还有八进制，十六进制等等，并归纳出

所有进制数的共同规律。在课后的反馈中，我们发现

不插电的计算思维课程在高中阶段是可行的，不插电

的教学活动能够培养学生的计算思维能力，更能够使

学生勤加思考，调动学习主动性。

5. 总结与展望

本次课程活动比较成功，无论是课程过程还是学生课

后的反馈来看，高中学生对于不插电的计算思维教学

活动非常感兴趣并且享受这种课程。不插电的计算思

维教学活动以做中学（Learning by Doing）为宗旨，现

今的数字化时代，学生更应该掌握在做中学(Tan and

Kim, 2015)，尤其是 K12 阶段的高年级学生，比起背诵

概念，在实践中理解并运用概念更为重要。

对于本研究也存在一定的局限和不足，在高中的课堂

中开在不插电的教学，班级人数较多，教师不能关注

到每一位学生，在提供指导和帮助学生解决小组困难

的问题上，有待提升。Halil 指出，对于计算思维的相

关研究中，多关注问题解决，技术和思维方式，对学

生本身的关注较少（Haseski, H. I., Ilic, U., & Tugtekin,

U.,2018）。对本研究来说，在关注个性化学习方面确

实有所欠缺，在深入了解学生本身特征方面存在不足。

未来的研究中，将缩减班级人数为 30 人以内，以便关

注每一位学生，关注学生个性化，并对学生的学习特

征进行分析，改进课程进行研究。

6. 參考文獻

丁玲 (2017) 。高中信息技术课程中学生计算思维的培

养。教育，3， 154。

吕会庆、张巍（2012）。基于计算思维的计算机任务

驱动教学模式。计算机教育，7，94-96。

牟琴、谭良和周雄峻（2011）。基于计算思维的任务

驱动式教学模式的研究。现代教育技术，21，44-49。

18

王芬、何聚厚 （2017）。不插电的计算机科学展计算

思维的有效途径。教育现代化，20，45-47。

Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to k-12: what is involved and what is the role of

the computer science education community?. Acm

Inroads, 2(1), 48-54.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009).

Computer science unplugged: School students doing real

computing without computers. The New Zealand Journal

of Applied Computing and Information Technology, 13

(1), 20- 29.

Bocconi, S. & A. Chioccariello, et al. (2016). Exploring the

Field of Computational Thinking as a 21st Century Skill.

8th International Conference on Education and New

Learning Technologies

Flelds, D. A., Debora, L. U. I., & Kafai, Y. B. (2017).

Teaching computational thinking with electronic textiles:

High school teachers’ contextualizing strategies in

exploring computer science. Siu-cheung KONG The

Education University of Hong Kong, 67-72.

Hu,C.,Wu,C.,&Wang,A (2017). How computer scientists

and computing teachers think different in the concepts to be

included in a secondary school computing curriculum. Siu-

cheung KONG The Education University of Hong Kong,

Hong Kong, 50-54.

Haseski, H. I., Ilic, U., & Tugtekin, U. (2018). Defining a

New 21st Century Skill-Computational Thinking:

Concepts and Trends. International Education Studies,

11(4), 29.

Hutchins, N. M., Zhang, N., & Biswas, G. (2017). The Role

Gender Differences in Computational Thinking

Confidence Levels Plays in STEM Applications. Siu-

cheung KONG The Education University of Hong Kong,

Hong Kong, 34-38.

Matthias H Andrea Adamoli, S.(2017). The program is the

system. Proceedings of the 17th Koli Calling Conference

on Computing Education Research 11 (4):29-42

Tan, L. & B. Kim (2015). Learning by Doing in the Digital

Media Age, Springer Singapore.

Wing, J. M. (2006). "Computational thinking." ACM Sigcse

Bulletin 49 (3): 3-3.

Wismath, S. L. & D. Orr (2013). Collaborative Learning in

Problem Solving: A Case Study in Metacognitive

Learning. Canadian Journal for the Scholarship of

Teaching & Learning 6 (2): 23-32.

Yihua L. (1998). Exploration on Database Teaching Based

on Computational Thinking. Boletín Técnico, 55(17),

363-370.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

19

Design A Computational Thinking Board Game Based on

Programming Elements

Sheng-yi WU1*, Jia-cen FANG1, Shu-mei LIAN2

1Department of Science Communication, National Pingtung University, Taiwan

2 ChungCheng Junior High School, PingTung, Taiwan

digschool@gmail.com, pray9821@gmail.com, dido8877@gmail.com

ABSTRACT

Computational thinking (CT) in education has been

considered significant to future national competitiveness and

development. Programming is seen as the most direct way

to develop the CT skills. However, it is also argued that

young starters are easily frustrated and discouraged when

they have difficulties in programming syntax and concepts.

Thus, a programming course with adaptive visualization or

game-based learning is considered a better solution to

encourage higher-order thinking that benefits young

students. The unplug educational board game features low

selling price, intensive interaction among players, and is able

to play without any computing equipment. It is therefore

attracting growing attention from schools and teachers. In

this study, we designed a CT board game, Interstellar

Explorer, on the theme of space. Users play Interstellar

Explorer by controlling on-screen spaceship and defending

with obstacles to find the most residential planet in an

animated outer space. Interstellar Explorer challenges

players to design and implement strategies to carefully

control the movement of spaceship and successfully build a

defense. This study contributes to developing player’s

logical thinking and problem-solving ability as well as

inspiring their imagination and creativity.

KEYWORDS

computational thinking, programming, coding, board game,

interstellar explorer

1. BACKGROUND
Computational thinking (CT) in education has been

considered significant to future national competitiveness and

development ever since the notion of CT was reintroduced

by Jeanette Wing from Carnegie Mellon University in 2006.

In some countries such as America, England, Australia, and

Estonia have started including computing in the school

curriculum and teacher training.

CT uses basic concepts of computing and information

science to solve problems, design systems and understand

humor behavior (Wing, 2006). Along with reading, writing

and arithmetic, CT is a requirement of a part of core

knowledge. CT consists of skills like induction, embedding,

transition, and simulation, which help to solve complicated

problems in the way we are familiar with.

2. MOTIVATION and PURPOSE
The change of trend in education and global realization to

the importance of CT has identified the significance of

developing CT skills at a young age. In other words,

programming is seen as the most direct way to develop the

CT skills. (Buitrago Flórez, Casallas, Hernández, Reyes,

Restrepo, Danies, 2017). However it is also argued that

young starters are easily frustrated and discouraged when

they have difficulties in programming syntax and concepts

(Costelloe, 2004 & Powers, Ecott & Hirshfield(2007).

Furthermore, traditional programming can be boring to

young students mostly due to its requirement of various

syntax inputs (Mannila, Peltomäki & Salakoski, 2006). Thus,

a programming course with adaptive visualization or game-

based learning is considered a better solution to encourage

higher-order thinking that benefits young students

(Brusilovsky & Spring, 2004).

At present on the market, teaching materials to develop CT

skills can be generally divided into three kinds of design: 1)

blocks-based visualization, like code.org and Scratch; 2)

real-robot control, like mBot and Dash & dot; 3) unplug

educational board game with cards, like Robot turles, King

of Pirate, Doggy code, Code master, Robot Wars Coding

Board Game. Each of the designs has its advantages and

limits. The unplug educational board game features low

selling price, intensive interaction among players, and

playing without any computing equipment. It is therefore

attracting growing attention from schools and teachers.

The five board games mentioned above are designed in

accordance with programming elements. Yet, the elements

are incompletely considered due to age setting and game

mechanism. Thus, we try to design a CT board game based

on programming elements, allowing players at any age to

develop and practice CT skills.

3. DESIGN OF CT BOARD GAME AND

AMALYSIS OF PROGRAMMING

ELEMENTLS
We design a CT board game, Interstellar Explorer, on the

theme of space. Users play Interstellar Explorer by

controlling on-screen spaceship and defending with

obstacles to find the most residential planet in an animated

outer space (see Figure 1).

Designed for players aged 8+, Interstellar Explorer

challenges players to design and implement strategies to

carefully control the movement of spaceship and

successfully build a defense. This contributes to developing

player’s logical thinking and problem-solving ability as well

as inspiring their imagination and creativity.

We create a set of cards to use in the game. Players place

these cards in linear arrangement in the way similar to visual

programming language learning. Players are also allowed to

create his/her own conditional environment and implement

20

rules with blank cards where they can define clearly the

condition and rules. Interstellar Explorer provides a game-

based learning environment to teach basic programming and

CT skills including sequences, events, loops, conditional,

parallelism, names, operators, and data (Bernnan & Resnick,

2012) (see Table 1).

Figure 1. Description of Interstellar Explorer

Table 1. Programming Concepts

Concept Gameplay Instruction

sequences Starting starship

events adding meteorite, clearing meteorite,

pause card, observing planets with

telescope, beam card, deflector shield

card, destroying meteorite in front,

changing character, calling for character’s

skill, multifunction card, preference card

loops flying card effect X n

conditionals condition card 1-5

parallelism controlling the opponent’s ship

names

creating function card, calling for

function card, blank condition card, blank

implement card

operators
meteorite explosion, alien attack, magic

power recorder

data magic power recorder, supplies card

4. CONCLUSION
Promoting CT skills in education has become a global trend.

Introducing CT concepts to young learners is even a

significant step to develop problem-solving ability and

logical thinking at a young age. Thus, we design a CT board

game, Interstellar Explorer, based on programming concepts

to help young learners in learning CT concepts and skills. In

the future, we will carry out a study to explore the

effectiveness of this CT board game, Interstellar Explorer,

using the computational thinking scale and the behavior

model.

5. REFERENCE
Brennan, K., & Resnick, M. (2012). Using artifact-based

interviews to study the development of computational

thinking in interactive media design. Paper presented at

annual American Educational Research Association

meeting, Vancouver, BC, Canada.

Brusilovsky, P., & Spring, M. (2004). Adaptive, engaging,

and explanatory visualization in a C programming course.

In L. Cantoni & C. McLoughlin (Eds.), Proceedings of

World Conference on Educational Media, Hypermedia,

and Telecommunications 2004, 1264-1271. Chesapeake:

VA: AACE.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A.,

Restrepo, S., & Danies, G. (2017). Changing a

Generation’s Way of Thinking: Teaching Computational

Thinking Through Programming. Review of Educational

Research, 0034654317710096.

Costelloe, E. (2004) Teaching Programming The State of the

Art. Department of Computing, Institute of Technology

Tallaght, Dublin 24. CRITE Technical Report.

Falkner, K., Vivian, R., & Falkner, N. (2015, January).

Teaching Computational Thinking in K-6: The CSER

Digital Technologies MOOC. In Proceedings of the 17th

Australasian Computing Education Conference (ACE

2015) (Vol. 27, p. 30).

Grover, S., & Pea, R. (2013). Computational Thinking in K–

12 A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Mannila, L., Peltomaki, M., & Salakoski, T. (2006). What

about a simple language? Analyzing the difficulties in

learning to program. Computer science education, 16(3),

211-227.

Powers, K., Ecott, S., & . Hirshfield , L. (2007). Through the

looking glass: teaching CS0 with Alice. Proceedings of the

38th SIGCSE technical symposium on Computer science

education SIGCSE '07, 39 1, 213-217.

Wing, J. (2006). Computational thinking. Communications

of the ACM, 49(3), 33–36.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

21

Computational Thinking and

Coding Education in K-12

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

22

Analysis of Learner's Self-efficacy Using Coding Education Support System for

Understanding Complex Problem-Solving Steps

In-seong JEON, Hyeon-jeong JEONG, Ki-sang SONG*

Korea National University of Education, Korea

wf212@naver.com, dolimofe@naver.com, kssong@knue.ac.kr

ABSTRACT
In this study, Levenshtein distance algorithm-based coding

education support system which shows learners’ progress in

real time was developed in order to observe how learners

would solve complex problems in the coding environment

and a pilot test was conducted on elementary school students.

When the teacher used the developed system to teach

students, there was a statistically significant difference in

integrated regulation, external regulation, and introjected

regulation among the sub-factors of learning motivation

compared to the conventional classes. Among the sub-

factors of self-efficacy, efficacy dimension showed

statistically significant difference.

KEYWORDS
Coding Education, Software education, Learning

Motivation, Self-efficacy

1. INTRODUCTION
The core of Computational Thinking(CT) is to break down

a complex problem into familiar and easier sub-problems

(problem decomposition), solve the problems by applying

algorithm, review how such problems can be transferred to

similar problems, and decide whether to use computers to

solve them better (Yadav, et al., 2016). In other words,

Computational Thinking is the ability of computer scientists

to solve problems by using computing technology as a way

of thinking to solve problems, so CT plays an important role

in solving complex problems.

Among the methods to graft CT into school education, there

is automation. This element requires learners to connect to

the computer. Learners can learn modeling and simulation

using computing technology in this learning environment.

These automation tools are developed in Scratch or in the

local versions of Scratch so that programmers can learn CT

skills easily through the coding process.

For effective programming learning, learners should have

interest and internal motivation and they should be provided

with the learning method considering the level of individual

learners and interest (Katai, Z. & Toth, L., 2010). However,

in reality, general programming education is conducted for

a large number of learners in a classroom. For a learner to

get an appropriate feedback from a teacher in this situation,

adequate time allowance as well as the teacher’s teaching

ability is necessary (Han, K. W., Lee, E. K. & Lee, Y. J.,

2010). Accordingly, related studies such as scoring

according to the efficiency of the algorithm for a given

problem or analyzing and evaluating the learners' learning

are actively being performed (Jang W. Y. & Kin S. S., 2014).

Yet, automated tools to provide a convenient and flexible

evaluation method are not available. Unlike the

programming environment on the computer, it is very

difficult to maximize the learning effect of software

education in a limited environment where the learner's

programming is analyzed and the task evaluation is

performed manually (Kim M. H., 2007). To overcome these

difficulties, studies on programming learning analysis

system, where the teacher can analyze the learning status

with an automatic and efficient method, give optimal

feedback and easily evaluate tasks of the learners, should be

made. In this study, a block programming education support

system based on Levenshtein distance algorithm, which is

designed to support the teaching of the teacher and promote

the motivation of learners in the field of coding education,

was developed and it was applied to 10 units of classes to

analyze its effects on learning motivation and the self-

efficacy of learners.

2. BACKGROUND

2.1. Algorithm Learning Analysis System

In the algorithm learning analysis system, when a learner

creates a solution to a given problem using a programming

language, the prepared source code is stored in the server,

and the analysis program repeats the execution several times

while confirming the number of times the server code is

stored in the server at a predetermined time interval. Each

time it is executed, data prepared in advance is entered to the

program, and the result is compared with the value of the

prepared answer data. The existing algorithm learning

analysis system uses text-type programming language to

compare strings, line, and compilation results of source code

and answer code according to a certain algorithm, and

provides error or score through message feedback.

These systems work well in environments that use text type

programming languages and have the advantage of being

able to feed back the results immediately. However, there is

no learning analysis system developed for the purpose of

performing such a function in the block type programming

language environment which is currently used at the

elementary and secondary school level. Therefore, the

teacher should observe students roaming around the

classroom and it is difficult for a teacher to identify what a

learner thinks difficult.

2.2. Related Studies

Kim (Kim, M.-H., 2007) designed and implemented a web-

based programming task evaluation system that allowed the

teacher to automatically evaluate the performance of the

program and easily check the style and plagiarism of the

program with appropriate feedback (Kim M.-H., 2007).

23

Song (Song, J.-H., 2011) designed and developed an

automatic scoring-based programming education system

that could perform learner-centered self-directed learning by

performing programming education more efficiently. Jang

& Kim (Jang W. Y. & Kin S. S., 2014) developed a client-

server based system by enforcing teaching-learning

functions of the existing Online Judge style system and

found its significant effect on programming learning. Jeong

(Jeong, J.-K., 2010) developed a system that can be used for

programming learning and evaluation of science high school

students unlike Online Judge system which is used for

evaluation in competitions.

From the analysis of previous studies, it was found that

various automatic scoring systems for programming

learning and evaluation had been developed. However, there

have been no studies related to the development of a system

that supports block programming languages for elementary

and secondary school students and teachers up to now.

Therefore, in this study, a pilot version of a system that

performs block programming language learning analysis

function was developed and the effect of the system on

learning motivation and self-efficacy of learners through the

classes where a teacher uses the system was verified.

3. SYSTEM DESIGN
In this pilot system, a learner can program using Entry, a

block-type programming language, through a web server,

and click the save button to analyze the source code in real

time.

Figure 1. Developed pilot system [J.-H. Kim, et al. 2018]

The system applied to this study divides the web agent into

a view agent to which the teacher and learners connect, a

core agent that analyzes and structures the code, and a DB

agent that stores class information, account information, and

learning information. The teacher opens a class by entering

the class name and the URL address of the answer code.

The learner accesses the system with his/her account, enters

the URL address of the source code, and programs in Entry

environment. The system checks whether the learner clicks

the save button at a pre-determined time interval and saves

accumulated achievements using the Levenshtein distance

algorithm when the save button is clicked.

Levenshtein distance is a kind of edit distance technique that

calculates the minimum number of edits such as deletions,

insertions, or substitutions required when a string is

converted into another string (Levenshtein, 1966).

lev(𝑠1, 𝑠2) =
dist(𝑠1, 𝑠2)

max(|𝑠1|, |𝑠2|)

In this study, the progress of students' learning was

calculated through individual block group agreement and

whole block group agreement.

Individualblockgroupagreement(%)

= 100 × (1 −
𝐿𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝐴𝑋(𝑁𝑜. 𝑜𝑓𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑏𝑙𝑜𝑐𝑘, 𝑁𝑜. 𝑜𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑏𝑙𝑜𝑐𝑘)
)

Wholeblockgroupagreement(%)

= 100 × (1 −
Σ𝐿𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Σ𝑀𝐴𝑋(𝑁𝑜. 𝑜𝑓𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑏𝑙𝑜𝑐𝑘, 𝑁𝑜. 𝑜𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑏𝑙𝑜𝑐𝑘)
)

In addition, if the block type is the same but only the variable

or the block parameter is wrong, it is considered to be

corrected 0.5 times rather than 1.

 The teacher can check which block each learner has used,

how the block of the learner has been changed for a certain

time, and what the degree of final achievement is. The

teacher can also provide corrective feedback to the student

with low achievement level. The algorithm of the overall

pilot system through the above agents is shown in Fig. 2.

Figure 2. Algorithm of pilot system

4. Learners’ Self-Efficacy in Developed Pilot

System Utilization Education
The factors that affect programming education will vary.

Wiedenbeck (2005) presented programming experience,

self-efficacy, and knowledge organization as learning

factors for non-professionals to successfully achieve

programming learning. In this paper, we have proposed

various learning examples for learners to gain programming

experience and consider learning strategies to enhance

learner's self-efficacy. To do this, we conducted a

programming education with a constructive approach and a

cognitive approach to designing teaching and learning. The

learner was able to receive the feedback of the instructor and

confirm the achievement degree of each block and construct

the cognitive processing through the meta - cognition.

24

In order to verify the educational effects of the pilot system

developed in this study, an experiment was administered on

40 grade 5 students in S elementary school in Gwangju,

Korea. The experimental group and the control group

received a total of 10 units of programming education using

a block type programming language. In the case of the

experimental group, the teacher identified the progress of the

learners with the developed system, intervened

appropriately, and let the learners compare their progress

with the teacher's answer. For the control group, on the other

hand, the traditional teaching method was used where the

teacher roamed around the classroom to observe and advise

the learners.

4.1. Program Design

The curriculum of 10 classes applied to the two groups was

structured to learn computer science subjects such as

sequence (SE1), repetition (R), selection (SE2), simple

variable (V), list (L) and concatenation (C) included in the

software education curriculum of elementary school in

Korea. The summary of the curriculum is shown in Table 1.

Table 1. Curriculum for Programming education.
Time Title Elements

1 Basic programming language

manipulation

Use movement, shape block

C

2 Create simple block

application program

C, R

3 Make ‘bears meet bees’

Use repetition with variables

C, R, V

4 Make ‘Bee shot bear’

Use selection Structures

C, R, SE2

5 Make ‘Shark Avoid’ Game C, R, SE2

6 Develop games:

Use Replication Blocks

C, R, SE2, V

7 Complete the game:

Use lists and variables

C, R, L, V

8 Make a gift lottery program

Use random number

C, R

9 Make ‘Producer Speaker’

Use Random Numbers,

Arithmetic Expressions

C, R, L, V

10 Draw a polygon

Use pen-block, basic functions

C, R, F

In the experimental group, learners were asked to check their

learning achievement through the pilot system constantly

during the 10 units of classes. The teacher checked the

achievements of learners during the class and provided

corrective feedback to the student who kept having low

achievement level for quite a long time by analyzing the

causes of low achievement. In the control group, the teacher

gave a lecture just like in the conventional teaching method

and gave feedback directly to the learners while roaming

around the classroom.

4.2. Research Method

In order to measure the learning motivation of the students,

the motivation test tool for youth developed by Lee M. H.

and Jung T. Y. (2007) was modified for elementary school

students. The learning motivation test tool was composed of

26 questions in total; specifically 5 items of Amotivation, 5

items of External Regulation, 5 items of Introjected

Regulation, 5 items of Identified Regulation and 6 items of

Integrated Regulation. Amotivation is the status wherein the

desire to learn is not generated regardless of external stimuli,

External Regulation is behavior control by external factors,

Introjected Regulation is to act through influence of past

experiences such as reward and punishment, Identified

Regulation means that integrated control as external factor

is changed into internal factor, and Integrated Regulation is

the motivation to create and achieve something on its own.

Table 2 shows the items and reliability of sub-factors of

learning motivation.

Table 2. Reliability test of Learning Motivation.
Elements Quantity Item number Reliability

Integrated

Regulation

6 1,3,12,

17,20,23

.839

Amotivation 5 4,6,7,

9,26

.674

Introjected

Regulation

5 11,16,18,19,

25

.750

External

Regulation

5 5,13,14,

15,21

.818

Identified

Regulation

5 2,8,10,

22,24

.775

In order to measure the self-efficacy of students in

programming language, the self-efficacy test tool in

computer programing language education environment

developed by Kim (Kim, K. S., 2014) was modified. The

self-efficacy test tool is composed of 30 questions in total;

specifically 10 questions about language, 10 questions about

Efficacy Factor and 10 questions about Efficacy Dimension.

Language refers to the challenging spirit to develop a

program by knowing the general structure of a programming

language and the terminologies of variables, expressions,

control statements, operators, arrays and functions and

utilizing them. Efficacy Factor refers to whether they have

direct or indirect experience with success or failure. Efficacy

Dimension is the learner's perception on the level of

difficulty of a given task, the willingness to challenge more

difficult problems, and whether to generalize it. Table 3

shows the items and reliability of sub-factors of self-efficacy.

Table 3. Reliability test of Self-efficacy.
Elements Quantity Item number Reliability

Language 10 1,2,3,4,5,6,7,8,

9,10

.875

Efficacy

Factor

10 11,12,13,14,15,

16,17,18,19,20

.874

25

Efficacy

Dimension

10 21,22,23,24,25,

26,27,28,29,30

.835

4.3. Result

In order to verify the homogeneity of the experimental group

and the control group, pre-test was administered to measure

learning motivation and self-efficacy of two groups. As

Table 4 shows, there was no significant difference, which

confirms the homogeneity of the groups.

Table 4. Homogeneity test of group to measure
for Learning Motivation & Self-Efficacy

Area Group N M SD t P

Learning

Motivation

Total

Experi-

Mental

20 73.90 7.873 -.421 .676

Control 19 75.16 10.658

L1 Experi-

Mental

20 22.50 4.274 .432 .668

Control 19 21.79 5.903

L2 Experi-

Mental

20 10.25 3.226 -.934 .357

Control 19 11.32 3.888

L3 Experi-

Mental

20 12.20 3.122 -.959 .344

Control 19 13.26 3.784

L4 Experi-

Mental

20 10.95 3.900 -.401 .691

Control 19 11.53 5.037

L5 Experi-

Mental

20 18.00 3.356 .580 .565

Control 19 17.26 4.520

Self-

efficacy

Total

Experi-

Mental

20 93.20 16.979 .165 .870

Control 19 92.11 23.949

S1 Experi-

Mental

20 29.75 7.813 .024 .981

Control 19 29.68 9.310

S2 Experi-

Mental

20 30.90 5.330 -.814 .421

Control 19 32.84 9.167

S3 Experi-

Mental

20 32.55 6.362 1.343 .187

Control 19 29.58 7.434

∗ p < .05

L1=Integrated Regulation, L2=Amotivation, L3=Introjected

Regulation, L4=External Regulation, L5=Identified Regulation

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension

The results of the post-test on learning motivation and self-

efficacy are shown in Table 5. There were significant

differences in Integrated Regulation, External Regulation

and Introjected Regulation among the sub-factors of

learning motivation, but there was no significant difference

in Amotivation and identification control. There was a

significant difference in Efficacy Dimension in the sub-

elements of self-efficacy, but there was no difference in

Language and Efficacy Factor.

Table 5. Post-test of group to measure
for Learning Motivation & Self-Efficacy

Area Group N M SD t P

L1 Experi-

Mental

20 22.30 4.567 .2074 .044*

Control 19 19.33 4.902

L2 Experi-

Mental

20 10.74 3.374 -

1.623

.112

Control 19 12.43 3.529

L3 Experi-

Mental

20 12.57 4.660 -.997 .324

Control 19 13.86 3.851

L4 Experi-

Mental

20 10.78 4.680 -

1.863

.069

Control 19 13.38 4.555

L5 Experi-

Mental

20 18.65 3.688 2.308 .026*

Control 19 15.76 4.603

S1 Experi-

Mental

20 33.35 7.352 .6511 .519

Control 19 31.86 7.844

S2 Experi-

Mental

20 37.04 8.054 .650 .106

Control 19 33.24 7.162

S3 Experi-

Mental

20 34.70 8.578 1.994 .050*

Control 19 30.05 6.659

∗ p < .05

L1=Integrated Regulation, L2=Amotivation, L3=Introjected

Regulation, L4=External Regulation, L5=Identified Regulation

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension

In order to analyze the difference of the self-efficacy before

and after the application of the system in the experimental

group, the mean and the standard deviation were calculated

by dividing the test period. Table 6 shows the paired t-test

results. As presented in the table, the sum of self-efficacy

after system application is significantly higher than before

the system application. In the analysis of sub-factors, there

was a statistically significant difference in Efficacy

Dimension and there was no difference in Language and

Efficacy Factor.

26

Table 6. Paired Samples t Test of group to measure

for Self-Efficacy.
Area Group Paired Differences t P

N M SD

Total Pre 20 14.10 28.10 2.244 .037*

Post

S1 Pre 20 4.20 11.91 1.578 .131

Post

S2 Pre 20 6.60 8.18 3.606 .002*

Post

S3 Pre 20 3.30 11.32 1.303 .208

Post

∗ p < .05

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension

5. CONCLUSIONS
This study analyzed the effectiveness of learning motivation

and self-efficacy by developing a pilot system that supports

coding education using a block programming language for

elementary school students and teachers. The results are as

follow.

First, in the verification of effects on learning motivation and

self-efficacy, it was found that the teaching method allowing

learners to check their achievements constantly and enabling

the teacher to identify students with low achievement from

time to time and to give them one-to-one feed-backs would

give more interest to learners and enforce them to achieve

the goal.

Second, students were able to gain experience of success in

the programming learning structure through the pilot system

presented in this study. It gives them indirect experience of

continuous success and the ability to create additional

programs by showing achievement unlike the existing error

checking method.

Based on the process and results of this study, it is necessary

to provide a web-based lecture support system where the

teacher can monitor learners in real time and provide a more

convenient learning environment. In addition, it is necessary

to study a system that can integrate and manage the tasks and

achievements associated with the curriculum in conjunction

with CMS or LMS.

6. ACKNOWLEDGMENTS
This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (Ministry of Education) (No.

2017S1A5A2A01026058)

7. REFERENCES
Chang, W. Y. & Kim, S. S. (2014). Development and

application of algorithm judging system: analysis of

effects on programming learning. journal of Korean

Association of Computer Education, 22(2), pp.15-24.

Han, K. W., Lee, E. K., Lee, and Y. J. (2010). “The Impact

of a Peer-Learning Agent Based on Pair Programming in a

Programming Course”. IEEE Institute of Electrical and

Electronics IEEE transactions on education, 53(2), pp.318-

327.

Jeong, J. K. (2010). Design and Construct of Programming

Assessment System based on "Online Judge" for a Science

High School student. master’s thesis, Korea National

University of Education.

 Kim, K. S. (2014). Measuring and Applying the Self-

efficacy in Computer Programming Education. Journal of

The Korean Association of Information Education, 18(1),

pp.111-120.

Katai, Z., Toth, L. (2010). “Technologically and artistically

enhanced multi-sensory computer-programming

education”. Teaching and teacher education, 26(2),

pp.244-251.

Kim, J,-H., Choi, J.-H., Shadikhodjaev, U., Nasridinov, A.,

and Song, K.S. (2018) “Chentry: Automated Evaluation of

Students’ Learning Progress for Entry Education

Software,” to be published in the Advances in Intelligent

Systems and Computing, Springer.

Kim, M. H. (2007). Design and Implementation of an

Automatic Grading System for Programming

Assignments. Journal of Internet Computing and Services,

8(6), pp.75-85.

Lee, C. H., Kim, S. H. & Kim, D. M. (2016). Understand

and actualization of software education. Seoul:

Yangseowon.

Lee, M. H., & Jung, T. Y. (2007). Development and

Validation of the Learning Motivation Scale. Studies on

Korean Youth, 18(3), pp.295-321.

Levenshtein, Vladimir I. (1966). "Binary codes capable of

correcting deletions, insertions, and reversals". Soviet

Physics Doklady, 10(8), pp.707–710.

Song, J. H. (2011). An Automated Assessment based

Programming Education System for Self-Directed

Learning. Doctoral dissertation, Soongsil University.

Wiedenbeck, S.(2005). Factors Affecting the Success of

Non-Majors in Learning to Program. The International

Computing Education Research, pp. 13-24.

Yadav, A., Hong, H., and Stephenson, C. (2016).

Computational Thinking for All: Pedagogical Approaches

to Embedding 21st Century Problem Solving in K-12

Classrooms, TechTrends, Vol. 60, pp. 565–568.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

27

Computational Concepts, Practices, and Collaboration in High School Students’

Debugging Electronic Textile Projects

Gayithri JAYATHIRTHA1*, Deborah A. FIELDS2, Yasmin B. KAFAI1

1 University of Pennsylvania

2 Utah State University

gayithri@gse.upenn.edu, deborah.fields@usu.edu, kafai@upenn.edu

ABSTRACT

Debugging, a recurrent practice while programming, can

reveal significant information about student learning.

Making electronic textile (e-textile) artifacts entails

numerous opportunities for students to debug across

circuitry, coding, crafting and designing domains. In this

study, 69 high school students worked on a series of four

different e-textiles projects over eight weeks as a part of their

introductory computer science course. We analyzed

debugging challenges and resolutions reported by students

in their portfolios and interviews and found not only a wide

range of computational concepts but also the development

of specific computational practices such as being iterative

and incremental in students’ debugging e-textiles projects.

In the discussion, we address the need for more studies to

recognize other computational practices such as abstraction

and modularization, the potential of hybrid contexts for

debugging, and the social aspects of debugging.

KEYWORDS

computer science education, programming, debugging,

electronic textiles, making

1. INTRODUCTION
Debugging, the process to fix problems in code that prevent

a computer program from functioning as intended, is

recognized as a key computational thinking practice in

engineering and computing (College Board, 2017;

McCauley et al., 2008). In addition to being an important

practice, debugging can also illuminate various areas of

student struggle and provide opportunities for correction and

support (Griffin, 2016). This is evident in studies where

novice programmers’ errors have illuminated

misconceptions about specific concepts such as logical

operators or understanding of control-flow statements (e.g.

Brown & Altadmri, 2014).

Yet, debugging is an issue not just in computer science but

also in engineering education (e.g., Patil & Codner, 2007).

Electronic textiles construction kits, that include sewable

microcontrollers, sensors, and actuators (Buechley, Peppler,

Eisenberg, & Kafai, 2013), bring engineering and computer

science together and generate, at times, interconnected

problems for debugging. For instance, during the creation of

an e-textile project, problems can occur in the code, in the

circuitry, and in the crafting and physical design itself, and

students need to test and isolate problems, often fix multiple

co-occurring issues that add to the complexity of the project

(e.g., Kafai, Fields, & Searle, 2014). Thus these hybrid

projects provide an opportunity to promote deeper learning

of debugging in engineering and computing, especially if we

consider debugging as a type of in-the-moment problem

solving of projects (not just code) with errors.

In this paper, we investigate high school students’ (14-18

years) debugging in the context of an eight-week long e-

textiles curricular unit that took place within three

introductory Exploring Computer Science classrooms

(hereafter ECS, Margolis & Goode, 2016). During the unit,

students from three classrooms created a series of four open-

ended projects of increasing difficulty. In order to

understand their debugging more deeply, we studied the

problems that students reported they had to debug. Using

end-of-unit written portfolios and interviews where students

reflected on the challenges they encountered while creating

their e-textiles projects, we studied the following questions:

What types of challenges did students face, and in what

content areas as they were making these projects? What

kinds of computational practices did students report in

relation to solving problems that came up? What social

resources did they draw on to debug projects?

2. BACKGROUND
Debugging has been recognized as a key part of

computational thinking for many years (Grover & Pea,

2013). As Papert (1980) noted, “[e]rrors benefit us because

they lead us to study what happened, to understand what

went wrong, and, through understanding, to fix it” (p. 114).

The historical teaching of debugging strategies has focused

on helping students discover their own syntax problems

(e.g., Robertson et al., 2004) or providing them with

strategies for fixing and finding bugs (Carver & Risinger,

1987) through a variety of methods, such as debugging

exercises and logs, reflective memos, and collaborative

assignments (e.g., Griffin, 2016). Researchers have also

developed different technical supports in the form of

debugging tools. For instance, Tubaishat (2001) provided

tracing tools, while Thomas, Ratcliffe, and Thomasson

(2004) offered visualizations and Robertson and colleagues

(2004) investigated the timing of interruption tools. Nearly

all of this research focused on on-screen programming since

it was common in introductory programming courses then.

As McCauley and colleagues (2008) noted in their

comprehensive review of debugging research, it is unclear

how findings and strategies developed from these earlier

studies apply to visual programming languages and hybrid

construction kits such as e-textiles which also involve

collaborative work.

More recently, scholars have started to identify

computational practices in computer science education, a

focus not just on what concepts students are learning but

how they are learning it and what thinking strategies they

28

develop. For instance, in their examination of students

learning Scratch, Brennan and Resnick (2012) identified

four computational practices: being iterative and

incremental, testing and debugging, reusing and remixing,

and abstracting and modularizing—each of which can result

from rich programming experiences. Similarly, Sullivan

(2008) outlined seven types of scientific thinking that

student exhibited while thinking aloud about solving

robotics problems: observing the problem, isolating the

problem, generating a hypothesis, testing a hypothesis,

controlling variables, manipulating variables, evaluating the

solution, and estimating and computing. Together, these

studies suggest taking a broader view of the thinking

processes that debugging involves.

Several studies have shown that e-textiles can provide a

complex context for debugging. The hybrid nature of e-

textiles means that problems can occur in several

overlapping areas of craft, design, circuitry, and coding

(Kafai, Fields, & Searle, 2014; Lee & Fields, 2017). This

means that identifying underlying problems is potentially

tricky. However, prior studies of debugging in e-textiles

have largely focused on areas of circuitry and physical craft,

with only elementary computing concepts appearing in

studies of debugging (see Litts, Kafai, Searle, &

Dieckmeyer, 2016; Fields, Searle, & Kafai, 2016). Lack of

time may be a reason for this since most e-textiles projects

rarely exceed 16-20 hours of time on projects and rarely

include more than one project requiring programming

sensors or actuators. In our study, one goal of the e-textiles

curricular unit design was to engage students more deeply in

computational aspects of e-textiles for more time (roughly

40 hours of class time) with two projects involving coding.

Further, we intentionally looked at whether students

discussed getting help from others in their descriptions of

debugging in an effort to understand the collaborative nature

of debugging. Previous debugging studies have focused

mostly on individuals as if learning to debug was solely an

individual endeavor (e.g. Fitzgerald et al., 2008). Yet

learning in computer science does not happen in isolation.

Kafai and Burke (2014) called for a reconceptualization of

computational thinking as computational participation,

explicitly recognizing the collaborative nature of computing.

As collaboration is recognized as a key computational

practice for learners to develop (College Board, 2017), some

studies have noted the role of others in problem solving with

computers or robotics. For instance, Deitrick and

colleagues’ (2015) analysis of a programming class through

a socio-historical lens uncovers the intricacies of

collaborative contexts where students, teachers and tools

play a definite role in computational learning. Further,

Jordan and McDaniel (2014) found that peers serve as a

resource for managing uncertainty during problem solving.

Yet much more needs to be understood about collaboration

with debugging, especially in informal or ill-structured

groups (versus pairs or small groups).

3. CONTEXT AND PARTICIPANTS
The ECS initiative comprises a one-year introductory

computer science curriculum with a two-year professional

development sequence. This inquiry-based curriculum has

been successfully implemented with over 20,000 students.

In 2016, we co-developed an e-textiles unit for the ECS

curriculum and piloted it with two teachers, focusing on

teacher practices of making (see Fields, Kafai, Nakajima,

Goode, & Margolis, in press). We revised the unit in 2017

and piloted it with three teachers, this time with a focus on

student learning (the broader focus of this paper).

The revised unit took place over eight weeks and consisted

of a series of four projects: 1) a paper-card using a simple

circuit, 2) a wristband with three LEDs in parallel, 3) a

classroom-wide mural project where pairs of students

created portions that each incorporated two switches to

computationally create four lighting patterns, and 4) a

“human sensor” project that used two aluminum foil

conductive patches that when squeezed generated a range of

data to be used as conditions for lighting effects. Student

artifacts included stuffed animals, paper cranes, and

wearable shirts or hoodies, all augmented with the sensors

and actuators. All the students also documented their

projects in portfolios in which they summarized their

projects, shared challenges that they faced, and reflected on

their learning during the e-textiles unit.

In Spring 2017, three high school teachers, each with 8-12

years of computer science classroom teaching experience,

piloted the e-textiles unit in their ECS classes in three large

public secondary schools in a major city in the western

United States. All three schools had socioeconomically

disadvantaged students (59-89% of students at each school)

with ethnically non-dominant populations (i.e., the majority

of the students at each school include African American,

Hispanic/Latino, or southeast Asian students). In School 1,

Angela taught 22 students (6 girls and 16 boys), in School 2,

Ben taught 36 students (17 girls and 19 boys), and in School

3, José taught 29 students (20 girls, 9 boys). All the students

were of 14-18 years of age. All names of teachers and

students are pseudonyms.

4. DATA COLLECTION AND ANALYSIS
Data for this project include all written portfolios submitted

by consenting students (69 students from 3 classrooms) and

interviews with pairs of students from each classroom (16

students total) discussing problems they encountered while

making their e-textiles artifacts. We began analysis by

identifying debugging episodes that students reported in

their interviews and portfolios. We then grouped these

episodes student-wise (69 students), combining two or more

challenges whenever a student shared the same issue, both

in the interview and the portfolio. This resulted in 210 total

debugging episodes.

We coded the debugging episodes in a number of ways,

drawing on concepts and frameworks from prior studies

whenever applicable. To begin, each episode was classified

by content (crafting, circuitry, programming, and design)

and then sub-classified within more specific areas of these

domains. For instance, we subdivided circuitry based on

codes by Peppler and Glosson’s (2012) research on e-

textiles: connections, polarity, and current flow. For

programming, we drew on Brennan and Resnick’s (2012)

framework of computational concepts: data, events,

sequence, conditionals, logic operators, and loops. We also

included syntax, an issue specific to text-based

29

programming language. However, with very little prior

research done to understand student challenges in designing

and crafting, we needed to develop new codes to categorize

these challenges, including sewing mechanics, physical

construction, and three-dimensional issues of design.

Multiple codes could be used for each episode, since areas

often overlapped (e.g., a problem involving both circuitry

and code). We also included a “general” subcategory in

cases of vaguely described problems.

In addition to analyzing content domains, we looked at

computational practices students exhibited in their

descriptions of the debugging process. For this we used both

Brennan and Resnick’s (2012) framework of computational

practices and Sullivan’s further subdivision of problem

solving with robotics (see Section 2 for descriptions).

Notably, Brennan and Resnick classify “testing and

debugging” as one computational practice. However, while

problem solving their projects, students often reported

practices such as being iterative, so we included all practices

identified by Brennan and Resnick and Sullivan in our

coding of debugging episodes.

Finally, we considered the larger context of debugging,

specifically what resources students used to resolve

problems, including digital tools (e.g., Arduino IDE error

message bar), physical tools (e.g., seam rippers or curved

needles), or social resources (e.g., peers, teachers). Few

students reported the use of digital or physical tools.

However, many students frequently listed collaboration as a

key resource while debugging. Below we share overarching

findings from this analysis, focusing on computational

concepts, computational practices, and collaborative

resources to debug e-textiles projects.

5. FINDINGS

In the following sections, we report our findings under three

categories-computational concepts, practices, and the

collaboration that emerged from student portfolios and

interviews analysis.

5.1. Computational Concepts Involved in Debugging

In earlier studies of debugging with e-textiles, crafting,

circuitry, and simple computational challenges were the

primary areas of debugging (Litts et al., 2016; Fields et al.,

2016). In this study we found similar reporting of problems

that arose in crafting and circuitry, but we also identified two

other areas of debugging that were not discussed in earlier

studies. First, students in our study reported coding

challenges almost as often as crafting or circuitry and this

highlighted some key coding concepts. Second, students

also encountered new challenges in three-dimensional

design. We describe these two areas in more detail below.

Among the 210 total debugging episodes, concepts

discussed were almost evenly distributed across coding

(29%), crafting (30%), and circuitry (28%). Within the

episodes that discussed coding challenges and resolutions, a

wide variety of concepts were reported, ranging from simple

problems with syntax and labeling to more advanced issues

with logical operators and control-flow statements. Forty-

three students across three classes mentioned coding

challenges at least once: a total of 61 episodes. Of these

debugging episodes focused on code, 64% of included

“simple” issues that involved syntax, mislabeling variables

or incorrect usage of constants. For example, some of these

bugs included fixing brackets in conditional statements and

functions, and mislabeling a sensor as “OUTPUT” instead

of “INPUT.” While these are still relatively simple issues,

resolving syntactical and labeling bugs such as these is a key

practice in coding (McCauley et al., 2008).

However, 36% of the coding issues shared revolved around

more complex computational concepts such as determining

mathematical expressions for ranges of sensor values and

managing multiple conditional statements. Consider David

(School 1), who had difficulty determining the most

effective ranges for his human sensor project. This project

included two conductive patches that created a range of

numerical values depending on how hard someone

squeezed. Students had to create four ranges of these values

and program them to trigger different lighting patterns. As

David expressed, “it was harder to think of how big your

range had to be so that it would actually react to how you

want it to be.” After he realized his first attempt at coding

ranges was inadequate, he iteratively tested the sensor, and

represented a sequence of readings on a number line. Many

students struggled with coding the ranges on their patches

and took substantial time to fix them. Other more complex

challenges that students faced included organizing multiple

conditionals, especially if they involved two stages (i.e.,

using “if___, else___” instead of just a series of “if”

statements), using additional sensors (e.g., light sensor) or

in-built functions (e.g., random number generator). The

variety and relative complexity of coding challenges

reported by students highlight the affordances of e-textiles

to support debugging both simple and advanced

computational coding concepts.

Besides struggles with coding, another new area of struggle

involved designing circuits on a three-dimensional artifact

such as a stuffed animal or sweatshirt, especially common in

the human sensor project. These designs required students to

plan their circuitry two-dimensionally on paper but translate

it onto a three-dimensional item. This posed new challenges

to students. Thirteen of the 69 students (19%) specifically

mentioned this issue within their debugging. For instance,

while making his “Angry Bird” stuffed animal project,

Rodrigo (School 1) realized he had to change his circuitry

once he started working in three dimensions. “I made these

changes because it was difficult planning out a 3D model on

paper and if I hadn’t made changes to the pin numbers, then

the paths would have crossed,” he explained. Photos from

his portfolios are visible in Figure 1, where he showed two

sides of the stuffed animal as well as his final circuitry

diagram highlighting those same two sides (front and

bottom). Though issues of three-dimensional circuitry

design have not appeared previously in work on learning

with e-textiles in K-12 education, it has come up with

university students during clinical interviews (Lee & Fields,

2017), suggesting it may be an area of debugging that

students face while working on more advanced projects.

This also raises opportunities to consider spatial thinking in

e-textiles design.

30

Figure 1. Rodrigo’s Angry Bird project (top left to right

clockwise): Upper view; bottom view (showing

microcontroller); Circuit diagram.

5.2. Computational Practices Related to Debugging

In addition to content areas of debugging, we also sought to

better understand the process of debugging, analyzing this

through the computational practices lenses. Out of 69

students, 60 shared at least one of the four standard

computational practices suggested by Brennan and Resnick

(2012) in their framework. Out of these four practices,

testing and debugging was the most mentioned (47

students), followed by iterative and incremental practices

(35 students). The two other practices, abstraction and

modularization, and reusing and remixing were rarely

discussed. This may be because of how the questions were

phrased in interviews and in the portfolio, which focused on

challenges students faced. For instance, in their focus on

problems, students did not mention remixing designs

although remixing and reusing daily-use items such as

backpacks and soft toys was an integral part of their human

sensor project. Further, though there were opportunities for

applying abstraction and modularity (i.e., breaking down a

project and/or code into parts), this did not seem to be a

conscious way that students thought about this process with

regard to problem solving. However, yet another

computational practice that emerged from student

descriptions was collaboration, which is also presented as a

perspective in Brennan and Resnick’s (2012) framework.

Thirty-six students reported on collaboration as an integral

aspect of fixing errors, leading us to suggest collaboration as

more of a computational practice rather than a perspective

developed, which we will elaborate shortly.

Though all debugging episodes concerned students fixing

issues, in some instances students shared more specific

details about how they identified, isolated, and otherwise

focused on understanding a particular problem. In these 47

instances, we coded for specific areas that Sullivan (2008)

identified. The most prominent of these were observing the

problem (46 students), isolating the problem (43 students),

and generating a hypothesis about the cause of the problem

(35 students). As an example, consider how Alexa and

Antonio (School 2) worked through a series of circuitry

problems in their Pacman-themed mural project (see Figure

2). As Alexa expressed in her portfolio: “[In] our first design

we wanted the playground on the back of project. When we

tried that, the conductive thread crossed each other… We

dealt with our problem by redesigning our project, so that

the playground was in the front and the conductive thread

wasn’t touching.” Alexa and Antonio first observed the

source of the error as the short-circuit (crossed threads) and

hypothesized that the spatial placement of the Circuit

Playground (microcontroller) at the back of their Pacman

mat was causing the short circuit. They were able to isolate

specific locations where these short circuits occurred and

plan their next iteration to fix them.

Figure 2. Alexa and Antonio’s Pacman project

Along with testing and debugging, being incremental and

iterative was another other key computational practice

evident in student narrations. Of the 35 students who shared

about this, 29 discussed incrementally revising their project

design and 10 shared about repeatedly testing their sensor

values and adjusting their project code to suit the varying

values. (Note: we classified repeated testing of a problem

under iteration rather than testing and debugging). One of

the key challenges underlying revisions was translating

project plans from paper representations to physical

artifacts. As previously mentioned, many students had to

revise their project upon realizing that their plan on paper

did not work when sewn in three dimensions. For instance

Alma (School 2) expressed that “[W]hen sewing [our

project] we realized that everything was basically

backwards” and had to substantially change the placement

of each LED so to have “clean lines” without short circuits.

Besides design translations, the other major area of being

iterative and incremental was in testing the sensor patches.

Here David (School 1) again provides an explanation for

what iterative testing looked like:

So from my last project, it was a human sensor and my

scales were… pretty much wrong to the point where only

one pattern worked… [T]o fix the problem… I slowly

started testing out. So, I touched it. Okay, this is the

values for a light touch, just inputted that. I said, ‘let’s

squeezed it harder.’ [sic] I looked at the values, and

inputted that… As I looked at the values, I am like, okay,

the range from this to the next pattern, it’s kinda too

small. So I have to make it bigger so that it can be a bit

more sensitive.

This encouraging example of iteration demonstrates the

careful way that some students had to work to program their

sensors. Often their first attempt would result in poorly

thought-out ranges, and, like David, students had to proceed

through cycles of testing and adjusting the range of values

corresponding to squeezing. Though only 10 students

described this particular process, it is a practice that could be

expanded on more intentionally in future iterations of the

curriculum and in debugging pedagogy more generally.

5.3. Collaboration Contexts Related to Debugging

One unexpected finding was how often students’ debugging

involved collaboration with classmates, partners and

31

teachers. Most students (75%) explicitly mentioned help

they received from peers or a teacher in at least one of the

challenges they described (in 36% of the challenges overall).

Unlike an earlier study that observed low peer collaboration

in e-textiles (Litts et al., 2016), this analysis revealed student

engagement with different types of collaborators throughout

their e-textiles debugging, from their immediate partners on

a project, to students at the same table, to the wider class

community.

Students reported different kinds of supports that they

received from peers and teachers across a range of issues—

from identification of syntactical errors to understanding

concepts such as conditional statements. An example for a

simple support includes Ethan’s (School 3) reporting of dim

lights in his quilt project. His classmate helped him locate

and isolate the problem: missing a line in the setup section

of the code that initialized the pin to OUTPUT. Students also

mentioned getting help with more complex struggles. For

instance, Allie (School 2) used her classmates to test the

sensors of her human sensor project, using “different

people's pressure” and changing the ranges in her project.

Surprisingly, students rarely mentioned teacher participation

in debugging (close to 11% of challenges).

Collaboration was mentioned frequently in students’ reports

of debugging although students were graded individually for

this unit. That so much collaboration was evident in these

contexts suggests that there is much more to discover about

unstructured peer-to-peer debugging in students’ e-textiles

design processes and in debugging open-ended

computational projects.

6. DISCUSSION
Our analysis of student challenges and solutions

demonstrates that debugging open-ended e-textiles projects

can provide a rich context for students to experience a range

of computational concepts and practices. Our study noted

promising new areas of conceptual struggles for e-textiles

students, specifically in the domains of coding and three-

dimensional design. We think this is because students were

able to go deeper in these areas with two advanced e-textiles

projects compared to prior studies that only had one such

project (e.g., Fields et al., 2016; Litts et al., 2016). This

suggests that pursuing a series of challenging e-textiles

projects may provide more opportunities for deeper learning

of computing concepts and practices than just one or two

projects. It also raises the potential for supporting debugging

more generally by creating a series of projects in other

computational domains, not just e-textiles.

In addition to conceptual learning, students in this study

reported using certain computational practices such as being

iterative, testing and debugging, and collaboratively

problem solving. Interestingly, within the area of debugging,

students’ reports consistently highlighted the need to

identify and isolate problems, something that should not be

trivialized. Unlike other studies of debugging that focus

solely on debugging code (e.g., Brown & Altadmri, 2014),

students with e-textiles projects had to consider the origin of

a bug from among several possibilities: code, circuitry, craft,

or spatial design. Yet, we also recognize that this study was

limited to students’ reporting of bugs rather than a study of

observing of how they actually solved them. This opens up

the need for deeper research on students’ in-the-moment

debugging to see whether students engage in other steps of

debugging such as manipulation of variables, evaluation of

solutions, and estimation of data.

One other key finding was frequent student collaboration

during problem solving. Students shared collaboration not

only at the level of formal pairs and small groups but within

the broader classroom, turning the class into a community of

learners. The physical layout of the classroom with tables

and shared supplies along with the teachers’ allowing

students to move between tables may have encouraged this

fluid collaboration (Fields et al., in press). More so, these

findings call for a reconceptualization of collaboration in

these spaces to better understand the roles taken on by

different participants. A closer look at these types of settings

may help us understand and classify different kinds of

supports students provide to each other. Such an analysis

could also help us understand the supportive role of teachers

in creating collaborative classrooms, informing the

development of new pedagogical approaches for students

and professional development for teachers.

The interdisciplinary nature of e-textiles provided a unique

opportunity to study debugging in a hybrid context. Further,

the ability of debugging exercises to develop computational

thinking and practices in learners has called for “explicit

instruction in debugging [to] be fundamental to any

beginning programming class” (p. 86, McCauley et al.,

2008). If debugging is a core area of computation, then as a

field we need to look beyond code-only settings of

computation to hybrid settings (including but not limited to

e-textiles) where students are introduced to debugging in

more challenging situations which demand multiple

iterations of revising and testing. Further, more studies of

debugging are needed in many contexts that look at it less as

an individualistic and more as a social practice, moving from

computational thinking to computational participation

(Kafai & Burke, 2014).

7. ACKNOWLEDGEMENTS
This work was supported by grants from the National

Science Foundation to Yasmin Kafai, Jane Margolis, and

Joanna Goode (# 1509245), and Yasmin Kafai and Mike

Eisenberg (#1742140). Any opinions, findings, and

conclusions or recommendations expressed in this paper are

those of the authors and do not necessarily reflect the views

of NSF, the University of Pennsylvania, or Utah State

University. Special thanks to Tomoko Nakajima for her help

with data collection and to Debora Lui, Justice T. Walker,

and Mia Shaw for their valuable feedback.

8. REFERENCES
Brennan, K. and Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. Annual Meeting of the

American Educational Research Association Vancouver,

BC, Canada.

Brown, N. C., & Altadmri, A. (2014, July). Investigating

novice programming mistakes: Educator beliefs vs.

student data. In Proceedings of the tenth annual

32

conference on International computing education

research (pp. 43-50). New York, NY: ACM.

Buechley, L., Peppler, K. A., Eisenberg, M. & Kafai, Y. B.

(Eds.) (2013). Textile Messages: Dispatches from the

Word of Electronic Textiles and Education. New York,

NY: Peter Lang Publishers.

Carver, S. & Risinger, S. (1987). Improving children’s

debugging skills. In G. Olson, S. Sheppard & E. Soloway

(Eds.), Empirical Studies of Programmers: Second

Workshop (pp. 147-171). Norwood, NJ: Ablex.

College Board (2017). Advanced Placement Computer

Science Principles Course Guide. Retrieved from

https://apcentral.collegeboard.org/pdf/ap-computer-

science-principles-course-and-exam-description.pdf

Deitrick, E., Shapiro, R. B., Ahrens, M. P., Fiebrink, R.,

Lehrman, P. D., & Farooq, S. (2015, July). Using

distributed cognition theory to analyze collaborative

computer science learning. In Proceedings of the eleventh

annual International Conference on International

Computing Education Research (pp. 51-60). New York,

NY: ACM.

Fields, D. A., Searle, K. A., & Kafai, Y. B (2016).

Deconstruction kits for learning: Students’ collaborative

debugging of electronic textile designs. In FabLearn ’16,

Proceedings of the 6th Annual Conference on Creativity

and Fabrication in Education (pp. 82-85). New York,

NY: ACM.

Fields, D. A., Kafai, Y. B., Nakajima, T. M., Goode, J. &

Margolis J. (in press). Putting making into high school

computer science classrooms: Promoting equity in

teaching and learning with electronic textiles in Exploring

Computer Science. Equity and Excellence in Education

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy,

L., Simon, B., Thomas, L., & Zander, C. (2008).

Debugging: finding, fixing and flailing, a multi-

institutional study of novice debuggers. Computer

Science Education, 18(2), 93-116.

Griffin, J. M. (2016, September). Learning by taking apart:

deconstructing code by reading, tracing, and debugging.

In Proceedings of the 17th Annual Conference on

Information Technology Education (pp. 148-153). New

York, NY: ACM.

Grover, S., & Pea, R. (2013). Computational thinking in

K–12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Jordan, M. E., & McDaniel Jr, R. R. (2014). Managing

uncertainty during collaborative problem solving in

elementary school teams: The role of peer influence in

robotics engineering activity. Journal of the Learning

Sciences, 23(4), 490-536.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why

children need to learn programming. MIT Press.

Kafai, Y., Fields, D., & Searle, K. (2014). Electronic

textiles as disruptive designs: Supporting and challenging

maker activities in schools. Harvard Educational Review,

84(4), 532-556.

Lee, V. R. & Fields, D. A. (2017). Changes in

undergraduate student competences in the areas of

circuitry, crafting, and computation after a course using

e-textiles. International Journal of Information and

Learning Technology, 34(5), 372-384.

Litts, B. K., Kafai, Y. B., Searle, K. A., & Dieckmeyer, E.

(2016). Perceptions of productive failure in design

projects: High school students’ challenges in making

electronic textiles. International Conference of the

Learning Sciences, 498-505.

Litts, B. K., Kafai, Y.B., Lui, D. A., Walker, J. T., &

Widman, S.A. (2017). Stitching codeable circuits: high

school students' learning about circuitry and coding with

electronic textiles. Journal of Science Education and

Technology, 26(5), 494-507.

Margolis, J., & Goode, J. (2016). Ten Lessons for CS for

All. ACM Inroads, 7(4), 58-66.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy,

L., Simon, B., Thomas, L., & Zander, C. (2008).

Debugging: a review of the literature from an educational

perspective. Computer Science Education, 18(2), 67-92.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York, NY: Basic Books.

Patil, A., & Codner, G. (2007). Accreditation of

engineering education: review, observations and proposal

for global accreditation. European Journal of

Engineering Education, 32(6), 639-651.

Peppler, K., & Glosson, D. (2012). Stitching circuits:

Learning about circuitry through e-textile materials.

Journal of Science Education and Technology, 22(5),

751-763.

Robertson, T., Prabhakararao, S., Burnett, M., Cook, C.,

Ruthruff, F., Beckwith, L., et al., (2004). Impact of

interruption style on end-user debugging. In E. Dykstra-

Erickson & M. Tscheligi (Eds.). Proceedings of CHI’04

(pp. 287-294). New York, NY: ACM.

Sullivan, F. R. (2008). Robotics and science literacy:

Thinking skills, science process skills and systems

understanding. Journal of Research in Science

Teaching, 45(3), 373-394.

Thomas, L., Ratcliffe, M. & Thomasson, B. (2004).

Scaffolding with object diagrams in first year

programming classes: Some unexpected results. ACM

Inroads, 36(1), 250-254.

Tubaishat, A. (2001). A knowledge base for program

debugging. In Proceedings of the International

Conference on Computer Systems and Applications (pp.

321-327). Beirut: IEEE Press

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

33

A School-wide Approach to Infusing Coding in the Curriculum

Sirajutheen Shahul HAMEED1, Chee-wah LOW1, Poh-tin LEE1, Nur Illya Nafiza MOHAMED1 ,Wuay-boon NG1,

Peter SEOW2, Bimlesh WADHWA3
1Bukit View Secondary School, Singapore

2National Institute of Education, Nanyang Technological University, Singapore

3 National University of Singapore, Singapore

sirajutheen_shahul_hameed@moe.edu.sg, chee_wah_low@moe.edu.sg, poh_tin_lee@moe.edu.sg,

nur_illya_nafiza_mohamed@moe.edu.sg, wuay_boon_ng@moe.edu.sg, peter.seow@nie.edu.sg, bimlesh@nus.edu.sg,

ABSTRACT

This paper shares a school’s journey in the implementation

of a school-wide programme for students to learn and apply

computing over the years in school. The school leaders see

the value of having students learn computing and coding as

it provides students with opportunities to understand how

technology works and applies to solve problems in the

world. The school worked towards the design of a

programme that enables all students to learn coding. The

design of the programme is underpinned by Papert’s theory

of Constructionism which postulates that students learn best

when engaged in concrete experiences of creating artefacts.

In implementing a school-wide programme that would span

over a student educational experience in school, the school

is cognizant of issues of a packed school curriculum and

teachers’ lack of experiences in computing. The school

addressed the issue of a packed curriculum by structuring

time for learning computing in the time table and integrating

with school subjects. Training partners were engaged to

work with teachers in designing and integrating computing

with the subjects to address the lack of teachers’ experience.

Teachers’ capacity continue to be developed as they gain

competence in computing. The school continues to improve

the programme for sustainability and richer learning

experience for the students.

KEYWORDS

Coding, Computing, school-wide programmes,

Implementation.

1. INTRODUCTION
Computing technology has changed the way we live, work

and learn about the world around us. Beyond being users of

technology, there is a need to understand how computing

technology works and apply this understanding to solve

problems and innovate new ideas that would improve our

lives. Computing technology is transforming manufacturing

with the vision of Industry 4.0 integrating Cybernetics, data

analytics, cloud computing, Machine learning and Internet

of Things to create Smart factories that monitor processes

and make decentralized decisions. The emergence of how

various computing technologies are integrated and utilised

is creating a demand for new skills and capacity to drive the

economy. Hence, there is a need for students to better

understand how computing technology works and harness

it use to improve lives. Around the world, there is a growing

emphasis on introducing Computational Thinking and

coding to students in schools (Brown, Sentence, Crick and

Humphreys, 2014). Countries such as England have made

the teaching of CT skills compulsory in the curriculum and

all students will learn programming (DfE, 2017). Japan,

Korea and Malaysia have announced plans to introduce

programming as part of students’ compulsory education

(Japan Times, 2017; APFC, 2017). However, implementing

programming as compulsory education and the integrating

Computational Thinking into the curriculum is challenging

(Sentence and Csizmadia, 2017)

In our context, we find, teachers lack the content and

pedagogical knowledge of Computing and Computational

Thinking to know how to integrate into the curriculum.

Compared to established fields of study in Sciences such as

Physics or Chemistry, the study of Computer Science in K-

12 is relative new as the computing technology is still

evolving. Teacher training institution does not offer

programmes to train teacher in teaching Computing as a

subject. Interested teachers do not have the opportunities to

learn Computing and pedagogy of teaching Computing.

Teachers need to have a Computing background or undergo

Computing training to teach Computing to students. The

lack of teachers with required skills and content knowledge

impedes the teaching of Computing and Computational

Thinking if all students in a school are to be taught. Second,

teaching Computing and Computational Thinking is still an

emerging field of study in K-12 education settings

compared to tertiary education. At the tertiary level,

students pursue computing degrees which provides

opportunities for them to learn the theory of Computing and

develop the practice over the course of the study. Their

programming skills and craft are developed when they work

on projects and assignments in various topics like learning

programming languages, operating systems, artificial

intelligence, computer networks, data sciences and

databases. Computing covers a wide field of study with

concepts that are difficult to introduce in K-12 settings.

Teachers need to know what topics are relevant and

appropriate to teach the students in K-12 schools. Lastly,

there is lack of the curriculum time and space for schools to

integrate the teaching of Computing and Computational

Thinking. Students in Singapore secondary schools are

required to take the core subjects of English, Mother

Tongue, Mathematics, Sciences, Social Studies, and

Humanities. In addition, there are Co-Curricular activities

which all students are to participate as part of their holistic

education. There are school wide programs in niche areas

of learning such as leadership, entrepreneurship, drama or

environment science with programs. Even if schools want

to introduce Computing to all students, it is a challenge to

find the time to implement the teaching of Computing and

Computational Thinking in a crowded curriculum space.

This paper documents a school’s journey in developing a

school-wide programme – Coding and Computational

34

Thinking infUSed Curriculum (CaCTus) for teaching

Computing and Computational Thinking. The school

leaders and teachers worked together to implement a

school-wide curriculum that introduces students to the

concepts of Computing and Computational Thinking over 3

to 4 years of their studies in the school. The programme is

designed for students to learn and apply Computing

concepts through integration with school subjects that they

are learning in the classroom.

2. SCHOOL BACKGROUND
Bukit View Secondary School (BVSS) resides in the typical

surburban neighbourhood in Singapore. The student

enrolment is 1005 with 61% Chinese, 18% Malay, 16%

Indian and 5% Others (compared to 74.3% Chinese, 13.3%

Malay, 9.1% Indian and 3.3% Others nationally) housed in

25 classes in 2017. About 45% of the students speak

English (compared to 36.9% nationally)# as their main

language of communication at home with the rest using

their Mother Tongue. The profile of the parents’ highest

education attained for Secondary/ITE, Pre-U/Polytechnic

and University are 46%, 25% and 25% respectively

(compared to 26.1, 14.6, 30.7 nationally).

BVSS has offered Computer Studies as an O-Level subject

since 2006. Since 2017, BVSS is only one of 19 schools in

Singapore that offers the new Computing syllabus.

3. DESIGN OF THE CACTUS

CURRICULUM
The school leaders and teachers saw the importance of

learning Computing as it has the potential to develop

problem solving skills for students in the world they live in.

Also, the school leaders saw strong connection of

Computing to other disciplines such as Mathematics,

Engineering, Science, and Design and Technology.

Acquiring skills in computing can be applied in above

subjects. Also, using Computing can help solve problems in

the domains in health care, environment, business, and

engineering. Finding solutions to some of these problems

requires computational skills and knowledge. Above

observations formed basis for setting out following goals of

CaCTus:

 To enable BVSS students to better understand the

fast evolving world due to digitalization.

 To improve BVSS students’ thinking skills in

applying the concepts to solve problems in a

dynamic way.

 To open doors to a host of opportunities for BVSS

students in the future, regardless of the career

path.

The design of the CaCTus draws from the ideas of Papert’s

idea of Constructionism (Paper and Harel, 1991). Based on

Piaget’s constructionist theory[] of learning where students

construct their own knowledge from their prior

understanding, Papert extends it by stating that students

learn as they are engaged in meaningful concrete

experiences. These concrete experiences can be in a form of

designing, constructing and programming an artefact like a

robot or building a kit to measure the quality of water in a

pond. Following such an approach, students are participate

in the process of identifying a problem, experimenting with

various ideas, designing, constructing and testing a solution

to the problem. Through these processes, mental models of

the world around them and their naïve scientific concepts

can be constructed and refines. Computers and mobile

phones are now part of everyday lives but they operate very

differently from the mechanical devices with gears and

levers. If students are limited to being users of computing

devices, i.e.seeing only printed circuit board with chips and

LED displays, they will have naïve mental models of how

the devices actually function. Having primitiveor

incomplete mental models about computing devices could

impede their learning about and with computers in future.

Developing codes and knowing how computing systems are

created to solve problems can help children to construct

mental models of how technology and their different parts

work together. More importantly, students “can use

programs to understand their world, and manipulate their

world” (Guzdial, 2012). In the CaCTus programme, our

goal is not for students to become Computer Scientists, but

for all students to better understand more about the world

around and their thinking processes as they use technology

in concrete ways to solve problems. It is through a

constructionist approach as Seymour Papert iterated that

“computers might enhance thinking and change patters of

access to knowledge.” (Papert, 1980).

In the design of CaCTus programme, the following ideas

guided us:

 Every student in Bukit View Secondary should

have access to the same learning experiences.

 The learning experiences should be continuous

and connected over their stay in the school.

 Students should develop 21st century skills such as

developing critical thinking skills, solving

problems, collaborating with others and

developing creativity.

 Each student should have a rich experience in

using Computing and Coding to solve problems in

authentic contexts.

 There is a diversity of learning experiences for the

students to learn, construct and apply their

knowledge.

Based on above ideas, the school leaders and teachers

worked together with partners in designing rich learning

experiences for students to apply technology in authentic

context to better understand their world.

4. IMPLEMENTATION OF CACTUS
Since 2013, the school had separate enrichment

programmes for students at various levels to learn coding

such as Scratch. The enrichment programmes were

consolidated and reorganized as CaCTus in 2016 for all

students in the school to have a contiuous learning

experience of Computing and coding from Secondary 1 to

3. A school-wide approach was adopted. However,

implementing a school-wide approach competed with the

demands of curriculum and co-curricular activities. To

35

address this issue, CaCTus was structured into the school

timetable with two 40-minute periods each week over a 20

week semester. A modular approach was taken so that all

students were able to participate and experience computing

programmes. Efforts were also made to integrate the

modular activities with the curriculum in subjects such as

Math, Science, Geography and Design and Technology. For

example, Secondary 1 students were introduced to use

Scratch and create a visual simulation of the Water Cycle in

their Science lesson. For Secondary 2 students, drone

programming was introduced to make them understand how

such technology can be used to study geographical features

in their Geography lessons.

Table 1 shows the various modules that were designed for

students in school from Secondary 1 to Secondary 3.

Table 1. Cactus Modules

 Programmes

Secondary 1 Scratch Animation – Bio Water Cycle

IDA Lab on Wheels

Coding – Spheros Programmable

Robot

Hour of Code by Salesforce

Learning journey to Salesforce

Secondary 2

Secondary 3

Scratch Coding – National Education

Salesforce talk on Coding

Sea Perch – Collecting data and

analysis of water quality

Drone programming

Coding workshop @ Nanyang

Polytechnic

Learning journey to IMDA*

Advanced Elective Module

Coding workshops @ Nanyang

Polytechnic
*IMDA – Infocomm Media Development Authority

The programmes were designed to provide students

opportunities to learn computing and coding to understand

the world around them. In the Sea Perch (See Fig. 1),

students collect water quality data from the pond and

analyse the collected quality. It is through the data analysis

that students find meaningful interpretations and understand

the chemical content in the water that otherwise would not

be obvious to them. They have the opportunity to observe

and experience how data is collected through sensors,

manipulated and visualized to determine the quality of

water.

In the design of CaCTus, the goal is to provide every student

with several rich authentic experiences in using computing

and coding to solve problems during their school years. The

students’ learning experiences are not one-off but continue

to build on their prior experiences as they move to the next

grade. To operationalize CaCTus, the school planners are

cognizant of the challenges in the design and

implementation of the programme. First, there were not

enough teachers to design and run the computing

programmes. Most of the teachers are subject teachers in

Sciences, Mathematics, Humanities and the Arts, and they

do not know much about coding or integrate coding into

their respective subject curriculum. Teachers’ would

typicaly not buy-in into the program if they feel that they

lack the skills or experience to teach the students. Secondly,

with a packed curriculum schedule, it was a challenge to

implement a programme for all students. A typical student

in Singapore secondary school takes 7 subjects. In addition,

each student would also participate in Co-curricular

activities during the school day as well as other school-wide

programmes such as the Applied Learning Programmes

(ALP) or outdoor programmes such as the Outward Bound

School (OBS).

Figure 1. Sea Perch collecting water quality data.

To address the challenge of lack of computing skills among

teachers, the school leaders and core teachers partnered with

technology training vendors, experienced in coding, and

government agencies such as the Infocomm Media

Development Authority (IMDA). The school leveraged on

funding and resources from IMDA to design and run the

programs. In the initial stages of the implementation, the

training vendors designed the learning experiences with a

selected group of teachers. The teachers ensured that the

learning experiences are aligned to the goals and ideas of

CaCTus. Working with different vendors and activities, the

teachers looked at how the various experiences are

connected and applied to the subjects. Efforts were made to

ensure that students’ experiences are built upon and

continued as they progressed from one grade to another. For

example, students introduced to visual programming tools

in Secondary 1, continue to use the tools such as Scratch

and Microbit Block-based programming in Secondary 2.

In the second year of implementation, school leaders

engaged the training vendors to conduct workshops for all

teachers to learn and participate in coding and computing

experiences. During such workshops, teachers built games

such as Tic-Tac-Toe, and explored various ways to program

Microbit board e.g. displaying their name with the LED

display. Teachers also learnt about algorithmic thinking by

creating sequenced codes to control a robot and drone.

Creating these experiences provided opportunities for

teachers to equip themselves for introducing simple

concepts of how these technologies function, to the

students. Eventually, the goal is for all teachers to think

about how computing and coding can be integrated into

their teaching subject areas such as Math, Science or

Humanities. Also, The school worked with industry

partners such as Salesforce, IMDA and Nanyang

Polytechnic for learning journeys and workshops. The

36

exposure to industry and polytechnics is aimed to enthuse

students in seeing the practice of computing outside school.

5. FUTURE PLAN FOR CACTUS
The school’s Applied Learning Programme (ALP) and

CaCTus programme were run as independent modules over

each semester since 2016. In 2017, the BVSS team

reviewed the ALP and CaCTus programmes and saw

synergies in both. Consequently , the school has decided to

integrate both programmes and move into a year-long

programme for each level. The integrated programme has

been named as the Junior OUtstanding Leaders in Energy

for Sustainability (JOULES) programme. It is a distinctive

programme that focuses on Science, Technology,

Engineering and Mathematics (STEM) education. This

expanded 4-year programme provides students with

knowledge and experience in design thinking and coding

for environment and sustainable energy.

JOULES emphasizes on STEM and environmental

advocacy to develop leaders of the future who will continue

to champion sustainable development through the use of

technology. Raising the innovation quotient amongst the

student population is another aim of the programme. It is

also hoped that the enriching experience of the JOULES

programme will inspire their students to pursue relevant

STEM courses in their higher education, and contribute

positively to Singapore and the world.

The student outcomes include the following skills and

dispositions: problem solving, design thinking,

computational thinking, scientific literacy and inquiry, and

mathematical reasoning.

6. CONCLUSION
This paper shares the experiences of designing and

implementing a school-wide approach for all students in the

school to learn and apply computing. The school leaders

recognized the importance for all students to have

experiences in learning computing by structuring

programmes into the time table as a subject and integrating

computing into subjects such as Mathematics, Science, and

Geography. Students could learn to apply coding into the

subjects and teachers could better integrate computing into

their subjects. The school leveraged on training partners to

work with school teachers in the initial phases to address the

lack of computing experience. In the later stages, the school

sought to develop teachers’ competence in using computing

for their subjects. To better sustain the programme and

provide students’ a richer learning experience, the new

programme aims to develop students’ skills in

Computational thinking, design thinking, inquiry and

problems solving. We hope that sharing the school’s

journey would provide some understanding in how schools

can implement programmes in learning computing for all

students in the school.

7. REFERENCES
APFC (2017). Preparing Students for South Korea’s

Creative Economy: The Successes and Challenges of

Educational Reform. Retrieved Feb 13, 2017, from

http://www.asiapacific.ca/research-report/preparing-

students-south-koreas-creative-economy-successes

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S.

(2014). Restart: The resurgence of computer science in

UK schools. ACM Transactions on Computing

Education (TOCE), 14(2), 9

DfE. (2017). National Curriculum in England: computing

programmes of study. Retrieved Feb 13, 2017, from

https://www.gov.uk/government/publications/national-

curriculum-in-england-computing-programmes-of-

study/national-curriculum-in-england-computing-

programmes-of-study

Guzdial, M. (2012, May). 21st Century Literacy includes

Computing for Everyone [Video file]. Retrieved

from https://www.youtube.com/watch?v=mGc6clf_Wt4

&feature=youtu.be&t=16m33s

Japan Times. (2017). Computer programming seen as key

to Japan’s place in ‘fourth industrial revolution’

Retrieved Feb 13, 2017, from

http://www.japantimes.co.jp/news/2016/06/10/business/t

ech/computer-programming-industry-seen-key-japans-

place-fourth-industrial-revolution/#.WKG2P_l97b0

Papert, S., & Harel, I. (1991). Situating

constructionism. Constructionism, 36(2), 1-11.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc.

Sentance, S., & Csizmadia, A. (2017). Computing in the

curriculum: Challenges and strategies from a teacher’s

perspective. Education and Information

Technologies, 22(2)

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

37

Learning to Code—Does It Help Students to Improve Their Thinking Skills?

Ronny SCHERER1*, Fazilat SIDDIQ2, Bárbara SÁ NCHEZ VIVEROS3

1 Centre for Educational Measurement at the University of Oslo (CEMO), Faculty of Educational Sciences, Oslo, Norway

2 The Nordic Institute for Studies in Innovation, Research and Education (NIFU), Oslo, Norway

3 Humboldt-Universität zu Berlin, Berlin, Germany

Ronny.scherer@cemo.uio.no, Fazilat.siddiq@nifu.no, Saviverb@hu-berlin.de

ABSTRACT

Learning to code is claimed to be associated with

improvements in other cognitive skills, such creative

thinking, reasoning, and mathematical skills. Although the

claims surround this transferability of coding skills have

already been made in the 1980s and 1990s, the existing body

of research does not provide clear insights into the transfer

effects of learning to code. The current meta-analytic review

shed lights on these effects. We retrieved an overall sample

of 105 experimental and quasi-experimental studies with

posttest-only or pretest-posttest treatment-control group

designs and extracted 539 effect sizes. A three-level

random-effects modeling approach revealed an overall

transfer effect size of g = +0.49. Differentiating between the

types of cognitive skills (i.e., coding, reasoning, creativity,

and math skills), however, indicated differential effects.

Study and sample characteristics were further examined as

possible moderators. Overall, this study identifies positive

transfer effects of learning to code on cognitive skills.

KEYWORDS

Coding skills, transfer effects, meta-analysis, cognitive

skills

1. INTRODUCTION
Undoubtedly, the rapid developments in technology

have impacted many areas of society. Even in education—a

field that is known for its slow progress—things are

changing: Educational systems around the world include

teaching programs that will help students to acquire skills

beyond literacy and numeracy. Among others, these skills

comprise complex problem solving, global competences,

critical thinking, creativity, digital literacy, and

computational thinking (Binkley et al., 2012; ICILS, 2018).

Interestingly, the latter has recently gained considerable

attention. Bill Gates, for example, established its importance

by stating that “Learning to write programs stretches your

mind, and helps you think better, creates a way of thinking

about things that I think is helpful in all domains”. The claim

that learning to code—a critical step in the process of

acquiring computational thinking skills (Denning, 2010;

Grover & Pea, 2013; Shute et al., 2017)—transfers to other

cognitive skills, however, stands on shaky legs. Scherer

(2016) concludes that studies examining transfer effects

disagree in the extent to which these effects can be

established for specific cognitive skills. Sala and Gobet

(2017) warn against the assumption that learning a specific

skill improves other skills as well. The authors further

propose to examine hypothesized transfer effects meta-

analytically to synthesize the body of existing evidence. At

this point, we notice that the concept of computational

thinking is broader than coding, albeit coding is the essential

part of it (Shute et al., 2017).

Although the discussion surrounding the transfer-ability

of learning to code on other cognitive skills dates to the

1980s and 1990s, the existing body of research abounds in

conflicting findings, and previous attempts to meta-analyse

the transfer effects were flawed (Scherer, 2016). For

instance, Liao and Bright (1991) extracted 432 effect sizes

from 65 studies and summarized them to an overall transfer

effect size of d = +0.41. Although this finding indicates that

positive transfer to other cognitive skills may exist, the

authors neglected (a) the clustered structure of their data set

(i.e., effect sizes are nested in studies), and (b) the possible,

differences in effects between cognitive skills. Later, Liao

(2000) provided an update and presented on overall effect of

d = +0.76, obtained from only 22 studies. Since then, the

critical question whether learning to code improves

cognitive skills has not been addressed explicitly in meta-

analyses.

The present study tests the claim that learning to code

transfers to the acquisition of other cognitive skills.

Synthesizing the empirical evidence on transfer effects, we

take two main steps: First, an overall effect size is presented,

and its variation within and across studies is quantified.

Second, possible moderation effects of selected study

characteristics are explored to explain this variation.

2. METHODOLOGICAL APPROACH
This section describes the meta-analytic procedures,

including the literature search and screening, the sample

obtained from them, and the statistical approaches taken to

summarize the transfer effects of coding skills.

2.1. Literature Search and Screening

Relevant literature was identified in existing databases—

including PsycINFO, ERIC, IEEE Xplore, ACM Digital

Library—next to academic journals relevant to the field

(e.g., Computers & Education, Computers in Human

Behavior), existing reviews and meta-analyses (e.g., Liao &

Bright, 1991; Liao, 2000; Shute et al., 2017), and informal

resources (e.g., ResearchGate, personal contact with

authors, publication lists of scholars). The literature search

was constrained to studies that had been published between

1965 and 2017. After an initial screening of titles and

abstracts with respect to their topic fit (i.e., computer coding)

and the empirical nature of the presented study, abstracts and

full texts were submitted to a more fine-grained screening.

This screening was based on the following inclusion criteria:

(a) Study design and control group: Only studies were

considered with an experimental or quasi-

experimental design and at least one control group

38

(i.e., a group of participants not exposed to the

coding intervention).

(b) Outcomes: Only studies were considered with

performance-based outcome measures.

(c) Study context: Only studies were considered that

conducted the experiment or quasi-experiment in

an educational context.

(d) Sample: Only studies were considered with non-

clinical samples, because clinical samples often

involve participants with conditions that may

interfere with their performance on cognitive skills

tests.

(e) Effect sizes: Only studies were considered that

reported effect sizes directly or provided statistics

sufficient to calculate transfer effects.

2.2. Sample

The initial literature search resulted in 5,193 publications.

As these entries were subjected to an initial screening and

the application of inclusion criteria, more than 80 % of them

were excluded and no longer considered for further coding

and data extraction—overall, 105 studies were retrieved, and

539 effect sizes could be extracted. Of these 105 studies, 89

studies reported interventions implemented in regular

classroom lessons, 8 studies reported interventions as part of

extra-curricular activities; all other studies reported

interventions outside of schools but in an educational

context. The sample of studies spanned all educational

levels, ranging from pre-kindergarten to adult education.

Concerning the coding tools used in the interventions, both

text-based and visual coding languages were used to help

students learn to code. All studies contained cognitive skills

measures that assessed either coding skills or skills outside

of the coding domain. Among others, these skills include:

Creative thinking (i.e., skills related to the originality,

fluency, flexibility, and elaboration of ideas and generating

ideas), reasoning skills (i.e., logical thinking, intelligence,

critical thinking, and problem solving), and mathematical

skills (i.e., understanding mathematical concepts,

mathematical problem solving and modeling).

2.3. Statistical Approach

Given the hierarchical nature of the sample of studies—as

indicated by the availability of multiple effect sizes for

single studies—the statistical approach taken to aggregate

transfer effect sizes had to represent this nature adequately.

Although several approaches exist in the meta-analytic

literature, only few qualify for application in this study.

Because most studies did not report correlations between

multiple outcome variables, we adopted a three-level

modeling approach, allowing for within- and between-study

variation of effect sizes (Moeyaert et al., 2017). This

approach performs reasonably well in the presence of

hierarchically structured datasets with effect sizes nested in

studies (Cheung, 2014).

Besides focusing on an overall effect size, we further

examined the extent to which variation in it could be

explained by possible, moderating variables. Introducing

these explanatory variables extended the three-level

random-effects model to a mixed-effects model (Cheung,

2015).

All analyses were conducted in the R package metaSEM

(Cheung, 2015) based on Hedges’ g, a standardized effect

size representing the transfer effects.

3. RESULTS
This section presents (a) the overall transfer effect size, (b)

effect sizes differentiated by types of transfer, (c) moderator

analyses, and (d) analyses of publication bias.

3.1. Overall Effect Size

The three-level modeling approach resulted in an overall

effect size of Hedges’ g = +0.49, 95% CI = [0.37, 0.61],

suggesting a moderate, positive, and statistically significant

transfer effect of learning to code on cognitive skills. This

effect size showed significant variation within studies (2 =

0.20, 95% CI = [0.16, 0.25]) and between studies (2 = 0.28,

95% CI = [0.17, 0.39]), suggesting the adequacy of the three-

level approach. Moreover, the overall test of homogeneity

indicated that effect sizes varied, Q(538) = 2985.2, p < .001.

3.2. Mixed-Effects Modeling

Given the evidence for significant variation of effect sizes

across studies (see 3.1.), we further examined the extent to

which selected study characteristics and the types of

cognitive skills measures explained this variation. The

resultant findings suggest possible moderation effects by

cognitive skills measures.

3.2.1. Study Characteristics

Study design. Studies with a pretest-posttest control-

treatment group design exhibited a slightly higher overall

effect size (g = +0.50, 95% CI = [0.13, 0.90]) than studies

with posttest-only designs (g = +0.47, 95% CI = [0.30,

0.65]). This difference, however, was statistically

insignificant (Z = 0.25, p = .80).

Randomization. Studies performing a random assignment of

participants to the experimental conditions exhibited larger

transfer effects (g = +0.56, 95% CI = [0.16, 0.95]) than those

without randomization (g = +0.43, 95% CI = [0.27, 0.59]);

yet, this difference was not statistically significant (Z = 1.04,

p = .30).

Other characteristics. Considering further study and sample

characteristics, we did not find significant moderation

effects by the

 Educational level of learners ranging from

kindergarten to college/university;

 Type of coding language (i.e., visual vs. text-based

languages);

 Intervention length (in hours);

 Coding context (i.e., coding embedded in the

curriculum as part of regular school lessons vs.

coding as an extra-curricular activity).

3.2.2. Cognitive Skills Measures

The overall effect for coding skills was g = +0.75 (95% CI =

[0.39, 1.11]). The overall effect for skills other than coding

was g = +0.47 (95% CI = [0.35, 0.59]).

39

Differentiating between different cognitive skills, we found

positive and significant transfer effects on creativity (g =

+0.73, 95% CI = [0.27, 1.20]), reasoning (g = +0.37, 95%

CI = [0.23, 0.52]), and mathematical skills (g = +0.57, 95%

CI = [0.34, 0.80]).

3.3. Publication Bias

To assess the presence of publication bias in the meta-

analytic dataset, we took several steps (Borenstein et al.,

2009):

(1) Trim-and-fill analyses: No further study would

have been needed on the left side of the outcome-

standard error plot to achieve symmetry.

(2) Rosenberg’s fail-safe N: To achieve null effects,

134,706 additional studies with negative effects

would have been needed. Given the size of this

number, it seems unlikely that this many studies

were not identified by our search protocol.

(3) P-curve: The P-curve did not provide evidence for

severe publication bias—a possible file-drawer

effect is therefore unlikely.

(4) Moderation by publication type: Comparing effect

sizes between published studies (k = 62) and ‘grey’

literature (k = 43 effects, including dissertations

and unpublished research reports) indicated

significant effects favoring published studies,

QM(1) = 19.9, p < .001. The transfer effect for

published studies was g = +0.53, 95% CI = [0.31,

0.76]; for ‘grey’ literature, the effect was lower, g

= +0.25, 95% CI = [0.15, 0.35]. This finding

indicates some degree of publication bias in the

data.

4. DISCUSSION
This meta-analysis tested the claim that learning how to

code improves coding and other cognitive skills. To test

these hypothesized transfer effects, experimental and quasi-

experimental studies presenting computer coding

interventions were synthesized. The aggregated transfer

effect size was moderate, positive, and statistically

significant (g = +0.49). Unlike existing discussions around

the existence of transfer effects from specific domains of

training (Sala & Gobet, 2017)—discussions that called into

question the existence of such transfer effects and thus

transfer of learning in general—the current study provides

evidence that other cognitive skills may indeed benefit from

coding instruction. This finding supports Liao’s and Bright’s

(1991) early and Liao’s (2000) later meta-analyses on the

topic. Our explanation for this supportive finding lies in the

very subskills coding requires: As Shute et al. (2017) note in

their systematic review of computational thinking, the

concept—which mainly comprises coding-relevant skills—

represents a form of problem solving. Even further, the steps

involved in coding (e.g., evaluating information,

representing the problem, testing code or code elements

systematically) align with current models of problem

solving and even creativity (e.g., Scherer, 2016; OECD,

2014).

At the same time, our study showed that these transfer

effects are not uniform across cognitive skills. We identified

stronger benefits for creativity and mathematical skills than

for other skills (excluding coding skills themselves). These

differential benefits may also be traced back to the subskills

involved in them. In fact, there are differences between the

processes creative thinking and, for example, mathematical

thinking entail (e.g., Baer, 2015; Sak & Maker, 2006)—

these differences may provide an explanation of this finding.

To further explore alternative explanations, our future

analyses target possible moderation effects of sample and

study characteristics, including the content domains of the

cognitive skills tests.

Overall, this meta-analysis contributes to the field of

computational thinking in two ways: First, it provides

evidence for the potential benefits of learning to code—an

activity critical to the acquisition of computational thinking.

This evidence substantiates existing claims surrounding the

emphasis of coding skills. Second, it encourages researchers

to take a differential perspective on the transferability of

coding skills by considering multiple cognitive skills as

possible outcome variables at the same time.

5. REFERENCES
Baer, J. (2016). Domain specificity of creativity. New

York, NY: Academic Press.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M.,

Miller-Ricci, M., & Rumble, M. (2012). Defining

Twenty-First Century Skills. In P. Griffin, B. McGaw, &

E. Care (Eds.), Assessment and Teaching of 21st Century

Skills (pp. 17-66). Dordrecht: Springer Netherlands.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein,

H. R. (2009). Introduction to meta-analysis. Chichester,

West Sussex: John Wiley & Sons, Ltd.

Cheung, M. W.-L. (2015). Meta-Analysis: A Structural

Equation Modeling Approach. Chichester, West Sussex:

John Wiley & Sons, Ltd.

Cheung, M. W. L. (2014). Modeling dependent effect sizes

with three-level meta-analyses: A structural equation

modeling approach. Psychological Methods, 19(2), 211-

229. doi:10.1037/a0032968

Denning, P. J. (2010). Great Principles of Computing.

American Scientist, 98, 369-372.

doi:10.1511/2010.86.369

Grover, S., & Pea, R. (2013). Computational Thinking in

K-12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

doi:10.3102/0013189x12463051

ICILS. (2018). International Computer and Information

Literacy Study. Retrieved from: http://www.iea.nl/icils

[12 January 2018]

Liao, Y.-k. C. (2000). A meta-analysis of computer

programming on cognitive outcomes: An updated

synthesis. Paper presented at the Proceedings of world

conference on educational multimedia, hypermedia and

telecommunications.

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of

Computer Programming on Cognitive Outcomes: A

Meta-Analysis. Journal of Educational Computing

40

Research, 7(3), 251-268. doi:10.2190/e53g-hh8k-ajrr-

k69m

Moeyaert, M., Ugille, M., Natasha Beretvas, S., Ferron, J.,

Bunuan, R., & Van den Noortgate, W. (2017). Methods

for dealing with multiple outcomes in meta-analysis: a

comparison between averaging effect sizes, robust

variance estimation and multilevel meta-analysis.

International Journal of Social Research Methodology,

20(6), 559-572. doi:10.1080/13645579.2016.1252189

OECD. (2014). PISA 2012 Results: Creative Problem

Solving: Students’ Skills in Tackling Real-Life Problems

(Vol. V). Paris: OECD Publishing.

Sak, U., & Maker, C. J. (2006). Developmental Variation

in Children's Creative Mathematical Thinking as a

Function of Schooling, Age, and Knowledge. Creativity

Research Journal, 18(3), 279-291.

doi:10.1207/s15326934crj1803_5

Sala, G., & Gobet, F. (2017). Does Far Transfer Exist?

Negative Evidence from Chess, Music, and Working

Memory Training. Current Directions in Psychological

Science, 26(6), 515-520. doi:10.1177/0963721417712760

Scherer, R. (2016). Learning from the Past–The Need for

Empirical Evidence on the Transfer Effects of Computer

Programming Skills. Frontiers in Psychology, 7(1390).

doi:10.3389/fpsyg.2016.01390

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).

Demystifying computational thinking. Educational

Research Review, 22, 142-158.

doi:10.1016/j.edurev.2017.09.003

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

41

To Improve the Computational Thinking of Elementary School Students by

Scaffolding

Chien-i LEE, Sheng-chuan CHUANG*, Shu-min WU

Department of Information and Learning Technology, National University of Tainan, Taiwan
 leeci@mail.nutn.edu.tw, pengin0913@gmail.com, t10455101@stumail.nutn.edu.tw

ABSTRACT

MOE (2016) will bring Computational Thinking ability

into the National Basic Curriculums in order to promote

the students’ problem solving ability is emphasized by

many advanced countries. Although learning

programming design is an important way to develop

computational thinking. However, learning programming

involves many abstract concepts of program syntax. It’s

hard for teachers to solve the problems in class one by one

and provide individual guide which will result in poor

learning aspiration and low learning achievement.

Therefore, this study focused on providing a Scaffolding

Guidance System during the process of solving problems

and aimed to explore the effect of the system design on

computational thinking. The study was bases on quasi-

experimental design, and 48 students from two classes in

an elementary school in Tainan. The 24 students in the

experimental group were taught with the system design.

The 24 students in control group were treated by

traditional instructions. The experiment lasted for eight

weeks and the data were analyzed with ANCOVA

statistical method to explore the differences in learning

efficiency between the system design and traditional

instructions. The results showed that: (1) There were

significant differences between the experimental group

and the control group in learning efficiency; (2) After

receiving the experimental teaching, the low level of

student presented the most significantly different on

computational thinking learning efficiency.

KEYWORDS

Computational Thinking, Visual Programming Language,

Learning Efficiency, Portfolio

1. INTRODUCTION
In 2006, "CT" proposed by Wing won universal attention

and recognition from many countries and scholars. In

recent years, the connotation of various Computational

Thinking has also been proposed and discussed by

scholars, and gradually formed a consensus. (Wing, 2006;

Wing, 2008) identified five core aspects of CT which are

conditional logic, distributed processing, debugging,

simulation and algorithm building. (Brennan et. al, 2012)

use Scratch (designed by MIT Media Lab) -- a

programming environment that enables young people to

create their own interactive stories, games, and

simulations, and then share those creations in an online

community with other young programmers from around

the world -- to develop a computational thinking

framework: computational concepts (the concepts

designers engage with as they program, such as iteration,

parallelism, etc.), computational practices (the practices

designers develop as they engage with the concepts, such

as debugging projects or remixing others’ work), and

computational perspectives (the perspectives designers

form about the world around them and about themselves).

(Lahtinen et al., 2005) indicated that programming is not

an easy subject to be studied. It requires correct

understanding of abstract concepts. Many students have

learning problems due to the nature of the subject. In

addition, there are often not enough of resources and

students suffer from a lack of personal instruction. Also

the student groups are large and heterogeneous and thus it

is difficult to design the instruction so that it would be

beneficial for everyone. This often leads to high drop-out

rates on programming courses in the universities. At

present, there are many difficulties in teaching and

learning activities of programming languages in the

schools. In the process, they encounter complex syntax

instructions, how to implement ideas in programming

languages, and differences in student's level. (Robins et

al., 2003; Lahtinen et al., 2005; Gomes & Mendes, 2007)

Programming itself is a highly logical thinking course

different from the learning of package software. The

current teaching methods will certainly not be able to meet

the learning needs of each student. In addition, due to the

constraints of classroom time, the lecturers did not have

enough time to give individual guidance and provide

immediately feedbacks about all students' questions.

When students encounter difficulties, they often give up

because they can’t get the help. (Gomes & Mendes, 2007)

Therefore, this study developed a "Scaffolding Guidance

System" for primary schoolchildren. When students

encounter learning difficulties of programming, the

system will automatically provide the appropriate

scaffolding guidance.

2. SYSTEM DESIGN
The Scaffolding Guidance System was built in Linux-

based server, running Java-web-based application at

Apache Tomcat, and recording portfolio with MySQL

database. After logging with identity, the upper parts of

interface are links of programming tasks (including flying

bat, underwater world, monkey banana, whack-a-mole,

and shooting game) and user information. Each task has a

simulation animation on left side, and a main functional

block on right side, including code-comparison analysis,

project-code of user, and prompt of similar project-code.

Figure 1 shows the main interface of system.

42

Figure 1. The main interface of system.

The purpose of the system is to parse the programming

task of students, and to produce guided scaffolding to

assist students learning in the system, which provide the

following two functional modules: 1) parsing and prompts,

2) linking with experience. At coding time, students

sometimes forgot or miss some vital blocks so that they

could not accomplish the task. It's helpful that giving

suitable prompts when students fall into troubles. The

module of parsing and prompts will reach the aims that

troubleshoot the above situations. This mechanism is set

by the teacher about how many blocks to complete the task.

When the critical blocks don't exist, what should students

be prompted? Table 1 included below figures out critical

blocks about the task.

Table 1. The fish of underwater world to prompt.

Agent &

Necessary Blocks

Prompts While Missing Blocks

The fish to swim randomly in the

seabed, it must be placed "turn

right block" with "random

parameter" and "move block"

within a "forever block". Then

the fish can swim around.

Use Scratch's API

(https://wiki.scratch.mit.edu/wiki/JSON) to render

Scratch visualizer blocks into JSON-text-format, where

each block is converted to a specific JSON list. Table 2

included below figures out how to map blocks to JSON.

Table 2. The mapping between blocks and JSON-text.

Agent

Visualizer

Blocks

JSON list [["whenGreenFlag"],

["show"],

["doForever",

 [["turnRight:",

["randomFrom:to:", -30, 30]],

 ["forward:", 10],

 ["wait:elapsed:from:", 0.1],

 ["bounceOffEdge"]

]]]]]

In additions, to link with experience of students, we use

“Cosine Similarity” to judge similarity of two tasks.

Because each task has several agents, we use agent as

basic unit to compare code-similarity. Table 3 included

below is for illustration of how to calculate similarity of

agents.

Table 3. The similarity of agents.

Agent

Blocks

List

JSON

(Step1)

[whenGreenFlag,

doForever,

turnRight:,

randomFrom:to:,

forward:,

wait:elapsed:from:,

bounceOffEdge]

[whenGreenFlag,

doForever,

forward:,

wait:elapsed:from:,

nextCostume,

turnRight:,

randomFrom:to:,

bounceOffEdge]

Combine

(Step2)

[whenGreenFlag, doForever, turnRight:,

randomFrom:to, forward:, wait:elapsed:from:,

nextCostume ,bounceOffEdge]

43

Vector

Transform

(Step3)

[A1,A2,A3,A4,A5,A6,

A7,A8]

= [1,1,1,1,1,1,0,1]

[B1,B2,B3,B4,B5,B6,

B7,B8]

= [1,1,1,1,1,1,1,1]

Calculate

Similarity

(Step4)

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =
∑ 𝑨𝒊
𝒏
𝒊=𝟏 𝑩𝒊

√∑ 𝑨𝒊
𝟐𝒏

𝒊=𝟏 √∑ 𝑩𝒊
𝟐𝒏

𝒊=𝟏

The value is greater than 0.8 mean that these two

agents are similar.

By comparing high similar codes such as similarity > 0.8,

students can observe or practice similar tasks to discover

the logic of their own programs.

3. EXPERIMENTAL DESIGN
This study designed a "Scaffolding Guidance System" to

help schoolchildren of elementary to learn Scratch

programming. When they got stuck on programming,

system will provide suitable scaffolding guidance for

them. Furthermore, investigating further to analyze the

effect of visual programming and the influence of raising

CT.

The quasi-experimental design was used in this study,

which chose two five-grade classes of a primary school in

southern Taiwan to participate this experiment. We

random chose one class as the experimental group, and the

other class as the control group. Students in the

experimental group were enrolled in our purposed

Scaffolding Guidance System into the Scratch-

Programming course; Control group performed a

traditional teaching method. Each group were taught a

total of 8-weeks by the same teacher, each lesson 40

minutes, a total of 320 minutes. After the end of the

programming course, we performed post-test: designing

a computational practice of game. In Additions, to realize

the responses of students in experimental group about

using Scaffolding Guidance System, we performed a

semi-structured interviews with two-groups students

separated to low, middle, and high level respectively

according their previous-semester grade.

About the instruction design, the teacher conduct the

operation of Scratch interface at first-two weeks, and then

the students of two groups have to implement five-tasks

programming-design in the next six weeks respectively.

The experimental-group students will use Scaffolding

Guidance System to learn programming: viewing the

animation about the tasks first, then decomposing the

problems and describing the features of each role in

Scratch, and finally coding. When they got stuck in

programming, system would give them assistance. For the

control-group students, teacher use traditional instruction.

Students involved in the experimental group must

complete the "flying bat" and other five scaffolding guided

program tasks, which are based on (Brennan et al, 2012)

proposing CT framework including these two dimensions:

"computational concept" and "computational practice".

Finally, to assess the performance of CT, this study used

game scenarios to test students' ability to practice. In this

game scenario there are two game agents (parrots and

obstacles, as Figures 2) and a stage design. There are also

having procedural issues in the agents and the stage. For

example, in the agent of obstacle, students are required to

use program blocks to solve the problem of "obstacle

generation and movement".

Figure 2. The evaluation of CT through practicing a

game.

4. RESULTS AND DISCUSSION
Table 4 shows that there was no significant difference of

Group times Grades between two groups, that is, we can

accept the null hypothesis and that meets the condition for

homogeneity of regression so that we can continue to do

ANCOVA.

From Table 5, the results of ANCOVA between

experimental and control group showed that F = 7.062, p

= .011 <.05 reached significant difference. That is, after

adopting different pedagogical methods to conduct

experiments, the results of CT test of students in

experimental group and control group reached significant

differences, indicating that accepting the activities with

"Scaffolding Guidance System" have significant

improvement.

Table 4. The tests for homogeneity of regression.

Sources Type(III

) SS

df Mean

Squar

e

F p

Group*Grade

s

333.6 1 333.6 1.25

2

.26

9

Error 11729.6 4

4

266.5

p* < 0.05，p** < 0.01

Table 5. The ANCOVA of two groups.

Group Mean SD N F p

Experimental 59.9583 16.10692 24 7.062 .011*

Control 42.7083 24.14536 24

p* < 0.05，p** < 0.01

To further understand the impact of the scaffolding

guidance system for students of different levels, the

students in two groups separated to low, middle, and high

level respectively according their previous-semester

grade. Only low level about ANOCVA achieved

statistically significant (as Table 6), which indicated that

44

accepting the activities with "Scaffolding Guidance

System" of low level have significant improvement.

Table 6. The ANCOVA of two groups about low level.

Group Mean SD n F p

Experimental 47.5000 12.29402 8 8.437 .012*

Control 24.1250 15.81534 8

p* < 0.05，p** < 0.01

Finally, by semi-structured interviews with two-groups

students and questions about statistic of missing blocks of

five-tasks, we found that some blocks learned on the

previous task, but when in a different scenario or agent,

students still need to be prompted to complete the task.

This phenomenon is similar to that of (Gomes & Mendes,

2007; Robins, Rountree, & Rountree, 2003): "Students

are often confined to the surface knowledge of programs

and can’t apply what they have learned to new problems."

5. CONCLUSIONS
This study from the CT and learning effectiveness,

different levels of students, and learning portfolio to

discuss the following conclusions:

First, students who accepted the teaching activities of

"Scaffolding Guidance System" performed better than the

ones with traditional teaching. Secondary, for students of

low level achievement, this study provided an approach to

assistant them by using "Scaffolding Guidance System".

Finally, teachers can analyze the portfolio of students to

discover the learning problems that can’t be found from

the surface information. For the future works, researcher

can be directed towards the fields of automation of system

and adaption of students.

6. REFERENCES
Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada (pp. 1-25).

Code.org. (2017). Computational Thinking. Retrieved

from https://studio.code.org/s/course3/stage/1/puzzle/1

Gomes, A., & Mendes, A. J. (2007). Learning to

program-difficulties and solutions. Paper presented at

the International Conference on Engineering

Education–ICEE.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005).

A study of the difficulties of novice programmers. Paper

presented at the ACM SIGCSE Bulletin.

MIT Media Lab, Scratch. https://scratch.mit.edu

MOE (2016). 2016-2020 General Information Education

Blueprint. Taipei City: Ministry of Education.

Robins, A., Rountree, J., & Rountree, N. (2003).

Learning and teaching programming: A review and

discussion. Computer science education, 13(2), 137-

172.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. (2008). Computational thinking and thinking

about computing. Philosophical transactions of the

royal society of London A: mathematical, physical and

engineering sciences, 366(1881), 3717-3725.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

45

A Curriculum and Contents of Programming Education

for Computational Thinking

Hyojin BYUN1, Miyoung RYU 2, Sungwan HAN2*

 1Dept. of Steam Education, Gyeongin National University of Education, Korea

2 Dept. of Computer Education, Gyeongin National University of Education, Korea

mydream.bhj@gmail.com, ddochi29@naver.com, han@gin.ac.kr

ABSTRACT
Computational thinking is emerging as a core competency

for creative and efficient resolution of complex problems in

a rapidly changing society. In Korea, software education is

introduced into the 2015 revision curriculum and

emphasizes creative problem solving process through CT

and programming learning. In this study, Scratch was

selected with an educational programming language suitable

for use in elementary school, and programming curriculum

for improving CT was developed and tested by expert group.

KEYWORDS
Educational Programming Language, Curriculum and

Content, Computational Thinking, Programming Education

1. INTRODUCTION
As the role of SW in modern society grows, the necessity of

strengthening SW competency is emphasized. SW is

recognized as a means of solving problems related to human

higher thinking ability beyond SW functional aspect. As a

result, CT is attracting attention as a core competence for

solving various complex problems in the future.

CT is to define a problem from the viewpoint of computing,

to search for the solution to the problem, and to a resolve the

problem through efficient resolution procedures.

In Korea, awareness that computational thinking is the core

competency of the future, the contents of the existing

information-related curriculum were reorganized into

software education contents through the 2015 revision

curriculum.

Therefore, this study aims to develop and present contents

for software education using Scratch in order to acquire CT

through programming and to develop creative problem

solving ability based on it

2. THEORETICAL BACKGROUND

2.1. Programming Education

Programming is a technique for implementing an abstract

algorithm in a specific computer program using a specific

programming language.

In the elementary school, the direction of programming

education is to enhance the thinking ability of the learner's

logical thinking ability, creative thinking ability and

problem solving ability.

2.2. EPL and Scratch

The programming language to be used in elementary school

software education should be a visual environment in which

the expression of grammar and algorithm should be simple.

Scratch is a language designed for programming experience

for children ages 8 to 16. The feature is that it is easy to learn

the programming language itself with a simple grammar, a

block-stacking algorithmic representation, and a variety of

multimedia such as graphics and sound.

2.3. SW education in Korea

In Korea, the term 'SW education' was used in the 2015

revision curriculum, and the software education was made

mandatory for elementary and junior high school students

from 2018. In the 2015 revised curriculum, elementary SW

education emphasizes real-life problem solving based on

information ethics and attitude as a field within practical

subject for 17 hours a year.

3. DEVELOPMENT OF EPL

CURRICULUM AND CONTENT

3.1. Curriculum Development Procedures

The EPL curriculum to improve CT was developed through

the steps shown in Table 1.

Table 1. Procedures of Curriculum Development

Analysis

∙CT concept

∙Software education direction required at elementary level

∙Pre-EPL program study

↓

Design
∙Extract curriculum components

∙Step-by-step learning topic and content selection

↓

Development ∙EPL content composition and development

↓

Verification ∙Conduct validation of the curriculum and EPL contents for experts

3.2. Development of EPL Curriculum

In this study, the programming curriculum using Scratch

was designed as shown in Table 2 to improve CT of

elementary school students.

The elements of the CT concept consisted of sequences,

loops, parallelism, events, conditionals, operators, and data

using Brennan and Resnick's CT evaluation framework. The

execution elements are also composed of incremental and

iterative, testing and debugging, reusing and remixing, and

abstracting and modularizing.

The subject was designed to allow students to access each

category of Scratch sequentially, but to be as close as

possible to the real life.

The learning stage was divided into three stages and the

difficulty level of the learning was adjusted so as to have

hierarchy of learning step by step. Each stage was composed

of six phases and gradually expanding the command

category of the Scratch related to CT.

46

Table 2. Presentation of EPL Curriculum

Level Period Topic CT
Concepts

Block
categories Contents of learning activity

1

1 Driving E, M
Controlling car motion with
specific keys

2 Hide and Appear E, M, L, C
Controlling characters with
hide and show blocks

3 Drawing shapes E, M, P, C Draw a shape using a pen
4 Dancing E, M, L, S, C

Show your dancing to your
performance

5 Catching insects E, M, L, S, C, S,
O

Use random numbers to follow
random characters

6 Paint E, L, P, C, S
Create Paint with multiple
colors as a condition

2

1 Send and receive a
conversation E, L, C

Conversation using
broadcasting block

2 animation E, M, L, S, C, M
Representing animation effects
with additional blocks

3 Jump E, M, D, C, S, O
Express if the condition is
satisfied.

4 Rock Paper Scissors E, L, D, O, C
Change the shape using the
value of a variable

5 Compare the size of a
number E, L, D, O, C

Using List to Compare
Numbers

6 Running race E, M, L, D, O,
C, S

Display two levels of difficulty
with two characters running

3

1 Falling apples E, M, C, S, O
Expressing how fast you move
using variables and timer

2 clock E, M, C, S, O
Clock representation using
current time block

3 Put a soccer ball in the
goal E, M, C, S,

Using a video sensing block to
move the ball

4 Making pattern E, M, P, D, C, O
Create patterns using variables
x and y

5 My body grows. E, M, D, C
Use cloning blocks to express
more and more appearances

6 Walk to goal E, M, D, C, S, O
Express sprite movement
using background motion

∙CT Concepts

sequences loops parallelism events conditionals operators data
∙Block Categories

M L S P D

Motion Looks Sounds Pen Data
E C S O M

Events Control Sensing Operators More Blocks

3.3. Development of EPL Content

Students will experience Brennan and Resnick's practice

exercises through CT Opening, CT Raising, and CT

Experimentation so that they can expand their CT.

In CT Opening, students use example files to identify and

explore the situation. In CT Raising, students learn basic

contents while learning programming step by step, and

expand the project by using reuse and remixing to CT

Experimentation.

Table 3. Example content
Level 1 – 1st period

Topic Driving

Activity Goals Let's move the car using the motion block.

CT Sequences, events

Plan specific activities

Step Teaching and Learning Activities

CT Opening
∙Using the example file to understand the content

∙Explore blocks in motion categories

CT Raising

∙Think of a situation where you move a set value by pressing a direction

key (up, down, left, and right) through a question.

∙Experiment the script and check it.

∙Complete the script so the car can move in four directions by itself

CT

Experimentation

∙Draw a road with Paint, then write a script to allow the car to move

over the road to reach its destination

∙[Optional Activities] Parking in the parking lot in reverse

3.4. Expert Validity Testing

Groups participated in this study were selected from a field

related to education professionals who have experience of

teaching the EPL. The results of the CVR test are shown in

Table 4, and the validity of the total items satisfies the

minimum value of .62 according to 10 panelists. Therefore,

it can be said that the content validity is secured according

to the curriculum contents and the flow of the example

contents.

Table 4. Expert Review Results
Division CVR

Curriculum development direction 1

Learning level .9

Learning sequence
Programming .9

CT 1

Learning contents
Topic .8

CT .9

Learning method
Programming 1

CT .9

4. DISCUSSIONS
As part of software education around the world, there is a

strong interest in coding education, and in 2018, software

education is mandatory in Korea. This is to enable students

to cultivate CT through SW and to efficiently solve various

complex and unexpected problems of the future society.

This study selected a Scratch as an educational programming

language suitable for elementary level, and programmed it

so that CT can be extended through programming education.

17 hours allocated as regular curriculum hours are planned

to achieve the goal of software education by including

content other than programming. So, it is difficult for the

programming education to expand the CT within the regular

course time.

Therefore, the program developed in this study proposes a

method to secure and apply sufficient time through club

activities, after - school activities, camps, gifted education,

etc.

5. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. Paper presented at annual American

Educational Research Association meeting, Vancouver,

BC, Canada.

C. H. Lee (2015). Direction and Model of Software

Education in Elementary Education, Journal of Korean

Practical Arts Education, 28(4), 207-222.

E. H. Lee, T. W. Lee (2015). Instruction Model for

Elementary School on Programming Induction Education

Using ENTRY, Journal of Korean Association of

Computer Education, 19(1), 43-46.

J. H. Seo, Y. S. Kim (2016). Development and Application

of Educational Contents for Software Education based on

the Integrative Production for Increasing the IT

Competence of Elementary Students, Journal of Korean

Association of Computer Education, 20(4), 357-366.

W. S. Moon (2015). The Application of the Scratch2.0 and

the Sensor Board to the Programming Education of

Elementary School, Journal of Korean Association of

Information Education, 19(1), 149-158.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

47

Comparing with Scratch and Python in CT Concepts

Tae-ryeong KIM, Sun-gwan HAN

Dept. of STEAM Education, Gyeong-in National University of Education

crossallover@gmail.com, han@gin.ac.kr

ABSTRACT

The expansion of software education has given learners the

opportunity to learn CT concepts related to CS through

block programming such as Scratch. However, due to the

nature of EPL, the concept of computer science is limited,

and inevitably the text programming language is learned to

expand CS thinking. In this paper, we will examine the

possibility of using the concept of prior learning after block

programming tools through comparison of basic grammar

examples of Scratch and Python in terms of CT concepts.

KEYWORDS

EPL, TPL, Scratch, Python, CT Concepts

1. INTRODUCTION
Extensive expansion of EPL (Educational Programming

Language) education has resulted in many students

improving their CT competency and related areas. In this

area, Brennan & Resnick (2012) divided the CT into three

dimensions by analyzing the results of the Scratch outputs

made by the students. One of them was CT concepts. These

concepts that can be transmitted in other programming

languages, and it is common in programming languages as

well. If student experience a certain level of EPL training,

they will inevitably go to TPL (Text based Programming

Language) to improve their programming skills (Jun, 2012).

Therefore, From the perspective that transfer mechanism

(Schwartz & Bransford, 1998), we want to create an

opportunity to summarize these concepts as TPL and to

utilize the student's prior knowledge on related concepts. An

example of TPL is Python, which has a high educational

potential among text languages (Grandell, 2006).

2. COMPARISON

2.1. Sequences

In the Scratch, the sequence of blocks directs the operation

of the object (sprite), so the concept of sequence can be

learned without difficulty (Elkin et al, 2014). Likewise,

Python is well suited for students to learn sequence concept

because grammar itself is not only a direct language, it also

provides immediate and visual information as interpreted

language (Yeum, 2008). The sequence concept can be easily

transmitted in text language like Figure 1.

Figure 1. Comparison in Sequences Concept

2.2. Loops

In the sequence concept, the principle of efficiency leads to

repetition naturally. Instead of using many blocks one by one,

students can easily configure the program with several

blocks. Python can easily configure bound loops and

conditional loops too. In particular, it has the advantage of

being able to configure the iterators that make circuit of the

data, as shown in Figure 2.

Figure 2. Comparison in Loops Concept

2.3. Events

Because Scratch is also intended to interact with the user, it

uses event-driven programming. And this is a fun factor for

learners. So, Scratch supports various event handlers. While

Python’s shell itself functions as an interactive mode with

the user, creating an interactive program is possible a little

later than the order of learning in Scratch. because It needs

to learn how to use functions and libraries in order to create

a practical program with events. Figure 3 shows how the

basic library handles keyboard events.

Figure 3. Comparison in producing Event

2.4. Parallelism

Similarly, the use of parallelism concept is easier in event-

based programming languages. In scratch, it is possible to

experience the parallel form simply by generating the event

several times. However, in the interpreted language, It's not

efficient. Python supports a module that handles different

types of threads in being, as shown in Figure 4. It is only an

example of a low-level representation of related concepts.

Figure 4. Comparison in Parallelism concept

48

2.5. Conditionals

Because complex algorithms can present difficulties for

students, Scratch provides a various conditional block that

can be combined with repetitive structure or event

monitoring, operators, sensors, etc., As shown below

(Dasgupta et al, 2016). In text programming languages,

students can learn conditional grammars without difficulty

(Milne & Rowe, 2002). In view, scratch is more

configurable, Figure 5 shows that basic structure is similar.

Figure 5. Comparison in Conditionals Concept

2.6. Operators

Scratch contains arithmetic (including character) operators,

relational operators, and logical operators, which can be

combined in various ways depending on the needs of the

learner. Surely, commercial languages generally support all

sorts of operations on operators. Especially in Python,

almost all operator parts are easier to use because they are

grammatically simpler than other text languages. If doing a

number of complicated calculations, the text language can

be configured more quickly and easily, if you are familiar

with the grammar, as shown in Figure 6,

Figure 6. Comparison in Operators concept

2.7. Data

Scratch provides variable and list data types. In most of the

block based programming, variables are used to implement

the scoring function. Also, there is no need to define data

types, which is one of the hardest parts of the students

(Piteira & Costa, 2013). In Python, Because Python is a

dynamic type, students do not need to set the data type like

Scratch. Thus, Scratch learners can easily learn this. It's also

easier to handle data than any other text language (Rashed

& Ahsan, 2012). Figure 7 is one way to define and

manipulate data types.

Figure 7. Comparison in Data concept

3. DISCUSSION
I compared Scratch with the Python language, focusing on

the seven concepts that can be found in Scratch. As a result,

it can be seen that the text language can also be structured

easily in terms of Sequences, Loops, Conditionals,

Operators, and Data. However, in terms of Events and

Parallelism, It’s hard to using precedence concepts due to

difference in complexity between EPL with TPL.

Therefore, we propose to use the related computer science

concepts learned in the Scratch as a precedent organizer

form when continuing the learning through the text

programming language education course.

4. REFERENCES
Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada (pp. 1-25).

Dasgupta, S., Hale, W., Monroy-Hernández, A., & Hill, B.

M. (2016). Remixing as a pathway to computational

thinking. In Proceedings of the 19th ACM Conference on

Computer-Supported Cooperative Work & Social

Computing (pp. 1438-1449). ACM.

Elkin, M., Sullivan, A., & Bers, M. U. (2014).

Implementing a robotics curriculum in an early childhood

Montessori classroom. Journal of Information

Technology Education: Innovations in Practice, 13, 153-

169.

Grandell, L., Peltomäki, M., Back, R. J., & Salakoski, T.

(2006, January). Why complicate things?: introducing

programming in high school using Python. In

Proceedings of the 8th Australasian Conference on

Computing Education-Volume 52 (pp. 71-80). Australian

Computer Society, Inc.

Jun. W. C. (2012). A Study on Correlation Analysis of EPL

and Programming Ability for the Gifted Children in IT.

Journal of The Korean Assocaition of Information

Ecucation, 16(3), 353-361.

Milne, I., & Rowe, G. (2002). Difficulties in learning and

teaching programming—views of students and tutors.

Education and Information technologies, 7(1), 55-66.

Piteira, M., & Costa, C. (2013, July). Learning computer

programming: study of difficulties in learning

programming. In Proceedings of the 2013 International

Conference on Information Systems and Design of

Communication (pp. 75-80). ACM.

Rashed, M. G., & Ahsan, R. (2012). Python in

computational science: applications and possibilities.

International Journal of Computer Applications, 46(20),

26-30.

Schwartz, D. L., & Bransford, J. D. (1998). A time for

telling. Cognition and instruction, 16(4), 475-5223.

Yeum. Y. C. (2008). Programming Learning Environment

using a Textual EPL in Informatics Education. doctoral

thesis. Korea University.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

49

Computational Thinking and

Subject Learning and Teaching

in K-12

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

50

Students’ Attitude Changes through Integrating Computational Thinking into

English Dialogue Learning

Xiaojing WENG

 The University of Hong Kong, Hong Kong

 u3532170@connect.hku.hk

ABSTRACT

Computational Thinking (CT), a problem-solving skill

rooted from Computer Science (CS), is gaining attention

from computer scientists and K-12 educators increasingly.

Language communication skill, in the meanwhile, is one

essential skill developed through the K-12 education, which

will continue to attract attention in the foreseeable future

globally. There is the possibility for students to learn an

effective communication skill while using or improving CT,

given that the interdisciplinary work of integrating language

learning into a CT learning activity has not been fully

discussed in existing literature, this preliminary study, which

is going to be extended to a largescale work in the future, is

important from the perspective of both language and

computer teachers. As an initial step, this research attempted

to obtain insights on developing CT in the context of English

dialogue learning by investigating the attitude changes of

students after they have experienced the integration of CT

into English education in Scratch programming

environment. To achieve this objective, pre/post-lesson

surveys were distributed to nine Hong Kong primary

students who attended the intervention class to study

computer programming by using the graphical programming

language Scratch. The preliminary results show that primary

school students have positive reaction to the introduction of

CT into English dialogue learning through graphical

programming language. Students were more motivated to

learn English dialogue after the class under study; however,

their attitude towards learning graphical programming

language become less positive after the intervention.

KEYWORDS

Computational Thinking, English dialogue learning,

Scratch, K-12

1. INTRODUCTION
The idea of computing, which refers to all the activities that

require, benefit from, or create computers (Shackelford et

al., 2006), first gained attention from the public as a result of

Seymour Papert’s work in MIT in the 1980s (Lockwood &

Mooney, 2017). However, the concept of CT became

increasingly popular ever since it was refined by Jeannette

M. Wing in 2006 (Grover & Pea, 2013). Wing argues that

CT is a universal attitude and skill that can be applied by

everyone; it is not limited to computer scientists (Wing,

2006).

A huge proportion of CT development programs for young

students in schools, colleges or afterschool clubs have

been conducted in the context of CS subject. This is mainly

because improving students’ problem-solving thinking skills

and learning programming are the major elements of CS

course (Lockwood and Mooney 2017). However, this seems

too limiting. The ability to think computationally has the

potential to benefit students in all courses. Furthermore,

while problem-solving skills and programming are perhaps

the most direct approaches to cultivating CT ability, they are

not the only important elements in CS. There are also still

education objective confusions as well as disagreements on

learning content and the issue of whether CS should be a

compulsory subject in the K-12 curriculum (Armoni, 2013;

Hubwieser, 2012). Taking into account these considerations,

it becomes obvious that CT should and can go further than

to be constrained to computing-related subjects.

Therefore, many researchers have been exploring how CT

can be integrated into other subjects, including Non-CS

STEM (which refers to four subjects including Science,

Technology, Engineering and Mathematics) subjects and the

humanities (Kafai & Burke, 2013; Lee, Martin, & Apone,

2014; Lye & Koh, 2014). As a matter of fact, language arts

can be used as a springboard for the integration of CT into

the K-12 curricula, like what has been proposed by Barr and

Stephenson—computational skills such as abstraction,

algorithm, automation and decomposition can be applied or

enhanced when students are using rhetorical devices, writing

instructions, conducting story reenactments or planning an

outline for a composition in a language class.

Many researchers connecting CT to English start their work

by utilizing models found in writing-related workshops like

composition, journalism, literature or poetry (Burke &

Kafai, 2012; Nesiba, Pontelli, & Staley, 2015; Wolz, Stone,

Pearson, Pulimood, & Switzer, 2011). This strategy is

reasonable because writing for programs is coding in CS,

and since writing and coding are both types of expression

but with different carriers, young people can come to learn

the significance of sequence, structure and clarity of

expression (Burke & Kafai, 2012) from both of them. It is

inspiring to see that there are many positive outcomes of

these practices in terms of students’ perspective towards CT;

however, the depth and breadth of this infusion in the context

of English can be extended further.

Though it seems that no researcher has specifically

conducted an experiment exploring CT ability in English

dialogue learning, the literature on English dialogue is

insightful in showing us the possible ways in which English

dialogue learning could embrace CT. For example, the

literature on Second Language Acquisition (SLA) indicates

that when exposed to questions and answers in

conversations, people understand how different parts of a

sentence works as a unit and can master the vocabularies at

mailto:u3532170@connect.hku.hk

51

the same time (Hatch, 1978). Furthermore, students can be

more creative when they are engaging with topics in an

open-ended, free manner instead of planning the

conversation ahead of time (Andersen, 1983). Besides these

benefits, many other elements of CT can also be employed

in English dialogue learning (as shown in figure 1).

Figure 1. Bridging CT, Language Arts (Barr &

Stephenson, 2011) and English dialogue learning.

Our research closely connects CT with the graphical

programming language Scratch in order to give answers to

the following questions:

RQ1: What attitude do students hold towards using

graphical programming language in English dialogue

learning?

RQ2&3: Are there attitude changes of students towards

both English dialogue learning and graphical programming

language learning after students experience the integration

of graphical programming language in English dialogue

learning?

The paper will then be organized as follows. In Section 2,

the research methodology will be introduced, data collection

and data analysis will be presented in Section 3, in Section 4

results of the research will be given, discussion of this

research will be presented in Section 5, and future research

fields in infusing CT into English Education are suggested

in Section 6.

2. METHODOLOGY

2.1. Constructionism as the Theoretical Framework

Constructionism describes the process of gaining knowledge

as “building knowledge structures” (Papert, 1991). Among

many renowned scholars in constructionism, Papert is one

of the most significant representative figures in this school

of thought. He stresses that people gain new knowledge by

engaging in doing and making artifacts, no matter what kind

of the learning circumstances and working entities. From

this perspective, constructionism focuses more on people’s

personal conversation with their own representations,

projects and products rather than the general developmental

rules (Tokoro & Steels, 2004).

According to constructionism, the participants of this study

are assigned to finish a digital artifact individually by

adopting the graphical programming tool Scratch. This is an

example of constructionism practice since by programming

in Scratch students are practitioners of the constructionism

principle -- “learning by making”. In this way, students can

build their CT and English language knowledge structures.

The one-session intervention class was designed under the

guidance of constructionism as shown in figure 2:

Figure 2. Lesson Design.

2.2. Scratch as the CT tool

As a graphical programming language, Scratch is a popular

product of the Lifelong Kindergarten Group at the MIT

Media Lab. It provides the platform for young children from

8 to 16 to program different forms of projects, including

stories, games and animations (Resnick et al., 2009).

Research has concluded that Scratch can improve students’

creativity, study outcomes and problem-solving abilities

(Chang, 2014), therefore it is well accepted by the public. In

2015, Scratch welcomed its tenth birthday with more than

3,500,000 users and more than 6,000,000 shared projects

(Moreno-León & Robles, 2015) from over 150 different

countries and in more than 40 languages.

CT was defined as a three-dimensional framework by

Brennan and Resnick with respect to Scratch (Brennan &

Resnick, 2012), this framework suggests understanding CT

from different angles, including computational concepts

(sequences, loops, events and so on), computational

practices (experimenting and iterating, testing and

debugging, reusing and remixing, etc.) and computational

perspectives (expressing, connecting, questioning) (Resnick

et al., 2009). With this kind of supporting theories, therefore,

Scratch was employed as the CT instrument to facilitate

researchers’ research design (Burke & Kafai, 2012; Moreno-

León & Robles, 2015; Holt, 2011; Meerbaum-Salant,

Armoni, & Ben-Ari, 2013).

Gaining experience from reviewing other experimental

research, the researcher in this study chose to take the

graphical programming language Scratch as the CT tool as

well.

52

An example of the artifacts in Scratch is shown in figure 3

and figure 4.

Figure 3. Project Example (Scratch visuals).

Figure 4. Project Example (Scratch coding blocks).

2.3. The Attitude Tests

In this research, the attitude tests were adapted from the 3-

TUM (Three-Tier Technology Use Model) by Shu-Sheng

Liaw (see figure 5) to investigate user perceptions toward

information and Internet technologies. According to the 3-

TUM, there are three different tiers for evaluating attitudes

toward information technology: the tier of individual

experience and system quality, the tier of affect and

cognition, and the tier of behavioral intention (Liaw, Huang,

& Chen, 2007). Therefore, the pre/post surveys cover

questions addressing students’ personal experiences, affects

and behaviors in terms of English dialogue learning and

Scratch learning. The surveys were designed in this study by

using the five-point Likert scale in which respondents are

asked to evaluate each statement by choosing a number from

one to five, where 5 = Strongly Agree, 4 = Agree, 3 =

Neutral, 2 = Disagree, 1 = Strongly Disagree.

Figure 5. The three-tier use model (3-TUM).

However, there are minor differences in the pre-test and the

post-test -- besides exploring students’ attitudes towards

English dialogue learning and Scratch learning, the post-test

also explored students’ attitudes towards the CT-infusing

class (as illustrated in figure 6).

Figure 6. Differences in Pre-test and Post-test.

3. DATA COLLECTION AND ANALYSIS

3.1. Participants

A local aided whole-day co-educational primary school in

Hong Kong agreed to participate in this research from

February to July 2017. Students in this school can have an

extra-curricular interest-oriented CS class weekly. In this

class, students from grade one to grade three will start

learning elementary computer operations; for students in

grade four and above, the CS teacher adopts graphical

programming platform Scratch (Resnick et al., 2009) to

teach them how to program. There were 9 students in the

interest-oriented class took part in this research, their gender,

age and grade information are shown in figure 7.

Figure 7. The gender, age and grade distribution of

students.

3.2. Data Collection Process

The researcher reserved fifteen minutes with all the students

taking part in this study before distributing any

questionnaires. During this period, the researcher introduced

the research objectives, background, and process to all the

participants. Brief information about the pre-test and the

post-test was provided, and students’ rights as research

participants were described as well. Students were then

given enough time to finish the pre-test before the

intervention, and the same length of time was offered to

students for the post-test after the intervention. Qualitative

interviews will be conducted to gain further insights in the

future as the next step of our research.

3.3. Data analysis

Both the pre-test and the post-test data were gathered in

Microsoft Excel to provide an overview of the research

results. The data were then compared to see if the CT-

infusing class caused any attitude changes among students.

53

4. RESULTS
As introduced in the methodology, the surveys were

designed by using the five-point Likert scale. Students

needed to evaluate each statement in the survey by choosing

the strength of their agreement from 1 to 5, therefore each

item got a total mark ranging from 5 to 45 points based on 9

students’ responses.

4.1. Pre-test and Post-test Results for RQ 1

RQ1: What attitude do students hold towards using

graphical programming language in English dialogue

learning?

Figure 8. Student responses to the statement “I think

Scratch helped me create my English dialogues.”

Figure 9. Student responses to the statement “I enjoyed the

experience of learning English dialogue with Scratch.”

According to the collected answers from the questionnaire

issued after the intervention, 78% of the students strongly

agreed that Scratch helped them create English dialogues.

As shown in figure 8, all the students held a positive

perception towards the role of Scratch in their English

dialogue learning. Furthermore, 67% of the students

strongly agreed that they enjoyed the experience of learning

English dialogue with Scratch. No student gave neutral or

negative feedback about the experimental class experience

(see figure 9). Thus, it is apparent that students held a

positive attitude towards using graphical programming

language in English dialogue learning.

4.2. Pre-test and Post-test Results for RQ 2

RQ2: Do students’ attitudes towards English dialogue

learning change after students experience a class in which

graphical programming language is infused in English

dialogue learning?

Figure 10. Total Likert score across students for the first

tier of individual’s attitudes (individual experience).

Figure 11. Total Likert score across students for the second

tier of individual’s attitudes (affective and cognitive).

Figure 12. Total Likert score across students for the third

tier of individual’s attitudes (behavioral intention).

Based on students’ responses, their personal experience and

affection towards English dialogue learning developed in a

more positive direction after the intervention class (see

figures 10 and 11). What is more, they were willing to spend

more time learning English dialogue than before (see figure

12) as a result of the intervention. However, it is noticeable

that students became less willing to ask others for help when

coming across an English dialogue problem (see figure 12).

Overall, after the intervention, students’ attitudes became

more positive towards English dialogue learning.

4.3. Pre-test and Post-test Results for RQ 3

RQ3: Do students’ attitudes towards graphical

programming language learning change after students

experience a class in which graphical programming

language is infused in English dialogue learning?

54

Figure 13. Total Likert score across students for the first

tier of individual’s attitudes (individual experience).

Figure 14. Total Likert score across students for the second

tier of individual’s attitudes (affective and cognitive).

Figure 15. Total Likert score across students for the third

tier of individual’s attitudes (behavioral intention).

Students’ attitudes towards graphical programming

language were much more complicated compared to their

attitudes towards English dialogue learning after the

intervention. In the tier of personal experience, they were

less likely to feel that graphical programming language

helped them with their expression and collaboration ability

after the intervention; however, they thought their problem-

solving ability improved while learning graphical

programming language (see figure 13). Students’ affection

towards graphical programming language remained at the

same level before and after the intervention (see figure 14).

However, in the behavioral tier, students became less willing

to ask others for help when coming across programming

problems and less willing to spend time coding with

graphical programming language after the intervention (see

figure 15). Generally speaking, students’ attitudes towards

graphical programming language became less positive after

the intervention.

5. DISCUSSION
This research has achieved its goal to provide some initial

insights on the integration of CT into English education, and

therefore benefit students from CS beyond the CS class.

Students welcomed the novel practice of utilizing Scratch in

other courses. One of the biggest challenges in teaching K-

12 students is how to hold their attention -- since Scratch is

designed to cater to students’ needs and maintain children’s

interest, students can absorb the knowledge of other courses

being taught through Scratch in a subtle way and they will

not feel bored in this process. It is obvious from the pre-test

and post-test comparison that students became more

motivated to learn English dialogue after the intervention.

Scratch enables students to do visual programming by

themselves, presenting them with colorful Sprites and

offering them the chance to take part in the dialogues

interactively in the simulated environment. As such, Scratch

makes English dialogue learning interesting and different

from what students have experienced in their ordinary

English dialogue learning classes. Meanwhile, students’

attitudes towards graphical programming language became

less positive after the intervention. Since the intervention

only lasted for one session, not much differences happened

in students’ coding ability, it is reasonable that students’

self-evaluation towards Scratch coding ability remained the

same in the pre/post surveys. Students’ declined initiative

efforts and willingness to study more about Scratch coding

after the intervention have great enlightening significance

for the instructional design of the CT infusing class -- when

students’ attention was drawn by the appealing content of

the infusing class, it is easier for them to get frustrated if the

programming tool goes wrong compared with the pure

programming class in which they only have one focus to

concern.

However, limitations exist in this research. This research

only has a sample of nine students, which makes it difficult

to generalize any information collected from the pre-test and

post-test to the average student. Furthermore, the researcher

asked the same students almost the same questions in both

the pre and post surveys (the only difference was that the

post-test asked about student’s perspective towards the

infusing class while the pre-test did not). Without a control

group, this means that some of the changed effects in attitude

might not be due to the intervention but rather due to

students being ‘primed’ by the pre-survey. What is more, the

intervention class was too short to make any influential

changes of students’ CT and English dialogue learning

capability, though this research only involves the

perspective aspect of the participants, more insights would

have been achieved if the intervention were longer.

6. FUTURE WORKS
Future studies on how to integrate CT into English education

are needed from various perspectives. While this study

focused on students’ attitudes, future researchers can go one

step further and apply some valid and reliable scales to

assess students’ learning performance in both CT and

English as a result of infusing classes. With these kinds of

studies, we can have a better vision of what happens to

students when they undergo these infusing lessons and if

students can benefit from this learning.

55

In this research, the researcher adopted Scratch as the CT

instrument in the infusing class, however other graphical

programming platforms including Alice, Game Maker,

Kodu and Greenfoot can be used to promote CT

development in K-12 education as well. Therefore,

researches on the feasibility of different CT tools in

facilitating English education can be an important branch of

both CS and English education research.

Additional, integrating CT with English education is an

interdisciplinary topic which only has a limited literature

support. The work of putting forwards any framework to

guide the following practice in this field is highly needed at

this stage.

Teachers’ professional development and community of

practice on how to teach CT are significant factors that

cannot be ignored. Research on how to better prepare

teachers is bound to have great impact on the classroom

effect of the CT infusing lesson therefore should be

enhanced.

7. REFERENCES
Andersen, R. W. (1983). Pidginization and Creolization as

Language Acquisition: ERIC.

Armoni, M. (2013). Computing K-12 curricular updates: a

necessity, or an unjustified effort? ACM Inroads, 4(4), 20-

21.

Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to K-12: what is Involved and what is the role of

the computer science education community? ACM

Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. Paper presented at the Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada.

Burke, Q., & Kafai, Y. B. (2012). The writers' workshop for

youth programmers: digital storytelling with scratch in

middle school classrooms. Paper presented at the

Proceedings of the 43rd ACM technical symposium on

Computer Science Education.

Chang, C.-K. (2014). Effects of Using Alice and Scratch in

an Introductory Programming Course for Corrective

Instruction. Journal of Educational Computing Research,

51(2), 185-204. doi:10.2190/EC.51.2.c

Grover, S., & Pea, R. (2013). Computational thinking in K–

12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Hatch, E. M. (1978). Second language acquisition: A book

of readings: Newbury House Pub.

Holt, L. (2011). Creating Digital Stories with Scratch to

Promote Computational Thinking. Paper presented at the

Society for Information Technology & Teacher Education

International Conference.

Hubwieser, P. (2012). Computer science education in

secondary schools--the introduction of a new compulsory

subject. ACM Transactions on Computing Education

(TOCE), 12(4), 16.

Kafai, Y. B., & Burke, Q. (2013). Computer programming

goes back to school. Phi Delta Kappan, 95(1), 61-65.

Lee, I., Martin, F., & Apone, K. (2014). Integrating

computational thinking across the K--8 curriculum. ACM

Inroads, 5(4), 64-71.

Liaw, S.-S., Huang, H.-M., & Chen, G.-D. (2007).

Surveying instructor and learner attitudes toward e-

learning. Computers & Education, 49(4), 1066-1080.

Lockwood, J., & Mooney, A. (2017). Computational

Thinking in Education: Where does it Fit? A systematic

literary review. arXiv preprint arXiv:1703.07659.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through programming:

What is next for K-12? Computers in Human Behavior, 41,

51-61.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013).

Learning computer science concepts with scratch.

Computer Science Education, 23(3), 239-264.

Moreno-León, J., & Robles, G. (2015). Computer

programming as an educational tool in the English

classroom a preliminary study. In (Vol. 2015-, pp. 961-

966).

Nesiba, N., Pontelli, E., & Staley, T. (2015). DISSECT:

Exploring the relationship between computational

thinking and English literature in K-12 curricula. Paper

presented at the Frontiers in Education Conference (FIE),

2015 IEEE.

Papert, S. (1991). Situating Constructionism.

Constructionism. I. Harel and S. Papert. Norwood. In: NJ,

Ablex Publishing.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., . . . Kafai, Y. (2009). Scratch:

programming for all. Communications of the ACM, 52(11),

60-67. doi:10.1145/1592761.1592779

Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies,

G., Kamali, R., . . . Lunt, B. (2006). Computing Curricula

2005: The Overview Report. In (pp. 456-457).

Tokoro, M., & Steels, L. (2004). A learning zone of

one's own : sharing representations and flow in

collaborative learning environments. Amsterdam: IOS

Press.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., &

Switzer, M. (2011). Computational thinking and

expository writing in the middle school. ACM

Transactions on Computing Education (TOCE), 11(2), 9.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

56

基于 DBR的高中生计算思维的培养

——以信息技术课程为例

苏幼园
1*
，马秀麟

1
，毛荷

2
，王翠霞

1

1北京师范大学教育技术学院
2洛阳市实验小学恒大分校

201621010214@mail.bnu.edu.cn, maxl@bnu.edu.cn, 919706512@qq.com, 201521010214@mail.bnu.edu.cn

摘要

本研究基于计算思维的维度，探究在信息技术课程中

培养高中生计算思维的切入点的问题，提出了通过

“设计”培养高中生抽象、建模、分解与综合等维度

的计算思维的思路。通过把 DBR 的研究范式融入到学

生的作品“设计”和教师的教学设计过程中，形成了

有效的教学实践，并验证了在设计过程中培养高中生

抽象、建模、分解与综合等计算思维的可行性。

关键字

计算思维；信息技术课程；设计；DBR

1. 研究背景

1.1. 计算思维的出现、定义及对人才培养的价值

计算机科学与技术对人类的生产、工作、学习和生活

产生了重要影，能够从思维模式的层次影响人们的解

题方法，这促成了“计算思维”概念的提出。

2006年 3月，周以真教授提出了计算思维的概念。周以

真教授认为：计算思维是运用计算机科学的基础概念

进行“问题求解、系统设计以及人类行为理解”等涵

盖计算机科学之广度的一系列思维活动 (Wing J M,

2006)。2015 年，张学军等学者在深入探究这些问题的

基础上，指出计算思维的培养主要为八个方面：计算、

抽象、自动化、设计、通信、协作、记忆和评估(张学

军，2015)。

2016 年的《高中信息技术课程标准修订稿》中指出：

高中信息技术课程的培养目标是使学生学会运用计算

思维对问题进行识别、分析、抽象、建模并设计系统

解决方案，在数字化学习的过程中形成对人与世界的

多元理解力，成为数字化时代的合格公民 (任友群，

2016)。

1.2. 高中生计算思维能力培养存在的问题
尽管计算思维对中学生个人能力的发展非常重要，但

从基础教育的现状来看，中学生的信息技术相关操作

技能学习得较好，但计算思维能力仍存在严重欠缺。

为计算思维能力开设专门的课程也存在着困难。第一，

若以纯理论课程的形式讲授计算思维的概念、规则和

内涵，只能促使学生背诵和记忆抽象概念，并不能真

正地实现深层次的理解和掌握；第二，让中小学生减

负、把更多自由的时间还给学生是当前教育的主流思

想。因此，专门开设计算思维培养类课程并不是最佳

选择。

2. 研究问题

高中信息技术课程的很多内容都脱胎于计算机和网络

技术，其本就蕴含着计算思维的思想，因此，把计算

思维的培养融入到信息技术类课程之中，进而促使学

生掌握计算思维的相关理论、策略和技术的思路是可

行的。本研究旨在探索以信息技术课程为载体，思考

计算思维的哪些维度易于培养以及如何培养学生计算

思维的问题。

(1)计算思维的维度很多，对高中生计算思维能力培养

应着重哪些方面？

(2)计算思维可以借助何种载体进行培养？

(3)计算思维培养的具体策略有哪些？

(4)应用此种策略培养学习者的计算思维，效果如何？

3. 研究设计

3.1. 确立培养内容——选择抽象、建模、分解与综合
维度的技能作为计算思维素养培养的首批任务
本学期笔者为高二学生开设《多媒体技术》课程，其

中涉及了大量设计能力培养的内容。而设计能力的核

心就是分析和综合，归根到底就是对现实问题的解析

与抽象的能力，这也是计算思维培养的核心内容。鉴

于《多媒体技术》课程的特点及其蕴含的计算思维特

性，本研究选择抽象、建模、分解与综合维度的技能

作为计算思维素养培养的首批任务。

3.2. 确立培养载体——以作品设计为载体，让计算思
维融合于设计过程中
计算思维中的抽象、建模、分解与综合思想本就是

“设计学”中的核心内容，设计的过程可以较为直观

地体现一个人的思维过程。

《多媒体技术》是一门操作性、实践性较强的学科，

学习者对其的掌握大多都是通过作品设计来进行实现。

所以，课程任务的实现和设计的一般过程不谋而合，

即通过学习者的作品设计过程来体现或培养学习者的

计算思维是可行的。

3.3. 确立培养策略——计算思维培养的具体策略
本研究中设计能力的培养不仅仅是学生层面，还包括

教师层面。于学生而言，培养其作品设计能力，注重

其作品设计过程；于教师而言，为促进学生作品设计

能力的发展，提升教师的教学设计能力。另外，无论

57

是学生设计能力的发展，还是教师为实现此目标而开

展的教学设计，都是一个在实践中不断发现问题并完

善的过程。

3.3.1. 基于设计的研究范式
基于设计的研究(DBR)，其目的是在真实情境中，以研

究者与实践者的协作为基础，通过分析、设计、开发

和实施的反复循环，来改进教育实践，并提炼对情境

敏感的设计原则和理论(焦建利, 2008)。目前主要有理

论主义、实用主义、干预主义等取向。本研究主要依

据张文兰学者的教育干预取向(张文兰，2007)，对教师

教学活动、学生学习活动进行设计。首先，教师的教

学设计应遵循 DBR 的理论，在设计及不断的迭代中成

长。再者，学生对作品的设计和计算思维能力的形成

也是一个 DBR 的过程，借助“设计”，使其作品不断

优化与完善，促使其抽象、建模能力不断提升，逐步

形成良好的思维品质，最终达到“加强计算思维意识，

掌握计算思维方法，提升计算思维能力”的学习目标。

3.3.2. 教师的教学活动设计
教师在明确章节内容所蕴含的计算思维并完成教学内

容设计的基础上，主要采取以下策略组织教学活动。

(1)借助任务驱动，融入任务分解与综合的思维方式

通过“任务分解—任务设计—任务反思—任务优化”

四个环节来开展教学，使学生在设计过程、问题解决

与任务完成中不断增强计算思维的培养。

(2)促使学生思考如何把现实问题计算机化，形成抽象、

建模思想

教师不仅要讲解学科内容与完成任务的具体步骤，更

要着重讲解从现实问题转化为计算机可操作模型的过

程，向学生呈现教师对作品设计的思考，促使学生思

考如何将现实社会的复杂问题一步步地抽象化、模型

化，并通过计算机来实现。

(3)要求学生提交设计报告，跟踪其思维过程

学生通过填写作品设计报告，可以对作品的设计思路

和过程有更加清晰的认识；教师通过学生的作品设计

报告，可以了解其思维过程并进行过程性评价，使评

价方式多元化。作品设计报告见表 1。

表 1 作品设计报告

作品名称

作者

创意来源

设计思路

具体制作过程

收获

(4)把作品设计报告纳入作品质量评价标准

教师对学生最终作品的评价不局限于最终结果的呈现，

同时将学生作品设计过程报告列入考察指标，作为衡

量其作品质量的重要因素，具体的作品评价标准见表 2。

表 2 作品质量评价标准

评价指标 要求与分数

作品内容
主题突出。(10 分)

美观和谐、构图完整。(10 分)

创造性 作品形式新颖，设计巧妙。(10 分)

技术性 正确并灵活运用所讲课程内容。(20 分)

思维素养
设计思路与制作过程中思维清晰，逻辑

顺畅，是否高效地解决问题。(50 分)

(5)设计调查问卷，掌握学情并及时评价

本研究在参考国内外有关计算思维测评量表的基础上，

结合高中信息技术课程内容，设计了中学生计算思维

(主要包括计算思维意识、方法、能力三大类)调查问卷，

以便监测学生在实验前后的计算思维变化状态。

在预测阶段，随机抽取了人大附中高二年级的 50 名学

生进行问卷发放与回收，其中有效问卷 50 份，有效率

100%。对于问卷的信度检验采用的是克朗巴哈系数，

结果表明整体与各维度的克朗巴哈系数均大于 0.6，所

以此问卷有较好的信度。对于问卷的结构效度检验采

用的是“KMO 和 Bartlett 的球形检验”，其 KMO 值为

0.825，大于 0.7，故问卷具有较好的结构效度。

3.3.3. 让学生在作品设计过程中形成计算思维思想
根据设计的一般流程，要求学生遵循“明确目标、任

务分解、抽象建模”的一般流程来完成作品设计。主

要包括以下环节。①明确任务。②分析任务。主要借

助任务分解的策略把综合任务分解为若干便于操作的

子任务。③方案形成。要求学生思考如何实现每一个

子任务的计算机化，形成在计算机技术范畴内具备可

操作性的技术方案，并最终形成自己拟完成作品的抽

象模型，形成方案。④反思与迭代。针对已经形成的

方案，根据课程要点思考任务完成过程中需注意的地

方，进一步反思并迭代。⑤技术实现并形成作品。搜

集相应素材，进行作品设计与制作，并及时记录作品

设计报告。⑥分享、完善与提交。进行作品的相互分

享、完善与提交。

4. 教学实践

4.1. 教学模块选择与教学对象分析
本研究中高中信息技术课程中所使用的教材为《多媒

体技术》，本教材中含有 Photoshop 设计模块。本轮教

学实践讲授的是 PS 中的分图层操作。其所蕴含的计算

思维是分解、模块化、设计。本研究教学实践选取的

教学对象为中国人民大学附属中学高二年级学生，共

112 名。

4.2. 第一轮教学实践

4.2.1. 教学内容设计
(1)学科内容

学科内容包括图层的概念；图层的主要操作；利用图

层完成复杂图像的设计三方面。

(2)计算思维内容

58

图层概念中蕴含着“分解”与“综合”的计算思维思

想。在本教学过程中，应该体现出如何把整个综合性

大任务分解为若干个小任务的任务分解的思想，并在

任务分解中，遵循“自上而下，逐层分解，由繁到简”

的方式完成复杂任务的解决。

4.2.2. 教学活动与任务设计
基于以上的分析和设计，此章节的演示讲解与任务实

施过程如表 3。

表 3 多图层操作的演示与讲解过程

教师活动 学生活动

呈现反面案例：将所有内容都

放到一个图层中的图像，并提

问如果想修改图像中的某一部

分(如背景色)该如何操作？

思考并尝试解决

引入图层概念：图层的概念 了解概念及作用

呈现简单任务：利用图层分别

存储复杂图像的局部内容。特

别正式且严肃地向学生强调

“分解”的重要性及其对未来

作品修正的便捷性。

形成分图层处理图

像的计算思维，并

掌握图层的新建、

删除等内容要点

演示操作过程：以简单案例进

行举例，并进行操作演示

更进一步地体会分

图层处理的重要性

师生交流互动：总结知识要点 提问疑问及想法

发布任务：设计防霾海报，呼

吁人们重视空气污染问题
明确任务主题

明确任务要求：①使用的素材

数量不少于 8 个；②作品应存

储为 PSD 格式，保留操作过程

中的图层，图层不少于 5 层；

③记录作品的设计思路和过

程，并与作品文件一起打包上

传至平台。

明确任务要求，构

思作品：怎么做，

需要什么，应该注

意什么等

作品设计：巡视学生作品设计

情况，并给予适当指导

搜集素材，制作作

品，记录作品设计

报告

作品分享：学生之间进行作品

的互相分享
作品的完善与优化

作品提交：提醒作品上传
将作品、设计报告

等文件上传至平台

4.2.3. 教学评价与存在问题
(1)教学评价

从多媒体作品设计报告的角度来看，学生的作品契合

主题，构思各异，形式也别具一格，并在制作过程中

体现出了其理解任务、一步一步分解并逐步设计完成

的过程。当然，也有一部分学生指出自己面对复杂图

像分层完成的能力还不够，起初还是没有意识到任务

分解、图像分层的重要性，直到修改局部内容的时候

才发现操作十分复杂，才更加深刻理解任务分解的重

要性。

从多媒体作品质量来看，具体如表 4，70 分以下的学生

占比 62.5%，80 分以下的占比 94.64%，作品的质量还

不甚理想。学生们在课堂上的积极表现和问题抽象与

任务分解能力的提高并未显著反映到作品质量的提高

上来。

表 4 “抗霾公益海报”作品成绩

成绩
60 分

以下
60-70 70-80 80-90 90-100

人数 14 56 36 4 2

百分比 12.5% 50%
32.14

%
3.6% 1.79%

(2)存在问题

基于课堂观察及对部分教师和学生的访谈，发现本次

教学实践中突出的问题有: ①学生用于填写作品设计报

告的时间过短，大部分学生拿到任务后会一头扎进实

际制作中，而不是进行认真梳理和缜密规划，由于缺

乏系统的设计，导致最终的作品缺乏整体的设计感和

可修改性。②在任务实现过程中，师生都有些过于关

注作品自身而忽略了学生思维的形成过程。虽然在开

展教学实践前已经和教师沟通过要充分体现学生的主

体地位和关注作品实现的思维过程，但教师习惯于传

统的讲授型教学方式，并不能真正放手让学生去体验

设计的过程。

4.3. 三轮教学实践及其效果

4.3.1. 以 DBR 为指导的持续教学实践
基于第一轮教学实践中出现的问题，笔者参考 DBR 中

对“设计”及其规范的要求，对教学实践和活动组织

进行了调整，然后组织了第二轮和第三轮教学实践。

(1)针对第一轮的教学实践的改进与设计

①针对学生拿到任务不认真进行设计和规划的情况，

教师在发布任务前会告知学生作品的评价标准和细则，

并强调作品设计报告所占的分值及重要性，在完成任

务过程中也会及时督促其记录作品的设计思路和过程。

②针对教师过度关注学生的情况，需注意要留给学生

适当的思考和尝试的空间，要大胆地启发学生去尝试

和探索，鼓励他们举一反三，综合运用各种方法来解

决问题，实施以学生思维活动为主的教学过程。

(2)第二轮和第三轮教学实践的实施

为了推进基于分解、模块化、设计等计算思维思想的

形成，基于第一轮教学实践经验及其存在的问题，笔

者还在动态画笔模块、动作模块和小动画制作模块继

续推行“学科内容+计算思维培养”教学模式，基于抽

象、建模、分解和综合思想组织教学活动，持续进行

了 3 轮教学实践，每轮实践均在对上一轮实践反思优化

的基础上进行。

4.3.2. 三轮教学实践的成效及分析
(1)从计算思维的意识、方法、能力来看

因问卷中的题目选择项均为 3 项，收集的数据为低测度

的定序变量，所以对其差异性的检验使用的是基于交

叉表的卡方检验。

59

从卡方检验来看，具体见表 5，计算思维意识、方法、

能力上前后存在显著差异，说明从设计角度提升学生

的计算思维是有效的。

表 5 计算思维前后测问卷卡方检验

计算思维素质 题号 渐进 Sig.(双侧)

意识

a1 0.000**

a2 0.001**

a3 0.004**

a4 0.001**

a5 0.000**

方法

b1 0.000**

b2 0.035**

b3 0.000**

b4 0.000**

能力

c1 0.000**

c2 0.650**

c3 0.000**

c4 0.225**

c5 0.014**

**.在 0.05 水平(双侧)上显著相关

(2)从作品设计报告来看

针对第一轮教学实践中存在的问题，第二轮与第三教

学实践中均进行了改进。经过训练，在第三轮教学实

践中，学生的设计报告日益规范和完善。于学生而言，

其作品设计与制作过程思路更加清晰，任务完成更加

高效；于教师而言，在对学生设计报告指出问题的同

时，也在改变着学生的思维逻辑，教师关注的不仅仅

是最终的作品，而是其设计的过程，真正实现了计算

思维培养的教学。

(3)从作品质量来看

在思维意识、方法、能力不断掌握的过程中，学生的

设计过程不断清晰明了，作品质量也有显著提升。第

三轮教学实践发现：在 70 分以下的作品急剧减少，70-

90 分的作品逐渐增多，90 分以上的作品逐渐增多，且

占比将近 50%。

5. 研究总结

(1)借助信息技术课程中的设计章节，从教师教学设计、

学生作品设计的角度进行抽象、建模、设计、分解与

综合等维度的计算思维的培养是可行的。

(2)教师对于课程的讲解应更多地在于思维逻辑能力的

逐步渗入，对于任务的完成应体现以学生为主体的理

念，当然，对于基础较弱的学生应给予主动的询问和

指导，并提倡生生互助。

(3)作品设计报告的实时、认真、规范撰写对学生的计

算思维培养有着非常重要的作用，教师需认真设计作

品设计报告的内容和格式，以便体现学生们的思维逻

辑变化及存在的问题，以便进行及时的提升和帮助。

(4)计算思维的培养不是一蹴而就，而是不断改善、不

断实践的迭代过程。

参考文献
Wing J M(2006). Computational thinking[J]. Acm Sigcse

Bulletin, 49(3):3-3.

张学军、郭梦婷和李华(2015). 高中信息技术课程蕴含

的计算思维分析[J]. 电化教育研究, (8):80-86.

任友群和黄荣怀(2016). 高中信息技术课程标准修订说

明 高中信息技术课程标准修订组 [J]. 中国电化教育 ,

(12):1-3.

焦建利(2008). 基于设计的研究:教育技术学研究的新取

向[J]. 现代教育技术, 18(5):5-11.

张文兰和刘俊生(2007). 基于设计的研究——教育技术

学研究的一种新范式[J]. 电化教育研究, (10):13-17.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

60

Promoting Computational Thinking and Collaborative Skills

in Primary Robotics Classes

Hyungshin CHOI1*, Jeongmin LEE2

1 Chuncheon National University of Education

2 Ewha Womans University

hschoi@cnue.ac.kr, jeongmin@ewha.ac.kr

ABSTRACT

This current study reports our attempt to design and

implement a course to promote computational thinking and

collaborative skills for primary school students in Korea. We

have incorporated Wedo 2.0 into fourth graders’ curriculum

in various real world problem solving contexts. This paper

reports the students’ activities, learning outcomes in terms

of computational thinking and collaborative/communication

skills.

KEYWORDS

Computational thinking, Bebras tasks, Collaborative skills,

Robotics Classes, Primary Education

1. INTRODUCTION
As computational thinking(Wing, 2006) is widely

recognized as the core competency in software-embedded

society, various educational attempts are being made to

promote primary students’ computational thinking skills in

Korea. These efforts include educational programming such

as Scratch programming, physical computing with robotics

and microcontrollers, and unplugged activities.

It is claimed that computational thinking can be promoted

by computer programming because it provides kids with

debugging and troubleshooting chances where they receive

quick feedback (Bers, 2018). Furthermore designing and

programming robots to function offer tangible objects for

kids to play with and observe so that debugging becomes

more visible. It is often neglected that, however,

computational thinking is a problem solving skill and

therefore students should apply computational thinking

skills in authentic problem situations while collaborating

with their peers.

This current study reports our attempt to design and

implement a course in primary education in Korea.

Specifically we aimed to investigate how the current course

design of primary robotics activities impacts on students’

computational thinking and collaborative/communication

skills.

2. CONTEXT & METHODOLOGY

2.1. Participants and Research Procedure

In the current study, 75 Korean fourth grade school students

participated in the robotics classes. Robots programming

classes were designed as a subject integration project. The

same modules were carried out in four different classes from

the 2nd week of September to the 1st week of December

2017. The pre-CT Bebras tests and pre-tests of

questionnaires were given before the first module and post-

tests were given after the 7th module. We have selected 59

students as final research subjects after removing incomplete

responses. The participants were 31(52%) boys and

28(48%) girls.

2.2. Measuring Instruments

In order to investigate the effects of the robotics class we

look into two main areas: cognitive and social. To measure

cognitive skills we focused on students’ computational

thinking and incorporated Bebras tasks(www.bebras.org).

The Bebras tasks consisted of authentic problems used to

measure students’ CT transfer. We selected 6 items from the

Korean Bebras pilot test conducted in 2016 (Park & Jeong,

2017). In addition, to measure social skills we concentrated

on collaboration and communication skills. Collaboration

skills were measured using the 5-Likert scale by Yoon and

Kim (2011). The instrument consisted of 9 items and

coefficient alpha is .780. Communication skills were

measured using communication the 5-Likert scale

questionnaires by Choi and et al. (2013). The instrument

consisted of 5 items and coefficient alpha is .845.

2.3. Data Analysis

SPSS was used for the data analysis. First, we conducted a

matched pair t-test to discover if robotics programming

education improved students’ computational thinking,

collaboration, and communication skill.

 2.4. Robotics Class Design

As Table 1 indicates, we designed the robotics class

including 7 modules, and each module took 2 hours. The

modules were designed to help 4th graders solve problems in

authentic scenarios such as earthquake, rescuing people,

recycling, and food deficiency situations. The primary

students act as researchers in a future disaster research center

who need to solve the incurring ‘real-world’ problems. For

each module, students were urged to work together as a team

of two acting one as a designer and the other as an engineer.

The designer designs the robot and the engineer creates

programs to solve the problems. The team members were

encouraged to switch the roles back and forth allowing them

to be able to perform two roles. In addition, as students build

collaborative robots they work as a team of four members,

and combine two robots into one or synchronize robots’

behaviors.

http://www.bebras.org/

61

Table 1. Robotics class modules’ themes

Module Themes

1 Disaster Robots Introduction

2

3

4

5

6

7

Designing Rescue Robots

Future Food Problem Solving Robots

Building Earthquake-resistant Houses

Recycling Helper Robots

Collaborative Robots

Designing Future Robots

Figure 1. Collaborative rescue robots

3. RESULTS

3.1. Cognitive : Computational Thinking skill

A paired samples t-test showed a statistically significant

increase in computational thinking from pre-test M= 1.85,

SD= 1.06) to post-test (M= 2.47, SD= 1.24), t(58)=-3.636,

p<.05.

3.2. Social : Collaboration/Communication skill

Collaboration skills significantly increased from pre-test

(M= 3.79, SD= .51) to post-test (M= 4.03, SD= .48), t(58)=

-4.247, p<.05. In addition, communication skills also

significantly increased from pre-test (M= 3.46, SD= .61) to

post-test (M= 3.76, SD= .58), t(58)= -4.425, p<.05.

4. CONCLUSIONS & FUTURE STUDY
This research reports our design and implementation of

fourth graders’ robotics classes to promote their

computational thinking and social skills. As our findings

indicate, the robotics programming classes positively

impacted primary students’ computational thinking skills.

Although the pre-test results of Bebras tasks were relatively

low the post-test scores were significantly improved. In

order to investigate students’ persistent development of CT

skills, a series of design-based research will be conducted.

In addition, the robotics programming classes positively

impacted on primary students’ perceived

collaborative/communication skills. The robotics modules

were designed for students to collaborate in a group of two

(module 2-4) and four (module 6-7) to solve authentic

problems. This provided the students with opportunities to

work together and communicate to achieve the goal.

5. ACKNOWLEDGMENT
This work was supported by the Ministry of Education of the

Republic of Korea and the National Research Foundation of

Korea. (NRF-2016S1A5A2A0392687)

6. REFERENCES
Bers, M. U. (2018). Coding as a playground. New York:

Routledge.

Choi, Y., Noh, J., Lim, Y., Lee, D., Lee, E., & Noh, J.

(2013). The Development of the STEAM literacy

measurement instrument for elementary, junior-high, and

high school students. Journal of Korean Technology

Education, 13(2), 177-198.

Park, Y., & Jeong, I. (2017). Assessing elementary school

students’ computational thinking skills on Bebras tasks.

The Korean Association of Information Education

Research Journal, 8(1), 27-31.

Yoon, H., & Kim, S. (2001). The effects of cooperative

learning applying Jigsaw II on learners’ self-regulated

learning, achievement, self-esteem & cooperation. Studies

on Education of Fisheries and Marine Sciences, 13(2), 194-

211.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 19(3), 33-35.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

62

Computational Thinking and

IoT

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

63

A Design-based Approach to Implementing a Computational Thinking

Curriculum with App Inventor and the Internet of Things

Chi-hung TSENG1*, Mike TISSENBAUM1*, Wen-hsuan KUAN2, Feng-chih HSU3, Ching-chang WONG4

1 Massachusetts Institute for Technology

2 University of Taipei
3CAVEDU Education, Taiwan
4 Tamkang University, Taiwan

chihung@mit.edu, mtissen@mit.edu, whkuan@utaipei.edu.tw, jesusvictory777@cavedu.com, wong@ee.tku.edu.tw

ABSTRACT

The growing ubiquity of everyday devices connected over

the Internet, known generally as the Internet of Things (IoT),

has opened up new avenues for students to explore their

worlds and think and create computationally. Combining

IoT with mobile technologies (such as smartphones),

enables students to move their designs and computational

thinking out of traditional classroom settings and into the

real world. This article outlines a design-based IoT

curriculum that connects Taiwanese students with the

personally-relevant issue of air pollution. The curriculum

employs student-driven smartphone application design,

using MIT's App Inventor, with Wi-Fi enabled IoT devices

(LinkIt 7697 Wi-Fi/BLE MCU board). This paper reports on

changes to the curriculum based on a preliminary pilot and

observations of student engagement during the most recent

enactment.

KEYWORDS

Computational Thinking, App Inventor, Internet of things,

Curriculum design, air pollution

1. INTRODUCTION

1.1. Internet of Things: The Next Sphere of Digital

Empowerment for Learners

As Asoton (2009) so clearly highlighted, the increasing

ubiquity of our everyday objects connected through the

Internet, commonly termed the Internet of Things (IoT), is

changing our daily lives in profound ways. This persistent

connectivity is even reaching into our home. From our

refrigerators, to our lightbulbs and thermostats, even our

home entertainment systems are all increasingly connected

to the Internet and controllable through mobile applications.

Smart hubs like Google Home or Amazon Echo, are acting

as "digital assistants" that allow you control your home

appliances by simply talking to them. However, most of

these systems are black boxes to users. We do not know how

they work, what they do with our data, and generally cannot

customize them for our own needs. Similar to the call for

computing education to embrace mobile computing as a

means for empowering students as creators and not mere

consumers of our digital futures (Tissenbaum, Lee, et al.,

2017), there is a growing need to consider how to effectively

integrate IoT into educational designs.

1.2. Making Computational Thinking Meaningful

The continued focus of computing education with learning

the fundamentals of computing (e.g., loops, conditionals,

functions, variables, and data handling) first proposed by

Wing (2006) and others, risks disconnecting what students

learn from how they might apply it in their own daily lives.

This separation of learning from contexts threatens to make

learners feel that they do not need to learn computing,

because they cannot see how it will apply to lives or their

futures, a challenge commonly faced in math and physics

education (Williams et al., 2003; Flegg et al., 2012). It

therefore becomes critical for education designers to

understand what current issues may be of interest to learners,

and how they can develop educational interventions that can

connect them to computing education.

For instance, air pollution has become a rising problem in

Taiwan recent years. This problem is keenly understood by

everyone in Taiwan and is the topic of science and other

disciplines within K-12 education. One source of data for

understanding the air pollution status in Taiwan is the

readings provided by government air quality stations.

However, even within a small geographical region like

Taiwan, the air quality can vary significantly, and the

government stations alone are not robust enough to capture

the variances. The increased availability of low cost IoT

devices and peripherals, coupled with Internet connectivity

offers new opportunities for the public to design and build

their own sensors, and to collectively share that data to

public or private servers (Chen et al., 2017). The

convergence of personally meaningful context and low-cost

technology provides the ideal context for designing

computational curriculum that can engage students in a

personally meaningful way.

1.3. Reducing Barriers for Computational Thinking

While engaging students in IoT-focused computing

curriculum may provide new ways for making computing

personally meaningful, it is not without challenges. Most

programming languages require arcane syntax and grammar,

which is a significant barrier for young learners wishing to

engage in computational practices (Maloney et al., 2004). If

our goal is to have students feel empowered to develop

computational solutions to real-world problems and become

excited about their ability to do so, we need to reduce these

barriers to entry. In response, researchers have developed

block-based programming environments, in which users

assemble programs by snapping "blocks" of code together.

These blocks-based languages have been shown to support

novice programmers to more easily develop relatively

complex programs in the domains of games (Brennan and

64

Resnick, 2012), 3D animations (Dann, Cooper, Pausch,

2011), and computational models (Begel & Klopfer, 2007).

MIT's App Inventor is an example of a blocks-based

programming environment that allows users to build fully

functional native apps for Android phones and tablets.

Because App Inventor is focused on mobile applications, it

allows the programs that young learners build to move off

their computer screens and into their lived lives. When

coupled with sensors and other IoT devices, App Inventor

can open exciting new possibilities for students to

experience, understand, and interact with their physical

worlds. While the promise of youth developing

transformational interventions using IoT is exciting, the

technical complexity required to actually develop these

interventions is a clear barrier.

2. METHODS

2.1. Developing a Low-barrier IoT Curriculum for

Taiwan through App Inventor

In response to the challenges of designing a personally

meaningful computational thinking curriculum for

Taiwanese students that does not require complicated pre-

existing programming knowledge, we developed new IoT

extensions for App Inventor. Below we discuss the

development of the new IoT functionalities for App Inventor

and the successive iterations of our air quality curriculum.

2.2. Why Wi-Fi not Bluetooth

There has been significant prior work focused on using

Bluetooth to control robots or devices (AlHumoud et al.,

2014). However, compared with Wi-Fi, the range Bluetooth

can cover is much smaller, making it mainly suitable for

spaces about the area of a classroom. When it comes to

larger spaces, such as a playground or even a campus,

Bluetooth does not have the range to support communication

between devices. In this curriculum design, students' air

quality monitor systems could be 50 to 500 meters away

from each other, well beyond the range of Bluetooth or

Ethernet cables. In these cases, we recommend using

development boards that are Wi-Fi enabled (such as the

LinkIt 7697 used here).

While there are many prototyping boards options, embedded

boards - boards that have all the necessary parts for

controlling other devices already built into them (Barr &

Massa, 2006) - are particularly useful for educational

purposes. Embedded boards are significantly cheaper,

smaller, more portable, and have lower power consumption

that full-fledged computers. It is also fairly easy to power

prototypes developed using embedded boards using small

portable power sources (e.g., AA batteries or power banks)

(Tseng et al., 2017).

By coupling these embedded boards with mobile

technologies, we can extend their capabilities in ways that

would be prohibitively complex on their own. For instance,

voice recognition is relatively simple to implement with

smartphones (similar to Google Assistant or Apple Siri).

However, this kind of functionality is extremely difficult to

implement on embedded boards alone. Combining the two

naturally complements the affordances of each and allows

us to envision more complex and engaging educational

designs.

2.3. An Authentic Problem: Taiwan's Air Pollution

The design of this camp is focused on the current air

pollution problem in Taipei, which has become an

increasingly serious health threat to everyone living there.

Among all pollutants, fine particulate matter (PM2.5 -

particles that are less than 2.5 micrometers in diameter), are

particularly serious as they can penetrate the alveoli (the gas

exchange regions of the lungs) and even pass through the

lungs to affect other organs. PM2.5 have been shown to

cause serious illness and increase cancer rates and is directly

related to a range of serious health problems, such as asthma,

cardiovascular disease, respiratory diseases, lung cancer,

and premature death (Chen, 2017). According to Taiwan

Environmental Protection Administration (2018), a person's

respiratory system can be seriously affected when the PM2.5

level is above 50 μg/m3. Given the seriousness of the

problem, and its direct connection to the population of

Taiwan, the subject matter was one we believed participants

would be able to directly connect to.

2.4. Participants and Setting

This work was designed as a summer camp taking at three

different high schools in the same week. Each camp has 30

students randomly separated into 12 to 15 groups

disregarding gender or prior programming experiences. The

camp took place over five 6-hour days (9:30 to 16:30 each

day). In each camp, one expert instructor conducts the

curriculum and three TAs are present to work with students

and collect observations. At the end of each day, the

instructor and TAs debriefed together to exchange

information about interesting and unexpected events.

2.5. Data Collection

Observations during camp sessions were collected by the

instructors and TAs, debrief sessions with the instructors and

TAs, and the students' final products.

3. CURRICULUM DESIGN
This curriculum was implemented using a design-based

research approach, which employs iterative cycles of design,

deployment, observation, and redesign (Barab & Squire,

2004).

3.1. LinkIt 7697 Wi-Fi/Bluetooth MCS Board

For IoT connectivity we used the LinkIt 7697, which is an

Arduino compatible development board (2018). It supports

Wi-Fi and Bluetooth Low Energy connectivity. With its

relative affordable price (about 15 USD) and the support of

the open source community, LinkIt 7697 board is relatively

easy for beginners to get started with. Students can quickly

build and test their designs without any complicated setup.

In this camp, we combined the LinkIt 7697 to a PM2.5

sensor as a prototype for students to collect PM2.5 data and

to further explore the physical world.

65

Figure 1. Prototype of the air pollution monitor system,

including LinkIt 7697

To make the hardware setup easier, we used an extension

board to connect the air quality sensor, removing the need

for students to use a breadboard and messy wires. This was

a suitable approach for a camp, but for a longer-term

intervention, it might be better for students to have more

hands-on experiences building breadboard circuits.

3.2. Curriculum Content

Below we describe each day of the five-day camp.

Day 1. Basic Understanding of Mobile Programming.
The camp started with an introduction to the App Inventor

platform and having students install the Android emulator

on their PCs. Using a set of tutorials, students developed a

basic understanding of the AIA environment and its

components (e.g., Buttons, Textboxs, Images, Webviewers),

and how to build apps to complete certain tasks (e.g., to have

users input two numbers into Textboxes to calculate the area

of a rectangle, and how to show error message if either one

Textbox is empty).

Day 2. Get into Mobile Phone’s Functionalities. On Day

2, using the premise of game design, students learned how

to integrate multimedia, and sensing functions in their apps.

Students had to make a virtual ball on the screen roll

according to the phone’s orientation (utilizing the

orientation/accelerometer sensor). We also introduced the

Map and location sensor components, having students build

a location-based app to detect their location.

Day 3. Basic Understanding of Circuits and MCU

boards. On day 3, students began working with the LinkIt

7697 MCU board to control several electrical components,

such as LEDs, potentiometers and buttons. In the afternoon,

students built a light-controlled LED, in which the LED

intensity was affected by the ambient light condition using

the photoresistor.

Day 4. Receive Data from MCU Board to Show on the

App Screen. On day 4, students built the main components

of their air quality monitoring systems. Students learned

how to control the MCU board through their mobile phone

through Wi-Fi, how IP connections work, how to send their

air quality sensor data to the server, and how to retrieve data

from other devices and show it on their phone's screen.

Day 5. Demo, Share and Feedback. On the fifth and last

day, students finished their monitor system and tried to add

more functions to it, such voice control or using different

color LEDs to indicate the air quality. In the afternoon, they

presented what they had built and learned during the week

to the larger group. As a follow-up reflection, students were

asked to discuss and write down what they could add to

make their projects to make them better. Some of this

discussion was/will be used to improve subsequent iterations

of the camp.

The prototype of our air pollution monitor system uses a

LinkIt 7697 MCU board, extension board and an air quality

sensor (can detect PM10, PM2.5) (Figure 1).

Students then designed their own interfaces based on what

they learned over the first three days. Each group came up

with different ways to present their data: one team used

Google Chart API to visualize the hourly PM2.5 status

updates, while others simply showed the readings on the

screen (Figure 3).

Figure 2. Examples of student representations of air quality

4. OBSERVATIONAL STUDY
During the one-week camp, almost every group of students

from the three high schools finished building their air

pollution monitor systems, sent data to the server and

reviewed all the air quality sensor data installed within the

campus. From our observations, about half of the students

resisted or paid less attention at first because they felt that

mobile and IoT programing was too difficult to learn.

However, with the help of AIA and the easy-to-connect

hardware, these students began to explore more of the AIA

functionality on their own. This exploration was clearly seen

in their final project presentations. All the students were

visibly excited when they successfully sent data to the server

and were able to view their surrounding campus' overall air

quality. Many students expressed the idea that this data was

really meaningful and impacted their perceptions of the need

to understand and care for the environment in the future.

After the camps were over, we randomly selected several

students from each camp and quoted their feedback below:

“It’s really exciting when I see the data jumping on the

screen.”

“Now I know what the difference is between Wi-Fi and

Bluetooth.”

“I can prepare a mask before I go to school if the app tells

me today’s air condition is not good.”

66

The results of this first full implementation of the camp was

extremely encouraging and will further design iterations for

year two.

5. DISCUSSION AND FUTURE WORK
This paper described the design and development of a one-

week IoT curriculum with high school students which aimed

help them in developing their identities as computational

thinkers. This iterative work built on a previously piloted

version of this camp held across three high schools in Taipei

city, Taiwan. By reviewing the observatory results and

student’s projects, we saw that overall, students were

motivated and connected to the work because the topic was

connected to their daily lives.

Building off our current run of the camp, we have some

thoughts on how to extend and improve the curriculum. For

students who want to explore further, it might be fruitful to

provide them with opportunities to try out other making

skills that connect to this topic, such as how to use 3D

printing or laser cutting to fabricate an exterior case for their

air pollution monitor system to provide better protection.

Another option for student exploration could include

opportunities for students to add additional sensors to

expand their device's functionality. For instance, they could

add temperature, humidity and wind direction sensors to

provide a more comprehensive analytics results. They could

also add multi-color LEDs to indicate different air quality

conditions or extend their mobile apps to provide a pop-up

notification when the air quality condition is bad.

Building off these insights, in future camps we will design

more inquiry activities for students to design and build with

AIA and IoT devices, allowing them to explore their

surrounding environments through computational means.

Future iterations of this camp will also involve more

students and will employ a pre/post survey to collect more

detailed quantitative and qualitative findings. Through this

work, expect to have a more comprehensive understanding

of how students become computational thinkers through

participation in this camp, and how it may affect students'

computational thinking skills, eventually their future study

and career pathway choices.

6. REFERENCES
AlHumoud, S., Al-Khalifa, H. S., Al-Razgan, M. & Alfaries,

A. (2014). Using App Inventor and LEGO mindstorm

NXT in a summer camp to attract high school girls to

computing fields, 2014 IEEE Global Engineering

Education Conference (EDUCON), Istanbul, 2014, pp.

173-177.

Barab, S. & Squire, K. (2004). Design-Based Research:

Putting a Stake in the Ground. Journal of the Learning

Sciences, 13(1), 1-14.

Barr, M. & Massa A. J. (2006). "Introduction".

Programming embedded systems: with C and GNU

development tools. O'Reilly. pp. 1–2. ISBN 978-0-596-

00983-0.

Begel, A. & Klopfer, E. 2007. Starlogo TNG: An

introduction to game development. Journal of ELearning.

Chen, L.J., Ho, Y.H., Hsieh, H.H., Huang, S.T., Lee, H.C.,

& Mahajan, S. (2017). ADF: an Anomaly Detection

Framework for Large-scale PM2.5 Sensing Systems.

Accepted to IEEE Internet of Things Journal.

Chen, L.J., Ho, Y.H., Lee, H.C., Wu, H.C., Liu, H.M, Hsieh,

H.H., Huang, Y.T., & Lung, S.C. (2017). An Open

Framework for Participatory PM2.5 Monitoring in Smart

Cities. IEEE Access Journal, 5, 14441-14454.

Flegg, J., Mallet, D., & Lupton, M. (2012). Students'

perceptions of the relevance of mathematics in

engineering. Intl. Journal of Mathematical Education in

Science and Technology, 43(6), 717-732.

Lee, C. H., & Soep, E. (2016). None But Ourselves Can Free

Our Minds: Critical Computational Literacy as a Pedagogy

of Resistance. Equity & Excellence in Education, 49(4),

480-492.

LinkIt 7697 Development platform. Retrieved from https:/

/docs.labs.mediatek.com/resource/linkit7697-arduino/en

Location Aware Sensing System. Retrieved from

https://pm25.lass-net.org/

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., &

Resnick, M. (2004, January). Scratch: a sneak preview

[education]. In Creating, connecting and collaborating

through computing, 2004. Proceedings. Second

International Conference on (pp. 104-109).

PM2.5 concentration indexes and activity advices. Retrieved

from http:

//taqm.epa.gov.tw/taqm/tw/fpmi.aspx

Tseng, C.H., Wong, C.C. & Kuan, W.H. (2017).

Implementation of a map route analysis robot: combining

an Android smart device and differential-drive robotic

platform. MATEC Web Conf, 95 (2017) 08005.

Wagner, A., Corley, G. J., & Wolber, D. (2013). Using app

inventor in a K-12 summer camp. Proceedings of the 44th

ACM technical symposium on Computer science

education, pp. 621-626.

Williams, C., Stanisstreet, M., Spall, K., Boyes, E., &

Dickson, D. (2003). Why aren't secondary students

interested in physics? Physics Education, 38(4), 324.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

67

Computational Thinking

Development in Higher

Education

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

68

The Use of Computational Thinking to Advance Learning

in the Pre-university Subject of Digital Literacies

Ildiko VOLCZ

University of Technology, Sydney, Insearch

ildiko.volcz@uts.edu.au

ABSTRACT

This paper describes how elements of computational

thinking are employed to advance student learning and

engagement in the Digital Literacies subject of the

Foundations Studies of the University of Technology,

Sydney. This study does not focus on enhancing technical

coding skills, rather it takes the conceptual view on

computational thinking and investigates how aspects of it

can be used to further students’ academic skills and develop

their abilities to solve complex problems in collaboration

and with the use of technology.

This paper will also reveal 115 students’ responses of the use

of computational thinking elements in project-based

assessment.

KEYWORDS

Computational thinking, Digital Literacies, project-based

learning.

1. BACKGROUND
The UTS Foundation Studies Program is offered in Australia

by Insearch to international students; the academic entry

level requirement is completion of Year 11, with an English

language requirement of IELTS overall 5.5 and a minimum

of 5.0 in writing. The course is designed to develop students’

academic and language skills to prepare them for a

university education.

The student body represents a diverse population in terms of

gender, country of origin and also use of technology. There

is great fluctuation in the composition of nationalities from

semester to semester: in some semester there is

approximately 40% Chinese and 40% Nepali students, in

other semesters, 75% of the students are from China. The

rest of the student population is generally from Indonesia,

India, Korea, Laos, Malaysia, and Vietnam. Therefore, the

curriculum has to be flexible enough to cater for students

with different skill levels while aiming for consistent

learning outcomes.

The composition of the cohort that provided information for

this paper consisted of 75% students from China, 7% from

Indonesia as the second biggest group of students, 2% from

Korea and 2% from Hong Kong; the rest of the students were

from Nepal, Myanmar, Pakistan, Nepal, Malaysia.

The cohort represented 55% male, 45% female students;

55% studying Business, 13% Communication, 10% Design,

6% Engineering.

2. INTRODUCTION
The aim of the UTS Foundation Studies is to provide

preparatory education to international students for university

courses. The role of the Digital Literacies subject in the

program is to equip students with the technical conceptions

and skills to become efficient users of digital and online

resources. The subject employs a number of computational

thinking principles and elements ranging from simple

coding activities to complex project-based collaborative

learning assessments. This paper will describe how

computational thinking is applied in this subject.

3. COMPUTATIONAL THINKING

3.1. Definition of Computational Thinking
There are numerous definitions of computational thinking

(CT); one of the widely applied description by Jeanette M.

Wing (2011) states: “computational thinking is the thought

processes involved in formulating problems and their

solutions so that solutions are presented in a form that can

be effectively carried out by an information-processing

agent”. Hemmendinger (2010) describes it as: “Teaching

computational thinking, however is something else; not to

lead people to think like us — which is pretty varied anyway.

Instead, it is to teach them how to think like an economist, a

physicist, an artist, and to understand how to use

computation to solve their problems, to create, and to

discover new questions that can fruitfully be explored.”

These definitions suggest that computational thinking skills

go beyond Computer Science and can be applied to non-

computing subjects. DeSchryver and Yadav (2015) argue a

that computational thinking skills (as strategies for problem

solving in data-mediated, technology-rich learning and work

environments) coupled with the use of new literacies skills

(strategies to negotiate, generate, and communicate meaning

among myriad encoded digital forms) enhance creative

thinking skills (cognitive activity comprising various

subsets of these component thinking skills that are mediated

by the more aesthetic components of traditional creativity).

There are various calls for opening up CT elements to

learning that is not computer dependent.

The heightened need for including computational thinking

in K-12 curriculum that is supported by government bodies:

England added Computational Thinking and Computer

Programming in the national curriculum of primary and

secondary education (Department for Education England,

2013), while Australia puts emphasis on STEM (Science,

Technology, Engineering and Mathematics) subjects in their

curriculum, as Chang (2015) states: “The new curriculum

echoes successful programs implemented in the United

States such as Code.org and “Hour of Code”, with the

support of Google and Microsoft, including the United

Kingdom who introduced coding in primary schools last

year.” As CT skills will advance in K-12 education,

69

university preparatory courses will also need to incorporate

elements of CT.

3.2. Elements of Computational Thinking
Just as there are numerous definitions for Computational

Thinking, there are also a wide range of ideas on the

components of it. Gouws, Bradshaw & Wentworth, (2013)

developed a Computational Thinking Framework (CTF) to

assist in developing educational materials. According to

their framework, the followings skill sets are required for

computational thinking: Processes and Transformation,

Models and Abstraction, Patterns and Algorithm, Tools and

Resources, Inference and Logic, Evaluations and

Improvements. The levels of these skills are described as:

Recognise, Understand, Apply and Assimilate.

Weese (2017) describes the elements of computational

thinking as: Algorithmic Thinking, Abstraction, Problem

Decomposition and Control Flow.

According to Barr and Stephenson (2011) the core

computational concepts are: data collection, data analysis,

data representation, problem decomposition, abstraction,

algorithm and procedures, automation, parallelization and

simulation.

García-Peñalvo and Mendes (2018) describes computational

thinking as “an active problem solving methodology where

the students should use a set of concepts, such as abstraction,

patterns matching, etc., to process and analyze data, and to

create real or virtual artefacts”.

Code.org (2014) illustrates the process of computational

thinking in 4 steps: step 1 - decompose, step 2 - patterns, step

3 - abstraction, step 4 - algorithm.

Reviewing the definitions and descriptions of the

components of CT skills one can deduct that some common

ingredients are: problem decomposition, patterns matching,

abstraction and algorithm creation.

4. COMPUTATIONAL THINKING IN

THE SUBJECT OF DIGITAL LITERACIES
The aim of the UTS Foundation Studies’ Digital Literacies

subject is to equip students with the skills and knowledge to

become efficient users of digital devices and applications for

academic purposes. The subject employs the components of

computational thinking to enhance students’ abilities to

tackle complex issues and solve project-based problems in

collaboration with others. Other than technical capabilities,

the main skills that pre-university students develop in this

course are conceptual skills and problem solving abilities.

4.1. The development of CT skills

In the Digital Literacies subject students first complete an

unplugged activity developed around the four elements of

computational thinking (problem decomposition,

abstraction, patterns matching and algorithm creation). The

main aim of this learning activity is to enable students to

become familiar with the concepts of CT. Through this

exercise students develop their knowledge to recognise and

understand the process of computational thinking.

Following this unplugged activity, in the next two CT

activities students work individually to apply their

knowledge to practical exercises. They complete two “Hour

of Code” tasks: Minecraft as a beginner coding activity on

code.org and to understand programing logic they use the

lighbot.com mission. The Hour of Code game is used in the

subject to inspire students and raise awareness of the

importance of programming, but not to teach students

technical coding as concluded by Du, Wimmer and Rada

(2016). Light-bot.com is applied in the course as a sound

resource to teach students conceptual skills and abstraction,

as assessed by Gouws, Bradshaw & Wentworth, (2013)

Lightbot has a 74% overall CT score, although, the program

is weaker in the areas of recognising patterns and creating

algorithm.

4.1.1. Feedback from the students on these activities

55 students completed an evaluation survey of the lesson and

the majority of the students (83%) enjoyed the activities and

rate them 4+ stars.

Figure 1. Student rating of Hour-of-Code lesson

The word cloud below serves as a summary of the students’

comment on the lesson.

Figure 2. Student comments of Hour-of-Code lesson

4.2. Project-based assessment details

Once students have completed these activities, they progress

to the assimilation level of the CT skills and are engaged in

a 6-week-long project-based learning assessment. In this

assessment students need to employ their CT skills to

decompose the complexity of the task, recognise patterns to

find similarities within and among tasks, use abstraction to

focus on the main issue and create an algorithm to identify

details of the process.

The assessment is a collaborative task where students create

a 5-minute movie that tells an inspiring story around a digital

literacies topic. The project has three deadlines that are set

in order to assist students to keep on track with the project:

70

in week 2 they need to submit a story brief that includes the

elements of their short story, in week 4 they do a movie pitch

to build anticipation and create excitement about their film

in class and in week 6 they submit the final, edited movie.

Concurrently, students will acquire skills in the areas of

visual literacy incorporating camera angles, shots and

staging; in audio editing to record and combine audio tracks

and in movie editing to comply a short video.

4.3. Computational Thinking Process in Project-

based assessment

Students are required to use the process of CT to complete

the assessment. They need to apply the components of CT to

create the collaborative project. This experience will assist

them in developing their conceptual understanding and

team-based problem solving skills.

4.3.1. Decomposing the Problem

The first step when starting an assignment is to break it down

into smaller, more manageable tasks where each part can be

solved independently of each other. Consistently, that is the

very definition of decomposing the problem (Weese, 2017).

To provide scaffolding to students in the decomposing

process, the project-based assessment has defined deadlines

to meet, such as the story brief and the movie pitch. These

deadlines create the skeleton for the project and assist

students with breaking the assessment into smaller tasks and

allocate those to group members. Students need to decide on

activities that need to be completed as a group and assign

tasks to individuals to contribute to the final product.

This part of the assessment provides the students with great

learning value in developing their conceptual skills and

understanding the steps in starting an assignment.

4.3.2. Recognising Patterns
During the decomposition stage students will come across

tasks that are similar in nature. According to Code.org

(2018) pattern is a theme that is repeated many times.

Students in this assessment are particularly encouraged to

look for patterns when they create their shot list, so scenes

that are similar can be organised accordingly. Identifying

patterns can be applied to most of the technical parts of the

project, such as audio and video recording and editing.

Another example for pattern recognition in the project-based

assessment is the use of camera angles and shots to underpin

the tone of a scene. For example, to convey emotions

students use close up shots to show character’s facial

expressions; or to illustrate that a character is inferior they

use high camera angles. This kind of pattern of shots and

angles are used throughout the movie to support the story.

4.3.3. Abstraction
Abstraction refers to the general representation of a complex

problem. According to Wing (2008) “The abstraction

process - deciding what details we need to highlight and

what details we can ignore - underlies computational

thinking”. The abstraction process allows students to gain a

better understanding of the problem they are faced with. It

allows them to investigate the core of it without focusing on

unnecessary details. It helps them to concentrate on the main

idea see what the more important parts of the project are.

In the movie assessment students are required to use

abstraction for their movie brief and pitch. In the movie brief

they need to outline the main parts of the story, using the five

elements of a short story: setting, characters, conflict, plot

and theme. They are not required to work out the plot

structure in details, rather to provide an overall impression

of their story. This abstraction provides the students with

two main benefits: form the main idea for their movie and to

be able to express themselves in a prompt format.

In the movie pitch the group needs to present their movie

idea and a trailer (advertisement of their movie) to the class.

The aim of the movie pitch is to generate anticipation and

interest in their movie. The groups are required to use

abstraction and present their idea in a way that provides

enough information for the audience to understand the story

without getting into lot of details. Creating a trailer for their

movie is an excellent example for students to develop an

understanding of abstraction.

Abstraction as well as problem decomposition teaches

students to gain an overall view of an issue and develops

their conceptual thinking skills. However, these two

elements of CT differ. With problem decomposition one

breaks through the complexity of a project and creates

smaller, more manageable tasks, while with abstraction one

gains understanding by removing unnecessary details. For

example, when a student is assigned the role of an actor in

the group that is problem decomposition, but when that

student is trying to understand the personality of that

character is abstraction. By reflecting consciously of the

similarities and differences between problem decomposition

and abstraction students are supported in developing a better

understanding of both.

4.3.4. Algorithm

Algorithm refers to solving a problem by developing a set of

steps taken in a sequence to achieve the desired outcome

(Katai, 2014). The project-based assessment does not focus

on developing technical step-by-step instructions for

creating a movie, rather it aims to provide the students with

the steps to confidently undertake any future projects in their

university studies.

At the end of the project, students are required to reflect on

the process, identify and evaluate steps that they took in

creating their final movie. This assessment hopes to provide

the students with the algorithm of successfully solving the

challenges of complex, group assignments.

4.4. Feedback from students on the use of CT elements

115 students filled in the final survey after the completion of

the project. Their response on the use of CT skills in the

project-based learning was very positive, approx. 85% of the

students agreed or strongly agreed that they have acquired

skills that they will use at university, skills that will help

them in to do well in other subjects, and skills in problem

decomposition.

71

Figure 3. Student feedback on the use of CT elements in

project-based assessment

5. CONCLUSION
Computational thinking skill development exercises being

incorporated into K-12 Australian curriculum. Therefore,

university preparatory courses need to provide similar

opportunities for international students to gain knowledge

and skills in CT.

Computational thinking components are being used in non-

STEM subjects. In this paper, a case of using CT elements

in a project-based assessment is presented. It is found that

many elements of the CT process can also be applied for

project-based learning. Feedback from the students who

completed the assessment favours the incorporation of

computational thinking into curriculum.

6. REFERENCES
Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to K-12. ACM Inroads, 2(1), 48.

http://dx.doi.org/10.1145/1929887.1929905

Chang, O. (2015). Australian schools are scrapping history

and geography and replacing them with coding classes.

Business Insider Australia. Retrieved 24 January 2018,

from https://www.businessinsider.com.au/australian-

schools-are-scrapping-history-and-geography-and-

replacing-them-with-coding-classes-2015-9/

Code.org. (2014). Code.org:Anybody can learn [online]

Available at:

https://studio.code.org/unplugged/unplug2.pdf [Accessed

24 Jan. 2018].

Department for Education England. (2013). National

curriculum in England: Computing programmes of study -

key stages 1 and 2. Ref: DFE-00171e2013. Retrieved

from:

https://www.gov.uk/government/publications/national-

curriculum-in-england-computing-programmes-of-study

Deschryver M. D., Yadav A. (2015). Creative and

Computational Thinking in the Context of New Literacies:

Working with Teachers to Scaffold Complex Technology-

Mediated Approaches to Teaching and Learning. Jl. of

Technology and Teacher Education (23), p411-431.

Du, J., Wimmer, H., & Rada, R. (2016). “Hour of Code”:

Can it change students’ attitudes toward programming?

Journal of Information Technology Education:

Innovations in Practice, 15, 52-73. Retrieved from

http://www.jite.org/documents/Vol15/JITEv15IIPp053-

073Du1950.pdf

García-Peñalvo, F. and Mendes, A. (2018). Exploring the

computational thinking effects in pre-university education.

Computers in Human Behavior, 80, pp.407-411.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013).

Computational thinking in educational activities.

Proceedings Of The 18Th ACM Conference On Innovation

And Technology In Computer Science Education - Iticse

'13. http://dx.doi.org/10.1145/2462476.2466518

Hemmendinger, D. (2010). A plea for modesty. ACM

Inroads, 1(2), 4.

http://dx.doi.org/10.1145/1805724.1805725

Katai, Z. (2014). The challenge of promoting algorithmic

thinking of both sciences- and humanities-oriented

learners. Journal Of Computer Assisted Learning, 31(4),

287-299. http://dx.doi.org/10.1111/jcal.12070

Weese, J. L. (2017). Bringing computational thinking to K-

12 and higher education (Order No. 10271485). Available

from ProQuest Dissertations & Theses Global.

(1925537965). Retrieved from

http://ezproxy.lib.uts.edu.au/login?url=https://search-

proquest-

com.ezproxy.lib.uts.edu.au/docview/1925537965?accoun

tid=17095

Wing, J. (2011). Computational thinking. 2011 IEEE

Symposium On Visual Languages And Human-Centric

Computing (VL/HCC)., p3,

http://dx.doi.org/10.1109/vlhcc.2011.6070404

Wing, J. (2008). Computational thinking and thinking about

computing. Philosophical Transactions Of The Royal

Society A: Mathematical, Physical And Engineering

Sciences, 366(1881), 3717-3725.

http://dx.doi.org/10.1098/rsta.2008.0118

http://dx.doi.org/10.1145/1929887.1929905
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://studio.code.org/unplugged/unplug2.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf
http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf
http://dx.doi.org/10.1145/2462476.2466518
http://dx.doi.org/10.1145/1805724.1805725
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://dx.doi.org/10.1109/vlhcc.2011.6070404
http://dx.doi.org/10.1098/rsta.2008.0118

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

72

應用 Scratch之運算思維教材設計與教學成效分析

楊智為
1*
，李政軒

1
，郭伯臣

1
，謝承晏

2

1國立臺中教育大學 教育資訊與測驗統計研究所

2葳弘數位教育

yangcw@mail.ntcu.edu.tw，chenghsuanli@gmail.com，kbc@mail.ntcu.edu.tw，ian@wedtech.com.tw

摘要

本研究主要目的為設計一套應用 Scratch 之運算思維教

材，應用在大學課堂中，探討教材實施後的教學成效。

實施過程中使用的教學工具為 Scratch，研究結果顯示，

經過四週的單元式教學活動，可以顯著的提升學生在

運算思維的學習成效。

關鍵字

運算思維；Scratch；教材設計；高等教育。

1. 前言

因科技日益進步，為因應其快速變遷，各國政府在課

程的推動上，資訊教育已是其中一項重要的主軸，其

中「運算思維Computational Thinking」是現今各國推動

資訊教育的一項重點。電腦運算思考的技巧，並非電

腦科學家的專利，而是每個人都應該具備的 (Wing,

2006)，指出像電腦一樣的思考，是所有人都應具備的

基本能力，這裡所指的「電腦運算思考的技巧」就是

運算思維（Computational Thinking）的概念。雖然

Wing 所指的運算思維不僅侷限在電腦相關課程或技能，

但目前用以培訓學生運算思維能力的教學模式，編寫

程式課程是用來提升運算思維能力的良好方式（Lye &

Koh, 2014），程式設計教學可以培養學習者之邏輯思

考和問題解決的能力（洪駿命、黃國禎、黃意雯，

2012），可以透過程式設計課程，建構學生的運算思

維概念，已有許多國家正將程式設計課程納入課鋼中，

如臺灣 107 年課綱、美國和其他如澳洲、英國、法國、

愛爾蘭等 16 個國家（Schoolnet, 2015）。

可見運算思維在未來資訊教育中具相當重要性，學習

運算思維較佳方式為程式設計教學，雖目前坊間已有

許多程式設計教學的教材或是相關的學習機構，但其

設計者的教學方向與預期的教學結果並非透過程式設

計方式學習運算思維技能，教學內容多以遊戲設計、

程式設計為主題。本研究將以運算思維教學為基礎設

計教材，教學工具使用 MIT 開發之 Scratch，並進行教

學實驗，探討應用 Scratch 之運算思維教材實施後的教

學成效。

2. 文獻探討

2.1. 運算思維內涵

Google（2010）認為運算思維是問題解決的過程，其包

括邏輯排序和資料分析、透過有序的步驟（或是演算

法）找出問題解答，可應用於所有的學科。Google 並

將運算思維分為 11 個概念：Abstraction（抽象化）、

Algorithm Design（演算法設計）、Automation (自動化)、

Data Analysis(資料分析)、Data Collection（資料蒐集）、

Data Representation（資料表示）、Decompositon (分解)、

Parallelization(平行計算)、Pattern Generalization（一般

化）、Pattern Recognition（模式辨識）、Simulation

（模擬）。

Brennan & Resnick (2012)提出 TDIA（three-dimensional

intergrated)，分為三個向度，分別為 1. 運算概念：序列、

迴圈、平行、事件、條件、運算子、資料。2. 運算實踐：

增值與迭代、測試與除錯、再用與混合、測試與除錯、

再用與混合、抽象化與模組化。3. 運算視野：表達、連

接、質疑；Zhong、Wang、Chen & Li(2016)則提出改自

TDIA 的架構，與 TDIA 一樣為三個向度，但內涵略有

調整，分別為 1.運算概念：物件、指令、序列、迴圈、

平行、事件、條件、運算子、資料。2.運算實踐：計畫

與設計、抽象化與建模、模組化與再用、迭代與最佳

化、測試與除錯。3.運算視野：創造與表達、溝通與合

作、瞭解與質疑。

綜上所述，運算思維是一種電腦化思考的問題解決過

程，各機構或學者所提出的內容有很多相同的部份，

本研究礙於授課時數有限及學生程度，因此僅挑選基

礎且共通的重要向度發展教學教材，並進行教學實驗。

2.2. 圖形化程式設計軟體 Scratch

Scratch 是由麻省理工學院媒體實驗室（MIT Media Lab）

的終身幼兒園團隊（Lifelong Kindergarten Group）所開

發的視覺化程式設計軟體，開發團隊也認為，Scratch

可以幫助使用者創造性地思考，有系統的進行推理並

且可協同合作(MIT, 2007)。目前已有許多應用 Scratch

進行教學的研究，如楊書銘（2008）研究結果發現利

用 Scratch 教學，對於學生的問題解決能力和部分創造

力有顯著提升。Calder(2010)認為 Scratch 能提升問題解

決能力，加強數理概念。Tanrikulu 與 Schaefer（2011）

的研究結果顯示：scratch具備直觀的介面、易學易用；

指令積木化，減少語法錯誤問題（王秀鸞，2013）。

本研究透過 Scratch 進行程式設計教學，幫助學生在程

式設計過程中學習運算思維概念。

3. 研究方法

3.1. 實驗設計

本研究之實驗方法為單組前後測設計，實驗對象為臺

灣中部某大學二年級學生，樣本數為 49 人，其中有效

樣本 45 人，無效樣本 4 人，教學課程實施四週，每週

二節課的實驗教學(100 分鐘)。實驗前後各進行一週

（60 分鐘）的測驗（前測/後測）。

3.2. 研究工具

本研究採用的統計分析軟體為 SPSS(Statistical Product

and Service Solutions) 18.0 套裝版本。以成對樣本 T 檢

定作為統計方法，用以分析教學成效。

73

3.2.1. Scratch

本研究採用麻省理工學院開發之 Scratch，Scratch 有網

頁版的編輯器和離線版的編輯器，是一種圖形化介面

的程式設計軟體，可以使用 Scratch 創造出問答方式或

互動式的故事、動畫、遊戲等內容，也可將設計的作

品分享至全世界(鄭苑鳳，2014)。

Scratch 的積木功能共分為 10 個類別：動作、事件、外

觀、控制、聲音、偵測、畫筆、運算、資料、更多積

木等，本研究會透過 Scratch 的這些積木功能進行程式

設計教學，並從中進行運算思維教學。

3.2.2. 運算思維教材設計

本研究使用自編的運算思維教材，教材內容使用

Scratch 作為教學工具，共計五個單元，其教學主軸包

含六種運算思維概念：物件、序列、迴圈、條件、運

算子及演算法設計。期藉由圖像化的 Scratch 教學，讓

學生可從教學過程中，習得運算思維的概念。

教材為單元式的課程設計，每一個單元皆以以下教學

流程作為設計，課程時間為 100 分鐘：

1. 主題式設計的不插電活動：以運算思維概念為

中心，以貼近學生生活經驗之案例分享與思考，

用以引起學生學習動機。(10 min)

2. 介紹該單元的運算思維概念，以及在 scratch 中

對應的程式積木。(10 min)

3. Scratch 任務設計：基本包含三個任務，基礎任

務包含環境設定與主要積木應用，再由基礎逐

漸增加任務難度（增加條件），任務內容皆環

繞主題設計，最後則附加挑戰的任務，提供給

高能力或進階的使用者。(60 min，講解任務與

實作)

4. 測驗題是以該單元主題進行設計的診斷試題。

(10 min)

5. 總結－回顧與反思。(10 min)

以單元二時尚秀為例，此單元以迴圈（Loops）為運算

思維主題，在不插電活動以歌詞中的副歌重複片段、

舞蹈中重複的動作、規律圖形中重複的部份來引入概

念。

第二部份即以迴圈指令繪出基本圖形，藉以展示

scratch 的功能應用。

而後則進行本單元的任務，分為時尚秀、變換造型、

添加任務、挑戰任務。

1. 時尚秀：透過指令讓角色（物件）移動與重複

出現（迴圈），如圖 1 所示。

圖 1 重複指令教學活動

2. 變換造型：透過事件執行指令不斷地變換角色

造型（迴圈），並讓角色中途暫停。

3. 添加任務：共有三個子任務，分別為添加音樂、

變換角色的動作與拍照效果，任務內會使用到

物件、指令、迴圈、運算子、事件、演算法設

計等。主要是增加主要任務的複雜性，也做為

控制教學時間的彈性。

圖 2 添加任務教學活動

74

圖 3 挑戰任務與運算思維隨堂測驗

4. 挑戰任務：在時尚秀的活動中，利用複製的功

能事件，產生角色的分身縮影，並透過迴圈讓

此特殊功能可以重複被使用，如圖 3 所示。

完成任務後，提供三題測驗題檢測學生本單元的學習

成果，最終為單元總結，進行本單元的回顧與反思。

3.2.3. 運算思維評量工具

本研究使用的評量工具為擷取國際運算思維挑戰賽

(International Challenge on Informatics and Computational

Thinking)試題與自編試題，前測與後測卷各 25 題，為

複本試題，試卷涵括了四週授課內容中的運算思維概

念及其他的基礎概念。

4. 研究結果與討論

1. 本研究的實驗結果，使用成對樣本 T 檢定分析

後如表 1 及表 2，由表 2 可見顯著性為 0.014，

已達顯著差異，可得知該實驗班級經過四週的

Scratch運算思維教材教學，已具有教學成效。

表 1 測驗資料敘述統計量

 平均

數

個

數
標準差

平均數的

標準誤

前測分數 51.378 45 18.586 2.771

後測分數 55.911 45 16.080 2.397

表 2 成對樣本 t檢定表

前 測-

後測

平均

數
標準差 t

自由

度

顯著性

（雙

尾）

-4.533 11.927 -2.550 44 .014*

 顯著性（P）<0.05*

2. 運用 Scratch 為實作工具，透過自編的運算思

維教材，建構學生的運算思維概念，如物件、

序列、演算法等，由實驗的成果可知，此教材

設計方式應用於運算思維的教學可提升學習成

效。

3. 對參加的學生進行背景調查，大約一半的學生

對於程式設計方面是完全的新手，從未接觸過

程式設計課程，但於後測後，所有的學生皆需

繳交一份創意成果報告，全體同學皆已可自行

設計簡單的遊戲並具備創意表達能力，多數的

學生亦表示希望繼續此類學習課程。

4. 在研究限制方面，本次研究受限於教學時間僅

有四週，在課程設計上僅能設計較基礎的課程，

故在運算思維概念學習成效上，進步較為有限，

建議未來可以完整的運算思維架構來設計整體

課程，可能會具有更顯著的成效。

5. 致謝

感謝科技部計畫編號 106-2511-S-142 -005 -MY3 給予本

研究補助支持，以及感謝伊德文教授權本研究使用與

本校產學合作之成果。

6. 參考文獻

王秀鶯 (2013)。導入 Scratch 程式教學對國中生自我效

能與學習成就之探究～以程式設計課程為例。人文社

會學報 ，9(1)，1-15。

洪駿命、黃國禎、黃意雯（2012）。遊戲創作學習模

式對於國小學童在學習動機、問題解決及學習成就之

影響。莊紹勇（主持人），悅趣化學習與社會，第十

六屆全球華人計算機教育應用大會（GCCCE 2012），

臺灣墾丁福華渡假飯店。

楊書銘（2008）。Scratch 程式設計對六年級學童邏輯

推理能力、問題解決能力及創造力的影響。臺北市立

教育大學數學資訊教育教學碩士學位班資訊組碩士論

文。

鄭苑鳳（2014）。Scratch 遊戲創意設計應用範例集。

臺北市：上奇。

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. Proceedings of the 2012 annual meeting of the

American Educational Research Association, Vancouver,

Canada.

Calder, N (2010). Using Scrathc: An Integrated Problem-

Solving approach to mathematical thinking. APMC,

2010, 15（4）,9-14

Google(2010). Exploring Computational Thinking [Web

message]. Retrieved

fromhttps://www.google.com/edu/computational-

thinking/

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through

programming: What is next for K-12? Computers in

Human Behavior, 41, 51-61.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York, NY: Basic Books, Inc. Wing,

J. M.. Computational Thinking [J]. Communication of the

ACM, March 2006/Vol.49, No.3: 33-34

Schoolnet (2015) Computing our future: Computer

programming and coding Priorities, school curricula and

initiatives across Europe. Retrieved from

http://fcl.eun.org/documents/10180/14689/Computing+ou

75

r+future_final.pdf/746e36b1-e1a6-4bf1-8105-

ea27c0d2bbe0

Tanrikulu, E., & Schaefer, B. C. (2011). The users who

touched the ceiling of scratch. Procedia-Social and

Behavioral Sciences, 28, 764-769.

Wing, J. M. (2006) Computational thinking. Commun.

ACM 49, 33–35.

Zhong, B., Wang, Q., Chen, J., & Li, Yi. (2016). An

Exploration of Three-Dimensional Intergrated

Assessment for Computational Thinking. Journal of

Educational Computing Research, 53(4) 562-590.

MIT (2007).Scratch: imagine, program, share. Retrieved

from https://scratch.mit.edu/

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

76

Computational Thinking and

STEM/STEAM Education

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

77

A DSML for a Robotics Environment to Support

 Synergistic Learning of CT and Geometry

Nicole HUTCHINS*, Timothy DARRAH*, Hamid ZARE, Gautam BISWAS*

Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN USA

nicole.m.hutchins@vanderbilt,edu, timothy.s.darrah@vanderbilt.edu, hamid.zare@vanderbilt.edu, gautam.biswas@vanderbilt.edu

ABSTRACT
Synergistic learning of computational thinking (CT) and

STEM has proven to be an effective method for enhancing

CT education as well as advancing learning in many STEM

domains. Domain Specific Modeling Languages (DSML)

facilitate the building of computational modeling

frameworks that are directly linked to STEM content, thus

making it easier for students to focus on concepts and

practices. At the same time, teachers can more easily relate

curricular content to the model building tasks. This paper

discusses the design, development, and implementation of a

robotics DSML to support a middle school geometry

curriculum.

KEYWORDS

DSML, robotics, STEM, geometry

1. INTRODUCTION
Recent developments show how computational tools have

influenced research and practices in mathematics and

science education (National Research Council, 2012). In

parallel, rapidly evolving educational technologies have

influenced pedagogy and curriculum development,

primarily by integrating computational tools into the study

of STEM disciplines (Grover & Pea, 2013, Hutchins, Zhang,

& Biswas, 2017). While the limited availability of skilled

teachers, financial constraints on educational institutions,

and the inertia in changing current curricular practices has

impeded the introduction of Computer Science (CS) courses

into middle and high school classrooms, curricula supported

by educational software that exploit the synergies between

STEM and CT and integrate with current K-12 curricula

have found success (Basu, Biswas, & Kinnebrew, 2017;

Jona et. al., 2014, Sengupta, et. al., 2013; Weintrop, et. al.,

2016).

In the past, model-based design has been employed to

facilitate a necessary convergence among physical processes

and software control design, thus supporting many Cyber

Physical System (CPS) applications (Jackson &

Sztipanovits, 2008; Jensen, Chang, & Lee, 2011). In this

paper, we extend this design process to Open Ended

Learning Environments (OELEs) and focus on the design

and integration of curricular scaffolding in OELEs to

support student learning in STEM and CS domains.

This paper outlines the development of a WebGME design

studio centered on the application of a domain specific

modeling language (DSML) for robotics to support a middle

school mathematics curriculum. To do so, we analyze the

literature and establish curricular and software requirements,

describe the design and development of our WebGME

design studio, and conclude with case studies from a

usability study.

2. BACKGROUND
To implement a set of learning tasks, while assuring well-

formed model realizations (Jackson & Sztipanovits, 2008),

we conducted a thorough analysis on the DSML design

requirements in combination with the curricular needs of a

middle school mathematics classroom. Here we cover four

topic areas that directly relate to our research.

2.1. Computational Thinking (CT)

Following Wing’s call for the increased introduction of CT

in classrooms (2006), significant work was completed

towards an applicable definition as well as an outline of key

concepts and practices that can be used to assess learning

gains in CT. The Royal Society defined CT as “the process

of recognizing aspects of computation in the world that

surrounds us and applying tools and techniques from

Computer Science to understand and reason about both

natural and artificial systems and processes” (Royal

Society, 2012). In Grover and Pea’s systematic review

(2013), the authors listed essential CT constructs and, for the

purposes of our work, we have focused on flow of control,

decomposition, efficiency and performance constraints, and

debugging.

To facilitate CT and the acquisition of basic geometry skills,

appropriate scaffolding must be incorporated into the design

of the DSML. Significant success with synergistic learning

of CT and STEM disciplines through the use of block-based

DSMLs (Hasan & Biswas, 2017) has supported increased

integration of this style of programming at the K-12 level

and we seek to extend this effort through the use of a DSML

created in a model-based design environment such as

WebGME. In our platform, CT provides the framework for

building computational models or algorithms to define and

debug the movement of robots. The metamodel and model

building visualizer described in Section 5 provide a level of

curricular abstraction that eliminates many of the burdens of

text-based programming. In addition, our model-based

design environment is supported by a necessary utilization

of CT constructs, such as debugging and problem

decomposition.

Furthermore, our robotics platform provides multiple

representations with the utilization of a physical robot (as

opposed to a virtual sprite), a physical coordinate plane, and

a bird’s eye view of the grid space with several overlays

(e.g., movement traces, lines, points, etc.). Abstraction is

provided in the model building visualizer that the student

uses to construct their command sequence. As pointed out

above this combination of representations and abstractions

78

is desired so that a student is fully capable of systematically

processing their solution or debugging a problem utilizing a

CT approach (Basu, Biswas, & Kinnebrew, 2016).

2.2. General Robotics Courses

Many schools offer after school programs or summer camps

using VEX® or LEGO Mindstorms® robotic kits. These kits

come with a substantial amount of supporting information

and resources including forums, tutorials, and fully

executable curriculum sets. Hendricks et al. (2012) and

Panadero et al. (2010) report an increase in computational

thinking activities and learning outcomes when students use

these kits. Other robotics courses offered as summer camps

have been successful in increasing student engagement,

motivation, teamwork, critical thinking, and problem

solving (Darrah, Kuryla, & Bond, 2018; Goldman, Eguchi,

& Sklar, 2004; Ansorge & Barker, 2007), all directly related

to the application of CT constructs in a STEM domain.

2.3. Robotics in Mathematics

Barreto & Benitti (2012) noted that activities which integrate

robotics into a math or science classroom should “possess a

high-level of structure that helps the robot to correctly guide

the activities and the students through them,” and that self-

directed activities that “promote personalized

comprehension of STEM concepts through experimentation”

showed significant success - and added support for our

approach in this domain as design space exploration activity.

Our DSML has been highly scaffolded as a means of

supporting these robotic integration requirements. In

addition, the experimentation requirement is further

supported through the display of curricular feedback

following the execution of a robot sequence, to be described

in Section 6.

Two recent studies were carried out by researchers from

NYU that explored the use of a robotic agent to teach

geometry to middle school students (Muldner, et. al., 2013;

Girotto, et. al., 2016). Their environment consisted of a

projector, a LEGO Mindstorms® robot, and two iPods for

communication. These studies highlight the effectiveness of

a tangible learning environment (TLE) in terms of delivering

a much richer learning experience than traditional classroom

methods. Moreover, TLEs have found considerable success

in fostering creativity (Goldman, Eguchi, & Sklar, 2004), a

benefit to our design space exploration approach, while also

increasing motivation (Windham, 2007).

2.4. Domain Specific Modeling Language (DSML)

Van Deursen defines a domain specific language as “a

programming language or executable specification

language that offers, through appropriate notations and

abstractions, expressive power focused on, and usually

restricted to, a particular problem domain” (2000).

Typically, DSMLs are developed to facilitate the work of

domain experts in application tasks. But they can also play

an important role in helping learners focus on domain

concepts when building models and solving problems in the

domain. In our work, the DSML developed allows a student

to define a set of instructions for a robot to solve middle

school mathematics problems that are centered on concepts

derived from coordinate geometry and solving path planning

problems.

The benefit of developing a DSML is the affordability it

creates in curricular implementation and expansion.

Students can “express and develop solutions … at the level

of abstraction of the target domain,” “build programs that

are concise and self-documenting,” and “verify and validate

models and results generated from the models” (Hasan &

Biswas, 2017). This provides a highly structured

environment that enables the student to experiment with

various solutions in a self-directed manner. This structure

comes in part by how the model building environment is

presented to the student (visualizer), how the model blocks

themselves appear (decorator), and how the model is

executed on the robot (communication plugin), to be

detailed in Section 5.

Jackson and Sztipanovitz (2008) highlight three applications

of DSML syntax: model transformations, correct-by-

construction, and design space exploration. In the context of

an educational setting, students engage with a robotics-based

design studio to learn mathematics and CT concepts by

performing tasks with their robots. The syntax our DSML

most closely supports is the notion of design space

exploration. This enhances “the expressiveness of

metamodeling constraints” and the ability “to project

behavioral properties on the syntactic level” (2008). Our

robotics DSML supports model building and problem

solving with robotics in a way that students can seamlessly

learn domain and CT concepts and practices.

As it relates to our DSML development, we aimed to

simplify the interactions between the robot and the students,

so they may focus on learning the required mathematics and

geometry concepts and applying them to planning and

problem-solving tasks. An added goal is to provide for easy

exploration within the domain, so that the open-ended nature

of the learning is retained, and students can learn through the

direct application of CT practices such as model

construction and algorithm development.

Finally, as an educational product, it is imperative to

understand the ramifications this implementation has on

teacher curriculum development and productivity in the

classroom. In Tennessee, the licensure and examination

process does not require any assessment of computer science

or CT knowledge (The Praxis Study Companion, 2017). As

such, we assume limited CS experience of middle school

mathematics teachers. To account for this, our DSML can be

tailored at the classroom level to account for the capabilities

of the teacher. This flexibility eases the transition from

learning the system to learning the instructional material the

system delivers.

3. CURRICULUM DEVELOPMENT
Understanding how students conceptualize, acquire, and

retain geometric concepts must be understood in sufficient

detail before designing a curriculum in conjunction with a

TLE. Burger and Shaughnessy (1986) concluded that there

are five major stages to student’s understanding of geometric

concepts: visualization (pure visual reasoning), analysis

(based on visualization), abstraction (understanding the

properties), deduction (formal reasoning), and rigor

(comparing different systems). Students are not typically

79

exposed to deduction or rigor until a high school geometry

course.

We focus primarily on visualization, analysis, and

abstraction by introducing a new concept with a description,

graphic, and how this topic is relevant in a student’s

everyday life. Then we provide a set of problems in which

the student must give the robot the correct information so it

can achieve its goal. Geometric properties and definitions

are introduced with their respective problems, and students

are required to not only demonstrate mastery by generating

the correct command sequences, but also with summative

assessments at the end of each module. Below is a sample

curriculum outline that is well suited for middle school

geometry:

1) Coordinate Plane (Axis definitions, Points)

2) Lines (Properties, Line segments, Slope, Midpoints)

3) Shapes (Properties, Squares, Rectangles, Triangles)

4) Path Planning (Shortest path reasoning, Manhattan

distances, Straight line distances)

As described in the introduction and requirements, our goal

with the development of a robotics DSML was to provide

the basis to enable an engaging, applicable curricular unit for

a middle school mathematics classroom that connects the

computational modeling task to modeling and problem

solving in geometry. Our new learning environment

promotes knowledge acquisition through a hands-on, visual-

feedback approach that is consistent with the design of TLEs

(Darrah, Kuryla, & Bond, 2018) and linked to the

visualization, analysis, and abstraction stages of geometry

understanding described by Burger and Shaughnessy. Our

development of a model via WebGME (given the abstraction

afforded in the DSML) with the added benefit of watching a

real-life robot complete the programmed paths allows for

easy applications of CT and geometry constructs and

students will be more motivated by the experience.

As it pertains to CT learning gains, our curriculum is most

applicable to the assessment of students’ knowledge and

abilities in implementing algorithms, understanding and

addressing efficiency and performance constraints, and

debugging. These practices, as defined by Grover and Pea

(2013), are utilized in each curricular task designed to target

the elements provided in the curriculum outline, above, as

students are required to use our scaffolded DSMLs in a

sequential order given physical and command constraints of

the robot in order to complete each task. We surmise that the

repetitive use of these practices to solve geometry problems

will enhance students CT abilities for these practices.

4. ENVIRONMENT
With the establishment of our system requirements, the

second step in our process was to design and develop our

system environment. Our robot operates on a 7ft by 7ft

platform that has been sectioned into a 10x10 grid. The robot

is equipped with sensors that allow it to track its location on

the grid. As such, if it is told to move forward by 3, the robot

will travel forward until it has reached the third black line

that is perpendicular to the direction the robot is moving. A

video camera set-up is centered above the grid as shown in

the figure. The video feed generated can be used by the

student or a teacher to track the robot as it moves along a

path and verify the correctness of the path.

4.1. Robot

When activated, the robot starts a TCP server to

communicate with the WebGME plugin and opens a serial

port to communicate with the Arduino MCU. It manages

these processes on separate threads. The main thread

manages the various modes the user can utilize to control the

robot, such as manual mode, sequence mode, or GME mode

(the mode used in conjunction with this paper). The MCU

runs one program that takes input from 3 IR tx/rx modules

(line following sensor) and its output controls the motors. It

communicates with the SBC as well to provide feedback for

received commands and for mode switching. Figure 2

provides an overview of the modular system architecture.

The robot communicates with WebGME using the cross-

platform socketio library. The plugin generates a JSON

formatted string that is parsed within a minimal Flask web

server running on the robot. Upon receipt, the Arduino MCU

executes the command sequence and signals to the RCM

when it is finished.

Figure 2. System Architecture

5. META-MODEL
As previously described, the utilization of a DSML provides

curricular benefits in that it is constructed at a suitable level

of abstraction to allow the learner to focus on what is

important, and abstract away other CS details (e.g. syntax

concerns). Through the analysis of geometry and CT

requirements, our meta-model (Figure 3) was developed

based on the implementation of four goals:

1. a scaffolded, curricular driven approach that focuses

student actions on the concept(s) being addressed;

2. a simplified integration of robotics and mathematics

that makes it easier for the teacher to follow the student

work and assess it;

3. scalability in the classroom context; and

4. a systematic, stable connection between the robot

environment and modeling environment that is easy to

understand.

The students’ problem-solving tasks (e.g., building shapes,

following paths) are scaffolded, as exemplified through the

four available commands. The reduced set of commands

allows students to focus on the planning and computational

components of their activities. In addition, the organization

of the commands and sequences showcases the model’s

potential scalability and ease-of-use for the teacher.

80

Figure 3. Robotics Meta-Model

5.1. Decorator

The target audience for this activity includes middle school

students that may not have any programming experience. As

such, the visual component of the environment may play a

role in the motivation and buy-in of students, regardless of

their capabilities, which is directly linked to positive

learning outcomes. A Decorator is a component of the

WebGME Design Studio that alters the way a node in the

model looks in composition view (the student’s view).

Figure 5 provides a zoomed-in image of relevant decorator

components. Students can select the next command in their

sequence via a drop-down menu located on the current node.

When a command is selected, the transition between the two

nodes is automatically created. In addition, each node

contains the command name, attribute value, and an image -

not only allowing for multimodal learning acquisition, but

also easing the debugging process described in Section 2.2.

Figure 5. Model Decorator

5.2. Plugin

The final component needed to configure our WebGME

design studio is the plugin that coordinates the compilation

and delivery of the sequence of commands implemented by

the student to be executed by the robot. In other words, the

JavaScript plugin sends the visually represented sequence of

commands to the robot in a machine-readable format. In the

making of the plugin, we defined three requirements:

Parsing the student defined command sequences into a

standard structure, validating the sequence alongside

reporting the errors, and finally, sending the commands to

the robot.

Upon starting a session, the plugin connects the editor

environment with the robot using the parameters defined in

the “Connection Parameters” node. This is achieved through

a one-to-one socket connection, which remains open until

the user ends the session. To make sense of the visual chain

of commands the plugin starts by querying the sequence to

find the start node. It then records this block and its relevant

attributes. Next, the outgoing connection is followed to

similarly parse the next blocks until the stop command is

reached. This information is then stored in JavaScript Object

Notation (JSON) format and sent to the robot by emitting a

submission event that the robot is listening for. The robot

then parses the sequence and executes the commands as

detailed above.

6. Implementation
Following the development and design of the robotics studio

and accompanying geometry curriculum, we had three

middle school students complete the designed tasks as a

means of testing the system and getting feedback on ease-

of-use and system benefits or drawbacks. In this section, we

present an application of our system in a classroom

environment and demonstrate the use of the robotics design

studio as a tool to complete a sample path planning module

at the middle school level.

6.1. Sample Problem Set

A subset of the curriculum described in Section 3 includes

three general problems:

1) Identifying the axes and positive or negative values

2) Plotting points given (𝑥, 𝑦) and deriving (𝑥, 𝑦) from a

set of points

3) Path planning with multiple points, calculating the

shortest Manhattan distance

Figure 6 illustrates the visual interface that provides the

instructions for each task along with the overhead webcam

feed in conjunction with the WebGME design studio. In this

assignment, students are tasked with finding the most

efficient path the robot can take ensuring stops at the police

station, the fire station, and the courthouse prior to ending

its trip at the post office. Typically, this type of assignment

at the introductory level is distributed as on paper, limiting

the multi-modal approach to learning that may benefit

certain students.

Figure 6. Virtual Interface for Example Path Planning Problem

The direction the robot is facing, its current location, and

number of spaces moved are displayed at the top of the

information section which helps the student during the

solution construction process. The problem is given below

that, along with various hints that are given at predetermined

times.

In the scenario shown in Figure 6, the student first identified

the coordinates of all locations the robot must visit. When

all points are correctly located, their coordinates are shown

on the video feed. From the image provided, it can be seen

that the student then completed a shortest path problem in

which they generated the correct command sequence for the

robot to visit all locations, starting at the Amazon warehouse

(2,−2). The automatic feedback response of “Nice Work!”

is shown – demonstrating the successful completion of the

task

81

In Figure 7, the solution to the above problem is shown.

Upon closer inspection, the distance values can be seen as

well. Sequences can become significantly long, making the

debugging process difficult should an error occur in the

robot’s path. The availability of the command name and

attribute value as text on the node as well as images of blocks

allow for an easier analysis of the complete path during the

debugging process.

Figure 7. Student Solution to the Path Planning Problem

6.2. Case Study: CT Gains

For our usability study, students were asked to complete a

pre- and post- challenge. The challenge contained two parts:

the first included a debugging task in which they were asked

to analyze a given robot sequence and improve the efficiency

of the sequence while also ensuring the end location was

correct. This challenge component was designed to assess

student abilities in the CT constructs of flow of control and

debugging. The second task involved the development of a

sequence that would allow the robot to draw a given shape

with the minimum commands possible in the grid space

depicted in Figure 1, thereby assessing student

understanding of efficiency and performance constraints as

well as another application of flow of control. This pre- and

post- nature of the challenge was implemented to identify

potential improvements in applying these CT constructs.

S1 is a 13-year-old middle school male student and S2 is a

14-year-old middle school female student. Both students

identified as having little to no experience with the listed

geometry concepts and practices and both identified as

having some previous programming experience using block-

based programming languages. For the purpose of this case

study, we will focus on student work in part 1 of the

challenge.

In the pre-challenge, S1 and S2 failed to debug the given

path in Part 1 in a manner that provided the fastest path for

the robot to complete the task. In addition, both S1 and S2’s

robot sequences could not make the robot arrive at the

correct location, indicating that both students struggled to

debug the entire algorithm. However, S1 and S2 were able

to identify two of the five identified errors indicating that

they had a preliminary understanding of flow of control.

Following the geometry assignments, S1 and S2 completed

the robotics post-challenge. This time, S1 was able to

identify three of the five identified errors and the final

sequence allowed the robot to finish at the desired location.

It should be noted that the student drew a path on the given

image of the grid that accounted for the two missing errors

in the algorithm, but those errors were not identified in the

algorithm. As S1 was able to identify the most efficient path

in the image, we believe it may be necessary for us to assess

how we described the challenge in order to be as clear as

possible on how each student should define his or her

response.

S2’s approach to Part 1 of the post-challenge changed

significantly from the pre-challenge. In Part 1 of the post-

challenge, S2 drew her robot’s shortest path sequence on the

grid provided, with dots along the grid indicating that she

was counting various path options (an action she commonly

did with her finger via the virtual interface during the

geometry assignments). While her new path followed the

expert model path between a few specified target points, a

few sub-paths were significantly different than the expert

model path. However, her final path was shorter than the

given problem to debug and one away from the shortest path

possible. Given her search-based, debugging approach in the

post-challenge, it can be seen that her utilization of CT

constructs improved.

6.3. Case Study: Geometry Gains

Our final student, S3, reported significant experience with

block-based programming environments like Scratch and

Netsblox. S3 achieved a perfect score on the CT related

questions of the pre-challenge. A key point here should be

made - S3 is younger than both S1 and S2, who report no

experience with DSMLs, and outperformed them both on the

pre-challenge, supporting our hypothesis that DSMLs are

linked to the utilization of CT strategies when solving

problems. During the geometry tasks, S3 initially struggled

with the coordinate plane unit, including the identification

of quadrants and moving the robot to desired 𝑥, 𝑦points on

the plane. However, this student made use of the system

feedback given. After repeating similar tasks, the time spent

solving coordinate plane tasks decreased. Based on these

observations, it can be seen that while learning gains in CT

could not be measured due to the perfect pre-challenge

score; abilities in geometry improved.

7. Results and Future Implications
This paper details the theoretical and systematic design and

development process of a robotics DSML for use in a middle

school mathematics classroom. Through an analysis of

curricular and software requirements, our group

implemented a robotics design studio using WebGME that

allows for an applicable and scalable robotics activity to

support CT and STEM learning. In addition, our usability

studies indicate potential CT learning gains acquired

through the completion of the geometry curriculum in our

environment. The potential benefits of integrating robotics

into other STEM classrooms has not been actualized to the

extent that it was theorized by renowned educational theorist

Seymour Papert (1993). The application of this highly

scaffolded DSML in a middle school classroom may allow

for a fruitful analysis on the level or extent of programming

needed to not only advance CT learning and understanding,

but also ensure the successful delivery of relevant STEM

content.

8. Acknowledgements
We would like to thank Patrik Meijer, Tamás Kecskés, and

other collaborators from Vanderbilt University for their

numerous contributions. This research is supported by NSF

grant # IIS 1735909.

82

9. REFERENCES
Anderson, J.R., Boyl, C.F., Corbett, A.T., Lewis, M.W.

(1990). Cognitive Modeling and Intelligent Tutoring.

Artificial Intelligence - Special issue, 42-1.

Ansorge, J., Barker, B. (2007). Robotics as a Means to

Increase Achievement Scores in an Informal Learning

Environment. Journal of Research on Technology in

Education, 39-3.

Basu, S., Biswas, G., Kinnebrew, J.S. (2017). Learner

modeling for adaptive scaffolding in a Computational

Thinking-based science learning environment. User

Modeling and User-Adapted Interaction, 27(1), 5-53.

Basu, S., Biswas, G., Kinnebrew, J. (2016). Using multiple

representations to simultaneously learn computational

thinking and middle school science. Proceedings of the

30th AAAI Conference on Artificial Intelligence.

Benitti, F. & Barreto, V. (2012). Exploring the educational

potential of robotics in schools: A systematic review.

Computers & Education, 58(3), 978-988.

Burger, William F., Shaughnessy, J. Michael:

Characterizing the van Hiele levels of development in

geometry. Journal for research in mathematics education,

p. 31-48. (1986)

Darrah, T., Kuryla, E., & Bond, A. (2018). Improving STEM

Education with an Open-Source Robotics Learning

Environment. Proceedings of the Hawaii International

Conference on Education.

Girotto, V., Lozano, C., Muldner, K., Burleson, W., Walker,

E. (2016). Lessons Learned from In-School Use of rTag:

A Robo-Tangible Learning Environment. Proceedings of

the ACM Conference on Human Factors in Computing

Systems.

Goldman, R., Eguchi, A., Sklar, E. Using Educational

Robotics to Engage Inner-City Students with Technology.

(2004). Proceedings of the 6th International Conference on

Learning Sciences, 214-221.

Grover, S. & Pea, R. (2013). Computational Thinking in K-

12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Hasan, A. & Biswas, G. (2017). Domain Specific Modeling

Language Design to support Synergistic Learning of

STEM and Computational Thinking. In Proceedings of the

International Conference on Computational Thinking

Education.

Hendricks, C., Alemdar, M., Olgetree, T. (2012). The

Impact of Participation in Vex(R) Robotics Competition

on Middle and High School Students’ Interest in Pursuing

STEM Studies and STEM-Related Careers. American

Society for Engineering Education.

Hutchins, N, Zhang, N, & Biswas, G (2017). The Role

Gender Differences in Computational Thinking

Confidence Levels Plays in STEM Applications. In

Proceedings of the International Conference on

Computational Thinking Education.

Jackson, E. & Sztipanovits, J. (2008). Formalizing the

Structural Semantics of Domain-Specific Modeling

Languages. Software & Systems Modeling, 8(4), 451–478.

Jensen, J. C., Chang, D. H. Lee, E. A. (2011). A Model-

Based Design Methodology for Cyber-Physical Systems.

Proceedings of the IEEE Workshop on Design, Modeling,

and Evaluation of Cyber-Physical Systems.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K.,

Weintrop, D., & Beheshti, E. (2014). Embedding

computational thinking in science, technology,

engineering, and math (CT-STEM). In future directions in

computer science education summit meeting, Orlando, FL.

Muldner, K., Lozano, C., Girotto, V., Burleson, W., Walker,

E. (2013). Designing a Tangible Learning Environment

with a Teachable Agent. Artificial Intelligence in

Education.

National Research Council. (2012). A framework for K-12

science education: Practices, crosscutting concepts, and

core ideas. National Academies Press.

Panadero, C., Villena-Roman, J., Delgado-Kloos, C. (2010).

Impact of Learning Experiences Using LEGO

Mindstorms(R) in Engineering Courses. Proceedings of

the IEEE Global Engineering Education Conference.

Papert, S. (1993). Mindstorms: Children, computers, and

powerful ideas (2nd ed.). New York, NY: Basic Books.

Royal Society. (2012). Shut down or restart: The way

forward for computing in UK schools. Retrieved February

4, 2017, from https://royalsociety.org/topics-

policy/projects/computing-in-schools/report/

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., & Clar,

D. (2013). Integrating computational thinking with K-12

science education using agent-based computation: A

theoretical framework. Education and Information

Technologies, 18(2), 351-380.

The Praxis Study Companion - Mathematics: Content

Knowledge. ETS, 2017.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-

specific languages: An annotated bibliography. Sigplan

Notices, 35(6), 26-36.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science

Classrooms. Journal of Science Education and

Technology, 1–21.

Windham, C.: Why Today’s Students Value Authentic

Learning. (2007). Educause Learning Initiative -

Advancing Learning Through IT Innovation.

Wing, J. (2006). Computational thinking. Communications

of the ACM, 49(3), 33-36.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

83

Introducing Computational Thinking Across the Curriculum with Virtual Reality

Merijke COENRAAD*, David WEINTROP

University of Maryland

mcoenraa@umd.edu, weintrop@umd.edu

ABSTRACT

Computational thinking is increasingly important within

modern society. It is essential that K-12 students are

introduced to the powerful ideas of computational thinking

and given opportunities to develop their computational

thinking practices. Virtual reality (VR), a technological tool

with increasing prevalence in society and schools, has the

potential to widen computational thinking exposure for

students not only in STEM environments, but also across the

curriculum. Virtual reality is an engaging medium that has

been shown to increase student learning. In this paper, we

argue that virtual reality can serve as an effective means for

helping students develop computational thinking practices

related to systems thinking, data practices, and modeling. To

do this, we present virtual reality-based lessons used in a

classroom and show how they promote the development and

use of computational thinking practices. These lessons are

accompanied by findings reporting students’ impression of

virtual reality use within the classroom. The contribution of

this work is in showing how virtual reality can serve as a

possible means to integrate computational thinking within

existing classrooms, thus giving students added exposure to

these essential practices.

KEYWORDS

Computational Thinking, Virtual Reality, Computational

Thinking Across the Curriculum

1. INTRODUCTION
The focus on computational thinking has expanded over the

last decade. While the central ideas of computational

thinking have been around for decades (Papert, 1980),

Wing’s (2006) call for the importance of computational

thinking has renew enthusiasm for the idea. In response to

this call, educators at all levels have increased focus on

computational thinking both within computer science

courses and in other subject areas. With the acknowledged

need for further computational thinking education and the

expansion in the number of subjects that can incorporate

computational thinking, new learning opportunities are

being continuously developed. As the number of jobs

requiring coding and technology is expected to increase over

the next decade, a growing need to educate students in

computational methods has emerged, especially within the

Science, Technology, Engineering, and Mathematics

(STEM) fields (Weintrop et al., 2016). At the same time that

computational thinking education is increasing within

schools, virtual reality equipment is becoming more

affordable (Greenwald et al., 2017) and, therefore, more

available to schools. Researchers have long found benefits

to using VR and virtual environments including increased

interest, motivation, and learning (Limniou et al., 2008).

With its ability to “improve learners’ ability of analyzing

problems and exploring new concepts” (Pan et al., 2006,

p.20) and equipment being more available, VR could be a

conduit for teaching computational thinking practices within

a variety of subjects.

In this paper, we argue that VR can serve as one potential

way to introduce foundational computational thinking ideas

and practices to learners. We will discuss the benefits of

incorporating VR into the classroom and explore ways that

such inclusion could serve as an opportunity for the

development of computational thinking. We will present VR

as a mechanism for students to engage with computational

thinking through examples of lessons that have been taught

using VR and potential computational thinking practices that

can be developed using similar lessons. Data from students

reporting their impressions of VR will also be presented. The

importance of computational thinking education is clear, our

focus must now shift to methods through which

computational thinking can be brought into the classroom.

2. BACKGROUND

2.1. Computational Thinking

Wing (2008) defines computational thinking as “taking an

approach to solving problems, designing systems and

understanding human behaviour that draws on concepts

fundamental to computing” (p. 3717). It focuses on how not

only computers, but also humans can think and solve

problems, specifically detailing the concepts that are used in

problem solving and interactions, not the software or

hardware that are developed (Wing, 2006). Computational

thinking shifts the focus of computing from emphasizing

computer programming skills to focusing on the principles

of computing (Wing, 2008). This shift in emphasis does not

seek to redefine the discipline of computing, but rather to

help clarify the importance of computing and the knowledge

one needs to effectively use it, drawing it out of a focus

solely on computer programing and making connections

between the existing principles of computing and themes

that exist within current curricula (Henderson, Cortina, &

Wing, 2007).

Computational thinking is ubiquitous in the modern era.

According to Henderson et al. (2007), “computational

reasoning is the core of all modern Science, Technology,

Engineering and Mathematics (STEM) disciplines and is

intrinsic to all other disciplines from A to Z” (p. 195). It has

changed the way that work is completed, no matter the field

(Barr, Harrison, & Conery, 2011) and these changes create

a need to introduce computational thinking into classrooms,

preparing students to be a part of the modern workforce

(Weintrop et al., 2016). Although the number of

undergraduates who are exposed to computational thinking

has already increased, bringing computational thinking in

the K-12 realm would have a greater impact on the number

of students who are reached (Settle et al., 2012) and

exposure to computational thinking early will help students

84

to have greater success when taking later computer science

and computational thinking courses (Grover & Pea, 2013).

Computational thinking activities allow “computational

representations to make significant shifts in the way students

learn, think, and practice science and mathematics” (Orton

et al., 2016, p. 706), making them extremely important for

K-12 students. The growing importance of computational

thinking is signaled by its inclusion in the Next Generation

Science Standards and points to the connection between

mathematics, science, and computation (NGSS Lead States,

2013). Barr et al. (2011), argue that computational thinking

is essential skills across K-12 curricula. They describe the

importance of data collection, analysis, and representation

within social studies and language arts for the analysis of

historical events and linguistic patterns, algorithms and

procedures for the writing of instructions and decomposition

supporting the development of outlines, and simulations

enabling reenactments for learning across the humanities. It

might often be associated with STEM fields, but

computational thinking can be applied to any content, as

argued by Orton et al. (2016), by “having students employ

these practices to various problems in diverse content areas,

we can reinforce the broad applicability of these skills while

both providing students concrete contexts to employ them”

(p. 710).

Within this paper, we will use the computational thinking

taxonomy developed by Weintrop et al. (2016). In this

framework, computational thinking is broken into four

separate, yet interconnected categories: data practices,

modeling and simulation practices, computational problem

solving practices, and systems thinking practices. The

taxonomy acts as a guide for teachers as they incorporate

computational thinking into classrooms, allowing for both a

deepening of content understanding and an authentic

environment in which to learn computational thinking

practices (Weintrop et al., 2016). This paper focuses on three

of the taxonomy’s categories: data practices, modeling and

simulation practices, and systems thinking practices. Data

practices include the collection, creation, manipulation,

analysis, and visualization of data. Modeling and simulation

practices consists of using models to understand concepts,

find and test solutions, and assessing, designing, and

constructing models. The category includes working with

both models that others have generated and student created

models. Systems thinking practices pertain to the

investigation of a complex system as a whole, examining the

relationships within a system, thinking in levels,

communicating information about a system, and defining

systems and managing complexity in order to examine

individual parts of the system and how the system functions

in its entirety (Weintrop et al., 2016). This taxonomy is

useful for this work because the taxonomy’s goal is “not to

radically change the existing practices of experienced

teachers; instead…[it] serve[s] as a resource for augmenting

existing pedagogy and curriculum with…computational

thinking practices” (Weintrop et al., 2016, p. 129).

2.2. Virtual Reality

According to Huang, Rauch, and Liaw (2010), “virtual

reality (VR) is understood as the use of 3D graphic systems

in combination with various interface devices to provide the

effect of immersion in an interactive visual environment” (p.

1172). There are many different types of VR: virtual

environments include those on desktop computers controlled

by mice and keyboards, projection based VR systems that

project on an image at room scale, and head mounted visual

displays (Greenwald et al., 2017; Limniou et al., 2008).

Many have discussed the potential and success of VR due to

its engaging nature and ability to transport students to

locations where they cannot physically travel, whether due

to physical, time, or money constraints, to rare experiences,

or to gain access to experts (Greenwald et al., 2017).

Especially since VR has had previous success in education

and training environments, the increased availability of VR

in the internet-age is only expected to bring it further success

and new users and creators (Greenwald et al., 2017).

Virtual reality has the potential to enable learning

experiences not possible with other, low-tech methods

(Greenwald et al., 2017). This ability provides students with

an immersive experience in an environment with which they

can react, giving virtual environments the potential to lead

students to knowledge construction (Winn, Windschitl,

Fruland, & Lee, 2002). Multiple studies have shown that

participating in VR activities increases student knowledge.

For example, Limniou et al. (2008) demonstrated through

chemistry and the observation of molecules that

participating in 3D animation environments within a room-

based VR projection led students to better comprehend

molecular structure and changes based on chemical

reactions as compared to students who used a desktop based

2D animation. The VR experience allowed students to

develop a better sense of the volume of objects within a

space. A second example can be seen with Merchant, Goetz,

Cifuentes, Keeney-Kennicutt, and Davis (2014), who found

that games, simulations, and virtual world were all

successful in increasing learning outcomes. Even desktop

virtual environments, although they are not fully immersive,

enhanced learner engagement. Pan et al. (2006) describe the

successful use of virtual reality in a number of different

contexts including the use of synthetic characters to train

students in group work, simulate peace keeping missions,

and promote and enable storytelling. In all, participation in

VR can lower the cognitive load that users are experiencing

because the simulation is so real, enabling more learning to

occur (Huang et al., 2010). Virtual environments can also

support experimental and constructivist learning. Students

are drawn to VR because it provides them with the

opportunity to have first-person experiences. Students report

feeling as though they are inside the phenomena being

studied. This allows students to build their knowledge based

on personal experiences (Limniou et al., 2008).

Constructivist experiences occur by students situating

themselves within a real situation and doing a realistic task,

interacting with objects and events within virtual worlds,

and using characters and avatars to learn through role

playing (Huang et al., 2010).

For the purpose of this paper, we will be discussing the use

of a stereoscopic, head mounted VR system. This means that

users use VR goggles that block out the classroom

environment and “provide to the eyes of the viewer two

different images, representing two perspectives of the same

object, with a minor deviation similar to the perspectives that

both eyes naturally receive in binocular vision” (Limniou et

85

al., 2008, p. 585). The use of full immersion increases the

benefits of VR by elevating interest and motivation while

encouraging observing from various perspectives, active

participation, and the asking of questions (Limniou et al.,

2008). This leads “immersed students [to] learn more than

non-immersed students” (Winn et al., 2002, p. 497).

Immersed students also feel as though they are more

“present” to the learning environment, leading them to take

longer to complete the task and to say more as they are

working. The immersion is especially beneficial when

encountering concepts that are supported by the ability to

look around and examine the surroundings (Winn et al.,

2002).

3. METHODS
Alongside exploring potential instructional opportunities

around bringing computational thinking into classrooms

through VR, this paper presents data related to students’

experiences of using VR in their classrooms. The data was

collected by a teacher in the middle school of a Pre-K – 8

religious school in the Northeastern United States. The

mission of the school includes serving immigrant families

resulting in a diverse student body with 70% of students

receiving financial aid. After participating in classroom

lessons using VR technology for a year, students were asked

to complete questionnaires asking about their experiences

with the technology. Altogether, 65 students participated in

the study: 22 6th grade students, 29 7th grade students, and 14

8th grade students.

The lessons that students participated in were taught by

multiple teachers across subjects including science, Spanish,

social studies, and religion. Virtual reality was used within

the existing curriculum to enhance understanding of topics

already present and gave students proficiency both as

participants in lessons and acting as the guides leading other

students on VR trips. A subset of these lessons are presented

in this work. For teacher-led activities, the lessons generally

took place during a single 45-minute period while student-

led activities were usually part of larger projects that allowed

students more time to find their VR component and present

it to the class. While computational thinking was not a focus

of the instruction, in this paper we highlight potential

synergies and design opportunities for this integration.

Students used handheld Mattel ViewMaster headsets with

Asus ZenFone 2 devices (Figure 1). Most VR experiences

were facilitated through the Google Expeditions App, but

students also participated in a few activities facilitated by

Google Street View and YouTube. After multiple exposures

to the VR technology, students completed an end of the year

survey detailing their impression of the technology and their

learning from it. The survey that students completed was

hosted online and students were asked to complete it as part

of their end of the year activities. Students were aware that

their teacher would see their responses and that aggregate

data from the survey would be shared with the grant agency

that funded the purchase of the VR equipment for the school.

Figure 1. Mattel ViewMaster headset with Asus ZenFone 2

on the Google Expeditions platform

4. INTEGRATING COMPUTATIONAL

THINKING AND VIRTUAL REALITY
Within the classroom, VR has the potential to engage

students in computational thinking. Due to the unique

perspectives and interactions enabled by VR, students are

able to view places and interact with objects not typically

accessible to K-12 students, creating opportunities for

developing important computational thinking practices. In

this section, we detail potential ways to integrate VR and

computational thinking across the curriculum. We conclude

with a brief report of student perception on the use of VR in

their classrooms. While VR technology was used with

students throughout the school year and in a variety of

subjects, here we present lessons from the science, Spanish,

and social studies classrooms. These lessons are intended to

demonstrate how students used VR equipment within the

classroom and the computational thinking development that

can occur through these lessons. This is not an exhaustive

list of potential ways to integrate computational thinking via

VR but serves as a demonstration of what it could look like

to blend the two.

4.1. Computational Thinking in Science Class

VR was used to investigate both the cells and systems of the

body during a 7th grade life science course. While studying

the parts of a cell, the teacher guided students on a virtual

tour of the cell through the Into the Cell Google Expedition

(Figure 2). Each student received a VR device and was able

to look on his/her own as the teacher led students through

the series of computer generated images. Students were

asked to identify various parts of the cell as the teacher

pointed them out and the class together discussed cell

functioning. Students were given time to use their devices to

look around the image and work on their own to explore how

the various parts of the cell come together and exist in

relation to each other. In later classes, the teacher referred

back to the VR experience, giving students the opportunity

to recall their observations and apply them to their learning

throughout the unit.

Figure 2. Into the Cell virtual expedition.

This lesson demonstrates a possible use of virtual reality to

engage learners with modeling and simulation practices

86

including using computational models to understand a

concept, using computation models to find and test

solutions, and assessing computational models (Weintrop et

al., 2016). Although students are not able to create models

within the virtual environment, they are able to think

critically about the bounds of model, assess what is included

and excluded, discuss how the technology represented the

phenomena, and answer questions through scientific inquiry

gaining information from the model. Within this specific

lesson, the use of models in VR allowed students to better

visualize a cell while discussing the various parts of cells and

their interactions. The ability to examine cell structure from

all angles allowed students to instigate shape, proximity, and

size in a way that is not possible through basic images.

Further, students were better able to examine the

relationship between parts of a cell. In this way, the VR

context enabled new ways of learners engaging with the

computational thinking practice of using computational

models to understand a concept. As one student stated,

“[virtual reality] helped me learn, because when we read

straight from the textbook you can’t really visualize what

you are reading. However now with the virtual reality you

can.” Another student commented on how VR “helped me

see the world in a different way…i never actually knew what

was inside a cell, but [with virtual reality] i felt like i was

living a part of that world.” These virtual, computational

models were pedagogically useful in their ability to explain

the relationship between parts of a cell and allowed students

to use and interpret scientific models.

In a later unit, students used VR to study the systems of the

body. Students were responsible for working in small groups

to complete an in-depth study of one body system and

present it to the class using VR to demonstrate their findings.

To conduct their research, students used the VR devices and

the Google Expeditions platform. The expeditions that

students selected used computer graphics to demonstrate the

various body systems from inside the body and used images

to move through the system. Some of the expeditions that

were selected also allowed students to demonstrate how the

body system worked by demonstrating functionality based

on their purpose, such as showing the spread of viruses. This

activity provided opportunities for students to engage in

systems thinking practices such as investigating a complex

system as a whole, understanding the relationships within a

system and thinking in levels (Weintrop et al., 2016).

Although the ability to develop systems thinking practices

by studying the systems of the body and their interaction is

possible through other methods, VR acts as an excellent

conduit for this knowledge. Systems thinking practices

include the ability to both view a system as a whole rather

than simply as individual parts as well as to think in levels

and move between different perspectives on the same system

(Wilensky & Resnick, 1999). Virtual reality excels in

supporting such practices as it allows for both an in-depth

study of a system as a whole and studies of individual pieces

and how those pieces interact. As with the use of VR in the

study of cells, VR allows students to enter locations they

would not be able to such as inside the lungs or the middle

of the digestive system. With their 360 views of each of

these parts, students are able to look at individual elements

separately to investigate the behaviors they promote, two

important parts of systems thinking (Weintrop et al., 2016).

Overall, systems thinking learning can be enhanced by

studying those systems through VR and the unique views it

enables.

4.2. Computational Thinking in Social Studies Class

While studying the American Civil War (1861-1865),

students in the 8th grade used VR to visit Smithfield

Plantation in Virginia. A plantation is a large farm or estate

that grows a single crop. In the United States during this

time, slaves were the primary form of labor on plantations.

This virtual field trip allowed students to explore a

plantation as part of their learning about life in the South and

slavery. Prior to this field trip, students had spent time

studying the development of slavery in the United States and

life in the northern United States.

Using the Google Street View platform, students were given

five minutes to “walk” around the plantation and make

observations. After the time spent investigating the

plantation individually, students shared their discoveries

with the class and the entire class was given time to find the

locations discovered by classmates. The following day,

these observations were used as the class continued to talk

about life on plantations and students were able to reference

the physical landmarks of the plantation they saw as well as

the differences between the plantation house and the cabins

and quarters visible from the roads.

Since the taxonomy was created for use with mathematics

and science courses, we diverge from it slightly while

talking about social studies, but it still serves as a useful

resource with regards to discussing computational thinking

across subjects, especially with respect to the treatment and

analysis of data. New technologies have enabled not only the

collection of data to change, but also how those data are

viewed and the connections that are made with them.

Students need to learn to draw meaning from data rather than

expecting the data to come with clearly visible patterns or

conclusions (Lehrer, Giles, & Schauble, 2002). Visiting a

plantation through immersive digital representations as seen

in VR allows for an extension of concepts and data

previously presented through less interactive forms like

lectures and textbooks. This new context allows students to

experience and engage with a new representation of data that

they have seen previously. The context of VR can enable

new ways to manipulate, analyze, and visualize data, all of

which are valuable computational thinking practices. As a

student noted, the use of VR demonstrated “how connected

you can really be with the real world.” Virtual reality allows

students to experience data in a completely different way

and deepen their engagement with it. This experience

develops computational thinking practices related to

interacting with, communicating about, and drawing

meaning from data, all mediated by a technological

platform.

A second computational thinking in mathematics and

science taxonomy category this lesson links to is systems

thinking, although in this case, we are exploring a social

system rather than a scientific one. Asking students to

explore the plantation was part of a larger instructional goal

of helping students understand Southern society during that

period and the role of slavery in the culture. Through

87

immersive experiences such as these, students could

investigate different dimensions of the culture and explore

the relationship between slaves, slave-owners, industry, and

the economic factors that contributed to the Civil War,

viewing the various levels of the system and gathering

information that can be used to discuss the relationships

within the system and the system as a whole.

4.3. Computational Thinking in Spanish Class

In Spanish class, students used VR to visit Spanish speaking

countries throughout the year. Classes visited Hispanic

neighborhoods in the United States, Latin American

countries, and Spain. While completing a Spanish culture

unit that included study of the regions of Spain, 7th grade

students had two opportunities to use VR. First, the teacher

used VR in a series of stations that introduced some of the

best-known landmarks of the country. The class concluded

with a full class discussion of the similarities and differences

between the sites themselves and between the sites and the

United States. Later, students created a presentation about

one region of the country and selected one major landmark

that represented the region to share via VR. After working

on the project for a week, students shared their presentations

with the class in a gallery walk fashion, leaving their

presentation and VR destination for other students to

discover as they walked around the classroom.

The opportunities for computational thinking within this

lesson are very similar to those experienced in the social

studies lesson. Students are able to utilize data practices by

making connections between what they had learned

previously, viewing it represented in a new manner, and

potentially treating the images that they are viewing as data

themselves for data analysis. Additionally, students are

experiencing a social and cultural system, employing the

systems thinking practices to understand relationships and

think in levels. The presentation of these computational

thinking practices in Spanish class serves as yet another

context for learners to develop these skills.

4.4. Student Impressions of Virtual Reality

Students recognized VR as a productive learning tool within

their classrooms. Using a five-point Likert Scale, 94% of

students agreed or strongly agreed that VR helped them

learn, with a mean score of 4.33 out of 5 (SD .64). According

to one student, “it made my understanding of the place better

because we didn’t have to hear about it we could see the

place ourselves.” Alongside this perceived learning utility,

students’ reported increased feelings of engagement and

connections with course material through the VR

environment. Ninety-two percent of students agreed or

strongly agreed that they felt more engaged in classes

because of VR (Mean 4.48 out of 5, SD .64) and 97% agreed

or strongly agreed that they made connections between what

they were seeing the viewer and what they learned in class

(Mean 4.50 out of 5, SD .56). When asked how VR helped

them learn, students highlighted the engagement that they

felt using the technology. Students stated that they were

“really engaged because it was like we were really their and

it was very interesting” and “[virtual reality] helped [me]

become more focused and involved in a lesson.” Students

also showed enjoyment from using VR calling the

experiences “truly awesome” and “really enjoyable” while

requesting the use of VR more often and in more classes.

Given this reaction to the use of VR in the classroom and the

opportunities for it to serve as a context for the development

and employment of computational thinking practices, the

partnering of the two provides a productive means by which

to introduce students to computational thinking across

contexts.

5. DISCUSSION
Virtual reality has the potential to be a powerful tool for

bringing computational thinking into the classroom, both

within and beyond STEM subjects. The unique views that it

allows, along with the increased engagement and learning

that the environment brings, create a medium with great

potential for computational thinking. The lessons in this

article demonstrate a few of the ways in which VR can be

used to situate computational thinking across the curriculum.

This work aims to help start the discussion regarding VR as

a conduit for computational thinking. By viewing social

systems through a systems thinking lens and using three

dimensional models as a context for learners to explore ideas

and engage with data, students have the ability to develop

computational thinking practices, no matter the subject they

are studying.

Virtual reality demonstrates the breadth of computational

thinking and shows how it can be experienced beyond

computer science classrooms. Further, the flexibility of VR

to fit across the curriculum provides a mechanism to show

how computational thinking can serve as a set of cross-

cutting practices without disciplinary constraints. Given the

possibilities for incorporating computational thinking in the

humanities, more work needs to be done on defining what

computational thinking looks like in these contexts and how

it differs from the presentation of computational thinking

practices in STEM subjects.

Although VR is becoming increasingly accessible, there are

still limitations to using it within the classroom. The cost of

the equipment has decreased, but it remains out of reach for

many classrooms. Additionally, the availability of VR

programs limits classroom activities and most teachers do

not have the skills to design their own VR programs. With

the development of VR mainly driven by consumer

electronics and technology companies, teachers need to be

aware of the economic motivation of VR platforms and

consumer opinions of such platforms. Teachers should also

be aware of the effect that novelty can have on students and

use of new technologies and ensure that the substance of a

lesson is not missed due to being distracted by the novelty

of a learning tool. Lastly, especially with head mounted

devices, physical discomfort can be experienced by users.

Some students require adjustments to use the technology

comfortably.

6. CONCLUSION
Computational thinking is an important skill for all students

to develop. With the ever-growing number of fields that rely

on computation and an increasingly technical world,

students must be prepared through diverse exposure to

computational thinking tasks. Virtual reality offers one way

to enable such exposure. Students are drawn to the

technology and can benefit from the engagement, learning,

88

and connections that it offers. With VR and computational

thinking working together, students will have the

opportunity to experience computational thinking in not

only STEM fields, but also in the humanities. There is a great

need for computational thinking in modern society and VR

is a tool that will help develop this essential mindset.

7. ACKNOWLEDGEMENTS
The authors would like to thank the McCarthey Dressman

Education Foundation for the Academic Enrichment Grant

which made these lessons possible and the students for

inspiring us to develop new learning opportunities.

8. REFERNECES
Barr, D., Harrison, J., & Conery, L. (2011). Computational

thinking: A digital age skill for everyone. Learning and

Leading with Technology, 20–23.

Greenwald, S. W., Kulik, A., Kunert, A., Beck, S., Fröhlich,

B., Cobb, S., … Maes, P. (2017). Technology and

applications for collaborative learning in virtual reality. In

Making a Difference: Prioritizing Equity and Access in

CSCL, 12th International Conference on Computer

Supported Col- laborative Learning (CSCL) ,719–726.

Grover, S., & Pea, R. (2013). Computational thinking in K-

12: A review of the state of the field. Educational

Researcher, 42(1), 38–43.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007).

Computational thinking. Proceedinds of the 38th SIGCSE

Technical Symposium on Computer Science Education -

SIGCSE ’07, (February 2016), 195.

Huang, H. M., Rauch, U., & Liaw, S. S. (2010).

Investigating learners’ attitudes toward virtual reality

learning environments: Based on a constructivist

approach. Computers and Education, 55(3), 1171–1182.

Lehrer, R., Giles, N., & Schauble, L. (2002). Data Modeling.

In R. Lehrer & L. Schauble (Eds.), Investigating real data

in the classroom: expanding children’s understanding of

mathematics and science (pp. 1–26). New York: Teachers

College Press.

Limniou, M., Roberts, D., & Papadopoulos, N. (2008). Full

immersive virtual environment CAVE in chemistry

education. Computers & Education, 51(2), 584–593.

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt,

W., & Davis, T. J. (2014). Effectiveness of virtual reality-

based instruction on students’ learning outcomes in K-12

and higher education: A meta-analysis. Computers and

Education, 70, 29–40.

NGSS Lead States. (2013). Next Generation Science

Standards: For States, By States. Retrieved from

http://www.nextgenscience.org

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., &

Wilensky, U. (2016). Bringing computational thinking

into high school mathematics and science classrooms. In

Transforming Learning, Empowering Learners: The

International Conference of the Learning Sciences (ICLS)

(pp. 705–712).

Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006).

Virtual reality and mixed reality for virtual learning

environments. Computers and Graphics (Pergamon),

30(1), 20–28.

Papert, S. (1980). Mindstorm: Children, Computers, and

Powerful Ideas (1st ed.). New York: Basic Books, Inc.,

Publishers.

https://doi.org/10.1017/CBO9781107415324.004

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C.,

Rennert-May, C., & Wildeman, B. (2012). Infusing

computational thinking into the middle- and high-school

curriculum. In Proceedings of the 17th ACM annual

conference on Innovation and technology in computer

science education - ITiCSE ’12.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science

classrooms. Journal of Science Education and

Technology, 25(1), 127–147.

Wilensky, U., & Resnick, M. (1999). Thinking in levels : A

dynamic systems approach to making sense of the world.

Journal of Science Education and Technology, 8(1), 3–19.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33–35.

Wing, J. M. (2008). Computational thinking and thinking

about computing. Philosophical Transactions of the Royal

Society, 366, 3717–3725.

Winn, W., Windschitl, M., Fruland, R., & Lee, Y. (2002).

When does immersion in a virtual environment help

students construct understanding. In Proceedings of the

International Conference of the Learning Sciences, ICLS

(pp. 497–503).

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

89

A Development of a SW-STEAM Education Program using the Flipped Learning

Hae-nam SONG*, Sun-gwan HAN

Department of STEAM Education, GyeongIn National University of Education, South Korea

goska9997@naver.com, han@gin.ac.kr

ABSTRACT

In this study, we developed SW STEAM education program

that can be provided by using flipped learning. To do this, I

applied flipped learning to a class of 4th grade elementary

school in Gyeonggi Province, progress the online course site

related to SW education at the same time. After that, we

applied a program that combines the existing textbook theme

with scratch. This will help students improve their

Computational Thinking and motivation. In the future, it is

expected that SW STEAM education will be activated in

elementary education field by using flipped learning.

KEYWORDS

Computational Thinking, Flipped Learning, SW Education,

STEAM, STEAM Education.

1. INTRODUCTION
In the 21st century society, more people need to be able to

think convergently based on knowledge rather than those

who memorize and understand simple knowledge. This

change in social paradigm is too fast to catch up with the

existing knowledge-based lecture education. Elvin Toffler

diagnosed this as a "educational delay" and called for a

change to a creative and STEAM education.

Flipped learning is emerging as a teaching method that can

effectively cope with this educational crisis and raise

talented people capable of fused thinking. Teachers can

create and distribute video about the core contents of the

curriculum to be delivered so that students can study at

home. In the classroom, learning is organized by learner-

centered activities. It is not a passive class that receives

knowledge, but a class that worries for oneself to solve

problems. In this process, students can naturally develop

fusion thinking skills.

Although many educators agree on the effectiveness of

flipped learning, it is difficult to apply it in schools. The

reason why it is difficult to apply flipped learning to the

school is 'difficulty in using the device'. Secondly,

'production burden of pre-learning video' may be the reason.

On the other hand, as the 4th industrial revolution is

accelerating, the need for software education is increasing.

The Ministry of Education and the Ministry of the Future

revised the curriculum so that it emphasizes the software

education. Now, study to software is essential. No one can

deny that SW education is necessary for future social talent

training.

As the need for STEAM education and SW education is

increasing, practical learning programs are needed in

elementary schools. Elementary SW STEAM education

should enable the learner to be able to participate actively

while maintaining interest and concentration. It also needs

to be presented by the easy way to access, with topics related

to curriculum.

Therefore, this study utilize MOOC - based flipped learning

which uses pre - developed teaching - learning site lectures,

learn the pre-production video by using the extra-curricular

time. By using this method, we intend to conduct SW

STEAM lesson connect with subjects(Korean, Mathematics,

Science). During class, students can create a scratch project

that fits their subject matter.

2. BACKGROUND

2.1. Concept of Flipped- learning

'Flipped' is a name given in the sense of reversing lectures

and homework. In other words, it is a class that overturns the

traditional way of teaching in terms of studying videos at

home and conducting classroom activities based on what

they have learned.

The concept of flipped learning can be defined as follows.

Flipped learning is a learner-centered approach to self-study

of core knowledge to learn in the home or school, making

the network, communicating with friends, conducting

project activities, group discussions, and quizzes.

2.2. Concept of SW Education
Software education is expanded from ICT education which

teaches the functions of information devices such as word

processor. Software education provided computer theory,

and ability to think through procedural thinking and solve

problems by using software. With the 4th Industrial

Revolution, production methods in all sectors of the industry

are changing, and software is at the center. The ability to deal

with software, and the ability to solve various real-life

problems using software is becoming important. Software

education is rapidly spreading in educational fields around

the world. Korea is also taking a step closer to change by

strengthening SW education in the 2015 revision curriculum.

SW education aims to develop creative talents who have the

ability to solve problems by collecting data and analyzing

information on the basis of thinking rather than nurturing

students as programmers who are simply coding. Therefore,

it is not a one-time coding education, but real-life problems

are solved through algorithms and programming in a

practical subject.

2.3. Flipped-learning of the SW Education.

 Students can learn basic functions necessary for SW

education beforehand at home in the pre-learning stage

through video. Beyond simple video viewing, teachers

should provide opportunities for students to share their

thoughts in a quiz or mind map.

In SW education, learning about EPL (Educational

Programming Language) like scratch basic functions is

essential, but there are limited class hours and difficulty for

one teacher to proceed. Therefore, the difficulty of applying

SW education can be solved through flipped learning.

90

3. RESEARCH METHOD

3.1. Research Psrocedure
In this study, we have found subjects and theme that can

apply SW STEAM education. Among the 4th grade subjects,

they were selected as 'talking' in Korean, 'polygon' in

mathematics, and 'change of state of water' in science. After

the selection of the topic it was subdivided and refined to

implement the learning objectives to scratch without

modifying the existing curriculum content. In order to

increase the applicability in the field of elementary

education in the future, we selected topics that can be

connected with SW education among existing contents of

textbook rather than modification of curriculum contents.

In addition, the selected online teaching and learning site

allows students to study at home the function of the scratch

program by flipped-learning. At the school, based on the

functions learned at home, we conducted mind map and

discussion learning

3.2 Application
A total of 19 students were selected, including 8 boys and 11

girls, in the 4th grade of K elementary school in Gyeonggi

Province. There is one student with an intellectual disability,

and that student is excluded from the application group

because that student takes special classes in Korean

language and mathematics. There are no students who have

been exposed to scratches in advance, and there are no after

school computer attendants, and there is no SW education

experience.

4. DESIGN OF SW STEAM PROGRAM

4.1. Learning Model of Flipped Learning

The flipped Learning model to be applied in this study is

based on the ‘core activity process of flipped learning based

instruction model’, from the perspective of using scratch, a

tool for SW education, was modified according to research

characteristics, with reference to ‘Development of flipped

learning instruction model based on smart education’.

Table 1. Leaning model of flipped Learning

Process Core Activities Rule

Before

The class

(outside of

classroom)

▪Prior Learning

 (watching the

video)

▪Confirm contents

of subject

▫Presenting pre-

learning tasks by

Mind-map, Scratch

quiz, post-it quiz

▫Upload to classroom

site after creating the

reviewing project

In class ▪Readiness check

▫Prior knowledge

check

▫Identify the

individual level with

pre-learning

assignments and

reviewing project

analysis

▪Objectives

Recognition

-Provide

Motivational data

-Curiosity

inducing

▫Solvable Problems

by Cooperation

among students

▪Understanding the

Knowledge

And providing

Feedback

-Explore

individual

information

activity

-Individual

Knowledge

Organization

Activities

▫ Confirm textbook

And Formalization of

knowledge.

▫ Individual

structured data

▪ Seeking

application

examples for

knowledge

production and

reconstruction

-Team cooperative

learning

-Professor and peer

evaluation

▫ Utilize project

subject topics

▫ Making a plan

specifically for what

learners should do to

solve problems

▫ Consider cognitive

and social interaction

▪ Learning

outcomes cleanup

-Sharing and

presenting

▫ Announced creative

activity outcomes

▫ Teacher's facilitator

activity

▪ Learning theorem

and Reflection

▫Self-reflection with

Writing reflective

journals

After class

(outside of

classroom)

▪ Providing the

Deepening

learning and

Supplementary

learning

-Sharing activity,

Interactive activity

▫Providing the

Deepening activities

based on students'

creativity through

experiential

knowledge

4.2. Application of Flipped Learning

In the conventional flipped learning class, the teacher has to

prepare and provides the class related video. However, in

this study, the video is already produced and distributed on-

line, So that the burden on the user can be reduced. In this

study, Junior SW site (koreasw.org) was utilized. All of the

lectures on this site were produced by teachers and agreed

with the curriculum and were suitable for flipped learning of

learners within 8 to 10 minutes. Based on the contents that

students have heard from the online-learning site, teacher

suggested prior learning so that students can share their

thoughts with each other.

91

Table 2. Application plan for flipped Learning

Class

time
Subject Flipped Learning Activity

1 Introduction

◊ Introduction to Online

Learning Site

◊ Join Scratch site

2

 ‘Let's be the

main

character.’

◊ Watching a video (Pre-

learning assignment)

◊ Create mind map

3

 ‘Let's move

the

character.’

◊ Watching a video (Pre-

learning assignment)

◊ Write new points on post-it

4

‘Let’s

Decorate

aquariums’

◊ Watching a video (Pre-

learning assignment)

◊ Unravel the quiz

5
 ‘Dance

Party’

◊ Watching a video (Pre-

learning assignment)

◊ Summarize the contents of a

lecture

6

‘Fireworks’

◊ Watching a video (Pre-

learning assignment)

◊ Write Lecture Notes

In this study, it is aimed to reconstruct with SW STEAM

Education using MOOC based flipped learning, by

presenting real-life problems, pursuing connectivity with

other subjects, stimulate students' interest and naturally

develop communication skills and problem-solving skills.

4.3. SW STEAM Education Project Production

1) LANGUAGE ART

Table 3. SW KOREAN STEAM education Contents

Making

polite

conversati

on

Collection

s

Clas

s

time

1

Presen

ting the

situatio

n

Create a polite

conversation scratch that
Anyone can easily see

Clas

s

time

2~3

Creati

ve

Desig

n

- Think about Situation of

conversation with adults Ⓐ

- Think about the manners

you need to talk to adults Ⓐ

- What blocks do you need

to make the scratch that

seems to be talk? Ⓣ

- Using scratch, Making

polite conversation

Collections Ⓔ

Clas

s

time

4

Emoti

onal

experie

nce

(Experi

ence of

success

)

- Uploading the project to

classroom site

- Creating a ‘polite

conversation Collections '

by collecting all of your

projects ⓉⒺⒶ

- writing a comment

Watching each other's

projects

2) MATHEMATICS

Table 4. SW Mathematics STEAM education Contents

Square

maker

Class

time

1

Presen

ting the

situatio

n

Create a tool that

accurately draws a Square

Class

time

2~3

Creati

ve

Desig

n

- Think of the square

features

(Rhombus, Parallelogram,

Rectangle)Ⓜ

- What blocks do you need

to draw a square accurately?

Ⓣ

Clas

s time

4

Emoti

onal

experie

nce

(Experi

ence of

success

)

- Draw a rectangle using

scratch ⓂⒺ

- Uploading the project to

classroom site

- writing a comment

Watching each other's

projects

3) SCIENCE

Table 5. SW Science STEAM education Contents

Creatin

g a

‘Moon

survival

game’

Class

time 1

Prese

nting

the

situati

on

Let's play with your friends

by creating a game that you

need to survive on the moon

Class

time

2~3

Creat

ive

Desig

n

- Think about the difference

between Moon and Earth Ⓢ

- Why can not a creature

live on the moon? Ⓢ

- Designing the game

situationⒶⒺ

- Exploring the block Ⓣ

Class

time 4

Emot

ional

experi

ence

(Exper

ience

- Making game

‘Moon survival

game’ⓈⓉⒺ

- Game with friends

92

of

succes

s)

- Share each other's rules

and games

4) Implementation of SW-STEAM Class

Table 6. Picture of class

SW

KOREAN

STEAM

SW

Mathematics

STEAM

SW Science

STEAM

5. DISCUSSION
The developed SW STEAM education applied to 4th grade

students. The purpose of this study is to investigate the effect

of the program on learning motivation by tests divided into

pre and post motivation and analysis the satisfaction survey.

It can be seen that SW STEAM class using flip learning

gives a very high learning motivation than traditional lecture

class.

Table 7. Result of motivation test

Analysis Corres-

pondence

Average SD t p

Attention Pre 3.4722 .74206 -2.536 .021

Post 3.9444 .78850

Relevance Pre 3.0889 .49573 -3.194 .005

Post 3.5444 .52156

Confidence Pre 3.4889 .91065 -2.279

.036

Post 3.9667 .81818

Therefore, when SW STEAM class using flip learning is

applied to students, it can positively affect students'

motivation for learning. Especially, it showed improvement

in attention, relevance, and confidence among the sub - areas

of learning motivation.

6. REFERENCES
Alvin, T., & Toffler, H. (2006). Revolutionary wealth.

Alfred A Knopf.

Bergmann, J. & Sams, A. (2012). Flipped Your Classroom:

Reach Every Student in Every Class Every Day.

International Society for Technology in Education.

Korea online SW education. (2016). Scratch Basic.

Retrieved October 17, 2017, from http://koreasw.org.

Lee, M. K., Sung, M. K., Jung, J. Y., Kim, S. M., Kim, J. H.,

Ahn, H. H., Park, H. K., Patrick, T. T., Byeon, S. C., Bae.

D. Y., Lee, K. H., Kim, S. C., Cha, J. H., Kim, E. J., Kim,

K. Y., Lee, H. J., Kim, K. Y., & Kim, C. S. (2016).

Understanding and Practice of Flipped Learning, city:

Kyoyookbook.

Lim, J. H., & Kim, S. H., (2013). Effects of individual

learning and collaborative learning on academic

achievement, self-directed learning skills and social

efficacy in smart learning, Journal of Korean Association

for Educational Information and Media, 19(1), 1-24.

Missildine, K., Fountain, R., Summers, L., & Gosselin, K.

(2013). Flipping the classroom to improve student

performance and satisfaction. Journal of Nursing

Education, 52(10), 597-599.

MOE. (2015). Curriculum guideline for Practical Arts

(Technology / Home Economics) / Information Science

Curriculum. Seoul: Ministry of Education.

Park, T. J., Cha, H. J., & Lee, G. Y. (2015). An Exploratory

Study on Learning Analysis for Promoting Self -

Regulated Learning in MOOCs Learning Environment. In

Proceedings of 2015 Conference on The Korean Society

Educational Technology (pp. 504-517).

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

93

Development of BIC-Science Module: An Interdisciplinary Approach of Computer

Science and Primary Science Education

Tracy MENSAN, Kamisah OSMAN*

National University of Malaysia

tress1907@yahoo.com, kamisah@ukm.edu.my

ABSTRACT

Computational Thinking (CT) is being considered as a

critical skill for students in the 21st century as it is

increasingly valuable in education and workplace settings

with the economy grows more dependent on digital literacy.

Given the importance of CT, Malaysia has been integrating

CT into Malaysian syllabus since January 2017. However,

integration of CT into the Science curriculum is still a

challenge. This study therefore aimed to develop an

interdisciplinary module namely Brain-based learning,

Inquiry-based approach and Computational thinking (BIC)-

Science Module. In this paper, we first present the needs of

the module to Malaysia’s education and then presenting the

approaches of BIC through the conceptual framework. We

then propose activities that can jointly foster the

development of computational thinking and elaborate on the

instructional model to develop the module. Finally, we

discuss the benefits of our module for future research.

KEYWORDS

Interdisciplinary, Brain-based learning, Inquiry,

Computational thinking, Primary Science.

1. INTRODUCTION
In August 11th of 2016, the Prime Minister of Malaysia has

announced that computational thinking and computer

science will be added to the curriculum of primary and

secondary schools in Malaysia (Abas 2016), which aimed to

provide Malaysian students with the CT to be globally

competitive. The Prime Minister highlighted every student

from Primary One to Form Five should be taught CT and

coding languages to give them a good foundation in

preparing them for future digital economy jobs.

The implementation of CT has been rolled out as part of the

new Standard Based Curriculum for Primary (KSSR) and

Standard Based Curriculum for Secondary (KSSM) which

has been started in January 2017 that will benefit up to 1.2

million students across 10,173 schools nationwide (Abas,

2016). The integration of CT, problem-solving and

technology for the primary school curriculum will be across

all of their subjects. Meanwhile, the integration of CT for

secondary school curriculum is through their elective

subject. These initiatives are spearheaded by Ministry of

Education (MOE) and supported by Malaysia Digital

Economy Corporation (MDEC) and aimed to participate 1.3

million students participating in co-curricular activities and

digital production hubs with 260,000 students groomed for

future digital economy jobs, e.g. data scientists and game

developer (Ng, 2016).

A national study, S&T Human Capital: A Strategic Planning

Towards 2020 in Academy of Sciences Malaysia (2015)

confirmed that the country will need one million S&T

workers by 2020, of which 500,000 will require at least a

diploma or university degrees. At the same time, it is

projected that a ratio of 70: 10,000 research personnel to

workforce would be needed. Hence, the underlying

statement indicates that Malaysia still does not have enough

talent.

The implementation of the first National Science and

Technology Enrolment Policy of 60:40 since 1970, which

guaranteed that 60 percent of students would be enrolled in

science with the remaining 40 percent in arts is still

unachieved with the ration stood at 21:79 in 2015. Regarding

the latest statistics on mean score in Program for

International Student Assessment (PISA) and the Trends in

International Mathematics and Science Study (TIMSS) 2012

which assess a variety of cognitive skills such as application

and reasoning, Malaysia’s science and mathematics

achievement still ranked below the average mean score.

Therefore, Malaysia education system aspires to be in the

top third countries of international assessments such as

TIMMS and PISA in 15 years (Ministry of Education,

2015).

In order to achieve the national goals, this paper proposed

the interdisciplinary module that supports the development

of students’ scientific expertise for the design of coherent

curriculum in which computational thinking are not taught

as separate topic but are interwoven with learning in the

science domains. Bringing computational tools and practices

into science classrooms gives learners a more realistic view

of what science fields are and better prepare students for

STEM careers (Augustine, 2005; Osman, 2013). These

practices are also central to the development of expertise in

scientific and mathematical disciplines (Basu et al., 2012).

In establishing this framework, we first propose the

following three components:

a. Relationship between BIC and Science Learning: In

section 2.1, we explicitly identify the synergies between

BIC and science learning;

b. Fostering CT with BIC-Science Module: In section 2.2,

we provide examples for the integration of CT in the

selected topic that are amenable to our technology, but

at the same time illustrate the generality of our

approach;

c. Instructional design of BIC-Science Module: In section

2.3, we elaborate the Morison, Ross and Kemp (MRK)

instructional model for developing the module.

94

2. DEVELOPMENT OF MODULE

2.1. Relationship between BIC and Science Learning

In order to comprehend the continuous development in the

discipline of science, students should be aware of the basic

science terms and they should gain the science skills

throughout their schooling process (Fogarty, 2002) which

can be achieved through interdisciplinary approach

presented in this module. Interdisciplinary can be defined as

a knowledge view and curriculum approach that consciously

applies methodology and language from more than one

discipline to examine a central theme, issue, problem, topic

or experience (Jacobs, 1989). Figure 1 shows the conceptual

framework that shows the key concepts in developing the

module.

Computer science element focused in this module is the use

of computational thinking as the skills to solve problem

systematically in the lesson. Meanwhile, the science

learning will be focused on the curricular contexts in the

topic of “Matter” which is difficult and important curricular

topic at Year 5 level. Research reports some of the ideas

students have about the particulate nature of matter as

misconceptions, preconceptions, naive conceptions, or

alternative conceptions (De Vos & Verdonk,1996).

Figure 1. Conceptual framework.

BIC model is adapted from the model proposed by Cheah

(2016) as an effective pedagogy that should consist of:

a. structure: Brain-based learning;

b. approach: Inquiry-based approach; and

c. skill: Computational thinking.

The structure is the brain-based learning that recognized the

need for constructing knowledge, prior conceptions into new

knowledge through questioning and readjusting knowledge

to fit with real-life experiences (Gardner,1991 in Mangan,

2007). This can be achieved through the Seven Stages of

Brain-based Planning that can be applied in science

classroom to “access the vast potential of the human brain

and, in very real sense, improve education.” (Caine & Caine,

1991). In BIC-Science Module, every science lesson is

structured into seven stages according to Jensen (2008)

namely:

i. Pre-exposure is the stage which provides the brain with

an overview of the new learning before really digging in.

Pre-exposure helps the brain develop better conceptual

maps. Example: Students can use their prior knowledge

about different types of materials around them to help

them to understand the nature of different states of matter

that can exist as solid, liquid and gas.

ii. Preparation is the stage at which curiosity or excitement

is created. It is similar to the ‘anticipatory set’ but goes

further in preparing the students. Example: Students are

instructed to put their hand into three closed black boxes

which contain different types of matter separately. Each

box may contain ice which represents solid, water which

represents liquid and smoke which represents gases.

iii. Initiation and acquisition is the stage which provides the

immersion. Students are flooded with an initial virtual

overload of ideas, details, complexity and meanings. The

students are allowed to be temporarily overwhelmed.

This will be followed by anticipation, curiosity and

determination to discover meaning for oneself. It builds

on what the learners already know and understand and

helps them assimilate and integrate new information.

Over time, the students are able to sort out the

knowledge. Example: Students are allowed to do

experiment to describe that water can change its state

through several processes.

iv. Elaboration is the stage for processing which requires

genuine thinking on the part of the learners. This is the

stage to make intellectual sense of the learning. Example:

Students discussed openly the algorithm they

experienced in changing the states of matter in water into

solid or gas. Teachers and other students may ask

questions to improve the algorithm.

v. Incubation and memory encoding is the stage for the

importance of downtime and review time is emphasized.

Example: Students write the key points about the

"changes in states of matter" in the form of thinking map

in their journal.

vi. Verification and confidence check is for the students to

confirm their learning. Learning is best remembered

when students possess a model or a metaphor regarding

the new concepts or materials. Example: Students

answered short quiz regarding the subtopic learned.

vii. Celebration and integration is the stage which engage

emotions. This stage instills the all-important love of

learning. Example: Stickers are given to students who

perform well and actively throughout the lesson. Top

presentations are selected to be presented during Science

Week.

While brain-based learning develops deep learning of

science phenomenon as a process, inquiry-based approach

offers the ability to do the scientific processes and the

knowledge about the processes through student-centered

exploration. Students are encouraged to raise questions and

think critically throughout the exploration of lesson

BIC-

Science

Module

Brain-based

Planning (Jensen,

2008)

1. Pre-exposure

2. Preparation

3. Initiation and

acquisition

4. Elaboration

5. Incubation and

Memory

Encoding

6. Verification

and confidence

check

7. Celebration

and Integration

Inquiry-

based

Approach

(Banchi

and Bell,

2008)

CT

(CSTA,2012)

Decomposition,

Pattern

recognition,

Abstraction,

Algorithms

Morison, Ross, and Kemp

model (2007)

CT

95

activities which also will provide opportunity for students to

learn by doing. The national performances in TIMMS and

PISA proved that our students are still lacking in inquiry

skills. Therefore, the design of activities in this module will

be developed from the basic which is structured inquiry to

guided inquiry or open inquiry (NRC,2000). Banchi and Bell

(2008) differentiate the four levels of inquiry (confirmation

inquiry, structured inquiry, guided inquiry and open inquiry)

based on the amount of information and guidance the teacher

provides the students. The information and guidance

provided in the module will be minimized as the inquiry

level shifts from structured inquiry to open inquiry.

CT will equip the module with relevant skills according to

the science activity. The term “computational thinking” in

education was first used in child education by Papert (1980)

with reference to Logo, a computer language designed for

children who believes that certain uses of very powerful

computational technology and computational ideas can

provide children with new possibilities for learning,

thinking, and growing emotionally. According to Curzon et

al. (2009), computational thinking is the 21st century skills.

This is an idea explored by Jeannette Wing from Carnegie

Mellon University:

 Computational thinking is a way of solving problems,

designing systems, and understanding human behavior that

draws on concepts fundamental to computer science.

(Wing, 2006).

In this study, CT skills are needed to prepare a lesson for the

learner in a systematic manner. Four concepts of the CT

skills (CSTA, 2012) defined in Table 1 will be utilized.

Table 1. Four concepts of CT

Concept Definitions (Google, 2015)

Decomposition Breaking down data, processes,

or problems into smaller,

manageable parts

Pattern recognition Observing patterns, trends, and

regularities in data

Abstraction Identifying the general principles

that generate these patterns

Algorithms Developing the step-by-step

instructions for solving problem

2.2. Fostering CT with BIC-Science Module

The long-term goal of this study is to support the

development of CT throughout the Primary Science

curriculum. BIC-Science module is designed to promote a

specific set of CT skills for the topic. Table 2 below shows

examples that incorporates CT skills in the module.

Table 2. CT Concepts Explored with BIC-Science Module

Concept Examples

Decomposition Students decomposed the changes in

states of matter which occur during the

phenomena of rain.

Pattern

recognition

Students classify the materials/objects

in the classroom into solid, liquid and

gas.

Abstraction Students use abstraction to explain the

changes in states of matter during the

heating of naphthalene ball.

Algorithms Students explore logical organization

and sequencing when animate the

movement of particles in solid, liquid

and gas using visual programming

application; Scratch.

2.3. Instructional design of BIC-Science Module

Morison, Ross and Kemp (MRK) model provide flexibility

in manifesting the cyclical process of instructional design

(Morrison et al., 2007) in the development of this module.

This circularity is achieved by viewing the nine core

elements of the model as interdependent rather than singular

and independent. This allows instructional designers a

significant degree of flexibility because they are able to

begin the design process with any of the nine components,

rather than being constrained to work in a linear fashion

(Akbulut, 2007). Every aspect of the module design and

learning process is taken into consideration. This model

focuses on these nine core elements which will be applied in

this module:

 identifying instructional design problems and

specifying relevant goals,

 examining learner characteristics,

 identifying subject content and analyzing task

components that are related to instructional goals,

 stating instructional objectives for the learners,

 sequencing content within each unit to sustain

logical learning,

 designing instructional strategies for each learner to

master the objectives,

 planning instructional delivery,

 developing evaluation instruments, and

 selecting resources to support learning activities.

3. CONCLUSION
The development of BIC-Science module will be the

foundation for a longer-term learning progression to

integrate computational thinking into the science

curriculum. The design of science lesson activities using

brain-based learning, inquiry-based approach and

computational thinking will be able to provide a student-

centered, systematic and meaningful learning environment.

With computational thinking’s growing importance in

preparing relevant talent in digital age, this paper is a call to

action for more research to integrate computational thinking

in other disciplines and in the different level of education.

4. REFERENCES
Abas, A. (2016, August 11). Computational thinking skills

to be introduced in school curriculum next year. New

Straits Times.

https://www.nst.com.my/news/2016/08/164732/computat

ional-thinking-skills-be-introduced-school-curriculum-

next-year [2 February 2018].

96

Academy of Sciences Malaysia. (2015). ASM Science

Outlook. Kuala Lumpur: Perpustakaan Negara Malaysia.

Akbulut, Y. (2007). Implications of two well-known

models for instructional designers in distance education:

Dick-Carey versus Morrison-Ross-Kemp. Turkish Online

Journal of Distance Education, 8(2).

Augustine, N. R. (2005). Rising above the gathering storm:

Energizing and employing America for a brighter

economic future. Washington D.C.: National Academies

Press.

Banchi, H., & Bell, R. (2008). The many levels of inquiry.

Science and Children. 46(2), 26-29.

Basu, S., Kinnebrew, J., Dickes, A., Farris, A. V.,

Sengupta, P., Winger, J., & Biswas, G. (2012). A Science

Learning Environment using a Computational Thinking

Approach. Paper presented at the 20th International

Conference on Computers in Education, Singapore.

Caine, G., & Caine R. (1991). Making Connections

(Teaching and The Human Brain). USA: Banta

Company.

Caine, G., & Caine, R. (2006). Making connections:

Teaching & Human Brain (3rd ed.). Thousand Oaks, CA:

Corwin Press.

Cheah, H.M. (2016). Enhancing Creative Teaching using

Computational Thinking. International Conference on

Teaching and Learning 2016, hlm. 26–42. Faculty of

Education, University of Malaya, Kuala Lumpur.

Computer Science Teachers Association. (2012).

Computational Thinking.

http://csta.acm.org/Curriculum/sub/CompThinking.html.

Curzon, P., Black, J., Meagher, L. R., & McOwan, P.

(2009). cs4fn. org: Enthusing students about Computer

Science, Proceedings of Informatics Education Europe

IV, 73-80.

De Vos, W., & Verdonk, A.H. (1996). The Particulate

Nature of Matter in Science Education and in Science.

Journal of Research in Science Teaching, 33(6), pp657-

664.

Google. (2015). Computational Thinking for Educators.

Retrieved from

https://computationalthinkingcourse.withgoogle.com/unit

?lesson=8&unit=1.

Hodson, D. (1993). Re-thinking old ways: Towards a more

critical approach to practical work in school science.

Studies in Science Education, 22, 85–142.

Jacobs, H. H. (1989). Design options for an integrated

curriculum. Interdisciplinary curriculum: Design and

implementation (pp.13-15).

Jensen, E. (2000). Brain-based learning. Thousand Oaks,

CA: Corwin Press.

Mangan, M. A. (2007). Brain-compatible science (2nd ed.).

Thousand Oaks, CA: Corwin Press.

Ministry of Education. (2015). Malaysia Education

Blueprint 2015-2025 (Higher Education). Ministry of

Education Malaysia.

Morrison, G.R., Ross, S.M. & Kemp, J.E. (2007).

Designing effective instruction. 5th Edition. New York:

John Wiley & Sons.

Ng, W.P. (2016). Creating Connected, Empowered

Communities Transforming The Digital Economy To

Equip The Future Workforce With Vital Skillsets Dato’

Ng Wan Peng Chief Operating Officer (COO) Malaysia

Digital Economy CorporatioN (MDEC). Retrieved from

https://asia.bettshow.com/sites/asia.bettshow.com/files/Pl

enary_0930-0945_Dato Ng Wan Peng.pdf

OECD. (2012). Program for International Student

Assessment results (PISA) from PISA 2012: Country

note- United States. Retrieved from PISA 2012 Results in

Focus- What is 15 year-olds know and what they can do

with what they know, OECD, 2014, pp.1-44.

Osman, K., Hiong, L. C. & Vebrianto, R. (2013). 21st

Century Biology: An Interdisciplinary Approach of

Biology, Technology, Engineering and Mathematics

Education. Procedia - Social and Behavioral Sciences

102(Ifee 2012): 188–194.

Palaniappan, A.K. (2009). Creative Teaching and Its

assessment. 12thUNESCO-APIED International

Conference. Bangkok, Thailand

Papert, S. A. (1980). Mindstorms: Children, Computers,

and Powerful Ideas, Basic Books.

Saleh, S. (2012). The effectiveness of Brain-Based

Teaching Approach in dealing with the problems of

students’ conceptual understanding and learning

motivation towards physics. Educational Studies 38(1):

19–29.

Wing, J. M. (2006). Communications of the ACM.

Communications Of The ACM. March 49(3). Retrieved

from https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

97

Thinking in Parts and Wholes: Part-Whole-Thinking as an Essential

Computational Thinking Skill in Computer Science Education

Nils PANCRATZ*, Ira DIETHELM

Department of Computing Science

University of Oldenburg, Germany

nils.pancratz@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de

ABSTRACT

Thinking in parts and wholes is a basic principle in

Computer Science. Breaking down complex structures,

objects, and systems into its componential parts and

figuring out how they make the whole what it is, is an

essential thinking skill that forms understandings on the

functionalities on how these things work. But this skill,

which is defined and presented as Part-Whole-Thinking in

this paper, is also applicable to grasp non-physical ideas

such as concepts, processes, and definitions. Either way,

Part-Whole-Thinking is an often subconsciously happening

cognitive process that forms knowledge representations.

The contribution at hand aims at working out in which way

Part-Whole-Thinking belongs and relates to Computational

Thinking. By reviewing literature on suitable definitions of

the involved terms it is shown that Part-Whole-Thinking

plays a huge role in Computational Thinking processes.

Afterwards, it is argued that a more vigorous inclusion of

this essential thinking skill in Computer Science Education

improves the overall understanding of Information

Technology.

KEYWORDS

Part-Whole-Thinking, Computational Thinking, Cognitive

Organization, Computer Science Education

1. INTRODUCTION
The term Computational Thinking (CT) is increasingly

being used in discussions about Life Long Learning (LLL)

recently. However, since Wing was the first to use the term

in educational contexts in 2006, many authors defined this

term differently in their work. We argue that CT is not only

thinking like computers/computer scientists, IT-devices,

etc.; more importantly it is a skill that enables thinking and

reasoning about the way these devices work. Since it is a

well-known fact, that breaking down problems into parts is

a basic principle of Computer Science (CS), the core aspects

of Part-Whole-Thinking (PWT) must be considered when

discussing about pursued inclusions of CT skills in

educational contexts. In this paper, the role of PWT in the

context of CT is discussed and presented.

A literature review on suitable definitions for the terms CT

and PWT is presented in the following Sec. 2. Afterwards,

it is discussed how PWT; CT, and Computer Science

Education (CSE) refer to each other in Sec. 3, before a

summary is given and an overview on work to be done in

the future is presented in Sec. 4. Considering these aspects,

the contribution at hand aims at presenting the massive role

that PWT plays in the context of CT.

2. THINKING ABOUT THINKING
Thinking is generally seen as a cognitive process that

“allows humans to make sense of, interpret, represent or

model the world they experience, and to make predictions

about that world” (Kisak, 2015). This mental act leads to an

acquisition of knowledge, a development of thoughts, and a

formulation of reasons (Presseisen, 1991, p. 56). Besides,

thinking generates “higher processes, like judging, problem

solving, or conducting critical analyses” (Presseisen, 1991,

p. 56). A huge emphasis in thinking skills is on reasoning as

a major cognitive skill, “although cognition may account for

several ways that something may come to be known – as in

perception, reasoning, and intuition” (Presseisen, 1991,

p. 56). One of the involved thinking skills getting more and

more notice in discussions on possibilities to equip students

with skills enabling Life Long Learning is Computational

Thinking (CT). CT is defined in the following Sec. 2.1.

Through cognitive processes like thinking, complex

relationships, which “may be interconnected to an

organized structure and may be expressed by the thinker in

a variety of ways” (Presseisen, 1991, p. 56), are developed.

Presseisen classifies the essential thinking skills involved in

these cognitive processes and identifies the detection of

Part-Whole-Relationships as one of them (Presseisen, 1991,

p. 58). The involved ability to think in parts, wholes, and

their relationships to each other is described as Part-Whole-

Thinking (PWT) in the following Sec. 2.2.

2.1. Computational Thinking

Since Wing introduced the term “Computational Thinking”

for the first time in 2006 (Wing, 2006), there has been a

huge confusion about its exact definition (Selby, 2015,

p. 81). Thus, it is no wonder that many different authors

define this term differently in their publications. Many of

these definitions “suggest that CT relates to coding or

programming” (Shute, Sun, and Asbell-Clarke, 2017). By

presenting three publications of Wing and two of authors

that discuss her definition of CT it is shown that

“considering CT as knowing how to program” (Shute, Sun,

and Asbell-Clarke, 2017) definitely is too limiting. Instead

of CT skills just being needed by programmers and software

developers, all pupils should acquire CT skills in school to

act responsibly in the Digital Age in both their future

working and everyday lives.

2.1.1. Wing (2006, 2008, 2010)

When Wing was the first to coin the term “Computational

Thinking” in her article of the same title in 2006, she

originally presented her work with the subtitle “It represents

a universally applicable attitude and skill set everyone, not

just computer scientists, would be eager to learn and use”

98

(Wing, 2006, p. 33). According to her “the essence of

Computational Thinking is abstraction” (Wing, 2008, p.

3717), which “focuses on modeling the workings of a

complex problem/system” (Shute, Sun, and Asbell-Clarke,

2017, p. 4). It involves (Wing, 2008, as cited in Shute, Sun,

and Asbell-Clarke, 2017, p. 3):

(a) abstraction in each layer,

(b) abstraction as a whole, and

(c) interconnection among layers

The abstraction process is the “most important and high-

level thought process in computational thinking” (Wing,

2010, p. 1) to her. As Wing describes, “abstraction gives us

the power to scale and deal with complexity” (Wing, 2010,

p. 1), while “it is defined as the ability to decide what details

of a problem are important and what details can be ignored”

(Wing, 2008, as cited in Selby, 2015, p. 81). Thereby the

“layers of abstraction […] reduce the level of complexity of

a problem or a representation (Selby, 2015, p. 81).

Wings definition of abstraction in the context of CT is very

close 1 to the one of (problem) decomposition (cf.

Sec. 2.1.4.), which is another aspect being part of CT

according to many authors as presented in the following

Sec. 2.1.2. and 2.1.3.

2.1.2. Selby (2015)

The definition of CT Selby presents includes

 decomposition, which is “breaking down into

smaller […] parts” (Selby, 2015, p. 81),

 abstraction, which is “the ability to decide what

details of a problem are important and what details

can be ignored” (Wing, 2008, as cited in Selby,

2015, p. 81),

 algorithm design, which “is related to the idea of

procedural thinking […] [and defined] as a step-

by-step set of instructions that can be carried out

by a device” (National Research Council, 2010, p.

11, as cited in Selby, 2015, p. 81),

 generalization, which is a “powerful component of

problem solving […] [and] describes the ability to

express a problem solution in generic terms”

(Selby, 2015, p. 81), and

 evaluation, which is “the ability to evaluate

processes, in terms of efficiency and resource

utilisation, and the ability to recognise and

evaluate outcomes” (L’Heureux, et al., 2012, as

cited in Selby, 2015, p. 81).

According to her, these skills are “necessary for applying

the tools of computer science to understanding the world

around us” (Selby, 2015, p. 80).

1 Especially the separation between abstraction in each layer,

abstraction as a whole, and the interconnection among layers is

very close to the basic idea of PWT (cf. Sec. 2.2).

2.1.3. Shute, Sun, and Asbell-Clarke (2017)

Shute, Sun, and Asbell-Clarke worked out five cognitive

processes/components of CT that are engaged “with the

goal of solving problems efficiently and creatively” (Shute,

Sun, and Asbell-Clarke, 2017, p. 3) as stated by Wing

(2006) for their part:

1. problem reformulation: “Reframe a problem into

a solvable and familiar one” (Shute, Sun, and

Asbell-Clarke, 2017, p. 3)

2. recursion: “Construct a system incrementally

based on preceding information” (Shute, Sun, and

Asbell-Clarke, 2017, p. 3)

3. problem decomposition: “Break the problem down

into manageable units” (Shute, Sun, and Asbell-

Clarke, 2017, p. 3)

4. abstraction: “Model the core aspects of complex

problems or systems” (Shute, Sun, and Asbell-

Clarke, 2017, p. 3)

5. systematic testing: “Take purposeful actions to

derive solutions” (Shute, Sun, and Asbell-Clarke,

2017, p. 3)

2.1.4. Comparison and Summary of the Definitions of

Computational Thinking

As this very brief literature review on profound definitions

of CT already suggests, a huge part in CT skills is derived

to the decomposition of whole systems into its

componential parts. The ability to decompose is “required

when dealing with large problems, complex systems, or

complex tasks” (Selby, 2015, p. 81). Thereby “the divided

parts are not random pieces, but functional elements that

collectively comprise the whole system/problem” (Shute,

Sun, and Asbell-Clarke, 2017, p. 12). The parallels to PWT

are more than obvious at this point. But additionally, core

aspects of PWT can be found in the understanding and

definition of abstraction in the context of PWT, which the

second aspect that each of the presented publications (cf.

Sec 2.1) see as a part of CT. The ability to abstract includes

the identification of “patterns/rules underlying the

data/information structure” (Shute, Sun, and Asbell-Clarke,

2017, p. 12) amongst others. Again, this definition is very

close to the understanding of PWT as defined in the

following Sec. 2.2.

2.2. Part-Whole-Thinking

The almost endless variety of objects and living things in

our world forces us as human beings, which are only

equipped with limited cognitive resources, to map cognitive

categories. The task of these “category systems is to provide

maximum information with the least cognitive effort”

(Rosch, 1978, p. 28). Since the objects in the world as we

perceive it are in any ways structured by nature, “one

decisive aspect of our thinking is the ability to detect

similarities and differences between these various elements

and then cognitively grouping them based on their

differentiations and classifying them into categories”

99

(Tversky and Hemenway, 1984, as cited by Pancratz and

Diethelm, 2018). These conceptual hierarchies are

organized by subconsciously identifying, which parts the

respective objects are made of (Tversky and Hemenway,

1984).

“The part-whole relation plays an important role […] in

knowledge processing, e.g. reasoning about objects” (Gerstl

and Pribbenow, 1995, p. 865), and beyond: Generally, Part-

Whole-Relations help “understanding objects, systems,

processes, definitions[,] and concepts” (Pancratz and

Diethelm, 2018) by “identifying the parts that constitute the

whole, the function of each individual part and its

contribution to the function of the whole” (Rao, 2005, p.

174). Views on the functionalities and principles of

complex objects and systems are developed based on the

knowledge about the single parts and their relationships to

each other (Gerstl and Pribbenow, 1995, p. 867). In the

context of our research we define this cognitive – and often

subconsciously happening – process of partitioning as Part-

Whole-Thinking (PWT). It is significant for many reasons:

“knowing the parts of a whole, how the parts are

determined, how they are related, and what they do is a

crucial part of understanding the whole” (Tversky, Zacks,

and Hard, 2008, p. 437 f.).

According to Tversky, Zacks, and Hard (2008) the

following questions need to be considered when discussing

and analyzing PWT processes:

 “Wholes: How are wholes determined – that is,

how are they distinguished from backgrounds?

 Parts: How are wholes partitioned into parts, and

on the basis of what kind of information? Parts

may be further partitioned into subparts; do the

same bases for partition hold for the subparts?

 Configuration: How are the parts of the whole

arranged?

 Composition: Each whole entity has a set of parts,

which may be parts of other wholes as well. How

does the entire set of parts get distributed to

wholes?

 Perception-to-function: Are there relations

between perception and appearance on the one

hand and behavior and function on the other?”

(Tversky, Zacks, and Hard, 2008, p. 437 f.)

3. HOW PART-WHOLE-THINKING,

COMPUTATIONAL THINKING, AND

COMPUTER SCIENCE (EDUCATION)

REFER TO EACH OTHER
Breaking down problems into parts is a basic principle of

CS. Typical examples are (Pancratz and Diethelm, 2018):

 the programming paradigm Object Orientation

 the algorithmic strategy Divide and Conquer

 the logical partitioning in software design called

Modularity

Besides, many Information Technology (IT) devices,

systems, and concepts make use of Part-Whole-

Relationships (Pancratz and Diethelm, 2018):

 The Internet consists of many different servers,

clients, and routers.

 Computers have processing units, graphic cards,

motherboards, and storage units.

 Algorithms are composed of a finite number of

well-defined steps.

 Relational Databases consist of various tables and

relations.

These two lists can easily be stretched. Generally speaking,

“part-whole relations often play a fundamental role in the

modeling of information systems” (Guarino, Pribbenow,

and Vieu, 1996, p. 257).

As depicted in Sec. 2.1, “Computational thinking involves

solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental

to computer science. Computational thinking includes a

range of mental tools that reflect the breadth of the field of

computer science.” (Wing, 2006, p. 33). As the just given

examples show, many CS concepts make use of PWT.

Therefore, CSE could provide the perfect showcase to equip

students with this essential thinking skill. Thus, it is quite

criticizable that the focus of education in schools lies on

conveying content (“what to think”) instead of teaching

critical thinking skills (“how to think”) so far (Rao, 2005, p.

173), though thinking skills like CT enable us to acquire

further knowledge on our own amongst other things (cf.

Sec. 2.1). Rao for example noticed an improvement in

learners’ cognitive learning processes when explicitly

teaching them to use CT skills like PWT in class (Rao,

2005, p. 177).

PWT can especially be found in two of the core concepts of

CT: While the definition of (problem) decomposition

obviously fits very well to the core concepts of PWT, even

the ways in which abstraction in the context of CT can be

understood imply the close role that PWT plays in CT (cf.

Sec. 2.1.1). In the end, CSE provides the perfect platform to

include the fruitful skill of PWT.

4. SUMMARY AND FUTURE WORK
We are more and more surrounded by IT devices that rashly

change and massively influence the Digital World we live

in. Therefore, it is becoming progressively important to

obtain further knowledge by oneself in order to succeed in

one’s personal and working life. Discussions about this

topic include the term Life Long Learning (LLL) recently.

The possibilities of CT for LLL are obvious. In this paper,

the massive role of PWT in the context of CT is presented.

To the authors of this paper, CT is not only thinking like a

computer (scientist) to solve problems, but also to become

acquainted with the basic principles of CS and IT devices

and thereby grasp objects, systems, processes, definitions,

and concepts of the most different disciplines (and not only

CS). Since a massive amount of CS principles makes use of

PWT aspects, we suggest to always have the underlying

100

Part-Whole-Relationships in mind when discussing,

planning, and applying CT skills in educational contexts.

With this in mind, it is remarkable that according to Selby

decomposition is the most difficult CT skill to master

(Selby, 2015, p. 84). According to her, “teachers indicate

that learners struggle with implementing the process of

decomposition” (Selby, 2015, p. 85). The reasons for this

fact “include a lack of experience, incomplete

understanding of the problem to solve, and the order of

teaching programming” (Selby, 2015, p. 85). Though

students seem to understand the concept of breaking a

problem down, they are “able to use the skill […] more

successfully in situations where they already know the

solution or understand the problem very well” (Selby, 2015,

p. 85). Selby points out that “understanding decomposition

[…] is a prerequisite for abstraction, algorithm design, and

evaluation” (Selby, 2015, p. 85). “As such, it must be

mastered, to some extent, before the complexity of the

following levels can be accessed” (Selby, 2015, p. 85).

The fact that decomposition is a prerequisite to the other

aspects of CT already answers one of the challenges that

Wing posed in 2008: “What would be an effective ordering

of [CT] concepts in teaching children as their learning

ability progresses over the years?” (Wing, 2008, p. 3721).

The authors of this paper assume that an early on teaching

of PWT has huge potential to improve the outcomes of

education. Another challenge Wing describes is that “we do

not want people to come away thinking they understand the

concepts because they are adept at using […] tool[s]”

(Wing, 2008, p. 3721). She clarifies this challenge with the

example of “using a calculator versus understanding

arithmetic” (Wing, 2008, p. 3721). Again, this shows the

importance of CSE in the Digital Age: The imagination of

people being surrounded by technical artifacts they don’t

understand simply is alarming. A proper knowledge in CS

is becoming more and more important. With the paper at

hand it is suggested that a more vigorous inclusion of PWT

in CSE improves the overall understanding of our students.

In order to achieve this, our future work lies on investigating

PWT in CSE alongside the Model of Educational

Reconstruction (Diethelm, Hubwieser, and Klaus, 2012).

5. REFERENCES
Diethelm, I., Hubwieser, P., and Klaus, R. (2012).

Students, Teachers and Phenomena: Educational

Reconstruction for Computer Science Education. In

Proceedings of the 12th Koli Calling International

Conference on Computing Education Research. ACM.

164-173

Gerstl, P. and Pribbenow, S. (1995). Midwinters, end

games, and body parts: a classification of part-whole-

relations. In International Journal of Human-Computer-

Studies, 43(5), 865-889

Guarino, N., Pribbenow, S., Vieu, L. (1996). Modeling

parts and wholes. In Data & Knowledge Engineering,

20(3), 257–258

Kisak, P. F. (2015). Categories of The Thought Process.

North Charleston, South Carolina (USA): CreateSpace

Independent Publishing Platform

L’Heureux, J., Boisvert, D., Cohen, R., and Sanghera, K.

(2012). IT Problem Solving: An Implementation of

Computational Thinking in Information Technology. In

Proceedings of the 13th Annual Conference on

Information Technology Education. Calgary, Alberta,

Canada: ACM, 183-188

National Research Council (2010). Report of a Workshop

on the Scope and Nature of Computational Thinking.

Washington D.C.: The National Academic Press

Pancratz, N. and Diethelm, I. (2018). Including Part-

Whole-Thinking in a Girls’ Engineering Course through

the Use of littleBits. In IEEE Global Engineering

Education Conference (EDUCON).

Presseisen, B. Z. (1991). Thinking skills: Meanings and

models revisited. In Arthur L. Costa, editor, Developing

Minds, Volume 1, Alexandria, Virginia: Association for

Supervision and Curriculum Development, 56-62

Rao, K. (2005). Infusing Critical Thinking Skills into

Content of AI Course. SIGCSE Bull., 37(3), 173–177

Rosch, E. (1978). Principles of categorization. In Rosch,

Eleanor and Lloyd, Barbara B. (Eds.), Cognition and

Categorisation, 27–48. Lawrence Erbaum Associates,

Hillsdale, New Jersey, 1978.

Selby, C. C. (2015). Relationships: computational

thinking, pedagogy of programming, and Bloom’s

taxonomy. In Proceedings of the Workshop in Primary

and Secondary Computing Education (WiPSCE ’15).

New York, NY: ACM, 80-87

Shute, V. J., Sun, C., and Asbell-Clarke, J. (2017).

Demystifying computational thinking. In Educational

Research Review, 22, 142-158

Tversky, B. and Hemenway, K. (1984). Objects, parts, and

categories. In Journal of Experimental Psychology:

General, 113, 169–193. American Psychological

Association, Inc., Jun 1984.

Tversky, B., Zacks, J. M., and Hard, B. M. (2008). The

structure of experience. In T. F. Shipley and J. M. Zacks

(Eds.), Oxford series in visual cognition: Vol. 4.

Understanding events: From perception to action, 436–

464

Wing, J. M. (2006). Computational Thinking. In

Communications of the ACM, March 2006, 49 (3), 33-35

Wing, J. M. (2008). Computational thinking and thinking

about computing. In Philosophical Transactions of the

Royal Society A, 2008, 366, 3717-3725

Wing, J. M. (2010). Computational Thinking: What and

Why? Link Magazine, 2010

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

101

創客奇航-遊戲任務導向之運算思維活動設計初探

黃淑賢，陳虹如，葉芯妤，蔡一帆，施如齡
＊

國立臺南大學數位學習科技學系

shuhsienhuang@gmail.com, a91081469@gmail.com, quill4749@gmail.com, cristal8505054@gmail.com,

*juling@mail.nutn.edu.tw

摘要

對於社會快速成長的科技與經濟，STEM 教育的推動已

成為全球教育的趨勢。本研究將 STEM教育運用創客概

念結合 Arduino 設計結合遊戲任務導向及運算思維的學

習活動。學習活動性質包含運算思維的基礎程式學習、

問題解決與競爭學習等面向。程式學習使用 mBlock 圖

形化程式語言結合多變化性的 Arduino 進行軟硬體整合，

應用在船體航行路線的設計。在學習活動中，期望本

研究能提升學生對於程式的認知與興趣並學習運算思

維的概念，引導學習者自發思考並將想法付諸實行。

本研究實驗結果顯示，此活動有助於程式能力以及空

間概念的提升，能讓原本對於學習程式感到困難的人

也提起對於撰寫程式的興趣。

關鍵字

STEM；Arduino 微控制器；運算思維；競爭學習；遊

戲式學習

1. 緣由與目的

運算思維的能力可藉由 STEM教育來實施（林育慈、吳

正己，2016）。STEM 教育主要強調未來的學生應培養

跨領域素養與解決問題的能力。現今許多學校將 STEM

教育融入課程與教育政策中來提升學生科技發展的競

爭力，讓學生不僅具備知識，更具備解決問題的能力，

懂得實證精神，以及能將各種資訊整合為可用資源的

思維（Huang, Tseng & Shih, 2017）。STEM 的重點概念

為以「學生為本」的教學法，培養學生創造、協作和

解決問題的能力、創新思維，建立學生的開拓與創新

精神。STEM 具備教育改革的積極意義，力圖打破理科

偏重課堂和傳統教育模式，釋放學生的自主學習精神。

為了增加學生的學習動機，本研究以遊戲任務的方式

進行，藉由遊戲式學習影響學習者互動性引發內在學

習動機，透過同儕之間的互動溝通以及操作經驗的回

饋，進而增進其學習效果。然而，在真實的社會中，

競爭是常見的社會現象；此外，在教學環境中，教師

也經常使用競爭的心理來激發學生的學習成效與動機

（Lin, Huang, Shih, Covaci, & Ghinea, 2017）。競爭學習

是指學習者在學習活動中和其他學習者互相比較、抗

衡以打敗對手成就自己的成功來達成設定的目標。有

鑑於此，本研究設計一套創客奇航-遊戲任務導向之運

算思維活動，以培養學生的運算思維。藉由程式設計

的概念，製作出實體船隻，使之在水中航行；將遊戲

任務、STEM 教學及運算思維，融入於競速以及賽道的

變化。透過遊戲競賽的方式，讓學習者使用圖形化程

式語言mBlock連結Arduino，以手機應用程式操控船隻

的航行，學習程式語言的撰寫，培養方向和空間的概

念。希望運用遊戲任務及 STEM教學，將運算思維融入

教學活動中，讓學習者在教學活動中除了能習得課程

知識外，也能學習運算思維的能力。

2. 文獻探討

2.1.遊戲式學習（Game-Based Learning）

遊戲式學習所建立的學習成效，主要是來自於學習者

在遊戲中所得到的經驗以及立即的回饋，在遊戲中要

引發的是競爭和合作的精神，且是好玩、可達成與富

挑戰性（Prensky, 2003）。

其中競爭學習為遊戲式學習裡常見的模式之一，是指

學習者在學習過程中與他人做比較，互相抗衡，以別

人的失敗造就自己的成功，以達到某一個目標（黃政

傑、林佩璇，1996）。在這樣的情況下，在人與人之

間存在著消極的互賴關係、視其他人為競爭對手、使

自己在競賽中獲得有利的位置或資源。但競爭學習也

被證實會使學生在學習過程中產生焦慮、引發學生自

私的心理、使學習低成就的學生感覺到低落、同儕間

的相處處於敵對的狀態，進而使學生備感壓力。

Johnson和 Johnson（1991）為了改善上述情況也提出一

些建議：例如在競爭活動時，學習者常只為了贏過對

手，卻忘了學習的樂趣。因此，在施行競爭活動時教

師可搭配有趣的小遊戲降低競爭所帶來的焦慮感，為

學習帶來歡樂的氣氛並告知學生學習樂趣比輸贏更為

重要；或者，採用組間競爭，而不強調個體間競賽，

在特定情況下，組間競爭可有不錯的學習成效。

除此之外，競爭的策略更被廣用於教學活動上，以激

起學生的學習動機。Johnson和 Johnson（1987）發現，

所有的學生會把 85%以上的作業用競爭的方式完成。

由此可知，在教育上，競爭可被用於提高學生的學習

動機。

2.2. STEM 教育

STEM教育集結了四個學科，分別是科學（Science）、

科技（Technology）、工程（ Engineering）及數學

（Mathematics），鼓勵發展問題解決式、探索發現式

學習的課程模式，這個模式要求學生積極參與，以尋

求解問題的解決方法。STEM 教育乃強調綜合運用科學、

工程、技術與數學等知能，解決日常生活中的問題，

在學習上具有探究性與統整性，而正因為它涉及生活

中現實的問題，所以也具有趣味性與挑戰性。

2.3.運算思維（Computer Thinking）

運算思維（Computer Thinking）是一種分析的思維，也

是製定問題所涉及的思考過程，藉由數學思考

（Mathematical Thinking）來解決問題的方式，運用科

102

學思維使得電腦或機器人能夠有效地執行（Wing,

2014）。

運算思維是解決問題的方法，當面對複雜的問題，能

夠理解問題本質、發展可能的解決辦法。在運算思維

中，有四個基礎：分析，將複雜的問題拆解成容易理

解與分類的部分；模式識別，找出問題之間的相似之

處；抽象，將重要的部分列出，忽略不重要的部分；

演算，為每個問題找尋解決的步驟。這四個方式能讓

電腦和人明白與理解如何處理問題。而學習程式語言，

就是將這四種方式，有系統的學習與組合，並解決問

題。

綜合上述之相關文獻數位遊戲式學習近年來在輔助教

學上受到廣泛討論與應用，而培養邏輯思維能力也在

台灣蔚為風潮。本研究運用運算思維融入 STEM教育來

設計教學活動，希望增加學習者問題解決與創新等能

力之培養，並將競爭導入遊戲式學習活動中期望藉此

提高學習者的學習成效及改善學習者的學習心態，並

提升運算思維的能力。

3. 系統設計

本研究使用的是 Android 系統，Android 系統為開放性

系統，軟體支援多樣化，適合運用在自行開發軟體之

運用，設計一套可在水上航行的船，其系統架構如圖 1

所示。

圖 1 為系統架構圖

搭配 MIT所開發的 App Inventor設計操控裝置之應用程

式，其功能包含：手機應用程式與 Arduino 船體藍芽裝

置配對、船體基本航行功能、船體零件改裝參數變化

確認。使用者可在遊戲活動中，藉由應用程式的操作

與其他學習者進行競速以及船隻航行的控制，藉此學

習到零件配置對船體性能的影響。

4. 活動設計

其學習活動分成二個階段，第一階段為學習者遙控測

試的參與（Engage），此階段為激發學習者的學習興

趣，讓學習者熟悉船隻的基本操作，透過遊戲的方式

提升學習者的參與程度，其過程中經由探索（Explore）

與解釋（Explain）階段，使學習者理解課程的主題為

程式撰寫船隻運行航道，並且由玩家所創造出的變化

場域，練習程式撰寫。並思考先前操作過的經驗，不

斷提升對於航行路線規劃與方向感。在此階段學習者

透過策略性競爭，刺激學習者對於時間、空間與邏輯

概念的整合。之後第二階段則進行實作（Engineer）與

深化（Enrich）的運算思維階段，讓學習者實際根據指

定賽道編寫船隻航行的程式，藉由實作了解課程主題

的核心，讓學習者有更深度的探究。並經由程式編寫

後直接反饋在船體的運行，以加深對於程式學習內容

的吸收。因此，學習者完成地形觀察後，根據自己的

路線規劃編寫程式。因為是水上航行，所產生的變數

較多，所以玩家必須根據船隻狀態已及船與水的互動

狀態進行應變，以增加對於問題解決能力的訓練。如

果失敗了則記取經驗對於程式進行改寫，直到到達終

點為止。此階段學習者可以不斷改寫程式與下水測試，

並思考不同路線的規劃，利用最短時間到達終點者為

贏家。為了評估學習者在此活動的成效，最後將進行

成效評估（Evaluation），經由填寫活動滿意度問券以

瞭解學習者透過其活動的設計，達到的學習成效為何。

5. 實驗結果與分析

本研究實驗受測者為 20 位大學生，10 位為資訊相關科

系的學生，而另 10 位為非資訊相關科系的學生。受測

者在撰寫程式的過程中，必須依據地形規劃航行路線，

並且根據上次的錯誤進行反覆的更正。因此學生在過

程中需要預判船隻在空間中的位置，判斷航行方向輔

助程式的撰寫，並且由錯誤中來回更正與學習，藉此

提升學習者對於程式的熟悉度，下圖 2 為自動航行程式

撰寫的實驗照。

從圖中可以發現，學習者在撰寫過程會模擬船隻航行

的方向，而船舵轉彎的角度會影響空間概念，所以可

以看到學習者會有肢體的動作。再者，對於空間的航

行距離及轉彎角度概念較不佳的學習者，下水測試的

次數就會變多。

圖 2 自動航行程式撰寫實驗照

從實驗的觀察中可以發現，資訊相關科系學生由於有

程式撰寫的經驗，因此在撰寫控制船隻航行方向的程

式時較容易上手，整個學習活動時間平均為 45 分鐘，

在判斷船隻位置時也較快速，因此撰寫次數較少。而

非資訊相關科系學生因對於程式撰寫較不熟悉，需要

反覆操作才能完成學習活動，所以平均花費時間為 60

分鐘，但非資訊相關科系的學生在整個活動中參與非

常踴躍，且願意多次嘗試；由此可見整體學習活動並

沒有對非資訊背景的學生帶來太大的負擔。

另外，為了瞭解學習者對本研究活動設計的看法，使

用問卷來調查，經由統計分析結果顯示，此問卷統計

Cronbach'sα=.876，表示此問卷有高度的可信度。其活

動效益的部份結果如表 1。

103

表 1 活動效益描述性統計資料

題目 M SD

1.此活動能使我對寫程式產生興趣 4.25 .716

2.此活動能幫助我了解程式的基本概念 4.40 .681

3.此活動能提升我的方位概念 4.30 .657

4.此活動能提升空間布局與設計 4.20 .696

5.此活動能增進我對於速度的測量與計算 4.15 .671

6.這類活動能提升我對物理概念的興趣 3.70 .865

其中大部分學生皆認為此活動有助於程式能力以及空

間概念的提升，且認為此活動相當有趣，能讓原本對

於學習程式感到困難的人也提起對於撰寫程式的興趣。

此外，非資訊相關科系學生在活動流程中的學習力，

與資訊相關科系學生是相近的，此活動對他們來說並

沒有太大的負擔，且非資訊相關科系學生在活動中撰

寫程式的速度以及嘗試的次數非常多，相當踴躍參與。

在開放式問卷的回覆中，有幾位受測者提出關於船隻

穩定性的建議，船在航行時，由於藍芽以及供電力的

不穩定，導致遙控的靈敏度下降，因此本研究期望依

照受測者所提出的建議對船的零件穩定性進行改善。

6. 結論

本研究以 Arduino 製作出一艘實體船搭配遊戲任務導向

之運算思維的學習活動，學習者經由自動航行計分賽，

讓學習者判斷船隻的空間、方位及運算思維，過程中

經由圖形化程式編輯介面撰寫路徑程式，藉以增加學

習者程式學習的興趣、增進學習者的運算思維，同時

增加空間及方位的概念。

實驗活動中發現，非資訊相關科系學生較不具程式學

習經驗者，對於本研究所設計之活動皆具有極高興趣，

並踴躍參與且順利完成遊戲任務。這樣的結果也顯示，

其實驗對象可以向下延伸至國中小，培養他們的方向、

空間及運算思維的能力。

但在進行實驗的過程中，受測者大多有提出遙控船船

體需要更加堅固、改善其穩定性與速度控制的意見，

且活動場地的規畫需要能隔絕自然阻力，才不會因為

開放空間若是風大會影響船隻的航行。

另外，透過 Arduino 的控制板結合 Maker 的概念，讓學

習者能透過貿易遊戲取得實體零件，藉由手中現有的

零件經由插件的方式改造船體，進而影響 Arduino 的馬

達參數與旋轉幅度參數，使船體在速度與馬達轉幅等

性能具有更多的靈活性。以此讓學習者實際測試各個

功能與大小不同的零件對於水的阻力，方向的控制等

影響，並且透過反覆操作經驗與創意運用使船達到最

高效能，希望能從中培養學習者自造創新與解決問題

的能力，並且透過結合數位遊戲進行學習活動，藉以

增進學習成效。

7. 致謝

本研究承蒙科技部 106-2813-C-024-029-U 與 MOST104-

2628-S024-002-MY4 專題研究計畫之經費補助，謹此感

謝。

8. 參考文獻

林育慈、吳正己。（2016）。運算思維與中小學資訊

科技課程.。教育脈動，（6）， 5-20。

林長信、許于仁、施如齡。（2012）。跨平台探索教

育數位遊戲之合作學習課程設計。臺灣數位學習研討

會（TWELF 2012），2012 年 10 月 26 日。臺南：成功

大學。

黃政傑，林佩璇。（1996）。合作學習。台灣：五南

圖書出版公司。

蕭嘉琳. （2016），使用遊戲式實體互動介面提升幼兒

運算思維能力。中原大學資訊管理研究所學位論文。

Fletcher, S. （2011）. The impact of the 6E model in a third

grade science classroom （Doctoral dissertation, Bowling

Green State University）.

García-Peñalvo, F. J. (2016). What computational thinking

is.

Halverson, E. R., & Sheridan, K. （2014） . The maker

movement in education. Harvard Educational Review, 84

（4）, 495-504.

Huang, S. H., Tseng C. C., & Shih, J. L. （2017） The

Design and Evaluation of a STEM Interdisciplinary Game-

based Learning about the Great Voyage. The 25th

International Conference on Computers in Education. New

Zealand.

Lin, C. H., Huang, S. H., Shih, J. L., Covaci, A., & Ghinea,

G. (2017, July). Game-Based Learning Effectiveness and

Motivation Study between Competitive and Cooperative

Modes. In Advanced Learning Technologies (ICALT),

2017 IEEE 17th International Conference on (pp. 123-

127). IEEE.

Johnson, D. W., & Johnson, R. T. (1987). Learning together

and alone: Cooperative, competitive, and individualistic

learning: Prentice-Hall, Inc.

Johnson, D. W., & Johnson, R. T. (1991). Cooperative

learning and classroom and school climate. Educational

environments: Evaluation, antecedents and consequences,

55-74.

Prensky, M. (2003). Digital game-based learning.

Computers in Entertainment (CIE), 1(1), 21-21.

Wing, J. (2014). Computational thinking benefits society.

40th Anniversary Blog of Social Issues in Computing,

2014.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

104

Examining a Secondary School Computational Action Curriculum Using App

Inventor and the Internet of Things

Mike TISSENBAUM, Josh SHELDON, Hal ABELSON, Mark SHERMAN

Massachusetts Institute of Technology

miketissenbaum@gmail.com, jsheldon@mit.edu, hal@mit.edu, shermanm@mit.edu

ABSTRACT

This paper outlines a study in which we integrate

computational action – a pedagogical shift in computing

education towards educational designs that focus on students

learning about, and creating with, computation in ways that

connect to their lives and communities – into engineering

and design classes at a large urban high school. This paper

also outlines methodological approaches for understanding

how a computational action curriculum can change students’

perceptions of their computational identities and digital

empowerment.

KEYWORDS

computational action, computational thinking, digital

empowerment, computational identity, mobile computing

1. INTRODUCTION
Current approaches to computational thinking have largely

followed Wing’s (2006) model, which advocated for

teaching computing with a focus on the “fundamentals” of

programming, such as loops, variables, conditionals, data

handling, and parallelism. However, subscribing to only this

approach threatens to decontextualize computing education

from the real-lives of learners, making them feel that it isn’t

something they need to learn, believing they won’t need to

use it in the future – a problem regularly faced by in math

and physics (Williams et al., 2003; Flegg et al., 2012). In

response, our work suggests an alternate framing of

computing education that focuses on computational action.

Computational action posits that young people should learn

about, and create with, computing in ways that provide them

the opportunity to have direct impact in their lives and their

communities (Tissenbaum, Sheldon & Abelson, submitted).

Below we outline the theoretical foundations for

computational action and outline the design of a high school

curriculum that uses computational action to empower

traditionally underrepresented students to use computing to

have an impact in their communities.

2. COMPUTATIONAL ACTION
While approaches such as problem-based learning (Kay et

al., 2000) have attempted to situate computing education in

real-world contexts, they are often generic (e.g., designing

supermarket checkout systems) and fail to connect to

students’ personal interests and needs.

While important for all students, the need to feel their work

has the potential to have an impact in their lives and

communities, is particularly critical for young women and

groups traditionally underrepresented in computing and

engineering (Pinkard et al., 2017). By refocusing computing

education into the real lives of learners we can help them feel

empowered to use computing to effect change and to pursue

career paths that employ computational problem solving.

We have termed this shift toward educational designs that

focus on students learning about, and creating with,

computation in ways that connect to their lives and

communities computational action. To understand how to

design and support learner engaging in computational

action, we suggest it comprises of two key dimensions:

computational identity and digital empowerment

(Tissenbaum et al., 2017). Computational identity is a

person's recognition that they can solve problems using

computing and may have a place in the larger community of

computational problem solvers. Digital empowerment is the

belief that a person can put that identity into action in

meaningful and impactful ways.

3. SUPPORTING COMPUTATIONAL

ACTION WITH MIT APP INVENTOR
Many of the challenges faced when implementing a

computational action curriculum can be attributed to where

the learning takes place – traditional computer labs, which

are far removed from their everyday lives. With the

explosive growth of mobile and ubiquitous computing (e.g.,

the Internet of Things – IoT), students now have the

opportunity to take what they build out into the world. This

creates opportunities to contextualize what students can

create, and perhaps more importantly, why they create it

(Lee et al, 2016).

In addition to environments that allow development for

mobile and ubiquitous devices, we also need environments

that allow students to quickly build, test, and deploy their

creations, and that provide powerful abstractions to harness

today’s incredible computing infrastructure with minimal

previous experience. App Inventor is one such environment,

a blocks-based programming language that allows learners

to build fully functional mobile apps. App Inventor employs

a drag-and-drop designer interface that allows users to

layout the front-end (user facing) elements of their apps,

abstracting away much of the complicated code usually

required. App Inventor also allows users to harness a wide

range of software and hardware logic, including creating and

storing data locally or in the cloud, or accessing the phone’s

camera, GPS, or Bluetooth functions. Because it supports

creation of mobile apps, can connect to IoT devices, and

allows those new to programming to quickly access these

and other powerful computational features, while not the

only option, we believe App Inventor is particularly well-

suited for supporting computational action-focused learning.

mailto:hal@mit.edu
mailto:shermanm@mit.edu

105

4. DESIGNING A COMPUTATIONAL

ACTION CURRICULUM
To study how a computational action curriculum might

support students as they begin to recognize their capabilities

for making a real impacts in their lives using computation,

we co-designed, with two teachers, (CITE) a 10-week

curriculum for grade-10 students at a large urban American

high school.

The students would come from two classrooms, taught by

our two co-design teachers. The two classrooms were

particularly interesting for a computational action approach.

One class was an engineering design class, and the other a

traditional computing class. In the computing class, the

students would normally learn the basics of JavaScript,

HTML, and a light introduction to Java. Additionally, the

computing class had an extremely diverse population; nearly

half the students were English language learners (ELL). The

teachers recognized that these students traditionally felt

outside of the computing culture (i.e. did not have strong

computational identities) at the school. Thus, the teachers

wanted to revamp the computing class to help these students

develop their computational identities.

In discussions with the teachers, they identified an issue that

was of interest to many of the students at the school: the local

river was polluted and the students wanted to develop

solutions to clean it up. The local river was ideal context for

supporting students to engage in computational action and

for them to engage in digital empowerment.

To situate students’ projects in authentic contexts, the

engineering design class developed IoT approaches for

capturing and exploring river data. The engineering students

then became the “clients” or partners of the computing class,

presenting their designs and asking the computing students

to develop apps that could work with and enhance their

designs. To facilitate the design process, we adapted the

Stanford D-School’s design process. We also developed a

set of design documents to help the students break down

(decompose) their designs into more manageable sub-

components. The paired groups met once a week in feedback

sessions to coordinate and refine their designs. The

curriculum will culminate with the students presenting their

work at an annual work fair held at the school, which is

attended by students, administrators and city officials.

In order to understand changes in students computational

identities, digital empowerment, and computational problem

solving skills over the course of the curriculum, we adapted

several measures based on our own prior work, and other

established identity measures. To understand changes in

students computational identity and digital empowerment,

we are using a combination of an adaptation Snow et al.’s

(2017) validated multiple choice tool for measuring changes

in students’ CT perspectives, and open-ended reflective

statements that previous research (Authors, submitted) has

shown to reveal important changes in students perceptions

of their ability to use computing to solve real world

problems. Using a combination of field notes, classroom

observations, and regular individual interviews and focus

groups throughout the intervention, we are developing rich

case studies to reveal how students identities changed over

time.

5. RESULTS AND DISCUSSION
As this work is currently underway, this poster will report

on our early findings and will aim to engage visitors on

critical discussions around the role of computational action

as a new framing for computing education. We believe this

work represents an important shift in what the goals of

computing education can be and how we motivate students

to be the empowered computational creators of the future.

6. REFERENCES
Flegg, J., Mallet, D., & Lupton, M. (2012). Students'

perceptions of the relevance of mathematics in

engineering. Intl. Journal of Mathematical Education in

Science and Technology, 43(6), 717-732.

Lee, C. H., & Soep, E. (2016). None But Ourselves Can Free

Our Minds: Critical Computational Literacy as a

Pedagogy of Resistance. Equity & Excellence in

Education, 49(4), 480-492.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O.,

Kingston, J. H., & Crawford, K. (2000). Problem-based

learning for foundation computer science courses.

Computer Science Education, 10(2).

Pinkard, N., Erete, S., Martin, C. K., & McKinney de

Royston, M. (2017). Digital Youth Divas: Exploring

Narrative-Driven Curriculum to Spark Middle School

Girls’ Interest in Computational Activities. Journal of the

Learning Sciences, (just-accepted).

Snow, E., Shear, L., Rutstein, D., Wang, H., Iwatani, E., Xu,

Y., Basu, S., Tate, C. (September, 2017). CoolThink@JC

Evaluation: Baseline Report. Menlo Park, CA: SRI

International.

 Tissenbaum, M., Sheldon, J. & Abelson, H.

(Submitted). From Computational Thinking to

Computational Action. Communications of the ACM.

Tissenbaum, M., Sheldon, J., Soep, L., Lee, C.H. Lao, N.

(2017). Critical computational empowerment: Engaging

youth as shapers of the digital future. Proceedings fo the

IEEE Global Engineering

Education Conference, Athens Greece, April, 1705-

1708,Weintrop, D., & Wilensky, U. (2015). To block or

not to block, that is the question. Proceedings of the 14th

International Conference on Interaction Design and

Children - IDC '15.

Williams, C., Stanisstreet, M., Spall, K., Boyes, E., &

Dickson, D. (2003). Why aren't secondary students

interested in physics? Physics Education, 38(4), 324.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

106

Computational Thinking and

Special Education Needs

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

107

The Application of Minecraft in Education for Children with Autism

in Special Schools

Wen-wen MU, Kuen-fung SIN*

The Education University of Hong Kong, Hong Kong

wenwenmu@s.eduhk.hk, kfsin@eduhk.hk

ABSTRACT

This paper aims at identifying the use, benefits and

challenges of integrating Minecraft in teaching students with

autism. Classroom observations, students-created manifests

and interviews were conducted in two Chinese-speaking

special schools in Hong Kong. It is concluded that Minecraft

does have positive impact on how children with ASD learn.

Students were more engaged in class, showed improved

collaboration and communications skills, developed deeper

relationship with their classmates and the teachers, and were

more motivated to learn. Some potential challenges and

concerns are discussed.

KEYWORDS

Minecraft, Autism, Special school

1. INTRODUCTION
Autism spectrum disorder (ASD) is defined by two core

features that are restricted and repetitive behavior and

interest; and impairment in social interaction. Both can

negatively affect the academic performance, well-being and

social engagement. Researchers have acknowledged that the

simulation techniques used in computer/video games would

provide significant results for motivation and

comprehension, promote engagement and active learning for

students including those with special learning needs.

(Habgood, Ainsworth & Benford, 2005; Mohammadi &

Fallah, 2007; Ke & Abras, 2013). Meanwhile, computer and

playing video games are always the favorite learning

activities for children with ASD (Eversole, 2016). To

accommodate different learning styles and to maximize the

learning effect for students with ASD, educators examine

the appropriate teaching strategies and content delivery

mechanisms that meet mostly the individual preferences of

ASD.

Minecraft and its use in education

Minecraft is a “Three-dimensional Lego-like environment in

which the user can build and interact with a virtual world”

(Bos, Wilder, Cook & O’Donnell, 2014, p. 56). According

to Zedda-Sampson (2013), about 40% of kids with ages 8 to

10 play Minecraft. The graphics of Minecraft are

intentionally pixelated and blocky, which make them

appealing to children, especially those with ASD (Kulman,

2015).

Minecraft has currently emerged as a tool that has clear

educational values (Mark, 2015). Many educational

activities based on Minecraft have been developed to teach

students in subjects including History, Language, Arts,

Science, Math, Engineering, Architecture, and Computer

coding (Overby & Jones, 2015). Minecraft sparks children’s

creativity and imagination, and enhances other important

skills such as self-awareness, self-control, flexible thinking,

and planning & organization (Kulman, 2015). Hollett and

Ehret (2015) stressed that Minecraft helps children express

and control their emotions, build strong social ties, enhance

peer engagement and promote teamwork. Ringland (2016)

stated that autistic population may possibly practice a wide

variety of social skills in Minecraft. Furthermore, Minecraft

may be considered as a kind of Computer Mediated

Communication. For example, within Minecraft, users may

communicate with each other by sending text through a chat

window or talking with the help of modified accessories.

The Minecraft space links tightly to other social platforms

such as YouTube, discussion forums, and Wiki software

(Pellicone & Ahn, 2014), that helps the social

communication among individuals with ASD. They need not

to face with the difficulties associated with face-to-face

social interaction that requires nonverbal social cues such as

eye contact, facial expression, and gestures (Mazurek,

Engelhardt & Clark, 2015).

Efforts have been made to promote the use of Minecraft in

schools in Hong Kong. In 2014, over 550 local school

primary and secondary schools participated in a contest

organized by Hong Kong Cyberport. The City University of

Hong Kong completed a case-study to explore the teaching

and learning of Chinese History in Minecraft in Hong Kong

secondary schools (Zhu, 2017).

2. OBJECTIVES OF THE STUDY
In Hong Kong, there are 61 aided special schools with about

7,800 students with special educational needs. 41 of these

schools are for students with intellectual disabilities

classified into mild, mild to moderate, moderate and severe

grades (Education Bureau, 2017). While Minecraft is

popularly used in teaching and learning in mainstreaming

schools, there is limited research on how Minecraft is used

for students in special schools. It is worthwhile to study the

use and effectiveness of Minecraft, particularly the

strategies, benefits and challenges in teaching students with

ASD in special schools.

3. METHOD
As a pilot study, two teachers, one principal and 15 students

with ASD from two local special schools for students with

mild intellectual disabilities in Hong Kong were invited in

this study. All students were male, attending classes from

grade three to grade seven.

A semi-structured interview was conducted for examining

the use of Minecraft in classroom teaching. The guidelines

were prepared with reference to the past work on exploring

the use of Minecraft in education (Smeaton, 2012). It aimed

108

at examining how teachers used the game and incorporating

it into their existing teaching practices. Furthermore, more

data was collected from the classroom observations, weekly

diary for after-class Minecraft interest club and students’

“digital footprints”. The student-created work in Minecraft

and student-managed Minecraft servers were tracked by

using the screen captures and recorded videos. The data

source from the interview data, observation notes, student-

created Minecraft works helped the thematic analysis.

4. FINDINGS

4.1. The use of Minecraft in special schools

Minecraft were used in teaching different subjects such as

Visual Arts, Computer, Language, Mathematics and Social

Study. Teachers reported topics with architectural and

storytelling elements were particularly suitable for using

Minecraft. Topics with animals, space and history were also

reported.

The schools supported the use of Minecraft by setting up a

private Minecraft server in school with restricted access.

Only students who have been given the permission can log

in the server to play. Since no one else can access the server,

students will feel free and safe to socialize and work with

each other. Two servers respectively for the new users and

experienced players were set up. Students who were new to

Minecraft used the server for beginners to play and

socialized with their fellow classmates.

In addition to using Minecraft in classroom teaching,

teachers also organized the after-school interest club and

workshops. A teacher organized a Minecraft workshop with

the theme "Smart Home" in the summer vacation. A group

of about 6 students with ASD worked together to design and

build a smart home for the elderly inside Minecraft.

The Principal attempted to explore the effectiveness of using

Minecraft in his school and highly encouraged his teachers

to use the tool in the classroom. He started an after-school

interest group that met on every Friday. Students worked

together to learn Chinese, Mathematics and Social Subjects

through Minecraft under the teacher guidance.

Minecraft provided an interesting way for students to learn

the 3-dimensional modelling. With some software tools (e.g.

‘Mineways’, a free and open-source program for exporting

Minecraft models for 3D printing), students were able to

export what they had built in Minecraft for 3D printing.

It was observed that autistic children often had difficulty in

expressing their thoughts in words. Minecraft became a

language for them to communicate with others. When the

students were building in Minecraft, they were acting out a

story in their own mind. And they might tell that story by

using screenshots of different Minecraft scenes.

4.2. Benefits

Enhancing collaboration and teamwork

Working with other people is probably one of the most

challenging aspects of school life for students with ASD.

Effective teamwork requires the students to learn skills such

as negotiating, active listening, following directions and

accepting criticism. Playing in Minecraft offers a lot of

opportunities to develop these skills. Large-scale creation in

Minecraft can seldom be built by a single student. It requires

a team of at least 4-6 students, working seamlessly together

to complete.

“Students choose their own role based on their own

expertise and interest. For example, some students are good

at building railways, some are good at building Redstone

devices and some are good at crafting building”.

When working together in Minecraft, students have many

opportunities to discuss with members of their own team or

other teams. Building is a truly collaborative effort.

“…during construction, when one student found that he did

not have enough space, he would proactively propose to

another student and ask for more space"

Even when they are not working together in the same

project, the students are still playing in the same virtual

environment, trying to ignore distractions and avoid

conflicts from the outside world. In school, teachers can

teach the students how to work together effectively by

planning, building, and presenting a Minecraft project

together as a group.

Improving social interaction and developing relationship

Lack of social communication and interaction is a core

deficit of students with ASD, and as a result, most of them

have difficulties in developing and maintaining relationship

with other people. When working together on a Minecraft

project, the students must learn to express their needs and

opinions, make suggestion, ask for help and negotiate with

others.

“A parent shared with me that his child never called his

classmates at home. But now when he faced with a problem

in completing a task in Minecraft, he would take the

initiative to call his classmates for help."

Students are willing to talk and share their interest in

Minecraft with peers and teachers. A common interest helps

develop new friendship and deepen the relationship among

teachers and students.

 “When they see their classmates building something

interesting, they will go over and ask them how they did it.

There is a strong motivation to interact with each other.”

 “There are WhatsApp groups between me and the students,

as well as among the students themselves. And they regularly

exchange information about Minecraft. Many of them would

report on their tasks and share their creations in Minecraft

with me. I am getting closer to my students.”

Minecraft is a social game among all the players. The desire

of completing and sharing their work in Minecraft

encourages students with ASD to practice communication

and social skills. The active social interaction and develop

deeper relationship with their classmates.

Becoming active learners

Learning through Minecraft encourages the students to be

active learners and to take full responsibility of their own

learning. They have the freedom to choose what to learn and

how they are going to learn it.

“They will go online (for example, YouTube) to find

solutions. Even if the video is not in Chinese, they will find a

109

way to understand the materials. They are learning how to

learn independently which is an important 21st century

skill.”

“E-learning is not just a one-way instruction from the

teacher. Instead, students find the answers to their questions

by interacting with others, and develop the spirit of inquiry

along the way.”

When creating stories in Minecraft, students must find their

own contents that made up the story. In the process of

creation, the listening, speaking, writing and logical thinking

skills of the students are greatly enhanced.

4.3. Issues and challenges

Online addiction and safety

The online addiction and safety are the concerns. It was

noted that teachers restricted the playing time of Minecraft

to prevent addiction. Teacher A set the school Minecraft

servers to be available from 7 am to 11 pm. Teacher B and

the Principal only allowed their students to use Minecraft in

school under teacher supervision.

Teachers needed to prevent cyber bullying before it

happened. Teacher A decided to set up her own private

server to protect the students from potential harassment by

strangers. Teachers and students jointly setup playing rules,

such forbidding the use of “TNT”, killing of animals, or

bullying each other, etc.

Detailed instructional design

It is not an easy task integrate Minecraft in classroom

learning. Teachers reported to spend a lot of time on

instructional design and material preparation. This was

especially true in the beginning when the teachers did not

have a lot of experience in using Minecraft.

“I once conducted a project of building a “smart school” in

Minecraft. Firstly, I need to guide the students to discuss

what should be built and where, what information they need

to find out, before they can actually build them.”

In projects that require cooperation among the students, the

teacher had to help the discussion, instead of leaving the

students on their own. Some teachers also used thinking

tools such as mind map to help students discuss the project

approach and work allocation. Teachers also needed to have

good time management skills and kept reminding the

students of the time management.

 “They need to think about who the protagonist is, what time

the story happens, etc. I need to give them enough

instructions or they will get stuck in some parts of the story

and neglect the rest.”

When recreating a story in Minecraft based on the story "pig

nose elephant", the students had to fully understand the story

and then answer some important questions beforehand.

“When a chicken suddenly appeared in the Minecraft virtual

world, the students all got excited and joked to burn the

chicken. I immediately explained why we should not do

that.”

Sometimes the students' reaction was observed to be fierce

and brutal. Educators must seize the opportunity to tell the

students how they should properly behave. These are all very

challenging tasks that require a lot of experience and

wisdom from the teachers.

Home-school cooperation

Parents are the important stakeholders in learning and

understanding Minecraft with their children. Many parents

worried about their children getting addicted to Minecraft.

But some parents were willing to explore how to play the

game with their children. It is very important to get the

understanding and support from the parents.

“Whether you let them play or not, they will play. You don't

know what they're doing if you don't get actively involved.

Parents will see that the child is not just playing game,

he/she is doing homework assigned by the teachers. Showing

the products made by the students to their parents helps.”

As teachers came to understand the benefits of using

Minecraft for learning, they began to share this information

with parents. Teachers and parents worked together to

determine the proper use of Minecraft. Eventually, parents

understood that game-based learning under proper guidance

really helped their children learn.

5. DISCUSSION AND CONCLUSION

Using Minecraft as an alternative educational tool

Minecraft has been used as the main, optional or

supplementary educational tool in many mainstream schools

(Petrov, 2014). One major difference in the approach taken

by the special schools is the extent to which Minecraft is

being used. In these schools, Minecraft is more likely to be

used as an alternative teaching tool for students with special

needs to express their understanding because these students

vary a lot in both their capability and their interests. This is

consistent with the philosophy that special education should

respect individual differences and emphasize individualized

learning.

In the case study, the use of Minecraft is not mandated to the

whole class. Both paper-pencil worksheets and other digital

tools are also available to students. Students with ASD,

however, prefer to use Minecraft over other means. But even

for those who have chosen to use Minecraft, they are using

it in many ways. Students with lower communication skills

may choose to use just screen captures and voice recording

to present their work.

Student learning and teacher competency

The two school cases started their Minecraft journey very

differently but they achieved the positive outcome in

supporting the learning of students with ASD. Teachers

reported that they recognized how their students reacted to

the use of Minecraft and the impact that Minecraft had on

behavior, motivation and learning. They used Minecraft for

the benefit of the students.

While playing Minecraft, the students are often the experts.

Learning with and from students allows the students to be

the center of learning. Previous research and experience

using Game Based Learning have shown how useful a Game

Based Learning approach can be in creating student-

centered learning environment (Motschnig-Pitrik &

Holzinger, 2002). Teachers who use Minecraft in their

schools must maintain a student-guided mentality for the

110

best outcome (Petrov, 2014). In this research, the teachers

may not be the experts in using the Minecraft but they allow

students the full autonomy in managing the school Minecraft

server and structuring their learning experience. With this

approach, students develop self-learning skills, take more

responsibility for their own learning and have more freedom

to choose what they want to take.

Even though students can learn by themselves, teachers play

an important role in facilitating and supporting the learning

of the students. Technology provides many learning

opportunities that are both engaging and motivating to the

students. However, it will work effectively if teachers

integrate it appropriately in the course design.

Some stated that teachers must be familiar with the contents

of the video games so that they can use them to support

teaching (Barbour, Evans & Toker, 2009). On the other

hand, Smeaton (2014) argued that instruction experience is

an even more important factor because experienced teachers

would be able to deliver knowledge more effectively.

Students with ASD demonstrated grat motivation when

using Minecraft to learn, but they also required strict

behavior management from the teacher. One of the reasons

why computer games such as Minecraft fails as a teaching

tool could be due to the lack of preparation and

understanding by the teacher. The experience of the teacher

is a crucial factor. According to the research findings, the

familiarity with Minecraft is not a decisive factor. The

caring of the students and the design of the learning activities

are much more important than the teacher’s personal

interests and skills in the game.

Conclusion

It was concluded that the use of Minecraft does help the

learning of students with ASD. The result associated with

this practice was positive. Students were more engaged in

class, showed improved collaboration and communications

skills, developed deeper relationship with their classmates

and the teachers, and were more motivated to learn. Despite

the benefits of using Minecraft, some major challenges and

issues were also identified. The cases presented in this study

suggest that Minecraft can be a valuable educational tool in

special school and inspire more evidence-based practice and

further research.

6. REFERENCES
Abrams, S. S. (2017). Emotionally crafted experiences:

Layering literacies in Minecraft. Reading Teacher, 70(4),

501-506.

Anderson, C. (2017). Minecraft in the classroom. The

Medium (Online), 0_1-5.

Barbour, M., Evans, M. & Toker, S. (2009). Making sense

of video games: Pre-service teachers struggle with this

new medium. In I. Gibson, R. Weber, K. McFerrin, R.

Carlsen & D. Willis (Eds.), Proceedings of SITE 2009--

Society for Information Technology & Teacher Education

International Conference (pp. 1367-1372). Charleston,

SC, USA.

Callaghan, N. (2016). Investigating the role of Minecraft in

educational learning environments. Educational Media

International, 53(4), 244-260.

Connolly, T. M., Stansfield, M., & Hainey, T. (2011). An

alternate reality game for language learning: ARGuing

for multilingual motivation. Computers & Education,

57(1), 1389-1415.

Cosh, J. (2015). Minecraft's massive landscape for

learning. Primary Teacher Update, 2015(43), 20-22.

Dodgson, D. (2017). Digging deeper: Learning and re-

learning with student and teacher Minecraft communities.

Tesl-Ej, 20(4), EJ, 2017, Vol.20(4).

Ellison, T. L., & Evans, J. N. (2016). "Minecraft," teachers,

parents, and learning: What they need to know and

understand. School Community Journal, 26(2), 25-43.

Eversole, M., Collins, D. M., Karmarkar, A., Colton, L.,

Quinn, J. P., & Karsbaek, R., et al. (2016). Leisure

activity enjoyment of children with autism spectrum

disorders. Journal of Autism and Developmental

Disorders, 46(1), 10-20.

Gallagher, C., Asselstine, S., & Bloom, D. (2015).

Minecraft in the classroom: Ideas, inspiration, and

student projects for teachers Berkeley, CA : Peachpit

Press.

Habgood, M. P. J., Ainsworth, S. E., & Benford, S. (2005).

Endogenous fantasy and learning in digital games.

Simulation & Gaming, 36(4), 483-498.

Hollett, T., & Ehret, C. (2015). “Bean’s world”: (mine)

crafting affective atmospheres of gameplay, learning, and

care in a children’s hospital. New Media & Society,

17(11), 1849-1866.

Holzinger, A., & Renate Motschnig-Pitrik. (2002). Student-

centered teaching meets new media: Concept and case

study. Educational Technology & Society, 5(4), 160-172.

Ke, F., & Abras, T. (2013). Games for engaged learning of

middle school children with special learning needs.

British Journal of Educational Technology, 44(2), 225-

242.

Kuhn, J., & Stevens, V. (2017). Participatory culture as

professional development: Preparing teachers to use

Minecraft in the classroom. TESOL Journal, 8(4), 753-

767.

Overby, A., & Jones, B. L. (2015). Virtual LEGOs:

Incorporating Minecraft into the Art education

curriculum. Art Education, 68(1), 21-27.

Pellicone, A., & Ahn, J. (2014). Construction and

community: Investigating interaction in a Minecraft

affinity space. In Proceedings of the Tenth Conference

for Games + Learning + Society - GLS 2014 Madison,

WI: ETC Press.

Perez, S. (2016). Microsoft to launch "Minecraft education

edition" for classrooms this summer, following

acquisition of Learning Game. New York:

Preston, S. D. (2008). Putting the subjective back into

intersubjective: The importance of person-specific,

distributed, neural representations in perception-action

mechanisms. Behavioral and Brain Sciences, 31(1), 36-

37.

Ringland, K.E., Wolf, C.T. & Hayes, G.R. “Making ‘Safe’:

Community-centered practices in a virtual world

111

dedicated to children with Autism”. Proceedings of the

2015 ACM International Conference on Computer

Supported Collaborative Work, ACM (2015).

Ringland, K.E., Wolf. C.T., Faucett. H., Dombrowskiand.

L.& Hayes, G.R. (2016). “Will I always be not social?”:

Re-conceptualizing sociality in the context of a Minecraft

community for Autism. 2016 CHI Conference on Human

Factors in Computing Systems: 1256-1269.ACM New

York, NY, USA.

Ruotsalainen, H. (. (2016). Designing educational game

experiences for k12 students in context of informal

minecraft club University of Oulu.

Ružic-Baf, M., Strnak, H., & Debeljuh, A. (2016). Online

video games and young people. International Journal of

Research in Education and Science, 2(1), 94-103.

Steinbeiss, G. (2017). Minecraft as a learning and teaching

tool: Designing integrated game experiences for formal

and informal learning activities University of Oulu.

Ting, Y. (2015). Tapping into students' digital literacy and

designing negotiated learning to promote learner

autonomy. The Internet and Higher Education, 26, 25-32.

Tromba, P. (2013). Build engagement and knowledge one

block at a time with Minecraft. Learning & Leading with

Technology, 40(8), 20-23.

Wu, H. (2016). Video game prosumers: Case study of a

Minecraft affinity space. Visual Arts Research, 42(1), 22-

37.

Wu, M. (2015). In Dickson P., Lin C., Mishra P. and Ratan

R. (Eds.), Teachers' experience, attitudes, self-efficacy

and perceived barriers to the use of digital game-based

learning: A survey study through the lens of a typology of

educational digital games ProQuest Dissertations

Publishing.

Zedda-Sampson, L. (2013). Is U a word or do you spell it

with a Z? English spelling in Australian schools - are we

getting it write? Literacy Learning: The Middle Years,

21(2), 4

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

112

結合運算思維在國小特殊教育需求的數學教學活動之發展

廖晨惠
1
，郭伯臣

2
，白鎧誌

2＊
，鄔珮甄

2

1國立臺中教育大學特殊教育學系

2國立臺中教育大學教育資訊與測驗統計研究所

chenhueiliao@gmail.com，kbc@mail.ntcu.edu.tw，minbai0926@gmail.com，seashellpeach@gmail.com

摘要

本研究旨在結合運算思維概念幫助國小學習障礙學生

進行數學學習活動，本研究依據明確教學原則

（Explicit Instruction）的教學模式與考慮學習障礙類別

學生的特殊需求（例如：書寫困難、文字理解困難

等），使用數學概念中的空間推理概念設計不插電的

校園地圖 PAPAGO 的運算思維教學活動，教導學生如

何運用運算思維概念辨認地圖上方向、路徑規劃等數

學相關概念。

關鍵字

運算思維；學習障礙；空間推理。

1. 前言

運算思維近年來已受到各國教育上的重視，過去研究

提出運算思維不僅侷限於資訊科學領域，例如在閱讀、

寫作和算術皆需要用到運算思維(Wing，2006)，在數學

教育領域方面，國際研究也開始關注於如何運用運算

思維來學習數學與增進數學能力，並探究如何將運算

思維應用於學校的一些數學主題以改善或豐富傳統教

學(Sysło & Kwiatkowska, 2016)，顯示運用運算思維於

數學教育已備受重視。但運算思維的教學活動在特殊

教育需求的學生仍較少研究，相對應的教材仍相對缺

乏，因此本研究在於幫助特殊需求的學習障礙學生設

計一套結合運算思維教學的數學學習活動，以幫助學

生運用運算思維概念進行數學解題。

2. 運算思維在特殊教育領域之探究

近幾年有學者提出在特殊教育領域對於運算思維的教

學方式是一項重要且具挑戰性的研究，尤其如何在特

殊教育領域導入運算思維的教學是值得探究之研究議

題(Snodgrass, Israel, & Reese, 2016)。Barefoot(2016)提出

教導特殊需求學生學習運算思維有幾項優點：(1).運算

思維是運算課程中重要的核心概念，培養學生問題解

決的能力並可應用於課程中，例如分解與調整問題的

能力可以應用於數學或是運算問題中。(2).運算思維是

一種具有創造性、可行的方法來增進課程中的學習。

(3).科技可以幫助有特殊教育需求或是障礙的學生通過

學習、資訊與休閒的教學活動。

3. 不插電之運算思維教學活動

過去已有研究針對運算思維教學設計不插電的運算思

維教學活動， Bell、Witten與 Fellows(2010)設計不插電

的活動來教學生資訊科學的概念，例如透過海戰棋讓

學生能夠了解運算思維中的演算法，且學生須對於數

字大小的排序了解與幾何概念中的圖形探索與空間座

標。目前也有幾個網站，例如Code.org、Barefoot、ICT

in Practice 等網站都有設計不插電的運算思維教學活動，

顯示針對不插電的的運算思維教學活動設計成為近年

來的教育研究趨勢之一，但針對特殊教育需求學生的

相關教學活動仍非常缺乏。

4. 校園地圖 PAPAGO 教學活動之發展

本研究主要是結合運算思維發展國小特殊教育需求的

數學教學活動，其研究對象以學習障礙學生為主，而

學習障礙學生又分為數學障礙、閱讀障礙與書寫障礙，

因此在設計教學活動時須考慮到這三組障礙類別的特

殊需求。

過去研究提到數學障礙的學生多半在訊息處理過程中

對於涉及方位或方向的數學解題或數線問題有學習上

的困難（邱上真，2001），因此本研究設計地圖相關

的不插電遊戲進行教學活動，並運用運算思維的概念

教導學生。而為了能夠結合學生實際生活中會遭遇之

情境，本研究設計了校園地圖 PAPAGO 教學活動，透

過巧拼模擬校園地圖，帶學生透過地圖的教學活動來

學習運算思維的概念，也希望能夠幫助學生增進其中

的數學概念。本研究設計的教學活動所對應之運算思

維概念與數學概念如表 1。

本研究參考 Israel 等學者(2015)對於運算思維在特殊教

育需求中提出的明確的教學原則(Explicit Instruction)來

設計運算思維教學活動，教學活動的設計也需考慮學

生學習較弱的部分，例如書寫障礙的學生受限其書寫

能力，本研究改用紙牌讓學生進行紙牌排列，此外紙

牌上會以圖形化呈現紙牌代表的方向、前進的步數，

減輕閱讀障礙的學生對於文字閱讀的困難等，本研究

設計的教學課程範例如表 3，依照任務設計的方式，讓

學生透過不同任務學習運算思維概念。學生須利用提

供的方向與前進步數的紙牌，排列出從起到如何到達

指定位置。

5. 未來研究工作
本研究目前已設計一套國小特殊需求學生的運算思維

進行數學教學課程，後續將先進行資料蒐集，進行思

維教學活動的數學課程教學，從教學活動中以「錄影」

或是「觀察紀錄」的方式了解學生對於教學活動與練

習單元的反應與學習狀況，並於活動結束後分析學生

在任務單元的作答狀況，並對照運算思維概念與行為

及數學概念的觀點，了解學生的學習程度，並詢問教

學教師之建議，修改所設計的教學課程。

6. 參考文獻

113

邱上真（2001）。跨領域、多層次的數學學障研究：

從學習障礙的官方定義談起。2001 數學學習障礙研討

會手冊，9-41，台北：台灣師範大學。

Barefoot (2016). Activities for pupils with special

educational needs. Retrieved from

http://barefootcas.org.uk/activities/sen/

Bell, T., Arpaci-Dusseau, A., Witten, I. and Fellows, M.

(2010). Computer Science Unplugged: Understanding

Computing Through Games and Puzzles. Hubei:

Huazhong University of Science and Technology Press.

(Authored Books).

Israel, M., Pearson, J., Tapia, T., Wherfel, Q., & Reese, G.

(2015). Supporting all learners in school-wide

computational thinking: A cross case analysis. Computers

& Education, 82, 263-279.

Sysło, M. M., & Kwiatkowska, A. B. (2014). Learning

Mathematics supported by computational thinking, In:

Futschek, G., Kynigos, C. (eds.) Constructionism and

Creativity, pp. 258–268. Ö sterreichische Computer

Gesellschaft, Vienna.

Snodgrass, M. R., Israel, M. & Reese, G. (2016).

Instructional supports for students with disabilities in K-5

computing: Findings from a cross-case analysis.

Computers & Education. 100, 1-17.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

表 1 校園地圖 PAPAGO 教學概念對應

活動目標 1. 讓學生能夠讀懂地圖

2. 讓學生能具備基本空間概念，包括方位、距離

運算思維概念 物件、序列、條件、模式辨認

數學概念 1. 能辨識日常經驗「向右轉」視為順時針轉 90 度，「向左轉」視為逆時針 90 度。

2. 能辨識日常經驗「向後轉」視為轉了 180 度的平角。

3. 能從平面圖形的放大或縮小，分辨任兩點之間的長度距離也以相同的比例放大或縮小。

4. 能理解用不同個別單位測量同一長度時，其數值不同，並能說明原因

表 2 運算思維教學原則範例(Israel et al., 2015)

明確教學法的教學元素 教學說明

Focus instruction on critical content 決定要教導運算思維的哪一個能力（例如：演算法、模式辨識）。

Sequence skills logically 針對問題的解題歷程，逐一運用運算思維概念與行為模式進行教學。

Provide step-by-step demonstrations 根據本研究開發的不插電運算思維教學活動提供每一步驟的教學演示

或是範例，例如教導學生如何找出遊戲的規律。

Provide immediate affirmative and

corrective feedback
當學生實際進行數學解題結果時結果並不如預期或是錯誤時，老師可

以藉由引導式提問教導學生正確的解題方式。

表 3 校園地圖 PAPAGO 教學活動範例

活動流程 教材或教具 時間 運算思維概念

*辨認東西南北、方位、地圖

帶領小朋友辨認方位，並教導學生辨認地圖上的建築物

*實際演練

老師：等一下我們要來玩一個遊戲，你要按照老師給你的指令來進

行動作喔，請用紙牌排列出你要走的路徑。

任務 1. 校門口在地圖上的右下角，現在你面對北方，請直走 3 步，

再往左 2 步，請問你會到達哪裡？

任務 2. 那現在要請你動動腦，設計一條和剛剛不同的路線回來起點

地圖(以巧拼製

作，不同顏色代

表不同建築物，

白色代表道路)

學習單

30 分鐘 物件

序列

條件

圖 1、地圖範例與排列路徑之紙牌卡

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

114

Computational Thinking and

Evaluation

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

115

Evaluating Computational Thinking in Jupyter Notebook Data Science Projects

Clara SORENSEN, Eni MUSTAFARAJ*

Wellesley College, The United States

csorense@wellesley.edu, emustafaraj@wellesley.edu

ABSTRACT

The interdisciplinary field of data science requires a strong

foundation in computational thinking (CT) concepts and

practices. In this paper, we describe the use of qualitative

and quantitative methods to study data science projects

completed by undergraduate students who are learning data

science but have already learned computer programming.

The projects are stored as Jupyter notebooks: documents that

store code, as well as its output from execution, formatted

text for self-explanations, and graphics. Our analysis of the

notebooks discovers two kinds of student attitudes:

explorers, who work iteratively, and goal accomplishers,

who work incrementally. Despite varying attitudes, we find

that students often fluctuate between the two learner types

depending on their computational goals for a given

notebook. Moreover, when students practice the explorer

approach, they often engage more actively with many CT

skills such as pattern generalization and communication of

results. Finally, we propose ways to utilize these findings to

encourage CT practices in future data science curricula.

KEYWORDS

computational thinking, data science education, Jupyter

notebooks, learner types

1. INTRODUCTION
As we are still debating the theoretical and operational

definition of computational thinking (CT), it is worthwhile

to engage in the question: how can we observe, describe, and

quantify its expression in learners, if at all possible? Such an

exercise has the potential to shed light into the kind of

thought processes in which learners already engage or are

trying to master as they go about solving problems through

computation. Given that learners of different ages and at

different stages in their learning will display different levels

of understanding, we need to study a variety of situations

and groups of learners engaged in computational thinking to

arrive at a more complete picture.

Our focus in this paper is undergraduate students who have

already completed at least two courses in computer science:

an introductory course in Python to learn computational

concepts such as sequencing, loops, and conditionals, and a

second course about data structures in Java, which provides

opportunities to engage in CT practices such as program

design, testing and debugging, and accessing and writing

documentation. After completing these two courses, the

students enrolled in an introductory data science course

taught in Python that utilized Jupyter notebooks 1 as its

environment for learning and practicing data science.

Data science, with its current focus on large amounts of

automatically captured data, provides a rich context for

observing CT in practice because it offers a wide range of

1 http://jupyter.org

problems that are new and challenging, but also meaningful

to explore—something that motivates learners. Concretely,

in the examples analyzed for this paper, the students were

able to work with a variety of real-world datasets ranging

from their personal email inbox to the web server entry logs

for the courses offered in our computer science department.

Finding answers to questions about these datasets was not

trivial. To be more efficient, students had to learn new data

structures and new operators. There was no established

algorithm for coming to a solution, thus, they needed to be

creative, work incrementally, and iterate often, all practices

inherent to computational thinking.

In this paper, we begin by providing background on Jupyter

notebooks and some previous methods for assessing

computational thinking that were helpful in framing our

work. We then continue to discuss the data and methodology

for our notebook analyses and the variables that we created

from the raw notebooks. We discuss our findings from the

data analysis including our uncovered learner types

(explorer and goal accomplisher) and conclude with a

discussion of how we propose to integrate computational

thinking practices in data science education in the future.

2. BACKGROUND
We shaped our work with both the nature of the Jupyter

notebooks and previous methods to assess computational

thinking in mind. In this section, we provide some historical

background and previous research on both these topics.

2.1. Jupyter notebooks

The choice of a programming language and its integrated

development environment (IDE) impacts what can be taught

and how it can be taught (Pears et al., 2007), especially when

teaching novice learners. The rapid adoption in recent years

of block-based programming environments such as Scratch

and App Inventor for teaching programming is due in part to

their ability to allow learners to focus on what is important—

the computational concepts—while avoiding the struggle

with the syntactical details of the underlying languages (Bau

et al., 2017). Similarly, teaching data science benefits from

environments that allow for frequent data exploration,

incremental problem solving, and easy access to previous

results of analysis. For these reasons, the Jupyter notebook

is a strong candidate for teaching data science at any level of

the curriculum. Furthermore, Jupyter notebooks have

become the environment of choice for many computational

scientists (Kluyver et al., 2016) because they encourage

reproducibility in science, a practice that is important to

foster in students early in their data science endeavors.

The Jupyter notebook traces its roots to the IPython

(interactive Python) extension for the Python programming

language (Pérez and Granger, 2007). From its inception,

116

IPython was designed to augment the Python interactive

shell with features that go beyond the usual read-evaluate-

print loop (REPL), common in most interpreted languages.

The evolution from shell interaction to the notebook (as a

single document that captures all aspects of a programming

session) was inspired by the existence of notebooks for

teaching Mathematics in proprietary software such as

Mathematica and Maple. By making the Jupyter notebook

open-source, web-based, and language-agnostic (i.e., it can

be used with many different programming languages in the

back-end), its community of developers has created a

platform with broad appeal for educators and practitioners

alike. The fact that it is also used by practitioners makes it

appealing to undergraduate students who prefer real-world

development environments (where they learn by doing) to

pedagogical ones (Oblinger, 2004).

2.2. Assessment of CT

For our purposes, we adopt the terminology presented in

Brennan and Resnick (2012), who define computational

thinking as a composition of computational concepts,

practices and perspectives. More specifically, computational

concepts refer to the concepts students engage with when

they program (e.g. iteration and parallelism). Computational

practices refer to the various practices students develop as

they engage with the concepts (e.g. being incremental and

iterative in design). And, lastly, computational perspectives

refer to shifts in perspectives about the world around the

student (e.g. by expressing and connecting their work).

Past research on both measuring and assessing these

computational thinking skills has focused primarily on

developing assessment material for pre-college programs.

Brennan and Resnick’s work specifically, which

concentrated on young students working with Scratch,

described a variety of different assessment approaches

including project content analysis and artifact-based

interviews. Boechler et al. (2012) took a slightly different

approach in that they calculated a variety of metrics as

evidence of CT skill development in Scratch applications.

Specifically, they calculated the number of scripts, number

of blocks, number of variables, number of child scripts, and

the nesting complexity of student Scratch projects. More

recently, Moreno-León et al. (2017) obtained quantitative

measurements of seven different CT dimensions in Scratch

projects using a static code analyzer, Dr. Scratch, in order to

cluster projects based on CT complexity. In similar block-

based programming environments, students' CT skills have

been assessed by way of analyzing student programming

actions in their log data (Grover et al., 2017). In this instance,

researchers designed specific programming tasks to draw

out CT skills to make for easier evaluation. Likewise,

Bienkowski et al. (2015) created design patterns for major

CT practices as a way to assess how learners may be

applying such skills as they develop a deeper computational

understanding.

In light of the specific assessment of CT, many

computational thinking researchers have explicitly

emphasized the importance of data and information as a core

CT practice. Barr and Stephenson (2011) include data

collection, data analysis, and data representation as three of

their nine core concepts and capabilities of CT. Further,

communication in the sense of explaining computational

results is one of the six practices found to complement the

content knowledge of computer scientists by The College

Board (2014). Despite the undisputed importance of these

data science elements of CT, we find that their evaluation

has been explored to a lesser extent than that of other CT

practices (abstraction, design complexity, etc.) in the

assessments described above.

3. DATA & METHODOLOGY
For this study, we focus on assessing and evaluating

computational thinking in the context of data science

learners. We analyze student work in the form of Jupyter

notebooks from students who took an introductory data

science course at Wellesley College, a female population, in

either Spring 2016 or Fall 2017. In total, we analyzed 132

notebooks created by 37 students from the two times the

course was offered. The notebooks ranged in focus, utilized

different (but often similar) data sets, and worked through

the data science process (Figure 1) in one way or another to

solve a problem. Since problem solving through

computation is becoming a popularized manner of

completing a data science workflow, each student notebook

emphasized various CT skills while working to answer a

question.

Figure 1. The data science process by Pfister and Blitzstein

(2013).

Jupyter notebooks are automatically stored as JSON

(JavaScript Object Notation) files, a format common on the

Web. This allows for an easy analysis of the notebooks,

especially to extract the input cells that contain the code

entered by the students, the output cells that contain the

result of the code execution, the Markdown cells (special

text cells that can contain formatting such as headings, lists,

emphasized text, formulas, etc.) that contain self-

explanations or other useful comments. We don’t

manipulate the Jupyter notebooks to collect data beyond

what the notebook itself stores. Moreover, we wrote a script

to extract 15 different metrics that encompass computational

thinking skills and computational complexity in one way or

117

another from each notebook in JSON format (Table 1).

These metrics aim to quantify CT skills such as problem

breakdown, pattern recognition, and communication. We

then calculate descriptive statistics for each of these metrics

in order to better understand how they vary in practice.

Table 1. Calculated metrics for a given Jupyter notebook.

We further discover that from the information in the

notebooks it is possible to identify two distinct types of

behavior in these problem solving scenarios that we

qualitatively label as "goal accomplisher" and "explorer". In

brief, a goal accomplisher is a student that works

incrementally toward the desired outcome, while an explorer

engages in multiple iterations and sometimes off-track

activities. Of all the Jupyter notebooks collected, we labeled

71 notebooks (44 “goal accomplisher” and 27 “explorer”)

from 19 students in the second course offering based on

manual review of each notebook. Because nature of the

assigned projects differed between the two course offerings,

we chose to only label notebooks in the second course

offering to reduce a potential course-based dependency in

our metrics when comparing the learner types. We went on

to plot the trajectories of each student’s notebook executions

in an effort to visually depict the learner type of a given

notebook. We also used the labeled notebooks to determine

which of our extracted CT metrics are critical in

differentiating the learner types. With this, we also looked to

see if certain students are prone to practicing one of these

learner approaches more than the other.

4. RESULTS
4.1. Features to quantify CT behavior in notebooks

We defined 15 different variables (Table 1) in an attempt to

properly assess student computational thinking ability with

our JSON scraping script. After calculating these metrics for

all 132 student Jupyter notebooks, we found that the

distribution of values for all the features varied greatly

across the notebooks (Figure 2). Based on this, we observed

how some students were stronger in particular CT skills than

others.

More specifically for example, the maximum number of

self-declared functions in a notebook (a metric relating to

both pattern recognition ability and knowledge of existing

software tools) was 27 as compared to the minimum of 0

self-declared functions. Because these students are taught to

utilize existing Python packages to manipulate data, we

found that computationally stronger students were

somewhere in between these two extremes. We observed

that students who declare more functions often are over-

declaring in the sense they aren’t actively utilizing functions

from other packages and they’re often repetitively writing

similar functions. On the other side of the spectrum, students

who don’t declare any functions tend to manually

manipulate their data with code that is copy-pasted from

their earlier code—suggesting a potential weakness in both

their pattern generalization abilities and knowledge of

existing software tools.

Another notable feature with a great range in values was the

mean number of words in a markdown cell, a variable that

links directly to the communication abilities of these data

science learners. Since students were encouraged to utilize

Markdown to communicate, evaluate, and explain results

from their code, we found that this feature directly correlated

with a student’s ability to communicate their understanding

with others. Specifically, students stronger on the

communication front had more Markdown in their Jupyter

notebooks.

4.2. Explorers vs. Goal Accomplishers

In addition to utilizing our JSON scraping script with the

student Jupyter notebooks, we classified the notebooks into

two groups based on behavioral trends in a student’s

approach to the data science cycle, trends that visually stood

out in the trajectory of their notebooks.

Our “explorer'” archetype consisted of students who

behaved more iteratively in their approach to a given data

science task. These students would often find something

interesting in their analysis then go beyond—building on

their conclusions by modifying their initial analysis and

taking it numerous steps further. Additionally, these students

were effective in their use of text explanations throughout

their notebooks in order to explain and discuss both their

thought processes and their computational approach to the

analysis. They also provided ideas as to how they could

extend their analysis and conclusions even further.

On the other hand, our “goal accomplisher” archetype

featured students whose notebooks focused on answering a

specific scientific question with the intention to reach a

conclusion to that question and thus end their analysis. Once

identifying and planning out their approach, these students

would spend most time cleaning the data before going on to

use this cleaner data set to answer their initial research

Figure 2. Boxplot depicting the distribution of selected

features calculated based on all student Jupyter notebooks.

118

question. Though these students generally had a shorter data

exploration period within a given notebook, they were

particularly strong at identifying a major takeaway or trend

from their analyses.

In our “explorer” example (Figure 3), the student tried to

analyze her email behavior by creating new questions to

answer throughout the course of her notebook. She started

by importing the data and organizing it into a DataFrame2

with some slight data cleaning and exploring. However,

early on she reimported the data, presumably because she

wanted to use the original data for deeper analysis (A). A bit

later in the notebook she defines a function to label the day

of the week an email was received to explore daily email

variation (B). We see that this function is executed much

earlier than surrounding cells—this is because she went back

to rerun old cells but never needed to update the function

itself. Then, after some initial analyzing and visualizing her

email behavior on a daily basis, she went on to see trend

variation on a monthly timescale and between her various

social groups (C). Generally, here the student went back and

forth between cells when she decided to modify her analysis

as she developed new interest in the various contexts

(temporal and social) of the data.

Figure 3. Example notebook of an explorer.

Our “goal accomplisher” (Figure 4) began her notebook by

defining functions specific to formatting her data in a way

appropriate to answer her scientific question: “who are my

emails from and how does this change over time?” (A). Once

she had successfully validated the cleanliness of her data,

having categorized individual emails using her initially

defined function, she immediately went on to analyze the

categorized emails as a function of time and plotted the

result (B). Continuing on, she further subsetted her

categorized emails with modified functions and replotted the

result once again—determining that most of her emails were

“Wellesley Emails” with peaks occurring during specific

points of the semester (C). In particular, throughout this

notebook she worked on the same question with impeccable

focus and continued to smoothly progress until she

successfully found her answer.

2 a two-dimensional labeled data structure that organizes a

dataset into columns of potentially different (data) types

Figure 4. Example notebook of a goal accomplisher.

4.3. Differentiating learner types

We wanted to determine whether our learner types were

differentiable with our variables extracted using our JSON

scraping script. After labeling 71 of the notebooks as

“explorer” or “goal accomplisher” style, we ran two-sample

t-tests to compare all our metrics between the two groups

(Table 2). We found a significant difference (= 0.05) in

the number of code cells, the number of Markdown cells, the

number of lines of code, the number of Markdown words,

the number of images, the maximum execution, the

execution range, the mean execution per cell, the number of

function calls, and the mean function use between an

explorer notebook and a goal accomplisher notebook. For all

these variables, explorers had a significantly higher average

value than goal accomplishers.

Table 2. Results of two-sample t-tests comparing CT

metrics between explorer and goal accomplisher

notebooks.

Additionally, we wanted to evaluate these behavioral

patterns across students and see if students tend to favor one

learner type over the other in their notebooks. We found that

most students had notebooks in both styles (Figure 5). This

suggests that students work differently depending on the

119

purpose of a given notebook. Furthermore, with this it

appears that students are flexible in many of the CT practices

that we quantify with extracted features from the notebooks.

In particular, explorer notebooks typically featured a higher

number of images (or data visualizations), a metric that

directly exhibits a student’s ability and effort to visualize

their data and communicate information to non-experts. This

metric, however, varied greatly across notebooks for an

individual student, often depending on the learner style of a

particular notebook (Figure 5). This suggests that most

students have already developed many of these CT skills but

that they selectively apply them, naturally, in situations

where they are more useful.

Figure 5. Number of images in a Jupyter notebook based

on student and learner type.

5. DISCUSSION
In this paper, we presented our findings from both a

quantitative and qualitative evaluation of student Jupyter

notebook projects for an undergraduate data science course

in the context of computational thinking. We developed a

script to scrape the JSON-formatted notebooks for various

metrics that relate to the computational ability and efforts of

a student. We further found that we could classify student

behavior into two groups based on behavioral trends in their

notebooks, a classification that could be visually depicted by

the trajectory of a student’s notebook execution.

Furthermore, utilizing our extracted metrics we found that

students practicing the “explorer” approach in their

notebook often engaged in greater CT habits than those

practicing the “goal accomplisher” approach. Seeing as

explorers are more iterative by our definition and that

iteration is a CT skill on its own, it appears as though many

CT practices correlate and perhaps promote one another.

Though we found that the “explorer” notebooks were

typically more iterative in their data science process and

more thorough in their utilization of CT skills, we believe

that both learner types are important to data science

workflows. Since it was apparent that very few students

practiced only one of the two approaches in their notebooks

(68.4% of students had at least one notebook of each learner

type), it makes sense to consider the learner types as flexible

measures that depend on the desired goal of a project

notebook. A “goal accomplisher” is not inferior to an

“explorer” but rather a “goal accomplisher” at the time may

be seeking something specific to glean in their notebook as

opposed to undergoing a full project that seeks to deeply

uncover something new. As this is the case, however, we

encourage data science instructors to promote the “explorer”

approach if they’re concurrently attempting to stimulate the

development and practice of CT.

It is also possible that the “explorer” approach is less natural

to a young computer scientist than the “goal accomplisher”

approach. When exploring a student needs to be flexible as

compared to when they have a goal in mind and they

generally already know how to accomplish it. This idea is

similar to the “expertise effect” seen in chess: an expert

chess player sees the field in terms of patterns whereas a

novice player sees it as a list of the positions of all the pieces.

The expertise here comes with familiarity of the data and

knowledge of the tools available to work with it efficiently

and effectively. Since computer science students are often

used to completing assignments with concrete instructions

and purpose, working in the goal accomplisher manner may

be more intuitive for new data science students. With the

greater discomfort that may come with the explorer

approach, students may be naturally practicing already

developed CT skills as they iteratively work through a

problem.

Notebook behavior also likely depends on both the

individual and the type of task. Though most individuals

(68.4%) exhibited both learner type behaviors in their

notebooks, 31.6% of students only featured one learner type

in their notebooks (15.8% of students were explorer

exclusive and 15.8% of students were goal accomplisher

exclusive). Students whose notebooks focused more heavily

on data cleaning tended to favor the goal accomplisher style.

In contrast, student notebooks that were more focused on

understanding the data in a variety of ways, often including

some sort of modeling aspect, favored the explorer style. We

noticed this trend in learner type based on notebook focus

particularly in the email inbox analysis project in which

student analysis was less structured and more up for student

interpretation than some of the other projects.

Additionally, it is important to note that a binary

classification for a given notebook may not always be

appropriate. For our purposes, we felt that the notebooks we

labeled fit well into one of the notebook styles based on a

manual review of the student’s approach. However, based

on the statistics of the measured CT metrics for each learner

type, we know that there is a great range in CT expression

within both styles so a binary classification may not be

applicable in all cases. We believe it is important to further

explore the idea that there may exist a spectrum between the

two learner types observed here.

Even more, since data science requires individuals to solve

complex problems with computation it also requires

continuous learning. Here, we looked at the work of students

new to data science but not new to computer science—they

all had previously taken at least two other courses. Based on

our feature extraction, it appears that some students are more

flexible and willing than others to adopt new tools and

practices that are taught (e.g. consider the function

declaration and use metrics). This student resistance to

upgrade their skills and learn new tools (when they believe

they already have the tools to solve a problem) we feel can

120

hinder CT and instructors need to be conscious of this

problem. With this, we think our metrics should be utilized

in a cautionary manner for instructors to use to evaluate

student flexibility and effort in learning new material.

6. CONCLUSION
Learning data science requires students to utilize a variety of

computational thinking concepts and practices. Here, we

developed an approach to convert Jupyter notebooks into a

series of metrics that might be associated with certain CT

skills. These metrics include, but aren’t limited to, the

number of functions created—a feature that may depict signs

of pattern generalization—and the mean number of lines of

code—a feature that may correlate to algorithmic efficiency.

However, more research is necessary to connect all our

metrics with concrete CT skills and practices. Further, we

find that when these metrics are compared across various

students, it becomes easier to assess how students are

performing in relation to one another and perhaps helps to

identify weaknesses in certain CT areas of individual

students.

One advantage of our findings is a “minimum effort

approach” that can be used by instructors without the need

for a sophisticated research infrastructure. Jupyter has an

online version, JupyterHub, which makes it easy for students

to upload their work online. Over time, this should make it

easy for an instructor to observe student skills by utilizing

our learning analytics. However, to be successful in practice

our approach relies on students following instructions about

storing everything in their Jupyter notebook by considering

it exactly as a personal notebook where they record

everything that happens during their learning and not as a

polished, final product to submit for a grade. Additionally,

we will continue to develop these metrics and ideally go on

to produce a type of teacher dashboard in which a teacher

can see data about the progress of their students. We also

aim to provide feedback and potential recommendations for

what CT skills may need to be worked on from this tool.

7. REFERENCES

Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to K-12: what is Involved and what is the role of

the computer science education community?. Acm

Inroads, 2(1), 48-54.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F.

(2017). Learnable programming: blocks and

beyond. Communications of the ACM, 60(6), 72-80.

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S.

(2015). Assessment design patterns for computational

thinking practices in secondary computer science: A First

Look. SRI International2015.

Boechler, P., Artym, C., Dejong, E., Carbonaro, M., &

Stroulia, E. (2014, July). Computational Thinking, Code

Complexity, and Prior Experience in a Videogame-

Building Assignment. In Advanced Learning

Technologies (ICALT), 2014 IEEE 14th International

Conference on (pp. 396-398). IEEE.

Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada (pp. 1-25).

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N.,

& Stamper, J. (2017). A Framework for Using

Hypothesis-Driven Approaches to Support Data-Driven

Learning Analytics in Measuring Computational

Thinking in Block-Based Programming

Environments. ACM Transactions on Computing

Education (TOCE), 17(3), 14.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E.,

Bussonnier, M., Frederic, J., ... & Ivanov, P. (2016, May).

Jupyter Notebooks-a publishing format for reproducible

computational workflows. In ELPUB (pp. 87-90).

Moreno-León, J., Robles, G., & Román-González, M.

(2017). Towards Data-Driven Learning Paths to Develop

Computational Thinking with Scratch. IEEE

Transactions on Emerging Topics in Computing.

Oblinger, D. (2004). The next generation of educational

engagement. Journal of interactive media in

education, 2004(1).

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,

Bennedsen, J., ... & Paterson, J. (2007). A survey of

literature on the teaching of introductory

programming. ACM SIGCSE Bulletin, 39(4), 204-223.

Pérez, F., & Granger, B. E. (2007). IPython: a system for

interactive scientific computing. Computing in Science &

Engineering, 9(3).

Pfister, H., & Blitzstein, J. (2013). Course: CS109 Data

Science.

The College Board. (2014, June). AP Computer Science

Principles Draft Curriculum Framework. Retrieved from

http://media.collegeboard.com/digitalServices/pdf/ap/co

mp-sci-principles-draft-cf-final.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

121

Assessment of Computational Thinking

Nikolina BUBICA1, Ivica BOLJAT2*

1 Mokosica Middle School Dubrovnik, Croatia

2 Faculty of Natural Science Split, Croatia

nikolina.bubica@skole.hr, boljat@pmfst.hr

ABSTRACT

With the new CS Curriculum in the Republic of Croatia,

Computational thinking (CT) has finally been introduced in

the educational process. In addition to the benefits that CT

concepts bring to CS education, the question of evaluating

CT and programming learning outcomes is also opening.

The purpose of this paper is to present a model of evaluation

of CT concepts based on the learning outcomes of the

Croatian CS Curriculum using the Evidence-center design

approach. The model is independent of the programming

tool or environment and is intended for use with students

who are CS novices.

KEYWORDS

Computational thinking, evaluation, programming novices,

evidence-center design.

1. INTRODUCTION
New trends in technology development have a great impact

on our daily lives. Technology enters the fabric of our lives

regardless of the occupation area, but also regardless of the

age of the user. We hear more demands for changes in K12

education. Also, regardless of the type of technology

students use and the occupations they are being educated for,

they are increasingly expected to possess some generic

competencies such as ability to solve problems in everyday

life, disaggregate complex problems to simpler ones,

generalize solutions, etc. The fundamental question today is

how to respond to such challenges. Leaders of CS education

increasingly emphasize the need to modify existing CS

curricula and to include the development of these

competencies. Jeannette Wing (Wing J. M., 2006) points out

that besides the standard types of literacy, such as

mathematical, engineering and reading literacy, students are

expected to have the ability to solve problems. She defines

CT as “…the process of formulating problems and their

solutions, but in ways that solutions are presented in a form

that enables them to perform effectively with some

information processing agent " (Wing J. M., 2010).

2. COMPUTATIONAL THINKING
There is still a lot of confusion over the very definition of

the concept of computational thinking, and many

surrounding questions and challenges need to be addressed.

It is considered to be the universal competence of every child

that would, together with analytical skills, be the foundation

for each child's school learning (Wing J. M., 2006). Denning

(Denning P. J., 2009) discusses whether CT belongs

exclusively to the field of CS. Guzdial (Guzdial, 2008)

describes CT like a 21st century literacy that is necessary to

a whole series of faculties. It is often discussed how CT

differs from algorithmic thinking, and Denning adds that "...

CT means interpreting the problem as an information

process for which we are then trying to find an algorithmic

solution" (Denning P. , 2010). To create an operational

definition of CT, the ISTE and CSTA organizations

analyzed feedback from about 700 surveyed teachers,

scientists and CS researchers. The result was formulated in

the operational definition of CT for K12 education as a

problem-solving process which includes formulating

problems, logically organizing, analyzing and representing

data with abstractions, automating solutions through

algorithmic thinking and generalizing the problem-solving

process (ISTE & CSTA, 2011). When talking about teaching

and learning CT, perhaps the most interesting is the role of

programming. How much programming, if any, is needed to

adopt CT? There is no unique answer, but practice points to

different levels of programming involvement. Some define

CT as a fundamental ubiquitous problem-solving tool and

suggest several activities and projects which address CT

(Astrachan, Hambrusch, Peckham, & Settle, 2009). Other

approaches suggest various ways of incorporating

programming into teaching and learning of CT, from those

in which programming is the fundamental CT skill to those

that integrate CT through various general education courses.

3. CT IN THE CROATIAN PROPOSAL OF

CS CURRICULUM
In May 2016, Croatian Ministry of Education published

Proposal of CS Curriculum for K12 education. The proposal

was a promising hope for CS teachers since most of them

were restrained by the old and outdated curriculums.

Moreover, CS curriculum proposal finally accepted CT to be

a significant part of the CS education in general. Croatian

curriculum subject domains are e-Society, Digital literacy

and Communication, Information and Digital technology

and CT and Programming (Brođanac, et al., 2016). The role

of CT and programming domain in CS Curriculum aims to

make students to be involved in logical thinking, modeling,

abstracting and problem-solving because solid ICT

education, based on CT and creativity, should enable

understanding and alteration of the world around us

(Brođanac, et al., 2016). CT learning outcomes are created

from the beginning of primary education starting with

elementary pupils, age 6-7, through middle school pupils,

age 11-14, and finally high school students, age 15-18

(Brođanac, et al., 2016)

4. HOW TO ASSESS CT?
Everyone agrees that learning programming is hard, but it

seems that evaluating new knowledge through evaluating

new definitions and programming commands is far simpler

than evaluating the way students apply computing and

programming language to solve problems and to design

different computer work. To assess CT, it is necessary to

find evidence of a deeper understanding of the problem

mailto:nikolina.bubica@skole.hr

122

solved by the student or to find evidence of understanding

how the student created his coded solution. Since CT

concepts include, for example, abstraction (ISTE & CSTA,

2011), it means that we must find ways to evaluate how

student applied abstraction in his solution while trying to

solve a problem. As there is very little agreement about the

CT definition, it is even less known about the tools for

assessing such thinking. However, there are approaches for

evaluating the development of CT that are currently in use

or are still in development. They could serve as a solid

foundation for developing a general approach for evaluating

CT. Brennan and Resnick propose a valuation method that

includes project portfolio analysis, document-based

interviews, and development of design scenarios (Brennan

& Resnick, 2012). Such approach estimates the fluidity of

computer-based practice of testing and debugging,

experimenting and repetition, abstraction and modulation,

and reusing and remixing/scaling. Expertise is assessed

through three levels: low, medium and high. The evaluation

approach of student's documentation consists of building

creative projects from students but also of creating visible

traces of their work on the project. Such traces could be

achieved in the form of paper or digital diaries. Also, it could

be achieved by using Scratch's commentary capabilities for

explaining some project's features and screen views that will

graphically present the project, its intent or the main

advantages and disadvantages. Still, there is not enough

research data to validate this approach. Dorling and Walker

specifically study the practice of teaching CT in the

classroom environment and propose a framework for

evaluating the Computing Progression Pathway that

recognizes the major areas of CS and offers specific levels

of adoption (Dorling, 2014). Within the PACT project

(Principled Assessment of CT) general CS practice is

represented through some design patterns which emphasize

application and reviewing of design skill while solving the

computational problem rather than evaluating the

knowledge of the concepts necessary to apply such skills

(Bienkowski, Snow, Rutstein, & Grover, 2015). This

approach is based on Evidence-centered design (ECD)

(Hendrickson, Ewing, Kaliski, & Huff, April, 2013) for

creating a structured description of the domain evidence

argument and highlights knowledge and skills complexity or

other features or behaviors that should be valued. The ECD

approach is usually represented through five layers: domain

analysis, domain modeling, conceptual evaluation

framework, evaluation application and delivery. SRI

Education group, within the PACT project, proposed

application modes for every layer to create the practice of

CT assessment. Also, it is possible to find several published

computer-based or paper-pencil tests that differ in context,

intended for the age of those who are important in testing

and reevaluating (Werner, Denner, & Campe, 2012). This

paper offers a framework for assessing CT demonstrated on

Croatian Learning Outcomes of CT and Programming

Domain based on ECD and PACT evaluation proposal.

5. PROPOSAL OF CT ASSESSMENT
Despite the advantages of introducing CT into the new

curriculum, we can’t ignore possible difficulties and new

problems that arise from this new approach to teaching CS.

Evaluation of CT becomes a new challenge in the present

CS educational work and requires a more serious approach

than finding individual solutions by teachers’ practitioners.

One proposal of CT evaluation will be presented in the next

paragraphs. It uses ECD as an orientation towards multiple

activities necessary to create useful documentation like

domain analysis, domain modeling, construction of

framework and assessment implementation and delivery

(Mislevy & Harertel, 2006).

5.1. Domain analysis

Appropriate pedagogical practice, emphasizing the

constructivist approach to learning and putting students at

the heart of the learning process, should develop the

competencies like independence, self-confidence,

responsibility, and entrepreneurship. CS curriculum created

according to the learning outcomes instead to the prescribed

content, enables the realization of learning and teaching

directed at each student level and the development of his or

her potential. It provides flexibility and gives freedom to the

teachers in designing the learning and teaching process. The

basic goal of the domain analysis layer is to find and explore

all relevant materials concerning the target learning

outcomes. In this article, we will use the sixth-grade CT

learning outcomes, student age 11-12 (http://bit.ly/2018cte,

Table 1). These learning outcomes stem from several

documents but mostly Croatian National Educational

Standards, CS Teacher Standards and Proposal of Croatian

CS Curriculum. Croatian National Educational Standards

defines the way in which CS is involved in Croatian primary,

secondary and higher education. Croatian CS Curriculum

and CS Teacher Standards defines CS learning outcomes at

each educational level with its adoption level specification.
Every learning outcome is expressed in detail within Bloom

taxonomy, through different adoption levels: satisfactory,

good, very good and exceptional level (http://bit.ly/2018cte,

Table 2). These learning outcomes are a basis for our

assessment process. In following sections, we will try to

identify more design patterns that will help us create

appropriate evaluation.

5.2. Domain modeling

Domain modeling has the task to identify elements for

describing the domain we want to evaluate. According to

ECD approach, Domain modeling is organized into five

categories: fundamental and additional knowledge, skills

and features, possible working products, variable feature and

possible observations (Bienkowski, Snow, Rutstein, &

Grover, 2015). An example of domain modeling for CT

sixth-grade learning outcomes can be found on author’s

personal page (http://bit.ly/2018cte, Table 3).

5.3. Assessment framework

CT evaluation is highly dependent on the context within

which the evaluation is performed. Is it necessary to conduct

CT assessment using some programming tool or

environment? The question of the connection between CT

and programming must be defined regarding the context of

the applied evaluation. There are different approaches to

incorporating programming into the process of teaching and

thus the process of CT assessment. We differentiate them

according to the role of programming and CT in the course

curriculum (Astrachan, Hambrusch, Peckham, & Settle,

2009). In this paper, assessment of CT is achieved through

http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte

123

the approach that is not dependent on the programming tool

or environment. This approach could serve for evaluation of

adopted learning outcomes in real classroom situations at

some stage of education. Precisely, the independence of the

programming tool or environment enables wider application

of the evaluation tool and highlights the concepts of

evaluation rather than the syntax of a programming tool or

environment possibilities. For the same reason, such a tool

could be used with students that have no programming

background. According to ECD (Hendrickson, Ewing,

Kaliski, & Huff, April, 2013), evaluation framework aims to

assist assessment designers while they validate their task

model. Every assessment designer should validate his work

with questions regarding construct relevance, specificity,

and scalability and questions related to item statistics and

item complexity. This evaluation framework should provide

information about evidence, students model and task model,

observable characteristics, measurement models and test

specifications. For testing this model of evaluation, a similar

measuring instrument adapted to Python programming

language was conducted during 2016/2017 school year.

Evaluation instrument was applied after 12 weeks (6th

grade) or 14 weeks (7th grade) of learning and teaching

process on a sample of 15 students of 6th grade (8 female)

or 10 students of 7th grade (3 female). The positive and

promising results of probe evaluation encouraged the

creation of this evaluation model, independent of the

programming tool and the programming environment.

Model of students

Given that the evaluation is intended for use in middle and

secondary schools in the Republic of Croatia where there is

a big diversity in applied programming tools and languages,

an evaluation that is not dependent on the programming tool

could be widely applicable. Programming tool or

environment independence emphasizes on CT concepts

rather than the ability to work with specific tool or

environment. Also, if it is crucial for the actual CS

curriculum to use certain programming tool or an

environment, these tasks could be easily customized and

constructed in it.

Model of tasks

Evaluation tasks are created for students with little or no

programming knowledge. Each represents one puzzle used

to help the main character in solving problems. Puzzles are

supposed to assess one or more CT concepts. CT concepts,

concealed in puzzles, have been selected and aligned with

the expected learning outcomes (Brođanac, et al., 2016) and

detailed domain analysis (http://bit.ly/2018cte, Fig. 2).

Assessment tool should be implemented in the form of

online knowledge test consisted of 10 questions. The types

of questions that will appear in the evaluation tool are:

multiple choice questions (mostly used for identification of

some fundamental misconceptions or unsustainable mental

model), short answer questions; essay questions (used for

student's authentic algorithmic solutions). Feedback for

multiple choice questions should be defined automatically,

while short answer questions and essay questions should be

manually evaluated by the researcher or teacher.

Model of evidence

Design and application of high-quality assessment are very

demanding and also time-consuming. According to ECD

approach (Hendrickson, Ewing, Kaliski, & Huff, April,

2013) our assumptions and hypothesis represent evidence

about the way student’s abilities are represented in his work.

Such evidence should reveal student’s adoption of learning

outcomes. Each algorithm solution is always difficult to

evaluate automatically. Evidence analysis helps us in

creation of evidence model for similar tasks. While

analyzing possible student’s answers, it is crucial to know

which computational concepts are evaluated with the default

task (http://bit.ly/2018cte, Table 4). Evidence of student

work varies from the situation where the student doesn’t

even try to do anything, further through several partial

solutions and finally to a fully correct solution

(http://bit.ly/2018cte, Table 5).

Task 8. Dangerous

frogs appeared on

different places in

the labyrinth. Frog

wants to stop Maja

on her way to the

yellow flower. So,

in order to help

Maja we will

allow her to jump

over the frog whenever she encounter one while going up.

We apply the new rule: if Maja encounters the frog on her

way up, she may jump over it by doing two steps at once.

Write your own commands in the form of new Action

go_up_jumpover_frog for Maja moving up and jumping

over the frog.

Figure 1: Example of essay task question

Model of measurement

To complete domain analysis and modeling, it is necessary

to define the model of measurement. For the task example in

Fig. 1, the possible evidence is presented according to its

complexity. If the student does not offer any response or his

answer has no links to the task itself, such answer should be

rewarded with zero points With each of the following

evidence, it has been recognized a higher level of adoption

from the previous one (http://bit.ly/2018cte, Table 5).

5.4. Assessment implementation/delivery

The realization of the test assessment, adopted for Python

programming tool and conducted during the 2016/2017

school year, was performed as online assessment within

Loomen Learning Management System (LMS). The

assessment consisted of eight tasks (one pairing task, four

multiple choice tasks, three essay tasks) and was conducted

during a 45-minute regular school class. The students

showed great satisfaction by conducting online assessment

instead of standard paper-pen assessment even though it was

their first real encounter with such form of evaluation. The

assessment task discrimination analysis showed that as

many as six tasks proved to be excellent (task discrimination

http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte

124

index > 0.35) while two of them were discarded from further

modeling due to the negative index of discrimination. As for

the task difficulty, two of them have proved to be extremely

simple (0.93), but they have already been dismissed from the

further modeling because of their extremely low

discrimination. Two tasks had recommended difficulty (0.5-

0.6) and four task acceptable difficulty index (0.3-0.7).

Further application of the assessment tool will be used to test

the validity and reliability of the measuring instrument and

will help in creating this new CT assessment model. CT

assessment model proposed in this paper will also be

organized in the form of online testing within the Loomen

LMS. Students’ access to Loomen LMS will be enabled

through their unique user data, provided to every middle and

secondary student in the Republic of Croatia. In that way,

the authenticity of the research participants’ data will be

preserved. In the phase of pilot research, it is expected the

involvement of 50-60 students with the purpose of testing

the clarity of task texts and detecting potential ambiguities

or some other problems. Also, several CS teachers will be

invited to evaluate the assessment tool as valuable

practitioners with attention on measurement model. After

defining the final version, the assessment tool will be applied

to as many 11-12year old students as possible who are just

encountering fundamental concepts of CS. In addition to the

evaluation tool, the students will be previously asked to fill

out a questionnaire that aims to collect some personal

information interesting to the research like general data such

as gender, general academic achievement or some data

related to programming knowledge. Also, evaluation tool

will be applied even with some number of high school

students. The results of the research should reveal the power

of the tool itself, but also could explore if there is a

difference in the results among participants who have some

programming experience from those who have none, and

further investigate whether there are differences in gender

related to results and so on.

6. CONCLUSION
Many teachers are increasingly emphasizing the need for a

stronger involvement of the CT concepts in CS courses, but

it is also noticed within some other sciences such as biology,

physics, mathematics, chemistry (Interdisciplinary

Computational Thinking, 2017). The purpose of this paper

was to present one approach to the assessing CT adapted to

the actual classroom situation. The proposed assessment tool

was developed knowing that there are several programming

tools and environments used in CS education in the Republic

of Croatia, but also accepting the fact that CS is an elective

subject in elementary/middle schools where programming is

only minor part of the subject curriculum. The new CS

curriculum proposal introduces the concept of

computational thinking, and thus opens the question of

evaluating its concepts. The proposed evaluation model is

based on defined learning outcomes from the CT and

programming domain of the new CS curriculum proposal

and offers the possibility of assessing CT concepts

independently of applied programming tools and

environments in the teaching process. Also, it could serve as

the basis for making similar assessment tools. The real

power of the tool, its validity, and reliability, but also its

weaknesses will be able to reveal through its application,

which is our next step.

7. REFERENCE
Astrachan, O., Hambrusch, S., Peckham, J., & Settle, A. (2009).

The present and the Future of Computational Thinking. ACM

978-1-60558-183-5/09/03, pp. 549-550. Chattanooga,

Tennessee, USA.

Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015).

Assessment Design Patterns for Computational Thinking

Practices in Secundary Computer Science: a first look. Menlo

Park, CA: SRI Education.

Brennan, K., & Resnick, M. (2012). .New frameworks for studying

and assessing the development of computational thinking.

Brođanac, P., Bubica, N., Kralj, L., Markučić, Z., Mirković, M.,

Rubić, M., & Sudarević, D. (2016, February). Computer Science

National Curriculum - proposal. Retrieved from kurikulum.hr:

http://www.kurikulum.hr/wp-

content/uploads/2016/03/Informatika.pdf

Denning, P. (2010). The Great Principles of Computing. American

Scientist, vol. 98, str. 369-372.

Denning, P. J. (2009). The Proffesion of IT Beyong Computational

Thinking. Communications of the ACM, vol.. 52, no. 6, pp. 28-

30.

Dorling, M. &. (2014). Computing Prograssion Pathways.

Retrieved from

http://community.computingatschool.org.uk/resources/1692

Guzdial, M. (2008, August). Paving the way for the Computational

Thinking. Communications of the ACM, vol. 51, no. 8,, pp. 25-

27.

Hendrickson, A., Ewing, M., Kaliski, P., & Huff, K. (April, 2013).

Evidence - Centered Design: Recommendations for

Implementation and Practice. Journal of Applied Testing

Techology, JATT, volume 14, Assosiation of Test Publishers.

Interdisciplinary Computational Thinking. (2017, July 11).

Retrieved from Teaching London Computing: A RESOURCE

HUB from CAS LONDON:

https://teachinglondoncomputing.org/interdisciplinary-

computational-thinking/

ISTE, & CSTA. (2011). CSTeachers. Retrieved from

Computational Thinking resources:

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/

CompThinkingFlyer.pdf

Mislevy, R. J., & Harertel, G. (2006). Implications for evidence-

centered design for educational assessment. Educational

Measurement: Issues and Practice, 25, 6-20.

Werner, L., Denner, J., & Campe, S. (2012). The Fairy

Performance Assessment: Measuring Computational Thinking in

Middle School. SIGCSE’12. Raleigh, North Carolina, USA:

Copyright 2012 ACM.

Wing, J. M. (2006, March). Computational thinking.

Communication of the ACM, . 49 vol., no.3, pp. 33-35.

Wing, J. M. (2010, November 17). Retrieved from

www.cs.cmu.edu:

https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.

pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

125

Cross Comparison of Multiple Computational Thinking Activities:

a Grey-based approach

Meng-leong HOW, Chee-kit LOOI*

National Institute of Education, Nanyang Technological University, Singapore

mengleong.how@nie.edu.sg, cheekit.looi@nie.edu.sg

ABSTRACT
The current paper proposes a grey-based approach to

conduct cross comparison analysis of multiple

Computational Thinking (CT) activities, which could be

used to better inform decision makers and policy makers in

education about the exact CT activities which they might

like to consider selecting for the learners; regardless of

whether these CT activities are screen-based block-based

programming (such as Blockly or Scratch), or text-based

programming (such as using the Python, or Java, or C#

programming language, et cetera), or unplugged CT

activities, or physical computing activities (such as

programmable robots, or circuit boards with

microcontrollers such as Arduino and the BBC Microbit).

Further, this grey-based cross comparison approach can be

used regardless of the rubric or test being used to assess each

individual CT activity (for example, CT-Profile, PECT,

PACT, Dr Scratch, CTt psychometric test, ACTMA, CT-

Stem, or Bloom’s Taxonomy, or SOLO Taxonomy).

Potentially, this grey-based approach of cross comparing

multiple CT activities could be useful for anyone who is

interested in pulling together all of the analyses for different

CT activities into one coherent meta-analysis of multiple CT

activities.

KEYWORDS
Computational Thinking, evaluation, multiple comparisons,

Grey-based approach, assessment

1. INTRODUCTION

1.1 Computational Thinking

Griffin (2016) points out that it is important for novice

programmers to develop a mental model of a notional

machine (du Boulay, O’Shea, & Monk, 1981), which is a

rudimentary model that describes the instructions of a

computer program. Strong interest in how the novice

programmer could develop this mental model have more

precisely elucidated this mental model of a notional machine

into what is now known as Computational Thinking (CT)

(Wing, 2008). The constituents of this mental model of CT

include decomposition, algorithmic thinking, abstraction of

data, abstract of functionality, evaluation, and

generalization. Indeed, CT is indispensable to problem-

solving in the real world, and is considered to be essential in

education (Wing, 2008). According to Gouws et al. (2013),

decomposition refers to the process of breaking down a

problem into multiple steps in order to solve it. Algorithmic

thinking refers to the repetitive execution of patterns of

instructions, which might involve loops for iteration or

recursion. Abstraction of data and functionality refers to the

notion of representations in data storage and the

manipulation of those data in functions. Generalization

refers to the ability to create adaptable solutions that are

reusable for a wider range of problems. Evaluation is the

ability to select the best solution for a given problem, as well

as to identify and correct errors.

The following is an overview of various CT assessments that

are useful for assessing the suitability of individual CT

activities for learners, prior to doing a cross comparison of

multiple CT activities using the proposed grey-based

approach in the current paper.

1.2 CT Assessments of screen-based CT activities

Screen-based CT activities involve block-based

programming using drag-and-drop graphical elements.

Examples of block-based programming include Scratch,

Alice, and AgentSheets. A seminal assessment framework

for block-based programming is the Systems of Assessments

for Deeper Learning of Computational Thinking for K-12 by

Grover (2015).

1.3 CT Assessments of Unplugged CT activities

Unplugged CT activities teach computing concepts without

screen-based devices. They include those offered by CS

Unplugged (Bell, Alexander, Freeman, & Grimley, 2009),

Code.org, and CAS London. Assessments for unplugged CT

activities have been propounded by Rodriguez (2015) and

also by Takaoka, Fukushima, Hirose, and Hasegawa (2014).

1.4 CT Assessments of Physical Computing activities

Examples of physical computing in education include

Arduino, Raspberry Pi, and the BBC Microbit. Assessments

for computational thinking in physical computing-based

activities include (ACTMA) Assessing Computational

Thinking in Maker Activities, and the CT-Stem taxonomy

(Weintrop et al., 2014).

1.5 Research Problem

Although there is myriad of CT assessments, almost nothing

exists in the extant literature which looks at systematically

performing comparisons in a transparent way across

multiple CT activities, which could be used to inform

educators and policy makers about the developmental level

of CT skills involved in each activity, thus enabling them to

select those activities that might best fit the learners’ CT

skills development needs.

In assessments, there are usually four types of measurement

scales – nominal, ordinal, interval and ratio (Anderson,

1961). A nominal scale assigns numbers that can be utilized

to categorize items. For example, a CT activity might be

assessed according to whether it is a screen-based activity,

or an unplugged activity, or a physical computing activity. It

126

does not compare whether one category is superior to

another, and vice-versa.

An ordinal scale uses variables of increasing or decreasing

values to provide meaningful information for comparing

categories of items. For example, a CT activity might be

assessed according to whether it is low-level, medium-level,

or high-level in terms of difficulty.

An interval scale provides precise information on the rank

order of the item being measured, with equidistant

“spacing”, however the interval scale does not have an

absolute zero point. For example, a CT activity might be

rated on its age-appropriateness by assessors, which

normally does not include the point of birth (age at absolute

zero number of years).

The ratio scale provides the most amount of information; not

only is it equidistant, it also has an absolute zero point.

Examples that utilize the ratio scale might include the length

of time that a CT activity takes, or the amount of money that

a CT activity costs.

Hence, it can be challenging to compare multiple CT

activities. “Poor information” or “incompleteness of

information” is likely due to a lack of consensus when

comparing multiple CT activities, each of which might have

utilized a different measurement scale, or even multiple

measurement scales. Incompleteness in information is the

fundamental meaning of being “grey” (Deng, 1989), which

is also what makes comparison of multiple CT activities

challenging. Therefore, we proffer that a grey-based

approach is particularly suitable for comparing multiple CT

activities.

In the present paper, we propose a grey-based approach of

cross comparing multiple CT activities. The rest of the paper

is organized as follows: in Section 2, Grey Theory (Deng,

1989) will be briefly discussed with a more specific focus on

grey-based (MADM) Multiple Attribute Decision Making

(Li, Yamaguchi, & Nagai, 2007), which forms the

foundation upon which this proposed method of a grey-

based approach to conduct cross comparison analysis of

multiple CT activities is built on. In Section 3, a worked

example will be used to apply the proposed grey-based cross

comparison approach to a set of hypothetical data from six

CT assessments. Finally, the implications for education of

this proposed cross comparison of multiple CT activities will

be discussed.

2. GREY-BASED APPROACH
Following Liu and Lin (2010, p. 15), we use the conceptual

notion of “black” to represent completely unknown

information, “white” to represent completely known

information, and “grey” to represent partially known and

partially unknown information. A grey number is defined as

a number with uncertain information and is denoted as G

(Deng, 1989; Liu & Lin, 2010; Liu, Yang, & Forrest, 2016).

A grey-based approach of performing cross comparison of

multiple CT activities is proposed in this paper, because it

excels in comparing multiple entities in situations where

there might be a diversity of characteristics in the various

entities, uncertainty, scarcity of quantitative data, or

incomplete information; situations which educators or

decision makers might find themselves in when evaluating

different CT activities offered by different people for their

learners.

Using a grey-based approach, ratings of CT attributes

described by qualitative linguistic variables from different

CT Assessments can also be expressed in grey numbers (see

Table 1), after consensus has been reached by the decision

makers. To illustrate the point that the grey intervals agreed

upon by the decision makers do not even have to be strictly

equidistant, Advanced (A) has a slightly wider grey interval

compared to the rest of the developmental levels of CT skills

in this suggested example of a grey interval table. This

proposed grey-based approach is not a rigid framework. It is

intended to be flexibly adapted by the CT evaluators.

To ensure fairness in the assessments, each of the decision

makers would be independently assessing the CT activities

"blind"; unaware of what ratings the other assessors might

give. There would be no need to address how agreement or

disagreement between the assessors was handled in the

procedure. Hence, interrater reliability calculations between

the assessors would be unnecessary.

Table 1: Scale of CT skills attribute ratings using intervals

of grey number G

3. APPLICATION AND ANALYSIS

A grey-based approach for the comparison of multiple CT

activities, which could include but are not limited to

activities that are screen-based, unplugged or physical

computing, is proposed as follows: in this worked example

(see Table 2), let us suppose that there are six CT activities

Si (i = 1, 2, . . . , 6) selected for comparison against five CT

skills attributes Qj (j = 1, 2, . . . , 5). The CT skills attribute

Q1 represents Abstraction, Q2 represents Algorithmic

Thinking, Q3 represents Decomposition, Q4 represents

Generalization, and Q5 represents Evaluation respectively.

127

Table 2: Attribute rating values for Computational

Thinking Activities

A committee of four CT activities assessors, who can also

be referred to as Decision Makers D1, D2, D3 and D4 has

been formed to express their preferences of CT activities for

the learners. Examples of CT assessors or decision makers

could include, for example, teachers, heads of departments,

school principals, or researchers.

Step 1

The equation for calculating the average of the lower and

upper bounds of the grey intervals respectively is:

 (1)

in which 𝐺𝑖𝑗
𝐾 is the average value of the attribute ratings for

each CT Activity, where 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1,2, … , 𝑛

Step 2

Normalize the grey decision matrix (see Table 3). The

normalization method is utilized to preserve the property

that the ranges of the normalized grey number belong to,

that is [0, 1].

Table 3: Grey normalized attributes for CT Activities

Each normalized grey interval is expressed as

 (2)

Step 3

As a suggestion, perhaps we could consider taking the more

“conservative” lower value from each grey interval that

corresponds to each CT skill (see Table 4).

Table 4: values of the lower bound in grey intervals

Step 4

Comparison of the six CT activities that are being

considered for their suitability to the learners’ CT

developmental needs can be accomplished using, for

example, a bar chart (see Figure 1) or a box and whiskers

chart (see Figure 2).

Figure 1: Bar chart comparing multiple CT activities

Figure 2: Box and whisker chart comparing multiple CT

activities

4. IMPLICATION FOR CT EDUCATION
Researchers (such as Bers, Flannery, Kazakoff, & Sullivan,

2014; Grover, 2013; Portelance & Bers, 2015) concur that

CT developmental activities ought to be age- and grade-

appropriate. Instead of relying on one decision maker’s “gut

feel” or the words of the marketing manager of a third-party

CT activity training provider to gauge whether some CT

activities would be suitable for the educational institute’s

learners, a grey-based approach has been proposed in the

current paper for the cross comparison of multiple CT

activities. Different combinations of CT skills development

offered by each CT activity could be used to inform the

decision makers in educational institutions about the

suitability of each of the CT activities for their learners. For

example, CT Activity 6 (see Figure 1) might involve a lower

developmental level of Algorithmic Thinking; however, this

type of CT Activity might be more age- or grade-

128

appropriate for beginner learners of CT. Conversely, CT

Activities 1 and 2 might involve higher developmental levels

of CT skills, which suggests that they could be more suitable

for learners who need to be engaged with something more

challenging. Further, in situations where multiple third-party

training providers approach educational institutions to offer

their CT training services, this proposed approach could be

used by the stakeholders (for example, Ministry of

Education, principals, vice-principals, heads of departments,

and teachers) of the educational institutions to document the

cross comparison process of multiple CT activities offered

by these third-party vendors, thus contributing to increased

transparency in the educational institutions’ corporate

governance.

5. CONCLUSION
The focus of the paper is on the lack of tools that show what

CT skills are addressed and to what extent across various CT

activities, especially when there is no consensus on what the

CT skill of Algorithmic thinking means, for instance. The

tool is useful when dealing with such ambiguity by

averaging the inputs of multiple evaluators. Until now,

although there are many frameworks for assessing

individual CT activities (as mentioned earlier in Section 1),

there is no approach in the extant literature for performing

the cross comparison of multiple CT activities, which could

be used to transparently document the selection criteria by

multiple decision makers. These decision makers could

include teachers, heads of departments, school principals,

researchers, or the Ministry of Education. The transparency

of this grey-based approach could potentially contribute to

the democratization of the selection process of CT activities,

as the input of each decision maker is taken into serious

consideration. A worked example of cross comparison

between multiple CT activities using hypothetical data has

been used to illustrate a proposed grey-based approach. This

proposed grey-based approach is a reasonably easy to

understand, easy to calculate, and easily implementable CT

evaluation tool, which we hope would be considered by

decision makers in educational institutions for performing

cross comparison of multiple CT activities when they need

to evaluate them to find out if they are at the appropriate

developmental levels for their learners.

6. REFERENCES
Anderson, N. (1961). Scales and Statistics. Psychological

Bulletin, 58(4), 305–316.

https://doi.org/10.1037/h0042576

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009).

Computer Science Unplugged: School Students Doing

Real Computing Without Computers. Journal of Applied

Computing and Information Technology, 13(1), 20–29.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.

(2014). Computational thinking and tinkering: Exploration

of an early childhood robotics curriculum. Computers and

Education, 72, 145–157.

https://doi.org/10.1016/j.compedu.2013.10.020

Deng, J. (1989). Introduction to Grey System Theory. The

Journal of Grey System, 1, 1–24.

du Boulay, B., O’Shea, T., & Monk, J. (1981). The black

box inside the glass box: presenting computing concepts to

novices. International Journal of Man-Machine Studies,

14, 237–249.

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013).

Computational thinking in educational activities.

Proceedings of the 18th ACM Conference on Innovation

and Technology in Computer Science Education - ITiCSE

’13, 10. https://doi.org/10.1145/2462476.2466518

Griffin, J. M. (2016). Learning by Taking Apart:

Deconstructing Code by Reading, Tracing, and

Debugging. Proceedings of the 17th Annual Conference

on Information Technology Education (SIGITE ’16), 148–

153. https://doi.org/10.1145/2978192.2978231

Grover, S. (2013). Using a Discourse-Intensive Pedagogy

and Android ’ s App Middle School Students. Sigsce, 723–

728. https://doi.org/10.1145/2445196.2445404

Grover, S. (2015). “Systems of Assessments” for Deeper

Learning of Computational Thinking in K-12. Annual

Meeting of the American Educational Research

Association, (650).

Li, G., Yamaguchi, D., & Nagai, M. (2007). A grey-based

decision-making approach to the supplier selection

problem, 46, 573–581.

https://doi.org/10.1016/j.mcm.2006.11.021

Liu, S., & Lin, Y. (2010). Grey Systems: Theory and

Applications. Berlin: Springer-Verlag.

Liu, S., Yang, Y., & Forrest, J. (2016). Grey Data Analysis.

Singapore: Springer-Verlag.

Portelance, D. J., & Bers, M. U. (2015). Code and tell.

Proceedings of the 14th International Conference on

Interaction Design and Children - IDC ’15, 271–274.

https://doi.org/10.1145/2771839.2771894

Rodriguez, B. R. (2015). Assessing Computational Thinking

in Computer Science Unplugged Activities. Colorado

School of Mines.

https://doi.org/10.1017/CBO9781107415324.004

Takaoka, E., Fukushima, Y., Hirose, K., & Hasegawa, T.

(2014). Learning Based On Computer Science Unplugged

in Computer Science Education : Design , Development ,

and Assessment, 8(7), 3–7.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2014). Defining

Computational Thinking for Science, Technology,

Engineering, and Math. In American Educational

Research Association Annual Meeting. Philadelphia,

Pennsylvania.

Wing, J. (2008). Computational thinking and thinking about

computing. Philosophical Transactions of the Royal

Society of London: Mathematical, Physical and

Engineering Sciences, (July), 3717–3725.

https://doi.org/10.1109/IPDPS.2008.4536091

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

129

On Tools that Support the Development of Computational Thinking Skills:

Some Thoughts and Future Vision

Gregorio ROBLES1*, Jean Carlo Rossa HAUCK2, Jesús MORENO-LEÓ N3, Marcos ROMÁ N-GONZÁ LEZ4,

Roberto NOMBELA5, Christiane Gresse von Wangenheim6
1, 3, 5 KGB-L3, Universidad Rey Juan Carlos, Madrid, Spain

2, 6 Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Brasil
3 INTEF, Madrid, Spain

4 Facultad de Educación, Universidad Nacional de Educación a Distancia, Madrid, Spain

 grex@gsyc.urjc.es, jean.hauck@ufsc.br, j.morenol@gmail.com, mroman@edu.uned.es,

 r.nombelaa@alumnos.urjc.es, gresse@gmail.com

ABSTRACT

Development of Computational Thinking (CT) is an area of

many initiatives in the last years, due to the importance of

having CT skills. There are many environments that allow

learners to develop such skills, for instance Scratch and MIT

App Inventor, in a visual and intuitive way. As in

professional software development, assisting tools that help

and guide learners are starting to appear. In this paper, we

discuss the current status of these tools, based on an analysis

of what state-of-the-art CT assessment tools, such as Dr.

Scratch for Scratch and CodeMaster for App Inventor, offer.

We report their limitations and envision and discuss future

enhancements.

KEYWORDS

computational thinking, tools, assessment, Scratch, App

Inventor

1. INTRODUCTION
The inclusion of computer programming and computational

thinking (CT) skills in the school curriculum is one of the

main trends in the educational landscape worldwide. This

movement has motivated a deep interest among scholars and

research institutions, who are analyzing and comparing the

approaches and plans of the different initiatives. The reviews

on the state of CT in education that have been performed

coincide in three main, fundamental aspects that require

urgent attention from academia: assessment of CT skills,

transference of CT skills and factors affecting CT skills. The

topic of this paper is related to assessment of CT skills,

although its reach is beyond that specific topic.

There are many initiatives fostering the development of CT

skills (Lye & Koh, 2014), such as tools where learners can

acquire programming skills by means of using visual

programming languages. Some of the most commonly used

tools to support CT learning are Scratch

(https://scratch.mit.edu/), MIT App Inventor

(http://appinventor.mit.edu), Code.org (https://code.org/),

Snap! (https://snap.berkeley.edu/), among others.

In the teaching of CT in schools, practical activities are

typically carried out where learners develop programs using

these tools. The resulting projects need to be evaluated in

relation to the extent to which they reached the pedagogical

goals and also in relation to other aspects, such as:

fundamentals of algorithms, use of variables, flow control,

modularization of complex tasks, etc. (CSTA, 2017). Most

of these aspects can be evaluated in an automated way,

through analysis of the source code developed by the

learners (Moreno-León et al., 2015), thus supporting the

educator in the assessment and grading of learner’s work.

Currently, there are some tools that perform the assessment

of CT aspects through the static analysis of projects

developed by learners, such as: Dr. Scratch

(http://www.drscratch.org/), CodeMaster

(http://apps.computacaonaescola.ufsc.br:8080/), Quizly

(http://appinventor.cs.trincoll.edu/csp/quizly/), and Ninja

Code Village (http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/),

among others.

This type of assessment presents some limitations, first of all

because the tools generally work on the source code,

typically only after the learner has finished his/her work.

This focus on the source code also limits the assessment, not

covering essential CT practices like creativity and

collaboration, and sometimes does not provide valuable

support for the learner.

The goals of this paper are following: (1) to review the

current state of computational thinking assistance tools, and

(2) to propose future enhancements for them.

The paper is structured as follows: In the next section we

will introduce the state of the art in assessment of CT skills,

and focus on two CT assessment tools (Dr. Scratch and Code

Master). Section 3 reports the limitations and deficiencies

that the aforementioned tools present, while Section 4 offers

some enhancements to address those limitations.

Conclusions are drawn in Section 5.

2. ASSESSMENT OF CT
Assessment of CT skills is a topic that has gained attention

of the research community in recent years. Besides, Dr.

Scratch (see Section 2.1) and CodeMaster (see Section 2.2),

many other research efforts have been devoted to it, such as

Quizly (Maiorana et al., 2015), Fairy Assessment (Werner et

al., 2012) and REACT (Koh et al., 2014).

2.1. Dr. Scratch

Dr. Scratch (Moreno-León, Robles & Román-González,

2015) is a free/libre/open source tool that analyzes Scratch

projects to assess their level of development of CT skills by

inspecting their source code. Dr. Scratch

(http://www.drscratch.org/) is inspired by Scrape (Wolz,

Hallberg & Taylor, 2011) and is based on Hairball, a static

https://scratch.mit.edu/
http://appinventor.mit.edu/
https://code.org/
https://snap.berkeley.edu/
http://www.drscratch.org/
http://apps.computacaonaescola.ufsc.br:8080/
http://appinventor.cs.trincoll.edu/csp/quizly/
http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/
http://www.drscratch.org/

130

code analyzer for Scratch projects that detects potential

issues in the code (Boe et al., 2013).

The CT assessment of Dr. Scratch is based on the degree of

development of seven dimensions of the CT competence:

abstraction and problem decomposition, logical thinking,

synchronization, parallelism, algorithmic notions of control

flow, user interactivity and data representation. Each

dimension is assigned a score, resulting in an aggregated

total mastery score. With this information Dr. Scratch

generates a feedback report that include ideas and proposals

to enhance the CT score by encourage learners to try new

blocks and structures.

Different actions have been performed to validate Dr.

Scratch from distinct points of view, showing that the tool is

useful for learners and proving its ecological validity

(Moreno-León et al., 2015), and comparing Dr. Scratch

results to other measurements, such as educator grades of

Scratch projects or software engineering complexity

metrics, showing convergent validity (Moreno-León,

Robles, & Román-González, 2016a; Moreno-León et al.,

2017; Román-González et al., 2017).

Finally, since Scratch creations are categorized under

different types of projects, such as games, stories or music

creations, among others, the results of the analysis of 250

projects of 5 different types show that this topology is

replicated when projects are analyzed with Dr. Scratch, thus

proving its discriminant validity (Moreno-León, Robles &

Román-González, 2018).

2.2. Code Master

CodeMaster is a free web-based tool

(http://apps.computacaonaescola.ufsc.br:8080) developed to

facilitate the assessment and grade of App Inventor and

Snap! projects, in a problem-based context, focusing on

learning computational thinking in K-12 education.

CodeMaster can be used by learners to evaluate their own

projects obtaining direct feedback and also by educators to

assess and grade all class projects at once, in a

comprehensive assessment.

CodeMaster measures the complexity of the App Inventor

and Snap! learners’ projects using an extended rubric based

on the CT framework by Brennan & Resnick (2012),

Dr.Scratch and the Mobile CT rubric (Sherman & Martin,

2015). CodeMaster, thus, evaluates several dimensions of

CT, such as abstraction, synchronization, parallelism, flow

control, user interactivity and data representation.

Assessment results are presented to the learner in a visually

appealing and stimulating way, represented by a character

who has a varied color badge depending on the score reached

in the code assessment.

The tool has been tested and applied in real environments

and has been observed as a useful, functional, performance-

efficient tool to support the assessment of App Inventor and

Snap! projects.

3. CURRENT LIMITATIONS
In their current form, the main beneficiaries of CT

assessment tools are not learners, but educators. This is

because the tools offer an evaluation that is based on the final

product, emphasizing the abilities that learners have. If the

tools would address more the learning process, they should

emphasize feedback on bad practices and on how the learner

can learn more (Robles et al., 2017).

The exclusive focus on source code analysis tends to

facilitate the assessment of CT aspects that can be evaluated

by automation. However, this focus limits in several ways a

more comprehensive assessment of the CT development. It

is very difficult, if not impossible, to evaluate creativity or

collaboration, for example, only by the static analysis of a

learners’ piece of source-code.

Despite automated assessment allows educators to devote

time to pedagogical issues that require more educator-

learner interaction, which has proven to be very positive

(Ala-Mutka, 2005), offering an important support to the

educator, it may not be directly contributing to the learning

process itself.

Automated CT assessment tools typically do not provide a

personalized learning experience, tracking the entire

learning process, but only evaluating the outcomes at the end

of the development process. So, the opportunity to support

the learner throughout the learning process and to suggest

systematic ways for the development of learner’s skills is

been lost.

In summary, even if not comprehensive, educators are the

main beneficiaries of current CT assessment tools. Their

evaluation can be supported and enhanced with these tools;

so, even if some aspects such as user interface quality and

creativity may not be considered by the tools, the

information they offer and the amount of time saved is of

high value for educators.

4. ENHANCEMENTS
In this section, we propose a set of enhancements that could

be implemented in CT assistance tools.

4.1. Tools More Learner Driven

Tools should focus more on the learner and on the learning

process. This means that the major point of interest should

not be on the blocks that are used, but on the identification

(and explanation of) bad smells (i.e., bad programming

practices), dead code (i.e., parts of the program that are never

reached), among others (Robles et al., 2017). The rationale

for this is that learners are familiar with their own code and,

if done properly, will understand the problems of their

current solution.

4.2. Assess UI of Projects

Despite its importance, the quality of User Interfaces (UI)

has been, in general, ignored during CT learning. Some tools

only count the interface components and if some type of

arrangement is used. Although some artistic aspects of UIs

are difficult to assess, other dimensions of the UI quality,

however, can be objectively evaluated, using well-known

good practices as a basis. This type of evaluation, if

automated, can help learners to improve the quality of their

developed UIs.

4.3. Personalize (and follow) the Assessment Process

Tracking the development of CT learners’ skills becomes

important in order to customize his learning experience. To

make this possible, automated assessment and learning

http://apps.computacaonaescola.ufsc.br:8080/

131

support tools need to be able to identify the learner through

the creation of individual accounts.

In addition, individual identification enables educators to

follow the development of each learner abilities in the

various aspects of the CT, allowing to identify if the

learner’s progress is adequate and to personalize the tasks

and exercises, among others.

4.4 . Educator Dashboard

Every modern learning management system includes

educator dashboard and learning analytics tracking systems,

in order to assess and intervene in real-time and in a

personalized way (Kalelioğlu, 2015).

Similar functionality should be included in the assistance

tools to help educators have a comprehensive view of their

learners, and to follow their learning process. The educator

dashboard should be designed in such a way that it highlights

the most relevant information, i.e., that information that is

easily to obtain in an automated way (i.e., a learner lagging

behind or abandoning), but that requires human intervention

to solve.

4.5. Identification of Learning Gaps

As in any other formal language, computer programming

must be learnt in a systematic way, ensuring that there are

no gaps between computational concepts (Rich et al., 2017).

If computational concepts are not developed systematically,

and if learning gaps are not identified, then misconceptions

are likely to appear.

Thus, assistance tools should not only score the presence of

certain computational concepts, but also to point out the

absence of others in between (Grover & Basu, 2017).

4.6. Identification of Learning Paths

In the same vein, computational concepts can be

progressively developed, by means of programming projects

with increasing complexity. Current learning paths are

monolithic. As shown in (Moreno-León, Robles, & Román-

González, 2018, in press), Scratch guides generally begin

with programming animations, music and art projects,

continues with stories, and finish with games, showing in the

process concepts and elements of increasing complexity.

This, however, supposes a barrier to those learners who are

not interested in games, as their disinterest may lead to not

develop higher CT skills.

However, Moreno-León, Robles, & Román-González

(2018, in press) also reports that for every category there are

projects that show basic, intermediate and advanced CT

skills. Thus, it is possible to allow users to set a learning path

with the number of phases of their choice and the types of

project to include in each level. Future assistance tools

should not be limited to receive and assess the projects of the

learner, but also to propose him/her feasible and significant

learning paths.

4.7. Use of Recommender Systems

Furthermore, the aforementioned learning path can be

enhanced by providing the learner with prototypical

examples than can be remixed (Dasgupta et al., 2016). Then,

assistance tools should not only give feedback about the

ongoing programming projects of the learner, but also to

propose him/her new projects to be remixed, which are

placed in his/her "Zone of proximal development" (ZPD)

(Vygotsky, 1978).

4.8. Other Abilities and Skills

Assistance tools should embrace the analysis and assessment

of not-so-objective computational thinking practices based

on learner’s behavior while programming. High-level skills

that should be addressed are reusing, abstracting,

modularization, debugging and modeling.

Targeting these skills is not easy as they are tight to the

process and obtaining information about them is complex.

Nonetheless, we argue that this could be done indirectly by,

for instance, the identification of bad smells (see 4.1) and

observing how the learner solves them.

4.9. Integrated Instructional Feedback

Currently, a learner interested in receiving automated

feedback on a project developed in one of the popular tools

(e.g. Scratch, App Inventor or Snap!), needs to export it, and

submit it in another tool (e.g., Dr. Scratch or CodeMaster).

This tends to difficult the use of such tools and leading the

learner to submit his project to analysis only at the end of the

development process.

The integration of instructional feedback directly to the

development environment could give fast results, as it has

been observed in other scenarios (Gonçalves et al, 2017).

4.10. Share and Socialize

Along the formative assessment of the CT skills of the

learner, the corresponding assistance tools should not only

give feedback to the learner, but also share and socialize

his/her achievements with a broader community.

Recent research has demonstrated that individuals who

perform more social actions during the learning process,

reach higher levels of sophistication in their CT skills and

computer programs (Moreno-León, Robles, & Román-

González, 2016b). Other research has found that

professional developers make a surprisingly rich set of social

inferences from the networked activity information, such as

inferring someone else’s technical goals and vision when

they edit code or guessing which of several similar projects

has the best chance of thriving in the long term (Dabbish, et

al., 2012).

5. CONCLUSION
Computational Thinking is a skill that is vital for the

personal and professional development of the citizenship of

the 21st century. There are many initiatives that have

simplified the acquisition of these skills, mainly by

programming in learner-friendly visual interfaces, such as

Scratch or MIT App Inventor. In recent times, assistance

tools are starting to appear that -on top of the aforementioned

platforms- offer assessment and guidance through the

learning process. However, at this point these tools are

mostly useful for educators. In this paper, we offer some

insight of future lines that can make assistance tools better

suited for learners. These enhancements range from the

introduction of personalized elements that adapt the learning

process to the learner, including recommender systems and

learning paths, to the evaluation of other skills, such as

abstraction, modeling or debugging. We hope to see in the

132

near future many ideas and implementations targeting these

issues to the benefit of educators and learners.

6. ACKNOWLEDGEMENTS
This research was supported in part by CNPQ and in part by

the Region of Madrid under project “eMadrid: Investigación

y Desarrollo de tecnologías educativas en la Comunidad de

Madrid” (S2013/ICE-2715).

7. REFERENCES
Ala-Mutka, K. M. (2005). A survey of automated

assessment approaches for programming assignments.

Computer science education, 15(2), 83-102.

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., &

Franklin, D. (2013). Hairball: Lint-inspired static analysis

of scratch projects. In Proceeding of the 44th ACM

technical symposium on Computer science education.

ACM, 215-220.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. In Proceedings of the 2012 Annual Meeting of

the American Educational Research Association,

Vancouver, Canada.

CSTA (2017) K–12 Computer Science Framework.

Available at http://www.k12cs.org.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012).

Social coding in GitHub: transparency and collaboration

in an open software repository. In Proceedings of the ACM

2012 conference on Computer Supported Cooperative

Work. ACM, 1277-1286.

Dasgupta, S., Hale, W., Monroy-Hernandez, A., and Hill, B.

M. (2016). Remixing as a pathway to computational

thinking, in Proceedings of the 19th ACM Conference on

Computer-Supported Cooperative Work & Social

Computing, ser. CSCW ’16, 1438–1449.

Gonçalves, R. Q., Wangenheim, C A. G, Hauck, J. C. R.,

Zanella , A. (2017) An Instructional Feedback Technique

for Teaching Project Management Tools Aligned With

PMBOK. IEEE Trans. on Education.

Grover, S., & Basu, S. (2017). Measuring student learning

in introductory block-based programming: Examining

misconceptions of loops, variables, and boolean logic. In

Proceedings of the 2017 ACM Technical Symposium on

Computer Science Education. ACM, 267-272.

Kalelioğlu, F. (2015). A new way of teaching programming

skills to K-12 students: Code.org. Computers in Human

Behavior, 52, 200-210.

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning,

A. (2014). Real time assessment of computational

thinking. In Visual Languages and Human-Centric

Computing (VL/HCC), 2014 IEEE Symposium on. IEEE,

49-52.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through programming:

What is next for K-12?. Computers in Human Behavior,

41, 51-61.

Maiorana, F., Giordano, D., & Morelli, R. (2015) Quizly: A

live coding assessment platform for App Inventor. In:

Blocks and Beyond Workshop (Blocks and Beyond), 2015

IEEE. IEEE, 25-30.

Moreno-León, J., Robles, G., & Román-González, M.

(2015). Dr. Scratch: Automatic analysis of Scratch

projects to assess and foster computational thinking. RED.

Revista de Educación a Distancia, 46, 1-23.

Moreno-León, J., Robles, G., & Román-González, M.

(2016a). Comparing Computational Thinking

Development Assessment Scores with Software

Complexity Metrics. Proceedings of 2016 IEEE Global

Engineering Education Conference, Abu Dhabi.

Moreno-León, J., Robles, G., & Román-González, M.

(2016b). Examining the Relationship between

Socialization and Improved Software Development Skills

in the Scratch Code Learning Environment. J.UCS,

22(12), 1533-1557.

Moreno-León, J., Román-González, M., Harteveld, C., &

Robles, G. (2017). On the automatic assessment of

computational thinking skills: A comparison with human

experts. In Proceedings of the 2017 CHI Conference

Extended Abstracts on Human Factors in Computing

Systems (pp. 2788-2795). ACM.

Moreno-León, J., Robles, G., & Román-González, M.

(2018). Towards Data-Driven Learning Paths to Develop

Computational Thinking with Scratch. IEEE Transactions

on Emerging Topics in Computing.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., &

Franklin, D. (2017). K-8 Learning Trajectories Derived

from Research Literature: Sequence, Repetition,

Conditionals. In Proceedings of the 2017 ACM Conference

on International Computing Education Research (pp. 182-

190). ACM.

Robles, G., Moreno-León, J., Aivaloglou, E., & Hermans, F.

(2017). Software clones in Scratch projects: On the

presence of copy-and-paste in Computational Thinking

learning. In Software Clones (IWSC), 2017 IEEE 11th

International Workshop on. IEEE, 1-7.

Román-González, M., Moreno-León, J., & Robles, G.

(2017). Complementary tools for computational thinking

assessment. In Proceedings of International Conference

on Computational Thinking Education (CTE 2017). The

Educ. Univ. of Hong Kong, 154-159.

Sherman, M., & Martin, F. (2015). The assessment of

mobile computational thinking. Journal of Computing

Sciences in Colleges, 30(6), 53-59.

Vygotsky, L. (1978). Mind in society: The development of

higher psychological processes. Cambridge, MA: Harvard

University Press.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C.

(2012). The fairy performance assessment: measuring

computational thinking in middle school. In Proceedings

of the 43rd ACM technical symposium on Computer

Science Education (pp. 215-220). ACM.

Wolz, U., Hallberg, C., & Taylor, B. (2011). Scrape: A tool

for visualizing the code of Scratch programs. In Poster

presented at the 42nd ACM Technical Symposium on

Computer Science Education, Dallas, TX.

http://www.k12cs.org/

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

133

计算思维评估的研究现状综述（2013-2017）

张安琦，陈桄
＊
，刘昱辛，程薇

北京师范大学 教育技术学院

zhanganqi19950601@163.com, teastick@gmail.com, 201622010028@mail.bnu.edu.cn, chengweirzh@163.com

摘要

随着计算思维教育的开展，如何有效地评估学生的计

算思维发展水平是近年来国内外教育研究者关注的重

点。本研究汇总了 2013 年至 2017 年近五年有关计算思

维评估的 SSCI 文献，并在评估方式、评估对象、评估

类别、评估内容等方面进行了对比分析，结果发现计

算思维的评估方式可以分为传统型和基于表现型两大

类，主要对计算思维技能、计算概念、计算实践和计

算观念等方面进行评估。希望通过本文的分析给教育

研究者在促进学生计算思维的发展、进行计算思维评

估设计上提供参考借鉴。

關鍵字

计算思维；评估设计；评估内容

1. 前言

计算思维是所有学习者的宝贵技能，可以应用于日常

解决问题的活动，并且还可以应用于许多其他学习领

域。2006 年，周以真（Jeannette Wing）提出计算思维

的概念，这个概念也逐步受到教育教学领域的广泛重

视。2011 年国际教育技术协会（ISTE）联合计算机科

学教师协会（CSTA）开发了计算思维的操作性定义。

近年来各国也开始将计算思维纳入课程学习计划当中，

比如 2013 年 9 月，英国教育部公布全新的以计算思维

为核心的计算课程计划，2014年 2月美国 College Board

以计算思维实践和若干核心概念为主体开发面向高中

学生的课程框架。国内外教育研究者开展了一系列有

关计算思维教育理论与实践的探索，评估也成为研究

者们关注的重点，近五年来有关计算思维评估的研究

数量也在逐年增长，本研究对已有文献中计算思维的

评估设计展开探索。

2. 文献综述

2.1. 计算思维

计算思维是一种通过计算工具进行信息处理的问题解

决过程。计算思维无处不在，小到日常生活中的琐事，

大到社会问题的处理过程，都可以抽象为信息处理任

务过程中的各种指令或行为。周以真(Wing, 2006)将计

算思维界定为一种能力，这种能力通过熟练地掌握计

算机科学的基础概念而得到提高，计算思维存在于教

育教学领域中的多个方面，不同研究者对计算思维有

着不同的认识，如 Flanigan, Peteranetz, Shell, & Soh

(2017)认为计算思维和创造性思维是计算机科学内部和

外部有价值的工具，在研究中通过一系列计算创造性

练习提高学生计算机科学课程的成绩，结果表明，计

算创造性练习对成绩有积极影响，有助于提高学生的

计算思维和创造性思维。Jaipal-Jamani & Angeli(2017)

对机器人课程职前教师的自我效能感、对科学概念的

理解和计算思维进行前后测，发现利用机器人进行教

学，能培养对科学概念的理解，促进计算思维能力的

发展。随着计算思维教育的发展，研究者意识到评估

在计算思维教育中发挥着重要作用，只有了解如何进

行评估，才能把握学生的计算思维发展水平，从而制

定有效的课程计划，更好地开展计算思维培养方面的

课程。

2.2. 计算思维评估

计算思维评估的研究是近几年相关教育研究者关注的

重点，比如Grover等 (2017)在提供直观的视觉操作界面

的开放式编程活动中，记录学生在完成编程任务过程

中解决问题的行为和表现，以此为证据衡量和评估学

生的计算思维概念和计算思维实践。Korkmaz, Ç akir, &

Ö zden (2017)在研究中将计算思维被定义为由 ISTE

（2015）提出的 6 项基本技能，并以此为基础开发计算

思维评估量表，通过问卷、访谈形式来衡量大学生的

计算思维水平。Chen 等 (2017)在机器人课程的学习过

程中借助基于计算机科学教师协会标准开发的评估工

具，通过纸笔测验，观察学生操作机器人的编程过程

以及日常事件推理等形式来评估小学生计算思维的应

用技能，结果表明，该工具具有良好的心理测量特性，

并有可能揭示学生在计算思维学习方面的挑战和发展。

(Román-González, Pérez-González, & Jiménez-Fernández,

2017)试图采用心理测量的方法来定义和测量计算思维，

目的在于在提供一个新的计算思维测量仪器，通过测

量发现：计算思维与空间能力、推理能力和问题解决

能力之间存在显著的相关性。Baichang Zhong, Qiyun

Wang, Jie Chen, & Yi Li (2016)设计了三维综合评估框架

（TDIA），将方向性、开放性和过程性三个维度整合

到评估任务的设计当中，从计算思维的三个维度：计

算概念、计算实践和计算观念进行全面评估。Choi, Lee,

& Lee(2017)开发了基于拼图的算法学习程序（PBAL），

并探究这个程序对学习者计算思维的影响，通过观察

学习者问题解决的过程、访谈面试等形式评估测量学

习者计算思维技能水平；与传统的算法学习方法相比，

PBAL 对提高计算思维技能水平有较好的效果。通过文

献整理发现，对于计算思维评估设计的探究是多元而

非单一的，不同研究基于计算思维不同概念框架对学

习者的计算思维进行评估，本文的目的在于研究计算

思维评估的现状，分析整理近五年内在计算思维评估

的方式、对象、类别、内容等方面的研究，为相关教

育研究人员提供计算思维评估设计上的参考。

134

3. 研究问题

通过文献分析，本文提出的研究问题如下：

（1）近五年的相关研究中，研究者是如何评估学生的

计算思维发展水平？

（2）在评估过程中会涉及到计算思维的哪些方面？

（3）计算思维的评估方式与评估对象、评估内容之间

是否有关系？

4. 研究方法

4.1. 文献纳入标准

基于一定的标准对文献进行评估，选择符合标准的文

章纳入本文的研究，本文纳入标准如下：

（1）教育教学领域内计算思维的相关研究；

（2）研究内容涉及计算思维评估；

（3）实证研究；

（4）在 SSCI 期刊上发表；

（5）在 2013 年至 2017 年发表。

4.2. 文献检索与筛选

文献检索与筛选过程分为以下几个阶段进行：

首先，两位研究者通过 Web of Science 核心合集数据库，

以“Computational Thinking”为关键词，对从 2013 年到

2017 年的 SSCI 期刊文章进行了检索，共获得 337 篇文

章。

其次，两位研究者对检索到的文章的摘要进行浏览，

舍弃不属于教育教学领域内计算思维的相关研究；接

下来对剩余的 52 篇文章进行全文通读，不是实证研究

的、研究内容不涉及计算思维评估以及没有具体介绍

计算思维评估过程的研究被排除。如果对研究是否保

留存在疑问，则两名研究人员独立审查全文，然后一

起作出最终决定。

最后，共有 11 项研究符合纳入标准。

 4.3. 文献编码

确定符合纳入标准的研究后，本研究的编码方法由两

个主要部分组成：

（1）基本信息：作者、发表年份、国家或地区。

（2）评估设计：评估方式、评估主体、评估对象、评

估类别、评估内容。

5. 结果

研究结果从以下四个方面展开叙述：

5.1. 纳入研究的基本信息

从表 1 的统计可以看出，对于计算思维评估的研究逐渐

受到各个国家和地区的重视，评估对象涵盖中小学阶

段、大学生和职前教师，大多数研究的评估对象是 K-

12 阶段的学生。2014 年 2 月美国 College Board 发布了

最新版的计算机科学原理（Computer Science Principles）

课程框架，该课程面向高中学生，以计算思维实践和

若干核心概念为主体，在 K-12 教育阶段注重计算思维

的培养与评估更有助于学校了解学生的计算思维现状，

为以后开展计算思维的教学实践，提高学生计算思维

水平提供参考依据。

表 1国家或地区、评估主体和评估对象梳理

5.2. 评估方式

根据文献资料，把文献中出现的评估方式以及篇数整

理如图 1 所示，在进行计算思维评估时，研究者主要采

用量表、框架等工具来进行评估，评估方式一般分为

两类：一类是传统方式，即纸笔测试，另一类是基于

学生课堂表现的新型评估方式，如课堂观察、访谈面

试、学生编码方案、口头表达、反馈报告、设计方案

等。Jaipal-Jamani、Basu 和 Atmatzidou 在研究中都选择

用前后测来了解学生已有的知识水平和学习的进步程

度，这说明在知识掌握方面，传统的测试方式得到了

较好的认可。需要说明的是，Byeongsu Kim, Taehun

Kim, & Jonghoon Kim(2013)针对于非计算机专业的大学

生，采用纸笔编程的策略，注重于将我们的心智模型

转化为落在纸面上的逻辑表示，以提高他们对计算思

维的理解和运用，增加学习计算机科学的兴趣，虽然

研究 国家

或地

区

评估主体 评估对象

(Grover 等, 2017) 美国 研究人员 9、11、

12 年级学

生

(Korkmaz, Çakir,

& Özden, 2017)
土耳

其

教师、研

究人员

大学生

(Chen 等, 2017) 美国 研究人员 5 年级学

生

(Jaipal-Jamani &

Angeli, 2017)
美国 研究人员 职前教师

(Tsai, Shen, Tsai,

& Chen, 2017)
台湾 教师 大学生

(Basu, Biswas, &

Kinnebrew, 2017)
美国 研究人员 6 年级学

生

(Choi, Lee, & Lee,

2017)
美国 教师 4-6 年级

学生

(Román-González,

Pérez-González, &

Jiménez-

Fernández, 2017)

西班

牙

教师 5-10 年

级学生

(Atmatzidou &

Demetriadis, 2016)
希腊 教师 初中、高

职学生

(Baichang Zhong,

Qiyun Wang, Jie

Chen, & Yi Li,

2016)

中国 研究人员 6 年级学

生

(Byeongsu Kim,

Taehun Kim, &

Jonghoon Kim,

2013)

韩国 研究人员 大学生

135

不借助于计算机，采用传统的纸和笔，但区别于传统

评估方式测试题目的形式，其目的在于观察学生的编

程过程方案、逻辑思维转换等，没有明确的量化等级

评判标准，也看作是一种基于学生表现的评估方式。

虽然研究者们都在积极开发新型的评估方式用于计算

思维发展水平的评估，但传统的评估方式在评估学生

知识基础方面作用毋庸置疑，因此许多研究者采用传

统型与基于表现型相结合的多元评估方式评估学生的

计算思维发展水平，如表 2 所示。

图 1 评估方式篇数统计

5.3. 评估类别

针对 K-12 阶段，表 2 从评估方式、评估类别、评估内

容三个维度进行了整理。为了有效评估学生的计算思

维发展水平，研究人员、教师运用一套综合的评价体

系，提供给学生不同的展示机会，通过各种各样的方

式评估学生的知识储备、课堂表现。综合的评价体系

包括三大评价类别：诊断性评价、形成性评价和总结

性评价。

5.4. 评估内容

如表 2 所示，计算思维技能、计算概念、计算实践和计

算观念是研究者进行计算思维评估的主要内容维度。

美国麻省理工学院媒体实验室从三个维度上定义分析

计算思维，即计算概念、计算实践和计算观念，是大

部分研究者进行计算思维评估的概念框架。还有部分

研究者评估学生的计算思维技能，但对于计算技能的

评估维度确定存在一定的差异，例如 Atmatzidou &

Demetriadis(2016)根据五个维度的计算思维概念框架，

从抽象、概括、算法、模块化、分解五个方面评估学

生的计算思维技能， Korkmaz 等(2017)设计计算思维评

估量表，包含六个方面技能的题目，这六个方面分别

是交际技能、算法思维、批判思维、合作性、创造力

和问题解决技能。还有 Jaipal-Jamani、Chen在编程环境

下，通过记录学生编程过程、布置测试题的形式评估

学生计算技能的发展。

此外，通过文献整理，我们发现评估方式与评估对象、

评估内容之间有着微妙的联系，对大学生和职前教师

的计算思维评估更倾向于使用传统的纸笔测试，而基

本上 K-12 阶段的评估都采用基于表现型或传统型与表

现型相结合的方式，本研究认为评估方式的选择与评

估对象的认知发展水平有一定的联系，随着年龄的增

长，学生的认知发展水平提高，对题目的理解程度也

随之提升。研究还发现评估与概念相关的内容时，大

多采用传统的纸笔测验，进行前后测的对比来分析学

生计算思维知识的发展情况；在评估与实际操作相关

的实践类内容时，多采用课堂观察、访谈面试记录学

生编程过程等基于表现的方式进行评估。评估对象的

定位也是选择计算思维评估方式、评估类型的主要参

考依据。

表 2 K-12阶段计算思维评估方式、类别、内容梳理

6. 讨论

本研究对计算思维评估方式、类别、对象以及内容的

整理分析给缺乏评估经验的研究人员、教师提供一些

实践参考。

据了解，澳大利亚、英国、台湾等国家或地区曾举办

计算思维挑战赛，目标人群是 K-12 阶段的学生，比赛

题目类型多为选择题，考察内容涵盖排程、优化、算

法等等，说明计算思维已经受到各国家、地区的重视。

在实际教学过程当中，学生作为学习的主体，也可以

参与评估体系的建设，增强教育者与受教育者的相互

交流，有助于评估体系的建立。评估类别、方式推崇

多元化，如传统方式与表现型方式相结合，形成性评

研究

评估

方式

评估类

别

评估内容

传

统

型

基

于

表

现

型

形

成

性

评

估

总

结

性

评

估

计

算

思

维

技

能

计

算

概

念

计

算

实

践

计

算

观

念

(Grover 等,

2017)
✔ ✔ ✔ ✔ ✔

(Chen 等,

2017)

 ✔ ✔ ✔

(Basu, Biswas,

& Kinnebrew,

2017)

✔ ✔ ✔ ✔ ✔

(Choi, Lee, &

Lee, 2017)
✔ ✔ ✔ ✔

(Román-

González,

Pérez-

González, &

Jiménez-

Fernández,

2017)

 ✔ ✔ ✔

(Atmatzidou

&

Demetriadis,

2016)

✔ ✔ ✔ ✔ ✔

(Baichang

Zhong, Qiyun

Wang, Jie

Chen, & Yi Li,

2016)

 ✔ ✔ ✔ ✔ ✔

136

估与总结性评估相结合，更清楚地定位学生的水平和

教师的教学结果。

在未来的研究中，如何提高教师、学生计算思维发展

水平，如何更有效开展计算思维相关教学活动是计算

思维相关研究者持续关注和探索的方向。

7. 参考文献
Atmatzidou, S., & Demetriadis, S. (2016). Advancing

students’ computational thinking skills through

educational robotics: A study on age and gender relevant

differences. Robotics and Autonomous Systems, 75(Part

B), 661–670. https://doi.org/10.1016/j.robot.2015.10.008

Baichang Zhong, Qiyun Wang, Jie Chen, & Yi Li. (2016).

An Exploration of Three-Dimensional Integrated

Assessment for Computational Thinking. Journal of

Educational Computing Research, 53(4), 562–590.

https://doi.org/10.1177/0735633115608444

Byeongsu Kim, Taehun Kim, & Jonghoon Kim. (2013).

Paper-and-Pencil Programming Strategy toward

Computational Thinking for Non-Majors: Design Your

Solution. Journal of Educational Computing Research,

49(4), 437–459. https://doi.org/10.2190/EC.49.4.b

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X.,

& Eltoukhy, M. (2017). Assessing elementary students’

computational thinking in everyday reasoning and

robotics programming. Computers & Education,

109(Supplement C), 162–175.

https://doi.org/10.1016/j.compedu.2017.03.001

Choi, J., Lee, Y., & Lee, E. (2017). Puzzle Based

Algorithm Learning for Cultivating Computational

Thinking. Wireless Personal Communications, 93(1),

131–145. https://doi.org/10.1007/s11277-016-3679-9

Flanigan, A. E., Peteranetz, M. S., Shell, D. F., & Soh, L.-

K. (2017). Implicit intelligence beliefs of computer

science students: Exploring change across the semester.

Contemporary Educational Psychology, 48(Supplement

C), 179–196.

https://doi.org/10.1016/j.cedpsych.2016.10.003

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N.,

& Stamper, J. (2017). A Framework for Using

Hypothesis-Driven Approaches to Support Data-Driven

Learning Analytics in Measuring Computational

Thinking in Block-Based Programming Environments.

Acm Transactions on Computing Education, 17(3), 14.

https://doi.org/10.1145/3105910

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics

on Elementary Preservice Teachers’ Self-Efficacy,

Science Learning, and Computational Thinking. Journal

of Science Education and Technology, 26(2), 175–192.

https://doi.org/10.1007/s10956-016-9663-z

Korkmaz, Ö ., Ç akir, R., & Ö zden, M. Y. (2017). A validity

and reliability study of the computational thinking scales

(CTS). Computers in Human Behavior, 72(Supplement

C), 558–569. https://doi.org/10.1016/j.chb.2017.01.005

Román-González, M., Pérez-González, J.-C., & Jiménez-

Fernández, C. (2017). Which cognitive abilities underlie

computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human

Behavior, 72(Supplement C), 678–691.

https://doi.org/10.1016/j.chb.2016.08.047

Wing, J. (2006). Computational thinking. Communications

of the ACM.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

137

基於專家知識地圖引導慕課學習思維

曾建維
1＊
，黃能富

 2
，李加安

2

1台灣清華大學教學發展中心

2台灣清華大資訊工程學系

darkdreams0802@gmail.com，nfhuang@cs.nthu.edu.tw，ckstar2001@gmail.com

摘要

大規模線上開放式課程（Massive Open Online Course,

慕課）已在全球高等教育發展為成熟的學習模式，如

何針對慕課大規模且不同程度、年齡的學習者提供有

效的評量機制為發展慕課之新興議題。有別於傳統以

教學者為核心的線上課程，慕課主要以自我調整學習

（Self-regulated Learning）作為發展模式，由於學習先

備知識（Prerequisites）不同導致程度落差極大，慕課

具有根本性的問題：如完課率低落與缺乏學習指引，

本研究針對慕課之缺陷進行相對應的系統設計。透過

專家知識地圖的結構，建構慕課學習輔助之自動化知

識地圖，將可成為提升課程品質與個人化學習的方法。

關鍵字

慕課；自我調節學習；先備知識；知識地圖。

1. 前言

慕課在全球都相當盛行且對於高等教育造成重要變革，

最為人所詬病的就是完課率非常低落（Freitas, Morgan,

Gibson, 2015; Perna, Ruby, Boruch, Wang, Scull, Ahmad,

& Evans, 2014），然而慕課同儕互評的威脅、網絡作弊

等 相 關 議 題 一 再 挑 戰 著 慕 課 發 展 的 地 位

（Hew & Cheung, 2014）。傳統的線上學習評量機制雖

然可以提供有效的指引原則，如何針對慕課大規模且

不同程度、年齡的學習者提供有效的網路化評量機制

實為有效發展慕課課程的新興議題。

慕課上的學習者需要根據自身程度，訂定學習目標、

學習策略以精熟課程的內容。透過一系列的教學影片、

隨堂練習、討論區以及其他互動功能，學習者需要能

夠發展適切的「自我調整學習」能力引導良好的自主

學習。有鑒於自我調整學習對線上學習的重要性及慕

課中評量系統的缺陷。本研究將發展「知識地圖」的

學習工具，協助學習者引導慕課上的思維能力，提升

學生學習成效及自我調整能力。

2. 文獻探討
面對慕課如此大規模的學習模式，應抱持著正面的態

度設計、轉化、改變，以證據為基礎（evidence-based）

之研究方法改善並提升慕課之相關設計。本研究將針

對慕課之缺陷做相對應的完善設計，透過學習概念的

知識結構化提升慕課自主學習者成效，進而增進其自

律學習策略與目標。

2.1. 慕課
慕課特色是修課人數多、學生基礎差異大、全部線上

授課（沒有實體教室）、授課時間較短（5 至 8 週）、

線上考試、沒有學分。慕課起源於開放教育資源運動

和學習連接主義的思潮。強調大規模（大量學員）之

線上課程，能提供更多的線上師生互動以及同儕互動

學習機制，同時將學習自主權以及學習的節奏交還給

學員（黃能富，2015）。

2.2. 慕課評量機制的缺失

許多研究指出慕課具有根本性的疑慮，最為人所熟知

的 就 是 慕 課 完 課 率 非 常 低 （ Freitas, Morgan, &

Gibson, 2015）與高學習流失率（Daniel, 2012），由於

無法即時監控作答，潛在許多作弊的缺失，如此限制

慕課無法成為具公正性、甚至授予可信賴的課程學分

或是修課證明（Bady, 2013），因此，運用有效的測量

工具以檢驗學生在混成、遠距、或虛擬學習環境的學

習投入有其需求且十分重要（Henrie, Halverson, &

Graham, 2015）。

2.3. 自我調節學習

自我調節學習為學習者進行自律學習，於過程中系統

化的實現其“學習目標” （Zimmerman & Schunk, 2001），

Zimmerman 認為在環境中學習者自我調節學習能力是

不可或缺的，強調於培養利用良好的自我管理技能去

因應突發狀況的能力，過程中個人技能運作的知識與

意願更應完備，同時定義為學習者自身於學習過程中

自我的計畫、執行和評價，其涉及在學習循環過程中

持續決定認知、動機和行為（Zimmerman, 2000）。自

我調整學習的觀點注重於學生的知識、後設認知技能、

動機和認知，強調自我調整學習是將「知識」和「技

能」進行相互協調；並將自我調整學習定義為「將個

人自動化和控制相連結，個人呈現自我監控狀態，調

整朝向目標的行動，發展出類似專家般的知識並且自

我改善。」（Patrick & Middleton, 2001）。

2.4. 知識地圖

目前盛行於測驗界針對認知診斷的研究主要是假設認

知概念間彼此應視為是相依且依循某種合理的結構（de

la Torre, 2010）。知識地圖（Knowledge Map, K-Map）

透過圖形化的描述知識分布與結構、知識關聯結構，

余民寧（2011）認為認知診斷為「根據某種認知科學

的理論為基礎，以該理論設計診斷測驗試題，再提出

評量該理論的可能知識理論模式，以驗證該理論下的

評量是否成立」。

138

3. 研究設計

3.1. 研究發展平台

本研究使用台灣清華大學學聯網（ShareCourse）平台，

ShareCourse於 2012年由清華大學創立，根據 2014年全

球最大的慕課課程評比「果殼網 MOOC 學院調查研究

報告」，ShareCourse 更在「課程質量最佳」榮獲全球

第二的殊榮。目前台灣計有超過 50 個大專院校等單位

加入學聯網，總計開設超過 300 門課程，目前已開發行

動作業系統（Android與 iOS）的慕課應用軟體（APP），

並積極提供各種客製化需求，進而符合課程授課教師

的作業、考試需求等。

3.2. 研究發展課程

研究預計使用台灣清華大學數學系顏東勇教授所錄製

的微積分課程，顏教授具有多年開設慕課課程的豐富

經驗，2016 年 9 月開設於「中國大學 MOOC」，總修

課人數達兩萬四千多人。微積分課程為奠定一般理工

學院所需的基本數學能力，將針對單元主要定義或定

理作講解，同時推導定理或公式，並配合例題運用之。

任何具備中學數學程度者皆可學習，將可奠定工程數

學、複變函數與高等微積分的學習基礎，同時經由演

算之過程培養學生邏輯分析之能力，是一門大學生必

修的基礎重要課程，下表 1 為微積分十五週課程之教學

內容。

表 1 微積分教學內容

週次 預計教學內容

零 前測與線上問卷發放

一 Limit and Continuous function

二 Continuity and Differentiation

三 Differentiation and the Mean Value Theorem

四 Mean value theorem

五 第一次考試

六 Applications of the first and second derivatives

and Integral
七 Integrations and Fundamental Theorem of

Calculus
八 Areas and volumes from definite integrals

九 The natural logarithm functions

十 第二次考試

十一
The natural exponential function and the inverse

trigonometric functions

十二 Integration by parts and the trigonometric

identities
十三 The trigonometric substitution and the partial

fractions
十四 L’Hopital’s rule and improper integrals

十五 期末考

3.3. 建構知識地圖

傳統的學習評量只在測驗後提供一個評斷的分數或標

準參照，然而慕課有別於ㄧ般的線上學習方式，每位

學生的學習能力與速度皆不同，慕課的教學設計為教

師設定學習步驟，學生依循學習影片、練習、作業與

測驗等進度，並無完整知識層面闡述與說明，缺乏學

習依歸與指引，因此本實驗課程為教師依照學科專業

判斷單元知識結構，依據概念學習順序與其階層，建

構出知識地圖，下圖五為台灣清華大學慕課：微積分

第一週「極限與連續」知識地圖。

圖 1 微積分第一週知識地圖(教師編排)

3.4. 自動建構知識地圖

傳統教學設計原則為先行設計課綱，教師依據課綱編

排課程素材，慕課教師設計課程以往為遵循實體課堂

安排，後續將視頻模組化，因此無法具體將知識結構

呈現。教師依照慕課編排反思此知識地圖需要花費相

當多心力，因此本模組透過文字探勘（Text Mining）

技術，萃取教材投影片（PDF）文字的上下層級關係、

字型大小以及文字斷詞，透過資訊檢索與文字挖掘的

常 用 加 權 技 術 TF-IDF （ Term Frequency–

Inverse Document Frequency）將重點關鍵字詞萃取出來，

再利用所分析出的上下層級關係，將重點關鍵字建立

上下層級的關係，並建立出課程整體架構，最後將資

料視覺化，畫出具有方向性的知識結構圖。最終讓教

師、教學助理（TA）修正此知識地圖，除了可符合慕

課的學習順序規劃，也大幅縮短教師與助教製作知識

地圖的時間。

圖 2 微積分第一週知識地圖（系統生成）

分析講義 PDF 的部分，透過 Open Source：Pdfminer 將

資訊從 PDF 文件中萃取出來的一種套件，其主要是專

注於 PDF 檔案裡文字資料的取得，對於教材的解析有

139

著極大的幫助。其作法如下，首先輸入 PDF 文件，文

件分析以「頁」為單位，更進一步分析頁面中的所有

物件。一頁中，會有許多物件，每個物件的所屬類型

不同，有文字、圖片、表格。如下圖 3 為例，頁面具有

5 個物件（如紅框所示）。

圖 3 知識地圖萃取範例

3.5. 系統架構

本研究建構之診斷教學系統架構圖，將以目前學聯網

平台 ShareCourse 為架構進行大規模線上診斷評量系統

開發，建構主從架構（client/server）的 internet 作為網

路骨幹，由 server 端（web server）負責 client 端

（browser）的管理控制，當資料在 client 端做前置處理

後，傳回 server端的題庫系統（MySQL）配合出題。為

避免網路傳輸時擁塞的情形，及施測時學生作答的獨

立性，以網際網路上能執行運作為主，線上測驗系統

以 Linux Cent OS 作為工作平台，PHP 程式語言為基礎

撰寫 client 端前置作業之準備，如試題測驗。而在後端

處理上，同樣以 PHP 作為 Web server 和 MySQL溝通的

橋樑，負責記錄測驗結果，系統架構圖如下圖 4 所示。

圖 4 系統架構圖

4. 預期成效
(1) 本研究將製作出專家知識結構模組，透過專家判定

知識上下位結構與其關聯性，模組可新增單元概念矩

陣並依照其關聯，產生專家知識結構圖。

(2) 檢視實驗組與控制組的成績級距與顯著差異，作為

教師改進慕課教學的參考指標。

(3) 以既有慕課規劃，設計學習者知識結構圖，省去教

師重新錄製課程，並提供未來課程改進的建議。

(4) 透過知識結構提供學員概念指引並導入學習概念影

片回顧，協助學員提升慕課上的思維能力，嘉惠平台

上廣大的學員。

5. 參考文獻
余民寧 (2011)。教育測驗與評量：成就測驗與教學評量。

台北市：心理。

黃能富 (2015)。磨課師（MOOCs）與師博課（SPOCs）

協同授課之翻轉教學法。教育脈動，1，101-110。

Bady, A. (2013). The MOOC moment and the end of

reform. Liberal Education, 99(4), 6.

Daniel, J. (2012). Making sense of MOOCs: Musings in a

maze of myth, paradox and possibility. Journal of

Interactive Media in Education.

de la Torre, J. (2011). The generalized DINA model

framework. Psychometrika, 76,179-199.

Freitas, S. I., Morgan, J., & Gibson, D. (2015). Will

MOOCs transform learning and teaching in higher

education? Engagement and course retention in online

learning provision. British Journal of Educational

Technology, 46(3), 455-471.

Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015).

Measuring student engagement in technology-

mediated learning: A review. Computers & Education,

90, 36-53.

Hew, K. F., & Cheung, W. S. (2014). Students’ and

instructors’ use of massive open online courses

(MOOCs): Motivations and challenges. Educational

Research Review, 12, 45-58.

Patrick, H., & Middleton, M. J. (2001). Turning the

kaleidoscope: What we see when self-regulated learning

is viewed with a qualitative lens. Educational

Psychologist, 37, 27-39.

Perna, L. W., Ruby, A., Boruch, R. F., Wang, N., Scull, J.,

Ahmad, S., & Evans, C. (2014). Moving

through MOOCs: Understanding the progression of users

in massive open online courses. Educational Researcher,

43(9), 421-432.

Zimmerman, B. J. (2000). Attaining self-regulated

learning: a social-cognitive perspective. In M. Boekaerts,

P. Pintrich, & M. Zeidner (Eds.), Handbook of self-

regulation. (pp. 13-39). San Diego, CA: Academic Press.

Zimmerman, B. J., & Schunk, D. H. (2001). Self-regulated

learning and academic achievement: Theoretical

perspectives (2nd ed.). Mahwah, NJ.: Lawrence Erlbaum

Associates.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

140

Computational Thinking and

Teacher Development

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

141

Computational Thinking Reshapes the Teachers’ Perspective on Human Mind

towards Teaching and Learning Process

Hew-mee CHEAH

University of Malaya, Malaysia

eleanorcheah.creativeteaching@gmail.com

ABSTRACT

The purpose of this paper is to share on the method used in

creating self-realization among Malaysian Educators on the

needs of adopting Computational Thinking (CT) Skills. This

is an important step to begin the process of change. Once

they have accepted the needs of CT, they could be the

change agents to shift the Malaysian Education’s paradigm

by integrating CT into their teaching and learning skills

successfully. A total of 21 participants attended a CT

training conducted by the author, and the training was aimed

to create awareness on (i) educators’ perspective on how the

human minds work towards the teaching and learning

process, (ii) understand that CT is a unique school of

thought, and (iii) it is one important skills in this 21st

Century. Unplugged activities were being used to create the

awareness where the findings clearly showed that the

activities used during the training brought much positive

results for the whole purpose of this study.

KEYWORDS

Computational Thinking, Unplugged Activity, School of

Thought, Reshape Perspective.

1. INTRODUCTION
Malaysia started to promote Computational Thinking (CT)

in the year 2016 and integrated it into learning modules

especially in ICT subject. This was stated in the 11th

Malaysia Plan, which would run from the year 2016 until

2020 (Economic Planning Unit, 2015). The Malaysia Digital

Economy Corporation (MDEC) is the sole driving force in

making sure the success of this plan ultimately. This is a

huge project involving teachers training, alteration of the

curriculum, and change management for the stakeholders’

readiness.

1.1 Teacher Training

In 2016, MDEC had organized a training programme called

“Computational Thinking & Computer Science Teaching

Certification Programme” (CT&CS TCP). This certification

programme was aimed to build teachers’ understanding on

CT, and ultimately transfer CT skills to the students in all

the schools. The programme started off with the training for

selected 100 lecturers from the Teacher Training Institution.

Once they had gone through the entire certification process

and certified as a Master Trainer (MT), they could start

training all the pre-service teachers. In the following years,

36 lecturers from 6 public universities were trained and

certified as MT to conduct the same training for all the other

in-service teachers.

The CT&CS TCP consists of 3 parts. Part 1 is a 5-day face-

to-face training (8 hours a day) conducted by the author for

over one week. Part 2 required participants to submit a

programming project. They had to exemplify a range of

programming techniques learned during the Part 1 training.

They would start this project right after the Part 1 and were

given two weeks to complete it. In Part 3, the participants

needed to show some particular aspect of CT pedagogy by

carrying out a classroom investigation. They had to submit

their own video and report on their findings after they had

conducted similar lessons in actual classrooms, which

demonstrated how the CT pedagogy had effectively helped

their weaker students in learning certain difficult topics.

1.2 Curriculum

In order to ease the teachers’ implementation of CT

education, MDEC had successfully developed a series of

teaching modules. These teaching modules covered all the 8

subjects of the primary level, Computer Science Foundation

for the Year 7 – 9, and Computer Science for the Year 10 –

11. It gave these teachers some basic ideas on the various

ways CT could be integrated into their Teaching and

Learning (T&L).

1.3 Change Management

As for the stakeholders’ readiness, MDEC works closely

with the Ministry of Education (MOE) Malaysia and various

State Education Departments to conduct different

workshops for the principals, school managements, teachers

and students for this CT awareness.

The CT is truly a new concept to the Malaysians, where

many teachers were often being confused by this different

school of thought. Some of them had thought that CT was

actually focused on the engineering thinking, or scientific

and mathematical thinking. Some wrongly thought it was

just another problem solving skills and couldn’t understand

why it was being focused on. The investigation by Ling et al

in 2017 showed that teachers often related this CT to ICT

instead. They thought that one must acquire the ICT

knowledge to be able to integrate the CT into teaching and

learning (Ling, Saibin, Labadin, & Abdul Aziz, 2017).

2. BACKGROUND OF THE STUDY
There are three main purposes to this study. It is to

demonstrate how Unplugged Activities would:

i. enable educators to reshape their perspective on

human mind in T&L process,

ii. demonstrate that CT is a unique school of thought.

iii. create realization on the importance of CT.

The three unplugged activities were: 1: Tangram 2: Monster

face 3: Algorithm (further discussed in page 3).

142

2.1 Reshape the Educators’ Perspective on human mind

in T&L process

According to the statistics conducted by the Higher

Education Leadership Academy at the Ministry of Higher

Education Malaysia in 2011, the results showed that 50% of

the lessons delivered by 41 schools across Malaysia were

unsatisfactory. The researchers had followed 125 lessons,

and most of the lessons did not engage students into learning.

These lessons were being conducted using the teacher-

centered learning method. Most emphasis was towards

memorizing the questions and answering techniques, instead

of instilling higher order thinking skills. The assessments

were mostly tested on the student’s ability in recalling

concepts (70% of all the lessons observed) rather than to

analyse and interpret data (18%) or synthesize information

(15%) (Project Management Office 2012).

Siti Hendon Sheikh Abdullah had conducted a qualitative

research in 2013, where she observed the trainee teachers of

9 primary schools who had delivered various Physics topics.

The results clearly showed that those trainee teachers had

tried to use the inquiry approach, but it was not being

conducted effectively. That was due to the trainee teachers’

failure in carrying out the teaching and learning

constructively. Those trainee teachers were not skillful

enough in using the Inquiry-Based Approach to conduct

teaching and learning because they had failed to think

constructively (Abdullah, 2013).

There is a definite need to build the educators’ constructive

thinking skills and we must bring this awareness to their

conscious level, so that they could recognize this deficit

(Adam, n.d.). Once they are fully aware on the areas of their

weakness, they could easily adapt and materialize the

changes immediately.

2.2 Computational Thinking as a unique school of

thought

There were famous Mathematicians like John Napier,

Charles Babbage, Lady Ada Lovelace and etc who were the

pioneer contributors to the formation of computer science as

a discipline. The Engineers like Herman Hollerith and

Vannevar Bush (just to name a few) had also built punch

card and electric motors which became the fundamental

architecture design of the modern computers (CMU, n.d.).

All these developments had led some people to mistakenly

believe that the CT resembles the mathematical,

engineering, or Scientific Thinking.

In the book titled “Mastery Algorithms”, the author

Domingos had written a good description on how the CT is

different from these schools of thought. He pointed out that

a scientist focuses on theories and the engineer focuses on

practical, while the computer scientist actually works on

both the theories and practical together (Domingos, 2015).

In a more layman understanding, a scientist forms formula

while the engineer uses this formula to build things, but a

computer scientist needs to come up with formula (example:

syntax) and work on the transistors (engineering work).

When someone focuses on the computer science related

coding work for a period of time, it will eventually change

their thinking patterns. Kim et al had done a research in the

year 2013 and discovered that computer programming

enhanced creative problem solving ability for both ordinary

and gifted learners (Kim, S., Chung, K., Yu, H., 2013). This

implicates that programming activity could enhance a

person’s thinking.

The author views CT as a collective of schools of thought,

which is a deeper and more revolutionary thinking level. Just

like dementia is a collective of various symptoms, whereby

Alzheimer and Parkinson actually branched out from it; The

Computational Thinking is a collective schools of thought,

where scientific thinking, engineering thinking, and

mathematical thinking are all part of it.

2.3 The importance of Computational Thinking

The arrival of the 21st Century, where technology advances

exponentially (Nagy, Farmer, Quan & Trancik, 2013), has

led to a paradigm shift in education. In order to equip our

future generations with problem solving skills to solve

complex problems brought by the advanced technology, we

need to redesign our educational standard by imparting

thinking skills, especially CT in this context, to benefit our

young learners.

All the educators today should see the coming of this

technology wave, where the Industry Revolution 4.0 would

be sweeping around the globe soon. We should therefore

prepare our young learners and future leaders with this CT

skills.

3. METHODS
The study used qualitative pre-post “self-assessment”

approach (Bhanji, F. et al, 2012).

3.1 Participants

A total of 21 lecturers from various university faculties who

had not attended any CT training had participated in this

study. They were selected lecturers from a mixture of the

faculties of computer science, engineering, and education.

3.2 Pre-training assessment

A pre-training survey was conducted for self-assessment on

i. understanding on CT,

Q: In your opinion, what is Computational

Thinking (CT)?

This question was used to assess the understanding

of the participants on CT. By knowing that CT was

a new concept to them, author would need to

synchronize with all the participants and get them

to understand to the importance of CT, before the

training of CT could be conducted.

ii. ability to view from the students’ perspective,

Q: I am able to identify the students’ thinking

pattern and make full use of it for teaching &

learning process.

This question eventually led to close the gap

between the teacher and students towards the

process of teaching and learning.

iii. problem solving skills.

Q: I think my problem solving skills is _____,

because ____________________.

143

This question was aimed to demonstrate that CT is

a unique problem skills / thought process. The

participants would have to assess if CT training had

helped to scale up and improve their problem skills.

3.3 Unplugged Activity 1

The training began with Unplugged Activity 1. It was

modified from Algorithm Unplugged Activity 6 by

Code.org.

Figure 1. Unplugged Activity 1

All the participants worked in groups of three / four persons.

Each group was given a different tangram picture. They had

to use their problem solving skills to write instructions for

the computer to form the same tangram picture. Once they

had written the instructions, two groups were paired to take

turns in playing their roles as the computer and also as the

programmer. When they were the programmer, they had to

read out the instructions. The other group who role played

as the computer and sat back to back with the programmer,

had to form the picture based on the instructions heard.

This activity demonstrated clearly how the humans need to

carefully plan a successful communication with a computer,

which also raised up the participant’s awareness on its

importance to see from the second person’s perspective in

real-life communications, especially throughout the

teaching and learning process.

3.4 Unplugged Activity 2

The next activity was Unplugged Activity 2. It was adopted

from Barefoot CAS UK. The original name for this

Unplugged Activity was “Crazy Character Algorithms”

(Barefoot)

This activity simplified the problem by providing the

“ingredients” of the crazy character with simple instructions

next to it.

Figure 2. “Ingredients” of the crazy character

All the participants drew different versions for this crazy

character by using the “ingredients” in Figure 2. Next, they

wrote their instructions for others to draw the same crazy

character by just reading the instructions without knowing

what was being drawn by that person.

3.5 Unplugged Activity 3

Unplugged Activity 3 showcased how a computer scientist

could abstract problems and solutions. It was modified from

“Graph Paper Programming Unplugged Activity 4” by

Code.org.

This time, the “ingredients” were not being only given for

the problems, the solutions were also being abstracted to the

simplest way.

Figure 3. Unplugged Activity 3

144

Figure 4. Simplified solutions

All the three Unplugged Activities demonstrated different

levels of problem skills, and how this CT could simplify

(abstract) the solution (algorithm) by eliminating human

errors.

3.6 Post-training assessment

After all the three Unplugged Activities were completed, the

participants went through the Computational Thinking

training which was designed by the author.

A post-training survey was conducted to assess on

participants’ view and understanding on Computational

Thinking: Their view on CT as a deeper level of problem

solving skills, and does CT help them better observe how

students learn and communicate with others.

4. RESULTS
We demonstrated our finding on the participants’

i. understanding on CT,

ii. ability to view from the students’ perspective,

iii. problem solving skills.

4.1 Understanding on CT

Prior to the training, all the participants were asked on their

understanding towards this Computational Thinking. Table

1 shows the answers from the 19 (out of 21) participants.

Table 1. Pre-training – Understanding on Computational

Thinking.

Question: In your opinion, what is Computational

Thinking (CT)?

Partici

pant

Answer

1 Problem solving technique which follows

specific steps and procedures / guidelines.

2 I have less exposure on CT, but in general I

think it is the way of how we view and solve

problems.

3 Logical thinking with use of technology in

solving real life problems.

4 Student able to generate new idea using several

process and produce the idea using new era

computing.

5 Thinking about how to use technology

effectively to solve problem.

6 Students know how to use the technology

efficiently or in other words, use it with

wisdom and have the knowledge on how the

process happen (to solve problems using the

computer or technology).

7 Breaking down a big problem to smaller pieces

and then combine them to get the final

solution.

8 Problem solving techniques in CS.

9 Sorry, not really sure. Its may about logic

thinking as a coding in computer

programming.

10 Using technology as a problem solver.

11 CT (skills and ways of thinking) can be used to

support problem solving process when writing

computer programs.

12 CT is a set of processes for solving problems in

logical way.

13 To provide solution to problem using

computer.

14 CT is cognitive an thought processes involved

in formulating problems and solutions so that

the solutions of the problems could be

represented in a form that can be effectively

carried out by an information-processing agent.

15 Not sure

16 Logical thinking about how to solve problems.

17 Mind thinking to be as computer thinking.

18 Method used by computer scientist to solve

problems.

19 Computational Thinking is the thought

processes involved in formulating a problem

and expressing its solution(s) in such a way

that a computer-human or machine.

Table 1 shows that most of the participants had no prior

knowledge on CT. They thought it was the use of technology

or computing in solving problems.

4.2 Ability to view from the students’ perspectives

After the participants had gone through the three Unplugged

Activities, the participants eventually realized they would

definitely need to rethink how they should conduct their

teaching lessons from all the students’ perspective.

Table 2. Pre-training self-assessment: Understanding the

students’ learning perspective.

Question: During the teaching & learning process, I

am able to see from students’ perspective. This is how

I do it:

Partici

pant

Answer

N (Before)

145

Observing their learning patterns and how

they answer assessment questions,

(After)

While going through the exercises and the 6

concepts of CT, I realize that as an educator, I

should know the prior knowledge that the

students have, so that the activities created for

them are suitable and they’ll be able to gain

the CT skills.

M (Before)

I set my mind that I am a students which is new

to the subject.

(After)

Don’t expect students to think like we think.

Q (Before)

Observe and evaluate the student performance

(results & responses from the students when I

asked questions to them)

(After)

I have learned that we cannot feel frustrated if

students are unable to follow all of our

instructions. It is because at sometimes we

must see from their perspectives too in order to

be get mutual understanding.

I

(Before)

Yes?

(After)

Instruction must be clear.

W

(Before)

Provide the question to student and ask them to

solve it, observe the way how they solve the

problem, and then discuss with them if there is

any issue.

(After)

From today’s training, I get to know that the

different between instructor and students.

Instructor will always think that student

understand them, however, that is not 100%

true, most of the time, if the instructor did not

give them the evaluation, such as provide the

exercise, and ask them to try, at the end, the

student will totally learnt nothing, as they

never try and know their mistake. Thus they

don’t have chance to correct it.

S

(Before)

Through arguments in their reports

(After)

What I know, what my colleagues know, and

what the trainer knows is quite different.

Therefore, we can not set standards that are

too high at first, where we must allow the

learning process to change positively over

time.

The participants were conscious on the strength and

weakness of the human mind especially in this area of T&L

process after they had gone through Unplugged Activity 1.

“Human mind cannot process too many instruction /

complex.”

“Human mind can make assumptions and prediction, but it

can get tired and confused.”

“Human can predict and make assumption. But they also

tend to forget and have negative feelings.”

“Human is able to guess, assume and predict when they start

to propose a solution. However, they will feel frustrated and

sometimes get easily annoyed if they cannot solve the

problem using the proposed solution.”

“Strength of human mind-can guess, predict, assume, has

prior knowledge, and can judge. While, weakness of human

mind- get tired and easily disrupted.”

“Strength: Human can think wisely, and then improvise.

Moreover, human can do the logical reasoning, they able to

identify the correct or wrong. However for human’s

weakness, is they have feeling, have emotion, and

sometimes, the bad emotion, will causing them to make the

wrong decisions.”

“The strength of human mind is able to think logically and

creatively while the weakness is lack of focus and

concentration.”

“Human can do reasoning, they tend to make guess, predict,

tired, confused based on their old information.”

4.3 Problem Solving Skills – CT is a unique school of

thought

All the participants were encouraged to rate their own

problem solving skills prior to the CT training. During the

training, they would be able to see the three different levels

of thought process from the three Unplugged Activities.

From these hands-on activities, they eventually realized they

still needed to improve their problem solving skills.

These participants provided their thoughts on their own

problem solving skills after three Unplugged Activities. It

could be summarized into a few format:

“I am more clear about how I think/thinking process while

solving problems during training activities.”

“I realized my problem solving skills was just moderate.”

“I realized my problem solving skills improved after

learning all the 6 CT concepts.”

“I realized my problem solving skills need to be improved.”

“I realized my problem solving skills was just average.”

“I realized my problem solving skills can be enhanced by

incorporating the computational thinking skill. The skill that

I learned the most is abstraction, which is learnt to identify

the important features when solving the issue, and also must

first to break the problem into the small part which can be

manageable.”

All the participants were questioned on whether this CT is

an important skill to be taught to their students and a high

majority of the participants fully agreed that this CT would

greatly to help prepare the students to contribute new

solutions to the seemingly impossible problems (Figure 5).

146

Figure 5. Computational Thinking is important

5. DISCUSSION
The ultimate results showed that Unplugged Activity 1 had

successfully created awareness and brought it to the

conscious level of all the participants which they could

recognize this deficit. They agreed that they had wrongly

thought they could easily understand how their students

would think but in actual fact there are much room for

improvement. This CT has shaped their general perspective

on how their students learn after understanding and

identifying the ways the human minds work.

Besides this, the results also showed that the participants

agreed to the importance of this CT and that it greatly helped

to improve their problem solving skills.

6. LIMITATIONS AND FUTURE WORK
The survey and training were conducted entirely in English

language. According to the feedback, it showed that the

majority of these participants’ English level were not at the

proficient level. They may have also misunderstood the

meaning of some given questions, or were unable to absorb

all the information shared during training.

A more carefully planned self-assessment questions for both

pre and post trainings should be developed, in order to

successfully provoke the participants’ thoughts on the core

of the questions.

Before we can popularize the CT in Malaysia, we need to

create effective awareness to the needs of this CT. It could

be a road block for changes to take place if we do not help

the educators to unlearn the old concepts, so that they can

relearn this CT.

On top of that, the importance of closing the gap between

the educators and the learners is very important. It should

start from how these educators can view all the students’

learning skills from their perspective. From there, these

educators could use their CT skills to decompose the lesson

towards these students’ manageable level, and make

learning more fun and achievable.

We need to think of the effective ways to maintain trained

educators’ thinking pattern, so that they would not fall back

to their old patterns too.

7. REFERENCES
Adams, L. (n.d.). Learning a New Skill is Easier Said Than

Done. Retrieved Jan 28, 2018, from:

www.gordontraining.com/free-workplace-

articles/learning-a-new-skill-is-easier-said-than-done/

Barefoot CAS. https://barefootcas.org.uk/programme-of-

study/understand-algorithms/ks1-crazy-character-

algorithms-activity/

Bhanji, F., Gottesman, R., Grave, W.D., Steinert, Y., &

Winer, L.R. (2012). The Retrospective Pre-Post: A

Practical Method to Evaluate Learning from an

Educational Program. Academic Emergency Medicine,

189-194. doi:10.1111/j.1553-2713.2011.01270.x

Domingos, P. (2015) The Master Algorithm: How the

Quest for the Ultimate Learning Machine Will Remake

Our World. New York, NY: Basic Books.

Economic Planning Unit. (2015). Eleventh Malaysia Plan

2016 – 2020: Anchoring Growth on People. Putrajaya,

WP: Malaysia. Prime Minister’s Department.

CMU. History of Computers. Retrieved Jan 26, 2018, from:

https://www.cs.cmu.edu/~fgandon/lecture/uk1999/history

/

Kim, S., Chung, K., & Yu, H. (2013). Enhancing Digital

Fluency through a Training Program for Creative

Problem Solving Using Computer Programming. The

Journal of Creative Behavior, 47(3), 171-199.

doi:10.1002/jocb.30

Ling, U. L., Saibin, T. C., Labadin, J., & Abdul Aziz, N.

(2017). Preliminary Investigation: Teachers’ Perception

on Computational Thinking Concepts. Journal of

Telecommunication, Electronic and Computer

Engineering, 9, 2-9, 23-29. Retrieved from

http://journal.utem.edu.my/index.php/jtec/article/view/26

72

Nagy, B., Farmer, J., Quan, B. M., & Trancik, J. E. (2013).

Statistical Basis for Predicting Technological Progress,

PLOS ONE, 8 (2), 1-7. Doi:

10.1371/journal.pone.0052669.

Project Management Office (2012). Preliminary Report,

Malaysia Education Blueprint 2013-2025. Malaysia,

Ministry of Education.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

147

Teacher’s Perceptions and Readiness to Teach Coding Skills:

A Comparative Study between China, Finland and Singapore

Chee-kit LOOI1*, Jari MULTISILTA2, Longkai WU1, Pauliina TUOMI1

1 National Institute of Education, Nanyang Technological University, Singapore

2 Tampere University of Technology, Finland

cheekit.looi@nie.edu.sg, jari.multisilta@tut.fi, longkai.wu@nie.edu.sg

ABSTRACT
While many countries have recognized the importance of

computational thinking and coding skills and are

implementing curricular changes to introduce coding into

formal school education, a necessary and critical success

factor involves the preparation of and support for teachers to

teach coding. Thus, understanding the perceptions of

teachers towards coding is most important, together with

knowing the kinds of support they received, and their

readiness and challenges to teach. The purpose of the current

study is to compare teachers’ attitudes towards the

importance of ICT skills and coding skills in Finnish,

Chinese and Singapore K-12 schools. The findings indicate

that Singapore and Finnish teachers believe that coding is

useful even if students will not work in ICT jobs while

Chinese teachers are undecided. China and Singapore have

more positive views towards how to prepare for future-ready

learners.

KEYWORDS

computational thinking; coding skills; 21st century skills;

primary school; comparative research; attitudes

1. INTRODUCTION
Countries and regions around world, such as Australia, New

Zealand, United States, United Kingdom, South Korea,

Finland, China and Singapore, have recognized the

importance of coding. They are taking rapid measures to

introduce it through all levels of the school curriculum. Both

Finland, China and Singapore have to date revised national

standards and curriculum to focus learning goals on higher-

order thinking, inquiry, and innovation, as well as the

integration of technology to the curriculum. In these

countries, the need for educating students in 21st century

skills is commonly acknowledged. These countries

(Shanghai region for China) have also been top performers

in PISA rankings.

The purpose of the current study is to compare teachers’

attitudes towards the importance of 21st Century skills,

especially computational thinking (CT) and coding skills in

Finland, China and Singapore, in K-12 schools. Specifically

we aim to compare teacher’s attitudes towards the

importance of teaching coding skills already in basic

education, the importance of 21st Century Skills in students’

future jobs, and preparing students for the digital century.

The findings and results of comparative education studies

are valuable resources also for the administration of

education systems and is one of the main reasons this

approach was chosen for this study.

2. ICT AND CODING POLICIES IN THE 3

COUNTRIES
We first provide a backdrop of policies regarding ICT use

and teaching of coding the three countries.

Finland

The teaching of ICT started in Finland in 1980s, first in high

schools. Official reports and curriculum projects stated

clearly that students should learn the basics of this new

literacy. However, software support was weak and there was

not much in-service teacher training in computing. In

secondary schools, the actual subject of ICT was brought

into the curriculum between 1987 and 1988, as an optional

subject. A few years later, ICT was no longer taught as an

individual subject, and ICT skills were integrated into other

subjects (Vahtivuori-Hänninen & Kynäslahti 2012).

Since fall 2016, coding is a mandatory, cross-curricular

activity that starts from first year of school and spans

both primary and lower secondary education. Finland has

outlined that coding is one of the learning skills – just like

reading, writing, counting and drawing. The Finnish

Ministry of Education has outlined that ICT skills, and

coding in particular, is a fundamental part of the Finnish

National Core Curriculum (FNCC) from 2016 (FNBE,

2016). It is still not an independent subject, but it is

integrated into other subjects. The FNCC defines several

transversal skills that should be taught and learned in every

subject. ICT competence is among these transversal

competencies. The FNCC states that pupils should work

with digital media and age-appropriate programming tasks.

Key content areas related to the objectives of mathematics

in grades 1 and 2 state that, “the pupils began familiarizing

themselves with the basics of programming by formulating

and testing step-by-step instructions” thus supporting the

development of logical thinking and problem solving.

China

Computer technology has been utilized in Chinese education

since the 1980’s (Mok &Leung 2012) According to Niemi

and Jia (2016), the growing popularity of the Internet and

communication technology from the 1990’s onwards

brought a wider concept of ICT, which was then introduced

into China and Chinese education (Niemi and Jia 2016, 9).

In 2010, a national plan for educational reform and

development was issued by the central government. It

declared that ICT will have a revolutionary impact on

education (MoE China 2010). Since that time, there has been

a steady increase of government expenditure on education,

and vast investment from central and provincial

governments has gone to the application of ICT in education

(Niemi and Jia 2016, 9; Han and Ye 2017).

148

In 2016, the National People’s Congress approved the 13th

five-year plan for national economic and social development

which stressed to enhance the educational level of all people

and to promote modernization of education. The concrete

approaches detailed in this plan include the development of

online education and distance learning, the integration of all

kinds of digital resources and their service for society as a

whole, and the deep integration of ICT with teaching and

learning (National People’s Congress China, 2016). Based

on Jia and Niemi (2016), “The purpose of ICT integration

into ordinary teaching and learning is to cultivate students’

basic knowledge, skills, and literacy in the information era,

to foster their creativity, and to prepare them for the future

workplace” (Jia and Niemi 2016, 315).

A new round of high school curriculum reform program has

been announced in 2016 and enacted from 2017, which takes

CT as one of the four core elements of the discipline of

information technology. The move indicates that CT has

been be given more importance at the national curriculum

level which will influence the enactment of new curriculum

standards, composition of new teaching materials and

guidance of new college entrance examination.

Singapore

Singapore is a small city-state with key national focus on

developing human capital, its ICT in Education policies are

formulated with the goals of preparing its student citizenry

for the knowledge-based economy, and to enhance the

learning experiences of students in schools. Since 1997, the

government has launched four Masterplans for ICT in

Education to equip students with ICT-enhanced approaches

to learning.

In 2014, Singapore launched the Smart Nation Programme

which is a nationwide effort to harness technology in the

business, government and home sectors for improving urban

living, building stronger communities, growing the

economy and creating opportunities for all residents to

address the everchanging global challenges (Smart Nation,

2014). One of the key enablers for the Smart Nation

initiative is to develop computational capabilities.

Programmes are implemented to introduce and develop CT

skills and coding capabilities from pre-school children to

adults. To develop CT capabilities and support the Smart

Nation initiative, several programmes have been

implemented to introduce and develop CT skills and coding

capabilities in every Singaporean, from pre-school children

to adults (Seow, Looi, Wadhwa, Wu & Liu, 2017).

Singapore’ approach is to provide opportunities for students

to develop their interests in coding and computing skills

through touchpoint activities at various ages. Computing and

CT skills are introduced to the children that are age-

appropriate and engage them in learning. Children

progressively develop interest and skills leading them to

offer Computing as a subject for grade levels 9 and 10.

There are major differences between China, Finland and

Singapore in terms of their respective populations,

languages, history, cultural roots, and educational systems

(Jia and Niemi 2016, 318). However, when discussing new

ways to teach and learn, these countries face similar

opportunities and challenges. In these countries, ICT and

new learning environments are perceived as tools for

teaching and learning. These countries emphasize that new

digital tools and materials should be pedagogically relevant

and that teachers need support and training to learn how to

use them.

3. DESIGN OF SURVEY
The survey is designed based on three major guiding

questions: 1) What are the perceptions of teachers on ICT

use in schools? 2) What are the readiness levels of teachers

for teaching coding skills? 3) What are the perceptions of

teachers towards teaching coding skills? It comprises 74

questions in total, including 5 questions on teacher profiles,

14 questions on ICT use, 14 questions on teachers’ readiness

to teach coding skills, and 41 questions on teachers’

perceptions and attitudes related to coding skills. The survey

questions on perceptions and readiness use a 5-Likert scale

(1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-

Strongly agree).

4. FINDINGS OF SURVEY
In total there were 702 respondents, 406 from China, 143

from Singapore and 153 from Finland. The teachers from

China are all from the Shanghai region. According to Chi-

Square test, the gender distribution in the data is statistically

different, X2(2) = 21.26, p < .001. The majority of the

respondents were female teachers (79.4%). In China, there

were 84.2% female teachers and in Finland 78.9%. In

Singapore, 65.4% of all respondents were female.

According to Chi-Square test, in the age distribution of the

respondents there is a significant difference, X2(16) =

212.04; p < .001. Respondents in China are younger

compared to Singapore and Finland. From an one-way

ANOVA test, the teaching experience in school years in

Finland, Singapore and China is not statistically different,

F(2,696) = 4.48, p = .012.

According to one-way ANOVA test, the school level in

Finland, Singapore and China there is a significant

difference, F(2,633) = 214.21, p < .001. From Finland, there

were no respondents from early childhood teaching, whereas

from China 10.2% of all respondents were in early childhood

schools. In Finland, 36.6% of all respondents were in upper

primary schools (0% in China). Almost all respondents from

Singapore were from secondary school (99.3%).

4.1. Coding skills for all or for some

The question posed is: Coding skills should be taught only

to students that are aiming to work on the field of

information technology (1 Strongly disagree, 5 strongly

agree). The result indicates that there is a significant

difference between China, Singapore and Finland. Finnish

teachers (M = 2.46, SD = 1.34) think that coding skills are

needed also for those who are not aiming to be professional

programmers while Chinese teachers are undecided (M =

3.13, SD = 1.21). The teachers in Singapore (M = 2.46, SD

= 1.13) think similarly as the Finnish teachers, F(2) = 37.73,

N = 701, p < .001.

According to one-way ANOVA, the were no differences

between the teachers in different age groups, F(8) = 2.03, p

= .041, or gender, F(1) = 3.06, p = .080. In addition, the were

no differences between the teachers who had different

149

amounts of school experience as a teacher, F(6) = 1.22, p =

.292.

4.2. Best method to learning coding skills

On the question on what is the best method to learn coding

skills (1 Strongly disagree, 5 strongly agree), teachers in all

countries agree that coding is learned best by writing the

code, with visual programming environments, building

robots and outside school clubs. Teachers in China agree that

coding is also best learned at school with the teacher’s

guidance, but Finnish teachers are undecided. The difference

is statistically highly significant, F(2) = 80.50, p < .001.

Teachers in China agree that coding is also best learned from

books and dedicated websites, but Finnish and Singapore

teachers are undecided. The difference is statistically highly

significant, F(2) = 76.58, p < .001.

 M SD N F(2) Sig.

At school, with the
teacher's
guidance

China
Finland
Singapore

4.23
3.34
3.6

.71

.84

.97

393
153
138

80.50 .000

From books and
dedicated
websites

China
Finland
Singapore

4.00
3.12
3.39

.78

.85

.83

393
152
138

76.58 .000

By actually
writing/rehearsing
the code

China
Finland
Singapore

3.99
3.86
4.13

.82

.91

.88

391
153
138

3.55 .029

Through visual and
graphical coding
languages like
Scratch

China
Finland
Singapore

3.98
3.87
3.81

.82

.75

.78

394
152
138

2.64 .072

Through building
and programming
robots

China
Finland
Singapore

3.85
3.95
3.76

.85

.80

.76

396
152
138

2.01 .135

In informal
activities such as
coding clubs, and
other outside of
school events

China
Finland
Singapore

3.98
4.11
3.86

.79

.70

.75

394
153
138

4.09 .017

When the gender is used as a factor in the one-way ANOVA,

there is a statistical difference only in the item “by actually

writing/rehearsing the code “, F(1) = 10.98, p = 0.001. Male

teachers agree that coding should be learned by writing the

code (M = 3.93, SD = .85) more compared to female teachers

(M = 4.20, SD = .86).

In addition, according to one-way ANOVA, there is a

statistically significant difference in the item “at school, with

the teacher's guidance”, in different age groups, F(8) = 4.26,

p < .001. In general, teachers under 45 more that the coding

should be learned at school, with the teacher's guidance than

the teachers who are over 46.

In addition, according to one-way ANOVA, there is a

statistically significant difference in the item “from books

and dedicated websites”, in different age groups, F(8) =

4.31, p < .001. In general, teachers under 45 more that the

coding should be from books and dedicated websites than

the teachers who are over 46. When the teacher’s school

experience is used as a factor in the one-way ANOVA, there

are no statistically significant differences between the

groups.

4.3. ICT used by students in schools

The question posed is: How often your students use the

following technologies in your classroom? A four point

scale was used, rated from 1 (not at all), 2 (once a month), 3

(once a week) to 4 (daily). The hypothesis we had is: The

amounts of use of technologies in the classroom does not

differ in China, Finland and Singapore.

The result indicates that computers are used more in China

(M = 3.23, SD = 1.11) compared to Finland (M = 2.74, SD

= .92) or Singapore (M = 2.28, SD = 1.01). The difference is

statistically highly significant, F(2) = 43.96, p < .001.

Internet is used in Singapore (M = 2.69, SD = .95) less than

in China (M = 3.21, SD = 1.05) or Finland (M = 3.14, SD =

.85). The difference is statistically highly significant, F(2) =

14.68, p < .001.

Digital cameras and videos are also used more often in China

(M = 2.66, SD = 1.09) compared to Finland (M = 1.81, SD

= .83) and Singapore (M = 1.83, SD = .90). The difference

is statistically highly significant, F(2) = 57.34, p < .001.

Educational applications and games are used in Singapore

(M = 1.96, SD = .89) less than in China (M = 2.71, SD =

1.12) or Finland (M = 2.54, SD = .89). The difference is

statistically highly significant, F(2) = 126.57, p < .001.

Notebooks and tablets and mobile phones are used in

classroom similar amounts in both countries.

 M SD N F(2) Sig.

Desktop/
laptop
computers

China
Finland
Singapore

3.23
2.74
2.28

1.11
.92
1.01

382
152
138

43.96 .000

Notebooks/
tablets

China
Finland
Singapore

2.19
2.35
1.95

1.26
1.04
1.01

390
152
133

4.07 .017

Internet China
Finland
Singapore

3.21
3.14
2.69

1.05
.85
.95

385
152
138

14.68 .000

Educational
applications/
games

China
Finland
Singapore

2.71
2.54
1.96

1.12
.89
.89

393
152
134

26.57 .000

Digital
cameras/
videos

China
Finland
Singapore

2.66
1.81
1.83

1.09
.83
.90

386
149
136

57.34 .000

Digital
projectors/
interactive
whiteboards

China
Finland
Singapore

2.98
2.74
1.93

1.16
1.31
1.20

389
153
134

38.49 .000

Mobile
phones

China
Finland
Singapore

2.35
2.69
2.43

1.30
1.08
.97

392
151
136

4.34 .013

When the teacher’s age is used as a factor in the one-way

ANOVA, there is a statistically significant difference only

in the use of digital cameras and digital videos in the

classroom, F(8) = 4.74, p < 0.001. The teachers in the age

groups 20 to 25 (M = 2.68) and 40 to 45 (M = 2.65) use

digital cameras and videos the most, whereas the teachers

from 60 to 65 use the least (M = 1.67). There are no such

differences in the use of other technologies.

4.4. Teachers’ levels of programming skills

The subscale had 2 questions (Cronbach alpha = 0.868):

How would you evaluate your own competence on the

following skills?

 Programming languages (e.g. Python)

150

 Visual coding software (e.g. Scratch)

The results suggested that there was no difference in the

programming skills of the teachers for China (M = 3.45, SD

= 1.90), Singapore (M = 3.93, SD = 2.56) and Finland (M =

3.65, SD= 1.87), F(2,684) = 2.93, p = 0.054.

According to Kruskall-Wallis test, there is statistically

highly significant difference between the male (M = 4.74,

SD = 2.48) and female (M = 3.29, SD = 1.82) teachers in the

programming skills, H(1) = 44.00, p < .001, N = 675. From

an one-way ANOVA, there is not a significant difference in

the programming skills between the teachers in different age

groups, F(8) = 2.30, p = .019. In general, in the scale from 2

to 10 (a sum of two 5 point Likert items), the programming

competence of the teachers is low (M = 3.59, N = 677, SD =

2.05).

4.5. Attitudes towards the importance of the future skills in

students’ future jobs

The subscale had 8 questions (Cronbach alpha = 0.908): The

following skills have a great importance in your students'

future jobs: logical thinking, problem solving, creativity,

programming, social and collaboration skills,

entrepreneurialism, language and communicational skills,

analytical thinking.

The results show that there was statistically highly

significant difference in the attitudes towards the importance

of futures skills of the teachers for China (M = 37.18, SD =

4.03), Singapore (M = 35.89, SD = 3.65) and Finland (M =

35.04, SD = 3.96), F(2,673) = 17.68, p < .001. The Chinese

teachers attitudes towards the importance of future skills are

more positive compared to the Singapore and Finnish

teachers attitudes.

According to Kruskall-Wallis test, there is statistically

significant difference between the attitudes towards the

importance of futures skills between male (M = 35.88, SD =

4.20) and female (M = 36.60, SD = 4.00) teachers in the

skills, H(1) = 4.49, p = .034, N = 664. The female teachers

attitudes towards the importance of futures skills is more

positive that the male teachers attitudes.

In addition, according to one-way ANOVA, there is a

statistically significant difference in the attitudes towards the

importance of futures skills in different age groups, F(8) =

4.22, p < .001. In general, teachers under 45 have a more

positive attitude the importance of futures skills than the

teachers who are over 45.

4.6. Attitudes towards teaching future skills in basic

education

The subscale had 8 questions (Cronbach alpha = 0.884): The

following skills should be taught to everyone in primary

schools: logical thinking, problem solving, creativity,

programming, social and collaboration skills,

entrepreneurialism, language and communicational skills,

analytical thinking.

We found that there was statistically highly significant

difference in the attitudes towards the teaching the futures

skills already on basic education of the teachers for China

(M = 36.19, SD = 5.37), Singapore (M = 33.98, SD = 4.01)

and Finland (M = 34.61, SD = 4.25), F(2,682) = 13.06, p <

.001. The Chinese teachers’ attitudes towards the

importance of teaching the future skills already in basic

education are more positive compared to the Singapore and

Finnish teachers attitudes.

According to Kruskall-Wallis test, there is no difference

between the attitudes towards the teaching the future skills

between the male (M = 34.96, SD = 4.997) and female (M =

35.54, SD = 4.97) teachers, H(1) = 1.52, p = .217, N = 673.

In addition, according to one-way ANOVA, there is a

statistical difference in the attitudes towards the teaching the

future skills in different age groups, F(8) = 3.04, p = .002. In

general, teachers under 45 have a more positive attitude

towards the teaching the future skills than the teachers who

are over 46.

4.7. Attitudes towards the technological change

The subscale had 4 questions (Cronbach alpha = 0.712):

• I believe that almost all businesses will be computerized in the

future

• I have a good understanding of the effects of technology on

the environment, society, and individuals.

• I think most well-paying technology jobs will require workers

who are highly-skilled.

• I think that most jobs in the future that require the use of a

computer will require strong thinking skills.

The results show that there was a statistically highly

significant difference in the attitudes towards the

technological change of the teachers for China (M = 17.45,

SD = 2.58), Singapore (M = 16.46, SD = 1.95) and Finland

(M = 14.62, SD = 2.30), F(2,696) = 77.22, p < .001. The

Chinese and Singapore teachers’ attitudes towards the

technological change are more positive compared to the

Finnish teachers attitudes.

According to Kruskall-Wallis test, there are no statistical

differences between the genders in the attitudes towards the

technological change, H(1) = 1.65, p = .199, N = 683.

In addition, according to one-way ANOVA, there is a

statistically significant difference in the attitudes towards the

technological change in different age groups, F(8) = 3.77, p

< .001. In general, teachers under 45 have a more positive

attitude towards the technological change than the teachers

who are over 46.

5. DISCUSSION

5.1. Differences between countries

There was not a significant difference in the programming

skills of the teachers when we examined both the scripting

languages and visual programming languages together.

However, the level of programming skills with Python or

similar scripting languages was quite low in Finland (M =

1.58, SD = 0.923) and China (M = 1.66, SD = 0.940). In

Singapore, the programming skills with Python or similar

languages level was higher (M = 2.06, SD = 1.382). In

contrast, the skills for using visual programming

environments were higher in Finland (M = 2.08, SD = 1.097)

compared to China (M = 1.79, SD = 1.050) and Singapore

(M = 1.87, SD = 1.260). In the open-ended question, several

teachers from Finland and China said that coding is a totally

unknown area to them.

151

In general, Chinese and Singapore teachers’ perceptions of

their ICT skills are higher compared to the Finnish teachers.

The Chinese teachers’ attitudes towards the importance of

teaching the future skills in basic education and the

importance of role the future skills in their students’ future

jobs are more positive compared to the Finnish teachers. In

addition, the Chinese teachers’ attitudes towards the

technological change are more positive compared to the

Finnish teachers’ attitudes.

Based on our study, the Chinese and Singapore teachers’

perceptions towards the usefulness of ICT in the classroom

and school ICT support are more positive compared to the

Finnish teachers’ perceptions. There are differences in the

ICT and programming skills of male and female teachers. In

general, male teachers evaluate their ICT and programming

skills higher than female teachers. In addition, there is

statistically significant difference in the attitudes towards the

importance of the future skills in students’ future jobs

between male and female teachers. The female teachers’

attitudes are more positive.

5.2. Differences between genders

Based on our data, there is no gender difference on teachers

perceptions on to whom should be taught coding skills.

However, when we asked what the best method to learn

coding skills is, there was a difference between male and

female teachers. Male teachers agree that coding should be

learned by writing the code (M = 3.93, SD = .85) more

compared to female teachers (M = 4.20, SD = .86).

5.3. Differences between the age groups

There were no difference between the age groups on the item

“Coding skills should be taught only to students that are

aiming to work on the field of information technology”.

However, when asked about what is the best method to learn

coding skills, teachers under 45 think that the coding should

be learned at school, with the teacher's guidance compared

to the teachers who are over 45. In general, teachers under

45 think that the coding should be learned from books and

dedicated websites compared to the teachers who are over

46 who are less likely to think so.

5.4. Differences between perceptions of computing for all

or for some

Singapore and Finland teachers believe that coding is useful

even if it is not for ICT jobs; China teachers are undecided.

6. SUMMARY
Teaching coding skills does not happen without the teacher.

It is important that teachers are educated, guided, and

supported at a practical level to meet the requirements of the

coding skills in the curriculum. Many countries are

including 21st century skills, computational thinking, and

coding skills, as a part of the curricula, but many countries

are lacking, at the national level, official and adequate

education and training of the teachers on how to implement

coding-based activity into their school work.

Singapore and Beijing teachers’ preparedness to use ICT is

high, compared with Finland. Singapore and Finland

teachers believe that coding is useful even if it is not for ICT

jobs; Beijing teachers are undecided. Singapore and Finland

have more positive views towards how to prepare future-

ready learners

Chinese and Singapore teachers’ attitudes towards the

importance of teaching future skills already in basic

education are more positive compared to the Finnish

teachers’ attitudes. The Chinese and Singapore teachers’

attitudes towards the importance of teaching future skills in

basic education, and the importance of the role the future

skills will play in their students’ future jobs are more

positive compared to Finnish teachers. Additionally, the

Chinese and Singapore teachers’ attitudes towards

technological change are more positive compared to Finnish

teachers’ attitudes.

One of the most striking findings that concern all three

countries is the fact that the majority of the teachers in all

three countries are not yet competent in any coding

languages. While this result is to be expected, that teacher

educators cannot expect teachers to effectively teach 21st-

century information and media literacy skills that they

themselves lack (Fry and Seely 2011, 217). This particular

finding clearly suggests adding basic coding skills as a part

of the teacher training and in-service, professional

development, but also not forgetting the other aspects of

teaching the 21st century skills as well. According to

Lambert and Gong (2010), there “exists a critical need for

suitable curriculum materials to train pre-service and in-

service teachers in 21st century concepts related to

pedagogy, content, and technology” (Lambert and Gong

2010, 67).

Teachers in all countries agree that coding is learned best by

writing the code, with visual programming environments,

building robots, and through participation in outside school

clubs. Teachers in China and Singapore agree that coding is

also best learned at school with the teacher’s guidance and

from books and websites, but Finnish teachers are

undecided. The Chinese teachers consider all presented

methods as potential for learning coding. The study indicates

that Finnish teachers favour the active learning methods

(writing the code in a programming environment, by

building robots, and learning in informal learning

environments).

The lack of programming and computer education at K–12

level is increasingly recognized as a serious issue in many

Western countries (Dagiene et al. 2014; Guerra et al. 2012).

Dagiene et al. (2014) states that, “although informatics has

been taught as a subject in many European countries as early

as in the 1970’s, many of these efforts were dropped for

various reasons” (Tuomi, Multisilta, Saarikoski, &

Suominen 2017, 13). As a result, students graduate from

secondary school with a lot of experience using computers

and software, but they do not have computational thinking

and coding skills, and do not understand the basic principles

of how computers and networks operate (Dagiene et al.

2014). This is why it is important to obtain information

relating to best practices of having coding as a subject in

schools. The best practices could contribute to the

modernisation of education and training systems. The results

obtained in this study benefit the school principals, teachers,

and educational policy-makers. In all, computational

thinking and coding skills are challenges that many countries

152

and schools face. New research that results in providing

functional guidelines for teachers, as well as students, to

teach and learn coding skills, contributes to the creation of

high-quality schools of the future (Tuomi, Multisilta,

Saarikoski, & Suominen 2017, 13).

Caveats of this study include: Small sample size from each

country, and teachers are not from equivalent school levels

(early childhood, primary and secondary from each

country). For future research, it is planned to gather similar

data from other Asian and European countries and regions

such as Hong Kong, the Netherlands, South Korea, Taiwan

and USA in order to execute more comparisons and cross

analysis between participating countries.

7. REFERENCES
Christensen, R., and Knezek, G. 1999. “Stages of adoption

for technology in education.” Computers in New Zealand

Schools, 11(3), 25-29.

Dagiene, V. Mannila, L. Poranen, T., Rolandsson, L., and

Söderhjelm, P. 2014. “Students’ performance on

programming-related tasks in an informatics contest in

Finland, Sweden and Lithuania.” In Proceedings of the

2014 conference on Innovation; Technology in computer

science education, ITiCSE ’14, 153–158. New York,

USA, 2014: ACM.

FNBE (Finnish National Board of Education). 2016.

National Core Curriculum for Basic Education [National

Core Curriculum of Basic Education 2014]. Retrieved

from,

http://www.oph./download/163777_perusopetuksen_opet

ussuunnitelman_perusteet_2014.pdf

Fry, S. and Seely, S. 2011. “Enhancing Preservice

Elementary Teachers' 21st Century Information and

Media Literacy Skills”. Action in Teacher Education,

33:2, 206-218, DOI: 10.1080/01626620.2011.569468

Lambert, J. and Gong, Y. 2010. “21st Century Paradigms

for Pre-Service Teacher Technology Preparation”.

Computers in the Schools, 27:1, 54-70.

http://dx.doi.org/10.1080/07380560903536272

Jia, J. and Niemi, H. 2016.” In search of the future of

educational challenges in the Chinese and Finnish

context.” In New Ways to Teach and Learn in China and

Finland, edited by Niemi, H., and Jia, J. Bern,

Switzerland: Peter Lang D.

Mok, K. H. and Leung. D. 2012. “Digitalisation,

educational and social development in Greater China”.

Globalisation, Societies and Education, 10:3, 271-294,

DOI:10.1080/14767724.2012.710118

National People’s Congress China. 2016. The thirteen

Five-Years Plan. Retrieved from

http://www.sh.xinhuanet.com/2016-

03/18/c_135200400_2.htm

Niemi, H., and Jia, J. 2016. “What are the new ways to

teach and learn in China and Finland?” In New Ways to

Teach and Learn in China and Finland, edited by Niemi,

H., and Jia, J. Bern, Switzerland: Peter Lang D.

Smart Nation. (2014). Why Smart Nation. Retrieved Feb

13, 2017, from https://www.smartnation.sg/about-smart-

nation

Tuomi, P., Multisilta, J., Saarikoski, P., and Suominen, J.

2017. “Coding skills as a success factor for a society.”

Education and Information Technologies. Springer US.

Vahtivuori-Hänninen, S., and Kynäslahti, H. (2012). “ICTs

in a school’s everyday life.” In Miracle of education: The

principles and practices of teaching and learning in

Finnish schools, edited by H. Niemi, A. Toom, and A.

Kallioniemi, 237–248. Sense Publishers.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

153

“It Opens Up a New Way of Thinking, but…”: Implications from

Pre-Service Teachers’ Introduction to Computational Thinking

Yu-hui CHANG*, Lana PETERSON

 Department of Curriculum & Instruction, Learning Technologies Program,

University of Minnesota, Twin Cities, U.S.

chan1173@umn.edu, pete6118@umn.edu

ABSTRACT

The purpose of this study is to investigate how pre-service

teachers perceive and conceptualize computational thinking

(CT) concepts within K-12 education. We conducted a pilot

case study that was situated in a teacher technology licensure

course in the United States. After the CT exposure through

a hands-on exploration of programming and robotics as well

as an extension research activity, forty-four pre-service

teachers’ learning artifacts were collected for a content

analysis.

In the initial findings, we found that pre-service teachers

were trying to understand practical examples of CT, were

inspired by the social justice issues related to computing, and

shared CT is in alignment with their educational beliefs.

Though a conceptual change of CT occurred among pre-

service teachers, there were assumptions and concerns

among the pre-service teachers about its application in the

classroom.

KEYWORDS

Computational Thinking, Teacher Education, Pre-service

Teachers, Technology Integration, Professional

Development.

1. INTRODUCTION
Computational Thinking (CT) is becoming a fundamental

ability to have in the digital age (Barr, Harrison & Conery,

2011). Despite its importance, most pre- and in-service

teachers lack the knowledge and ability to purposefully

incorporate CT into classrooms (Freeman, Adams Becker,

Cummins, Davis, & Hall Giesinger, 2017; Grover & Pea,

2013). The majority of research on training teachers about

CT as a concept and how to integrate CT into the curriculum

has focused on in-service teacher professional development

(Yadav, Gretter, Good, & McLean, 2017).

Enabling a student to become a “computational thinker” has

been added to the International Society for Technology in

Education’s Standards for Students (ISTE, 2016). In

collaboration with the Computer Science Teachers

Association (CSTA), ISTE has suggested that teachers

cultivate students’ use of CT as a process for problem

solving, algorithmic thinking, and solution building.

Shifting CT to a central role within education requires a

comprehensive approach including integrating CT into K-12

pre-service education programs (Yadav, Mayfield, Zhou,

Hambrusch, & Korb, 2014; Yadav et al., 2017).

As both researchers and teacher educators, we found a lack

of CT training within our pre-service education program and

wished to explore what could be done to change this within

our context. To examine this issue, we provided an

opportunity for pre-service teachers to engage in CT

experiences in a teacher-licensure course.

This case study is an attempt to introduce pre-service

teachers to CT through hands-on exploration. Our driving

research questions for this case study are: (a) how do pre-

service teachers conceptualize the role of CT within K-12

education? (b) what are implications for teacher educators to

support pre-service teachers’ understanding of CT?

2. SUPPORTING LITERATURE
There are myriad of definitions and approaches to the

concept of CT. It has been described as a problem-solving

process (Balanskat & Engelhardt, 2015), a “cognitive skill”

(National Research Council, 2010), a framework of concepts

and capabilities (Barr & Stephen, 2011), and an identity

(ISTE, 2016). Google (2015) broke down CT into four

components for educators: decomposition, pattern

recognition, abstraction, and algorithm design. Educators

are encouraged to incorporate the four CT components into

teaching, such as having students discover the principles of

a pattern within learning materials. Brennan and Resnick

(2012)’s definition of CT has three components: (1)

computational perspectives- how young people identify with

computing participation; (2) computational concepts-

vocabulary and skills needed to engage in computing; and

(3) computational practices- processes used to work with

computers. There are clear overlaps with the different

definitions of CT but also unique lenses to the various

approaches (Voogt, Fisser, Good, Mishra, & Yadav, 2015).

Moving from “what is CT” to “how to use CT”, we look to

Yadav et al. (2014) who provided CT modules in a teacher

education program to develop pre-service teachers’

understanding of CT and learn more about their attitude

towards the concept. As for professional development in

general, previous research (Israel, Pearson, Tapia, Wherfel,

& Reese, 2015) identified limited instructional time and lack

of technology and support as barriers to integrating CT into

classrooms. Their findings indicated that supportive

resources such as ongoing professional development and

coaching play a vital role in increasing teachers’ ability to

integrate CT seamlessly. Their findings also showed that

struggling learners, students with disabilities, and low

socioeconomic status students benefit from building CT

skills.

There are more opportunities than ever for students to

experience coding and computational thinking through

online platforms such as code.org or new robots and tools

designed for the K-12 context (Shellenbarger, 2016).

Researchers are concerned that CT skills should not be

learned only through separate coding programs but

154

integrated into core content (Barr & Stephenson, 2011). We

need to re-design instructional approaches (e.g., problem-

solving) and pedagogical strategies (e.g., group

collaboration) in curriculum and interdisciplinary subjects to

engage learners in practicing CT (Grover & Pea, 2013; Lye

& Koh, 2014). Goode, Margolis, and Chapman’s (2012)

Exploring Computer Science teacher professional

development is one exemplar model for helping teachers

integrate CT into the core curriculum.

3. METHODOLOGY

3.1. Context
This case study was situated in a 1.5 credit, required course

for teacher candidates on technology integration in K-12

education, at a Midwest public university in the United

States. This teaching-licensure course had to address ten

state standards for effective teaching related to topics such

as instructional strategies, assessment, and learning

environments. The instructor had complete autonomy over

pedagogical approaches and the exact curriculum to address

the standards. The blended course met seven times face-to-

face with online activities between classes. One of the

researchers on this study was also the instructor for three

sections of this course during the spring and summer of

2017. Pre-service teachers who completed the course session

on CT exploration met the criteria in this study for research.

They were asked to share their coursework for research

purposes after the end of the course. Participants included

forty-four pre-service teachers, 5 male and 39 females, who

are majoring in elementary education, special education, or

early childhood education.

CT is not a topic that is traditionally addressed in this course

but given its increased presence in K-12 education and

implications for students we felt it was important to expose

pre-service teachers to the concept. One barrier to including

CT was the lack of time in an already full curriculum. In this

case, CT exposure took place three activities: (1) a 10-min

introduction about the coding movement, (2) an hour-long

unstructured exploration of hands-on tools and resources,

and (3) an online extension activity. To be more specific,

during the one hour free exploration, pre-service teachers

had access to a Makey-Makey, a Blue-Bot robot, a Dash and

Dot robot, an Osmo, an Ozobot and a stations of coding

platforms designed for elementary students, such as

Code.org and Scratch. The classroom was set up by having

each resource displayed at one station around the classroom.

Participants were encouraged to interact with at least one

resource to help them gain new ideas from hands-on

experiences. After the in-class CT exploration, teacher

candidates were asked to find one online resource related to

CT or coding and share their own reflective ideas about CT.

Their responses to this activity were posted in the course’s

online learning management system. Their responses were

visible to their peers but it was not a requirement for them to

interact with their peers within the discussion thread.

3.2. Data Analysis
Forty-four reflective posts were collected from teacher

candidates. To analyze these posts each researcher

independently open coded all of the journals. We then

compared our initial codes with each other to find alignment

and missed insights. Next, we collaboratively utilized

pattern coding to develop major themes from the data. To

enhance internal validity, we continued to member check as

we tested the themes against the data. Within this stage, five

patterns emerged: (1) CT resources, (2) personal meaning of

CT, (3) CT and teachers’ expertise, (4) conceptual changes

of CT, (5) assumptions of CT. During coding process, the

researchers also used the constant comparative method to

enhance the validity of results.

4. PRIMARY FINDINGS
The pre-service teachers started to gain awareness of CT

through their own educational beliefs and teacher expertise.

Among all the resources that they shared in the extension

activity to support their understanding of CT, pre-service

teachers revealed a need to find concrete teaching examples.

This included the desire to explore how CT works in

classrooms, subjects, and curriculum by utilizing YouTube

to view classroom showcase videos and blogs from

Edutopia. They also demonstrated their interest in looking

for free online coding platforms as a useful teaching

resource and learning environment. Practical resources

were the most sought after to translate the experience they

had just had into a tangible tool for their future students.

Particularly for the pre-service teachers specializing in early

childhood and special education, it was difficult to identify

specific resources or address concerns in order to support

their students’ development. Additionally, we found that

pre-service teachers described the nexus of CT with their

educational beliefs in creativity and constructivist learning

theories. They showcased the role CT could play in content

and pedagogical style. For example, some teachers

mentioned potential ways to design a group discussion such

as “getting students working together to figure out how to

create a story using critical thinking and problem solving

skills” (PT#202) and another shared an idea for formative

assessment “track students’ progress as well as view student

solutions for each level” (PT#103).

The pre-service teachers communicated a variety of

perceptions of the importance of CT. The most influential

factor on their conceptualization seemed to be the

implication on humanity. Some of the participants talked

about the intersection of computing with social justice issues

such as gender, race, and socioeconomic status. For them,

seeing non-profits focused on addressing representation with

computing gave the topic importance. Giving their future

students opportunities to succeed and career options was a

motivating factor to integrate CT.

During their extension activity research, many of the pre-

service teachers referenced campaigns and non-profits such

as Hour of Code, Code.org, Made with Code by Google,

Girls Who Code, Code2040, or Black Girls Code. The

exposure of these social justice centered campaigns

prompted reflection on gender, race and socioeconomic

issues in the technology field. One pre-service teacher stated

that “I am amazed about the amount of girls that have begun

to code, and have become interested in computer science

and [I] love [that the coding program] empowers women”

(PT#106). Likewise some pre-service teachers were amazed

by free coding resources like Code.org “can make learning

155

computer science more accessible for female and minority

students […] in the hopes of changing [the] narrative”

(PT#305), or like Code2040 which “believes that as

minorities rise, their presence in technology and innovation

related companies needs to increase as well” (PT#313).

One implication of the pre-service teachers referencing the

non-profits is the programming that these organizations

provide primarily resides in out-of-school time. This seemed

to confuse some of the teacher candidates and position CT

and coding as an ‘extra’ activity.

Many of the pre-service teachers connected CT with their

with their specialty within education. For example,

participants discussed the unique role of early childhood,

elementary and special education settings. This reflection

also brought about questions of how to use CT for students’
learning such as ‘what does this look like for early learners?’

or ‘what is age appropriate?’. The participants also shared

confusion on how to use CT pedagogically and how to

integrate CT into different subjects. Pre-service teachers

demonstrated their student-centered beliefs that align with

computational thinking and the teaching sector that they

focus on. This implies that we should not lose the insight of

teachers’ professional knowledge since this could add

pedagogical insights on infusing computational thinking

into curriculum.

We found that pre-service teachers strongly demonstrated a

positive attitude toward CT after the classroom exposure and

the extension activity. However, pre-service teachers started

to recognize the value of teaching CT to build problem

solving skills within their future students. Some of the

teacher candidates also reflected on the alignment of

students having these skills and successful technology

integration.

Though most participants had positive attitudes about CT,

some pre-service teachers shared assumptions about is

applicability. For example, a few of the teacher candidates

already assumed only particular students would be interested

in CT practice. They did not recognize the bias their

reflections carried. In addition, while recognizing CT’s

value in education, some were inclined not to include CT in

their teaching due to perceived age appropriateness, time

restrictions, and access to resources.

5. DISCUSSION
The findings from this case study provide an account of a

first attempt to integrate CT into a teacher preparation course

on educational technology. Our findings showed (a) an

initial understanding of how computational thinking can be

conceptualized for pre-service teachers’ expertise and (b) a

clearer understanding of barriers among pre-service teachers

to translate CT into classroom. We will use these findings

personally to update the design of the course.

In the context of a 1.5 credit teacher preparation educational

technology course with a long list of required contents, we

struggled with a limited time frame to expose the pre-service

teachers to CT. Our instructional design had positioned the

hands-on exploration as the motivational factor within the

CT activity. We had not anticipated the pre-service teachers

being as interested in the larger societal impacts of

computing. In the future, we intend to outline these social-

justice issues as a hook to increase interest at the beginning

of the CT activity.

Additionally, it seemed the bulk of their content knowledge

on CT came from the extension activity research where the

teacher candidates found a resource to share. This self-led

online research resulted in a wide variety of

conceptualizations of CT. Misconceptions of CT amongst

pre-service teachers is a common finding in similar research

on training teacher candidates on CT (Sadik, Ottenbreit-

Leftwich, Nadiruzzaman, 2017; Yadav et al., 2014). In the

future, we will present a specific model of CT and give time

for the pre-service teachers to discuss as a group how they

could integrate CT into their future instruction.

6. SUBSTANTIATED CONCLUSION
Educational technology courses such as the one in this study

need to be updated to build pre-service teachers’

competencies of CT integration in content areas (Yadav et

al., 2017). While these teacher candidates are new to the

profession they brought to the course knowledge, skills, and

beliefs about education that should not be undervalued.

Exposing pre-service teachers to CT helped the teacher

candidates understand the relationship between ‘what is

taught’ (content), ‘how it is taught’ (pedagogy) and ‘why it

is taught’ (rationale and relevance) (Yadav, Hong, &

Stephenson, 2016).

7. ACKNOWLEDGEMENT
Our thanks to the Learning Technologies Media Lab

(LTML) at the University of Minnesota for providing

robotics, programming materials and environments to

support professional developments. A special thanks to

Professor Dr. Cassandra Scharber, for sparking our interest

in this subject and her continued advising support.

8. REFERENCES
Balanskat, A., & Engelhardt, K. (2015). Computing our

future. Computer programming and coding. Priorities,

school curricula and initiatives across Europe. European

Schoolnet, Brussels.

Barr, D., Harrison, J., & Conery, L. (2011). Computational

thinking: A digital age skill for everyone. Learning &

Leading with Technology, 38(6), 20-23.

Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to K-12: what is Involved and what is the role of

the computer science education community? ACM

Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012, April). New

frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada (pp. 1-25).

Freeman, A., Adams Becker, S., Cummins, M., Davis, A.,

and Hall Giesinger, C. (2017). NMC/CoSN Horizon

Report: 2017 K–12 Edition. Austin, Texas: The New

Media Consortium.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond

curriculum: the exploring computer science program.

ACM Inroads, 3(2), 47-53.

156

Google. (2015). Computational Thinking for Educators.

Retrieved from

https://computationalthinkingcourse.withgoogle.com/

Grover, S., & Pea, R. (2013). Computational thinking in

K–12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

International Society for Technology in Education. (2016).

ISTE Standards for Students. Retrieved from

https://www.iste.org/standards/for-students

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., &

Reese, G. (2015). Supporting all learners in school-wide

computational thinking: A cross-case qualitative

analysis. Computers & Education, 82, 263-279.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through

programming: What is next for K-12? Computers in

Human Behavior, 41, 51-61.

National Research Council. (2010). Report of a workshop

on the scope and nature of computational thinking.

Washington, DC: National Academies Press.

Sadik, O., Leftwich, A. O., & Nadiruzzaman, H. (2017).

Computational thinking conceptions and misconceptions:

progression of preservice teacher thinking during

computer science lesson planning. In Emerging Research,

Practice, and Policy on Computational Thinking (pp.

221-238). Cham, Switzerland: Springer.

Saldaña, J. (2016). The coding manual for qualitative

researchers: 3rd edition. Thousand Oaks, CA: Sage.

Shellenbarger, S. (2016, February 9). New ways to teach

young children to code. Wall Street Journal. Retrieved

from https://www.wsj.com/articles/new-ways-to-teach-

young-children-to-code-1455049777

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory education:

Towards an agenda for research and practice. Education

and Information Technologies, 20(4), 715-728.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., &

Korb, J. T. (2014). Computational thinking in elementary

and secondary teacher education. ACM Transactions on

Computing Education (TOCE), 14(1), 5.

Yadav, A., Hong, H., & Stephenson, C. (2016).

Computational thinking for all: pedagogical approaches

to embedding 21st century problem solving in K-12

classrooms. TechTrends, 60(6), 565-568.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017).

Computational thinking in teacher education. In

Emerging Research, Practice, and Policy on

Computational Thinking (pp. 205-220). Cham,

Switzerland: Springer.

https://www.iste.org/standards/for-students

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

157

The Readiness of Computational Thinking Education in Taiwan:

Perspectives from the K-12 Principals in 2017

Ting-chia HSU

National Taiwan Normal University, Taiwan

ckhsu@ntnu.edu.tw

ABSTRACT

This study investigated the perspectives of the K-12

principals who took part in the teacher education of

computational thinking. The scales of the readiness survey

questionnaire included object readiness, teacher readiness,

instructional resource readiness, and leadership support.

Moreover, this study also explored the TPACK of teachers

for computational thinking education. The integrated

questionnaire reports two validity statistics – the acceptable

internal consistency (alpha reliability coefficient), and

discriminant validity – for the refined 35 items. The results

of the survey showed that those principals perceived the

present situation which was significantly lower than the

degree of importance they preferred. In other words, all the

dimensions of the survey will have to be strengthened in the

2 years before conducting computational education for the

12-year compulsory education from August 2019 in Taiwan.

KEYWORDS

Computational thinking, teacher education, leadership,

TPACK, readiness

1. INTRODUCTION
Computational thinking (CT) is a necessary form of literacy

in the world with digital devices everywhere. CT is not only

a kind of expertise which only computer engineers use in our

stereotypical thinking. On the contrary, everyone should

have an active attitude toward CT in order to understand and

make use of this attainment (Wing, 2006). The competence

and limitations of CT are both based on the process of

operation and computing processing. No matter whether the

computational process for solving a problem is executed by

the human brain or computed by a computer, we can classify

it into the process of CT. For example, through the process

of reduction, embedding, transformation, and simulation, the

operation of CT can decompose a seemingly complicated

problem into several understandable and solvable ones

(Wing, 2006). To put it simply, CT is a way of thinking

which uses the basic concept of computer science to do

problem-solving, system design, and understanding of

human behavior. In the meantime, CT makes people adopt a

thinking mode which the computer scientists adopt when

they encounter difficulties (Grover & Pea, 2013). A previous

study has found that most countries have tried to integrate

CT courses into K-12 curricula based on a survey of 17

European countries (Balanskat & Engelhardt, 2014). In

addition, the elementary and secondary schools in Australia

have introduced CT into courses for a period of time, and

have placed the literacy of CT in the national education

curricula (Falkner, Vivian, & Falkner, 2014). Therefore,

currently, many teachers are trying to integrate CT into

various courses (Heintz, Mannila, & Färnqvist, 2016). With

the development of digital technologies and the present

concerns about CT literacy, how should the teacher

education be prepared for CT?

Recently, Orvalho indicated that teachers should follow the

methodology for pre-service teachers: Before teaching

students how to do CT, teachers should learn knowledge and

abilities related to CT first (Orvalho, 2017). Yadav also

pointed out that introducing computer science into pre-

service courses can efficiently enhance teachers’

understanding of CT. Moreover, students’ reactions during

their learning process tend to be more complicated.

Therefore, the teacher can not only learn how to involve the

literacy of CT in their courses, but can also help the students

cultivate their problem-solving capabilities (Yadav,

Mayfield, Zhou, Hambrusch, & Korb, 2014). Mouza

combined CT with the TPACK (i.e., Technology, Pedagogy,

and Content Knowledge) instructional method, and teachers

designed CT courses associated with K-8 education when

they were trained in teacher education. The result showed

that the pre-service training not only had a positive influence

on the teachers, but could also help them to develop and

practice instructional content embedded with CT (Mouza,

Yang, Pan, Ozden, & Pollock, 2017).

As CT is applied to teachers’ training, the teachers know

what CT is and how to integrate it into their courses.

Moreover, the teachers can be earlier confronted with the

possible failure that may happen in their teaching process in

the future. Israel (2015) has applied CT to teacher education

to overcome the obstacles for the teachers to achieve the

expertise of the introduction to computer science course. On

the other hand, the teachers would realize what difficulties

the students with deficient resources may encounter.

Through the teacher education for pre-service teachers,

those pre-service teachers would benefit a lot and could

know how to give support and assistance to their students

(Israel, Pearson, Tapia, Wherfel, & Reese, 2015). In

addition, when it comes to CT, visual programming cannot

be forgotten. When the teachers design CT-related courses,

they mostly use Scratch for the basic level. Cetin (2016)

considered CT to be the foundation, and applied Scratch to

pre-service teachers’ training. The result indicates that this

did indeed help teachers in arranging beginner courses, and

the visual programming environment could help teachers

better understand CT (Cetin, 2016).

The current study applied the same course mentioned above

before research questions one to three (i.e., visual

programming for mathematical learning unit) in the teacher

training for the K-12 newly appointed principals. We then

investigated the readiness of their schools via four scales:

158

technology readiness, teacher readiness, instructional

resource readiness, and leadership support. In addition, we

also investigated the technology, pedagogy, content,

knowledge and the overall TPACK of CT based on the real

conditions they perceived at present. At the same time, we

also surveyed the preferred importance which the principals

revealed for the same eight scales. We then explored the

difference between the perceived present situation and the

preferred importance demonstrated by the principals.

2. METHOD

2.1. Sample

There are 24 newly appointed principals participating in the

teachers’ training course for cultivating their literacy of

computational thinking.

2.2. Questionnaire and Reliability Analysis

There are eight scales in the questionnaire. The first four

scales were revised from the readiness questionnaire of

mobile learning (Yu, Liu, & Huang, 2016). That

questionnaire was named the support-object-personnel (SOP)

m-learning readiness model, and was developed to assess the

capacity for mobile learning readiness in primary and

secondary schools in the previous study (Yu, Liu, & Huang,

2016). Darab and Montazer (2011) proposed an eclectic e-

learning readiness scale which includes object readiness,

software readiness, and leadership support (Darab &

Montazer, 2011). In addition, Machado (2007) emphasized

the importance of teacher readiness such as the professional

application capabilities for e-learning. Cheon (2012)

proposed the higher education m-learning readiness model

based on the theory of planned behavior (TPB), and found

that the attitude of a school had impacts on the

undergraduates’ perspectives on mobile learning (Cheon,

Lee, Crooks, & Song, 2012). Accordingly, object readiness,

teacher and instructional readiness, and leadership support

are important scales for evaluating the readiness for putting

something into practice at school, such as e-learning, mobile

learning, or computational thinking, and so on.

Table 1. Descriptive Information for the first four Scales:

Readiness

Scale Name Description Sample Item

Object readiness For the current

situation of

equipment in the

school, please

answer the

following questions.

There are enough

information appliances

such as computers for

learning in the school,

providing resources for

technological courses.

Teacher

readiness

For the current

condition of

teachers in your

school, please

answer the

following questions.

There are full-time

Information Technology

teachers in my school.

Instructional

resource

readiness

For the arrangement

of teaching

materials for

Technology domain,

please answer the

following questions.

The teachers in my school

have capabilities to employ

the official textbooks in the

information technology

courses.

Leadership

support

For the attitude of

school management,

School management

proposes visions, policies,

or projects that support and

please answer the

following questions.

encourage the teaching as

well as learning in the

technological domain.

Scholars have revised the model of pedagogical, content and

knowledge (PCK) and proposed the model of TPACK (i.e.,

Technological Pedagogical Content Knowledge) (Mishra &

Koehler, 2006). The framework clearly pointed out the relationship

between the technological, pedagogical, and content knowledge of

the teachers. Therefore, many studies have employed the TPACK

model to evaluate the professionalism of teachers or the

effectiveness of teacher education (Chai, Koh, & Tsai, 2010;

Koehler, Mishra, & Yahya, 2007). Moreover, another study has

introduced this model for the teachers to do self-assessment

(Schmidt, Baran, Thompson, Mishra, Koehler, & Shin, 2009). This

study also employed the TPACK model for the principals to do

self-description for the school teachers in the technology domain at

their schools.

Table 2. TPACK for Computational thinking teachers

Scales Questionnaire items

Knowledge of

technology

TK1-Our teachers know how to solve their own

technical problems.

TK2-Our teachers can learn new technology

easily.

TK3-Our teachers have the technical skills and use

the technologies appropriately.

TK4-Our teachers are able to use computational

thinking tools or software to do problem-solving.

Knowledge of

pedagogy

PK1-Our teachers can adapt their teaching style to

different learners.

PK2-Our teachers can adapt their teaching based

upon what students currently understand or do not

understand.

PK3-Our teachers can use a wide range of

teaching approaches in a classroom setting

(collaborative learning, direct instruction, inquiry

learning, problem/project based learning etc.).

PK4-Our teachers know how to assess student

performance in a classroom.

Knowledge of

content

CK1-Our teachers have various ways and

strategies of developing their understanding of

computational thinking.

CK2-Our teachers can think about the subject

matter like an expert who specializes in

computational thinking.

CK3-Our teachers have sufficient knowledge

about computational thinking.

TPACK TPACK1-Our teachers can teach lessons that

appropriately combine computational thinking,

technologies and teaching approaches.

TPACK2-Our teachers can use strategies that

combine content, technologies and teaching

approaches.

TPACK3-Our teachers can select technologies to

use in the classroom that enhance what they teach,

how they teach and what students learn.

TPACK4-Our teachers can provide leadership in

helping others to coordinate the use of content,

technologies and teaching approaches at my

school.

Table 3 reports two validity statistics – namely, the internal

consistency (alpha reliability coefficient), and discriminant

validity – for the refined 35 items, including 20 items for

readiness and 15 items for TPACK. Data are reported

159

separately for the perceived and preferred versions. The

reliability data suggest that the refined version of each scale

for readiness and TPACK has acceptable internal

consistency. The reliability data suggest that the refined

version of each scale has acceptable internal consistency.

Table 3. Internal Consistency (Cronbach Reliability

Coefficient), and Discriminant Validity (Mean Correlation

with other Scales), for Perceived and Preferred Versions.

Scale Form
Alpha

Reliability

Number

of items

Mean

Correlat

ion

Technology

readiness: The

educational

hardware of

technology

domain at school

Perceived

present situation
0.701 5 0.17

Preferred

importance
0.728 5

Professional

development of

the teachers in

Technology

domain

Perceived

present situation
0.673 5 0.17

Preferred

importance
0.804 5

The resource of

instructional

material

Perceived

present situation
0.646 5 0.20

Preferred

importance
0.759 5

Leadership

support

Perceived

present situation
0.835 5 0.28

Preferred

importance
0.766 5

Knowledge of

technology

Perceived

present situation
0.840 4 0.28

Preferred

importance
0.876 4

Knowledge of

pedagogy

Perceived

present situation
0.884 4 0.27

Preferred

importance
0.795 4

Knowledge of

content

Perceived

present situation
0.943 3 0.42

Preferred

importance
0.869 3

Overall TPACK

of computational

thinking

Perceived

present situation
0.908 4 0.38

Preferred

importance
0.939 4

3. DIFFERENCE BETWEEN PERCEIVED

AND PREFERRED SITUATION
The results found that the principals perceived that their

teachers had not fully prepared 2 years before conducting the

12-year compulsory education for computational thinking.

The 12-year compulsory education will be carried out in

August, 2019 while the investigation was done in 2017.

From Table 4, it could be found that the preferred situation

was significantly higher than the present situation in each

dimension.

In terms of readiness, the technology readiness should be

improved in 2 years. This part seems to be the easiest part to

achieve in the future, but the teachers have to be trained at

the same time. Otherwise, they may not know how to use the

new equipment in their teaching.

Table 4. Paired Sample t test between perceived present

situation and preferred importance.

In terms of TPACK, it was worrying to find that the

principals tended to not have confidence in their teachers as

they perceived that their knowledge of technology,

pedagogy and content had not achieved the degree they

expected. Therefore, the teacher education institutes have to

put more effort into the development of instructional

material and train the teachers to have the capabilities to

develop their own material for computational thinking in the

near future.

4. CONCLUSIONS
Based on the results of this investigation of the K-12

principals in Taiwan, there are some suggestions to enhance

the preparation for involving computational thinking

education in the 12-year compulsory education.

For object readiness, which refers to the educational

hardware of the technology domain at school, it looks like it

is the easy part if the government devotes money to the K-

12 schools. However, the teachers have to be trained to know

how to operate the new equipment, regardless of whether

they are maker environment or computer technology

products; otherwise, the payment for the hardware will be

wasted. That perfect environment which is supposed to be

constructed in the 2 years could not work without

professional teachers. Therefore, future studies could further

analyze the regression between the readiness of the teachers

in the technology domain and the readiness of the hardware,

and find direct evidence for this inference.

Unfortunately, the participants perceived that the leadership

and management levels have not provided enough support

for conducting computational thinking education. In other

words, many people agree that computational thinking

education is important; nevertheless, the leadership has not

put enough emphasis on it. This study infers that the reason

for this strange situation is that the literacy of computational

thinking will not be regarded as one part for the senior high

school or college entrance examination. However, normal

education is also important. Schools should not only pay

attention to the subjects related to the senior high school or

college entrance examinations. Liberal education should be

encouraged more.

160

In the 2 years, the related institutes have a large amount of

work to do. The most important part is teacher education.

The teachers in the technology domain should be trained to

afford the requirements of instruction in the technology

domain.

ACKNOWLEGEMENTS
This study is supported in part by the Ministry of Science

and Technology in Taiwan under contract number: MOST

105-2628-S-003-002-MY3.

5. REFERENCES
Balanskat, A., & Engelhardt, K. (2014). Computing our

future: Computer programming and coding-Priorities,

school curricula and initiatives across Europe: European

Schoolnet.

Cetin, I. (2016). Preservice Teachers’ Introduction to

Computing: Exploring Utilization of Scratch. Journal of

Educational Computing Research, 54(7), 997-1021.

Chai, C. S., Koh, J. H. L., & Tsai, C. C. (2010). Facilitating

Preservice Teachers' Development of Technological,

Pedagogical, and Content Knowledge (TPACK).

Educational Technology & Society, 13(4), 63-73.

Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An

investigation of mobile learning readiness in higher

education based on the theory of planned behavior.

Computers & Education, 59(3), 1054-1064.

doi:10.1016/j.compedu.2012.04.015

Darab, B., & Montazer, Gh. A. (2011). An eclectic model

for assessing e-learning readiness in the Iranian

universities. Computers & Education, 56(3), 900-910.

doi:10.1016/j.compedu.2010.11.002

Falkner, K., Vivian, R., & Falkner, N. (2014). The

Australian digital technologies curriculum: challenge and

opportunity. Paper presented at the Proceedings of the

Sixteenth Australasian Computing Education Conference-

Volume 148.

Grover, S., & Pea, R. (2013). Computational thinking in K–

12: A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of

models for introducing computational thinking, computer

science and computing in K-12 education. Paper presented

at the Frontiers in Education Conference (FIE), 2016

IEEE.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., &

Reese, G. (2015). Supporting all learners in school-wide

computational thinking: A cross-case qualitative analysis.

Computers & Education, 82, 263-279.

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the

development of teacher knowledge in a design seminar:

Integrating content, pedagogy and technology. Computers

& Education, 49(3), 740-762.

Machado, C. (2007). Developing an e-readiness model for

higher education institutions: Results of a focus group

study. British Journal of Educational Technology, 38(1),

72-82. doi:10.1111/j.1467-8535.2006.00595.x

Mishra, P., & Koehler, M. J. (2006). Technological

pedagogical content knowledge: A framework for teacher

knowledge. Teachers College Record, 108(6), 1017-1054.

Mouza, C., Yang, H., Pan, Y.-C., Ozden, S. Y., & Pollock,

L. (2017). Resetting educational technology coursework

for pre-service teachers: A computational thinking

approach to the development of technological pedagogical

content knowledge (TPACK). Australasian Journal of

Educational Technology, 33(3).

Orvalho, J. (2017). Computational Thinking for Teacher

Education. Paper presented at the Scratch2017BDX:

Opening, Inspiring, Connecting.

Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P.,

Koehler, M. J., & Shin, T. S. (2009). Technological

Pedagogical Content Knowledge (TPCK): The

development and validation of an assessment instrument

for preservice teachers. Journal of Research on

Technology in Education, 42(2), 27.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,

J. T. (2014). Computational thinking in elementary and

secondary teacher education. ACM Transactions on

Computing Education (TOCE), 14(1), 5.

Yu, Y.-T., Liu Y.-C., & Huang, T.-H. (2016). Support-

Object-Personnel Mobile-Learning Readiness Model for

Primary and Secondary Schools. Journal of Research in

Education Sciences, 61(4), 89-120.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

161

Two Studies of Perceived and In-Situ Readiness for

Implementing the Computing Education in Singapore

Longkai WU*, Chee-kit LOOI*, Meng-leong HOW, Liu LIU

 National Institute of Education, Singapore

longkai.wu@nie.edu.sg, chee-kit.looi@nie.edu.sg, mengleong.how@nie.edu.sg, liu.liu@nie.edu.sg

ABSTRACT

Computing education is garnering more attention from

policy makers and educators both locally and globally. In

Singapore, nineteen schools are beginning to offer the

computing curriculum at the GCE “O” level, that is, for

grades 9 and 10. If it is the case that computing education is

standing on the verge of being formalized and offered as a

mainstream subject, it will be important to understand

teacher and student readiness towards the status quo of

computing education in schools. This paper describe two

studies: a survey study of computing teachers’ from the

nineteen schools on their perceived readiness towards

implementing computing curriculum; and an ethnographic

study of four secondary schools with different degrees of in-

situ readiness for both teachers and students during their

implementation of the computing curriculum. Based on the

two studies, we propose more systematic ways of preparing

teachers to teach and students to learn the computing subject.

KEYWORDS

Computing Education, Computational Thinking, Teacher

Readiness, Student Readiness

1. INTRODUCTION
In 2017, Singapore’s Ministry of Education (MOE)

implemented a new curriculum for the Computing subject

for grade 9 and 10 students in 19 schools. The new

curriculum is a distinct shift teaching students from informal

activities (infocomm clubs, code for fun, extracurricular

activities et al.) to formal school education in development

of students’ Computational Thinking (CT) skills and

programming competencies. O Level MOE curriculum has

provided guiding framework for computing teachers and

students to take up their practices, but it takes time for them

to build capacities and alignment in enactment. This paper

tries to investigate different degrees of teacher and student

perceived and in-situ readiness in local secondary schools

prior to and during their implementation of computing

curriculum and address the issue of formalization for

teaching CT and programming in K-12 schools.

2. PREPARE TEACHERS AND

STUDENTS FOR COMPUTING

CURRICULUM
It is paramount to prepare in-service and future teachers to

face the challenges of teaching Computational Thinking

(García-Peñalvo et al., 2016). Hodhod, Khan, Kurt-Peker,

and Ray (2016) argue that for students to acquire this

important skill, teachers must acquire in-depth knowledge of

the problem-solving strategies that utilize CT, and the

strategies for integrating CT into their lesson plans. Some

CT training workshops for teachers focus on K-12 students,

such as the one offered by Franklin et al. (2015) which

provides advice for best practices in curriculum, content

delivery, interfacing with schools, and classroom layout.

In the preparation of teachers for the teaching computing,

Voogt, Fisser, Good, Mishra, and Yadav (2015) suggest

adopting a multi-perspective approach, because many EU

countries have computing teachers at the upper secondary

school level, but too few at the lower secondary and primary

school levels. At the primary school level, Voogt et al.

(2015) assert that it is imperative for teacher education

programs to recruit computer science specialists who can at

least teach the basic notions of computing. In Israel, there is

a shortage of computing specialists to teach in high school

and it was necessary to train teachers of other subjects to

teach CS by training them through a crash course which was

comprised of about ten courses that form the basics of

computer science (Gal-Ezer & Stephenson, 2014). Lepeltak,

the director of learning focus in the Council of European

Professional Informatics Societies (CEPIS), calls for a

professionalization of teachers who are asked to impart CS

lessons, even in other non-CS classes. Further, both Voogt

and Lepeltak concur that teacher training could be pushed at

the EU level to embark on the professionalization and the

training of teachers (Bocconi et al., 2016).

3. STUDY 1: A SURVEY STUDY OF

COMPUTING TEACHERS’ PERCEIVED

READINESS TOWARDS IMPLEMENTING

COMPUTING CURRICULUM
In Dec 2016, prior to the formal implementation of

computing curriculum, we conducted a survey on computing

teachers to seek their degrees of understanding, interest

levels, capacities and challenges regarding the teaching of

computing. 36 computing teachers (27 male and 9 female)

from 19 schools participated in our survey.

Figure 1. Perceived Confidence in Teaching Computing

Subject

162

As to perceived teacher confidence to teach in computing

subject (Figure 1), 56% teachers agreed that (14% strongly

agree) they are confident to teach and implement CT in their

classes. 24% are neutral while 14% consider that they are

not ready.

Figure 2. Perceived Readiness to Implement CT in Class

As to perceived teacher readiness to implement CT in Class

(Figure 2), 63% teachers agree (7% strongly agree) they

have been ready to incorporate and implement CT in their

classes. 24% are neutral while 14% consider they are not

ready.

As to perceived student readiness to learn computing in

Class (Figure 3), 52% teachers considers (4% strongly

considers) their students have been ready to learn

computing. 28% are neutral while 21% consider they are not

ready and CT is too complex to learn at the level of their

students.

Figure 3. Perceived Student Readiness to Learn Computing

Thus, a discrepancy on the confidence and readiness in

computing subject and to incorporate CT into the teaching

and learning is observed among the computing teachers. A

considerable portion of teachers lacks confidence in

teaching CT and is unclear on how to bring out expected

learning outcomes.

As to the challenges in teaching computing, lack of teaching

resource (94%) ranks the first and lack of pedagogical

knowledge (83%) ranks the second among the seven options

(Table 1). When responding to open-ended questions, they

also mention that they would need shared lesson plans and

best practices by other schools to help their teaching. It is

obvious that teachers are much more concerned about the

resource for teaching and how to teach rather than what to

teach, i.e. content knowledge.

Table 1. Perceived Challenges in Teaching Computing.

 Percentage Count Ranking

Teaching

Resources

94% 34 1

Pedagogical

Knowledge

83% 30 2

Ways to

Motivate and

engage

students

69% 25 3

Instructional

Skills

67% 24 4

Community

Support

64% 23 5

Content

Knowledge

61% 22 6

Computing

Infrastructure

in school

42% 15 7

4. STUDY 2: AN ETHNOGRAPHIC

STUDY OF TEACHERS’ IN-SITU

READINESS IN IMPLEMENTING

COMPUTING CURRICULUM
The literature has been mainly focused on preparing in-

service and future teachers through professional

development programs or workshops before computing is

introduced into the curriculum at schools. It has been rare or

lacking to develop an in-situ view to understand the

readiness for computing of in-service teachers, as well as

their students, as computing curriculum have been

implemented in authentic classrooms.

To this end, we have adopted an ethnographic approach to

conduct a field study in four local secondary schools which

have implemented computing curriculum during the whole

year of 2017. The researchers participated in the building

and enactment of computing curriculum as active

participants and took extensive field notes to record the

observations, surveys and interviews. After the whole year

implementation, we differentiate the four schools

considering their different degrees of readiness to implement

computing curriculum with respect to teachers and students.

4.1. School A – Basic Student and Teacher Readiness

As the teacher is new to teaching the computing subject,

School A does not have a specific plan about what they are

going to teach for the following weeks although provided

with the Scheme of Work (SoW) by MOE. The topic and

content may just be decided just before the class. The

reasons could be the inexperience of teaching computing, as

well as unfamiliarity with the computing curriculum.

Meanwhile, quite a large number of students respond to our

survey revealing that they have chosen computing subject

under the circumstance that they are not able to be enrolled

into additional mathematics for the O-Level, which could be

a better choice for them. Besides low motivation, it is also

163

noticed that this batch of computing students may not have

sufficient English proficiency to do well in computing as

language proficiency is considered by the teachers as

important in articulating their answers in paper exam.

Thus, the degree of preparedness of the teachers and the

students in School A to implement the computing

curriculum can be further improved. More engaging

activities can be incorporate into the learning of computing

which the teachers are starting with be more familiar with

over the year. Over the school year, the teacher is seen to be

gaining more proficiency in teaching.

School B – Basic Student Readiness, High Teacher

Readiness

In School B, the teacher has a high passion for teaching

computing as he is highly interested in computing related

knowledge or gadget. He advocates the coupling of 5E

framework with the unplugged activities and argues that

unlike the scientific inquiry process, computing subject can

develop a cross-disciplinary mindset stressing for logic and

conceptualization. He also believes that CT is not only about

coding but also high-level planning that involves designing,

decomposition and implementation. The students, in his

opinion, should not become mere coders or coding workers.

Instead, they should be equipped with a systematic mindset

to solve complex problems.

During the class observation, researchers find that the

teacher’s scaffolding plays a significant portion in guiding

students’ actives. However, the students are not passionate

or active in computing classroom as we have expected or

comparing to other schools. They are also not quite used to

teacher’s scaffolding. The teachers explain that school B is

a neighborhood school which the enrolled students are likely

to be considered as low achievers since they have not

performed well in The Primary School Leaving Examination

(PSLE).

Therefore, school B teacher has developed a high degree of

readiness in teaching computing in terms of beliefs and

strategies. But the enactment has not been quite satisfying in

the classroom with a relatively basic degree of readiness of

students towards computing subject.

School C – High Student Readiness, Medium Teacher

Readiness

In school C, the researchers conduct a focus group interview

with seven Sec 3 students and find that all of them chose the

subject out of their interests in technology. They believe the

computing subject has met their interest and satisfied their

curiosity to technology after taking the subject for the whole

year. More surprisingly, the school actually does not provide

any computing related course at levels of Sec 1 or Sec 2.

These students’ interests derive more from their parents’

impact or future job considerations. Most of these students

claim that they would continue to study computing when

they are to be enrolled in polytechnic or university. They

have also been very active and highly motivated in

computing class. They tend to work in groups and initiate

their own discussions about the computational problems.

Peer learning has been undergoing when the high-achieving

students actively help the low-achieving students. Their

proficiency and creativity in coding has also been

surprisingly high as exhibited in their mini projects.

To meet the students’ need, the two teachers who co-teach

in this class intentionally enact their computing lessons at a

difficulty level a bit higher than the O-level computing

syllabus. However, they fell that their competency regarding

content and pedagogy is not sufficient to teach this group of

students as students always ask questions beyond their

capacities. They also found difficulties in designing suitable

practice tasks and exam questions for students. They rely a

lot on an online learning system for homework assignment

and grading which would save them time in grading

students’ codes. They complain that they do not have the

one-year training in teacher training institute on computing

like other subject teachers. Thus, they have to learn and

teach at the same time all by themselves.

Thus, school C has a situation where the students are more

ready to learn computing based on their own interests to an

extent whilst the teachers are not sufficiently ready to teach.

4.2. School D – High Student Readiness, High Teacher

Readiness

School D has two teachers and sixteen students in the

computing class. Both of the teachers have gone through a

computing education training course, which focuses mostly

on content knowledge rather than the pedagogy or the

knowledge about how to teach a specific computing topic.

The teachers have to enhance content delivery with their

own experiences in pedagogical aspects. Through the class

enactment, the leading teacher creates his own version of

unplugged activities (e.g., kinesthetic activities) to introduce

computing topics and motive students to explore, corporate

and present. He believes that communication and

presentation is key in computing subject instead of being a

silent coder who cannot make the design and solution to be

understood. As to the student feedback, they have developed

their interests in computing subject mainly because the

teachers are highly enlighteningly in helping them to realize

computing is to affect everybody’s life and what they have

learnt can be linked with real applications.

The 16 students in the computing class are mostly

considered by teachers as high achievers. They like the

computing subject since the interactive and immersive

process has made it more interesting and attractive

comparing to other O’ level subjects. In the focus group

discussion, they are confident and determined to be “A”

scorers in the coming O’ Level exam for computing subject.

Their concern are more with the opaque opportunities to

continue to learn computing subjects after secondary school

level.

Therefore, both teachers and students in School D have a

high level of confidence and competency in computing.

Comparing to other schools, they are capable to implement

computing curriculum mainly with their resources and

capacities.

5. DISCUSSIONS AND CONCLUSION
In this paper, we describe a survey study and an

ethnographic study on both perceived and in-situ readiness

in the implementation of the computing curriculum. We find

164

that the degrees of perceived and in-situ readiness of

teachers and students to teach and learn in computing subject

vary among the different schools. The factors influencing

students’ readiness have mainly been their interests,

motivation, and learning competencies. For teachers, their

degrees of readiness are more related to their beliefs,

teaching strategies, pedagogical preparations and available

teaching resources. Readiness towards computing of

teachers and students seem to be more self-initiated, rather

than school-initiated. A lack of systematic ways to prepare

more teachers and students to be enrolled in computing

subject, is perceived. Students need more resources to

cultivate their interests in computing, whilst teachers require

more training and teaching resources to develop adaptive

expertise to instruct different groups of students. The

schools also need to adopt more adaptive strategies for

different computing teachers and different groups of

students to maximize learning effectiveness.

6. REFERENCES

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., &

Engelhardt, K. (2016). Developing Computational

Thinking in Compulsory Education-Implications for policy

and practice. EdMedia 2016.

https://doi.org/10.2791/792158

Gal-Ezer, J., & Stephenson, C. (2014). A Tale of Two

Countries: Successes and Challenges in K-12 Computer

Science Education in Israel and the United States. ACM

Transactions on Computing Education, 12(2), 8:1–8:18.

García-Peñalvo, F., Reimann, D., Tuul, M., Rees, A., &

Jormanainen, I. (2016). TACCLE 3, O5: An overview of

the most relevant literature on coding and computational

thinking with emphasis on the relevant issues for teachers

KA2 project " TACCLE 3 – Coding " (2015-

1-BE02-KA201-012307), 72.

https://doi.org/10.5281/zenodo.165123.

Hodhod, R., Khan, S., Kurt-Peker, Y., & Ray, L. (2016).

Training Teachers to Integrate Computational Thinking

into K-12 Teaching. In Proceedings of the 47th ACM

Technical Symposium on Computing Science Education -

SIGCSE ’16 (pp. 156–157).

https://doi.org/10.1145/2839509.2844675

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory education:

Towards an agenda for research and practice. Education

and Information Technologies, 20(4), 715–728.

https://doi.org/10.1007/s10639-015-9412-6

Acknowledgements:

The work reported in this paper is funded by NIE grant OER

04/16 LCK. We thank Peter Seow and Wendy Leong for

their assistance in this research.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

165

中學資訊科技教師運算思維學科教學能力調查

蔡旻穎，吳正己
＊
，游志弘

國立臺灣師範大學

myt@ntnu.edu.tw，chihwu@ntnu.edu.tw，chihung@ntnu.edu.tw

摘要

臺灣 K-12 課程中的「資訊科技」科目新課綱是以培養

學生運算思維為主軸，預定於 2019 學年度實施，現職

資訊科技教師（computing teachers）能否掌握「資訊科

技」學科教學知識是新課綱實施成功的關鍵因素。本

研究以線上問卷調查方式讓中學資訊科技教師自我評

量其學科教學知識，共回收 50 份有效問卷。結果顯示，

整體上，教師自評之 PCK 足以勝任新課綱教學。在

「程式設計與運算思維」面向中的自評結果，資訊系

所畢業教師優於非資訊系所，高中教師優於國中教師，

而非師範體系畢業教師優於師範體系畢業教師。未來

建議擴大研究樣本，並透過訪談對教師的 PCK 做更深

入的分析。

關鍵字

資訊科技課程；學科教學知識；程式設計；運算思維

1. 前言

面對全球化競爭、培育國家人才需求及因應資訊科技

的迅速發展，包括美國、英國、德國、以色列和澳洲

等先進國家皆已重新調整資訊科技課程之理念與架構，

除獨立設立科技領域亦致力於推動資訊教育課程改革，

顯見資訊教育的發展已日趨重要。當前臺灣時值新課

綱的編修階段，在因應資訊科技日新月異、國際教育

發展潮流和強化臺灣未來競爭力之迫切需求下，已在

新課綱中增設「科技領域」，並規劃由「資訊科技」

與「生活科技」兩項學科組成，而資訊科技科目也被

列為中學教育階段之必修課程（教育部，2016）。此

外，有鑑於數位時代中運算思維於生活中密不可分，

臺灣將培養運算思維能力納入新制訂的資訊科技課程

中，期能有效培養學生運算思維，而學習程式設計為

實踐目標行之有效的根本途徑（林育慈、吳正己，

2016）。

Shulman（1986, 1987）將學科教學知識（pedagogical

content knowledge, PCK）界定為學科內容知識與教學知

識二者的融會，是教師教學專業的重要知識。各方學

者也針對教師應具備之 PCK 的知識種類、內涵、定義

及發展脈絡也分別提出不同闡釋（Grossman, 1988；

Tamir, 1988；Cochran, DeRuiter, & King, 1993）。PCK

共同核心為教師在面對各教學情境時，須能運用有效

的表徵方式和統整資源來呈現特定學科主題內容，同

時亦須掌握學生先備知識與學習困難，並據以轉化為

學生易理解之方式教學。NARST（National Association

for Research in Science Teaching）與美國 NRC（National

Research Council ） 所 提 出 之 國 家 科 學 教 育 標 準

（National Science Education Standards, NRC, 1996）亦

標榜 PCK 之重要性，並將之列為教師專業能力的評鑑

指標。

PCK 為特定學科教師應具備的知識，不同學科領域之

教師所須具備的 PCK 迥然有別。近年 PCK 的相關研究

早已在各學科領域中蓬勃發展，有些研究以質性方式

探討教師 PCK 的發展、PCK 對教學的影響、或比較資

深與新手教師間 PCK 的差異（Grossman, 1988；邱美虹、

江玉婷，1997）；有些研究以量化方式，讓學生填寫

量表或問卷，並輔以相關質性資料來了解教師的 PCK

表現（Lederman, Gess-Newsome, & Latz, 1994；王國華、

段曉林、張惠博，1988）。陳彥廷（2014）則以自行

編 製 的 MPCK （ Mathematics Pedagogical Content

Knowledge）量表提供國小數學教師自我評量 PCK能力。

有關「資訊科技」科目 PCK 的研究較少，相關文獻僅

發現對資訊科技教師專業能力模型（Competences for

Teaching Computer Science Model）及資深與新手資訊

科技教師分別應具備的 PCK 能力進行探討（Berges et

al., 2013；Margaritis & Magenheim, 2015），且研究內容

多側重於一般教師的教學知識要求，並非針對資訊科

技教師所持 PCK 進行探討。

面對新課綱的推展，課程中新的教學理念、教材與教

法，對教學現場的資訊科技教師均是新的挑戰和要求。

資訊科技教師必須熟悉資訊科技學科內容知識，了解

學科獨有的 PCK 來進行資訊科技教學。目前臺灣缺乏

資訊科技教師 PCK 的相關研究，對於現職資訊科技教

師 PCK 能力現況仍不明；進一步的，對教師「程式設

計與運算思維」面向 PCK 之掌握更是刻不容緩。本研

究旨以編製「資訊科技教師 PCK 自我評量問卷」，調

查臺灣現職中學資訊科技教師 PCK 之現況，並分析不

同的背景變項對教師在「程式設計與運算思維」面向

PCK 的影響，以提供因應新課綱實施資訊科技師教學

專業發展的參考。新課綱僅於中學有資訊科技課程，

本研究以中學教師為研究對象，茲列研究目的如下：

（一） 了解現職資訊科技教師學科教學知識現況。

（二） 探討不同背景的資訊科技教師在「程式設計與

運算思維」面向學科教學知識之差異。

2. 研究方法

2.1 研究參與者

本研究透過寄發電子郵件發送給各校資訊科技教師填

答，共有 74 位中學教師填答，61 份為完整填答問卷，

其中共有 50份有效問卷。填答者背景資料如表 1，包括

28 位男性及 22 位女性教師，任教學校教育階段分布平

均，國中教師（48%）、高中教師（52%）；填答者大

166

部分任教年資 6 年以上（86%），且大都畢業於資訊相

關系所（80%）。

表 1 研究參與者背景資料

背景變項 屬性 N %

性別
男 28 56.0

女 22 44.0

年齡
40 歲（含）以下 16 32.0

41 歲（含）以上 34 68.0

任教年資

1-5 年 7 14.0

6-15 年 7 14.0

16-25 年 20 40.0

25 年以上 16 32.0

畢業系所
資訊相關系所 40 80.0

非資訊相關系所 10 20.0

修畢教育專業

課程的學校

師範或教育大學 37 74.0

非師範或教育大學 13 26.0

修畢資訊專門

科目的學校

師範或教育大學 21 42.0

非師範或教育大學 29 58.0

任教學校教育

階段

國中 24 48.0

高中 26 52.0

學校位於臺灣

所在區域

北部 27 54.0

中部 11 22.0

南部 12 24.0

學校位於所在

縣市之

都會市區 30 60.0

一般鄉鎮地區 20 40.0

2.2 實施程序與工具

本研究分為四個階段進行：

(1) 定義資訊科技教師 PCK 內涵

參考相關文獻後將 PCK 歸納為六類知識面向，分別為

課程、學習者及其背景知識、學科整體知識、學科教

學方法與情境、程式設計與運算思維及學科學習成效

評估知識。

(2) 編製問卷題目初稿

以臺灣教育部（2016）「科技領域師資職前教育專門

課程規劃計畫」報告為主要架構，並參考「國小教師

數學教學知識（MPCK）知覺量表」（陳彥廷，2014），

針對各知識面向編製問卷題目初稿，共 40 題。

(3) 問卷定稿

邀請資訊教育專家學者及四位中學資訊科技教師，檢

視問卷內容並提供修改建議，修訂成正式問卷，定名

為「資訊科技教師 PCK 自我評量問卷」。問卷內容除

詢問教師基本資料外，包含六類知識面向的 PCK，共

有 38個自評問題。自評採 Likert 五點量表形式，以 1至

5 分分別表示：非常不同意、不同意、普通、同意及非

常同意等自評結果。另有一題開放式問題，調查教師

期望研習之教學專業發展課程主題。

(4) 實施問卷調查

蒐集中學資訊科技教師電子郵件地址，寄發邀請填寫

問卷函，請教師於線上填寫。撰寫本文時，共有 74 位

教師填寫問卷。

3. 結果與討論

資訊科技科目新課綱著重培養學生運算思維，本文結

果與討論將著重在資訊科技教師於「程式設計與運算

思維」面向之自評結果為主（3.2 及 3.3），惟仍將概略

呈現資訊科技教師在各知識面向之自評結果（3.1）。

3.1 各知識面向 PCK 自評結果

資訊科技教師 PCK自評結果如表 2。整體上，教師認為

他們具備的 PCK 能夠符合新課綱的教學需求，各知識

面向平均分數皆在 4 分（同意）左右；其中學科整體知

識（M = 4.09）得分最高，其次為學習者及其背景知識

（M = 4.03）。顯示教師認為自己已充分掌握資訊科技

學科知識體系，並瞭解學生學習相關的知識。平均最

低的項目為學科學習成效評估知識（M =3.85），顯示

教師們認為自己在學習評量方面的知識略顯不足。

表 2 各知識面向 PCK 自評結果（N = 50）

知識面向 題數 Mean SD

1. 課程 5 3.95 .55

2. 學習者及其背景知識 3 4.03 .53

3. 學科整體知識 6 4.09 .49

4. 學科教學方法與情境 14 3.88 .53

5. 程式設計與運算思維 7 3.89 .50

6. 學科學習成效評估知識 3 3.85 .60

3.2 「程式設計與運算思維」PCK 自評結果

教師於「程式設計與運算思維」面向各題自評結果如

表 3 所示。在程式設計部分，第 2 題到第 4 題平均分數

皆達到 4 分，表示教師普遍了解各類型程式設計學習工

具的特性，並能選用適合的學習工具，同時也理解學

生學習程式設計的困難。另外，「能否運用適當的策

略來教授程式設計」的得分相對較低（第 1 題，M =

3.76），這意味著教師對目前使用的教學法能否有效幫

助學生學習程式語言可能較無把握。由教師於開放問

題的填答亦獲得相呼應，多數教師表示希望有關單位

能提供程式設計教學法增能課程研習機會。

表 3 「程式設計與運算思維」面向自評結果（N = 50）

「程式設計與運算思維」面向 Mean SD

1. 我知道運用適當的策略來教授程式

設計。
3.76 .66

2. 我可以用不同的程式設計工具

（如：文字式、積木式、流程圖

等）來解決問題。

4.08 .75

3. 我能依學生程度選擇合適的程式設

計學習工具（如：文字式、積木

式、流程圖等）。

4.06 .68

4. 我知道學生學習程式設計時容易遭

遇的困難。
4.04 .75

5. 我了解運算思維的意涵。 4.00 .61

6. 我會設計培養學生運算思維的學習

活動。
3.84 .68

7. 我能結合其他學習領域於運算思維

教學。
3.44 .76

167

有關運算思維方面，教師認為自己是了解運算思維內

涵（第 5 題，M = 4.00），但在設計培養運算思維的學

習活動（第 6 題，M = 3.84）及結合其他學習領域於運

算思維教學（第 7 題，M = 3.44）的信心與教學知識略

顯不足。推論是由於運算思維是近年才被提出的概念，

過去未納入在師資培育課程中，顯然現職教師過去所

學未足能應付課程內容的變革，而此結果也反應在開

放式問題的回饋中，多數教師指出運算思維課程設計

為亟須增辦的研習主題。

除此之外，於「學科學習成效評估知識」的知識面向

中，其中一題項與運算思維相關，題目內容為「我能

選用合適的評量方法評出學生整合運算思維與資訊科

技來解決問題的能力」（M = 3.78），是該面向中平均

得分最低的項目，顯示教師對如何評估運算思維與問

題解決能力較無把握。何榮桂（2015）指出新課綱強

調兼重資訊科技之學科理論與實作，而兩者的評量方

式不盡相同，從實務面該如何評估運算思維能力，是

新課綱內容應具體示例說明，提供給教學現場教師有

所依循。

3.3 教師背景與程式設計與運算思維面向自評差異

此部分資料使用單因子變異數分析，探討資訊科技教

師不同背景變項對其「程式設計與運算思維」PCK 的

影響。

依「任教學生年段」背景變項的分析結果顯示，高中

教師在運用程式設計教學策略（F = 5.58, p < .05）、使

用程式設計工具（F = 14.36, p < .05）、依學生程度選

用程式設計學習工具（F = 8.18, p < .05）、了解學生學

習時容易遭遇的困難（F = 19.11, p < .05）、設計培養

運算思維的學習活動（F = 4.97, p < .05）和結合其他學

習領域於運算思維教學（F = 6.66, p < .05）上的自評結

果高於國中教師。

其次，在「畢業系所是否為資訊相關科系」背景變項

分析結果顯示，畢業系所為資訊相關科系之教師在依

學生程度選用程式設計學習工具（F = 6.29, p < .05）與

結合其他學習領域於運算思維教學（F = 4.49, p < .05）

上的自評結果高於非資訊相關科系畢業教師。

於「修畢教育專業課程之學校是否為師範或教育大學」

的背景變項結果顯示，非師範或教育大學修畢教育專

業課程之教師在結合其他學習領域於運算思維教學（F

= 5.47, p < .05）上的自評結果高於在師範體系修畢教育

專業課程之教師。

然而，不同性別、年齡、任教年資、修畢資訊專門科

目的學校屬性、任教學校位於臺灣所在區域與位於所

屬縣市之屬性等背景變項對教師在「程式設計與運算

思維」面向的自評結果無顯著的影響。

4. 結論與建議

由前述調查結果顯示，整體而言，資訊科技教師認為

他們能夠勝任新課綱的教學需求，尤其在資訊科技的

「學科整體知識」面向最佳，但在「學科學習成效評

估知識」面向則略顯不足。

在「程式設計與運算思維面向」之自評結果則顯示，

教師已掌握各類型程式設計工具特性和學生學習程式

設計時易遭遇的困難，且能依學生程度來選擇適合的

學習工具；而教師自我感覺在教授程式設計運用的教

學策略與方法為其次，運算思維是新興概念，雖然結

果顯示教師已了解運算思維的內涵，但過去未能在師

資職前課程中獲得有關教學專業知識，在運算思維課

程設計與評量工具的部分是亟待有關單位能增辦研習

活動，幫助教師專業成長。

不同背景之教師對「程式設計與運算思維」各題 PCK

之自評，因任教學生年段、畢業系所是否為資訊相關

科系、及是否為師範或教育大學畢業而有顯著差異。

建議未來研究應擴大問卷填答人數，並進行訪談，以

深入分析與釐清教師所具備的 PCK 全貌，據此針對不

同背景教師提供增能研習，以提升教師學科教學知識。

5. 參考文獻

王國華、段曉林、張惠博（1998）。國中學生對科學

教師學科教學之知覺。科學教育學刊，6(4)，363-381。

何榮桂（2015）。試論十二年國民基本教育「資訊科技」

課程綱要規劃草案。科學教育月刊，250，48-64。

邱美虹和江玉婷（1997）。初任與資深國中地球科學

教師學科教學知識之比較。科學教育學刊，5(4)，419-

459。

林育慈和吳正己（2016）。運算思維與中小學資訊科

技課程。教育脈動，(6)，5-20。

陳彥廷(2014)。國小教師數學教學知識 (MPCK) 知覺量

表發展之探究。測驗學刊，61(1)，51-78。

教育部（2016）。中華民國師資培育統計年報。臺北

市：教育部。

教育部（2016）。科技領域師資增能研析計畫結案報

告。未出版。

教育部（2016）。十二年國民基本教育課程綱要國民

中小學暨普通型高級中等學校科技領域（草案）。

2017 年 2 月 1 日，取自：國家教育研究院

http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229

_131308_94274.pdf

Berges, M. et al. (2013). Developing a competency model

for teaching computer science in schools. In Proceedings

of the 18th ACM conference on Innovation and

technology in computer science education (pp. 327-327).

ACM.

Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993).

Pedagogical content knowing: An integrative model for

teacher preparation. Journal of teacher education, 44(4),

263-272.

Grossman, P. L. (1988). A study in contrast: Sources of

pedagogical content knowledge for secondary

English. Unpublished doctoral dissertation, Stanford

University, Stanford, CA.

Lederman, N. G., Gess‐Newsome, J., & Latz, M. S. (1994).

The nature and development of preservice science

teachers' conceptions of subject matter and

http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf
http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf

168

pedagogy. Journal of Research in Science

Teaching, 31(2), 129-146.

Margaritis, M., & Magenheim, J. (2015, March).

Pedagogical content knowledge a comparative study

between CS pre-service teachers and experienced

teachers. In Global Engineering Education Conference

(EDUCON), 2015 IEEE (pp. 102-111). IEEE.

Shulman, L. S. (1986). Those who understand: Knowledge

growth in teaching. Educational researcher, 15(2), 4-14.

Shulman, L. (1987). Knowledge and teaching: Foundations

of the new reform. Harvard educational review, 57(1), 1-

23.

Tamir, P. (1988). Subject matter and related pedagogical

knowledge in teacher education. Teaching and teacher

education, 4(2), 99-110.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

169

基于计算思维培养的教师培训课程设计与实践

刘昱辛，陈桄
＊
，查思雨，张安琦

北京师范大学 教育技术学院

201622010028@mail.bnu.edu.cn, teastick@gmail.com, 18110027072@163.com, zhanganqi19950601@163.com

摘要

在新一轮修订的中国大陆高中信息技术新课标中，界
定了计算思维作为信息技术学科的核心素养要素而应
该被重点培养。但是就计算思维的培养而言，教师起
着至关重要的作用。本文在前人研究的基础上提出了
计算思维教师培训课程的四阶段模型，并根据此模型
设计开发了为时 4 天的 workshop 活动课程，探索了教
师在参与课程前后对计算思维的感知上的变化。结果
发现，通过此次培训，教师对计算思维的理解、自我
效能感发生了显著的变化，而内在动机和计算思维的
课程整合则无显著影响。

关键字

计算思维；教师培训；感知；

1.前言

计算思维是当前国际计算机界广为关注的一个重要概

念，也是当前计算机教育需要重点研究的重要课题，

是当前一个颇受关注的涉及计算机科学本质问题和未

来走向的基础性概念。1996年，麻省理工学院（MIT）

的西蒙派珀特最早提出这一概念，但在 2006 年 3 月，

美国卡内基梅隆大学的周以真教授在 ACM 会刊

《Communications of the ACM》上第一次将计算思维推

向前台。她认为，学会计算思维是在信息社会中创新

的需要。如同所有人都具备“读、写、算”（简称 3R）

能力一样，计算思维是必须具备的思维能力(Angel，

2016)。目前，计算思维已经引起了计算机科学家和教

育界人士的广泛关注。在新一轮修订的中国大陆高中

信息技术新课标中，界定了计算思维作为信息技术学

科的核心素养要素而应该被重点培养。但是就计算思

维的培养而言，编程教育是培养学生计算思维的有效

方式，对学生在计算思维的培养方面有着得天独厚的

优势，有利于培养学生的问题分析能力和问题解决能

力。

2017年 7月，国务院印发《新一代人工智能发展规划》，

明确指出人工智能成为国际竞争的新焦点，应逐步开

展全民智能教育项目，在中小学阶段设置人工智能相

关课程、逐步推广编程教育、建设人工智能学科，培

养复合型人才，形成中国人工智能人才高地。可见，

无论是国家的政策层面要求还是计算思维的内涵所在，

培养学生的计算思维都很有意义且迫在眉睫。在我国，

信息技术课主要承载着培养学生计算思维的主要任务。

但是本研究前期对北京市海淀区的信息技术教师（含

电教教师）进行了有关计算思维的调查（问卷详见附

录），结果显示虽然 95%的教师都认为很有必要为学

生开设计算思维相关的课程，但是 89.5%的教师没有接

受过这方面的学习以及不知道如何将其整合到自己的

课程中，基于此，本研究对如何开展计算思维的教师

培训课程进行了深入探究。

2.文献综述

2.1.计算思维

计算思维是计算机科学实践的核心，是 21 世纪数字公

民的一项基本素养。2006 年，美国卡内基梅隆大学周

以真（Jeannette Wing）教授提出，计算思维是运用计

算机科学的基本概念进行问题解决、系统设计与人类

行为理解的过程。2010 年，她再次补充定义计算思维

是一种解决问题的思维过程，能够清晰、抽象地将问

题和解决方案用信息处理代理（机器或人）所能有效

执行的方式表述出来(Wing, 2006)。计算思维提供了一

种能够广泛应用于工作、学习和生活中的组织与分析

问题的新视角，同时它可以连结计算机科学与其他学

科知识领域，突破了专业知识技能与思想的局限，促

使学习者进行技术使用者到创造者的角色转变。她还

提出计算思维包括算法、分解、抽象、概括和调试五

个部分。

2011 年，美国国际教育技术协会（International Society

for Technology in Education, ISTE）联合计算机科学教师

协会（Computer Science Teachers Association, CSTA）

基于计算思维的表现性特征，给出了一个操作性定义：

“计算思维是一种解决问题的过程，该过程包括明确问

题、分析数据、抽象、设计算法、评估最优方案、迁

移解决方法六个要素”。

虽然关于计算思维的定义，目前还没有达成共识，但

是周以真提出的计算思维所包含的 5 个要素得到了很多

研究者的认可。抽象，是指在解决问题时去掉次要的

细节；概括，是指总结、发现规律或相似点的过程，

发现整个大任务中已经熟知的部分，或者在其他地方

已经了解过的部分，进而使算法变的简单；分解，就

是将大的问题分成较小的部分，进而简化问题，更易

于向别人解释；算法，就是通过设计一系列具体有序

的步骤来解决问题；调试，就是不断发现错误、改正

错误的过程。综上所述，本研究认为计算思维是一种

包含抽象、概括、分解、算法和调试 5 个要素的问题解

决过程。

2.2.计算思维的研究现状－—K-12 阶段

计算思维往往和编程同时出现，Lye(2014)认为编程是

一项需要将问题进行抽象和分解的活动，使得学生进

行思考并因此促进计算思维能力的发展。Werner,

Denner, Campe, & Chizuru Kawamoto(2012)通过让学生

使用编程软件 Alice 完成特定的任务来衡量学生计算思

维能力的发展。很多研究者 (eg. Wilson, Hainey, &

Connolly(2013); Pardamean & Suparyanto(2015))认同这

170

一观点，同时也促进了编程工具在教育领域的发展。

目前比较流行的是图形化编程环境，如 Scratch, Alice,

Game Maker 等，这些工具对于初学者来说简单易用，

只用拖拽相应的模块就可以实现一些功能(Grover & Pea,

2013)。除此之外，美国《中小学计算机科学标准》分

阶段设计了计算思维的教学实施方案，建议在 K-6年级，

将学习内容设计成创造性和探究性活动，嵌入到社会

科学、语言艺术、数学和科学课程中；7-9 年级，学校

可以根据情况开设独立的计算机课程，也可以整合学

科内容到其他课程中；10-12 年级以必修课的方式达成

学习目标。

与美国混合式教学不同，英国则采取独立开课模式。

自 1988 年以来，信息技术课程就一直作为英国中小学

生的必修课程。为顺应时代发展，该课程先后经历了

从信息技术(Information Technology, IT)到信息通信技术

(Information and Communication Technology, ICT)，再到

计算(Computing)的变革。英国教育部于 2014 年 9 月引

入新的计算机教学大纲，将课程要求划分为四个阶段：

K-2 年级，理解算法概念，能够创建和调试简单的程序

等；3-6 年级，编程解决实际问题，了解计算机网络，

有效使用搜索技术等；7-9 年级，理解几个反映计算思

维的关键算法，掌握 1-2 门程序设计语言解决计算问题，

熟悉计算机组成等；10-11 年级，培养计算机科学、数

字媒体和信息技术的知识、能力和创造力，发展问题

分析、解决、设计和计算思维能力等。

2.3.计算思维的教师培训

教师学会将计算思维整合到课堂实践中对于培养学生

的计算思维是非常重要的（Prieto, 2014）。有研究者尝

试对职前教师和在职教师进行培训，如Blum (2007)通

过历时一周的工作坊活动，向教师们介绍计算思维以

及计算机科学与其他学科的联系，研究了工作坊活动

是否影响教师对计算机科学的认识，结果发现教师对

计算机科学的认识发生了显著地变化，并且愿意将计

算思维的相关内容整合到自己的教学实践中来，研究

者还发现在职教师想要更多的实践层面的指导以及更

多的教学资源。虽然很多研究都关注在职教师的专业

发展，但是很少呈现教师培训课程如何设计及实施状

况。Angeli等(2016)提出了k-6阶段的计算思维教学通用

框架，并从TPCK的角度出发，探讨了教师在进行计算

思维教学时应具备的基于计算思维的学习者知识、教

学法知识、技术知识和学科知识（见图1）。

图 1 TPCK 模型

3.研究目的

本研究设计教师培训课程帮助在职教师学习如何开展

计算思维课程，并且在课程实施的过程中，探索教师

在参加培训课程前后对计算思维的态度变化及自己的

理解。

4.研究过程

4.1.参与者

本研究的研究对象为北京市海淀区几所学校的在职教

师。这门课程是由海淀区教育科学研究院发起的，旨

在培训教师有关计算思维及相关课程的设计和实施，

推进人工智能的发展。选课人数为 27 人，去除未填写

前测问卷或后测问卷的教师，最终样本为 16 人，95%

的教师都在原学校教授信息技术或通用技术课程，其

中男生 9 人，占 56%；女生 7 人，占 44%。

4.2.研究流程

本研究的流程如图 2 所示。首先，研究者根据教师培训

的框架及计算思维的特性设计并开发出培训课程；然

后，在课程实施之前，对教师进行前测，包括计算思

维的理解、自我效能、参与培训的内在动机及对计算

思维的课程整合的看法等；接下来，实施培训课程，

整个培训课程历时四天，以 workshop 的形式开展，不

仅有个人的学习，也有小组的挑战任务；最后对教师

进行后测及访谈。

图 2 研究流程图

4.3.课程设计

本课程设计基于的学习工具为 Swift Playgrounds，这是

一款在 ipad 上使用的 app，让编程变得更加轻松、灵活。

学习者可以一边写代码，一边看到代码造就的成果，

并且大量运用所熟知的单词和词组，学生通过钻研并

打通一个又一个关卡，不断完善编程技巧，逐步夯实

编程知识的基础。但是，在完成项目的时候，编程只

是所需能力中的一小部分，更重要的是实施的策略、

寻找错误和解决问题的能力、分享和协作的能力以及

面对挑战的能力等，这些也是非常重要的。

本研究在 TPCK模型的基础上，结合计算思维的特点，

提出了计算思维教师培训的四阶段模型，见图 3。

171

图 3 教师培训四阶段模型

第一阶段是让教师了解计算思维的相关理论，包括计

算思维的概念、计算思维对于学生发展的重要意义等；

第二阶段，让教师学会使用 Swift Playgrounds，知悉其

中所包含的编程的基本知识和方法，如算法、序列、

条件、判断和调试等；第三阶段，让教师掌握使用该

工具开展课程教学的策略、过程和方法等；第四阶段，

也即培训过程中需要达到的最高目标，让教师学会开

发计算思维课程（基于任一学习工具），四个阶段的

难度是逐级递增的，因此达到不同阶段目标的教师的

数量也是不同的。

需要特别说明的是，对编程基本知识学习的过程中，

教师学习知识只占其中的一小部分，更多的是了解课

程是如何设计的、是怎样培养计算思维的不同要素以

及思考怎么将此课程带到原学校实施。第四天的课程

开发阶段，教师需要选取以往自己设计的教案，带到

培训课堂上，用培训课程中学到的相关知识重构自己

原来的课程，通过分享和交流实现碰撞。

4.4.研究工具

本研究所用的计算思维感知量表改编自(Yadav, Zhou,

Mayfield, Hambrusch, & Korb, 2011)和(Shim, Kwon, &

Lee, 2017)的量表。该量表主要测量学习者对计算思维

的理解、自我效能、参与培训的内在动机以及对计算

思维的课程整合的看法四个维度，共 15 道题，采用李

克特5点量表，包括“完全不同意”、“比较不同意”、“同

意”、“比较同意”、“完全同意”五个选项，分别计 1-5分，

分数越高表明学习者的计算思维感知越好，问卷的前

后测信度系数分别为 0.838 和 0.876，表明信度良好。

5.研究结果

本研究采用 SPSS20.0 对数据进行处理和计算，采用配

对样本 t 检验对教师参加培训前后对计算思维的感知结

果进行分析，以检验培训课程对教师计算思维的的理

解、自我效能、内在动机、课程整合等的影响。表 1 是

计算思维感知量表四个维度前后测量的结果。在对计

算思维的理解上，sig=0.001(<0.05)；在自我效能感这

一维度上，sig=0.006(<0.05)；而内在动机和课程整合

方面，sig 值分别为 0.931 和 0.188。可以看出在参与培

训前后，教师对计算思维的理解和自我效能感发生了

显著的变化，显著提高；而在内在动机及计算思维的

课程整合方面没有显著的影响。

表 1 计算思维感知前后测配对样本 t检验结果

6.讨论

本文探索了如何设计有关计算思维的教师培训课程，

企图让教师明确计算思维的要素以及整合到课堂中来，

是培养学生计算思维的重要一步。通过结果分析，初

步证明了该培训课程对于教师的计算思维的感知上的

影响，教师对计算思维的概念和对学生的重要意义有

了更加深刻的理解、通过短期的培训使得教师相信自

己能做好此方面的工作，但是内在动机没有变化，可

能跟培训的时长较短有关系。其次，就计算思维与其

他课程的整合而言，由于目前国内缺少优秀的整合案

例，不能在培训过程中给教师以更加针对性地指导，

只能教师之间讨论重构课程的难处和方法，这在一定

程度上限制了教师对于课程整合的态度和能力发展。

通过访谈可知，大多数教师更喜欢参与性、互动性比

较强的培训课程，如果在学习的过程中，动手实践并

有适当的产出，则会大大激发教师们的学习热情；他

们非常认可培训课程中所用到的教学工具－ Swift

Playgrounds，认为其比较适合中小学生学习编程，弥

补了目前可视化、拖拽式工具的不足，为学生之后过

渡到纯代码层面的编程很有帮助。虽然国家在大力提

倡人工智能、强调计算思维对于学生发展的重要性，

但是就计算思维的培养而言，目前大多数教师的知识

储备和认识都有待更新，只有通过系统地学习，才能

更好地推动落地。除此之外，一些教师表示，领导不

重视、课时有限以及缺少相应的软硬件的支持，都是

限制因素。就培训课程而言，提高教师的参与热情、

提供更多的教师交流平台和相关的教学资源是改进此

课程的方向之一。针对软硬件皆能保障的学校，本着

教师自愿报名参与的原则，发展第一批“种子教师”，试

点尝试利用本次培训中学到的有关计算思维课程实施

的策略和方法进行开课，并且将学生参与课程的反馈、

教学反思和经验等分享给其他教师，这是后续培训课

程的发展方向，也是本研究未来的研究方向。

维

度

类别 人

数

均值 标准

差

 t Sig.(

双侧)

CT

的

理

解

前-后 16 -.334 .322 -4.142 .001

自

我

效

能

前-后 16 -.562 .704 -3.195 .006

内

在

动

机

前-后 16 -.019 .856 -.088 .931

课

程

整

合

前-后 16 -.188 .544 -1.379 .188

172

7.參考文獻
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-

Smith, J., & Zagami, J. (2016). A K-6 Computational

Thinking Curriculum Framework: Implications for

Teacher Knowledge. Journal of Educational Technology

& Society, 19(3), 47–57.

Blum, L. (2007). CS4HS: An Outreach Program for High

School CS Teachers. 收入 Teachers”, Proceedings 38th

ACM Technical Symposium on Computer Science

Education.

Lye, K. (2014). Review on teaching and learning of

computational thinking through programming: What is

next for K-12? Computers in Human Behavior, 41, 51–61.

Prietorodriguez, E., & Berretta, R. (2014). Digital

technology teachers' perceptions of computer science: It is

not all about programming. Frontiers in Education

Conference (pp.1-5). IEEE.

Werner, Denner, Campe, & Chizuru Kawamoto. (2012). The

fairy performance assessment: Measuring computational

thinking in middle school. SIGCSE’12 - Proceedings of

the 43rd ACM Technical Symposium on Computer

Science Education.

Wilson, A., Hainey, T., & Connolly, T. (2013). Using

Scratch with Primary School Children: An Evaluation of

Games Constructed to Gauge Understanding of

Programming Concepts. International Journal of Games-

based Learning, 3, 93–109.

Wing, J. (2006). Computational thinking. Communications

of the ACM.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,

J. T. (2011). Introducing computational thinking in

education courses. 收入 ACM Technical Symposium on

Computer Science Education (页 465–470).

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

173

國小師資生 Code.org運算思維課程實作與成效探討

李政軒
*
，楊智為，郭伯臣

教育資訊與測驗統計研究所

臺灣臺中教育大學

chenghsuanli@gmail.com，yangcw@mail.ntcu.edu.tw，kbc@mail.ntcu.edu.tw

摘要

本研究在師資培育大學中，實施了運算思維課程並探

討師資生的學習成效。運算思維是 21 世紀中，教師必

須要學習和教育兒童的重要技能之一。在臺灣十二年

國教中，也強調其重要性並制定對應的能力指標。故

影響了近來老師培訓和師培教育。然而，懂得如何教

運算思維的教師甚至能將運算思維融入課程的教師仍

為少數。本研究利用Code.org運算思維課程，培訓師資

生 12 小時，讓其了解運算思維定義，並透過可視化代

碼和圖形編程模塊進行練習。根據 15 位師資生前測與

後測結果，發現前後測成績有顯著差異。因此應用

Code.org 運算思維課程能有效地提高運算思維的學習成

效。

關鍵字

運算思維；Cord.org；師資生；國民小學。

1. 前言

運算思維(Computational Thinking)是一種問題解決的思

考過程，透過「問題分解(Problem Decomposition)」來

將複雜和開放性問題分解成數個較小但較容易處理的

小部分來闡述問題，並透過「演算法設計和程序

(Algorithm Design and Procedure)」的開發，解決這些小

部分問題的系統方式與電腦可以處理的步驟，告訴電

腦如何去處理並協助解決問題。運算思維幾乎可以協

助所有學科的解決問題，包括數學，科學和人文科學。

在課程中學習運算思維的學生可以開始看到學科之間

以及學校和課外生活之間的關係 (Wing, 2006; Wing,

2011; ISTE & CSTA, 2011; Barr & Stephenson, 2011; Lee,

Martin, Denner, Coulter, Allan, Erickson, Malyn-Smith, &

Werner, 2011; Aho, 2012; Grover & Pea, 2013; Google,

2016)。

國際教育技術教育協 (The International Society for

Technology in Education, ISTE)，計算機科學教師協會

(Computer Science Teachers Association, CSTA)和英國計

算學校(The UK Computing at School, CAS)工作組與教育

和工業代表合作，為教育工作者開發運算思維的教學

資源(ISTE & CSTA, 2011; CAS, 2014; ISTE, 2016; Google,

2016)。美國總統歐巴馬也在 2014 年親自錄製影片宣傳

「Hour of Code」，期藉由程式設計輔助運算思維所需

的認知任務工具並展現運算思維能力(林育慈、吳正己,

2016)。由此可知，許多國家都紛紛推展運算思維，顯

示運算思維的重要性。

在臺灣國家教育研究院「十二年國民基本教育課程綱

要國民中小學暨普通型高級中等學校科技領域草案」

中也提到，資訊科技課程發展需關照科技與科學、數

學、社會、藝術領域間的統整，課程設計將以「運算

思維」為主軸，透過電腦科學相關知能的學習，培養

邏輯與系統化思考等「運算思維」能力，並透過資訊

科技 之設計與問題實作，提升學生「運算思維」的應

用能力、問題解決能力、團隊合作能力與創 新思考能

力(國家教育研究院, 2016a)。

故本研究在臺灣師資培育大學中，利用Code.org運算思

維課程，針對師資生(具有修習師資職前教育課程資格

的學生)進行 6 週共 12 小時的課程，再搭配前測與後測，

來了解師資生在運算思維技能的提升狀況。

2. 文獻探討

2.1. 運算思維
隨著電腦與網路科技的快速進步，目前資訊的大量流

通與改變快速，培養學生擅用電腦和網路，是新時代

教育的一個重要內容。今天的資訊科技，透過機器學

習、人工智慧的技術，打造出具有智慧的機器人，可

以回答艱澀問題，甚至 AlhpaGo 以 4:1 的成績戰勝人類

頂尖棋手李世石。但這些技術是人類科學家演算法和

智慧的結晶，電腦通過深度學習技術，在大數據的支

撐下，可以做出更理性和精准的判斷，然而這一切，

都是利用程式設計來實現。程式設計思維就猶如智力

體操，並非要栽培未來的程式設計師，而是為了培養

孩子的運算思維，開拓更寬廣的學習途徑，學習創意

思考、有系統的推論、團隊合作並借助電腦實作解決

問題能力，這些技能不僅在各專業領域都受用無窮，

更是生活中不可或缺的能力。(劉耘, 2013; 洪士灝, 2016;

葉丙成, 2016; 尚吉剛, 2016)。

Zhong, Wang, Chen, & Li (2016)分析了運算思維定義提

出三個觀點，分別為運算思維是問題解決的過程、形

式的表達與三維架構(Brennan & Resnick, 2012)包含「概

念 (Concepts) 」 、 「 實 踐 (Practices) 」 與 「 視 野

(Perspectives)」(圖 1)。

A. 概念：學生在設計演算法會用到的程式概念，包含

「物件 (Objects)」、「指示 (Instructions)」、「序列

(Sequences)」、「迴圈(Loops)」、「事件(Events)」、

「條件(Conditionals)」與「運算(Operations)」。

B. 實踐：學生在利用概念設計與測試演算法會用到的

步驟，包含「抽象化(Abstraction)」希望能從具體問題

或特定實例中萃取理解和解決問題的相關資訊、基本

要素、共同特徵或動作來簡化問題。(Wing, 2006; ISTE

& CSTA, 2011; Barr & Stephenson, 2011; Lee et al, 2011;

Grover & Pea, 2013; Google 2016)、「演算法設計和程序

174

(Algorithm Design and Procedure) 」透過建立一系列有序

的指令建立解決問題的工具來執行任務以達成部分目

標 (ISTE & CSTA, 2011; Grover & Pea, 2013; Google,

2016)、「資料表示(Data Representation) 」指能了解不

同格式資料，有邏輯地組織和分析資料，並採用適當

的圖形、圖表、文字或圖像來描述和組織數據(ISTE &

CSTA, 2011; Barr & Stephenson, 2011; Google, 2016)、

「問題分解(Problem Decomposition) 」能將資料、處理

過程或問題分解成數個較小可管理且容易處理的部分

(Wing, 2006; Barr & Stephenson, 2011; Google, 2016)、

「 模 式 辨 識 和 一 般 化 (Pattern Recognition and

Generalization)」透過觀察資料模式，找出資料趨勢和

規律，來建立模型、規則、準則或理論，仿照現實狀

況建立模擬資料，並使用條件、迴圈、遞迴或迭代方

式來藉此驗證一般化的預測結果與解決問題 (ISTE &

CSTA, 2011; Google, 2016)。

C. 視野：學生透過表達、連結與詢問來形成對於現實

世界問題的觀點，包含「創意和表達 (Creative and

Expressing) 」 、 「 溝 通 和 合 作 (Communicating and

Collaborating) 」、「理解和質疑 (Understanding and

Questioning)」。

圖 1 本計畫採用之運算思維三維度架構

2.2 Code.org 課程
美國非營利組織 Code.org 發起的編寫程式活動「Hour

of Code」(圖 2)，讓學童透過活潑有趣的方式，在程式

遊戲中嘗試、探索與創造，培養運算思維、想像力以

及解決問題的能力， 並在熟悉程式設計的基本概念同

時，讓學童提早具備面對國際競爭的能力。小朋友可

以用視覺程式語言，透過簡單的搬移拖拉方式，來建

立演算法的區塊，學習用邏輯性的語言來思考與解決

問題(Code.org Teacher Community, 2016; Google, 2016)。

(a) 課程操作畫面 (b) 堆疊後的程式碼

圖 2 Hour of Code 中的 Write your first computer program

課程

Code.org 針對不同年齡層的學生提供完整的運算思維課

程，其中「課程 1」是針對年齡 4-6 歲的學生，裡面的

程式區塊，大多是採用可視化的圖形介面，降低學生

的閱讀負擔。課程 2 是適用於年齡 6 歲以上的學生，除

了學生須具備基本閱讀能力外，也提高了區塊的使用

難度，例如增加轉向的概念。課程 3 則是課程 2 的延續

課程，其年齡設定為 8~18歲的學生。課程 4則是課程 2

與課程 3 的進階課程，裡面包含更複雜的程式設計概念，

還包括帶有參數的函式。

圖 3 Code.org課程 1 的部分課程介面

除此之外，Code.org 也針對教師角色進行介面設計，學

生可以透過課程代碼，直接與老師指定課程連結。老

師因此可以看到學生的學習進度，作答狀況，甚至給

予學生測驗或額外課程。

目前已經有研究顯示，在 K12學生採用 Code.org，並解

發現學生在使用Code.org課程訓練運算思維能力時，對

於程式語言會抱持比較正面的態度，且男女生之間的

能力相當(Kalelioğlu, 2015)。有鑑於 Code.org 的課程已經

提供 4-18 歲學生相關的課程，因此第一線的老師可以

很容易利用相關課程來提升 K1~K12 學生運算思維能力。

因此，本研究認為讓目前師資生了解何為運算思維、

提升其運算思維能力、使用Code.org教授運算思維利，

是目前師資培育大學重要的課題之一。

3. 研究方法

本研究的參加對象為臺灣中部某一所師資培育大學，

在教育學群的選修課程「教學媒體與運用」導入 6 週共

12 小時的運算思維課程，共有 15 位學生完整參與課程

175

與前後測驗。運算思維課程是根據 Code.org課程 3提供

的單元內容，包含「運算思維介紹」、「函式」、

「條件判斷」、「巢狀迴圈」、「條件迴圈」與「除

錯」等。

由於本課程之目標除了加強師資生運算思維技能外，

也需要要培養師資生教授運算思維課程的能力。因此，

老師在授課時，除了讓學生進行 Code.org 課程 3 課程

外，也需而外花時間教導學生如何利用Code.org開設課

程，與觀看學生學習狀況，如學生學習進度、回應、

評量/調查等。

在課程實施前，本研究根據運算思維定義中的概念與

實踐(圖 1)，並參考國際運算思維挑戰賽，設計了兩套

互為複本的測驗。其中一套為前測測驗，待完成 6 週課

程後，在進行後測測驗。每套測驗共有 25 道式題，作

答時間設定為 60 分鐘。為了能夠判斷學生運算思維成

績的題生狀況，會要求學生認真作答，若不會作答，

請跳過該題，不要硬猜答案。表 1 為本研究開發部分前

後測試題與其對應的到運算思維概念與實踐技能對照

表。

表 1 部分前後測試題與其對應的到運算思維概念與

實踐技能對照表

試
題
編
號

概念 實踐

物
件

指
示

序
列

迴
圈

事
件

條
件

運
算

抽
象
化

演
算
法
設
計
和
程
序

資
料
表
示

問
題
分
解

模
式
辨
識
和
一
般
化

1 V V

2 V

4 V

5 V

8 V V

9 V V

10 V V V

11 V V V

13 V

14 V

15 V

16 V V

22 V V

23 V

24 V

25 V

4. 實驗結果

本研究使用之前測與後測試卷的信度 Cronbach 值

分別為 0.800與 0.835，皆高於 0.8，故前後測試卷屬

於高可信度。因此，本研究採用 15 位學生在 25 題

式題的前測與後測總分來進行成對 t考驗分析，藉此

探討師資生透過 Code.org 課程 3 學習後，其運算思

維概念與實踐技能是否有提升。

表 2 為 15 位學生的前後測成對 t 考驗分析表，其中

15 位學生的前測平均為 57.6 分，後測平均為 63.2 分，

所以後測平均與前測平均差為 5.6 分，其 t 值為 1.86，

p 值為 0.04 小於顯著水準 0.05。

表 2 前後測之成對 t 考驗分析表

前測

平均

後測

平均

後測平均

-前測平

均

t
顯著性

(單尾)

57.6 63.2 5.6 1.86* 0.04

5. 結論
本研究將 Code.org 運算思維課程導入師資培育課程，

希望能藉此提升師資生運算思維能力，並讓師資生

了解如何透過 Code.org 課程來教授學生運算思維技

能。透過 6 週共 12 個小時的教學，初步分析結果顯

示，師資上在運算思維的能力有顯著進步(t=1.86*)。

故建議師資培育大學可以考慮將 Code.org 導入課程

之中，除了能夠教導師資生運算思維概念與提升師

資生運算思維能力外，也可以培養師資生透過

Code.org 課程來教授運算思維的能力。

這個研究為初步研究，在課程實施過程中，一開始

師資生接觸可視化代碼和圖形編程模塊進行運算思

維課程時，是具有高度興趣的。但隨著重複在電腦

上的課程訓練，師資生在學習上會漸漸對這樣的課

程失去興趣，產生疲乏。故未來建議可以在課程當

中增加一些不插電的活動，提高老師與師資生之間

的互動，維持師資生的學習興趣。

6. 致謝
本研究由臺灣科計部計畫編號 MOST 106-2511-S-

142-003-MY3 補助支持，特此誌謝。

7. 參考文獻
尚吉剛(2016 年 12 月 6 日)。從《我的世界》到《西

部 世 界 》 ， 代 碼 將 構 建 未 來 。 取 自

http://it.sohu.com/20161206/n475107684.shtml

林育慈、吳正已(2016)。運算思維與中小學資訊科

技課程。國家教育研究院教育脈動電子期刊，6。取

自 http://pulse.naer.edu.tw/Home/Content/6fe1eedf-

10a1-4e1e-890e-dbbec8ce0647?paged=1&ins

Id=40977899-d342-4f01-94a7-66d446c9d3bb

176

洪士灝(2016 年 4 月 24 日)。創客時代的計算思維與

科 技 教 育 。 火 箭 科 技 評 論 。 取 自

https://rocket.cafe/talks/75328

國家教育研究院(2016a)。十二年國民基本教育課程

綱要國民中小學暨普通型高級中等學校科技領域(草

案)。教育部。

葉丙成(2016 年 6 月)。葉丙成：學程式者，能成麒

麟之才？親子天下。

劉耘(譯)(2013 年 2 月 14 日)。人人都該學程式設計。

TEDxTaipei。

Aho, A. V. (2012). Computation and computational

thinking. Computer Journal, 55, 832-835.

Barr, V. & Stephenson, C. (2011). Bringing

Computational Thinking to K-12: What is Involved and

What is the Role of the Computer Science Education

Community? ACM Inroads archive, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of

computational thinking. Proceedings of the 2012

annual meeting of the American Educational Research

Association, Vancouver, Canada.

CAS (2014). Computational Thinking. Retrieved from

http://barefootcas.org.uk/barefoot-primary-

computing-resources/concepts/computational-

thinking/

Code.org Teacher Community (2016, July 13). Try Pair

Programming—track the progress of multiple students

using one computer! Retrieved from

http://teacherblog.code.org/post/147349807334/try-

pair-programmingtrack-the-progress-of

Google (2016). Games for tomorrow’s programmers.

Retrieved from

Grover, S., & Pea, R. (2013). Computational thinking in

K-12: Review of the state of the field. Educational

Researcher, 42(1), 38-43.

https://blockly-games.appspot.com/?lang=en

ISTE & CSTA (2011), Computational thinking: Teacher

resources (2nd ed.).Retrieved from

http://csta.acm.org/Curriculum/sub/CurrFiles/472.11C

TTeacherResources_2ed-SP-vF.pdf

ISTE (2016). COMPUTATIONAL THINKING FOR

ALL. Retrieved from

https://www.iste.org/explore/articledetail?articleid=15

2

Kalelioğlu, F. (2015). A new way of teaching programming

skills to K-12 students: Code. org. Computers in Human

Behavior, 52, 200-210.

Lee, L., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Malyn-Smith, J., and Werner, L. (2011).

Computational thinking for youth in practice. ACM

Inroads, 2(1), 32-37.

Wing, J (2011). Research notebook: Computational

thinking-What and why? The Link Magazine,Spring.

Carnegie Mellon University, Pittsburgh.

Wing, J. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Zhong, B.C., Wang, Q.Y., Chen, J., & Li, Y. (2016). An

Exploration of Three-Dimensional Integrated

Assessment for Computational Thinking. Journal of

Educational Computing Research, 53(4), 562-590.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational

Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

177

Designing Computational Thinking Assessment:

A Case Study of a Pre-Service Teacher Course in Korea

Mi Song KIM1*, Hyungshin CHOI2

1 University of Western Ontario

2 Chuncheon National University of Education

mkim574@uwo.ca, hschoi@cnue.ac.kr

ABSTRACT

This case study reports a pilot study of designing

computational thinking (CT) assessment instruments in a

per-service teacher course in Korea. We describe the

implementation of a CT course for pre-service teachers who

did not major computer science. We report two instruments:

a survey and a team project guideline. The results suggest

that two assessment instruments have the potential to help

pre-service teachers gain self-confidence and become

motivated to incorporate CT concepts across all disciplines.

KEYWORDS

computational thinking, assessment, pre-service teachers,

multimodal representation

1. INTRODUCTION
With the ever increasing need for teaching computational

thinking (CT) to learners of the digital age, teacher educators

need to develop a curriculum to enable teachers and teacher

candidates “to better conceptualize, analyze, and solve

complex problems by selecting and applying appropriate

strategies and tools” (Computer Science Teachers

Association, 2011, p. 9). In this light, much attention has

been paid to the design of K-12 CT curricula in many

countries including South Korea (Heintz, Mannila, &

Farnqvist, 2016) as we are discovering the positive effects

of computer programming in K-12 education. However, it

has been a challenge to better prepare pre-service teachers to

embed CT activities across subjects and contexts (Kazakoff

& Bers, 2012). To address this challenge, this case study

aims to design and implement CT assessments for Korean

pre-service teachers who did not major computer science.

2. LITERATURE REVIEW
Computational thinking (CT) was first used by Papert (1996)

in an article about mathematics education. However, a

definition for this term was not provided until years later

when Wing (2006) mentioned it to entail “solving problems,

designing systems, and understanding human behavior, by

drawing on the concepts fundamental to computer science”

(p. 33). With the clear rise in the importance of CT, many

countries are introducing computing as a core curriculum

subject (Heintz, Mannila, & Farnqvist, 2016).

However, bringing CT into teacher education is at its early

stages of development and lacks curriculum studies to

design teacher education (Yadav et al., 2011) and assess the

development of CT (Brennan & Resnick, 2012). Although

CT is considered to be critical 21st competencies, little is

known about how to assess CT expertise development (Lye

& Koh, 2014).

3. THE STUDY & METHOD
This case study was part of a series of design-based research,

and in this paper, we report only designing CT assessment

instruments for pre-service teachers at a national university

of education in Korea. In order to design a survey

instrument, we have incorporated the five sub-components

of CT derived from a meta-analysis conducted by Selby and

Woollard (2010). We have also added categories to make it

applicable for pre-service teachers’ CT courses (i.e.,

programming course, problem solving via CT, etc.).

Further, we have developed ‘a team project guideline’ for

pre-service teachers when they present their team projects

(i.e., animations, games, quizzes, etc.) based on their

understanding of core CT concepts. This team project

guideline aimed to help pre-service teachers to reveal their

comprehension of CT explicitly and to collaboratively

reflect on their CT team projects.

4. RESULTS
The survey instrument with 15 items on a 4-point Likert

scale (1 = strongly disagree, 2 = disagree, 3 = agree, 4 =

strongly agree) was developed to assess CT skills. There are

three categories in the survey: the degree of experiencing CT

during the course, self-efficacy of teaching CT, and CT

transfer. Each category has five items pertaining to five sub-

components of CT: algorithmic thinking, evaluation,

problem decomposition, abstraction, generalization. For

example, self-efficacy includes “if I teach elementary

students Scratch programming in the future, I would be able

to help them to solve problems with algorithmic thinking”.

Overall, pre-service teachers reported positive experiences

in terms of high level of CT concepts, self-efficacy and

prospective use of CT. More detailed results will be reported

somewhere else. A team project guideline was developed for

pre-service teachers to reveal their ability to think

computationally while preparing for a presentation of their

programming projects.

The guideline included the five sub-components of CT

(algorithmic thinking, evaluation, problem decomposition,

abstraction, generalization) as well as a description of the

problem, sprites (or images), background, variables, roles of

team members and reflection. Figure 1 shows an example

created by a team from a preliminary study using Scratch

programming: breaking the problems into smaller problems

and defining each smaller problem.

178

Figure 1. Scratch team projects.

5. CONCLUSION & DISCUSSION
The results suggest that two assessment instruments have the

potential to help pre-service teachers gain self-confidence

and become motivated to incorporate CT concepts across all

disciplines. The instruments were designed to assess the

impact of the CT instruction using Scratch programming for

pre-service teachers who did not major computer science. In

particular, collaboratively incorporating the team project

guideline in a team allowed pre-service teachers to critically

reflect on their learning progress and intensify collaborative

efforts. Further, in addition to written language, they

effectively incorporated multimodal representation (e.g.,

visual images) to communicate their CT concepts. Drawing

upon this finding, we will continuously design another cycle

of design-based research to initiate a student-generated

rubric for CT assessment to promote student agency,

collaboration, and multimodal representation.

6. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks for

studying and assessing the development of

computational thinking. Paper presented at the American

Educational Research Association. Canada: British

Columbia

Computer Science Teachers Association. (2011). CSTA K-

12 computer science standards. Retrieved from

https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K

-12_CSS.pdf

Heintz, F., Mannila, L., & Farnqvist, T. (2016). A review of

models for introducing computational thinking,

computer science and computing in K–12 education.

Paper presented at 2016 IEEE Frontiers in Education

Conference.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics

context in the Kindergarten Classroom. Journal of

Educational Multimedia and Hypermedia, 21(4), 371-

391.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and

learning of computational thinking through

programming: What is next for K-12? Computers in

Human Behavior, 21, 51-61.

Papert, S. (1996). An exploration in the space of

mathematics educations. International Journal of

Computers for Mathematical Learning, 1(1). doi:

10.1007/bf00191473

Selby, C. C., & Woollard, J. (2010). Computational

thinking: The developing definition. SIGCSE 2014.

Wing, J. M. (2006). Computational thnking.

Communications of the ACM, 49(3), 33-35.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,

J. T. (2011). Introducing computational thinking in

education courses. Paper presented at the Proceedings of

the 42nd ACM technical symposium on Computer

science education.

https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

179

Which Parts of Computer Science Concepts Do Future Teachers Identify? First

Results of a Part-Whole-Thinking Analysis in Computer Science Education

Nils PANCRATZ*, Ira DIETHELM

Department of Computing Science

University of Oldenburg, Germany

nils.pancratz@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de

ABSTRACT

The ability to detect Part-Whole-Relationships and to

interconnect these to an organized structure is one of the core

cognitive processes through which knowledge is acquired.

However, the sharing of this capability, which belongs and

relates to Computational Thinking skills and is called Part-

Whole-Thinking, is lining up behind the conveyance of

content in Computer Science classes and courses still. In

order to support a more vigorous inclusion of Part-Whole-

Thinking into Computer Science Education, various aspects

need to be considered and investigated in the first place. The

Model of Educational Reconstruction for Computer Science

Education illustrates the elements to be taken into account

when designing and arranging Computer Science lessons

and courses. One of the elements under consideration is the

investigation of the teachers’ perspectives. The contribution

at hand presents first results of an analysis of future teachers’

Part-Whole-Thinking of Computer Science Concepts.

KEYWORDS

Part-Whole-Thinking, Computational Thinking, Computer

Science Education, Teachers’ Perspectives, Model of

Educational Reconstruction

1. INTRODUCTION
Part-Whole-Relations play a decisive role in cognitive

processes that are inevitably involved in understanding

various objects, systems, processes, definitions, and

concepts (Gerstl and Pribbenow, 1995). The essential ability

of Part-Whole-Thinking (PWT) belongs to core concepts of

Computational Thinking (CT) as originally defined by Wing

(2006). Since many Information Technology devices make

use of Part-Whole-Relationships, these need to be

adequately included in explanations in Computer Science

(CS) classes. Rao and Shafique (Rao, 2005; Shafique and

Rao, 2006) could already successfully improve their

students cognitive learning processes by including PWT in

their CS courses. The benefits they noticed mainly included

improved thinking skills in the students and an improvement

in teaching skills (Rao, 2005). But as the lack of publications

on this subject since 2006 shows, their attempt “to bring

these issues to the notice of the computer science

community” (Rao, 2005, p. 173) has been in vain. Many

different aspects have to be considered when supporting a

more vigorous inclusion of PWT or “the transfer of

knowledge from research to the classroom” (Diethelm,

Hubwieser, and Klaus, 2012, p. 164) in general. To illustrate

these facets for Computer Science Education (CSE),

Diethelm, Hubwieser, and Klaus (2012) extended the Model

of Educational Reconstruction. One of the aspects they

included concerns the investigation of teachers’

perspectives. This issue is especially important for the

design and arrangement of CS lessons and courses, since CS

teachers generally have very different educational

backgrounds and qualifications (ibid., p. 167). They “regard

the teachers’ perspective as a key factor for the design of

lessons as well as for educational research” (ibid., p. 167).

One question they ask for is, which conceptions “the

teachers actually apply to explain the chosen phenomena

themselves” (ibid., p. 167).

The contribution at hand and the belonging poster present

first results of an analysis of PWT in CSE. Questionnaires

were filled out by 21 students of a CSE lecture at the

University of Oldenburg, Germany. The students were asked

which parts they identify of eight typical CS concepts. The

following research questions were pursued during this

specific research approach:

1. Which parts do future teachers identify of common

CS concepts? To which extend are the parts

identified correctly?

2. To which extend is the used method of asking for

parts of concepts through questionnaires suitable

for the purpose of investigating PWT?

2. METHODOLOGY
In this pilot study, questionnaires were designed to

investigate the future teachers’ perceptions. After three

closed questions on the biographical background of the

participants, an everyday example (parts of cars: tires,

wheel, engine, bonnet, doors, …) on the following task (“In

the following you have to identify Part-Whole-Relationships

of Computer Science concepts”) was presented in the

questionnaire. The CS concepts under consideration (cf.

Tab. 1) were chosen through an analysis of the core concepts

that are included in the CS curriculum of Lower Saxony,

Germany (Niedersächsisches Kultusministerium, 2014).

The participants had 25 minutes to answer the questions. In

order to analyze the questionnaires, the answers were

digitalized, translated from German to English, and

normalized in the first place. The normalization included a

combination of all abbreviations (e.g. combining the

answers “PSU” and “power supply unit” to “power supply

unit (PSU)”) and synonymous listings (e.g. combining

“provider” and “Internet provider” to “(Internet) provider”)

and a re-movement of plurals. Afterwards, the occurrences

of identical listings of parts for each investigated concept

were counted. In addition to that it was counted, how many

parts each participant identified of each concept and an

average for each concept was calculated (cf. Sec. 3). After

this descriptive statistic analysis, the answers were checked

180

for content-related correctness on the meta-level by the

authors (cf. Sec. 4).

3. RESULTS
An overview on the CS concepts under investigation, the

amount of parts that each participant identified in average

(parts/person), the number of various identified parts in total

(#various Parts), and the number of parts that were identified by

at least two respondents (#id. sev. times) is given in the following

Tab. 1.

Table 1. Overview on the results

CS concept parts/person #various parts #id. sev. times

Computer 4.3 29 20

Internet 4.0 40 16

Email 3.7 41 13

Automaton 3.4 40 13

Website 3.0 43 14

Algorithm 2.8 44 11

Database 2.5 29 10

Data 1.8 28 5

A detailed overview on the answers is presented in the

poster, which interested readers of this contribution gladly

will be provided with by request via email.

4. CONCLUSION AND DISCUSSION
In Tab. 1, the concepts are sorted in descending order

according to the amount of parts that each participant

identified in average. It can easily be seen that the less parts

are identified by the students the more abstract, complex,

and theoretical the concepts are: While “computer” — a

physical device and concrete product — is the concept that

the students identified the most parts of in average, they had

issues with finding parts of “data” — which is a very

theoretical and abstract concept in contrast. While this fact

alone might not be that surprising, there is another

interesting aspect that needs to be mentioned at this point:

While all of the repeatedly identified parts of “computers”

are completely reasonable, comprehensible, and correct,

there are huge mistakes in the main parts that the students

identified of the more theoretical and abstract concepts. For

example, it is an obvious error that “information” is a part of

“data”. Instead, data requires some sort of interpretation to

get information. Similar obvious mistakes can be found for

“algorithms” and “websites”: While “algorithms” are parts

of “applications” and “methods” instead of the other way

around — as identified by many students —, it is also wrong

to say that “the Internet”, “servers”, and “browsers” are parts

of “websites”. Another interesting aspect is the fact that the

more complex the concepts are — excepting “database” and

“data”1 — the more various parts are identified. By analogy,

the amount of several times identified parts decreases with

increasing complexity and abstractness of the concepts. To

describe it differently, these two facts mean that the students

are more disagreeing on what parts the more complex and

theoretical concepts consist of.

Generally speaking it seems as if the students of the

investigated introductory CSE lecture had huge problems

with the task of finding parts of complex CS concepts. Many

students listed elements as parts that simply do not fit.

Without a doubt, it is way more difficult to identify parts of

“data” than “computers”. So, it is not at all remarkable, that

the students listed less parts of the more abstract concepts

than the concreter ones. However, it is quite worrying that

they tended to give wrong answers when they were asked to

identify parts of more complex CS concepts to a not

negligible extent. At this point it is mentionable, that this

lecture is intended to be attended by students in their fourth

bachelor semester. So, a lack of knowledge on CS concepts

is probably not the reason for the deficits that were found out

in this study.

As already mentioned, Part-Whole-Relationships play a

huge role in CS. PWT (mostly subconsciously) helps to

understand objects, systems, processes, definitions and

concepts. But surprisingly there is almost no literature

available on infusing it into CSE (Rao, 2005). The only way

to achieve this infusion is through the CS teachers. So, this

study aimed at an investigation of future teachers’ PWT to

make a start. Future work will lie on a deeper investigation

of PWT in CSE alongside the Model of Educational

Reconstruction. Therefore, a suitable research method will

be designed in the first place, since deficits were seen with

naively asking for an identification of parts of wholes

through questionnaires.

5. REFERENCES
Diethelm, I., Hubwieser, P., and Klaus, R. (2012). Students,

Teachers and Phenomena: Educational Reconstruction

for Computer Science Education. In Proceedings of the

12th Koli Calling International Conference on

Computing Education Research. ACM, 164–173.

Gerstl, P. and Pribbenow, S. (1995). Midwinters, end

games, and body parts: a classification of part-whole-

relations. In International Journal of Human-Computer-

Studies, 43(5), 865-889

Niedersächsisches Kultusministerium (2014).

Kerncurriculum für die Schulformen des

Sekundarbereichs I Schuljahrgänge 5 – 10. Hannover,

Germany: Niedersächsisches Kultusministerium

Rao, K. (2005). Infusing Critical Thinking Skills into

Content of AI Course. SIGCSE Bull. 37, 3. 173–177

Shafique, M. and Rao, K. (2006). Infusing Parts-whole

Relationship Critical Thinking Skill into Basic Computer

Science Education. In Proceedings of the FECS 2006,

Las Vegas, Nevada, USA, June 26-29, 2006. 287–292

Wing, J. M. (2006). Computational Thinking. In

Communications of the ACM, March 2006, 49 (3), 33-35

1 This mainly results from the fact that every fourth student did not

find any parts of these two concepts at all, though they both were

positioned in the middle of the questionnaire.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

181

General Submission to

Computational Thinking

Education

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

182

Developing a Framework for Computational Thinking

from a Disciplinary Perspective

Joyce MALYN-SMITH1, Irene A. LEE2, Fred MARTIN3, Shuchi GROVER, Michael A. EVANS4, Sarita PILLAI1

1Education Development Center

2 Massachusetts Institute of Technology
3 University of Massachusetts Lowell

4 North Carolina State University

jmsmith@edc.org, ialee@mit.edu, fred_martin@uml.edu,

shuchig@cs.stanford.edu, michael.a.evans@ncsu.edu, spillai@edc.org

ABSTRACT

This paper describes progress towards the development of a

Framework for Computational Thinking (CT) from a

Disciplinary Perspective. The work aimed at discovering

how CT can be encouraged, taught and practiced within

disciplines throughout primary and secondary education. It

identifies an initial set of “elements” describing CT practices

that bridge learning and working in highly sophisticated

STEM environments and shares examples of these practices

used by STEM professionals at work and developed by

students in schools. It is hoped that this paper will provoke

dialogue among educators advocating for CT as a core skill

for all and will contribute to breakthroughs in thinking about

how CT should be learned and assessed in and out of school.

KEYWORDS

Computational thinking, K-12 education, workforce

development, human-technology frontier.

1. INTRODUCTION
The proliferation of new technologies has changed the way

we live, learn, and work. Although the future of work is

unclear, experts envision a new machine age, where

technologies (sensors, communication, computation, and

intelligence) are embedded around, on, and in us; where

humans will shape technology and technology will shape

human interaction; and where technologies and humans will

collaborate to discover and innovate. In short—the Human-

Technology Frontier.

Without question, the global workforce will need a new set

of skills and competencies to succeed in the future work

environments on this frontier—that feels closer with each

new technological advance. A recent report by EDC’s

STELAR Center (Malyn-Smith et al., 2017) identified

computational thinking as one of the essential skills needed

by future workers for success in work at the Human-

Technology Frontier. As our society works to understand

and identify strategies to overcome these complex and

interrelated challenges, important questions include: What

can we do to prepare today’s students to succeed in work at

the Human-Technology Frontier? and What steps can we

take to make this happen? If we are to believe that the

Human-Technology Frontier is upon us, we need to

reconsider how computational thinking is taught in order to

advantage our students, not only in developing CT skills, but

also in developing the CT practices used in STEM

workplaces (EDC, 2011).

2. BACKGROUND
Since noted computer scientist Jeannette Wing (2006)

proposed CT as a new “core skill” various groups have tried

to define CT for education and training purposes (e.g.

Grover & Pea, 2013, 2018). CT (focusing on problem-

solving, algorithms, data representation, modeling and

simulation and connections to other fields) is a prominent

strand of the K-12 Standards for Computer Science

developed by the Computer Science Teachers Association

(CSTA, 2011). Individual states (including Massachusetts

and New Jersey, USA) have instituted computer science

(CS) and digital literacy standards that use the term CT. Next

Generation Science Standards (NGSS Lead States, 2013)

include computational thinking in one of their eight

scientific practice standards. National Science Foundation

(NSF) funded projects are conducting research on several

different approaches to CT. Data practices, modeling and

simulation practices, computational problem solving

practices and systems thinking practices are proposed by

Weintrop et al. (2016). Lee et al. (2011) propose that youth

develop CT skills as they use, modify and create with digital

tools and technologies. While these initiatives signal a broad

based, grassroots interest in computational thinking, their

simultaneous development and independent implementation

leaves us without consensus on a precise definition of CT.

(Barr & Stephenson, 2011; Voogt, Fisser, Good, Mishra, &

Yadav, 2015; Weintrop et al., 2016). Most agree, however,

that Computational Thinking is formulating problems and

their solutions in a way that a machine (computer) can be

used to represent the problem and carry out its solution.

What has emerged from these varied research and practice

efforts aimed at CT is a debate over how CT is best taught

and learned. Many computer science educators believe that

CT is best taught through programming where students’

development of CT can be ensured and uniquely

observed. Others believe that to best prepare today’s youth

for tomorrow’s world, CT should be taught/learned in the

service of disciplines. While many of the efforts described

above define CT by dissecting it into its component parts,

little has focused on what results from integrating CT and

disciplinary learning. To guide teaching and learning of CT

within the disciplines, a new kind of computational thinking

framework was needed – one which captured and clarified

what students were able to do using CT – and unable to do

without CT.

183

3. DEVELOPING A FRAMEWORK
A group consisting of principal investigators, researchers,

and educators from National Science Foundation funded

ITEST (Innovative Technology Experiences for Students

and Teachers) and STEM+C (STEM+Computing) projects

convened in August and November 2017 to explore the

development of an Interdisciplinary Framework for

Integrating CT in K-12 Education. Their goal was to draft a

framework defining computational thinking from a

disciplinary perspective. The 54 workshop participants

provided a good balance of researchers and practitioners,

who represented grade spans Kindergarten-2nd grade, 3rd-5th

grade, 6th-8th grade, and 9th-12th grade, as well as disciplines

including science, mathematics, engineering, social science,

computer science and the humanities. In total there were 31

researchers, 18 teachers / practitioners, 3 participant

observers, and 2 staff members. (13 of the participants were

from colleges/universities, 15 from schools, 15 from non-

profits, 1 from business, 3 from foundations including the

NSF). The primary goals were to develop a framework for

computational thinking from a disciplinary perspective that

built on the work of the foremost researchers and

practitioners focused on helping youth develop CT skills.

Progress towards the goals was guided by some of the

foremost CT thought leaders in the U.S. including Irene Lee

of Massachusetts Institute of Technology, Shuchi Grover,

Fred Martin of University of Massachusetts Lowell and

CSTA, and Michael Evans of North Carolina State

University.

As a first step, participants were asked to submit examples

of their work to share with other participants prior to the

workshops. Educators/practitioners shared curriculum and

activities that illustrated CT in action in their

classrooms. Researchers shared their lessons learned

through research on various aspects of CT skill development

and integration. Together the group explored these examples

and found that a number of common “elements” emerged.

During the workshops, participants were asked to provide

additional examples of CT integration by grade level and

discipline. These examples were subsequently reviewed and

discussed within the emerging framework of common

elements.

Thought about the goal of developing a framework for CT

in the service of disciplines crystallized around the larger

goal of education – that of preparing youth for success for

living, learning and working after compulsory

education. Thus, focusing on building a bridge between the

CT skills developed in school and the professional practices

involving CT, particularly those in scientific workplaces

became paramount.

A traditional way CT is integrated is shown at the bottom of

Figure 1 illustrated with the Massachusetts digital learning

and computer science (DLCS) standards component areas of

abstraction, algorithms, programming and software

development, data collection and analysis, and modeling and

simulation. Typically, individual CT components are taught

then linked in pairs and clusters leading up to potentially

more powerful CT activities at with older age groups.

Figure 1. Bridging between traditional teaching of CT and

CT as used in CT integrated fields.

Stronger connections between these CT components and the

powerful practices used by professionals in CT-integrated

scientific fields (e.g. computational biology, bioinformatics,

cheminformatics, computational economics and others)

were sought. The aim in making these connections was to

ensure that the CT integrated in K-12 concept areas provided

a strong foundation for the computational thinking used by

practicing scientists and would bridge the skills transition

from school to work.

4. CT from a Disciplinary Perspective –

examples from STEM workplaces
To further explore the elements that might form a framework

for CT from a disciplinary perspective, examples of CT

commonly used by practicing scientists specifically,

examples of what can be accomplished using CT that would

be difficult, if not impossible, without CT were gathered.

From these examples of CT used by practicing scientists in

CT integrated fields, the elements emerged and were tested

as organizers for other examples of CT. The initial

examples considered follow.

4.1. Ensemble modeling

Scientist use multiple models are used to predict the

behavior of complex systems. For example, weather

forecasting now uses ensembles of models to understand

weather patterns (Gneiting & Raftery, 2005; Krishnamurthy

et al., 2000). Each model in an ensemble simulates the

global weather system taking different sets of parameters or

initial conditions into account. Instead of making a single

forecast of the most likely weather, a set (or ensemble) of

forecasts is produced. This set of forecasts aims to give an

indication of the range of possible future states of the

atmosphere.

4.2. Computational chemistry

Scientists innovate with computational representations - For

example, the SMILES (simplified molecular-input line-

entry system) notation is a representation for describing the

structure of chemical compounds using short ASCII strings

(O’Boyle, 2012). This revolutionized computational

chemistry and drug design by enabling computers to read

and operate on chemical sequences (including searching and

database indexing).

4.3. Bioinformatics

CT is used in bio-informatics workplaces. In Next

Generation Sequencing Data Analysis, dozens of whole

genomes can be sequenced in rather short time, producing

huge amounts of data (McKenna et al., 2010; DePristo, et

184

al., 2011). Complex bioinformatics analyses are required to

turn these data into scientific findings. To run these analyses

quickly, automated workflows on high performance

computers are state of the art. Scientists design processes to

achieve high throughput processing of genomic data.

4.4. Environmental science

Environmental scientists use crowd-sourced data in water

management (Fienen & Lowry, 2012; Stepenuck & Green,

2015; McKinley et al., 2015). When considering water

management strategies for a region, data for various

communities with different water usage and needs (for

example, for growing different crops or industrial uses) is

necessary to understand the larger picture of water usage and

needs, as well as the local variations.

4.5. Machine learning

To a larger and larger extent, scientists are using machine

learning to make predictions. In supervised machine

learning, scientists build models by running algorithms on

“training sets” of inputs matched with correct responses

(Srivastava et al., 2014; Lecun, Bengio, & Hinton, 2015).

These models can then be used to offer predictions (or

responses) when given new inputs. Changes in the training

set data can have implications on the machine learning

model built and can introduce biases if the training data is

not representative of the target.

5. The Elements of CT integration from a

Disciplinary Perspective
The examples from advisors and researchers along with

lessons and activities provided by educators were examined.

Evidence was found that K-12 subject area teachers were

integrating CT in ways that were consistent with its use in

CT-integrated fields. The following five Elements of CT

Integration from a Disciplinary Perspective that emerged

from the reviews and discussions were:

1. Understand (complex) systems.

2. Innovate with computational representations.

3. Design solutions that leverage computational

power/resources.

4. Engage in collective sense making around data.

5. Understand potential consequences of actions.

5.1. Understand complex systems

Modeling how interactions of many individuals or

components in a system lead to aggregate level emergent

patterns is difficult to do without CT. Complex systems in

particular are not amenable to traditional mathematical

analysis. Simulating a system’s change over time and real-

time feedback in the form of simulations help scientists

visualize complex systems dynamics. These systems are

often hard to predict due to having a multitude of interrelated

factors and levels. In K-12 education, computer modeling

and simulation of these systems offers a way to see how the

systems behave under different circumstances, with

different inputs.

5.2. Innovating with computational representations

The design and development of innovations is made possible

through CT. New ideas, conceptualizations, representations,

and processes can be thought of and developed as

computations. For example, thinking of the brain as a

network and creating neural networks as artificial brains has

led to advances in artificial intelligence and cognitive

science. In K-12, students can be introduced to

computational representations by learning about how colors

are represented on computers as RGB values.

5.3. Design solutions that leverage computational power

and resources

Scientists working with large data sets or on computationally

intensive calculations design solutions that leverage the

efficient use of resources and computational power to

optimize their time. In some cases, distal collaborators can

pool and share computational resources and in other cases

co-located collaborators can access distributed resources to

achieve their goal. Some speedups are achieved by

decomposing datasets and/or processes to run in parallel. In

K-12 settings, educators can challenge students to think

about how they would solve a problem differently if the

input set was of large scale. For example, rather than

developing processes to assemble 10 finished copies of an

item, how would students go about assembling 10,000

copies?

5.4. Engage in collective sense making around data

Data sets can be amassed through crowd-sourcing or

collection by multiple individuals or sensors. These data can

be analyzed to uncover patterns. Visualization of

multidimensional data enables students to see patterns that

might not otherwise be apparent. When possible in the K-12

education setting, teachers can ask small groups of students

to run simulations on a subset of the inputs, then share their

output data and analyses. Gathering and analyzing the

combined data illustrates how each part of the data

contributes to the understanding of the whole.

5.5. Understand potential consequences of actions

Scientists envision the future through simulation and use

machine learning to make predictions. Using parameter

sweeping, the space of all possible combinations of inputs

can be tested to see the variety and probability of outcomes.

In K-12, students can learn how cause and effect

relationships can be used to predict outcome. Students can

also begin to understand the space of inputs created by

parameterizing models.

Notably, these elements of CT integration go beyond the

mechanics of learning to program a computer. They form a

bridge between CT as it has traditionally integrated in K-12

classrooms (through the introduction of computer

programming activities) and professional practices.

185

Figure 2. CT integration elements as a bridge between

traditional CT integration in K-12 education and CT as

powerful practices used in CT integrated fields.

Figure 2 illustrates how the thinking progressed from the

idea of direct teaching of CT skills through programming -

to a realization that to help students develop CT skills

through STEM disciplinary learning, their education needs

to include a stronger focus on computational tools,

techniques, and processes used in the CT integrated fields.

6. CT from a Disciplinary Perspective –

examples from K-12 classroom teachers
Through the examination of lessons provided by K-12

educators, it was determined that a subset of the disciplinary

teachers were already integrating CT within K-12 that

aligned with the elements presented above. Several lessons

and activities teachers provided from their curricula

illustrate how these elements can be introduced in K-12 to

help students develop CT skills aligned with professional

practices.

6.1. Middle school science

In middle school ecosystems lessons (Lee, 2011; Project

GUTS, 2014) using the StarLogo Nova modeling and

simulation environment, middle school students in science

classrooms used, modified and created computer models and

ran simulation to understand complex systems; multiple

models were produced and compared; students engaged in

collective sense making around data (by crowdsourcing data

generated from multiple runs of each of the models); and

students learned about potential consequences of actions

(such as the impact of removing a top predator).

6.2. Elementary school mathematics

In a 5th grade mathematics classroom, students were asked

to generate a language to describe a minimal set of actions

to be performed by robots tasked to build a tower. Within

this activity students were innovating with computational

representations, and designing solutions that leverage how

computers process data (in this case, instructions).

6.3. High school engineering

In a high school engineering classroom, a teacher used a

multi-step physical construction task to illustrate domain vs.

task decomposition as method of parallel processing in high

performance computing. Students designed processes to

make many copies of a Lego figure that leveraged

“processing” resources (other students) then optimized the

design based on collective sense making from data on time

to complete the task.

6.4. Middle school mathematics

In a middle school mathematics classroom, students using

the iSENSE data-sharing platform were able to collect and

add locally generated data to a large student-generated data

set. They could then analyze their data and compare it to data

provided from other classrooms (Willis et al., 2015).

6.5. Across subject areas

There is a large window of opportunity for K-12 students to

learn about consequences of actions, in areas ranging from

cause and effect in programming to decision-making and

prediction in machine learning.

7. CHALLENGES
While the path towards CT integration from a disciplinary

perspective is growing clearer, many challenges remain.

First, we acknowledge that the majority of K-12 teachers are

still struggling with the integration of CT in terms of

teaching the basics of computer programming. Introducing

the elements of CT integration can be viewed as a conflicting

definition instead of a further elaboration on a trajectory of

CT from K-12 to professional practice.

Another challenge is the rate at which fields are innovating

with CT. The examples of CT integrated fields presented in

this paper are only a few of the many fields that have been

greatly impacted by CT. Many additional fields are

incorporating computational tools, techniques, and

practices. Across fields, innovations and discoveries made

possible by the integration of computational tools,

techniques, and practices are increasing.

The rapid rise of machine learning raises yet another

challenge. Across disciplines, the need for analysis of

computational systems, especially those used to make

predictions that greatly impact human life, is paramount.

The inclusion of the CT integration element “Understanding

potential consequences of actions” addresses this important

need.

8. CONCLUSION
The authors believe that learning CT needs to extend beyond

learning to program. It must include engagement in

computational practices used in the sciences that harness the

power of computers to enhance scientific discovery. The CT

Integration Elements presented here provide a framework

for foundational learning of CT within disciplines beginning

in elementary school and extending through high school and

beyond. Examples provided by K-12 teachers shed light on

ways K-12 educators have integrated powerful practices

from professional CT integrated fields. It is hoped that the

framework can aid teachers in the development of CT

lessons, and ensure that the CT that teachers promote has

links to the CT used in scientific workplaces. Still, this

Framework is a work-in-progress. It is hoped that it will

evolve as researchers continue to examine—and K-12

educators increasingly engage in—CT integration in the

classroom.

186

9. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the “Workshop to

Develop an Interdisciplinary Framework for Integrating

Computational Thinking in K-12 Science, Mathematics,

Technology, and Engineering Education” project from the

National Science Foundation (DRL award# 1647018). We’d

also like to thank the many participants in the workshop

series who generously shared their curricula, research, and

insights.

10. REFERENCES
Barr, V., & Stephenson, C. (2011). Bringing

computational thinking to K–12: What is involved and

what is the role of the computer science education

community? ACM Inroads, 2(1), 48–54.

Computer Science Teachers Association (2011). K-12

computer science standards.

http://csta.acm.org/Curriculum/sub/k12standards.html

DePristo, M. A., Banks, E., Poplin, R. E., Garimella, K. V.,

Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel,

G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T.J.,

Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K.,

Gabriel, S.B., Altshuler, D., & Daly, M. J. (2011). A

framework for variation discovery and genotyping using

next-generation DNA sequencing data. Nature Genetics,

43(5), 491–498.

EDC (2011). A Profile of a Computational Thinking

Enabled STEM Professional in America’s Workplaces –

Research Scientists / Engineers. (revised 2013).

Waltham, MA: EDC.

Fienen, M.N., & Lowry, C.S. (2012) Social Water—A

crowdsourcing tool for environmental data acquisition,

Computers & Geosciences, 49(1), 164-169.

Gneiting, T., & Raftery, A. E. (2005, October). Weather

Forecasting with Ensemble Methods. Science,

310(5746), 248-249.

Grover, S. & Pea, R. (2013). Computational Thinking in

K–12: A Review of the State of the Field. Educational

Researcher. 42(1), 38-43.

Grover, S. & Pea, R. (2018). Computational Thinking: A

competency whose time has come. In Computer Science

Education: Perspectives on teaching and learning,

Sentance, S., Carsten, S., & Barendsen, E. (Eds).

Bloomsbury.

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., Larow,

T., Bachiochi, D., Williford, E., Gadgil, S., & Surendran,

S. (2000). Multimodel Ensemble Forecasts for Weather

and Seasonal Climate. Journal Of Climate, (13). 2000

American Meteorological Society.

Lecun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep

learning. Nature, 521, 436–444.

Lee, I., Martin, F. Apone, K. (2014). Integrating

Computational Thinking Across the K-8 Curriculum.

ACM Inroads, 5(4): 64-71.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Mayln-Smith, J., and Werner, L. (2011).

Computational thinking for youth in practice, ACM

Inroads, Vol. 2 No.1.

Malyn-Smith, J., Blustein, D., Pillai, S., Parker, C. E.,

Gutowski, E., & Diamonti, A. J. (2017). Building the

foundational skills needed for success in work at the

human-technology frontier. Waltham, MA: EDC.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,

Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler,

D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The

Genome Analysis Toolkit: A MapReduce framework for

analyzing next-generation DNA sequencing data.

Genome Research, 20(9), 1297–1303.

McKinley, D. C., A. J. Miller-Rushing, H. L. Ballard, R.

Bonney, H. Brown, D. M. Evans, R. A. French, J. K.

Parrish, T. B. Phillips, S. F. Ryan, L. A. Shanley, J. L.

Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, O. D.

Boyle, R. D. Briggs, S. F. Chapin III, D. A. Hewitt, P. W.

Preuss, and M. A. Soukup. (2015). Investing in citizen

science can improve natural resource management and

environmental protection. USGS Publications

Warehouse. http://pubs.er.usgs.gov/publication/70159470

NGSS Lead States. (2013). Next Generation Science

Standards: For States, By States. Washington, DC: The

National Academies Press.

O’Boyle, N. M. (2012). Towards a Universal SMILES

representation - A standard method to generate canonical

SMILES based on the InChI. Journal of

Cheminformatics, 4(22).

Project GUTS CS in Science curriculum (2014).

Ecosystems as Complex Systems. Downloaded at

http://www.teacherswithguts.org .

Stepenuck, K.F., and Green. L. (2015). Individual and

community level impacts of volunteer environmental

monitoring: a synthesis of peer-reviewed

literature. Ecology and Society, 20(3):19.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

& Salakhutdinov, R. (2014, June). Dropout: A simple

way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15:1929−1958.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.

(2015). Computational thinking in compulsory

education: Towards an agenda for research and practice.

Education and Information Technologies, 20(4), 715–

728. Retrieved from

http://link.springer.com/article/10.1007/s10639-015-

9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science

Classrooms. Journal of Science Education and

Technology, 25(1), 127–147.

Willis, M. B., Hay, S., Martin, F. G., Scribner-MacLean,

M., & Rudnicki, I. (2015). Probability with Collaborative

Data Visualization Software. Mathematics Teacher,

109(3), 194–199.

Wing, J. (2006, March). Computational thinking.

Communications of the ACM, 49(3), 33–35.

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih,

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

187

Virtuality Literacy: On the Representation of Perception

Andreas DENGEL

University of Passau, Germany

Andreas.Dengel@uni-passau.de

ABSTRACT

Immersive media such as virtual reality (VR) and augmented

reality systems provide new ways of experiencing digital

environments. Connecting the sense of presence to ones and

zeros leads to questions on how we perceive digitally created

content for it to become our subjective reality.

Computational Thinking (CT) merges human abilities with

computer affordances, already covering aspects ranging

from data representation to the critical handling of and

reflective attitude towards different forms of information

and media. Combining the existing CT skills with the

information and media literacy approach in terms of VR

leads to the requirement of Virtuality Literacy as the critical

reflection and production of the representation of human

perception through immersive digital media. Virtuality

Literacy as a new CT skill covers the thematic fields of the

representation of sensory stimuli, immersion and presence

as well as virtual information and media literacy. Enhancing

Virtuality Literacy at an early age may lead to a better

understanding of why and how immersive media can

influence peoples’ perceptions of various aspects of reality.

Future studies will have to investigate the implementation of

Virtuality Literacy in different learning environments.

KEYWORDS

Virtual Reality, Computational Thinking, Representation of

Information, Information and Media Literacy

1. INTRODUCTION
Virtual Realities (VRs) as completely synthetic and

immersive digital environments (Milgram, Takemura,

Utsumi, & Kishino, 1994) are currently in the public eye

following the latest technological developments. In

contemporary Computer Science Education (CSE), the

process of virtualizing information from the real world is

characterized by the concept of data representation

(Atchison et al., 1968; Brinda, Puhlmann, & Schulte, 2009)

but efforts to combine these aspects with concepts of

perceptual psychology are still lacking. As life becomes

more digitized, it has become particularly important to

acquire a better understanding of how different stimuli,

transmitted by human sensors (visual, auditory, tactile, etc.)

affect out perception of reality. This article focuses on the

concept of Virtuality Literacy as the ability to critically

reflect and produce human perception through immersive

digital media.

2. CONNECTED CONCEPTS OF

COMPUTATIONAL THINKING

2.1. Representation of Information

The process of encoding information into data structures has

been recognized as an important part of CSE. Hubwieser and

Broy (1999, p. 166) describe the process of representation of

information: “In order to make information accessible to any

kind of processing it has to be transformed into a physical

representation according to the rules of a more or less formal

language”. Relating this to CT, understanding the concept of

computational abstraction using various forms of data

representations has been identified as a fundamental CT skill

(Barr, Harrison, & Conery, 2011; Wing, 2006). Together

with abstraction, efficiency and heuristics, information

representation has emerged as a perspective in ordinary

human activities on a daily basis (Lu & Fletcher, 2009). As

the concept of the representation of information underlies

every form of digital data processing, it incorporates all

kinds of immersive electronical media, including Virtual and

Mixed Realities.

2.2. Information and Media Literacy

The requirement of knowing how to ‘read’ media in terms

of a critical understanding as well as knowing how to ‘write’

in order to be able to produce them leads to a form of media

literacy. Combining the different concepts of (digital) media

literacy with the requirement of ‘reading’ and ‘writing’

information in a critical way the concept of information and

media literacy becomes a fundamental 21st century skill for

everyday and working life (Hobbs, 2010). As an unthinking

use of immersive media would be critical due to the many

possibilities of influencing users through simulating virtual

and mixed realities (Fox, Bailenson, & Binney, 2009),

information and media literacy must be the basic framework

of every work with immersive virtual environments (VEs).

Hence a Virtuality Literacy results when combining CT

skills with information and media literacy in terms of virtual

and mixed realities.

3. VIRTUALITY LITERACY
The term literacy includes reading and writing skills,

whereas Virtuality Literacy (as a CT skill) addresses the

abilities and competencies of analyzing, reflecting and

producing information in immersive VEs. Wing describes

CT as a thought process that formulates problems and their

solutions by means of abstraction and decomposition in such

a manner that a computer can effectively process the given

problem (Wing, 2006). Virtuality Literacy focuses on the

transfer process of information from the real or fictional

world into a virtuality and vice versa. To split Virtuality

Literacy into teachable segments, we distinguish the

Representation of Sensory Stimuli, Immersion and Presence

as well as Virtual Information and Media Literacy as partial

competences of the transdisciplinary CT concept of

Virtuality Literacy.

3.1. Representation of Sensory Stimuli

Representation of Information as a part of CSE maps the

transformation of information to ones and zeroes. This

classical element of the CSE curriculum is an important part

of the creation of VEs as some are meant to represent a

credible version of the real world. What this CT skill does

not cover is the perception behind an abstraction of real

world concepts. The model neglects completing the process

188

of the transmission of information to the recipient’s brain

through perception. This is essential to understanding

immersive media since our perception of reality is the

product of our brain’s preselection and rearrangement of

sensory stimuli. Figure 1 shows the Representation of

Perception model as an extension of the Information-

Oriented Concept from Breier and Hubwieser (2002).

Figure 1. The Process of the Representation of Perception

The representation does not become information before

being perceived by the user. Instead, it is transmitted directly

to the human senses. In this model, real and fictional world

are seen as a black box, as we only perceive reality through

our senses. Only if the first representation (the encoded

expressed perception of the experienced real or fictional

world issue) equals the second representation (the encoded

expressed perception of the experienced representation), this

form of representation is valid. The ability to understand and

apply this kind of abstraction is the main CT skill in

Virtuality Literacy.

3.2. Immersion and Presence

Presence “refers not to one’s surroundings as they exist in

the physical world, but to the perception of those

surroundings as mediated by both automatic and controlled

mental processes” (Steuer, 1992, p. 76). The different types

of presence are physical, social and self-presence (Biocca,

1997). With an understanding of the Representation of

Perception, it is possible to examine how these types of

presence as the feeling of being there arise. While

representations of physical objects have a long history in CS,

representing social feelings and self-identification in a VE

through ones and zeros are a CT skill of abstraction that has

not yet been explored. Immersion as “a quantifiable

description of a technology” (Slater, Linakis, Usoh, &

Kooper, 1999, p. 3) is what turns the ones and zeros into

perceived reality. The linking of the subjective feeling of

presence and the technological immersion of human sensors

(addressing the visual and auditory senses) and actuators

(collecting data from gyro sensors for head tracking or

different types of positional tracking) comprises the process

of retrieving and sending data and human-computer-

interaction as central CT skills.

3.3. Virtual Information and Media Literacy

As the representation of social feelings and self-

identification in terms of social and self-presence is possible

in immersive media, a critical reflection on these perceptions

is needed. Even though Virtual Information and Media

Literacy would be a media educational or media semiotic

skill rather than a CT skill, it requires a CSE foundation.

Virtual Information and Media Literacy covers aspects of

‘reading’ virtual information critically with the background

knowledge of its possible influence on social feeling and

self-identification. Thus, in order to obtain an overall

understanding of information and media in immersive VEs

using the Representation of Perception approach, one has to

combine technological insights from a CSE perspective,

apply a media educational and media semiotic angle and also

view the subject through the lens of cultural and historical

views and pictorial science research. The same goes for the

‘writing’ skills that allow the production of one’s own

immersive information and media content.

4. REFERENCES

Atchison, W. F., Schweppe, E. J., Viavant, W., Young, D.

M., Conte, S. D., Hamblen, J. W.,. . . Rheinboldt, W. C.

(1968). Curriculum 68: Recommendations for academic

programs in computer science: a report of the ACM

curriculum committee on computer science.

Communications of the ACM, 11(3), 151–197.

Barr, D., Harrison, J., & Conery, L. (2011). Computational

Thinking: A Digital Age Skill for Everyone. Learning &

Leading with Technology. (38), 20–23.

Biocca, F. (1997). The Cyborg's Dilemma: Progressive

Embodiment in Virtual Environments [1]. Journal of

Computer-Mediated Communication, 3(2), 0.

Breier, N., & Hubwieser, P. (2002). An information-

oriented approach to informatical education, 1, 31–42.

Brinda, T., Puhlmann, H., & Schulte, C. (2009). Bridging

ICT and CS. In P. Brézillon (Ed.), Proceedings of the

14th annual ACM SIGCSE conference on Innovation and

technology in computer science education (p. 288). New

York, NY: ACM.

Fox, J., Bailenson, J., & Binney, J. (2009). Virtual

Experiences, Physical Behaviors: The Effect of Presence

on Imitation of an Eating Avatar. Presence:

Teleoperators and Virtual Environments, 18(4), 294–303.

Hobbs, R. (2010). Digital and Media Literacy: A Plan of

Action. A White Paper on the Digital and Media Literacy

Recommendations of the Knight Commission on the

Information Needs of Communities in a Democracy:

ERIC.

Hubwieser, P., & Broy, M. (1999). Educating Surfers or

Craftsmen: Introducing an ICT Curriculum for the 21st

century. In IFIP WG 3.1 and 3.5 Open Conference

“Communications and Networking in Education:

Learning in a Networked Society (pp. 163–177).

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F.

(1994). Augmented Reality: A class of displays on the

reality-virtuality continuum. SPIE Vol. 2351,

Telemanipulator and Telepresence Technologies, 282–

292. Retrieved from

Steuer, J. (1992). Defining Virtual Reality: Dimensions

Determining Telepresence. Journal of Communication,

42(4), 73–93.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33–35.

