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Preface 
 

 

 

 

International Conference on Computational Thinking Education 2018 (CTE2018) is the second international conference 

organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created 

by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.  

 

CoolThink@JC strives to inspire students to apply digital creativity in their daily lives and prepare them to tackle future 

challenges in any fields. Computational thinking (CT) is considered as an indispensable capability to empower students to 

move beyond mere technology consumption and into problem-solving, creation and innovation. This 4-year initiative will 

educate over 26,000 upper primary students at 32 pilot schools on computational thinking through coding education. 

Through intensive professional training, the Initiative will develop teaching capacity of over 100 local teachers and help 

them master coding and computational thinking pedagogy. Over time, the project team targets to make greater impact by 

sharing insights and curricular materials beyond the pilot schools. 

 

This year, the event is emerged with a 4-day Coding Fair to further outreach parents and students. The first two days are 

open for schools while the last two days are open for public. Through a series of coding and STEM workshops offered by 

32 pilot schools and STEM partners, students aged 4-12 will go through an exciting journey of coding and computational 

thinking enlightenment. Teachers and students of the pilot schools will also get a chance to showcase their learning 

outcomes through booth exhibition. As support from parents are always the most important factor in determining the 

success of education, parent seminars with panel discussions are thus included at the Coding Fair to inspire parents to adapt 

and master computational thinking as a new bridge for parent-child communication. Over 6500 enthusiastic parents and 

students are going to join us at the Fair. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 “Computational Thinking Education” is the main theme of CTE2018 which aims to keep abreast of the latest development 

of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT 

development in school education. CTE2018 gathers educators and researchers around the world to share implementation 

practices and disseminate research findings on the systematical teaching of computational thinking and coding across 

different educational settings. There are 15 sub-themes under CTE2018, namely: 

 

Computational Thinking 

Computational Thinking and Unplugged Activities in K-12 

Computational Thinking and Coding Education in K-12 

Computational Thinking and Subject Learning and Teaching in K-12 

Computational Thinking and IoT 

Computational Thinking Development in Higher Education 

Computational Thinking and STEM/STEAM Education 

Computational Thinking and Non-formal Learning 

Computational Thinking and Psychological Studies 

Computational Thinking and Special Education Needs  

Computational Thinking and Evaluation 

Computational Thinking and Early Childhood Development 

Computational Thinking in Educational Policy 

Computational Thinking and Teacher Development 

General Submission to Computational Thinking Education  

 

The conference received a total of 60 papers (28 full papers, 22 short papers and 10 poster papers)  by authors from 16 

countries (see Table 1). 

 

Table 1: Distribution of paper submissions for CTE2018 

 

 

 

 

 

Country/Region No. of submissions Country/Region No. of submissions 

China 10 Malaysia 2 

Taiwan 10 Australia 1 

The United States 8 Canada 1 

Germany 6 India 1 

South Korea 6 Norway 1 

Hong Kong 5 Spain 1 

Singapore 5 Turkey 1 

Croatia 2 Total  60 



 

 

 

Each paper with author identification anonymous was reviewed by three International Program Committee (IPC) members. 

Related sub-theme Chairs conducted meta-reviews and made recommendation on the acceptance of papers based on IPC 

members’ reviews. With the comprehensive review process, 44 accepted papers are presented (12 full papers, 23 short 

papers and 9 poster papers) (see Table 2) at the conference.  

 

Table 2: Review results of submission acceptance for CTE2018 

 

 

 

The conference comprises keynote, invited speeches and forum by internationally renowned scholars; seminar, workshop, 

as well as academic paper and poster presentations. 

 

 

Keynote and Invited Speeches 

There are three keynote and two invited speeches at CTE2018:  

 

Keynote Speeches 

1. “Beyond Computational Thinking: Coding, Designing, and Making in the 21st Century” by Prof. Yasmin B. KAFAI, 

University of Pennsylvania, The United States 

 

2. “The Power behind the Power Point®” by Prof. Judith GAL-EZER, The Open University of Israel, Israel 

 

3. “What Lies Beneath? Towards the Cognitive Underpinnings of Computational Thinking” by Prof. Judy ROBERTSON, 

University of Edinburgh, The United Kingdom 

 

 

 

 

Sub-theme Full paper Short paper Poster paper Total 

CT 2   2 

CT and Unplugged Activities in K-12  1 1 2 

CT and Coding Education in K-12 2 3 2 7 

CT and Subject Learning and Teaching in K-12 1 1 1 3 

CT and IoT  1  1 

CT Development in Higher Education  2  2 

CT and STEM/STEAM Education 2 4 1 7 

CT and Special Education Needs 1  1 2 

CT and Evaluation 1 5  6 

CT and Teacher Development 2 6 2 10 

General Submission to CT Education 1  1 2 

TOTAL 12 23 9 44 



 

 

 

Invited Speeches 

1. “Computational Thinking for Social Change” by Mr. Nawneet RANJAN, Dharavi Diary, India 

 

2. “Computational Thinking Goes to Science and Math Class: The Case for STEM+C” by Ms. Linda SHEAR, SRI 

International, The United States 

 

 

Computational Thinking and Future Education Forum 

Pioneers and experienced frontline practitioners in local and international education sectors formed a panel to exchange 

views and ideas on computational thinking and future education. 

 

Panelists:  

Principal Tsz-wing CHU, Baptist Rainbow Primary School, Hong Kong 

Prof. Heinz Ulrich HOPPE, University of Duisburg-Essen, Germany 

Prof. Chee-kit LOOI, Nanyang Technological University, Singapore  

 

Moderator:  

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong   

 

 

CoolThink@JC Senior Primary Coding Curriculum Dissemination Seminar 

To make greater impact by sharing insights and curricular materials to more schools in Hong Kong, CoolThink@JC sheds 

light on the curriculum, how schools can adopt it and what supports they will get. Pilot schools teachers also share their 

experience in this seminar. 

 

Speakers: 

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong 

Mr. Tony LAM, Marymount Primary School, Hong Kong 

Mr. Lee LAU, Baptist Rainbow Primary School, Hong Kong 

Mr. Andy LI, Po Leung Kuk Dr. Jimmy Wong Chi-Ho (Tin Sum Valley) Primary School, Hong Kong 

 

 

 

 

 

 

 

 



 

 

 

Workshop on “Interact with real world: MIT App Inventor and IoT (Internet of Things)” 

Massachusetts Institute of Technology conducts a workshop on App Inventor and IoT (Internet of Things), in which the 

instructor guides participants to design their smart phone app by using MIT App Inventor.  

 

Instructor: 

Mr. David Chi-hung TSENG, Massachusetts Institute of Technology, The United States 

 

 

Academic Paper and Poster Presentations 

There are 10 sessions of academic paper presentation and an academic poster presentation with 44 papers (12 full papers, 

23 short papers, 9 poster papers) in the conference. Worldwide scholars present and exchange the latest research ideas and 

findings highlighting the importance and pathways of computational thinking education covering K-12 education, special 

education, teacher development and STEM/STEAM education etc. 

 

On behalf of the Conference Organizing Committee, we would like to express our gratitude towards all speakers, panelists, 

as well as paper presenters for their contribution to the success and smooth operation of CTE2018. 

 

We sincerely hope everyone would enjoy and get inspired from CTE2018. 

 

 

 

 

On Behalf of CoolThink@JC 

 

Siu-cheung KONG 

The Education University of Hong Kong, Hong Kong 

Conference Chair of CTE2018 

 

Tsz-wing CHU 

Baptist Rainbow Primary School, CoolThink@JC Resource School, Hong Kong 

Conference Chair of CTE2018 
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ABSTRACT 

The term Computational Thinking is closely related to 

efforts connected to teach a systematic and well-structured 

way of problem solving that includes a set of tools and 

techniques used in Computer Science. While substantial 

research in this field has shown promising outcomes 

concerning distinct intervention programs and teaching 

initiatives, the term Computational Thinking itself requires 

to be revised in order to get a wider consensus about its 

meaning and purpose. This paper contributes to the ongoing 

quest concerning the definition of the term by starting with 

a fundamental perspective on computational theory and 

corresponding concepts in order to describe the theoretical 

building blocks of a systematic view to further elaborate on 

an approach for teaching and learning about Computational 

Thinking. Additionally, based on this foundational effort, 

more advanced concepts are presented and discussed in 

order to better understand this domain. Finally, the paper 

identifies and discusses a set of relevant challenges taking a 

cognitive psychology perspective on Computational 

Thinking. 

   

KEYWORDS 

Computational Thinking, 21st century skills, computability, 

cognitive psychology, knowledge transfer, multiple 

external representations. 

1. INTRODUCTION 
Many developed countries are experiencing significant 

changes concerning organizational structures, work 

processes and daily routines. Technological innovations 

impact daily practices regarding the ways people socialize, 

work and administrate their activities (Kulkarni, 2017). 

Many of these changes have been enabled and are supported 

by new Information and Communication Technologies 

(ICT) (Horizon Report, 2017). The demands that this 

changing societal context pose are being reflected in new 

educational programs that aim at offering students an 

updated set of skills identified as crucial for the 21th century 

(Trilling & Fadel, 2009). In fact, competences concerning 

critical thinking as well as problem solving are seen as 

central in contrast to other competences often considered 

less useful to cope with the fast pace of current changes. 

Some researchers suggest that the, acquisition of these skills 

should be provided in authentic settings (Doleck et al., 

2017), where technologically supported creative 

collaborative activities are proposed (Kong, 2014; Mishra 

et al., 2013). 

In line with these developments, computer and learning 

scientists have been proposing that these skills can be 

fostered through educational programs involving computer 

programming and miming how computer scientists 

approach problem solving (Wing, 2014), including the 

expression of a solution in a computer solvable way. The 

term Computational Thinking (CT) has emerged to reflect 

this particular view on this topic. However, although the 

term is widely used, it requires to be revised in order to get 

a wider consensus about its meaning and purpose within the 

scientific community (Selby & Wollard, 2014).  

This paper starts with a section describing the state of the 

art, after which we reflect on the term CT from a computer 

science theory perspective. We do so in order to identify the 

basic building blocks that allow problems to be framed and 

solved computationally. Thereafter, the next section 

discusses more advanced computer science topics related to 

CT. Concrete examples are shown and discussed in order to 

elaborate on the proposed ideas. We proceed by discussing 

the core ideas presented in the paper in order to widen the 

definition of Computational Thinking. Finally, we proceed 

by identifying and describing a set of relevant challenges 

for CT teaching and learning from a cognitive psychology 

perspective. We conclude the paper with a section providing 

an outlook describing our future efforts. 

2. STATE OF THE ART 
The benefits of computer programming for students’ 

cognitive development have been explored and are well 

recognized.  Clements & Gullo (1984), foresaw the 

important role of ICT in daily routines. They also examined 

the effects of computer programming on children while 

indicating on advantages in terms of development of 

cognitive skills (Papert, 1980). Additional approaches that 

would nowadays be gathered under the term CT have been 

made way before the definition of the term itself (Brennan, 

2012; Resnick et al., 1998).  

In addition, the benefits of computer programming were 

also recognized in terms of its potentials to foster creativity 

and meta-cognitive skills exercised as part of development 

tasks. More than 30 years ago, Pea & Kurland (1984) 

published the results of their research exploring aspects that 

are crucial for incorporating computer programming in 

educational studies. They pointed over challenges while 

expressing their concern about practicing such skill among 

mailto:marc.jansen@hs-ruhrwest.de
mailto:dan.kohen@lnu.se
mailto:nuno.otero@lnu.se
mailto:marcelo.milrad@lnu.se
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young ages. They also addressed goal definitions aligned to 

the requirements and knowledge that are needed prior and 

during the development of cognitive skills supported by 

computer languages. Additionally, they investigated the 

benefits of such skills in the light of individual work versus 

collaborative one. 

As implied, nowadays, our daily routines are 

technologically enhanced in a way that emphasize the 

important role of programming as a tool to aid structured 

thinking processes as well as a tool for the implementation 

of solutions based on ICT. Consequently, Computational 

Thinking as an innovative approach for solving problems is 

increasingly recognized and incorporated in educational 

programs that need to be implemented across different 

subject matters and levels (Kong, 2014). This solution could 

be conceptualized and formulated in the form of a computer 

program expressing logical procedures towards a refined 

solution. CT offers the opportunity to exercise a generic and 

iterative process consisting of three steps. In the first step, 

students are provided with an educational opportunity to 

identify and formulate a problem or challenge on an abstract 

level. Thus, students can formulate the problem in a more 

generalized (and at the same time easier) way and try to 

solve this more general problem first. During the second 

phase, they can continue and express a possible solution to 

it. Finally and in the third phase, this solution is executed 

and evaluated as a part of the iteration enabling continues 

refinement aspiring to optimized problem definition 

adapted with best solution. 

Often, learning environments and activities guided by the 

ideas behind Computational Thinking incorporate 

motivational tools like robots (Bers et al., 2014) in order to 

increase students  ́motivation to work in a structured way 

and to provide procedures that support the solution of a 

given problem. Although Computational Thinking could be 

applied already to very early ages, significant efforts have 

also been undertaken in relation to older students, which 

have been proven successful also (Grover and Pea, 2013; 

Touretzky et al., 2013). 

Nevertheless, as Selby & Wollard (2014) have described, 

the term Computational Thinking has several different 

connotations and it is used throughout literature in very 

different ways. Those different ways basically differ in the 

understanding of CT in terms of the definition of thinking, 

problem solving, computer science and imitation. 

Therefore, this paper makes an attempt to provide a distinct 

and complementary perspective to CT, based on 

computational theory. Starting from computational theory 

concepts, we move on by taking a step forward to more 

advanced topics that derive from the field of programming, 

based on the theory mentioned above.  

3. THEORETICAL BACKGROUND 
As already indicated earlier in the paper, one interpretation 

of the term “Computational Thinking” is that it refers to 

solving computational problems in the way computers do. 

In order to define what these kinds of problems are, it is 

worth looking to the definition of Alan Turing about 

computability (Turing, 1937). While Gödel (1931) already 

proved that there are theories in every axiom system that are 

not provable, and therefore not computational, Turing 

proposed a formal definition of computational theorems by 

the definition of the Turing Computable Functions also 

referred to as Turing complete functions. Here, Turing 

Complete Functions, are functions that could be solved by 

a Turing Machine. According to the Church’s theorem 

(Turing, 1939) the set of naive computable functions equals 

the set of Turing Computable Functions. Therefore, it could 

be said that every problem that is solvable, could be solved 

by a Turing Machine. Hence, one complementary 

perspective to the existing one on CT could be to have a 

look at the mechanisms that are used by Turing Machines 

and other approaches to computability in order to solve 

those kinds of problems. Especially, the theory of μ-

recursive functions, loop-, while- and goto-computability 

are those under consideration. Analyzing these fundamental 

theories of computational functions, it shows that there are 

a couple of concepts necessary in order to address and tackle 

problems that are solvable by computers: 

 conditions - as in Turing Machines in the form of 

the transition function 

 loops - as in loop- and while-computable functions 

 goto / subroutines - as in goto-computable 

functions 

 recursion - as in μ-recursive 

The following subsections will provide a short overview on 

the implications that the different concepts might have for 

teaching and learning Computational Thinking. 

3.1. Conditions 

Conditions basically allow for the distinction of cases. 

Usually also referred to as if-this-then-that (IFTTT), 

conditions allow to treat different states of a (sub)problem 

differently. States are usually expressed / modelled in the 

form of Boolean expressions. Often, those conditions also 

have an else part, that is executed if a certain Boolean 

expression does not hold. It could easily be shown, that the 

existence of an else part does not yield to more functions 

that are computable. A simple example for a condition that 

checks if a given number is even could be implemented in 

Scratch as shown in Figure 1. Scratch will be our visual 

programming language of choice for the remaining 

examples also, since we believe that it is widely accepted 

and at the same time easy enough to understand even if the 

reader does not have any pre-knowledge here. 

 
Figure 1. A simple condition in a visual programming language. 

Interestingly, the way to model computer programs as a set 

of IFTTT expressions lately became more and more 

prominent, e.g., in the field of the Internet-of-Things (IoT) 

and / or blockchain based technologies. Both examples 

provide highly up to date questions, in which a large number 

of scenarios could be implemented based on simple IFTTT 
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conditions. This underlines the importance and power of 

this kind of modelling. 

3.2. Loops 

Loops are a means for repeating a certain task. Usually, two 

different types of loops are used in computational theory: 

count controlled loops (in which a certain task is executed 

defined times) and condition-controlled loops (in which the 

task is executed as long as a certain condition holds). It 

could easily be shown that count controlled loops could be 

expressed also as case-controlled loops, but not the other 

way around. Therefore, it could be said that the concept of 

case-controlled loops is richer than the concept of count 

controlled loops. Nevertheless, count controlled loops are 

often easier to understand since counting is a very basic 

task, while conditions are a bit trickier. 

An easy to implement example based on a count-controlled 

loop is the Fibonacci number. A Scratch based 

implementation might look similar to the block shown in 

Figure 2. 

 

Figure 2. A count controlled loop in a visual programming 

language. 

3.3. Goto / subroutines 

Another class (equivalent to the condition-controlled loops) 

are Goto Computable Functions. Goto constructs basically 

allow to jump to certain parts of a program, while in contrast 

Turing Machines need to work sequentially through their 

memory. Although, as said before, the class of Goto 

Computable Functions are equivalent to the class of 

functions that can be computed with condition-controlled 

loops, the concept is worth noticing, because it provides a 

first way for implementing subroutines. Historically, this 

could best be seen in languages like Basic, which 

introduced (at least in some dialects) an additional keyword 

gosub (beside Goto) in order to allow for subroutines in 

Basic programs. 

Subroutines are usually used in order to allow a re-use of 

the implemented functionality. Taking the example from 

above for checking if a given number is even or not, a 

subroutine that could be re-used could be implemented as 

new block in Scratch as shown in Figure 3. 

 

Figure 3. A subroutine defined as a block in a visual 

programming language. 

3.4. Recursion 

Finally, after discussing that conditions and loops are the 

basic control structures of computational functions, another 

mechanism also needs to be discussed. Although recursion 

is at first a mathematical mechanism used for functions that 

call themselves, it could also be used as a control structure 

since it influences order commands executed by a program. 

Beside this, it is a very powerful mechanism to describe 

some mathematical functions, e.g., the famous Fibonacci 

number. It could be shown that the class of primitive 

recursive functions is equivalent to the class of functions 

computable by count-controlled loops, which especially 

means that every primitive recursive function could also be 

expressed as a count-controlled loop. Taking up the 

example of the Fibonacci numbers based on a count-

controlled loops as shown in 2, the corresponding 

implementation based on recursion looks like presented in 

Figure 4. 

 
Figure 4. A recursive function implemented in a visual 

programming language. 

Here, an interesting task from a CT perspective could be to 

switch the representation of simple functions from their 

recursive representation to a solution based on a count-

controlled loop and vice-versa, in order to foster the 

understanding of both concepts. It is further known that the 

class of μ-recursive functions is equivalent to the class of 

function computable by condition-controlled loops. 

As mentioned at the beginning of this section, the concepts 

presented here can be seen as the building blocks for 

enabling to frame a complementary way to solve problems 

from a computational perspective. Therefore, in contrast to 

more traditional views to CT that take a standpoint from 

social and behavioral sciences our approach results from a 

computational theory perspective. This proposed view aims 

to expand the current definition of CT by bringing central 

ideas and views based on this theory. In other words, the 

concepts discussed here are the fundamental tools that allow 

computer scientists think with in order to frame problems 

and explore solutions (and the fact that computational 

approaches are being used in very different domains with 

success supports its value). One of the key ideas behind CT 

is that this specific way of framing problems can be 

introduced to learners from an early stage and as such it has 

the potential to enhance their problem-solving skills in a 

variety of domains. The next section further elaborates on 

other useful concepts that extend this perspective. 

4. MORE ADVANCED TOPICS BASED 

ON THE DESCRIBED THEORY 
In the previous section, we presented stepping stones 

enabling the framing for solving problems taking a 

computational theory perspective. In this section, we go 

beyond the stepping stones referred to in the previous 

section and present a set of additional concepts to be offered 

to learners as tools applicable for their reasoning process on 

problems. More specifically, the more advanced topics that 

will be discussed are Object Orientation, Frameworks and 
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Design Patterns. The presentation and discussion of these 

ideas are illustrated through the implementation of an 

algorithm known as bubble sort capable of sorting a set of 

objects in a given list. The sorting process is achieved 

through repeated steps in which a pair of objects are 

compared and if necessary swapped. As implied, bubble 

sort includes steps that use the concepts previously 

introduced including conditions and loops. This particular 

example is provided in order to illustrate our particular and 

complementary view on CT.  

4.1. Object Orientation 

In this subsection, we address Object Oriented structures 

including their properties and functions built based upon 

concepts previously presented. Specifically, we propose to 

use them in order to describe objects that may interplay in 

cases in which learners aim to solve a given problem.  

Here, an object is basically a combination of a data 

structure, together with methods operating on the data 

structure. Figure 5 shows an object representing a sorter 

responsible sort a list of numbers. Figure 5, provides an 

example of an Object-Oriented implementation made in 

Scratch. In this implementation, we included a method that 

gradually sort neighbor pairs of numbers till the list is 

completely sorted. In each iteration, a pair of number is 

sorted by another function operating according to the swap 

principal demonstrates in the previous subsection. 

 

Figure 5. A simple object of a sorter in a visual programming 

language. 

4.2. Frameworks 

Frameworks are referred to an abstraction level in a way that 

enables to provide generic functionality that could be 

altered, deployed, implemented and reused to satisfy 

specific aspects of a problem. When discussing frameworks 

in the context of programming, this may include various 

components including libraries, compilers and APIs 

consolidated in order to enable development of complete 

systems. In our case, a sorter algorithm could be offered as 

a generic framework which represents a service 

implementable in systems requiring such kind of 

functionality. 

4.3. Design Patterns 

Design patterns represent general and reusable problem 

solution pairs for commonly occurring problems. The 

notion of sorting strategies in the light of Design Patterns 

has been discussed by Nguyen & Wong (2001), while 

indicating on best ways to apply different strategies for 

sorting challenges. They specifically addressed different 

aspects of a typical sorting challenge including the interplay 

between involved objects, the selection of an optimized 

solution for sorting and ways to visualize the result of this 

sorting. They emphasized on the Model–view–controller 

(MVC) pattern enabling a separation of concerns between 

models (data to be sorted and the sorting algorithm itself), 

views (presentation layer for presenting the solution of a 

sort algorithm) and controller (logic layer responsible for 

connecting the model and the view). 

In the last two sections, we present our perspective 

addressing various and central concepts later elaborated 

through advanced topics reflecting additional tools and 

techniques used in Computer Science. In the next section, 

we elaborate on the challenges related to cognitive 

perspectives on Computational Thinking. These ideas take 

into consideration the fact that CT approaches need to be 

implemented across different levels and subject matters.  

5. CHALLENGES FROM A COGNITIVE 

PSYCHOLOGY PERSPECTIVE 
We need to be aware that empirical evidence clearly 

showing the connection between learning how to program 

and improving reasoning and analytical skills is still scarce 

(see for example, Pea & Kurland, 1984, or Salomon & 

Perkins, 1987, for detailed reviews concerning the previous 

efforts on psychology of programming). Although CT goes 

beyond teaching how to program we must take on board the 

issues raised and incorporate these in a research program. 

Although revisiting all these topics is beyond the scope of 

this paper, when considering the teaching of a particular 

subject matter, a cognitive psychology perspective needs to 

account for two basic interconnected issues: what to teach 

at distinct stages of human development and how to teach 

it. However, the teaching of Computational Thinking poses 

particular challenges because it is not only a subject matter 

per se but it is intended to be a thinking tool that allows a 

distinct way to frame and tackle problems emerging from 

different disciplines. In other words, it is close to what has 

been termed as a transdisciplinary effort. 

In relation to the concepts to teach and its suitability in 

relation to the different stages of human development, we 

have identified two main challenges: 

1) Identify suitable and meaningful problems to the 

age group, enabling the introduction of the main 

concepts at an early stage and be able to iteratively 

refine them with increased levels of complexity. 

2) Find appropriate ways to ensure transfer of 

knowledge between domain areas that utilized 

concepts from computational thinking. 

Regarding the identification of suitable and meaningful 

problems for a certain age group, this stance clearly aligns 

itself with the early proposals by Bruner (1960) and Papert 

(1980) that rejected closed notions of development stages, 

considering that such approaches might miss the 

opportunity to introduce concepts at early stages and be able 

to leverage from it (see for example, Bruner, 1960; Papert, 
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1980; Pea & Kurland, 1984, Resnick, 1984; Resnick et al., 

1998). Actually, current experiences with spiral approaches 

to programming curriculum development suggest that this 

is indeed possible (Armoni, Meerbaum-Salant & Ben-Ari, 

2015). In relation to the problem of ensuring efficient 

transfer of knowledge, this is indeed an old question with 

distinct theories and conceptual approaches being proposed 

(a proper review of the theme is beyond the scope of this 

paper, however, see for example, Bransford & Schwartz, 

1999) but CT might be, in fact, an enabler since it provides 

the necessary conceptual tools for connecting across 

domains. Nevertheless, a successful knowledge transfer 

approach for CT will need to include the following aspects: 

a) encourage the use of analogies so that the learners are 

stimulated to explore potential connections between subject 

matters, b) avoid excessive focus on the contextualization 

of problems so that learners are not submerged on detail and 

fail to abstract, and c) provide the necessary tools that 

facilitate abstraction in relation to the core concepts of 

computation. 

Two other crucial aspects concern how to teach the different 

concepts and which tools seem suitable to support this 

process. In our perspective, the teaching of computational 

thinking needs to be closely tied to the learning activity of 

modelling distinct phenomena. Encouraging students to 

construct models of different phenomena is a well-

established educational activity (see for example, Milrad, 

Spector & Davidsen, 2002 and Pinkwart, 2005). However, 

models can be of very distinct types, from qualitative to 

quantitative, using graphical/pictorial symbolisms and/or 

formal notations. From a psychological perspective, there is 

an ongoing debate regarding the way the distinct types of 

models can and should be integrated, not only in relation to 

the age group of the learner but also to the actual stage of 

problem comprehension. Considering the different notion 

involving computational thinking we need to assume that at 

some point learners will need to specify the model in such 

a way that it is amenable to computing. Thus, we believe, it 

requires some fair degree of formalization and such will 

need to be in line with the cognitive skills of the learners. 

Relevant questions that can be posed are then: 

What are the appropriate levels of formalization for the 

models considering the age group, cognitive skills and 

previous knowledge of the learners? 

How to ensure that the increasing levels of formalisms 

sophistication are clearly followed through by learners (in 

other words, do the learners understand the connections 

between the distinct formalisms)? 

In fact, the aspect concerning learners' understanding of the 

distinct levels of formalisms sophistication also connects 

with the notion of using multiple external representations to 

foster the learning of computational thinking. The 

transdisciplinary nature of computational thinking themes 

clearly suggests the use of a varied range of external 

representations (some connected with computational 

concepts and some connected with the particular domains 

under scrutiny). But as previous research pointed out being 

able to establish the connections between distinct external 

representations is far from trivial (Ainsworth, 1999; 

Ainsworth & Van Labeke, 2004). Research needs to 

account on how different external representations combine, 

looking for synergies and clearly justify cost/benefits of 

using them. Nevertheless, multiple external representations 

can support deeper understanding by promoting processes 

such as abstraction, extension or generalization of 

knowledge especially if efficient highlighting of the links 

between different representations is in place. Finally, the 

evaluation of computational thinking approaches need to 

consider not only the outcomes of learning events but also 

the processes. Relevant questions are: a) How to capture the 

learners’ skills regarding the transfer of knowledge? b) How 

to capture and understand learners’ representational skills in 

different educational contexts? c) What methods are 

particularly suited to account for a) and b) at distinct stages 

of human development? 

6. OUTLOOK AND FUTURE WORK 
This paper revisited the core concepts of computational 

theory and how these are related to the notion of CT. By 

doing so, we contributed to the clarification of the ongoing 

discussion around the term "Computational Thinking". 

While most common definitions result from an elaboration 

that takes social and behavioral sciences as a point of 

departure, we have used a computer science theory view 

and added a cognitive psychology perspective afterwards. 

In some sense, this might help us to re-focus on the 

fundamental concepts to be taught from a subject matter 

perspective. Then, we can identify, based on existing 

literature and empirical evidence produced, how to teach 

these. Additionally, we provided concrete computationally 

relevant instantiations of the concepts discussed in section 

3 including conditions, loops, goto/subroutines and 

recursion. In this respect, we also addressed more advanced 

topics including Object Orientation, Frameworks and 

Design-Pattern.  

The issues that have emerged from our reflections regarding 

these themes lead us to consider the following key broad 

steps: (a) identify the topics in distinct subject matters that 

are particularly suitable to be included in an initial 

curriculum sketch that implements the core computational 

concepts we referred to. This task should be carried out in 

close collaboration with experts in distinct subject matters 

and teachers of learners in different key stages; (b) reflect 

and create a pedagogical approach that takes into 

consideration the different issues stated as challenges from 

a psychological perspective and provide solid empirical 

evidence. In relation to relevant empirical studies we are 

considering starting with issues related to knowledge 

transfer and the use of different representations to support 

it; (c) design an intervention in order to evaluate how a 

pedagogical approach can be successfully implemented in 

an authentic context; and (d) implement a comparative 

evaluation study that will endeavor to clarify the putative 

benefits of the approach and contribute with empirical data 

to facilitate further refinements. Focusing on the subjects of 

Mathematics, Natural Science and Technology in grades 4-

9, we are currently exploring and validating the ideas 

described in this paper in our ongoing projects with 

elementary school in- service teachers. 
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ABSTRACT 

This paper presents a study on the use of computational 

thinking (CT) in early primary school. First grade primary 

school students were using a custom designed CT tool as 

part of their school lessons. The tool allowed for designing 

and delivering digital tasks with CT content coming from 

three subject areas with the goal of finding out how well 

students complete such tasks. The tasks were aligned with 

course contents and the curriculum and required students to 

choose, set or order CT primitives in an adequate way. The 

tool allowed for automated task solution evaluation in form 

of animations and visualizations reflecting the exact steps 

chosen by the students and prompting them to revise their 

choice if needed. The analysis of students’ task completion 

process reveals that CT tasks including object properties and 

problems with loops were the most demanding, and that 

prior mathematics and reading skills impact early primary 

students’ CT task completion performance across school 

subjects. 

KEYWORDS 
computational thinking, mobile learning, early primary school, 

student performance, mathematics 

1. INTRODUCTION 
Mindstorms is a book written by Seymour Papert in which 

he argues for the benefits of teaching computer literacy 

(Papert, 1983). It was in this book that the term 

computational thinking (CT) was coined and since then 

modern CT initiatives have become the subject of worldwide 

attention. Due to the profound transformation of today’s 

society sparked by the rapid progress of digital technology, 

many educators and leaders started becoming interested in 

incorporating CT into education.   

Even though CT has a rich history, its broader recognition 

began in 2006 with an essay by Jeannette Wing (Wing, 

2006) in which she revived the previously coined CT phrase. 

CT was described as a general-purpose thinking tool which 

builds on natural and artificial information processes, and is 

about acknowledging limits in available resources, reducing 

problems to smaller parts, abstracting information and 

choosing appropriate problem and (or) solution 

representations. A few years later, the Cuny-Synder-Wing 

definition was proposed describing CT as “the thought 

processes involved in formulating problems and their 

solutions so that the solutions are represented in a form that 

can be effectively carried out by an information-processing 

agent” (Wing, 2010).  

Brennan and Resnick (Brennan & Resnick, 2012) argue 

there are three dimensions of CT: computational concepts, 

computational practices and computational perspectives. 

Computational concepts are congruent with the fundamental 

concepts of programming languages. Computational 

practices refer to practices developed during CT activities 

while computational perspectives show in what way has 

learner’s viewpoint changed after engaging in CT activities.  

Regardless of CT receiving considerable attention 

nowadays, there is little agreement on how it should be 

integrated and used in primary and secondary education. 

This paper aims at discussing the use of key CT concepts as 

proposed within Brennan and Resnick’s framework 

(Brennan & Resnick, 2012) with young primary school 

learners, with a special emphasis on the computational 

concepts dimension. A custom CT tool for early primary 

school learners along with the accompanying CT tasks 

covering the subject area of Mathematics, Science and 

Croatian language is proposed. This study examines how 

early primary school students completed CT tasks which 

include a variety of CT concepts and which were designed 

to cover the three subjects’ contents. 

2. COMPUTATIONAL THINKING 

CONCEPTS  
Some researchers have adopted an assessment approach to 

evaluating computational thinking through code generated 

by students. Brennan and Resnick proposed that students’ 

computational thinking competencies can be assessed 

through how they engage with computational concepts 

found in Scratch programming environment. The 

computational concepts are sequences, loops, parallelism, 

data, events, and conditionals (Brennan & Resnick, 2012). 

These computational concepts convey relevant vocabularies 

and notations to be used to describe computational processes 

such as ordering a list or how to do multiplication (Lu & 

Fletcher, 2009). For example, multiplication can be 

described as the number of loop iterations needed to add up 

the same number.  

Students use computational concepts to develop projects 

such as stories, animations, games, tutorials and musical 

instruments through programming (Resnick et al., 2009; 

Ruthmann, Heines, & Greher, 2010). Based on this, 

Moreno-León and his colleagues developed Dr Scratch to 

give feedback on different dimensions of computational 

thinking competency to teachers and students in their 

Scratch projects. The dimensions measured are abstraction, 

logical thinking, parallelism, data representation and 

algorithmic sequencing (Román-González, Pérez-González, 

& Jiménez-Fernández, 2017). 
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Table 1. CT tasks organized into five CT task groups. Each task covers one or two school subjects and up to several CT concepts. 

Group 

number 

Task number in 

group 

School subjects CT concepts 

1 1 Croatian language, 

Science 

Sequence, algorithm, recognition and 

removal of unnecessary steps 

2 Croatian language, 

Science 

Sequence 

3 Croatian language, 

Science 

Sequence, algorithm 

4 Croatian language Sequence, algorithm 

5 Croatian language Sequence 

2 1 

Science 

Object and its properties (sparrow) 

2 Object and its properties (frog) 

3 Object and its properties (bat) 

4 Object and its properties (hedgehog) 

5 Object and its properties (rabbit) 

6 Sequence, object and its properties  

3 1 - 4 
Mathematics 

Problem task  

(selecting steps of a path) 

5 - 8 
Croatian language, 

Mathematics 

Problem task  

(selecting the right steps of a path and 

identifying the correct goal) 

9 - 10 
Croatian language, 

Mathematics 

Problem task with loops (selecting the 

right steps of a path and identifying the 

correct goal)  

4 1 - 8 Mathematics Problem task (numbers 1-10) 

5 1 - 3 Mathematics Problem task (numbers 11-19) 

4 - 7 
Mathematics 

Problem task with loop  

(numbers 11-19) 

8 
Mathematics 

Problem task with combining two loops 

(numbers 11-19) 

 

This study focuses on the computational concepts CT 

dimension and examines several CT concepts implemented 

as CT Mathematics, Science and Croatian language subject 

tasks. Table 1 shows five groups of CT tasks which are 

aligned with the school subjects. By building on the 

presented state-of-the-art research in the field, a CT tool in 

form of a scaffolded environment with visualization and 

animation feedback on the proposed CT task solutions is 

designed, implemented and examined in early primary 

school contexts. 

3. METHODS AND TOOLS 
The study was conducted on a sample of 23 primary first 

grade students 7 to 8 years old, who study in a neighborhood 

primary school in Croatia. There were 12 female and 11 

male students in this study. The study included five groups 

of computational thinking tasks (Table 1) and was carried 

out within the period of two months (May-June 2017), with 

each task group taking place on a single day and taking 2-3 

hours of direct student time. Each student was using an 

individual tablet of his or her choice (an Android, iOS or 

Windows tablet) to complete the tasks. 

Multiple tasks per group were designed with the help of the 

class teacher, so that they relate to the courses taught in first 

grade of Croatian primary schools and make use more 

contextualized and meaningful to the students.  

To scaffold task delivery and collect usage data, a CT tool 

in form of a block-based visual environment in which 

students drag-and-drop blocks into a scripting pane to build 

a solution was designed. Such an environment is inspired by 

similar research targeting young children (Wilson & Moffat, 

2010) and should reduce the efforts and challenges of 

learning programming and the underlying computational 

concepts such as sequence or objects. The tool included a 

narrative in form of a virtual character named Matko the 

robot, guiding students in the CT tool usage. 

   

Figure 1. Left hand side: user interface of the CT tool 

presented in this study; right side: enlarged toolbox - an 

extraneous element not to be used in completing the task 

(in red color). 

The tool was built on top of Blockly.js framework and its 

user interface is composed of the following elements: the 

toolbox (the surface with blocks available for use in the 
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current task), the working area (the surface on which 

students provide the solution), control button for starting the 

current task evaluation process, control button for deleting 

all blocks on the working area and the control button for 

displaying or hiding the current CT task text (Figure 1, left-

hand side, blue button). 

Since the participants were young and English was not their 

mother tongue, the tool interfaces were developed in 

Croatian language. Each student task attempt as well as the 

sequence of steps undertaken in solving a task were recorded 

(logged) (i.e. types of blocks she used, how did she connect 

them, when did she use them etc). 

4. USING THE COMPUTATIONAL 

THINKING TOOL  
The CT tool designed as part of this study is typically used 

by engaging in these steps: (1) the identification of suitable 

computational primitives from the toolbox, (2) placement 

and sequencing of the primitives onto the working area, (3) 

starting the solution evaluation via the control button, (4) 

examining the evaluation (visualization or animation) 

provided by the system, (5) modifying the primitives choice 

via the control buttons and (6) using the control buttons to 

open the next task (Figure 2).  

 

Figure 2. The CT tool usage process. 

After a student identifies the suitable primitives in the step 

1), and places blocks as part of the solution onto the working 

area in the step 2), and presses the control button to start the 

evaluation (step 3)), the tool automatically evaluates all 

student actions and data and provides feedback information 

about the current solution in form of an animation or 

visualization (step 4)) consisting of multiple steps to 

represent the chosen sequence of CT primitives.  

In the first task group (see Table 1 for all task groups and the 

corresponding CT tasks), students were given sets of steps 

of certain well known algorithms, such as the recipe for 

making bread, as CT primitives, and were asked to place 

them in order. Some tasks had extraneous steps listed, which 

students needed to recognize and eliminate from their final 

solution (Figure 1, right-hand side). Once CT primitives are 

chosen and sequenced, the animation or visualization is run 

to represent the solution proposed by the student (Figure 3). 

It is to be noted that in the case of an incorrect step choice or 

sequencing done by the student, the displayed animation will 

reflect the incorrect choice (i.e. recipe/algorithm for making 

bread will intentionally be displayed in the wrong sequence 

and an indication to students will be given – right hand side 

of Figure 7).  

 

Figure 3. An animation displayed to a student 

following the choice of primitives and their placement and 

sequencing on the working area (task group 1 – recipe for 

making bread task). 

Each task from the second task group had a dedicated animal 

well known to the students. To correctly solve a task, 

students needed to recognize which properties belong to an 

animal set in the task, for instance how many legs a frog has. 

In this task group, following a student primitives choice, 

animal properties are visualized step by step (Figure 4) in 

the central working area, prompting students to examine and 

reiterate their initial object property choice if needed.  

 

Figure 4. Choosing animal properties within an animal 

frog object representation (left hand side). A visualization 

displayed to a student following the choice of primitives on 

the working area (task group 2 – legs and feathers as 

incorrectly chosen properties of a frog). 

To correctly complete a task from the third task group, 

students needed to define the path a bunny should use to get 

to the goal. In this task group, feedback provided to the 

students, after they submitted their task solution, consists of 

an animated bunny traversing the map according to the 

primitives sequence provided by the student (Figure 5). 

Some of the tasks from the third task group had multiple 

goals drawn, and the students needed to distinguish which 

goal should their bunny reach based on the supplied task 

text. The text specified whether the goal was the 

largest/smallest or left/right in relation to their bunny on the 

displayed map, which students needed to read, comprehend 

and apply in their solution. 

The fourth and fifth task groups consisted of mathematics 

tasks where the students were given a start value and asked 

to supply the correct sequence of steps corresponding to 

adding or subtracting the pre-selected numbers to reach the 

correct end solution. Although in this task group the students 

needed to reach the correct solution by applying 

mathematical formulae, they were required to choose the 

right loop CT primitive to reach the final solution. The steps 

were selected by choosing the right blocks, where some of 
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the blocks were simple operations (e.g. “Create number 11”, 

“Add 5”), while the others included repetitions (e.g. “Repeat 

two times”). The fourth task group included the addition and 

subtraction of numbers from 1 to 10, while the fifth group 

included the addition and subtraction of numbers from 10 to 

19. In both task groups, animated visual representations of 

mathematical equation elements related to each solution step 

of the calculation are shown to students (Figure 6). The right 

hand side the Figure 6 shows one of the expressions being 

calculated (1+1), currently chosen number to be added (+1 

in blue color), and the end result (=2 in purple color). 

 

Figure 5. An animation displayed to a student 

following the choice of primitives and their placement and 

sequencing on the working area (task group 3 – guiding a 

bunny towards the goal). 

  

Figure 6. The animation displayed to a student 

following the choice of primitives and their placement and 

sequencing on the working area (task group 4 and 5 – 

assembling a formula and providing its result).  

In all task groups, after a solution has been visualized or 

animated to a student, a message about its correctness is 

shown to the student completing the task (Figure 7). If the 

task was solved correctly, student should continue with the 

next task should one be available. If the provided solution is 

incorrect, student should choose to complete the task again.  

  

Figure 7. Feedback message after evaluating solution 

proposed by a student (left hand side – a correctly 

completed task, right hand side – an incorrectly completed 

task). 

5. ANALYSIS AND RESULTS 
The CT tool presented in this paper allowed for detailed data 

collection of students’ usage and performance data for each 

CT task group and its corresponding subjects and tasks. The 

collected data for each student for all five CT task groups 

included (1) the time students needed to complete a task, (2) 

the total number of attempts for a task, (3) the number of 

successful attempts for a task and (4) the number of 

unsuccessful attempts for a task (Table 2).  

Table 2. Overall statistics of the collected data for all 

tasks across all five CT task groups. 

 Mean SD 

Single task completion time (per 

student) (seconds) 
62.49 19.14 

Task completions (attempts per 

student) 
78 25 

Successful task completions 

(attempts per student) 
35 12 

Unsuccessful task completions 

(attempts per student) 
43 18 

 

The analysis indicates that, on average, students engaged in 

a single task for about one minute and, on average completed 

more than 70 tasks over the course of all 5 lessons and, on 

average, had slightly more unsuccessful attempts than the 

successful ones, with the mean success rate being M=0.46 

(SD=0.11, N=23). The total time students spent on dealing 

with repeated solutions attempts amounted to only around 

15% of the overall task completion time. 

Table 3 indicates students spent most of time on engaging in 

the Science subject and on completing science tasks. What 

is more, in the Science subject students had the most 

successful and unsuccessful per-task attempts, with the 

unsuccessful attempts reaching high value of 2.48 attempts 

per task. These figures come with large standard deviation 

(SD) values indicating large between-student differences.  

On average students spent as much as 243 seconds on 

completing CT tasks with object properties and only 68 

seconds on completing problem tasks (the time includes all 

attempts in completing a single task). The difference is 

notable in per-task completion time as well, which is around 

two times larger in favor of object properties. The analysis 

indicates that the CT concept of object properties had the 

largest values of successful and unsuccessful task attempts, 

with substantial SD observed. SDs both in the case of object 

properties and problem tasks were high. 

When solving tasks related to the sequence and object 

properties CT concepts a high number of successful and 

unsuccessful attempts was exhibited by the students. In the 

case of recognition and removal of unnecessary steps CT 

concept, SD for the total completion time was extremely 

high, indicating large differences in student performance.  
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Table 3. The analysis of total completion time, per task time and the number of successful and unsuccessful attempts for 

school subjects and specific CT concepts (time is indicated in seconds). 

 

Total 

completion 

time (mean) 

Total 

completion 

time (SD) 

Per task 

completion 

time (mean)  

Per task 

completion 

time (SD) 

Succ. 

attempts 

(mean) 

Succ.atte

mpts 

(SD) 

Unsucc. 

attempts 

(mean) 

Unsucc. 

attempts 

(SD) 

Croatian language 143.67 49.46 62.76 23.31 0.99 0.58 0.97 0.43 

Mathematics 94.72 49.59 41.79 21.93 0.85 0.38 0.76 0.49 

Science 208.19 88.50 65.18 33.49 1.19 0.54 2.48 1.75 

Sequence 167.42 78.12 68.34 38.35 1.11 0.97 1.01 0.68 

Algorithm 161.60 130.02 70.27 50.11 0.75 0.44 1.00 0.92 

Recogn. and rem. 

of unnec. steps 

137.46 154.92 53.63 48.24 0.87 0.63 1.17 1.70 

Object properties 242.57 103.09 69.79 36.93 1.36 0.72 3.25 2.64 

Problem task 68.28 62.00 33.76 23.23 0.85 0.35 0.64 0.58 

Problem task with 

loops 

166.48 109.53 63.61 46.86 0.86 0.54 1.09 1.00 

 

In the remainder of the analysis, the time and the number of 

successful and unsuccessful attempts were correlated with 

the students’ skills in mathematics and the prior reading 

difficulty variable to check how student academic 

performance relates to their CT task performance. The 

teacher was asked to assess students’ knowledge of 

mathematics on a scale from 1 to 10 prior to the study onset. 

The mean value for all students’ mathematics knowledge 

was M=7.91 (SD=1.62). Reading difficulty was indicated by 

the teacher in 6 out of 23 students. 

The correlation analysis, presented in Table 4, shows that 

students with good prior mathematics skills on general take 

more time and have more successful attempts in solving 

language CT tasks. On the other hand, students with 

identified reading difficulty are less successful in language 

task. For the Science subject, mathematics skills contribute 

to shorter completion time, while the students with reading 

difficulty spent more time on Science tasks. Interestingly, 

there were no correlations of mathematics and reading skills 

with the students’ Mathematics subject performance. 

In regards to the CT concepts, students with better 

mathematics skills are in general more successful in 

algorithms and have fewer unsuccessful attempts in solving 

problems tasks CT concept tasks. They spend less time on 

object properties and problem tasks. Students with reading 

difficulty had less successful attempts in algorithm tasks and 

take more time in completing object properties and problem 

tasks. Surprisingly, students with reading difficulty were 

more successful and took less time in problem tasks with 

loops, however this result warrants for more research. 

6. DISCUSSION 
Early primary school children participating in this study 

were very enthusiastic about solving computational thinking 

tasks and were able to learn how to use the CT tool almost 

instantly. Researchers observed that children love the 

narrative of a robot named Matko which was the main avatar 

in the utilized CT tool. When solving the CT tasks, students 

on average failed slightly more times than they were 

successful, but they completed the repeated attempts very 

quickly and helped each other in the process. 

One of the key findings of this study is the identified 

relationship between students’ mathematics and language 

skills in completing CT tasks. Young primary school 

children are just beginning their schooling and some of them 

still lack reading and mathematics skills which is found to 

affect their performance in the Croatian language and 

Science CT tasks. 

 

Table 4. The correlation of school subjects and CT concepts with students’ mathematics skills and reading difficulty.  

Subject/CT concept Mathematics skills Reading difficulty 

Croatian language Avg. completion time r=0.419* 

Num. of successful attempts r=0.470* 

Num. of successful attempts r=-0.453*  

Science Tot. completion time r=-0.521* Tot. completion time r=0.438* 

Algorithms  Num. of successful attempts r=0.478* Num. of successful attempts r=-0.503* 

Object properties  Avg. completion time r=-0.501* 

Tot. completion time r=-0.638** 

Tot. completion time r=0.564** 

Problem tasks Avg. completion time r=-0.461* 

Tot. completion time r=-0.547** 

Num. of unsuccessful attempts r=-0.434* 

Avg. completion time r=0.435* 

Tot. completion time r=0.481* 

Problem tasks with 

loops 

Num. of successful attempts r=0.563** Tot. completion time r=-0.446* 

Num. of successful attempts r=-0.463* 

*p<0.05, **p<0.001 
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Young primary school children need to have adequate 

reading skills to interact with CT primitives used in courses 

other than Mathematics more successfully (this was 

especially the case with the Science subject). Classroom 

observations during the in-class CT activities show students 

had less issues with using the tool interfaces and 

understanding how to manipulate the primitives than with 

understanding and applying some of the used vocabulary 

(i.e. the words up/down/left/right). This extended the 

students’ time in completing the CT tasks and indicates that 

more interactive forms of content representation such as the 

puzzles or board games might be suitable for young 

students. Nevertheless, the identified gap proved as a great 

opportunity for teacher or peer facilitation of student work, 

whereby students get engaged in the task completion 

process even more. 

In this study prior mathematics skills are identified as an 

important prerequisite in young children’s successful and 

timely CT task completion across all subjects. With almost 

all CT concepts (algorithms, object properties and problem 

tasks) better mathematics skill was related to more success 

in solving CT tasks, and usually in less time. Such findings 

indicate conceptual similarities between the areas of 

mathematics and CT skills and warrant an adequate 

curriculum alignment of the Mathematics subject and other 

subjects using CT. 

Students were fast and successful in completing 

mathematics CT tasks, with the exception of mathematics 

problems with the double loop CT concept, which proved 

to be fairly complex for young primary school learners. The 

CT concept of object properties caused misconceptions 

leading to most time spent and the largest proportion of 

successful and unsuccessful attempts. Classroom 

observations indicate students often reverted to trial and 

error method of completing such tasks since they found 

them both conceptually difficult and challenging to read and 

process. 

The presented findings consistently indicate large 

differences between young students in solving CT tasks. It 

seems some students still struggle with basic language 

knowledge and basic mathematics, even though they are in 

the second semester of the 1st grade. On the other hand, 

some students are already doing well in language and 

mathematics, or were exposed to computer games and other 

computational tools at home or in kindergarten, leading to 

better CT task success. Such differences were alleviated 

with a small amount of scaffolding from the teachers or 

classmates, with all students being able to catch-up, excel 

and have inspiring aha-moments connecting previously 

unknown task elements. 

7. CONCLUSIONS 
The paper presented a study on computational thinking use 

in early primary school. The findings indicate reading and 

mathematics skills play an important role in students’ CT 

task performance. Mathematics skills are of great 

importance and they help students in completing CT tasks 

in subjects such as language and science. Reading difficulty 

presents an issue when young children are to process more 

complex CT tasks, warranting for contingency in terms of 

teacher and peer scaffolding. Large variation in students’ 

performance seeks for an approach in which CT tasks of 

varied difficulty are used. 
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摘要 

计算思维在 21 世纪备受关注，培养计算思维能力的教

学活动设计与开发是教育学者关注的热点问题。不插

电的计算思维教学活动主要在K12低年级阶段开展，缺

乏在高年级实施不插电教学活动的研究。经分析发现，

高中阶段计算机科学概念类知识的学习，传统的教学

方法效率相对较低，并且容易造成学生对计算思维的

误解，而任务驱动模式教学不仅能够避免这些发生，

还能促进提升学习成效。本研究以基于计算思维的任

务驱动教学模式为指导，在高中进行实践。结果表明，

相对于传统教学，不插电教学活动更能激起学习兴趣，

提升学生的计算思维能力。除此之外，学生在活动中

体验乐趣，并表明非常乐意在未来的学习中参与不插

电的计算思维教学活动课程。 

關鍵字 

计算思维；不插电活动；课堂教学；任务驱动 

1. 研究背景 

随着科学研究的发展和进步，计算机作为重要工具，

已经成为现在和未来学习中必不可少的工具，计算机

与人日常的交互使计算机的操作方法开始逐渐影响并

引领人的思维。计算思维能力被称为 21 世纪全球人类

必须具有的基本素养之一(Bocconi, S. & A. Chioccariello, 

et al, 2016)，计算思维的培养在 K12 教育领域受到了愈

发多的关注。人们多过的关注计算机工具的使用而忽

视了其中蕴含的计算思维，计算思维真正受到广泛关

注始于 2006 年，周以真将计算思维定义为是运用计算

机科学的基础概念进行问题求解、系统设计以及人类

行为理解等涵盖计算机科学之广度的一系列思维活动 

(Wing, 2006)，是所有人必须掌握的思维技能。周以真

的观点引发了学界对“计算思维”的热烈探讨，极大地推

动了计算思维的理论和实践研究领域的发展。 

在K12阶段的相关研究中，已有足够多的研究关注环境

的设置，工具的开发以及课程设计，现在更加需要的

是针对真实教学环境的实践研究。开展计算思维教学

多以计算机科学，信息学知识为基点，以计算机作为

辅助工具进行编程或者以不插电教学活动两种形式展

开。Matthias 等人指出，相对不插电来说，编程教育是

困难的，因为它要求学生掌握和理解抽象(Matthias H. 

A., 2018)，另外，由于资源有限，中国仅有少部分地区

能够为K12阶段的学生提供足够多的资源实现计算机支

持的编程教育，而不插电的教学可以随时随地进行，

不受资源限制。在K12阶段不插电的教学活动更能提升

学生兴趣，加强学习效果。值得一提的是，虽然计算

思维多与编程联系起来，但理解编程更加重要，正如

周以真教授所说，“像计算机科学家一样思考比有计算

机编程能力重要的多。”不止编程能够锻炼计算思维，

还有更多的方式。研究表明，非编程的方法是实用的

而且简单易操作，不插电的教学活动不仅让学生理解

了计算机科学的概念，更重要的是提升了学生的思维

能力(王芬与何聚厚, 2017)，而非编程的方法更能吸引

学生进行计算思维的学习，而学生的收获也超出计算

机编程学习。 

2. 文献综述 

2.1  计算思维 

计算思维的相关研究可以追溯到 20 世纪 50 年代，麻省

理工学院终身教授西蒙•派珀特（Seymour Papert）在

《认知器演算法》中提出了“计算思维”。由于当时计算

机教育的发展有限，这一概念没有引起相关研究领域

的广泛关注。而如今，由于计算思维与计算机科学，

信息学，数字素养密切相关，计算思维能力的培养有

助于学生解决实际问题，教育工作者越来越关注计算

思维并将其融入到课堂教学中。 

计算思维引入到课堂教学给学生的学习带来了积极影

响（Yihua L,1998）。培养计算思维能力的课程包括计

算机科学，信息技术，计算课程等。国内以计算机科

学课程和信息技术课程为主，低年级阶段的信息技术

课程关注技能的培养，高年级阶段聚焦计算思维能力

的培养。相关课程在K12阶段有不同的着重点，小学阶

段注重实践和信息技术的应用，K7-K9阶段注重信息技

术的应用及如何利用计算思维解决问题，高中阶段注

重通过探索计算机科学的概念来使学生理解计算思维

并培养计算思维能力。高中阶段计算机科学概念的学

习，计算机科学家和教师有不同意见。Chiu-fan 等人针

对中学生计算机科学概念的学习态度做了调研，教师

相对于计算机科学家来说，更加赞同中学生接触计算

机科学概念的学习，因为教师知道如何将复杂的概念

简单化并教授给学生，计算机科学家们则显得较为保

守，他们认为计算机科学概念应该在大学阶段学习

（Hu,C.,Wu,C.,&Wang,A,2017）。实际上，计算机科学

的学习不仅限于大学，将复杂的计算机科学概念简化，

融入中学课堂是非常必要的。 

在中学计算机科学概念类学习课程中最大的问题是，

传统教学方式针对概念类知识的学习，主张讲解和记

忆，忽视了思维能力的培养，枯燥的概念学习和强硬
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的背诵记忆造成学生不仅对课程反感，对计算思维也

产生了误解。Debroah 等人的研究表明，高中计算机科

学课程中，运用适当的教学策略，能够使中学生有效

地学习计算机科学概念，改变对计算思维的误解，从

多方面提升学生的计算思维能力，让计算思维更加实

用（Flelds, D. A., Debora, L. U. I., & Kafai, Y. B.2017）。 

虽然，K12 阶段的课程培养有不同的着重点，但不插电

的计算机科学活动适合不同学段和任何国家的学生

（ Bell, T., Alexander, J., Freeman, I., & Grimley, M. 

2009），不插电的教学活动形式非常适合计算机科学

概念的学习。这种形式的教学受到学生的青睐，它不

仅能消除编程障碍，使学生直接通过活动学习计算机

科学和信息学的基本概念和原理；再者，不插电的计

算思维教学使学生不局限于电脑前，有充分的活动空

间；另外，不插电的教学方式使学生沉浸在活动情境

中，在具体的实践中培养学生解决问题的能力。 

2.2  不插电的计算思维 

不插电的计算机科学教学活动由新西兰的 Tim Bell，

Lan H.Written 和 Mike Fellowes 三位老师发起，指的是

通过有趣的游戏、谜题来让学生理解计算机科学的概

念，提高学生对计算机科学的兴趣，达到不用打开计

算机就可以很好的理解计算机科学的概念。过去的几

年，由Tim研究团队发起的不插电的计算机科学项目受

到国际多个国家的吸收和使用，并且受到美国的关注

并加入了 ACM 义务教育 K12 阶段的课程。将计算思维

融入到K12教学中的一个途径是任务的设计与描述，计

算思维教学的任务应该区分于其他教学任务 (Barr, V., & 

Stephenson, C. 2011)。任务驱动的计算思维教学模式具

有可行性和高效性（吕会庆、张巍，2012），牟琴等

人提出了基于计算思维的任务驱动教学模式（TDMCT）

并进行实践，结果表明这种教学模式在培养学习者的

自我建构和创新思维上有较大的进步，不仅能够提高

学习效率，而且可以培养学习者的计算思维能力。 

基于以上分析，本研究以二进制卡牌课程为例，以不

插电的形式开展教学。并提出假设：假设 1，不插电的

计算思维教学活动相对于传统教学方式，能够帮助学

生学习理解计算机科学的概念并提升学习兴趣，使概

念的学习不止停留在抽象阶段而变得更加有形。假设 2，

任务驱动的学习在高中阶段是可行的，能够提升学生

的高阶计算思维能力。 

3. 研究设计 

3.1 研究方法和工具 

本研究是实证研究，主要用课堂观察法和问卷调查法。

课堂观察的目的指向学生学习的改善，在课堂活动中

观察学生学习状态。问卷法是通过由一系列问题构成

的调查表收集资料以测量人的行为和态度的心理学基

本研究方法之一，利用问卷调研收集学生学习反馈数

据，采用李克特五维量表(Likert Scale)，主要从课程体

验、课程满意度，未来学习偏好三个维度对学生进行

调研，经检验问卷量表 α系数为 0.71，符合信效度要求。

复杂的任务由多个学生一同完成最为合适，将学生分

小组进行课堂活动，主要用到二进制卡牌和小组任务

表。卡牌作为在课堂活动中为小组完成十进制和二进

制的相互转化的任务提供辅助和支撑，每小组成员一

副二进制卡牌。 

3.2 不插电的教学活动设计 

二进制卡牌课程已经有许多实践，本次课程基于计算

思维的任务驱动教学模式对进行教学设计，将教师和

学习者之间通过任务连接，教学过程以任务为主线，

教师作为引导，学生为主体运用计算思维方法来完成

任务。二进制算法和不同进制之间转换的算法是大学

的内容，以抽象化的概念在计算机科学课程中体现，

但本课程以二进制卡牌作为辅助工具，将抽象的算法

简化后，使其能够在高中展开教学。课程教学设计，

主要包括课堂引入，小组任务，总结拓展三个阶段。

小组任务包含三个任务，小组活动任务表内容如表 1 所

示。 

表 1 小组任务表 

初级任务 

任务 1 
十进制转化为

二进制 

任务 2 
二进制转化为

十进制 

高级任务 任务 3 

符号表示的二

进制转化为十

进制数值 

任务 1 和任务 2 在情境引入之后，其目的是让学生利用

工具，实现十进制和二进制的相互转化。前两个任务

是初级任务，能够调动学生学习的主动性，利用卡牌

完成任务的同时，能对二进制算法与十进制算法的相

互转换有基本了解。接下来是高级任务，任务 3。在前

两个任务的基础上，完成此任务，其内容是识别符号

表示的二进制并进行转换，目的是为了检验所学，并

提升学生的高阶计算思维能力，任务三需要学生能够

通过符号抽象进行转换，激发学生思考，提升计算思

维中的抽象思维能力，完成所有任务后，进入课堂总

结阶段，由教师带领学生一起探讨和归纳不同进制数

的共同规律。 

3.3 研究对象及过程 

课程的参与者是某高中二年级的学生，共 52 人参与课

程（男 34 女 18）。课程进行之前对学生参与课程进行

情意调研，80%以上的学生在此次课程前参与过有趣的

教学活动。个别同学在高中以前，曾多次参与有趣的

教学活动。但是由于高中课程紧张，同学们基本没再

参与有趣的教学活动，对于本次课程学生非常期待参

与。将班级的 52 名同学分成 24 个小组，2-3 人一组。

每组成员之间相互熟悉，这更利于合作探究学习的开

展，以及小组任务的完成。 

高中阶段学生很大程度上对计算机科学有一定误解，

认为学计算机就是编程或者学习枯燥的概念。实际上，

不插电的计算思维教学活动能够让计算机科学的原理

和概念以有趣的活动的方式展现，不插电的课堂活动

旨在给学生带来好的学习体验，引起学生兴趣，在一

定程度上纠正其对计算机科学不正确的认识。高中阶

段学生已经有整体的逻辑思维能力，有效的教学方法

对培养计算思维能力的培养起着至关重要的作用 (丁玲, 

2017)。另外，学生对于十进制非常熟悉，关于二进制，
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所有同学都知道二进制计数法存在，对其具体算法并

不了解，同学们对所学内容充满好奇并带着兴趣和好

奇心进入课程。 

4. 结果与讨论 

课程以学生为中心开展，学生是学习的主体，所以课

程中最主要的教学活动即小组合作完成任务的活动，

小组活动期间有教师仅作为指导者参与，通过对问卷

数据的分析，以及对两个假设的分析进行讨论。 

首先通过问卷数据收集进行分析。在课程体验方面，

我们发现与Nicole等人的研究类似，计算思维的学习领

域男生和女生表现出不同的自信等级（Hutchins, N. M., 

Zhang, N., & Biswas, G. 2017）。虽然在小组合作的过程

中，无论是男生还是女生，都能够互帮互助一起完成

任务，有良好的交互。但在学生的课程体验方面，男

生在活动中更加自信，如表 2 所示。 

表 2 男女生自信等级（%） 

 高 较高 正常 低 

男生 14.71 76.47 5.88 2.49 

女生 11.11 50.09 38.89 0 

在课程满意度方面，80%以上的学生对课程非常满意，

在未来学习偏好方面，超过 84%的学生在未来的学习

中愿意再次参与课程，有同学说：“高中紧张的学习期

间，有一些新颖的课堂活动是很好的，对于这次课程，

既可以通过活动学习知识，又丰富‘学业生活’，可谓两

全其美，希望老师常来。”有学生说：“我认为这样的课

程应多讲一些，既可以锻炼与同学的合作能力，又可

以学习新的知识，我十分赞同多开展几次。”班级原授

课教师也惊叹学生从未如此认真地参与到教学活动中。 

再者，对于假设 1。通过课堂观察和对比，不插电的教

学方式，确实更能够提升学生的学习兴趣和参与度，

在传统教学方式讲授二进制算法及其与十进制相互转

化的课程中，由于课程内容与高考无关，50%以上的学

生学习不专注或者做其他学科的任务，学生对枯燥的

概念和复杂的算法并不感兴趣，甚至认为是课程内容

加重了学习负担。但在本次课程中，所有同学都参与

到教学活动中，并且认真主动完成任务并对其算法进

行小组探究，对二进制的理解不仅是抽象的概念，而

转化成了可用的算法工具，在完成任务后寻找不同进

制的算法规律，进行归纳演绎，所有同学都能归纳出

不同进制数值算法的一般规律。实际上，学生不仅学

会了二进制的概念，同时也提升了如抽象和归纳的高

阶计算思维能力。 

对于假设 2，任务驱动的学习在高中阶段是可行的，运

用任务驱动的教学策略能够提升学生学习主动性，并

提升学生的计算思维能力。针对课堂活动进行分析。

从活动过程来看，活动开展之前，课堂引入生活的小

问题成功地引起了学生的兴趣，调动学生的积极性，

为下面小组任务的开展和探究二进制计数法的活动奠

定了基础。小组成员进行合作，依次完成小组的三个

任务。期间教师仅作为指导者，帮助学生解答疑惑，

帮助学生解决问题，继续完成小组任务。从学习结果

来看，教学活动三个任务的其正确率如下圖所示。 

 

圖 1 任务表结果 

尽管任务难度逐渐增加，但三个任务的正确率几乎呈

现直线增长。在二进制和十进制相互转化的初级任务

中，第一个任务的小组任务结果正确率为 87.50%，在

最后一个高级任务中，正确率以及达到 95%。小组的

任务完成后，学生已经基本掌握利用工具将二进制和

十进制进行转换，并且能够抽象理解二进制数。 

小组任务结束后，进入学生提问阶段和课堂总结活动。

经过课堂的总结和拓展，学生了解到计数法不止有二

进制十进制，还有八进制，十六进制等等，并归纳出

所有进制数的共同规律。在课后的反馈中，我们发现

不插电的计算思维课程在高中阶段是可行的，不插电

的教学活动能够培养学生的计算思维能力，更能够使

学生勤加思考，调动学习主动性。 

5. 总结与展望 

本次课程活动比较成功，无论是课程过程还是学生课

后的反馈来看，高中学生对于不插电的计算思维教学

活动非常感兴趣并且享受这种课程。不插电的计算思

维教学活动以做中学（Learning by Doing）为宗旨，现

今的数字化时代，学生更应该掌握在做中学(Tan and 

Kim, 2015)，尤其是 K12 阶段的高年级学生，比起背诵

概念，在实践中理解并运用概念更为重要。 

对于本研究也存在一定的局限和不足，在高中的课堂

中开在不插电的教学，班级人数较多，教师不能关注

到每一位学生，在提供指导和帮助学生解决小组困难

的问题上，有待提升。Halil 指出，对于计算思维的相

关研究中，多关注问题解决，技术和思维方式，对学

生本身的关注较少（Haseski, H. I., Ilic, U., & Tugtekin, 

U.,2018）。对本研究来说，在关注个性化学习方面确

实有所欠缺，在深入了解学生本身特征方面存在不足。

未来的研究中，将缩减班级人数为 30 人以内，以便关

注每一位学生，关注学生个性化，并对学生的学习特

征进行分析，改进课程进行研究。 
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ABSTRACT 

Computational thinking (CT) in education has been 

considered significant to future national competitiveness and 

development. Programming is seen as the most direct way 

to develop the CT skills. However, it is also argued that 

young starters are easily frustrated and discouraged when 

they have difficulties in programming syntax and concepts. 

Thus, a programming course with adaptive visualization or 

game-based learning is considered a better solution to 

encourage higher-order thinking that benefits young 

students. The unplug educational board game features low 

selling price, intensive interaction among players, and is able 

to play without any computing equipment. It is therefore 

attracting growing attention from schools and teachers. In 

this study, we designed a CT board game, Interstellar 

Explorer, on the theme of space. Users play Interstellar 

Explorer by controlling on-screen spaceship and defending 

with obstacles to find the most residential planet in an 

animated outer space. Interstellar Explorer challenges 

players to design and implement strategies to carefully 

control the movement of spaceship and successfully build a 

defense. This study contributes to developing player’s 

logical thinking and problem-solving ability as well as 

inspiring their imagination and creativity. 

KEYWORDS 

computational thinking, programming, coding, board game, 

interstellar explorer 

1. BACKGROUND 
Computational thinking (CT) in education has been 

considered significant to future national competitiveness and 

development ever since the notion of CT was reintroduced 

by Jeanette Wing from Carnegie Mellon University in 2006. 

In some countries such as America, England, Australia, and 

Estonia have started including computing in the school 

curriculum and teacher training.  

CT uses basic concepts of computing and information 

science to solve problems, design systems and understand 

humor behavior (Wing, 2006). Along with reading, writing 

and arithmetic, CT is a requirement of a part of core 

knowledge. CT consists of skills like induction, embedding, 

transition, and simulation, which help to solve complicated 

problems in the way we are familiar with. 

2. MOTIVATION and PURPOSE 
The change of trend in education and global realization to 

the importance of CT has identified the significance of 

developing CT skills at a young age. In other words, 

programming is seen as the most direct way to develop the 

CT skills. (Buitrago Flórez, Casallas, Hernández, Reyes, 

Restrepo, Danies, 2017). However it is also argued that 

young starters are easily frustrated and discouraged when 

they have difficulties in programming syntax and concepts 

(Costelloe, 2004 & Powers, Ecott & Hirshfield(2007). 

Furthermore, traditional programming can be boring to 

young students mostly due to its requirement of various 

syntax inputs (Mannila, Peltomäki & Salakoski, 2006). Thus, 

a programming course with adaptive visualization or game-

based learning is considered a better solution to encourage 

higher-order thinking that benefits young students 

(Brusilovsky & Spring, 2004). 

At present on the market, teaching materials to develop CT 

skills can be generally divided into three kinds of design: 1) 

blocks-based visualization, like code.org and Scratch; 2) 

real-robot control, like mBot and Dash & dot; 3) unplug 

educational board game with cards, like Robot turles, King 

of Pirate, Doggy code, Code master, Robot Wars Coding 

Board Game. Each of the designs has its advantages and 

limits. The unplug educational board game features low 

selling price, intensive interaction among players, and 

playing without any computing equipment. It is therefore 

attracting growing attention from schools and teachers.  

The five board games mentioned above are designed in 

accordance with programming elements. Yet, the elements 

are incompletely considered due to age setting and game 

mechanism. Thus, we try to design a CT board game based 

on programming elements, allowing players at any age to 

develop and practice CT skills. 

3. DESIGN OF CT BOARD GAME AND 

AMALYSIS OF PROGRAMMING 

ELEMENTLS 
We design a CT board game, Interstellar Explorer, on the 

theme of space. Users play Interstellar Explorer by 

controlling on-screen spaceship and defending with 

obstacles to find the most residential planet in an animated 

outer space (see Figure 1). 

Designed for players aged 8+, Interstellar Explorer 

challenges players to design and implement strategies to 

carefully control the movement of spaceship and 

successfully build a defense. This contributes to developing 

player’s logical thinking and problem-solving ability as well 

as inspiring their imagination and creativity. 

We create a set of cards to use in the game. Players place 

these cards in linear arrangement in the way similar to visual 

programming language learning. Players are also allowed to 

create his/her own conditional environment and implement 
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rules with blank cards where they can define clearly the 

condition and rules. Interstellar Explorer provides a game-

based learning environment to teach basic programming and 

CT skills including sequences, events, loops, conditional, 

parallelism, names, operators, and data (Bernnan & Resnick, 

2012) (see Table 1). 

 

 

Figure 1. Description of Interstellar Explorer 

 

Table 1. Programming Concepts 

Concept Gameplay Instruction 

sequences Starting starship 

events adding meteorite, clearing meteorite, 

pause card, observing planets with 

telescope, beam card, deflector shield 

card, destroying meteorite in front, 

changing character, calling for character’s 

skill, multifunction card, preference card 

loops flying card effect X n 

conditionals condition card 1-5 

parallelism controlling the opponent’s ship 

names 

creating function card, calling for 

function card, blank condition card, blank 

implement card 

operators 
meteorite explosion, alien attack, magic 

power recorder 

data magic power recorder, supplies card 

4. CONCLUSION 
Promoting CT skills in education has become a global trend. 

Introducing CT concepts to young learners is even a 

significant step to develop problem-solving ability and 

logical thinking at a young age. Thus, we design a CT board 

game, Interstellar Explorer, based on programming concepts 

to help young learners in learning CT concepts and skills. In 

the future, we will carry out a study to explore the 

effectiveness of this CT board game, Interstellar Explorer, 

using the computational thinking scale and the behavior 

model. 
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ABSTRACT 
In this study, Levenshtein distance algorithm-based coding 

education support system which shows learners’ progress in 

real time was developed in order to observe how learners 

would solve complex problems in the coding environment 

and a pilot test was conducted on elementary school students. 

When the teacher used the developed system to teach 

students, there was a statistically significant difference in 

integrated regulation, external regulation, and introjected 

regulation among the sub-factors of learning motivation 

compared to the conventional classes. Among the sub-

factors of self-efficacy, efficacy dimension showed 

statistically significant difference. 

KEYWORDS 
Coding Education, Software education, Learning 

Motivation, Self-efficacy  

1. INTRODUCTION 
The core of Computational Thinking(CT) is to break down 

a complex problem into familiar and easier sub-problems 

(problem decomposition), solve the problems by applying 

algorithm, review how such problems can be transferred to 

similar problems, and decide whether to use computers to 

solve them better (Yadav, et al., 2016). In other words, 

Computational Thinking is the ability of computer scientists 

to solve problems by using computing technology as a way 

of thinking to solve problems, so CT plays an important role 

in solving complex problems.  

Among the methods to graft CT into school education, there 

is automation. This element requires learners to connect to 

the computer. Learners can learn modeling and simulation 

using computing technology in this learning environment. 

These automation tools are developed in Scratch or in the 

local versions of Scratch so that programmers can learn CT 

skills easily through the coding process. 

For effective programming learning, learners should have 

interest and internal motivation and they should be provided 

with the learning method considering the level of individual 

learners and interest (Katai, Z. & Toth, L., 2010). However, 

in reality, general programming education is conducted for 

a large number of learners in a classroom. For a learner to 

get an appropriate feedback from a teacher in this situation, 

adequate time allowance as well as the teacher’s teaching 

ability is necessary (Han, K. W., Lee, E. K. & Lee, Y. J., 

2010). Accordingly, related studies such as scoring 

according to the efficiency of the algorithm for a given 

problem or analyzing and evaluating the learners' learning 

are actively being performed (Jang W. Y. & Kin S. S., 2014).  

Yet, automated tools to provide a convenient and flexible 

evaluation method are not available. Unlike the 

programming environment on the computer, it is very 

difficult to maximize the learning effect of software 

education in a limited environment where the learner's 

programming is analyzed and the task evaluation is 

performed manually (Kim M. H., 2007). To overcome these 

difficulties, studies on programming learning analysis 

system, where the teacher can analyze the learning status 

with an automatic and efficient method, give optimal 

feedback and easily evaluate tasks of the learners, should be 

made. In this study, a block programming education support 

system based on Levenshtein distance algorithm, which is 

designed to support the teaching of the teacher and promote 

the motivation of learners in the field of coding education, 

was developed and it was applied to 10 units of classes to 

analyze its effects on learning motivation and the self-

efficacy of learners. 

2. BACKGROUND 

2.1. Algorithm Learning Analysis System 

In the algorithm learning analysis system, when a learner 

creates a solution to a given problem using a programming 

language, the prepared source code is stored in the server, 

and the analysis program repeats the execution several times 

while confirming the number of times the server code is 

stored in the server at a predetermined time interval. Each 

time it is executed, data prepared in advance is entered to the 

program, and the result is compared with the value of the 

prepared answer data. The existing algorithm learning 

analysis system uses text-type programming language to 

compare strings, line, and compilation results of source code 

and answer code according to a certain algorithm, and 

provides error or score through message feedback.  

These systems work well in environments that use text type 

programming languages and have the advantage of being 

able to feed back the results immediately. However, there is 

no learning analysis system developed for the purpose of 

performing such a function in the block type programming 

language environment which is currently used at the 

elementary and secondary school level. Therefore, the 

teacher should observe students roaming around the 

classroom and it is difficult for a teacher to identify what a 

learner thinks difficult. 

2.2. Related Studies 

Kim (Kim, M.-H., 2007) designed and implemented a web-

based programming task evaluation system that allowed the 

teacher to automatically evaluate the performance of the 

program and easily check the style and plagiarism of the 

program with appropriate feedback (Kim M.-H., 2007). 
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Song (Song, J.-H., 2011) designed and developed an 

automatic scoring-based programming education system 

that could perform learner-centered self-directed learning by 

performing programming education more efficiently. Jang 

& Kim (Jang W. Y. & Kin S. S., 2014) developed a client-

server based system by enforcing teaching-learning 

functions of the existing Online Judge style system and 

found its significant effect on programming learning. Jeong 

(Jeong, J.-K., 2010) developed a system that can be used for 

programming learning and evaluation of science high school 

students unlike Online Judge system which is used for 

evaluation in competitions. 

From the analysis of previous studies, it was found that 

various automatic scoring systems for programming 

learning and evaluation had been developed. However, there 

have been no studies related to the development of a system 

that supports block programming languages for elementary 

and secondary school students and teachers up to now. 

Therefore, in this study, a pilot version of a system that 

performs block programming language learning analysis 

function was developed and the effect of the system on 

learning motivation and self-efficacy of learners through the 

classes where a teacher uses the system was verified. 

3. SYSTEM DESIGN 
In this pilot system, a learner can program using Entry, a 

block-type programming language, through a web server, 

and click the save button to analyze the source code in real 

time.   

 

 

Figure 1. Developed pilot system [J.-H. Kim, et al. 2018] 

The system applied to this study divides the web agent into 

a view agent to which the teacher and learners connect, a 

core agent that analyzes and structures the code, and a DB 

agent that stores class information, account information, and 

learning information. The teacher opens a class by entering 

the class name and the URL address of the answer code.  

The learner accesses the system with his/her account, enters 

the URL address of the source code, and programs in Entry 

environment. The system checks whether the learner clicks 

the save button at a pre-determined time interval and saves 

accumulated achievements using the Levenshtein distance 

algorithm when the save button is clicked.  

Levenshtein distance is a kind of edit distance technique that 

calculates the minimum number of edits such as deletions, 

insertions, or substitutions required when a string is 

converted into another string (Levenshtein, 1966). 

lev(𝑠1, 𝑠2) =
dist(𝑠1, 𝑠2)

max(|𝑠1|, |𝑠2|)
 

In this study, the progress of students' learning was 

calculated through individual block group agreement and 

whole block group agreement.  

Individualblockgroupagreement(%)

= 100 × (1 −
𝐿𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝐴𝑋(𝑁𝑜. 𝑜𝑓𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑏𝑙𝑜𝑐𝑘, 𝑁𝑜. 𝑜𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑏𝑙𝑜𝑐𝑘)
) 

 

Wholeblockgroupagreement(%)

= 100 × (1 −
Σ𝐿𝑒𝑣𝑒𝑛𝑠𝑡𝑒𝑖𝑛𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Σ𝑀𝐴𝑋(𝑁𝑜. 𝑜𝑓𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑏𝑙𝑜𝑐𝑘, 𝑁𝑜. 𝑜𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑏𝑙𝑜𝑐𝑘)
) 

In addition, if the block type is the same but only the variable 

or the block parameter is wrong, it is considered to be 

corrected 0.5 times rather than 1.  

 The teacher can check which block each learner has used, 

how the block of the learner has been changed for a certain 

time, and what the degree of final achievement is. The 

teacher can also provide corrective feedback to the student 

with low achievement level. The algorithm of the overall 

pilot system through the above agents is shown in Fig. 2. 

 

Figure 2. Algorithm of pilot system 

4. Learners’ Self-Efficacy in Developed Pilot 

System Utilization Education  
The factors that affect programming education will vary. 

Wiedenbeck (2005) presented programming experience, 

self-efficacy, and knowledge organization as learning 

factors for non-professionals to successfully achieve 

programming learning. In this paper, we have proposed 

various learning examples for learners to gain programming 

experience and consider learning strategies to enhance 

learner's self-efficacy. To do this, we conducted a 

programming education with a constructive approach and a 

cognitive approach to designing teaching and learning. The 

learner was able to receive the feedback of the instructor and 

confirm the achievement degree of each block and construct 

the cognitive processing through the meta - cognition. 
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In order to verify the educational effects of the pilot system 

developed in this study, an experiment was administered on 

40 grade 5 students in S elementary school in Gwangju, 

Korea. The experimental group and the control group 

received a total of 10 units of programming education using 

a block type programming language. In the case of the 

experimental group, the teacher identified the progress of the 

learners with the developed system, intervened 

appropriately, and let the learners compare their progress 

with the teacher's answer. For the control group, on the other 

hand, the traditional teaching method was used where the 

teacher roamed around the classroom to observe and advise 

the learners. 

4.1. Program Design 

The curriculum of 10 classes applied to the two groups was 

structured to learn computer science subjects such as 

sequence (SE1), repetition (R), selection (SE2), simple 

variable (V), list (L) and concatenation (C) included in the 

software education curriculum of elementary school in 

Korea. The summary of the curriculum is shown in Table 1. 

 

Table 1. Curriculum for Programming education. 
Time Title Elements 

1 Basic programming language 

manipulation 

Use movement, shape block 

C 

2 Create simple block 

application program 

C, R 

3 Make ‘bears meet bees’ 

Use repetition with variables 

C, R, V 

4 Make ‘Bee shot bear’  

Use selection Structures 

C, R, SE2 

5 Make ‘Shark Avoid’ Game C, R, SE2 

6 Develop  games: 

Use Replication Blocks 

C, R, SE2, V 

7 Complete the game: 

Use lists and variables 

C, R, L, V 

8 Make a gift lottery program 

Use random number 

C, R 

9 Make ‘Producer Speaker’  

Use Random Numbers, 

Arithmetic Expressions 

C, R, L, V 

10 Draw a polygon 

Use pen-block, basic functions 

C, R, F 

 

In the experimental group, learners were asked to check their 

learning achievement through the pilot system constantly 

during the 10 units of classes. The teacher checked the 

achievements of learners during the class and provided 

corrective feedback to the student who kept having low 

achievement level for quite a long time by analyzing the 

causes of low achievement. In the control group, the teacher 

gave a lecture just like in the conventional teaching method 

and gave feedback directly to the learners while roaming 

around the classroom. 

4.2. Research Method 

In order to measure the learning motivation of the students, 

the motivation test tool for youth developed by Lee M. H. 

and Jung T. Y. (2007) was modified for elementary school 

students. The learning motivation test tool was composed of 

26 questions in total; specifically 5 items of Amotivation, 5 

items of External Regulation, 5 items of Introjected 

Regulation, 5 items of Identified Regulation and 6 items of 

Integrated Regulation. Amotivation is the status wherein the 

desire to learn is not generated regardless of external stimuli, 

External Regulation is behavior control by external factors, 

Introjected Regulation is to act through influence of past 

experiences such as reward and punishment, Identified 

Regulation means that integrated control as external factor 

is changed into internal factor, and Integrated Regulation is 

the motivation to create and achieve something on its own. 

Table 2 shows the items and reliability of sub-factors of 

learning motivation.  

 

Table 2. Reliability test of Learning Motivation. 
Elements Quantity Item number Reliability 

Integrated 

Regulation 

6 1,3,12, 

17,20,23 

.839 

Amotivation 5 4,6,7, 

9,26 

.674 

Introjected 

Regulation 

5 11,16,18,19,

25 

.750 

External 

Regulation 

5 5,13,14, 

15,21 

.818 

Identified 

Regulation 

5 2,8,10, 

22,24 

.775 

 

In order to measure the self-efficacy of students in 

programming language, the self-efficacy test tool in 

computer programing language education environment 

developed by Kim (Kim, K. S., 2014) was modified. The 

self-efficacy test tool is composed of 30 questions in total; 

specifically 10 questions about language, 10 questions about 

Efficacy Factor and 10 questions about Efficacy Dimension. 

Language refers to the challenging spirit to develop a 

program by knowing the general structure of a programming 

language and the terminologies of variables, expressions, 

control statements, operators, arrays and functions and 

utilizing them. Efficacy Factor refers to whether they have 

direct or indirect experience with success or failure. Efficacy 

Dimension is the learner's perception on the level of 

difficulty of a given task, the willingness to challenge more 

difficult problems, and whether to generalize it. Table 3 

shows the items and reliability of sub-factors of self-efficacy.  

Table 3. Reliability test of Self-efficacy. 
Elements Quantity Item number Reliability 

Language 10 1,2,3,4,5,6,7,8, 

9,10 

.875 

Efficacy 

Factor 

10 11,12,13,14,15, 

16,17,18,19,20 

.874 
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Efficacy 

Dimension 

10 21,22,23,24,25, 

26,27,28,29,30 

.835 

4.3. Result 

In order to verify the homogeneity of the experimental group 

and the control group, pre-test was administered to measure 

learning motivation and self-efficacy of two groups. As 

Table 4 shows, there was no significant difference, which 

confirms the homogeneity of the groups. 

 

Table 4. Homogeneity test of group to measure  
for Learning Motivation & Self-Efficacy 

Area Group N M SD t P 

Learning 

Motivation 

Total 

Experi- 

Mental 

20 73.90 7.873 -.421 .676 

Control 19 75.16 10.658 

L1 Experi- 

Mental 

20 22.50 4.274 .432 .668 

Control 19 21.79 5.903 

L2 Experi- 

Mental 

20 10.25 3.226 -.934 .357 

Control 19 11.32 3.888 

L3 Experi- 

Mental 

20 12.20 3.122 -.959 .344 

Control 19 13.26 3.784 

L4 Experi- 

Mental 

20 10.95 3.900 -.401 .691 

Control 19 11.53 5.037 

L5 Experi- 

Mental 

20 18.00 3.356 .580 .565 

Control 19 17.26 4.520 

Self-

efficacy 

Total 

Experi- 

Mental 

20 93.20 16.979 .165 .870 

Control 19 92.11 23.949 

S1 Experi- 

Mental 

20 29.75 7.813 .024 .981 

Control 19 29.68 9.310 

S2 Experi- 

Mental 

20 30.90 5.330 -.814 .421 

Control 19 32.84 9.167 

S3 Experi- 

Mental 

20 32.55 6.362 1.343 .187 

Control 19 29.58 7.434 

∗ p < .05 

L1=Integrated Regulation, L2=Amotivation, L3=Introjected 

Regulation, L4=External Regulation, L5=Identified Regulation 

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension 

 

The results of the post-test on learning motivation and self-

efficacy are shown in Table 5. There were significant 

differences in Integrated Regulation, External Regulation 

and Introjected Regulation among the sub-factors of 

learning motivation, but there was no significant difference 

in Amotivation and identification control. There was a 

significant difference in Efficacy Dimension in the sub-

elements of self-efficacy, but there was no difference in 

Language and Efficacy Factor.  

 

Table 5. Post-test of group to measure  
for Learning Motivation & Self-Efficacy 

Area Group N M SD t P 

L1 Experi- 

Mental 

20 22.30 4.567 .2074 .044* 

Control 19 19.33 4.902 

L2 Experi- 

Mental 

20 10.74 3.374 -

1.623 

.112 

Control 19 12.43 3.529 

L3 Experi- 

Mental 

20 12.57 4.660 -.997 .324 

Control 19 13.86 3.851 

L4 Experi- 

Mental 

20 10.78 4.680 -

1.863 

.069 

Control 19 13.38 4.555 

L5 Experi- 

Mental 

20 18.65 3.688 2.308 .026* 

Control 19 15.76 4.603 

S1 Experi- 

Mental 

20 33.35 7.352 .6511 .519 

Control 19 31.86 7.844 

S2 Experi- 

Mental 

20 37.04 8.054 .650 .106 

Control 19 33.24 7.162 

S3 Experi- 

Mental 

20 34.70 8.578 1.994 .050* 

Control 19 30.05 6.659 

∗ p < .05 

L1=Integrated Regulation, L2=Amotivation, L3=Introjected 

Regulation, L4=External Regulation, L5=Identified Regulation 

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension 

 

In order to analyze the difference of the self-efficacy before 

and after the application of the system in the experimental 

group, the mean and the standard deviation were calculated 

by dividing the test period. Table 6 shows the paired t-test 

results.  As presented in the table, the sum of self-efficacy 

after system application is significantly higher than before 

the system application. In the analysis of sub-factors, there 

was a statistically significant difference in Efficacy 

Dimension and there was no difference in Language and 

Efficacy Factor. 
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Table 6. Paired Samples t Test of group to measure 

for Self-Efficacy. 
Area Group Paired Differences t P 

N M SD 

Total Pre 20 14.10 28.10 2.244 .037* 

Post 

S1 Pre 20 4.20 11.91 1.578 .131 

Post 

S2 Pre 20 6.60 8.18 3.606 .002* 

Post 

S3 Pre 20 3.30 11.32 1.303 .208 

Post 

∗ p < .05 

S1=Language, S2=Efficacy Factor, S3=Efficacy Dimension 

 

5. CONCLUSIONS 
This study analyzed the effectiveness of learning motivation 

and self-efficacy by developing a pilot system that supports 

coding education using a block programming language for 

elementary school students and teachers. The results are as 

follow. 

First, in the verification of effects on learning motivation and 

self-efficacy, it was found that the teaching method allowing 

learners to check their achievements constantly and enabling 

the teacher to identify students with low achievement from 

time to time and to give them one-to-one feed-backs would 

give more interest to learners and enforce them to achieve 

the goal.  

Second, students were able to gain experience of success in 

the programming learning structure through the pilot system 

presented in this study. It gives them indirect experience of 

continuous success and the ability to create additional 

programs by showing achievement unlike the existing error 

checking method.  

Based on the process and results of this study, it is necessary 

to provide a web-based lecture support system where the 

teacher can monitor learners in real time and provide a more 

convenient learning environment. In addition, it is necessary 

to study a system that can integrate and manage the tasks and 

achievements associated with the curriculum in conjunction 

with CMS or LMS.  

6. ACKNOWLEDGMENTS 
This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (Ministry of Education) (No. 

2017S1A5A2A01026058) 

7. REFERENCES 
Chang, W. Y. & Kim, S. S. (2014). Development and 

application of algorithm judging system: analysis of 

effects on programming learning. journal of Korean 

Association of Computer Education, 22(2), pp.15-24. 

Han, K. W., Lee, E. K., Lee, and  Y. J. (2010). “The Impact 

of a Peer-Learning Agent Based on Pair Programming in a 

Programming Course”. IEEE Institute of Electrical and 

Electronics IEEE transactions on education, 53(2), pp.318-

327. 

Jeong, J. K. (2010). Design and Construct of Programming 

Assessment System based on "Online Judge" for a Science 

High School student. master’s thesis, Korea National 

University of Education. 

 Kim, K. S. (2014). Measuring and Applying the Self-

efficacy in Computer Programming Education. Journal of 

The Korean Association of Information Education, 18(1), 

pp.111-120. 

Katai, Z., Toth, L. (2010). “Technologically and artistically 

enhanced multi-sensory computer-programming 

education”. Teaching and teacher education, 26(2), 

pp.244-251. 

Kim, J,-H., Choi, J.-H., Shadikhodjaev, U., Nasridinov, A., 

and Song, K.S. (2018) “Chentry: Automated Evaluation of 

Students’ Learning Progress for Entry Education 

Software,” to be published in the Advances in Intelligent 

Systems and Computing, Springer. 

Kim, M. H. (2007). Design and Implementation of an 

Automatic Grading System for Programming 

Assignments. Journal of Internet Computing and Services, 

8(6), pp.75-85. 

Lee, C. H., Kim, S. H. & Kim, D. M. (2016). Understand 

and actualization of software education. Seoul: 

Yangseowon. 

Lee, M. H., & Jung, T. Y. (2007). Development and 

Validation of the Learning Motivation Scale. Studies on 

Korean Youth, 18(3), pp.295-321. 

Levenshtein, Vladimir I. (1966). "Binary codes capable of 

correcting deletions, insertions, and reversals". Soviet 

Physics Doklady, 10(8), pp.707–710. 

Song, J. H. (2011). An Automated Assessment based 

Programming Education System for Self-Directed 

Learning. Doctoral dissertation, Soongsil University. 

Wiedenbeck, S.(2005). Factors Affecting the Success of 

Non-Majors in Learning to Program. The International 

Computing Education Research, pp. 13-24. 

Yadav, A., Hong, H., and  Stephenson, C. (2016). 

Computational Thinking for All: Pedagogical Approaches 

to Embedding 21st Century Problem Solving in K-12 

Classrooms, TechTrends, Vol. 60, pp. 565–568. 



Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih, 

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking 

Education 2018. Hong Kong: The Education University of Hong Kong. 

27 

Computational Concepts, Practices, and Collaboration in High School Students’ 

Debugging Electronic Textile Projects 

Gayithri JAYATHIRTHA1*, Deborah A. FIELDS2, Yasmin B. KAFAI1 

1 University of Pennsylvania 

2 Utah State University 

gayithri@gse.upenn.edu, deborah.fields@usu.edu, kafai@upenn.edu  

 

ABSTRACT 

Debugging, a recurrent practice while programming, can 

reveal significant information about student learning.  

Making electronic textile (e-textile) artifacts entails 

numerous opportunities for students to debug across 

circuitry, coding, crafting and designing domains. In this 

study, 69 high school students worked on a series of four 

different e-textiles projects over eight weeks as a part of their 

introductory computer science course. We analyzed 

debugging challenges and resolutions reported by students 

in their portfolios and interviews and found not only a wide 

range of computational concepts but also the development 

of specific computational practices such as being iterative 

and incremental in students’ debugging e-textiles projects. 

In the discussion, we address the need for more studies to 

recognize other computational practices such as abstraction 

and modularization, the potential of hybrid contexts for 

debugging, and the social aspects of debugging. 
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1. INTRODUCTION 
Debugging, the process to fix problems in code that prevent 

a computer program from functioning as intended, is 

recognized as a key computational thinking practice in 

engineering and computing (College Board, 2017; 

McCauley et al., 2008). In addition to being an important 

practice, debugging can also illuminate various areas of 

student struggle and provide opportunities for correction and 

support (Griffin, 2016). This is evident in studies where 

novice programmers’ errors have illuminated 

misconceptions about specific concepts such as logical 

operators or understanding of control-flow statements (e.g. 

Brown & Altadmri, 2014).  

Yet, debugging is an issue not just in computer science but 

also in engineering education (e.g., Patil & Codner, 2007). 

Electronic textiles construction kits, that include sewable 

microcontrollers, sensors, and actuators (Buechley, Peppler, 

Eisenberg, & Kafai, 2013), bring engineering and computer 

science together and generate, at times, interconnected 

problems for debugging. For instance, during the creation of 

an e-textile project, problems can occur in the code, in the 

circuitry, and in the crafting and physical design itself, and 

students need to test and isolate problems, often fix multiple 

co-occurring issues that add to the complexity of the project 

(e.g., Kafai, Fields, & Searle, 2014). Thus these hybrid 

projects provide an opportunity to promote deeper learning 

of debugging in engineering and computing, especially if we 

consider debugging as a type of in-the-moment problem 

solving of projects (not just code) with errors.  

In this paper, we investigate high school students’ (14-18 

years) debugging in the context of an eight-week long e-

textiles curricular unit that took place within three 

introductory Exploring Computer Science classrooms 

(hereafter ECS, Margolis & Goode, 2016). During the unit, 

students from three classrooms created a series of four open-

ended projects of increasing difficulty. In order to 

understand their debugging more deeply, we studied the 

problems that students reported they had to debug. Using 

end-of-unit written portfolios and interviews where students 

reflected on the challenges they encountered while creating 

their e-textiles projects, we studied the following questions: 

What types of challenges did students face, and in what 

content areas as they were making these projects? What 

kinds of computational practices did students report in 

relation to solving problems that came up? What social 

resources did they draw on to debug projects? 

2. BACKGROUND 
Debugging has been recognized as a key part of 

computational thinking for many years (Grover & Pea, 

2013). As Papert (1980) noted, “[e]rrors benefit us because 

they lead us to study what happened, to understand what 

went wrong, and, through understanding, to fix it” (p. 114). 

The historical teaching of debugging strategies has focused 

on helping students discover their own syntax problems 

(e.g., Robertson et al., 2004) or providing them with 

strategies for fixing and finding bugs (Carver & Risinger, 

1987) through a variety of methods, such as debugging 

exercises and logs, reflective memos, and collaborative 

assignments (e.g., Griffin, 2016). Researchers have also 

developed different technical supports in the form of 

debugging tools. For instance, Tubaishat (2001) provided 

tracing tools, while Thomas, Ratcliffe, and Thomasson 

(2004) offered visualizations and Robertson and colleagues 

(2004) investigated the timing of interruption tools. Nearly 

all of this research focused on on-screen programming since 

it was common in introductory programming courses then. 

As McCauley and colleagues (2008) noted in their 

comprehensive review of debugging research, it is unclear 

how findings and strategies developed from these earlier 

studies apply to visual programming languages and hybrid 

construction kits such as e-textiles which also involve 

collaborative work. 

More recently, scholars have started to identify 

computational practices in computer science education, a 

focus not just on what concepts students are learning but 

how they are learning it and what thinking strategies they 
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develop. For instance, in their examination of students 

learning Scratch, Brennan and Resnick (2012) identified 

four computational practices: being iterative and 

incremental, testing and debugging, reusing and remixing, 

and abstracting and modularizing—each of which can result 

from rich programming experiences. Similarly, Sullivan 

(2008) outlined seven types of scientific thinking that 

student exhibited while thinking aloud about solving 

robotics problems: observing the problem, isolating the 

problem, generating a hypothesis, testing a hypothesis, 

controlling variables, manipulating variables, evaluating the 

solution, and estimating and computing. Together, these 

studies suggest taking a broader view of the thinking 

processes that debugging involves. 

Several studies have shown that e-textiles can provide a 

complex context for debugging. The hybrid nature of e-

textiles means that problems can occur in several 

overlapping areas of craft, design, circuitry, and coding 

(Kafai, Fields, & Searle, 2014; Lee & Fields, 2017). This 

means that identifying underlying problems is potentially 

tricky. However, prior studies of debugging in e-textiles 

have largely focused on areas of circuitry and physical craft, 

with only elementary computing concepts appearing in 

studies of debugging (see Litts, Kafai, Searle, & 

Dieckmeyer, 2016; Fields, Searle, & Kafai, 2016). Lack of 

time may be a reason for this since most e-textiles projects 

rarely exceed 16-20 hours of time on projects and rarely 

include more than one project requiring programming 

sensors or actuators. In our study, one goal of the e-textiles 

curricular unit design was to engage students more deeply in 

computational aspects of e-textiles for more time (roughly 

40 hours of class time) with two projects involving coding.  

Further, we intentionally looked at whether students 

discussed getting help from others in their descriptions of 

debugging in an effort to understand the collaborative nature 

of debugging. Previous debugging studies have focused 

mostly on individuals as if learning to debug was solely an 

individual endeavor (e.g. Fitzgerald et al., 2008). Yet 

learning in computer science does not happen in isolation. 

Kafai and Burke (2014) called for a reconceptualization of 

computational thinking as computational participation, 

explicitly recognizing the collaborative nature of computing. 

As collaboration is recognized as a key computational 

practice for learners to develop (College Board, 2017), some 

studies have noted the role of others in problem solving with 

computers or robotics. For instance, Deitrick and 

colleagues’ (2015) analysis of a programming class through 

a socio-historical lens uncovers the intricacies of 

collaborative contexts where students, teachers and tools 

play a definite role in computational learning. Further, 

Jordan and McDaniel (2014) found that peers serve as a 

resource for managing uncertainty during problem solving. 

Yet much more needs to be understood about collaboration 

with debugging, especially in informal or ill-structured 

groups (versus pairs or small groups). 

3. CONTEXT AND PARTICIPANTS 
The ECS initiative comprises a one-year introductory 

computer science curriculum with a two-year professional 

development sequence. This inquiry-based curriculum has 

been successfully implemented with over 20,000 students. 

In 2016, we co-developed an e-textiles unit for the ECS 

curriculum and piloted it with two teachers, focusing on 

teacher practices of making (see Fields, Kafai, Nakajima, 

Goode, & Margolis, in press). We revised the unit in 2017 

and piloted it with three teachers, this time with a focus on 

student learning (the broader focus of this paper).  

The revised unit took place over eight weeks and consisted 

of a series of four projects: 1) a paper-card using a simple 

circuit, 2) a wristband with three LEDs in parallel, 3) a 

classroom-wide mural project where pairs of students 

created portions that each incorporated two switches to 

computationally create four lighting patterns, and 4) a 

“human sensor” project that used two aluminum foil 

conductive patches that when squeezed generated a range of 

data to be used as conditions for lighting effects. Student 

artifacts included stuffed animals, paper cranes, and 

wearable shirts or hoodies, all augmented with the sensors 

and actuators. All the students also documented their 

projects in portfolios in which they summarized their 

projects, shared challenges that they faced, and reflected on 

their learning during the e-textiles unit.  

In Spring 2017, three high school teachers, each with 8-12 

years of computer science classroom teaching experience, 

piloted the e-textiles unit in their ECS classes in three large 

public secondary schools in a major city in the western 

United States. All three schools had socioeconomically 

disadvantaged students (59-89% of students at each school) 

with ethnically non-dominant populations (i.e., the majority 

of the students at each school include African American, 

Hispanic/Latino, or southeast Asian students). In School 1, 

Angela taught 22 students (6 girls and 16 boys), in School 2, 

Ben taught 36 students (17 girls and 19 boys), and in School 

3, José taught 29 students (20 girls, 9 boys). All the students 

were of 14-18 years of age. All names of teachers and 

students are pseudonyms. 

4. DATA COLLECTION AND ANALYSIS 
Data for this project include all written portfolios submitted 

by consenting students (69 students from 3 classrooms) and 

interviews with pairs of students from each classroom (16 

students total) discussing problems they encountered while 

making their e-textiles artifacts. We began analysis by 

identifying debugging episodes that students reported in 

their interviews and portfolios. We then grouped these 

episodes student-wise (69 students), combining two or more 

challenges whenever a student shared the same issue, both 

in the interview and the portfolio. This resulted in 210 total 

debugging episodes. 

We coded the debugging episodes in a number of ways, 

drawing on concepts and frameworks from prior studies 

whenever applicable. To begin, each episode was classified 

by content (crafting, circuitry, programming, and design) 

and then sub-classified within more specific areas of these 

domains. For instance, we subdivided circuitry based on 

codes by Peppler and Glosson’s (2012) research on e-

textiles: connections, polarity, and current flow. For 

programming, we drew on Brennan and Resnick’s (2012) 

framework of computational concepts: data, events, 

sequence, conditionals, logic operators, and loops. We also 

included syntax, an issue specific to text-based 
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programming language. However, with very little prior 

research done to understand student challenges in designing 

and crafting, we needed to develop new codes to categorize 

these challenges, including sewing mechanics, physical 

construction, and three-dimensional issues of design. 

Multiple codes could be used for each episode, since areas 

often overlapped (e.g., a problem involving both circuitry 

and code). We also included a “general” subcategory in 

cases of vaguely described problems. 

In addition to analyzing content domains, we looked at 

computational practices students exhibited in their 

descriptions of the debugging process. For this we used both 

Brennan and Resnick’s (2012) framework of computational 

practices and Sullivan’s further subdivision of problem 

solving with robotics (see Section 2 for descriptions). 

Notably, Brennan and Resnick classify “testing and 

debugging” as one computational practice. However, while 

problem solving their projects, students often reported 

practices such as being iterative, so we included all practices 

identified by Brennan and Resnick and Sullivan in our 

coding of debugging episodes. 

Finally, we considered the larger context of debugging, 

specifically what resources students used to resolve 

problems, including digital tools (e.g., Arduino IDE error 

message bar), physical tools (e.g., seam rippers or curved 

needles), or social resources (e.g., peers, teachers). Few 

students reported the use of digital or physical tools. 

However, many students frequently listed collaboration as a 

key resource while debugging. Below we share overarching 

findings from this analysis, focusing on computational 

concepts, computational practices, and collaborative 

resources to debug e-textiles projects. 

5. FINDINGS  

In the following sections, we report our findings under three 

categories-computational concepts, practices, and the 

collaboration that emerged from student portfolios and 

interviews analysis. 

5.1. Computational Concepts Involved in Debugging 

In earlier studies of debugging with e-textiles, crafting, 

circuitry, and simple computational challenges were the 

primary areas of debugging (Litts et al., 2016; Fields et al., 

2016). In this study we found similar reporting of problems 

that arose in crafting and circuitry, but we also identified two 

other areas of debugging that were not discussed in earlier 

studies. First, students in our study reported coding 

challenges almost as often as crafting or circuitry and this 

highlighted some key coding concepts. Second, students 

also encountered new challenges in three-dimensional 

design. We describe these two areas in more detail below. 

Among the 210 total debugging episodes, concepts 

discussed were almost evenly distributed across coding 

(29%), crafting (30%), and circuitry (28%). Within the 

episodes that discussed coding challenges and resolutions, a 

wide variety of concepts were reported, ranging from simple 

problems with syntax and labeling to more advanced issues 

with logical operators and control-flow statements. Forty-

three students across three classes mentioned coding 

challenges at least once: a total of 61 episodes. Of these 

debugging episodes focused on code, 64% of included 

“simple” issues that involved syntax, mislabeling variables 

or incorrect usage of constants. For example, some of these 

bugs included fixing brackets in conditional statements and 

functions, and mislabeling a sensor as “OUTPUT” instead 

of “INPUT.” While these are still relatively simple issues, 

resolving syntactical and labeling bugs such as these is a key 

practice in coding (McCauley et al., 2008). 

However, 36% of the coding issues shared revolved around 

more complex computational concepts such as determining 

mathematical expressions for ranges of sensor values and 

managing multiple conditional statements. Consider David 

(School 1), who had difficulty determining the most 

effective ranges for his human sensor project. This project 

included two conductive patches that created a range of 

numerical values depending on how hard someone 

squeezed. Students had to create four ranges of these values 

and program them to trigger different lighting patterns. As 

David expressed, “it was harder to think of how big your 

range had to be so that it would actually react to how you 

want it to be.” After he realized his first attempt at coding 

ranges was inadequate, he iteratively tested the sensor, and 

represented a sequence of readings on a number line. Many 

students struggled with coding the ranges on their patches 

and took substantial time to fix them. Other more complex 

challenges that students faced included organizing multiple 

conditionals, especially if they involved two stages (i.e., 

using “if___, else___” instead of just a series of “if” 

statements), using additional sensors (e.g., light sensor) or 

in-built functions (e.g., random number generator). The 

variety and relative complexity of coding challenges 

reported by students highlight the affordances of e-textiles 

to support debugging both simple and advanced 

computational coding concepts. 

Besides struggles with coding, another new area of struggle 

involved designing circuits on a three-dimensional artifact 

such as a stuffed animal or sweatshirt, especially common in 

the human sensor project. These designs required students to 

plan their circuitry two-dimensionally on paper but translate 

it onto a three-dimensional item. This posed new challenges 

to students. Thirteen of the 69 students (19%) specifically 

mentioned this issue within their debugging. For instance, 

while making his “Angry Bird” stuffed animal project, 

Rodrigo (School 1) realized he had to change his circuitry 

once he started working in three dimensions. “I made these 

changes because it was difficult planning out a 3D model on 

paper and if I hadn’t made changes to the pin numbers, then 

the paths would have crossed,” he explained. Photos from 

his portfolios are visible in Figure 1, where he showed two 

sides of the stuffed animal as well as his final circuitry 

diagram highlighting those same two sides (front and 

bottom). Though issues of three-dimensional circuitry 

design have not appeared previously in work on learning 

with e-textiles in K-12 education, it has come up with 

university students during clinical interviews (Lee & Fields, 

2017), suggesting it may be an area of debugging that 

students face while working on more advanced projects. 

This also raises opportunities to consider spatial thinking in 

e-textiles design. 
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Figure 1. Rodrigo’s Angry Bird project (top left to right 

clockwise): Upper view; bottom view (showing 

microcontroller); Circuit diagram. 

5.2. Computational Practices Related to Debugging 

In addition to content areas of debugging, we also sought to 

better understand the process of debugging, analyzing this 

through the computational practices lenses. Out of 69 

students, 60 shared at least one of the four standard 

computational practices suggested by Brennan and Resnick 

(2012) in their framework. Out of these four practices, 

testing and debugging was the most mentioned (47 

students), followed by iterative and incremental practices 

(35 students). The two other practices, abstraction and 

modularization, and reusing and remixing were rarely 

discussed. This may be because of how the questions were 

phrased in interviews and in the portfolio, which focused on 

challenges students faced. For instance, in their focus on 

problems, students did not mention remixing designs 

although remixing and reusing daily-use items such as 

backpacks and soft toys was an integral part of their human 

sensor project. Further, though there were opportunities for 

applying abstraction and modularity (i.e., breaking down a 

project and/or code into parts), this did not seem to be a 

conscious way that students thought about this process with 

regard to problem solving. However, yet another 

computational practice that emerged from student 

descriptions was collaboration, which is also presented as a 

perspective in Brennan and Resnick’s (2012) framework. 

Thirty-six students reported on collaboration as an integral 

aspect of fixing errors, leading us to suggest collaboration as 

more of a computational practice rather than a perspective 

developed, which we will elaborate shortly.  

Though all debugging episodes concerned students fixing 

issues, in some instances students shared more specific 

details about how they identified, isolated, and otherwise 

focused on understanding a particular problem. In these 47 

instances, we coded for specific areas that Sullivan (2008) 

identified. The most prominent of these were observing the 

problem (46 students), isolating the problem (43 students), 

and generating a hypothesis about the cause of the problem 

(35 students). As an example, consider how Alexa and 

Antonio (School 2) worked through a series of circuitry 

problems in their Pacman-themed mural project (see Figure 

2). As Alexa expressed in her portfolio: “[In] our first design 

we wanted the playground on the back of project. When we 

tried that, the conductive thread crossed each other… We 

dealt with our problem by redesigning our project, so that 

the playground was in the front and the conductive thread 

wasn’t touching.” Alexa and Antonio first observed the 

source of the error as the short-circuit (crossed threads) and 

hypothesized that the spatial placement of the Circuit 

Playground (microcontroller) at the back of their Pacman 

mat was causing the short circuit. They were able to isolate 

specific locations where these short circuits occurred and 

plan their next iteration to fix them. 

 

Figure 2. Alexa and Antonio’s Pacman project 

Along with testing and debugging, being incremental and 

iterative was another other key computational practice 

evident in student narrations. Of the 35 students who shared 

about this, 29 discussed incrementally revising their project 

design and 10 shared about repeatedly testing their sensor 

values and adjusting their project code to suit the varying 

values. (Note: we classified repeated testing of a problem 

under iteration rather than testing and debugging). One of 

the key challenges underlying revisions was translating 

project plans from paper representations to physical 

artifacts. As previously mentioned, many students had to 

revise their project upon realizing that their plan on paper 

did not work when sewn in three dimensions. For instance 

Alma (School 2) expressed that “[W]hen sewing [our 

project] we realized that everything was basically 

backwards” and had to substantially change the placement 

of each LED so to have “clean lines” without short circuits.  

Besides design translations, the other major area of being 

iterative and incremental was in testing the sensor patches. 

Here David (School 1) again provides an explanation for 

what iterative testing looked like: 

So from my last project, it was a human sensor and my 

scales were… pretty much wrong to the point where only 

one pattern worked… [T]o fix the problem… I slowly 

started testing out. So, I touched it. Okay, this is the 

values for a light touch, just inputted that. I said, ‘let’s 

squeezed it harder.’ [sic] I looked at the values, and 

inputted that… As I looked at the values, I am like, okay, 

the range from this to the next pattern, it’s kinda too 

small. So I have to make it bigger so that it can be a bit 

more sensitive.  

This encouraging example of iteration demonstrates the 

careful way that some students had to work to program their 

sensors. Often their first attempt would result in poorly 

thought-out ranges, and, like David, students had to proceed 

through cycles of testing and adjusting the range of values 

corresponding to squeezing. Though only 10 students 

described this particular process, it is a practice that could be 

expanded on more intentionally in future iterations of the 

curriculum and in debugging pedagogy more generally. 

5.3. Collaboration Contexts Related to Debugging 

One unexpected finding was how often students’ debugging 

involved collaboration with classmates, partners and 
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teachers. Most students (75%) explicitly mentioned help 

they received from peers or a teacher in at least one of the 

challenges they described (in 36% of the challenges overall). 

Unlike an earlier study that observed low peer collaboration 

in e-textiles (Litts et al., 2016), this analysis revealed student 

engagement with different types of collaborators throughout 

their e-textiles debugging, from their immediate partners on 

a project, to students at the same table, to the wider class 

community.  

Students reported different kinds of supports that they 

received from peers and teachers across a range of issues—

from identification of syntactical errors to understanding 

concepts such as conditional statements. An example for a 

simple support includes Ethan’s (School 3) reporting of dim 

lights in his quilt project. His classmate helped him locate 

and isolate the problem: missing a line in the setup section 

of the code that initialized the pin to OUTPUT. Students also 

mentioned getting help with more complex struggles. For 

instance, Allie (School 2) used her classmates to test the 

sensors of her human sensor project, using “different 

people's pressure” and changing the ranges in her project. 

Surprisingly, students rarely mentioned teacher participation 

in debugging (close to 11% of challenges).  

Collaboration was mentioned frequently in students’ reports 

of debugging although students were graded individually for 

this unit. That so much collaboration was evident in these 

contexts suggests that there is much more to discover about 

unstructured peer-to-peer debugging in students’ e-textiles 

design processes and in debugging open-ended 

computational projects. 

6. DISCUSSION 
Our analysis of student challenges and solutions 

demonstrates that debugging open-ended e-textiles projects 

can provide a rich context for students to experience a range 

of computational concepts and practices. Our study noted 

promising new areas of conceptual struggles for e-textiles 

students, specifically in the domains of coding and three-

dimensional design. We think this is because students were 

able to go deeper in these areas with two advanced e-textiles 

projects compared to prior studies that only had one such 

project (e.g., Fields et al., 2016; Litts et al., 2016). This 

suggests that pursuing a series of challenging e-textiles 

projects may provide more opportunities for deeper learning 

of computing concepts and practices than just one or two 

projects. It also raises the potential for supporting debugging 

more generally by creating a series of projects in other 

computational domains, not just e-textiles. 

In addition to conceptual learning, students in this study 

reported using certain computational practices such as being 

iterative, testing and debugging, and collaboratively 

problem solving. Interestingly, within the area of debugging, 

students’ reports consistently highlighted the need to 

identify and isolate problems, something that should not be 

trivialized. Unlike other studies of debugging that focus 

solely on debugging code (e.g., Brown & Altadmri, 2014), 

students with e-textiles projects had to consider the origin of 

a bug from among several possibilities: code, circuitry, craft, 

or spatial design. Yet, we also recognize that this study was 

limited to students’ reporting of bugs rather than a study of 

observing of how they actually solved them. This opens up 

the need for deeper research on students’ in-the-moment 

debugging to see whether students engage in other steps of 

debugging such as manipulation of variables, evaluation of 

solutions, and estimation of data.  

One other key finding was frequent student collaboration 

during problem solving. Students shared collaboration not 

only at the level of formal pairs and small groups but within 

the broader classroom, turning the class into a community of 

learners. The physical layout of the classroom with tables 

and shared supplies along with the teachers’ allowing 

students to move between tables may have encouraged this 

fluid collaboration (Fields et al., in press). More so, these 

findings call for a reconceptualization of collaboration in 

these spaces to better understand the roles taken on by 

different participants. A closer look at these types of settings 

may help us understand and classify different kinds of 

supports students provide to each other. Such an analysis 

could also help us understand the supportive role of teachers 

in creating collaborative classrooms, informing the 

development of new pedagogical approaches for students 

and professional development for teachers.  

The interdisciplinary nature of e-textiles provided a unique 

opportunity to study debugging in a hybrid context. Further, 

the ability of debugging exercises to develop computational 

thinking and practices in learners has called for “explicit 

instruction in debugging [to] be fundamental to any 

beginning programming class” (p. 86, McCauley et al., 

2008). If debugging is a core area of computation, then as a 

field we need to look beyond code-only settings of 

computation to hybrid settings (including but not limited to 

e-textiles) where students are introduced to debugging in 

more challenging situations which demand multiple 

iterations of revising and testing. Further, more studies of 

debugging are needed in many contexts that look at it less as 

an individualistic and more as a social practice, moving from 

computational thinking to computational participation 

(Kafai & Burke, 2014).  
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ABSTRACT 

This paper shares a school’s journey in the implementation 

of a school-wide programme for students to learn and apply 

computing over the years in school. The school leaders see 

the value of having students learn computing and coding as 

it provides students with opportunities to understand how 

technology works and applies to solve problems in the 

world. The school worked towards the design of a 

programme that enables all students to learn coding. The 

design of the programme is underpinned by Papert’s theory 

of Constructionism which postulates that students learn best 

when engaged in concrete experiences of creating artefacts. 

In implementing a school-wide programme that would span 

over a student educational experience in school, the school 

is cognizant of issues of a packed school curriculum and 

teachers’ lack of experiences in computing. The school 

addressed the issue of a packed curriculum by structuring 

time for learning computing in the time table and integrating 

with school subjects. Training partners were engaged to 

work with teachers in designing and integrating computing 

with the subjects to address the lack of teachers’ experience. 

Teachers’ capacity continue to be developed as they gain 

competence in computing. The school continues to improve 

the programme for sustainability and richer learning 

experience for the students.  

KEYWORDS 

Coding, Computing, school-wide programmes, 

Implementation. 

1. INTRODUCTION 
Computing technology has changed the way we live, work 

and learn about the world around us. Beyond being users of 

technology, there is a need to understand how computing 

technology works and apply this understanding to solve 

problems and innovate new ideas that would improve our 

lives. Computing technology is transforming manufacturing 

with the vision of Industry 4.0 integrating Cybernetics, data 

analytics, cloud computing, Machine learning and Internet 

of Things to create Smart factories that monitor processes 

and make decentralized decisions.  The emergence of how 

various computing technologies are integrated and utilised 

is creating a demand for new skills and capacity to drive the 

economy.  Hence, there is a need for students to better 

understand how computing technology works and harness 

it use to improve lives. Around the world, there is a growing 

emphasis on introducing Computational Thinking and 

coding to students in schools (Brown, Sentence, Crick and 

Humphreys, 2014). Countries such as England have made 

the teaching of CT skills compulsory in the curriculum and 

all students will learn programming (DfE, 2017). Japan, 

Korea and Malaysia have announced plans to introduce 

programming as part of students’ compulsory education 

(Japan Times, 2017; APFC, 2017). However, implementing 

programming as compulsory education and the integrating 

Computational Thinking into the curriculum is challenging 

(Sentence and Csizmadia,  2017) 

In our context, we find, teachers lack the content and 

pedagogical knowledge of Computing and Computational 

Thinking to know how to integrate into the curriculum. 

Compared to established fields of study in Sciences such as 

Physics or Chemistry, the study of Computer Science in K-

12 is relative new as the computing technology is still 

evolving. Teacher training institution does not offer 

programmes to train teacher in teaching Computing as a 

subject. Interested teachers do not have the opportunities to 

learn Computing and pedagogy of teaching Computing. 

Teachers need to have a Computing background or undergo 

Computing training to teach Computing to students. The 

lack of teachers with required skills and content knowledge 

impedes the teaching of Computing and Computational 

Thinking if all students in a school are to be taught. Second, 

teaching Computing and Computational Thinking is still an 

emerging field of study in K-12 education settings 

compared to tertiary education. At the tertiary level, 

students pursue computing degrees which provides 

opportunities for them to learn the theory of Computing and 

develop the practice over the course of the study. Their 

programming skills and craft are developed when they work 

on projects and assignments in various topics like learning 

programming languages, operating systems, artificial 

intelligence, computer networks, data sciences and 

databases. Computing covers a wide field of study with 

concepts that are difficult to introduce in K-12 settings. 

Teachers need to know what topics are relevant and 

appropriate to teach the students in K-12 schools. Lastly, 

there is lack of the curriculum time and space for schools to 

integrate the teaching of Computing and Computational 

Thinking. Students in Singapore secondary schools are 

required to take the core subjects of English, Mother 

Tongue, Mathematics, Sciences, Social Studies, and 

Humanities. In addition, there are Co-Curricular activities 

which all students are to participate as part of their holistic 

education. There are school wide programs in niche areas 

of learning such as leadership, entrepreneurship, drama or 

environment science with programs. Even if schools want 

to introduce Computing to all students, it is a challenge to 

find the time to implement the teaching of Computing and 

Computational Thinking in a crowded curriculum space. 

This paper documents a school’s journey in developing a 

school-wide programme – Coding and Computational 
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Thinking infUSed Curriculum (CaCTus) for teaching 

Computing and Computational Thinking. The school 

leaders and teachers worked together to implement a 

school-wide curriculum that introduces students to the 

concepts of Computing and Computational Thinking over 3 

to 4 years of their studies in the school. The programme is 

designed for students to learn and apply Computing 

concepts through integration with school subjects that they 

are learning in the classroom.   

2. SCHOOL BACKGROUND 
Bukit View Secondary School (BVSS) resides in the typical 

surburban neighbourhood in Singapore. The student 

enrolment is 1005 with 61% Chinese, 18% Malay, 16% 

Indian and 5% Others (compared to 74.3% Chinese, 13.3% 

Malay, 9.1% Indian and 3.3% Others nationally) housed in 

25 classes in 2017.  About 45% of the students speak 

English (compared to 36.9% nationally)# as their main 

language of communication at home with the rest using 

their Mother Tongue. The profile of the parents’ highest 

education attained for Secondary/ITE, Pre-U/Polytechnic 

and University are 46%, 25% and 25% respectively 

(compared to 26.1, 14.6, 30.7 nationally). 

BVSS has offered Computer Studies as an O-Level subject 

since 2006. Since 2017, BVSS is only one of 19 schools in 

Singapore that offers the new Computing syllabus. 

3. DESIGN OF THE CACTUS 

CURRICULUM 
The school leaders and teachers saw the importance of 

learning Computing as it has the potential to develop 

problem solving skills for students in the world they live in.  

Also, the school leaders saw strong connection of 

Computing to other disciplines such as Mathematics, 

Engineering, Science, and Design and Technology. 

Acquiring skills in computing can be applied in above 

subjects. Also, using Computing can help solve problems in 

the domains in health care, environment, business, and 

engineering. Finding solutions to some of these problems 

requires computational skills and knowledge. Above 

observations formed basis for setting out following goals of 

CaCTus: 

 To enable BVSS students to better understand the 

fast evolving world due to digitalization. 

 To improve BVSS students’ thinking skills in 

applying the concepts to solve problems in a 

dynamic way. 

 To open doors to a host of opportunities for BVSS 

students  in the future, regardless of the career 

path. 

The design of the CaCTus draws from the ideas of Papert’s 

idea of Constructionism (Paper and Harel, 1991). Based on 

Piaget’s constructionist theory[ ] of learning where students 

construct their own knowledge from their prior 

understanding, Papert extends it by stating that students 

learn as they are engaged in meaningful concrete 

experiences. These concrete experiences can be in a form of 

designing, constructing and programming an artefact like a 

robot or building a kit to measure the quality of water in a 

pond. Following such an approach, students are participate 

in the process of  identifying a problem, experimenting with 

various ideas, designing, constructing and testing a solution 

to the problem. Through these processes, mental models of 

the world around them and their naïve scientific concepts 

can be constructed and refines. Computers and mobile 

phones are now part of everyday lives but they operate very 

differently from the mechanical devices with gears and 

levers. If students are limited to being users of computing 

devices, i.e.seeing only printed circuit board with chips and 

LED displays, they will have naïve  mental models of how 

the devices actually function. Having primitiveor 

incomplete mental models about computing devices could 

impede their learning about and with computers in future. 

Developing codes and knowing how computing systems are 

created to solve problems can help children to construct 

mental models of how technology and their different parts 

work together. More importantly, students “can use 

programs to understand their world, and manipulate their 

world” (Guzdial, 2012). In the CaCTus programme, our 

goal is not for students to become Computer Scientists, but 

for all students to better understand more about the world 

around and their thinking processes as they use technology 

in concrete ways to solve problems. It is through a 

constructionist approach as Seymour Papert iterated that 

“computers might enhance thinking and change patters of 

access to knowledge.” (Papert, 1980). 

In the design of CaCTus programme, the following ideas 

guided us: 

 Every student in Bukit View Secondary should 

have access to the same learning experiences. 

 The learning experiences should be continuous 

and connected over their stay in the school.  

 Students should develop 21st century skills such as 

developing critical thinking skills, solving 

problems, collaborating with others and 

developing creativity. 

 Each student should have a rich experience in 

using Computing and Coding to solve problems in 

authentic contexts. 

 There is a diversity of learning experiences for the 

students to learn, construct and apply their 

knowledge. 

Based on above ideas, the school leaders and teachers 

worked together with partners in designing rich learning 

experiences for students to apply technology in authentic 

context to better understand their world.  

4. IMPLEMENTATION OF CACTUS 
Since 2013, the school had separate enrichment 

programmes for students at various levels to learn coding 

such as Scratch. The enrichment programmes were 

consolidated and reorganized as CaCTus in 2016 for all 

students in the school to have a contiuous learning 

experience of Computing and coding from Secondary 1 to 

3. A school-wide approach was adopted. However, 

implementing a school-wide approach competed with the 

demands of curriculum and co-curricular activities. To 
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address this issue, CaCTus was structured into the school 

timetable with two 40-minute periods each week over a 20 

week semester. A modular approach was taken so that all 

students were able to participate and experience computing 

programmes. Efforts were also made to integrate the 

modular activities with the curriculum in subjects such as 

Math, Science, Geography and Design and Technology. For 

example, Secondary 1 students were introduced to use 

Scratch and create a visual simulation of the Water Cycle in 

their Science lesson. For Secondary 2 students, drone 

programming was introduced to make them understand how 

such technology can be used to study geographical features 

in their Geography lessons. 

Table 1 shows the various modules that were designed for 

students in school from Secondary 1 to Secondary 3. 

Table 1. Cactus Modules  

 Programmes 

Secondary 1 Scratch Animation – Bio Water Cycle 

IDA Lab on Wheels 

Coding – Spheros Programmable 

Robot 

Hour of Code by Salesforce 

Learning journey to Salesforce 

Secondary 2 

 

 

 

 

 

 

Secondary 3 

Scratch Coding – National Education  

Salesforce talk on Coding 

Sea Perch – Collecting data and 

analysis of water quality 

Drone programming 

Coding workshop @ Nanyang 

Polytechnic 

Learning journey to IMDA* 

Advanced Elective Module 

Coding workshops @ Nanyang 

Polytechnic 
*IMDA – Infocomm Media Development Authority 

The programmes were designed to provide students 

opportunities to learn computing and coding to understand 

the world around them. In the Sea Perch (See Fig. 1), 

students collect water quality data from the pond and 

analyse the collected quality. It is through the data analysis 

that students find meaningful interpretations and understand 

the chemical content in the water that otherwise would not 

be obvious to them. They have the opportunity to observe 

and experience how data is collected through sensors, 

manipulated and visualized to determine the quality of 

water. 

In the design of CaCTus, the goal is to provide every student 

with several rich authentic experiences in using computing 

and coding to solve problems during their school years. The 

students’ learning experiences are not one-off but continue 

to build on their prior experiences as they move to the next 

grade. To operationalize CaCTus, the school planners are 

cognizant of the challenges in the design and 

implementation of the programme. First, there were not 

enough teachers to design and run the computing 

programmes. Most of the teachers are subject teachers in 

Sciences, Mathematics, Humanities and the Arts, and  they 

do not know much about coding or integrate coding into 

their respective subject curriculum. Teachers’ would 

typicaly not buy-in into the program if they feel that they 

lack the skills or experience to teach the students. Secondly, 

with a packed curriculum schedule, it was a challenge to 

implement a programme for all students. A typical student 

in Singapore secondary school takes 7 subjects. In addition, 

each student would also participate in Co-curricular 

activities during the school day as well as other school-wide 

programmes such as the Applied Learning Programmes 

(ALP) or outdoor programmes such as the Outward Bound 

School (OBS).   

 

Figure 1. Sea Perch collecting water quality data. 

 

To address the challenge of lack of computing skills among 

teachers, the school leaders and core teachers partnered with 

technology training vendors, experienced in coding, and 

government agencies such as the Infocomm Media 

Development Authority (IMDA).  The school leveraged on 

funding and resources from IMDA to design and run the 

programs. In the initial stages of the implementation, the 

training vendors designed the learning experiences with a 

selected group of teachers. The teachers ensured that the 

learning experiences are aligned to the goals and ideas of 

CaCTus. Working with different vendors and activities, the 

teachers looked at how the various experiences are 

connected and applied to the subjects. Efforts were made to 

ensure that students’ experiences are built upon and 

continued as they progressed from one grade to another. For 

example, students introduced to visual programming tools 

in Secondary 1, continue to use the tools such as Scratch 

and Microbit Block-based programming in Secondary 2.  

In the second year of implementation, school leaders 

engaged the training vendors to conduct workshops for all 

teachers to learn and participate in coding and computing 

experiences. During such workshops, teachers built games 

such as Tic-Tac-Toe, and explored various ways to program 

Microbit board e.g. displaying their name with the LED 

display.  Teachers also learnt about algorithmic thinking by 

creating sequenced codes to control a robot and drone. 

Creating these experiences provided opportunities for 

teachers to equip themselves for introducing simple 

concepts of how these technologies function, to the 

students. Eventually, the goal is for all teachers to think 

about how computing and coding can be integrated into 

their teaching subject areas such as Math, Science or 

Humanities. Also, The school worked with industry 

partners such as Salesforce, IMDA and Nanyang 

Polytechnic for learning journeys and workshops. The 
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exposure to industry and polytechnics is aimed to enthuse 

students in seeing the practice of computing outside school. 

5. FUTURE PLAN FOR CACTUS 
The school’s Applied Learning Programme (ALP) and 

CaCTus programme were run as independent modules over 

each semester since 2016. In 2017, the BVSS team 

reviewed the ALP and CaCTus programmes and saw 

synergies in both. Consequently , the school has decided to 

integrate both programmes and move into a year-long 

programme for each level. The integrated programme  has 

been named as the Junior OUtstanding Leaders in Energy 

for Sustainability (JOULES) programme. It is a distinctive 

programme that focuses on Science, Technology, 

Engineering and Mathematics (STEM) education. This 

expanded 4-year programme provides students with 

knowledge and experience in design thinking and coding 

for environment and sustainable energy. 

JOULES emphasizes on STEM and environmental 

advocacy to develop leaders of the future who will continue 

to champion sustainable development through the use of 

technology. Raising the innovation quotient amongst the 

student population is another aim of the programme. It is 

also hoped that the enriching experience of the JOULES 

programme will inspire their students to pursue relevant 

STEM courses in their higher education, and contribute 

positively to Singapore and the world.  

The student outcomes include the following skills and 

dispositions: problem solving, design thinking, 

computational thinking, scientific literacy and inquiry, and 

mathematical reasoning. 

6. CONCLUSION 
This paper shares the experiences of designing and 

implementing a school-wide approach for all students in the 

school to learn and apply computing. The school leaders 

recognized the importance for all students to have 

experiences in learning computing by structuring 

programmes into the time table as a subject and integrating 

computing into subjects such as Mathematics, Science, and 

Geography. Students could learn to apply coding into the 

subjects and teachers could better integrate computing into 

their subjects. The school leveraged on training partners to 

work with school teachers in the initial phases to address the 

lack of computing experience. In the later stages, the school 

sought to develop teachers’ competence in using computing 

for their subjects. To better sustain the programme and 

provide students’ a richer learning experience, the new 

programme aims to develop students’ skills in 

Computational thinking, design thinking, inquiry and 

problems solving.  We hope that sharing the school’s 

journey would provide some understanding in how schools 

can implement programmes in learning computing for all 

students in the school. 
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ABSTRACT 

Learning to code is claimed to be associated with 

improvements in other cognitive skills, such creative 

thinking, reasoning, and mathematical skills. Although the 

claims surround this transferability of coding skills have 

already been made in the 1980s and 1990s, the existing body 

of research does not provide clear insights into the transfer 

effects of learning to code. The current meta-analytic review 

shed lights on these effects. We retrieved an overall sample 

of 105 experimental and quasi-experimental studies with 

posttest-only or pretest-posttest treatment-control group 

designs and extracted 539 effect sizes. A three-level 

random-effects modeling approach revealed an overall 

transfer effect size of g = +0.49. Differentiating between the 

types of cognitive skills (i.e., coding, reasoning, creativity, 

and math skills), however, indicated differential effects. 

Study and sample characteristics were further examined as 

possible moderators. Overall, this study identifies positive 

transfer effects of learning to code on cognitive skills. 

KEYWORDS 

Coding skills, transfer effects, meta-analysis, cognitive 

skills  

1. INTRODUCTION 
Undoubtedly, the rapid developments in technology 

have impacted many areas of society. Even in education—a 

field that is known for its slow progress—things are 

changing: Educational systems around the world include 

teaching programs that will help students to acquire skills 

beyond literacy and numeracy. Among others, these skills 

comprise complex problem solving, global competences, 

critical thinking, creativity, digital literacy, and 

computational thinking (Binkley et al., 2012; ICILS, 2018). 

Interestingly, the latter has recently gained considerable 

attention. Bill Gates, for example, established its importance 

by stating that “Learning to write programs stretches your 

mind, and helps you think better, creates a way of thinking 

about things that I think is helpful in all domains”. The claim 

that learning to code—a critical step in the process of 

acquiring computational thinking skills (Denning, 2010; 

Grover & Pea, 2013; Shute et al., 2017)—transfers to other 

cognitive skills, however, stands on shaky legs. Scherer 

(2016) concludes that studies examining transfer effects 

disagree in the extent to which these effects can be 

established for specific cognitive skills. Sala and Gobet 

(2017) warn against the assumption that learning a specific 

skill improves other skills as well. The authors further 

propose to examine hypothesized transfer effects meta-

analytically to synthesize the body of existing evidence. At 

this point, we notice that the concept of computational 

thinking is broader than coding, albeit coding is the essential 

part of it (Shute et al., 2017). 

Although the discussion surrounding the transfer-ability 

of learning to code on other cognitive skills dates to the 

1980s and 1990s, the existing body of research abounds in 

conflicting findings, and previous attempts to meta-analyse 

the transfer effects were flawed (Scherer, 2016). For 

instance, Liao and Bright (1991) extracted 432 effect sizes 

from 65 studies and summarized them to an overall transfer 

effect size of d = +0.41. Although this finding indicates that 

positive transfer to other cognitive skills may exist, the 

authors neglected (a) the clustered structure of their data set 

(i.e., effect sizes are nested in studies), and (b) the possible, 

differences in effects between cognitive skills. Later, Liao 

(2000) provided an update and presented on overall effect of 

d = +0.76, obtained from only 22 studies. Since then, the 

critical question whether learning to code improves 

cognitive skills has not been addressed explicitly in meta-

analyses. 

The present study tests the claim that learning to code 

transfers to the acquisition of other cognitive skills. 

Synthesizing the empirical evidence on transfer effects, we 

take two main steps: First, an overall effect size is presented, 

and its variation within and across studies is quantified. 

Second, possible moderation effects of selected study 

characteristics are explored to explain this variation. 

2. METHODOLOGICAL APPROACH 
This section describes the meta-analytic procedures, 

including the literature search and screening, the sample 

obtained from them, and the statistical approaches taken to 

summarize the transfer effects of coding skills. 

2.1. Literature Search and Screening 

Relevant literature was identified in existing databases—

including PsycINFO, ERIC, IEEE Xplore, ACM Digital 

Library—next to academic journals relevant to the field 

(e.g., Computers & Education, Computers in Human 

Behavior), existing reviews and meta-analyses (e.g., Liao & 

Bright, 1991; Liao, 2000; Shute et al., 2017), and informal 

resources (e.g., ResearchGate, personal contact with 

authors, publication lists of scholars). The literature search 

was constrained to studies that had been published between 

1965 and 2017. After an initial screening of titles and 

abstracts with respect to their topic fit (i.e., computer coding) 

and the empirical nature of the presented study, abstracts and 

full texts were submitted to a more fine-grained screening. 

This screening was based on the following inclusion criteria:  

(a) Study design and control group: Only studies were 

considered with an experimental or quasi-

experimental design and at least one control group 
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(i.e., a group of participants not exposed to the 

coding intervention). 

(b) Outcomes: Only studies were considered with 

performance-based outcome measures. 

(c) Study context: Only studies were considered that 

conducted the experiment or quasi-experiment in 

an educational context. 

(d) Sample: Only studies were considered with non-

clinical samples, because clinical samples often 

involve participants with conditions that may 

interfere with their performance on cognitive skills 

tests. 

(e) Effect sizes: Only studies were considered that 

reported effect sizes directly or provided statistics 

sufficient to calculate transfer effects. 

2.2. Sample 

The initial literature search resulted in 5,193 publications. 

As these entries were subjected to an initial screening and 

the application of inclusion criteria, more than 80 % of them 

were excluded and no longer considered for further coding 

and data extraction—overall, 105 studies were retrieved, and 

539 effect sizes could be extracted. Of these 105 studies, 89 

studies reported interventions implemented in regular 

classroom lessons, 8 studies reported interventions as part of 

extra-curricular activities; all other studies reported 

interventions outside of schools but in an educational 

context. The sample of studies spanned all educational 

levels, ranging from pre-kindergarten to adult education. 

Concerning the coding tools used in the interventions, both 

text-based and visual coding languages were used to help 

students learn to code. All studies contained cognitive skills 

measures that assessed either coding skills or skills outside 

of the coding domain. Among others, these skills include: 

Creative thinking (i.e., skills related to the originality, 

fluency, flexibility, and elaboration of ideas and generating 

ideas), reasoning skills (i.e., logical thinking, intelligence, 

critical thinking, and problem solving), and mathematical 

skills (i.e., understanding mathematical concepts, 

mathematical problem solving and modeling). 

2.3. Statistical Approach 

Given the hierarchical nature of the sample of studies—as 

indicated by the availability of multiple effect sizes for 

single studies—the statistical approach taken to aggregate 

transfer effect sizes had to represent this nature adequately. 

Although several approaches exist in the meta-analytic 

literature, only few qualify for application in this study. 

Because most studies did not report correlations between 

multiple outcome variables, we adopted a three-level 

modeling approach, allowing for within- and between-study 

variation of effect sizes (Moeyaert et al., 2017). This 

approach performs reasonably well in the presence of 

hierarchically structured datasets with effect sizes nested in 

studies (Cheung, 2014).  

Besides focusing on an overall effect size, we further 

examined the extent to which variation in it could be 

explained by possible, moderating variables. Introducing 

these explanatory variables extended the three-level 

random-effects model to a mixed-effects model (Cheung, 

2015). 

All analyses were conducted in the R package metaSEM 

(Cheung, 2015) based on Hedges’ g, a standardized effect 

size representing the transfer effects. 

3. RESULTS 
This section presents (a) the overall transfer effect size, (b) 

effect sizes differentiated by types of transfer, (c) moderator 

analyses, and (d) analyses of publication bias. 

3.1. Overall Effect Size 

The three-level modeling approach resulted in an overall 

effect size of Hedges’ g = +0.49, 95% CI = [0.37, 0.61], 

suggesting a moderate, positive, and statistically significant 

transfer effect of learning to code on cognitive skills. This 

effect size showed significant variation within studies (2 = 

0.20, 95% CI = [0.16, 0.25]) and between studies (2 = 0.28, 

95% CI = [0.17, 0.39]), suggesting the adequacy of the three-

level approach. Moreover, the overall test of homogeneity 

indicated that effect sizes varied, Q(538) = 2985.2, p < .001. 

3.2. Mixed-Effects Modeling 

Given the evidence for significant variation of effect sizes 

across studies (see 3.1.), we further examined the extent to 

which selected study characteristics and the types of 

cognitive skills measures explained this variation. The 

resultant findings suggest possible moderation effects by 

cognitive skills measures. 

3.2.1. Study Characteristics 

Study design. Studies with a pretest-posttest control-

treatment group design exhibited a slightly higher overall 

effect size (g = +0.50, 95% CI = [0.13, 0.90]) than studies 

with posttest-only designs (g = +0.47, 95% CI = [0.30, 

0.65]). This difference, however, was statistically 

insignificant (Z = 0.25, p = .80). 

Randomization. Studies performing a random assignment of 

participants to the experimental conditions exhibited larger 

transfer effects (g = +0.56, 95% CI = [0.16, 0.95]) than those 

without randomization (g = +0.43, 95% CI = [0.27, 0.59]); 

yet, this difference was not statistically significant (Z = 1.04, 

p = .30). 

Other characteristics. Considering further study and sample 

characteristics, we did not find significant moderation 

effects by the 

 Educational level of learners ranging from 

kindergarten to college/university; 

 Type of coding language (i.e., visual vs. text-based 

languages); 

 Intervention length (in hours); 

 Coding context (i.e., coding embedded in the 

curriculum as part of regular school lessons vs. 

coding as an extra-curricular activity). 

3.2.2. Cognitive Skills Measures 

The overall effect for coding skills was g = +0.75 (95% CI = 

[0.39, 1.11]). The overall effect for skills other than coding 

was g = +0.47 (95% CI = [0.35, 0.59]). 
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Differentiating between different cognitive skills, we found 

positive and significant transfer effects on creativity (g = 

+0.73, 95% CI = [0.27, 1.20]), reasoning (g = +0.37, 95% 

CI = [0.23, 0.52]), and mathematical skills (g = +0.57, 95% 

CI = [0.34, 0.80]). 

3.3. Publication Bias 

To assess the presence of publication bias in the meta-

analytic dataset, we took several steps (Borenstein et al., 

2009): 

(1) Trim-and-fill analyses: No further study would 

have been needed on the left side of the outcome-

standard error plot to achieve symmetry. 

(2) Rosenberg’s fail-safe N: To achieve null effects, 

134,706 additional studies with negative effects 

would have been needed. Given the size of this 

number, it seems unlikely that this many studies 

were not identified by our search protocol. 

(3) P-curve: The P-curve did not provide evidence for 

severe publication bias—a possible file-drawer 

effect is therefore unlikely. 

(4) Moderation by publication type: Comparing effect 

sizes between published studies (k = 62) and ‘grey’ 

literature (k = 43 effects, including dissertations 

and unpublished research reports) indicated 

significant effects favoring published studies, 

QM(1) = 19.9, p < .001. The transfer effect for 

published studies was g = +0.53, 95% CI = [0.31, 

0.76]; for ‘grey’ literature, the effect was lower, g 

= +0.25, 95% CI = [0.15, 0.35]. This finding 

indicates some degree of publication bias in the 

data. 

4. DISCUSSION 
This meta-analysis tested the claim that learning how to 

code improves coding and other cognitive skills. To test 

these hypothesized transfer effects, experimental and quasi-

experimental studies presenting computer coding 

interventions were synthesized. The aggregated transfer 

effect size was moderate, positive, and statistically 

significant (g = +0.49). Unlike existing discussions around 

the existence of transfer effects from specific domains of 

training (Sala & Gobet, 2017)—discussions that called into 

question the existence of such transfer effects and thus 

transfer of learning in general—the current study provides 

evidence that other cognitive skills may indeed benefit from 

coding instruction. This finding supports Liao’s and Bright’s 

(1991) early and Liao’s (2000) later meta-analyses on the 

topic. Our explanation for this supportive finding lies in the 

very subskills coding requires: As Shute et al. (2017) note in 

their systematic review of computational thinking, the 

concept—which mainly comprises coding-relevant skills—

represents a form of problem solving. Even further, the steps 

involved in coding (e.g., evaluating information, 

representing the problem, testing code or code elements 

systematically) align with current models of problem 

solving and even creativity (e.g., Scherer, 2016; OECD, 

2014). 

At the same time, our study showed that these transfer 

effects are not uniform across cognitive skills. We identified 

stronger benefits for creativity and mathematical skills than 

for other skills (excluding coding skills themselves). These 

differential benefits may also be traced back to the subskills 

involved in them. In fact, there are differences between the 

processes creative thinking and, for example, mathematical 

thinking entail (e.g., Baer, 2015; Sak & Maker, 2006)—

these differences may provide an explanation of this finding. 

To further explore alternative explanations, our future 

analyses target possible moderation effects of sample and 

study characteristics, including the content domains of the 

cognitive skills tests. 

Overall, this meta-analysis contributes to the field of 

computational thinking in two ways: First, it provides 

evidence for the potential benefits of learning to code—an 

activity critical to the acquisition of computational thinking. 

This evidence substantiates existing claims surrounding the 

emphasis of coding skills. Second, it encourages researchers 

to take a differential perspective on the transferability of 

coding skills by considering multiple cognitive skills as 

possible outcome variables at the same time. 
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ABSTRACT 

MOE (2016) will bring Computational Thinking ability 

into the National Basic Curriculums in order to promote 

the students’ problem solving ability is emphasized by 

many advanced countries. Although learning 

programming design is an important way to develop 

computational thinking. However, learning programming 

involves many abstract concepts of program syntax. It’s 

hard for teachers to solve the problems in class one by one 

and provide individual guide which will result in poor 

learning aspiration and low learning achievement. 

Therefore, this study focused on providing a Scaffolding 

Guidance System during the process of solving problems 

and aimed to explore the effect of the system design on 

computational thinking. The study was bases on quasi-

experimental design, and 48 students from two classes in 

an elementary school in Tainan. The 24 students in the 

experimental group were taught with the system design. 

The 24 students in control group were treated by 

traditional instructions. The experiment lasted for eight 

weeks and the data were analyzed with ANCOVA 

statistical method to explore the differences in learning 

efficiency between the system design and traditional 

instructions. The results showed that: (1) There were 

significant differences between the experimental group 

and the control group in learning efficiency; (2) After 

receiving the experimental teaching, the low level of 

student presented the most significantly different on 

computational thinking learning efficiency.  

KEYWORDS 

Computational Thinking, Visual Programming Language, 

Learning Efficiency, Portfolio 

1. INTRODUCTION 
In 2006, "CT" proposed by Wing won universal attention 

and recognition from many countries and scholars. In 

recent years, the connotation of various Computational 

Thinking has also been proposed and discussed by 

scholars, and gradually formed a consensus. (Wing, 2006; 

Wing, 2008) identified five core aspects of CT which are 

conditional logic, distributed processing, debugging, 

simulation and algorithm building. (Brennan et. al, 2012) 

use Scratch (designed by MIT Media Lab) -- a 

programming environment that enables young people to 

create their own interactive stories, games, and 

simulations, and then share those creations in an online 

community with other young programmers from around 

the world -- to develop a computational thinking 

framework: computational concepts (the concepts 

designers engage with as they program, such as iteration, 

parallelism, etc.), computational practices (the practices 

designers develop as they engage with the concepts, such 

as debugging projects or remixing others’ work), and 

computational perspectives (the perspectives designers 

form about the world around them and about themselves).  

(Lahtinen et al., 2005) indicated that programming is not 

an easy subject to be studied. It requires correct 

understanding of abstract concepts. Many students have 

learning problems due to the nature of the subject. In 

addition, there are often not enough of resources and 

students suffer from a lack of personal instruction. Also 

the student groups are large and heterogeneous and thus it 

is difficult to design the instruction so that it would be 

beneficial for everyone. This often leads to high drop-out 

rates on programming courses in the universities. At 

present, there are many difficulties in teaching and 

learning activities of programming languages in the 

schools. In the process, they encounter complex syntax 

instructions, how to implement ideas in programming 

languages, and differences in student's level. (Robins et 

al., 2003; Lahtinen et al., 2005; Gomes & Mendes, 2007) 

Programming itself is a highly logical thinking course 

different from the learning of package software. The 

current teaching methods will certainly not be able to meet 

the learning needs of each student. In addition, due to the 

constraints of classroom time, the lecturers did not have 

enough time to give individual guidance and provide 

immediately feedbacks about all students' questions. 

When students encounter difficulties, they often give up 

because they can’t get the help. (Gomes & Mendes, 2007) 

Therefore, this study developed a "Scaffolding Guidance 

System" for primary schoolchildren. When students 

encounter learning difficulties of programming, the 

system will automatically provide the appropriate 

scaffolding guidance. 

2. SYSTEM DESIGN 
The Scaffolding Guidance System was built in Linux-

based server, running Java-web-based application at 

Apache Tomcat, and recording portfolio with MySQL 

database. After logging   with identity, the upper parts of 

interface are links of programming tasks (including flying 

bat, underwater world, monkey banana, whack-a-mole, 

and shooting game) and user information. Each task has a 

simulation animation on left side, and a main functional 

block on right side, including code-comparison analysis, 

project-code of user, and prompt of similar project-code. 

Figure 1 shows the main interface of system. 
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Figure 1. The main interface of system. 

The purpose of the system is to parse the programming 

task of students, and to produce guided scaffolding to 

assist students learning in the system, which provide the 

following two functional modules: 1) parsing and prompts, 

2) linking with experience. At coding time, students 

sometimes forgot or miss some vital blocks so that they 

could not accomplish the task. It's helpful that giving 

suitable prompts when students fall into troubles. The 

module of parsing and prompts will reach the aims that 

troubleshoot the above situations. This mechanism is set 

by the teacher about how many blocks to complete the task. 

When the critical blocks don't exist, what should students 

be prompted? Table 1 included below figures out critical 

blocks about the task. 

Table 1. The fish of underwater world to prompt. 

Agent &  

Necessary Blocks 

Prompts While Missing Blocks 

 

 

 

 

The fish to swim randomly in the 

seabed, it must be placed "turn 

right block" with "random 

parameter" and "move block" 

within a "forever block". Then 

the fish can swim around. 

 

Use Scratch's API 

(https://wiki.scratch.mit.edu/wiki/JSON) to render 

Scratch visualizer blocks into JSON-text-format, where 

each block is converted to a specific JSON list. Table 2 

included below figures out how to map blocks to JSON. 

Table 2. The mapping between blocks and JSON-text. 

Agent 

 

Visualizer 

Blocks 

 

JSON list [["whenGreenFlag"], 

["show"], 

["doForever", 

 [["turnRight:", 

["randomFrom:to:", -30, 30]], 

 ["forward:", 10],  

 ["wait:elapsed:from:", 0.1], 

 ["bounceOffEdge"] 

]]]]] 
 

In additions, to link with experience of students, we use 

“Cosine Similarity” to judge similarity of two tasks. 

Because each task has several agents, we use agent as 

basic unit to compare code-similarity. Table 3 included 

below is for illustration of how to calculate similarity of 

agents. 

Table 3. The similarity of agents. 

Agent 

 
 

Blocks 

  

List  

JSON 

(Step1) 

[whenGreenFlag, 

doForever,  

turnRight:,  

randomFrom:to:,  

forward:, 

wait:elapsed:from:, 

bounceOffEdge] 

[whenGreenFlag, 

doForever,  

forward:, 

wait:elapsed:from:,  

nextCostume,  

turnRight:, 

randomFrom:to:, 

bounceOffEdge] 

Combine 

(Step2) 

[whenGreenFlag, doForever, turnRight:, 

randomFrom:to, forward:, wait:elapsed:from:, 

nextCostume ,bounceOffEdge] 
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Vector 

Transform 

(Step3) 

[A1,A2,A3,A4,A5,A6, 

A7,A8] 

= [1,1,1,1,1,1,0,1] 

[B1,B2,B3,B4,B5,B6, 

B7,B8] 

= [1,1,1,1,1,1,1,1] 

Calculate  

Similarity 

(Step4) 

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 
∑ 𝑨𝒊
𝒏
𝒊=𝟏 𝑩𝒊

√∑ 𝑨𝒊
𝟐𝒏

𝒊=𝟏 √∑ 𝑩𝒊
𝟐𝒏

𝒊=𝟏

 

The value is greater than 0.8 mean that these two 

agents are similar. 

 

By comparing high similar codes such as similarity > 0.8, 

students can observe or practice similar tasks to discover 

the logic of their own programs. 

3. EXPERIMENTAL DESIGN 
This study designed a "Scaffolding Guidance System" to 

help schoolchildren of elementary to learn Scratch 

programming. When they got stuck on programming, 

system will provide suitable scaffolding guidance for 

them. Furthermore, investigating further to analyze the 

effect of visual programming and the influence of raising 

CT. 

The quasi-experimental design was used in this study, 

which chose two five-grade classes of a primary school in 

southern Taiwan to participate this experiment. We 

random chose one class as the experimental group, and the 

other class as the control group. Students in the 

experimental group were enrolled in our purposed 

Scaffolding Guidance System into the Scratch-

Programming course; Control group performed a 

traditional teaching method. Each group were taught a 

total of 8-weeks by the same teacher, each lesson 40 

minutes, a total of 320 minutes. After the end of the 

programming course, we performed post-test: designing   

a computational practice of game. In Additions, to realize 

the responses of students in experimental group about 

using Scaffolding Guidance System, we performed a 

semi-structured interviews with two-groups students 

separated to low, middle, and high level respectively 

according their previous-semester grade. 

About the instruction design, the teacher conduct the 

operation of Scratch interface at first-two weeks, and then 

the students of two groups have to implement five-tasks 

programming-design in the next six weeks respectively. 

The experimental-group students will use Scaffolding 

Guidance System to learn programming: viewing the 

animation about the tasks first, then decomposing the 

problems and describing the features of each role in 

Scratch, and finally coding. When they got stuck in 

programming, system would give them assistance. For the 

control-group students, teacher use traditional instruction. 

Students involved in the experimental group must 

complete the "flying bat" and other five scaffolding guided 

program tasks, which are based on (Brennan et al, 2012) 

proposing CT framework including these two dimensions:  

"computational concept" and "computational practice". 

Finally, to assess the performance of CT, this study used 

game scenarios to test students' ability to practice. In this 

game scenario there are two game agents (parrots and 

obstacles, as Figures 2) and a stage design. There are also 

having procedural issues in the agents and the stage. For 

example, in the agent of obstacle, students are required to 

use program blocks to solve the problem of "obstacle 

generation and movement". 

 

Figure 2. The evaluation of CT through practicing a 

game. 

4. RESULTS AND DISCUSSION 
Table 4 shows that there was no significant difference of 

Group times Grades between two groups, that is, we can 

accept the null hypothesis and that meets the condition for 

homogeneity of regression so that we can continue to do 

ANCOVA. 

From Table 5, the results of ANCOVA between 

experimental and control group showed that F = 7.062, p 

= .011 <.05 reached significant difference. That is, after 

adopting different pedagogical methods to conduct 

experiments, the results of CT test of students in 

experimental group and control group reached significant 

differences, indicating that accepting the activities with 

"Scaffolding Guidance System" have significant 

improvement. 

Table 4. The tests for homogeneity of regression. 

Sources Type(III

) SS 

df Mean 

Squar

e 

F p 

Group*Grade

s 

333.6 1 333.6 1.25

2 

.26

9 

Error 11729.6 4

4 

266.5   

p* < 0.05，p** < 0.01 

Table 5. The ANCOVA of two groups. 

Group Mean SD N F p 

Experimental 59.9583 16.10692 24 7.062 .011* 

Control 42.7083 24.14536 24   

p* < 0.05，p** < 0.01 

To further understand the impact of the scaffolding 

guidance system for students of different levels, the 

students in two groups separated to low, middle, and high 

level respectively according their previous-semester 

grade. Only low level about ANOCVA achieved 

statistically significant (as Table 6), which indicated that 
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accepting the activities with "Scaffolding Guidance 

System" of low level have significant improvement. 

Table 6. The ANCOVA of two groups about low level. 

Group Mean SD n F p 

Experimental 47.5000 12.29402 8 8.437 .012* 

Control 24.1250 15.81534 8   

p* < 0.05，p** < 0.01 

Finally, by semi-structured interviews with two-groups 

students and questions about statistic of missing blocks of 

five-tasks, we found that some blocks learned on the 

previous task, but when in a different scenario or agent, 

students still need to be prompted to complete the task. 

This phenomenon is similar to that of (Gomes & Mendes, 

2007; Robins, Rountree, & Rountree, 2003):  "Students 

are often confined to the surface knowledge of programs 

and can’t apply what they have learned to new problems." 

5. CONCLUSIONS 
This study from the CT and learning effectiveness, 

different levels of students, and learning portfolio to 

discuss the following conclusions: 

First, students who accepted the teaching activities of 

"Scaffolding Guidance System" performed better than the 

ones with traditional teaching. Secondary, for students of 

low level achievement, this study provided an approach to 

assistant them by using "Scaffolding Guidance System". 

Finally, teachers can analyze the portfolio of students to 

discover the learning problems that can’t be found from 

the surface information. For the future works, researcher 

can be directed towards the fields of automation of system 

and adaption of students. 

6. REFERENCES 
Brennan, K., & Resnick, M. (2012, April). New 

frameworks for studying and assessing the development 

of computational thinking. In Proceedings of the 2012 

annual meeting of the American Educational Research 

Association, Vancouver, Canada (pp. 1-25). 

Code.org. (2017). Computational Thinking. Retrieved 

from https://studio.code.org/s/course3/stage/1/puzzle/1 

Gomes, A., & Mendes, A. J. (2007). Learning to 

program-difficulties and solutions. Paper presented at 

the International Conference on Engineering 

Education–ICEE. 

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). 

A study of the difficulties of novice programmers. Paper 

presented at the ACM SIGCSE Bulletin. 

MIT Media Lab, Scratch. https://scratch.mit.edu 

MOE (2016). 2016-2020 General Information Education 

Blueprint. Taipei City: Ministry of Education. 

Robins, A., Rountree, J., & Rountree, N. (2003). 

Learning and teaching programming: A review and 

discussion. Computer science education, 13(2), 137-

172.  

Wing, J. (2006). Computational thinking. 

Communications of the ACM, 49(3), 33-35.  

Wing, J. (2008). Computational thinking and thinking 

about computing. Philosophical transactions of the 

royal society of London A: mathematical, physical and 

engineering sciences, 366(1881), 3717-3725. 



Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., 

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational 

Thinking Education 2018. Hong Kong: The Education University of Hong Kong. 

45 

A Curriculum and Contents of Programming Education  

for Computational Thinking 

Hyojin BYUN1, Miyoung RYU 2, Sungwan HAN2* 

 1Dept. of Steam Education, Gyeongin National University of Education, Korea 

2 Dept. of Computer Education, Gyeongin National University of Education, Korea 

mydream.bhj@gmail.com, ddochi29@naver.com, han@gin.ac.kr 

ABSTRACT 
Computational thinking is emerging as a core competency 

for creative and efficient resolution of complex problems in 

a rapidly changing society. In Korea, software education is 

introduced into the 2015 revision curriculum and 

emphasizes creative problem solving process through CT 

and programming learning. In this study, Scratch was 

selected with an educational programming language suitable 

for use in elementary school, and programming curriculum 

for improving CT was developed and tested by expert group. 

KEYWORDS 
Educational Programming Language, Curriculum and 

Content, Computational Thinking, Programming Education  

1. INTRODUCTION 
As the role of SW in modern society grows, the necessity of 

strengthening SW competency is emphasized. SW is 

recognized as a means of solving problems related to human 

higher thinking ability beyond SW functional aspect. As a 

result, CT is attracting attention as a core competence for 

solving various complex problems in the future. 

CT is to define a problem from the viewpoint of computing, 

to search for the solution to the problem, and to a resolve the 

problem through efficient resolution procedures.  

In Korea, awareness that computational thinking is the core 

competency of the future, the contents of the existing 

information-related curriculum were reorganized into 

software education contents through the 2015 revision 

curriculum.  

Therefore, this study aims to develop and present contents 

for software education using Scratch in order to acquire CT 

through programming and to develop creative problem 

solving ability based on it 

2. THEORETICAL BACKGROUND 

2.1.  Programming Education 

Programming is a technique for implementing an abstract 

algorithm in a specific computer program using a specific 

programming language.  

In the elementary school, the direction of programming 

education is to enhance the thinking ability of the learner's 

logical thinking ability, creative thinking ability and 

problem solving ability. 

2.2.  EPL and Scratch 

The programming language to be used in elementary school 

software education should be a visual environment in which 

the expression of grammar and algorithm should be simple. 

Scratch is a language designed for programming experience 

for children ages 8 to 16. The feature is that it is easy to learn 

the programming language itself with a simple grammar, a 

block-stacking algorithmic representation, and a variety of 

multimedia such as graphics and sound. 

2.3.  SW education in Korea 

In Korea, the term 'SW education' was used in the 2015 

revision curriculum, and the software education was made 

mandatory for elementary and junior high school students 

from 2018. In the 2015 revised curriculum, elementary SW 

education emphasizes real-life problem solving based on 

information ethics and attitude as a field within practical 

subject for 17 hours a year. 

3. DEVELOPMENT OF EPL 

CURRICULUM AND CONTENT  

3.1.  Curriculum Development Procedures 

The EPL curriculum to improve CT was developed through 

the steps shown in Table 1. 

Table 1. Procedures of Curriculum Development 

Analysis 

∙CT concept  

∙Software education direction required at elementary level 

∙Pre-EPL program study 

↓ 

Design 
∙Extract curriculum components 

∙Step-by-step learning topic and content selection 

↓ 

Development ∙EPL content composition and development 

↓ 

Verification ∙Conduct validation of the curriculum and EPL contents for experts 

3.2. Development of EPL Curriculum 

In this study, the programming curriculum using Scratch 

was designed as shown in Table 2 to improve CT of 

elementary school students. 

The elements of the CT concept consisted of sequences, 

loops, parallelism, events, conditionals, operators, and data 

using Brennan and Resnick's CT evaluation framework. The 

execution elements are also composed of incremental and 

iterative, testing and debugging, reusing and remixing, and 

abstracting and modularizing. 

The subject was designed to allow students to access each 

category of Scratch sequentially, but to be as close as 

possible to the real life. 

The learning stage was divided into three stages and the 

difficulty level of the learning was adjusted so as to have 

hierarchy of learning step by step. Each stage was composed 

of six phases and gradually expanding the command 

category of the Scratch related to CT. 
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Table 2. Presentation of EPL Curriculum 

Level Period Topic CT  
Concepts 

Block  
categories Contents of learning activity 

1 

1 Driving        E, M 
Controlling car motion with 
specific keys 

2 Hide and Appear        E, M, L, C 
Controlling characters with 
hide and show blocks 

3 Drawing shapes        E, M, P, C Draw a shape using a pen  
4 Dancing        E, M, L, S, C 

Show your dancing to your 
performance 

5 Catching insects        E, M, L, S, C, S, 
O 

Use random numbers to follow 
random characters 

6 Paint        E, L, P, C, S 
Create Paint with multiple 
colors as a condition 

2 

1 Send and receive a 
conversation        E, L, C 

Conversation using 
broadcasting block 

2 animation        E, M, L, S, C, M 
Representing animation effects 
with additional blocks 

3 Jump        E, M, D, C, S, O 
Express if the condition is 
satisfied. 

4 Rock Paper Scissors        E, L, D, O, C  
Change the shape using the 
value of a variable 

5 Compare the size of a 
number        E, L, D, O, C  

Using List to Compare 
Numbers 

6 Running race        E, M, L, D, O, 
C, S 

Display two levels of difficulty 
with two characters running 

3 

1 Falling apples        E, M, C, S, O  
Expressing how fast you move 
using variables and timer  

2 clock        E, M, C, S, O  
Clock representation using 
current time block 

3 Put a soccer ball in the 
goal        E, M, C, S,  

Using a video sensing block to 
move the ball 

4 Making pattern        E, M, P, D, C, O 
Create patterns using variables 
x and y 

5 My body grows.        E, M, D, C 
Use cloning blocks to express 
more and more appearances 

6 Walk to goal        E, M, D, C, S, O 
Express sprite movement 
using background motion 

∙CT Concepts 
       

sequences loops parallelism events conditionals operators data 
∙Block Categories 

M L S P D 

Motion Looks Sounds Pen Data 
E C S O M 

Events Control Sensing Operators More Blocks 
 

3.3. Development of EPL Content  

Students will experience Brennan and Resnick's practice 

exercises through CT Opening, CT Raising, and CT 

Experimentation so that they can expand their CT.  

In CT Opening, students use example files to identify and 

explore the situation. In CT Raising, students learn basic 

contents while learning programming step by step, and 

expand the project by using reuse and remixing to CT 

Experimentation. 

Table 3. Example content 
Level 1 – 1st period 

Topic Driving 

Activity Goals Let's move the car using the motion block. 

CT Sequences, events 

Plan specific activities 

Step Teaching and Learning Activities 

CT Opening 
∙Using the example file to understand the content 

∙Explore blocks in motion categories 

CT Raising 

∙Think of a situation where you move a set value by pressing a direction 

key (up, down, left, and right) through a question. 

∙Experiment the script and check it. 

∙Complete the script so the car can move in four directions by itself 

CT 

Experimentation 

∙Draw a road with Paint, then write a script to allow the car to move 

over the road  to reach  its destination 

∙[Optional Activities] Parking in the parking lot in reverse 

3.4. Expert Validity Testing 

Groups participated in this study were selected from a field 

related to education professionals who have experience of 

teaching the EPL. The results of the CVR test are shown in 

Table 4, and the validity of the total items satisfies the 

minimum value of .62 according to 10 panelists. Therefore, 

it can be said that the content validity is secured according 

to the curriculum contents and the flow of the example 

contents. 

Table 4. Expert Review Results 
Division CVR 

Curriculum development direction 1 

Learning level .9 

Learning sequence 
Programming .9 

CT 1 

Learning contents 
Topic .8 

CT .9 

Learning method 
Programming 1 

CT .9 

4. DISCUSSIONS  
As part of software education around the world, there is a 

strong interest in coding education, and in 2018, software 

education is mandatory in Korea. This is to enable students 

to cultivate CT through SW and to efficiently solve various 

complex and unexpected problems of the future society. 

This study selected a Scratch as an educational programming 

language suitable for elementary level, and programmed it 

so that CT can be extended through programming education. 

17 hours allocated as regular curriculum hours are planned 

to achieve the goal of software education by including 

content other than programming. So, it is difficult for the 

programming education to expand the CT within the regular 

course time.  

Therefore, the program developed in this study proposes a 

method to secure and apply sufficient time through club 

activities, after - school activities, camps, gifted education, 

etc. 
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ABSTRACT 

The expansion of software education has given learners the 

opportunity to learn CT concepts related to CS through 

block programming such as Scratch. However, due to the 

nature of EPL, the concept of computer science is limited, 

and inevitably the text programming language is learned to 

expand CS thinking. In this paper, we will examine the 

possibility of using the concept of prior learning after block 

programming tools through comparison of basic grammar 

examples of Scratch and Python in terms of CT concepts. 

KEYWORDS 

EPL, TPL, Scratch, Python, CT Concepts 

1. INTRODUCTION 
Extensive expansion of EPL (Educational Programming 

Language) education has resulted in many students 

improving their CT competency and related areas. In this 

area, Brennan & Resnick (2012) divided the CT into three 

dimensions by analyzing the results of the Scratch outputs 

made by the students. One of them was CT concepts. These 

concepts that can be transmitted in other programming 

languages, and it is common in programming languages as 

well. If student experience a certain level of EPL training, 

they will inevitably go to TPL (Text based Programming 

Language) to improve their programming skills (Jun, 2012). 

Therefore, From the perspective that transfer mechanism 

(Schwartz & Bransford, 1998), we want to create an 

opportunity to summarize these concepts as TPL and to 

utilize the student's prior knowledge on related concepts. An 

example of TPL is Python, which has a high educational 

potential among text languages (Grandell, 2006). 

2. COMPARISON 

2.1. Sequences 

In the Scratch, the sequence of blocks directs the operation 

of the object (sprite), so the concept of sequence can be 

learned without difficulty (Elkin et al, 2014). Likewise, 

Python is well suited for students to learn sequence concept 

because grammar itself is not only a direct language, it also 

provides immediate and visual information as interpreted 

language (Yeum, 2008). The sequence concept can be easily 

transmitted in text language like Figure 1. 

   

Figure 1. Comparison in Sequences Concept 

2.2. Loops 

In the sequence concept, the principle of efficiency leads to 

repetition naturally. Instead of using many blocks one by one, 

students can easily configure the program with several 

blocks. Python can easily configure bound loops and 

conditional loops too. In particular, it has the advantage of 

being able to configure the iterators that make circuit of the 

data, as shown in Figure 2. 

    

Figure 2. Comparison in Loops Concept 

2.3. Events 

Because Scratch is also intended to interact with the user, it 

uses event-driven programming. And this is a fun factor for 

learners. So, Scratch supports various event handlers. While 

Python’s shell itself functions as an interactive mode with 

the user, creating an interactive program is possible a little 

later than the order of learning in Scratch. because It needs 

to learn how to use functions and libraries in order to create 

a practical program with events. Figure 3 shows how the 

basic library handles keyboard events. 

     

Figure 3. Comparison in producing Event 

2.4. Parallelism 

Similarly, the use of parallelism concept is easier in event-

based programming languages. In scratch, it is possible to 

experience the parallel form simply by generating the event 

several times. However, in the interpreted language, It's not 

efficient. Python supports a module that handles different 

types of threads in being, as shown in Figure 4. It is only an 

example of a low-level representation of related concepts. 

 

Figure 4. Comparison in Parallelism concept 
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2.5. Conditionals 

Because complex algorithms can present difficulties for 

students, Scratch provides a various conditional block that 

can be combined with repetitive structure or event 

monitoring, operators, sensors, etc., As shown below 

(Dasgupta et al, 2016). In text programming languages, 

students can learn conditional grammars without difficulty 

(Milne & Rowe, 2002). In view, scratch is more 

configurable, Figure 5 shows that basic structure is similar. 

   

Figure 5. Comparison in Conditionals Concept 

2.6. Operators 

Scratch contains arithmetic (including character) operators, 

relational operators, and logical operators, which can be 

combined in various ways depending on the needs of the 

learner. Surely, commercial languages generally support all 

sorts of operations on operators. Especially in Python, 

almost all operator parts are easier to use because they are 

grammatically simpler than other text languages. If doing a 

number of complicated calculations, the text language can 

be configured more quickly and easily, if you are familiar 

with the grammar, as shown in Figure 6,  

  

Figure 6. Comparison in Operators concept 

2.7. Data 

Scratch provides variable and list data types. In most of the 

block based programming, variables are used to implement 

the scoring function. Also, there is no need to define data 

types, which is one of the hardest parts of the students 

(Piteira & Costa, 2013). In Python, Because Python is a 

dynamic type, students do not need to set the data type like 

Scratch. Thus, Scratch learners can easily learn this. It's also 

easier to handle data than any other text language (Rashed 

& Ahsan, 2012). Figure 7 is one way to define and 

manipulate data types. 

 

Figure 7. Comparison in Data concept 

3. DISCUSSION 
I compared Scratch with the Python language, focusing on 

the seven concepts that can be found in Scratch. As a result, 

it can be seen that the text language can also be structured 

easily in terms of Sequences, Loops, Conditionals, 

Operators, and Data. However, in terms of Events and 

Parallelism, It’s hard to using precedence concepts due to 

difference in complexity between EPL with TPL. 

Therefore, we propose to use the related computer science 

concepts learned in the Scratch as a precedent organizer 

form when continuing the learning through the text 

programming language education course. 
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ABSTRACT 

Computational Thinking (CT), a problem-solving skill 

rooted from Computer Science (CS), is gaining attention 

from computer scientists and K-12 educators increasingly. 

Language communication skill, in the meanwhile, is one 

essential skill developed through the K-12 education, which 

will continue to attract attention in the foreseeable future 

globally. There is the possibility for students to learn an 

effective communication skill while using or improving CT, 

given that the interdisciplinary work of integrating language 

learning into a CT learning activity has not been fully 

discussed in existing literature, this preliminary study, which 

is going to be extended to a largescale work in the future, is 

important from the perspective of both language and 

computer teachers. As an initial step, this research attempted 

to obtain insights on developing CT in the context of English 

dialogue learning by investigating the attitude changes of 

students after they have experienced the integration of CT 

into English education in Scratch programming 

environment. To achieve this objective, pre/post-lesson 

surveys were distributed to nine Hong Kong primary 

students who attended the intervention class to study 

computer programming by using the graphical programming 

language Scratch. The preliminary results show that primary 

school students have positive reaction to the introduction of 

CT into English dialogue learning through graphical 

programming language. Students were more motivated to 

learn English dialogue after the class under study; however, 

their attitude towards learning graphical programming 

language become less positive after the intervention. 

KEYWORDS 

Computational Thinking, English dialogue learning, 

Scratch, K-12 

1. INTRODUCTION 
The idea of computing, which refers to all the activities that 

require, benefit from, or create computers (Shackelford et 

al., 2006), first gained attention from the public as a result of 

Seymour Papert’s work in MIT in the 1980s (Lockwood & 

Mooney, 2017). However, the concept of CT became 

increasingly popular ever since it was refined by Jeannette 

M. Wing in 2006 (Grover & Pea, 2013). Wing argues that 

CT is a universal attitude and skill that can be applied by 

everyone; it is not limited to computer scientists (Wing, 

2006).  

A huge proportion of CT development programs for young 

students in schools, colleges or afterschool clubs have  

 

 

been conducted in the context of CS subject. This is mainly 

because improving students’ problem-solving thinking skills 

and learning programming are the major elements of CS 

course (Lockwood and Mooney 2017). However, this seems 

too limiting. The ability to think computationally has the 

potential to benefit students in all courses. Furthermore, 

while problem-solving skills and programming are perhaps 

the most direct approaches to cultivating CT ability, they are 

not the only important elements in CS. There are also still 

education objective confusions as well as disagreements on 

learning content and the issue of whether CS should be a 

compulsory subject in the K-12 curriculum (Armoni, 2013; 

Hubwieser, 2012). Taking into account these considerations, 

it becomes obvious that CT should and can go further than 

to be constrained to computing-related subjects. 

Therefore, many researchers have been exploring how CT 

can be integrated into other subjects, including Non-CS 

STEM (which refers to four subjects including Science, 

Technology, Engineering and Mathematics) subjects and the 

humanities (Kafai & Burke, 2013; Lee, Martin, & Apone, 

2014; Lye & Koh, 2014). As a matter of fact, language arts 

can be used as a springboard for the integration of CT into 

the K-12 curricula, like what has been proposed by Barr and 

Stephenson—computational skills such as abstraction, 

algorithm, automation and decomposition can be applied or 

enhanced when students are using rhetorical devices, writing 

instructions, conducting story reenactments or planning an 

outline for a composition in a language class. 

Many researchers connecting CT to English start their work 

by utilizing models found in writing-related workshops like 

composition, journalism, literature or poetry (Burke & 

Kafai, 2012; Nesiba, Pontelli, & Staley, 2015; Wolz, Stone, 

Pearson, Pulimood, & Switzer, 2011). This strategy is 

reasonable because writing for programs is coding in CS, 

and since writing and coding are both types of expression 

but with different carriers, young people can come to learn 

the significance of sequence, structure and clarity of 

expression (Burke & Kafai, 2012) from both of them. It is 

inspiring to see that there are many positive outcomes of 

these practices in terms of students’ perspective towards CT; 

however, the depth and breadth of this infusion in the context 

of English can be extended further. 

Though it seems that no researcher has specifically 

conducted an experiment exploring CT ability in English 

dialogue learning, the literature on English dialogue is 

insightful in showing us the possible ways in which English 

dialogue learning could embrace CT. For example, the 

literature on Second Language Acquisition (SLA) indicates 

that when exposed to questions and answers in 

conversations, people understand how different parts of a 

sentence works as a unit and can master the vocabularies at 
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the same time (Hatch, 1978). Furthermore, students can be 

more creative when they are engaging with topics in an 

open-ended, free manner instead of planning the 

conversation ahead of time (Andersen, 1983). Besides these 

benefits, many other elements of CT can also be employed 

in English dialogue learning (as shown in figure 1).  

 

Figure 1. Bridging CT, Language Arts (Barr & 

Stephenson, 2011) and English dialogue learning. 

 

Our research closely connects CT with the graphical 

programming language Scratch in order to give answers to 

the following questions:  

RQ1: What attitude do students hold towards using 

graphical programming language in English dialogue 

learning?  

RQ2&3: Are there attitude changes of students towards 

both English dialogue learning and graphical programming 

language learning after students experience the integration 

of graphical programming language in English dialogue 

learning?  

The paper will then be organized as follows. In Section 2, 

the research methodology will be introduced, data collection 

and data analysis will be presented in Section 3, in Section 4 

results of the research will be given, discussion of this 

research will be presented in Section 5, and future research 

fields in infusing CT into English Education are suggested 

in Section 6.  

2. METHODOLOGY 

2.1. Constructionism as the Theoretical Framework 

Constructionism describes the process of gaining knowledge 

as “building knowledge structures” (Papert, 1991). Among 

many renowned scholars in constructionism, Papert is one 

of the most significant representative figures in this school 

of thought. He stresses that people gain new knowledge by 

engaging in doing and making artifacts, no matter what kind 

of the learning circumstances and working entities. From 

this perspective, constructionism focuses more on people’s 

personal conversation with their own representations, 

projects and products rather than the general developmental 

rules (Tokoro & Steels, 2004). 

According to constructionism, the participants of this study 

are assigned to finish a digital artifact individually by 

adopting the graphical programming tool Scratch. This is an 

example of constructionism practice since by programming 

in Scratch students are practitioners of the constructionism 

principle -- “learning by making”. In this way, students can 

build their CT and English language knowledge structures. 

The one-session intervention class was designed under the 

guidance of constructionism as shown in figure 2: 

 

Figure 2. Lesson Design. 

 

2.2. Scratch as the CT tool 

As a graphical programming language, Scratch is a popular 

product of the Lifelong Kindergarten Group at the MIT 

Media Lab. It provides the platform for young children from 

8 to 16 to program different forms of projects, including 

stories, games and animations (Resnick et al., 2009). 

Research has concluded that Scratch can improve students’ 

creativity, study outcomes and problem-solving abilities 

(Chang, 2014), therefore it is well accepted by the public. In 

2015, Scratch welcomed its tenth birthday with more than 

3,500,000 users and more than 6,000,000 shared projects 

(Moreno-León & Robles, 2015) from over 150 different 

countries and in more than 40 languages. 

CT was defined as a three-dimensional framework by 

Brennan and Resnick with respect to Scratch (Brennan & 

Resnick, 2012), this framework suggests understanding CT 

from different angles, including computational concepts 

(sequences, loops, events and so on), computational 

practices (experimenting and iterating, testing and 

debugging, reusing and remixing, etc.) and computational 

perspectives (expressing, connecting, questioning) (Resnick 

et al., 2009). With this kind of supporting theories, therefore, 

Scratch was employed as the CT instrument to facilitate 

researchers’ research design (Burke & Kafai, 2012; Moreno-

León & Robles, 2015; Holt, 2011; Meerbaum-Salant, 

Armoni, & Ben-Ari, 2013).  

Gaining experience from reviewing other experimental 

research, the researcher in this study chose to take the 

graphical programming language Scratch as the CT tool as 

well. 
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An example of the artifacts in Scratch is shown in figure 3 

and figure 4. 

 
Figure 3. Project Example (Scratch visuals).  

 

 
Figure 4. Project Example (Scratch coding blocks). 

 

2.3. The Attitude Tests 

In this research, the attitude tests were adapted from the 3-

TUM (Three-Tier Technology Use Model) by Shu-Sheng 

Liaw (see figure 5) to investigate user perceptions toward 

information and Internet technologies. According to the 3-

TUM, there are three different tiers for evaluating attitudes 

toward information technology: the tier of individual 

experience and system quality, the tier of affect and 

cognition, and the tier of behavioral intention (Liaw, Huang, 

& Chen, 2007). Therefore, the pre/post surveys cover 

questions addressing students’ personal experiences, affects 

and behaviors in terms of English dialogue learning and 

Scratch learning. The surveys were designed in this study by 

using the five-point Likert scale in which respondents are 

asked to evaluate each statement by choosing a number from 

one to five, where 5 = Strongly Agree, 4 = Agree, 3 = 

Neutral, 2 = Disagree, 1 = Strongly Disagree. 

 

Figure 5. The three-tier use model (3-TUM). 
 

However, there are minor differences in the pre-test and the 

post-test -- besides exploring students’ attitudes towards 

English dialogue learning and Scratch learning, the post-test 

also explored students’ attitudes towards the CT-infusing 

class (as illustrated in figure 6). 

 

Figure 6. Differences in Pre-test and Post-test. 

3. DATA COLLECTION AND ANALYSIS  

3.1. Participants 

A local aided whole-day co-educational primary school in 

Hong Kong agreed to participate in this research from 

February to July 2017. Students in this school can have an 

extra-curricular interest-oriented CS class weekly. In this 

class, students from grade one to grade three will start 

learning elementary computer operations; for students in 

grade four and above, the CS teacher adopts graphical 

programming platform Scratch (Resnick et al., 2009) to 

teach them how to program. There were 9 students in the 

interest-oriented class took part in this research, their gender, 

age and grade information are shown in figure 7. 

 

Figure 7. The gender, age and grade distribution of 

students. 

3.2. Data Collection Process 

The researcher reserved fifteen minutes with all the students 

taking part in this study before distributing any 

questionnaires. During this period, the researcher introduced 

the research objectives, background, and process to all the 

participants. Brief information about the pre-test and the 

post-test was provided, and students’ rights as research 

participants were described as well. Students were then 

given enough time to finish the pre-test before the 

intervention, and the same length of time was offered to 

students for the post-test after the intervention. Qualitative 

interviews will be conducted to gain further insights in the 

future as the next step of our research. 

3.3. Data analysis 

Both the pre-test and the post-test data were gathered in 

Microsoft Excel to provide an overview of the research 

results. The data were then compared to see if the CT-

infusing class caused any attitude changes among students. 
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4. RESULTS 
As introduced in the methodology, the surveys were 

designed by using the five-point Likert scale. Students 

needed to evaluate each statement in the survey by choosing 

the strength of their agreement from 1 to 5, therefore each 

item got a total mark ranging from 5 to 45 points based on 9 

students’ responses. 

4.1. Pre-test and Post-test Results for RQ 1 

RQ1: What attitude do students hold towards using 

graphical programming language in English dialogue 

learning?  

 
Figure 8. Student responses to the statement “I think 

Scratch helped me create my English dialogues.” 

 

 
Figure 9. Student responses to the statement “I enjoyed the 

experience of learning English dialogue with Scratch.” 

 

According to the collected answers from the questionnaire 

issued after the intervention, 78% of the students strongly 

agreed that Scratch helped them create English dialogues. 

As shown in figure 8, all the students held a positive 

perception towards the role of Scratch in their English 

dialogue learning. Furthermore, 67% of the students 

strongly agreed that they enjoyed the experience of learning 

English dialogue with Scratch. No student gave neutral or 

negative feedback about the experimental class experience 

(see figure 9). Thus, it is apparent that students held a 

positive attitude towards using graphical programming 

language in English dialogue learning.   

4.2. Pre-test and Post-test Results for RQ 2 

RQ2: Do students’ attitudes towards English dialogue 

learning change after students experience a class in which 

graphical programming language is infused in English 

dialogue learning? 

 
Figure 10. Total Likert score across students for the first 

tier of individual’s attitudes (individual experience). 

 

 
Figure 11. Total Likert score across students for the second 

tier of individual’s attitudes (affective and cognitive). 

 

 
Figure 12. Total Likert score across students for the third 

tier of individual’s attitudes (behavioral intention). 

 

Based on students’ responses, their personal experience and 

affection towards English dialogue learning developed in a 

more positive direction after the intervention class (see 

figures 10 and 11). What is more, they were willing to spend 

more time learning English dialogue than before (see figure 

12) as a result of the intervention. However, it is noticeable 

that students became less willing to ask others for help when 

coming across an English dialogue problem (see figure 12). 

Overall, after the intervention, students’ attitudes became 

more positive towards English dialogue learning. 

4.3. Pre-test and Post-test Results for RQ 3 

RQ3: Do students’ attitudes towards graphical 

programming language learning change after students 

experience a class in which graphical programming 

language is infused in English dialogue learning? 
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Figure 13. Total Likert score across students for the first 

tier of individual’s attitudes (individual experience). 

 

 
Figure 14. Total Likert score across students for the second 

tier of individual’s attitudes (affective and cognitive). 

 

 
Figure 15. Total Likert score across students for the third 

tier of individual’s attitudes (behavioral intention). 

 

Students’ attitudes towards graphical programming 

language were much more complicated compared to their 

attitudes towards English dialogue learning after the 

intervention. In the tier of personal experience, they were 

less likely to feel that graphical programming language 

helped them with their expression and collaboration ability 

after the intervention; however, they thought their problem-

solving ability improved while learning graphical 

programming language (see figure 13). Students’ affection 

towards graphical programming language remained at the 

same level before and after the intervention (see figure 14). 

However, in the behavioral tier, students became less willing 

to ask others for help when coming across programming 

problems and less willing to spend time coding with 

graphical programming language after the intervention (see 

figure 15). Generally speaking, students’ attitudes towards 

graphical programming language became less positive after 

the intervention. 

 

5. DISCUSSION 
This research has achieved its goal to provide some initial 

insights on the integration of CT into English education, and 

therefore benefit students from CS beyond the CS class. 

Students welcomed the novel practice of utilizing Scratch in 

other courses. One of the biggest challenges in teaching K-

12 students is how to hold their attention -- since Scratch is 

designed to cater to students’ needs and maintain children’s 

interest, students can absorb the knowledge of other courses 

being taught through Scratch in a subtle way and they will 

not feel bored in this process. It is obvious from the pre-test 

and post-test comparison that students became more 

motivated to learn English dialogue after the intervention. 

Scratch enables students to do visual programming by 

themselves, presenting them with colorful Sprites and 

offering them the chance to take part in the dialogues 

interactively in the simulated environment. As such, Scratch 

makes English dialogue learning interesting and different 

from what students have experienced in their ordinary 

English dialogue learning classes. Meanwhile, students’ 

attitudes towards graphical programming language became 

less positive after the intervention. Since the intervention 

only lasted for one session, not much differences happened 

in students’ coding ability, it is reasonable that students’ 

self-evaluation towards Scratch coding ability remained the 

same in the pre/post surveys. Students’ declined initiative 

efforts and willingness to study more about Scratch coding 

after the intervention have great enlightening significance 

for the instructional design of the CT infusing class -- when 

students’ attention was drawn by the appealing content of 

the infusing class, it is easier for them to get frustrated if the 

programming tool goes wrong compared with the pure 

programming class in which they only have one focus to 

concern. 

However, limitations exist in this research. This research 

only has a sample of nine students, which makes it difficult 

to generalize any information collected from the pre-test and 

post-test to the average student. Furthermore, the researcher 

asked the same students almost the same questions in both 

the pre and post surveys (the only difference was that the 

post-test asked about student’s perspective towards the 

infusing class while the pre-test did not). Without a control 

group, this means that some of the changed effects in attitude 

might not be due to the intervention but rather due to 

students being ‘primed’ by the pre-survey. What is more, the 

intervention class was too short to make any influential 

changes of students’ CT and English dialogue learning 

capability, though this research only involves the 

perspective aspect of the participants, more insights would 

have been achieved if the intervention were longer. 

6. FUTURE WORKS 
Future studies on how to integrate CT into English education 

are needed from various perspectives. While this study 

focused on students’ attitudes, future researchers can go one 

step further and apply some valid and reliable scales to 

assess students’ learning performance in both CT and 

English as a result of infusing classes. With these kinds of 

studies, we can have a better vision of what happens to 

students when they undergo these infusing lessons and if 

students can benefit from this learning. 
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In this research, the researcher adopted Scratch as the CT 

instrument in the infusing class, however other graphical 

programming platforms including Alice, Game Maker, 

Kodu and Greenfoot can be used to promote CT 

development in K-12 education as well. Therefore, 

researches on the feasibility of different CT tools in 

facilitating English education can be an important branch of 

both CS and English education research. 

Additional, integrating CT with English education is an 

interdisciplinary topic which only has a limited literature 

support. The work of putting forwards any framework to 

guide the following practice in this field is highly needed at 

this stage. 

Teachers’ professional development and community of 

practice on how to teach CT are significant factors that 

cannot be ignored. Research on how to better prepare 

teachers is bound to have great impact on the classroom 

effect of the CT infusing lesson therefore should be 

enhanced. 
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摘要 

本研究基于计算思维的维度，探究在信息技术课程中

培养高中生计算思维的切入点的问题，提出了通过

“设计”培养高中生抽象、建模、分解与综合等维度

的计算思维的思路。通过把 DBR 的研究范式融入到学

生的作品“设计”和教师的教学设计过程中，形成了

有效的教学实践，并验证了在设计过程中培养高中生

抽象、建模、分解与综合等计算思维的可行性。 

关键字 

计算思维；信息技术课程；设计；DBR 

1. 研究背景 

1.1. 计算思维的出现、定义及对人才培养的价值 

计算机科学与技术对人类的生产、工作、学习和生活

产生了重要影，能够从思维模式的层次影响人们的解

题方法，这促成了“计算思维”概念的提出。 

2006年 3月，周以真教授提出了计算思维的概念。周以

真教授认为：计算思维是运用计算机科学的基础概念

进行“问题求解、系统设计以及人类行为理解”等涵

盖计算机科学之广度的一系列思维活动 (Wing J M, 

2006)。2015 年，张学军等学者在深入探究这些问题的

基础上，指出计算思维的培养主要为八个方面：计算、

抽象、自动化、设计、通信、协作、记忆和评估(张学

军，2015)。 

2016 年的《高中信息技术课程标准修订稿》中指出：

高中信息技术课程的培养目标是使学生学会运用计算

思维对问题进行识别、分析、抽象、建模并设计系统

解决方案，在数字化学习的过程中形成对人与世界的

多元理解力，成为数字化时代的合格公民 (任友群，

2016)。 

1.2. 高中生计算思维能力培养存在的问题 
尽管计算思维对中学生个人能力的发展非常重要，但

从基础教育的现状来看，中学生的信息技术相关操作

技能学习得较好，但计算思维能力仍存在严重欠缺。 

为计算思维能力开设专门的课程也存在着困难。第一，

若以纯理论课程的形式讲授计算思维的概念、规则和

内涵，只能促使学生背诵和记忆抽象概念，并不能真

正地实现深层次的理解和掌握；第二，让中小学生减

负、把更多自由的时间还给学生是当前教育的主流思

想。因此，专门开设计算思维培养类课程并不是最佳

选择。 

2. 研究问题 

高中信息技术课程的很多内容都脱胎于计算机和网络

技术，其本就蕴含着计算思维的思想，因此，把计算

思维的培养融入到信息技术类课程之中，进而促使学

生掌握计算思维的相关理论、策略和技术的思路是可

行的。本研究旨在探索以信息技术课程为载体，思考

计算思维的哪些维度易于培养以及如何培养学生计算

思维的问题。 

(1)计算思维的维度很多，对高中生计算思维能力培养

应着重哪些方面？ 

(2)计算思维可以借助何种载体进行培养？ 

(3)计算思维培养的具体策略有哪些？ 

(4)应用此种策略培养学习者的计算思维，效果如何？ 

3. 研究设计 

3.1. 确立培养内容——选择抽象、建模、分解与综合
维度的技能作为计算思维素养培养的首批任务 
本学期笔者为高二学生开设《多媒体技术》课程，其

中涉及了大量设计能力培养的内容。而设计能力的核

心就是分析和综合，归根到底就是对现实问题的解析

与抽象的能力，这也是计算思维培养的核心内容。鉴

于《多媒体技术》课程的特点及其蕴含的计算思维特

性，本研究选择抽象、建模、分解与综合维度的技能

作为计算思维素养培养的首批任务。 

3.2. 确立培养载体——以作品设计为载体，让计算思
维融合于设计过程中 
计算思维中的抽象、建模、分解与综合思想本就是

“设计学”中的核心内容，设计的过程可以较为直观

地体现一个人的思维过程。 

《多媒体技术》是一门操作性、实践性较强的学科，

学习者对其的掌握大多都是通过作品设计来进行实现。

所以，课程任务的实现和设计的一般过程不谋而合，

即通过学习者的作品设计过程来体现或培养学习者的

计算思维是可行的。 

3.3. 确立培养策略——计算思维培养的具体策略 
本研究中设计能力的培养不仅仅是学生层面，还包括

教师层面。于学生而言，培养其作品设计能力，注重

其作品设计过程；于教师而言，为促进学生作品设计

能力的发展，提升教师的教学设计能力。另外，无论
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是学生设计能力的发展，还是教师为实现此目标而开

展的教学设计，都是一个在实践中不断发现问题并完

善的过程。 

3.3.1. 基于设计的研究范式 
基于设计的研究(DBR)，其目的是在真实情境中，以研

究者与实践者的协作为基础，通过分析、设计、开发

和实施的反复循环，来改进教育实践，并提炼对情境

敏感的设计原则和理论(焦建利, 2008)。目前主要有理

论主义、实用主义、干预主义等取向。本研究主要依

据张文兰学者的教育干预取向(张文兰，2007)，对教师

教学活动、学生学习活动进行设计。首先，教师的教

学设计应遵循 DBR 的理论，在设计及不断的迭代中成

长。再者，学生对作品的设计和计算思维能力的形成

也是一个 DBR 的过程，借助“设计”，使其作品不断

优化与完善，促使其抽象、建模能力不断提升，逐步

形成良好的思维品质，最终达到“加强计算思维意识，

掌握计算思维方法，提升计算思维能力”的学习目标。 

3.3.2. 教师的教学活动设计 
教师在明确章节内容所蕴含的计算思维并完成教学内

容设计的基础上，主要采取以下策略组织教学活动。 

(1)借助任务驱动，融入任务分解与综合的思维方式 

通过“任务分解—任务设计—任务反思—任务优化”

四个环节来开展教学，使学生在设计过程、问题解决

与任务完成中不断增强计算思维的培养。 

(2)促使学生思考如何把现实问题计算机化，形成抽象、

建模思想 

教师不仅要讲解学科内容与完成任务的具体步骤，更

要着重讲解从现实问题转化为计算机可操作模型的过

程，向学生呈现教师对作品设计的思考，促使学生思

考如何将现实社会的复杂问题一步步地抽象化、模型

化，并通过计算机来实现。 

(3)要求学生提交设计报告，跟踪其思维过程 

学生通过填写作品设计报告，可以对作品的设计思路

和过程有更加清晰的认识；教师通过学生的作品设计

报告，可以了解其思维过程并进行过程性评价，使评

价方式多元化。作品设计报告见表 1。 

表 1  作品设计报告 

作品名称  

作者  

创意来源  

设计思路  

具体制作过程  

收获  

(4)把作品设计报告纳入作品质量评价标准 

教师对学生最终作品的评价不局限于最终结果的呈现，

同时将学生作品设计过程报告列入考察指标，作为衡

量其作品质量的重要因素，具体的作品评价标准见表 2。 

表 2  作品质量评价标准 

评价指标 要求与分数 

作品内容 
主题突出。(10 分) 

美观和谐、构图完整。(10 分) 

创造性 作品形式新颖，设计巧妙。(10 分) 

技术性 正确并灵活运用所讲课程内容。(20 分) 

思维素养 
设计思路与制作过程中思维清晰，逻辑

顺畅，是否高效地解决问题。(50 分) 

(5)设计调查问卷，掌握学情并及时评价 

本研究在参考国内外有关计算思维测评量表的基础上，

结合高中信息技术课程内容，设计了中学生计算思维

(主要包括计算思维意识、方法、能力三大类)调查问卷，

以便监测学生在实验前后的计算思维变化状态。 

在预测阶段，随机抽取了人大附中高二年级的 50 名学

生进行问卷发放与回收，其中有效问卷 50 份，有效率

100%。对于问卷的信度检验采用的是克朗巴哈系数，

结果表明整体与各维度的克朗巴哈系数均大于 0.6，所

以此问卷有较好的信度。对于问卷的结构效度检验采

用的是“KMO 和 Bartlett 的球形检验”，其 KMO 值为

0.825，大于 0.7，故问卷具有较好的结构效度。 

3.3.3. 让学生在作品设计过程中形成计算思维思想 
根据设计的一般流程，要求学生遵循“明确目标、任

务分解、抽象建模”的一般流程来完成作品设计。主

要包括以下环节。①明确任务。②分析任务。主要借

助任务分解的策略把综合任务分解为若干便于操作的

子任务。③方案形成。要求学生思考如何实现每一个

子任务的计算机化，形成在计算机技术范畴内具备可

操作性的技术方案，并最终形成自己拟完成作品的抽

象模型，形成方案。④反思与迭代。针对已经形成的

方案，根据课程要点思考任务完成过程中需注意的地

方，进一步反思并迭代。⑤技术实现并形成作品。搜

集相应素材，进行作品设计与制作，并及时记录作品

设计报告。⑥分享、完善与提交。进行作品的相互分

享、完善与提交。 

4. 教学实践 

4.1. 教学模块选择与教学对象分析 
本研究中高中信息技术课程中所使用的教材为《多媒

体技术》，本教材中含有 Photoshop 设计模块。本轮教

学实践讲授的是 PS 中的分图层操作。其所蕴含的计算

思维是分解、模块化、设计。本研究教学实践选取的

教学对象为中国人民大学附属中学高二年级学生，共

112 名。 

4.2. 第一轮教学实践 

4.2.1. 教学内容设计 
(1)学科内容 

学科内容包括图层的概念；图层的主要操作；利用图

层完成复杂图像的设计三方面。 

(2)计算思维内容 
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图层概念中蕴含着“分解”与“综合”的计算思维思

想。在本教学过程中，应该体现出如何把整个综合性

大任务分解为若干个小任务的任务分解的思想，并在

任务分解中，遵循“自上而下，逐层分解，由繁到简”

的方式完成复杂任务的解决。 

4.2.2. 教学活动与任务设计 
基于以上的分析和设计，此章节的演示讲解与任务实

施过程如表 3。 

表 3  多图层操作的演示与讲解过程 

教师活动 学生活动 

呈现反面案例：将所有内容都

放到一个图层中的图像，并提

问如果想修改图像中的某一部

分(如背景色)该如何操作？ 

思考并尝试解决 

引入图层概念：图层的概念 了解概念及作用 

呈现简单任务：利用图层分别

存储复杂图像的局部内容。特

别正式且严肃地向学生强调

“分解”的重要性及其对未来

作品修正的便捷性。 

形成分图层处理图

像的计算思维，并

掌握图层的新建、

删除等内容要点 

演示操作过程：以简单案例进

行举例，并进行操作演示 

更进一步地体会分

图层处理的重要性 

师生交流互动：总结知识要点 提问疑问及想法 

发布任务：设计防霾海报，呼

吁人们重视空气污染问题 
明确任务主题 

明确任务要求：①使用的素材

数量不少于 8 个；②作品应存

储为 PSD 格式，保留操作过程

中的图层，图层不少于 5 层；

③记录作品的设计思路和过

程，并与作品文件一起打包上

传至平台。 

明确任务要求，构

思作品：怎么做，

需要什么，应该注

意什么等 

作品设计：巡视学生作品设计

情况，并给予适当指导 

搜集素材，制作作

品，记录作品设计

报告 

作品分享：学生之间进行作品

的互相分享 
作品的完善与优化 

作品提交：提醒作品上传 
将作品、设计报告

等文件上传至平台 

4.2.3. 教学评价与存在问题 
(1)教学评价 

从多媒体作品设计报告的角度来看，学生的作品契合

主题，构思各异，形式也别具一格，并在制作过程中

体现出了其理解任务、一步一步分解并逐步设计完成

的过程。当然，也有一部分学生指出自己面对复杂图

像分层完成的能力还不够，起初还是没有意识到任务

分解、图像分层的重要性，直到修改局部内容的时候

才发现操作十分复杂，才更加深刻理解任务分解的重

要性。 

从多媒体作品质量来看，具体如表 4，70 分以下的学生

占比 62.5%，80 分以下的占比 94.64%，作品的质量还

不甚理想。学生们在课堂上的积极表现和问题抽象与

任务分解能力的提高并未显著反映到作品质量的提高

上来。 

表 4  “抗霾公益海报”作品成绩 

成绩 
60 分

以下 
60-70 70-80 80-90 90-100 

人数 14 56 36 4 2 

百分比 12.5% 50% 
32.14

% 
3.6% 1.79% 

(2)存在问题 

基于课堂观察及对部分教师和学生的访谈，发现本次

教学实践中突出的问题有: ①学生用于填写作品设计报

告的时间过短，大部分学生拿到任务后会一头扎进实

际制作中，而不是进行认真梳理和缜密规划，由于缺

乏系统的设计，导致最终的作品缺乏整体的设计感和

可修改性。②在任务实现过程中，师生都有些过于关

注作品自身而忽略了学生思维的形成过程。虽然在开

展教学实践前已经和教师沟通过要充分体现学生的主

体地位和关注作品实现的思维过程，但教师习惯于传

统的讲授型教学方式，并不能真正放手让学生去体验

设计的过程。 

4.3. 三轮教学实践及其效果 

4.3.1. 以 DBR 为指导的持续教学实践 
基于第一轮教学实践中出现的问题，笔者参考 DBR 中

对“设计”及其规范的要求，对教学实践和活动组织

进行了调整，然后组织了第二轮和第三轮教学实践。 

(1)针对第一轮的教学实践的改进与设计 

①针对学生拿到任务不认真进行设计和规划的情况，

教师在发布任务前会告知学生作品的评价标准和细则，

并强调作品设计报告所占的分值及重要性，在完成任

务过程中也会及时督促其记录作品的设计思路和过程。

②针对教师过度关注学生的情况，需注意要留给学生

适当的思考和尝试的空间，要大胆地启发学生去尝试

和探索，鼓励他们举一反三，综合运用各种方法来解

决问题，实施以学生思维活动为主的教学过程。 

(2)第二轮和第三轮教学实践的实施 

为了推进基于分解、模块化、设计等计算思维思想的

形成，基于第一轮教学实践经验及其存在的问题，笔

者还在动态画笔模块、动作模块和小动画制作模块继

续推行“学科内容+计算思维培养”教学模式，基于抽

象、建模、分解和综合思想组织教学活动，持续进行

了 3 轮教学实践，每轮实践均在对上一轮实践反思优化

的基础上进行。 

4.3.2. 三轮教学实践的成效及分析 
(1)从计算思维的意识、方法、能力来看 

因问卷中的题目选择项均为 3 项，收集的数据为低测度

的定序变量，所以对其差异性的检验使用的是基于交

叉表的卡方检验。 
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从卡方检验来看，具体见表 5，计算思维意识、方法、

能力上前后存在显著差异，说明从设计角度提升学生

的计算思维是有效的。 

表 5  计算思维前后测问卷卡方检验 

计算思维素质 题号 渐进 Sig.(双侧) 

意识 

a1 0.000** 

a2 0.001** 

a3 0.004** 

a4 0.001** 

a5 0.000** 

方法 

b1 0.000** 

b2 0.035** 

b3 0.000** 

b4 0.000** 

能力 

c1 0.000** 

c2 0.650** 

c3 0.000** 

c4 0.225** 

c5 0.014** 

**.在 0.05 水平(双侧)上显著相关 

(2)从作品设计报告来看 

针对第一轮教学实践中存在的问题，第二轮与第三教

学实践中均进行了改进。经过训练，在第三轮教学实

践中，学生的设计报告日益规范和完善。于学生而言，

其作品设计与制作过程思路更加清晰，任务完成更加

高效；于教师而言，在对学生设计报告指出问题的同

时，也在改变着学生的思维逻辑，教师关注的不仅仅

是最终的作品，而是其设计的过程，真正实现了计算

思维培养的教学。 

(3)从作品质量来看 

在思维意识、方法、能力不断掌握的过程中，学生的

设计过程不断清晰明了，作品质量也有显著提升。第

三轮教学实践发现：在 70 分以下的作品急剧减少，70-

90 分的作品逐渐增多，90 分以上的作品逐渐增多，且

占比将近 50%。 

5. 研究总结 

(1)借助信息技术课程中的设计章节，从教师教学设计、

学生作品设计的角度进行抽象、建模、设计、分解与

综合等维度的计算思维的培养是可行的。 

(2)教师对于课程的讲解应更多地在于思维逻辑能力的

逐步渗入，对于任务的完成应体现以学生为主体的理

念，当然，对于基础较弱的学生应给予主动的询问和

指导，并提倡生生互助。 

(3)作品设计报告的实时、认真、规范撰写对学生的计

算思维培养有着非常重要的作用，教师需认真设计作

品设计报告的内容和格式，以便体现学生们的思维逻

辑变化及存在的问题，以便进行及时的提升和帮助。 

(4)计算思维的培养不是一蹴而就，而是不断改善、不

断实践的迭代过程。 
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ABSTRACT 

This current study reports our attempt to design and 

implement a course to promote computational thinking and 

collaborative skills for primary school students in Korea. We 

have incorporated Wedo 2.0 into fourth graders’ curriculum 

in various real world problem solving contexts. This paper 

reports the students’ activities, learning outcomes in terms 

of computational thinking and collaborative/communication 

skills.  
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Robotics Classes, Primary Education 

1. INTRODUCTION  
As computational thinking(Wing, 2006) is widely 

recognized as the core competency in software-embedded 

society, various educational attempts are being made to 

promote primary students’ computational thinking skills in 

Korea. These efforts include educational programming such 

as Scratch programming, physical computing with robotics 

and microcontrollers, and unplugged activities.  

It is claimed that computational thinking can be promoted 

by computer programming because it provides kids with 

debugging and troubleshooting chances where they receive 

quick feedback (Bers, 2018). Furthermore designing and 

programming robots to function offer tangible objects for 

kids to play with and observe so that debugging becomes 

more visible. It is often neglected that, however, 

computational thinking is a problem solving skill and 

therefore students should apply computational thinking 

skills in authentic problem situations while collaborating 

with their peers.  

This current study reports our attempt to design and 

implement a course in primary education in Korea. 

Specifically we aimed to investigate how the current course 

design of primary robotics activities impacts on students’ 

computational thinking and collaborative/communication 

skills.  

2. CONTEXT & METHODOLOGY 

2.1. Participants and Research Procedure 

In the current study, 75 Korean fourth grade school students 

participated in the robotics classes. Robots programming 

classes were designed as a subject integration project. The 

same modules were carried out in four different classes from 

the 2nd week of September to the 1st week of December 

2017. The pre-CT Bebras tests and pre-tests of 

questionnaires were given before the first module and post-

tests were given after the 7th module. We have selected 59 

students as final research subjects after removing incomplete 

responses. The participants were 31(52%)  boys and 

28(48%) girls. 

2.2. Measuring Instruments 

In order to investigate the effects of the robotics class we 

look into two main areas: cognitive and social. To measure 

cognitive skills we focused on students’ computational 

thinking and incorporated Bebras tasks(www.bebras.org). 

The Bebras tasks consisted of authentic problems used to 

measure students’ CT transfer. We selected 6 items from the 

Korean Bebras pilot test conducted in 2016 (Park & Jeong, 

2017). In addition, to measure social skills we concentrated 

on collaboration and communication skills. Collaboration 

skills were measured using the 5-Likert scale by Yoon and 

Kim (2011). The instrument consisted of 9 items and 

coefficient alpha is .780. Communication skills were 

measured using communication the 5-Likert scale 

questionnaires by Choi and et al. (2013). The instrument 

consisted of 5 items and coefficient alpha is .845. 

2.3. Data Analysis 

SPSS was used for the data analysis. First, we conducted a 

matched pair t-test to discover if robotics programming 

education improved students’ computational thinking, 

collaboration, and communication skill. 

 2.4. Robotics Class Design 

As Table 1 indicates, we designed the robotics class 

including 7 modules, and each module took 2 hours. The 

modules were designed to help 4th graders solve problems in 

authentic scenarios such as earthquake, rescuing people, 

recycling, and food deficiency situations. The primary 

students act as researchers in a future disaster research center 

who need to solve the incurring ‘real-world’ problems. For 

each module, students were urged to work together as a team 

of two acting one as a designer and the other as an engineer. 

The designer designs the robot and the engineer creates 

programs to solve the problems. The team members were 

encouraged to switch the roles back and forth allowing them 

to be able to perform two roles. In addition, as students build 

collaborative robots they work as a team of four members, 

and combine two robots into one or synchronize robots’ 

behaviors. 

 

 

 

 

 

http://www.bebras.org/
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Table 1. Robotics class modules’ themes 

Module Themes 

1 Disaster Robots Introduction 

2 

3 

4 

5 

6 

7 

Designing Rescue Robots   

Future Food Problem Solving Robots  

Building Earthquake-resistant Houses 

Recycling Helper Robots  

Collaborative Robots 

Designing Future Robots  

 

 

Figure 1. Collaborative rescue robots  

3. RESULTS 

3.1. Cognitive : Computational Thinking skill 

A paired samples t-test showed a statistically significant 

increase in computational thinking from pre-test M= 1.85, 

SD= 1.06) to post-test (M= 2.47, SD= 1.24), t(58)=-3.636, 

p<.05.  

3.2. Social : Collaboration/Communication skill 

Collaboration skills significantly increased from pre-test 

(M= 3.79, SD= .51) to post-test (M= 4.03, SD= .48), t(58)= 

-4.247, p<.05. In addition, communication skills also 

significantly increased from pre-test (M= 3.46, SD= .61) to 

post-test (M= 3.76, SD= .58), t(58)= -4.425, p<.05.  

4. CONCLUSIONS & FUTURE STUDY 
This research reports our design and implementation of 

fourth graders’ robotics classes to promote their 

computational thinking and social skills. As our findings 

indicate, the robotics programming classes positively 

impacted primary students’ computational thinking skills. 

Although the pre-test results of Bebras tasks were relatively 

low the post-test scores were significantly improved. In 

order to investigate students’ persistent development of CT 

skills, a series of design-based research will be conducted. 

In addition, the robotics programming classes positively 

impacted on primary students’ perceived 

collaborative/communication skills. The robotics modules 

were designed for students to collaborate in a group of two 

(module 2-4) and four (module 6-7) to solve authentic 

problems. This provided the students with opportunities to 

work together and communicate to achieve the goal. 
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ABSTRACT 

The growing ubiquity of everyday devices connected over 

the Internet, known generally as the Internet of Things (IoT), 

has opened up new avenues for students to explore their 

worlds and think and create computationally. Combining 

IoT with mobile technologies (such as smartphones), 

enables students to move their designs and computational 

thinking out of traditional classroom settings and into the 

real world. This article outlines a design-based IoT 

curriculum that connects Taiwanese students with the 

personally-relevant issue of air pollution. The curriculum 

employs student-driven smartphone application design, 

using MIT's App Inventor, with Wi-Fi enabled IoT devices 

(LinkIt 7697 Wi-Fi/BLE MCU board). This paper reports on 

changes to the curriculum based on a preliminary pilot and 

observations of student engagement during the most recent 

enactment.  

KEYWORDS 

Computational Thinking, App Inventor, Internet of things, 
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1. INTRODUCTION 

1.1. Internet of Things: The Next Sphere of Digital 

Empowerment for Learners 

As Asoton (2009) so clearly highlighted, the increasing 

ubiquity of our everyday objects connected through the 

Internet, commonly termed the Internet of Things (IoT), is 

changing our daily lives in profound ways. This persistent 

connectivity is even reaching into our home. From our 

refrigerators, to our lightbulbs and thermostats, even our 

home entertainment systems are all increasingly connected 

to the Internet and controllable through mobile applications. 

Smart hubs like Google Home or Amazon Echo, are acting 

as "digital assistants" that allow you control your home 

appliances by simply talking to them. However, most of 

these systems are black boxes to users. We do not know how 

they work, what they do with our data, and generally cannot 

customize them for our own needs. Similar to the call for 

computing education to embrace mobile computing as a 

means for empowering students as creators and not mere 

consumers of our digital futures (Tissenbaum, Lee, et al., 

2017), there is a growing need to consider how to effectively 

integrate IoT into educational designs. 

1.2. Making Computational Thinking Meaningful 

The continued focus of computing education with learning 

the fundamentals of computing (e.g., loops, conditionals, 

functions, variables, and data handling) first proposed by 

Wing (2006) and others, risks disconnecting what students 

learn from how they might apply it in their own daily lives. 

This separation of learning from contexts threatens to make 

learners feel that they do not need to learn computing, 

because they cannot see how it will apply to lives or their 

futures, a challenge commonly faced in math and physics 

education (Williams et al., 2003; Flegg et al., 2012). It 

therefore becomes critical for education designers to 

understand what current issues may be of interest to learners, 

and how they can develop educational interventions that can 

connect them to computing education. 

For instance, air pollution has become a rising problem in 

Taiwan recent years. This problem is keenly understood by 

everyone in Taiwan and is the topic of science and other 

disciplines within K-12 education. One source of data for 

understanding the air pollution status in Taiwan is the 

readings provided by government air quality stations. 

However, even within a small geographical region like 

Taiwan, the air quality can vary significantly, and the 

government stations alone are not robust enough to capture 

the variances. The increased availability of low cost IoT 

devices and peripherals, coupled with Internet connectivity 

offers new opportunities for the public to design and build 

their own sensors, and to collectively share that data to 

public or private servers (Chen et al., 2017). The 

convergence of personally meaningful context and low-cost 

technology provides the ideal context for designing 

computational curriculum that can engage students in a 

personally meaningful way. 

1.3. Reducing Barriers for Computational Thinking 

While engaging students in IoT-focused computing 

curriculum may provide new ways for making computing 

personally meaningful, it is not without challenges. Most 

programming languages require arcane syntax and grammar, 

which is a significant barrier for young learners wishing to 

engage in computational practices (Maloney et al., 2004). If 

our goal is to have students feel empowered to develop 

computational solutions to real-world problems and become 

excited about their ability to do so, we need to reduce these 

barriers to entry. In response, researchers have developed 

block-based programming environments, in which users 

assemble programs by snapping "blocks" of code together.  

These blocks-based languages have been shown to support 

novice programmers to more easily develop relatively 

complex programs in the domains of games (Brennan and 
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Resnick, 2012), 3D animations (Dann, Cooper, Pausch, 

2011), and computational models (Begel & Klopfer, 2007). 

MIT's App Inventor is an example of a blocks-based 

programming environment that allows users to build fully 

functional native apps for Android phones and tablets. 

Because App Inventor is focused on mobile applications, it 

allows the programs that young learners build to move off 

their computer screens and into their lived lives. When 

coupled with sensors and other IoT devices, App Inventor 

can open exciting new possibilities for students to 

experience, understand, and interact with their physical 

worlds. While the promise of youth developing 

transformational interventions using IoT is exciting, the 

technical complexity required to actually develop these 

interventions is a clear barrier. 

2. METHODS 

2.1. Developing a Low-barrier IoT Curriculum for 

Taiwan through App Inventor 

In response to the challenges of designing a personally 

meaningful computational thinking curriculum for 

Taiwanese students that does not require complicated pre-

existing programming knowledge, we developed new IoT 

extensions for App Inventor. Below we discuss the 

development of the new IoT functionalities for App Inventor 

and the successive iterations of our air quality curriculum. 

2.2. Why Wi-Fi not Bluetooth 

There has been significant prior work focused on using 

Bluetooth to control robots or devices (AlHumoud et al., 

2014). However, compared with Wi-Fi, the range Bluetooth 

can cover is much smaller, making it mainly suitable for 

spaces about the area of a classroom. When it comes to 

larger spaces, such as a playground or even a campus, 

Bluetooth does not have the range to support communication 

between devices. In this curriculum design, students' air 

quality monitor systems could be 50 to 500 meters away 

from each other, well beyond the range of Bluetooth or 

Ethernet cables. In these cases, we recommend using 

development boards that are Wi-Fi enabled (such as the 

LinkIt 7697 used here).     

While there are many prototyping boards options, embedded 

boards - boards that have all the necessary parts for 

controlling other devices already built into them (Barr & 

Massa, 2006) - are particularly useful for educational 

purposes. Embedded boards are significantly cheaper, 

smaller, more portable, and have lower power consumption 

that full-fledged computers. It is also fairly easy to power 

prototypes developed using embedded boards using small 

portable power sources (e.g., AA batteries or power banks) 

(Tseng et al., 2017).  

By coupling these embedded boards with mobile 

technologies, we can extend their capabilities in ways that 

would be prohibitively complex on their own. For instance, 

voice recognition is relatively simple to implement with 

smartphones (similar to Google Assistant or Apple Siri). 

However, this kind of functionality is extremely difficult to 

implement on embedded boards alone. Combining the two 

naturally complements the affordances of each and allows 

us to envision more complex and engaging educational 

designs. 

2.3. An Authentic Problem: Taiwan's Air Pollution 

The design of this camp is focused on the current air 

pollution problem in Taipei, which has become an 

increasingly serious health threat to everyone living there. 

Among all pollutants, fine particulate matter (PM2.5 - 

particles that are less than 2.5 micrometers in diameter), are 

particularly serious as they can penetrate the alveoli (the gas 

exchange regions of the lungs) and even pass through the 

lungs to affect other organs. PM2.5 have been shown to 

cause serious illness and increase cancer rates and is directly 

related to a range of serious health problems, such as asthma, 

cardiovascular disease, respiratory diseases, lung cancer, 

and premature death (Chen, 2017). According to Taiwan 

Environmental Protection Administration (2018), a person's 

respiratory system can be seriously affected when the PM2.5 

level is above 50 μg/m3. Given the seriousness of the 

problem, and its direct connection to the population of 

Taiwan, the subject matter was one we believed participants 

would be able to directly connect to. 

2.4. Participants and Setting 

This work was designed as a summer camp taking at three 

different high schools in the same week. Each camp has 30 

students randomly separated into 12 to 15 groups 

disregarding gender or prior programming experiences. The 

camp took place over five 6-hour days (9:30 to 16:30 each 

day). In each camp, one expert instructor conducts the 

curriculum and three TAs are present to work with students 

and collect observations. At the end of each day, the 

instructor and TAs debriefed together to exchange 

information about interesting and unexpected events. 

2.5. Data Collection 

Observations during camp sessions were collected by the 

instructors and TAs, debrief sessions with the instructors and 

TAs, and the students' final products.  

3. CURRICULUM DESIGN 
This curriculum was implemented using a design-based 

research approach, which employs iterative cycles of design, 

deployment, observation, and redesign (Barab & Squire, 

2004).  

3.1. LinkIt 7697 Wi-Fi/Bluetooth MCS Board 

For IoT connectivity we used the LinkIt 7697, which is an 

Arduino compatible development board (2018). It supports 

Wi-Fi and Bluetooth Low Energy connectivity. With its 

relative affordable price (about 15 USD) and the support of 

the open source community, LinkIt 7697 board is relatively 

easy for beginners to get started with. Students can quickly 

build and test their designs without any complicated setup.  

In this camp, we combined the LinkIt 7697 to a PM2.5 

sensor as a prototype for students to collect PM2.5 data and 

to further explore the physical world.  
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Figure 1. Prototype of the air pollution monitor system, 

including LinkIt 7697  

 

To make the hardware setup easier, we used an extension 

board to connect the air quality sensor, removing the need 

for students to use a breadboard and messy wires. This was 

a suitable approach for a camp, but for a longer-term 

intervention, it might be better for students to have more 

hands-on experiences building breadboard circuits. 

3.2. Curriculum Content 

Below we describe each day of the five-day camp. 

Day 1. Basic Understanding of Mobile Programming. 
The camp started with an introduction to the App Inventor 

platform and having students install the Android emulator 

on their PCs. Using a set of tutorials, students developed a 

basic understanding of the AIA environment and its 

components (e.g., Buttons, Textboxs, Images, Webviewers), 

and how to build apps to complete certain tasks (e.g., to have 

users input two numbers into Textboxes to calculate the area 

of a rectangle, and how to show error message if either one 

Textbox is empty). 

Day 2. Get into Mobile Phone’s Functionalities. On Day 

2, using the premise of game design, students learned how 

to integrate multimedia, and sensing functions in their apps. 

Students had to make a virtual ball on the screen roll 

according to the phone’s orientation (utilizing the 

orientation/accelerometer sensor). We also introduced the 

Map and location sensor components, having students build 

a location-based app to detect their location.  

Day 3. Basic Understanding of Circuits and MCU 

boards. On day 3, students began working with the LinkIt 

7697 MCU board to control several electrical components, 

such as LEDs, potentiometers and buttons. In the afternoon, 

students built a light-controlled LED, in which the LED 

intensity was affected by the ambient light condition using 

the photoresistor. 

Day 4. Receive Data from MCU Board to Show on the 

App Screen. On day 4, students built the main components 

of their air quality monitoring systems. Students learned 

how to control the MCU board through their mobile phone 

through Wi-Fi, how IP connections work, how to send their 

air quality sensor data to the server, and how to retrieve data 

from other devices and show it on their phone's screen.   

Day 5. Demo, Share and Feedback. On the fifth and last 

day, students finished their monitor system and tried to add 

more functions to it, such voice control or using different 

color LEDs to indicate the air quality. In the afternoon, they 

presented what they had built and learned during the week 

to the larger group. As a follow-up reflection, students were 

asked to discuss and write down what they could add to 

make their projects to make them better. Some of this 

discussion was/will be used to improve subsequent iterations 

of the camp. 

The prototype of our air pollution monitor system uses a 

LinkIt 7697 MCU board, extension board and an air quality 

sensor (can detect PM10, PM2.5) (Figure 1). 

Students then designed their own interfaces based on what 

they learned over the first three days. Each group came up 

with different ways to present their data: one team used 

Google Chart API to visualize the hourly PM2.5 status 

updates, while others simply showed the readings on the 

screen (Figure 3). 

  

Figure 2. Examples of student representations of air quality 

4. OBSERVATIONAL STUDY 
During the one-week camp, almost every group of students 

from the three high schools finished building their air 

pollution monitor systems, sent data to the server and 

reviewed all the air quality sensor data installed within the 

campus. From our observations, about half of the students 

resisted or paid less attention at first because they felt that 

mobile and IoT programing was too difficult to learn. 

However, with the help of AIA and the easy-to-connect 

hardware, these students began to explore more of the AIA 

functionality on their own. This exploration was clearly seen 

in their final project presentations. All the students were 

visibly excited when they successfully sent data to the server 

and were able to view their surrounding campus' overall air 

quality. Many students expressed the idea that this data was 

really meaningful and impacted their perceptions of the need 

to understand and care for the environment in the future. 

After the camps were over, we randomly selected several 

students from each camp and quoted their feedback below: 

“It’s really exciting when I see the data jumping on the 

screen.” 

“Now I know what the difference is between Wi-Fi and 

Bluetooth.” 

“I can prepare a mask before I go to school if the app tells 

me today’s air condition is not good.” 
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The results of this first full implementation of the camp was 

extremely encouraging and will further design iterations for 

year two. 

5. DISCUSSION AND FUTURE WORK 
This paper described the design and development of a one-

week IoT curriculum with high school students which aimed 

help them in developing their identities as computational 

thinkers. This iterative work built on a previously piloted 

version of this camp held across three high schools in Taipei 

city, Taiwan. By reviewing the observatory results and 

student’s projects, we saw that overall, students were 

motivated and connected to the work because the topic was 

connected to their daily lives. 

Building off our current run of the camp, we have some 

thoughts on how to extend and improve the curriculum. For 

students who want to explore further, it might be fruitful to 

provide them with opportunities to try out other making 

skills that connect to this topic, such as how to use 3D 

printing or laser cutting to fabricate an exterior case for their 

air pollution monitor system to provide better protection. 

Another option for student exploration could include 

opportunities for students to add additional sensors to 

expand their device's functionality. For instance, they could 

add temperature, humidity and wind direction sensors to 

provide a more comprehensive analytics results. They could 

also add multi-color LEDs to indicate different air quality 

conditions or extend their mobile apps to provide a pop-up 

notification when the air quality condition is bad.  

Building off these insights, in future camps we will design 

more inquiry activities for students to design and build with 

AIA and IoT devices, allowing them to explore their 

surrounding environments through computational means. 

Future iterations of this camp will also involve more 

students and will employ a pre/post survey to collect more 

detailed quantitative and qualitative findings. Through this 

work, expect to have a more comprehensive understanding 

of how students become computational thinkers through 

participation in this camp, and how it may affect students' 

computational thinking skills, eventually their future study 

and career pathway choices. 
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ABSTRACT 

This paper describes how elements of computational 

thinking are employed to advance student learning and 

engagement in the Digital Literacies subject of the 

Foundations Studies of the University of Technology, 

Sydney. This study does not focus on enhancing technical 

coding skills, rather it takes the conceptual view on 

computational thinking and investigates how aspects of it 

can be used to further students’ academic skills and develop 

their abilities to solve complex problems in collaboration 

and with the use of technology.  

This paper will also reveal 115 students’ responses of the use 

of computational thinking elements in project-based 

assessment. 

KEYWORDS 

Computational thinking, Digital Literacies, project-based 

learning. 

1. BACKGROUND 
The UTS Foundation Studies Program is offered in Australia 

by Insearch to international students; the academic entry 

level requirement is completion of Year 11, with an English 

language requirement of IELTS overall 5.5 and a minimum 

of 5.0 in writing. The course is designed to develop students’ 

academic and language skills to prepare them for a 

university education.  

The student body represents a diverse population in terms of 

gender, country of origin and also use of technology. There 

is great fluctuation in the composition of nationalities from 

semester to semester: in some semester there is 

approximately 40% Chinese and 40% Nepali students, in 

other semesters, 75% of the students are from China. The 

rest of the student population is generally from Indonesia, 

India, Korea, Laos, Malaysia, and Vietnam. Therefore, the 

curriculum has to be flexible enough to cater for students 

with different skill levels while aiming for consistent 

learning outcomes. 

The composition of the cohort that provided information for 

this paper consisted of 75% students from China, 7% from 

Indonesia as the second biggest group of students, 2% from 

Korea and 2% from Hong Kong; the rest of the students were 

from Nepal, Myanmar, Pakistan, Nepal, Malaysia. 

The cohort represented 55% male, 45% female students; 

55% studying Business, 13% Communication, 10% Design, 

6% Engineering.  

2. INTRODUCTION 
The aim of the UTS Foundation Studies is to provide 

preparatory education to international students for university 

courses. The role of the Digital Literacies subject in the 

program is to equip students with the technical conceptions 

and skills to become efficient users of digital and online 

resources. The subject employs a number of computational 

thinking principles and elements ranging from simple 

coding activities to complex project-based collaborative 

learning assessments. This paper will describe how 

computational thinking is applied in this subject.  

3. COMPUTATIONAL THINKING 

3.1.  Definition of Computational Thinking 
There are numerous definitions of computational thinking 

(CT); one of the widely applied description by Jeanette M. 

Wing (2011) states: “computational thinking is the thought 

processes involved in formulating problems and their 

solutions so that solutions are presented in a form that can 

be effectively carried out by an information-processing 

agent”.  Hemmendinger (2010) describes it as: “Teaching 

computational thinking, however is something else; not to 

lead people to think like us — which is pretty varied anyway. 

Instead, it is to teach them how to think like an economist, a 

physicist, an artist, and to understand how to use 

computation to solve their problems, to create, and to 

discover new questions that can fruitfully be explored.” 

These definitions suggest that computational thinking skills 

go beyond Computer Science and can be applied to non-

computing subjects. DeSchryver and Yadav (2015) argue a 

that computational thinking skills (as strategies for problem 

solving in data-mediated, technology-rich learning and work 

environments) coupled with the use of new literacies skills 

(strategies to negotiate, generate, and communicate meaning 

among myriad encoded digital forms) enhance creative 

thinking skills (cognitive activity comprising various 

subsets of these component thinking skills that are mediated 

by the more aesthetic components of traditional creativity). 

There are various calls for opening up CT elements to 

learning that is not computer dependent.  

The heightened need for including computational thinking  

in K-12 curriculum that is supported by government bodies: 

England added Computational Thinking and Computer 

Programming in the national curriculum of primary and 

secondary education (Department for Education England, 

2013), while Australia puts emphasis on STEM (Science, 

Technology, Engineering and Mathematics) subjects in their 

curriculum, as Chang (2015) states:  “The new curriculum 

echoes successful programs implemented in the United 

States such as Code.org and “Hour of Code”, with the 

support of Google and Microsoft, including the United 

Kingdom who introduced coding in primary schools last 

year.” As CT skills will advance in K-12 education, 
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university preparatory courses will also need to incorporate 

elements of CT. 

3.2.  Elements of Computational Thinking 
Just as there are numerous definitions for Computational 

Thinking, there are also a wide range of ideas on the 

components of it. Gouws, Bradshaw & Wentworth, (2013) 

developed a Computational Thinking Framework (CTF) to 

assist in developing educational materials. According to 

their framework, the followings skill sets are required for 

computational thinking: Processes and Transformation, 

Models and Abstraction, Patterns and Algorithm, Tools and 

Resources, Inference and Logic, Evaluations and 

Improvements. The levels of these skills are described as: 

Recognise, Understand, Apply and Assimilate. 

Weese (2017) describes the elements of computational 

thinking as: Algorithmic Thinking, Abstraction, Problem 

Decomposition and Control Flow. 

According to Barr and Stephenson (2011) the core 

computational concepts are: data collection, data analysis, 

data representation, problem decomposition, abstraction, 

algorithm and procedures, automation, parallelization and 

simulation.  

García-Peñalvo and Mendes (2018) describes computational 

thinking as “an active problem solving methodology where 

the students should use a set of concepts, such as abstraction, 

patterns matching, etc., to process and analyze data, and to 

create real or virtual artefacts”. 

Code.org (2014) illustrates the process of computational 

thinking in 4 steps: step 1 - decompose, step 2 - patterns, step 

3 - abstraction, step 4 - algorithm.   

Reviewing the definitions and descriptions of the 

components of CT skills one can deduct that some common 

ingredients are: problem decomposition, patterns matching, 

abstraction and algorithm creation. 

4. COMPUTATIONAL THINKING IN 

THE SUBJECT OF DIGITAL LITERACIES 
The aim of the UTS Foundation Studies’ Digital Literacies 

subject is to equip students with the skills and knowledge to 

become efficient users of digital devices and applications for 

academic purposes. The subject employs the components of 

computational thinking to enhance students’ abilities to 

tackle complex issues and solve project-based problems in 

collaboration with others. Other than technical capabilities, 

the main skills that pre-university students develop in this 

course are conceptual skills and problem solving abilities. 

4.1.  The development of CT skills 

In the Digital Literacies subject students first complete an 

unplugged activity developed around the four elements of 

computational thinking (problem decomposition, 

abstraction, patterns matching and algorithm creation). The 

main aim of this learning activity is to enable students to 

become familiar with the concepts of CT. Through this 

exercise students develop their knowledge to recognise and 

understand the process of computational thinking. 

Following this unplugged activity, in the next two CT 

activities students work individually to apply their 

knowledge to practical exercises. They complete two “Hour 

of Code” tasks: Minecraft as a beginner coding activity on 

code.org and to understand programing logic they use the 

lighbot.com mission. The Hour of Code game is used in the 

subject to inspire students and raise awareness of the 

importance of programming, but not to teach students 

technical coding as concluded by Du, Wimmer and Rada 

(2016). Light-bot.com is applied in the course as a sound 

resource to teach students conceptual skills and abstraction, 

as assessed by Gouws, Bradshaw & Wentworth, (2013) 

Lightbot has a 74% overall CT score, although, the program 

is weaker in the areas of recognising patterns and creating 

algorithm.  

4.1.1.  Feedback from the students on these activities 

55 students completed an evaluation survey of the lesson and 

the majority of the students (83%) enjoyed the activities and 

rate them 4+ stars. 

 

Figure 1. Student rating of Hour-of-Code lesson 

The word cloud below serves as a summary of the students’ 

comment on the lesson. 

 

Figure 2. Student comments of Hour-of-Code lesson 

4.2.  Project-based assessment details 

Once students have completed these activities, they progress 

to the assimilation level of the CT skills and are engaged in 

a 6-week-long project-based learning assessment. In this 

assessment students need to employ their CT skills to 

decompose the complexity of the task, recognise patterns to 

find similarities within and among tasks, use abstraction to 

focus on the main issue and create an algorithm to identify 

details of the process.  

The assessment is a collaborative task where students create 

a 5-minute movie that tells an inspiring story around a digital 

literacies topic. The project has three deadlines that are set 

in order to assist students to keep on track with the project: 
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in week 2 they need to submit a story brief that includes the 

elements of their short story, in week 4 they do a movie pitch 

to build anticipation and create excitement about their film 

in class and in week 6 they submit the final, edited movie. 

Concurrently, students will acquire skills in the areas of 

visual literacy incorporating camera angles, shots and 

staging; in audio editing to record and combine audio tracks 

and in movie editing to comply a short video.  

4.3.  Computational Thinking Process in Project-

based assessment  

Students are required to use the process of CT to complete 

the assessment. They need to apply the components of CT to 

create the collaborative project. This experience will assist 

them in developing their conceptual understanding and 

team-based problem solving skills.  

4.3.1.   Decomposing the Problem 

The first step when starting an assignment is to break it down 

into smaller, more manageable tasks where each part can be 

solved independently of each other. Consistently, that is the 

very definition of decomposing the problem (Weese, 2017). 

To provide scaffolding to students in the decomposing 

process, the project-based assessment has defined deadlines 

to meet, such as the story brief and the movie pitch. These 

deadlines create the skeleton for the project and assist 

students with breaking the assessment into smaller tasks and 

allocate those to group members. Students need to decide on 

activities that need to be completed as a group and assign 

tasks to individuals to contribute to the final product.  

This part of the assessment provides the students with great 

learning value in developing their conceptual skills and 

understanding the steps in starting an assignment. 

4.3.2.   Recognising Patterns  
During the decomposition stage students will come across 

tasks that are similar in nature. According to Code.org 

(2018) pattern is a theme that is repeated many times. 

Students in this assessment are particularly encouraged to 

look for patterns when they create their shot list, so scenes 

that are similar can be organised accordingly. Identifying 

patterns can be applied to most of the technical parts of the 

project, such as audio and video recording and editing. 

Another example for pattern recognition in the project-based 

assessment is the use of camera angles and shots to underpin 

the tone of a scene. For example, to convey emotions 

students use close up shots to show character’s facial 

expressions; or to illustrate that a character is inferior they 

use high camera angles. This kind of pattern of shots and 

angles are used throughout the movie to support the story.  

4.3.3.   Abstraction  
Abstraction refers to the general representation of a complex 

problem. According to Wing (2008) “The abstraction 

process - deciding what details we need to highlight and 

what details we can ignore - underlies computational 

thinking”. The abstraction process allows students to gain a 

better understanding of the problem they are faced with. It 

allows them to investigate the core of it without focusing on 

unnecessary details. It helps them to concentrate on the main 

idea see what the more important parts of the project are.  

In the movie assessment students are required to use 

abstraction for their movie brief and pitch. In the movie brief 

they need to outline the main parts of the story, using the five 

elements of a short story: setting, characters, conflict, plot 

and theme. They are not required to work out the plot 

structure in details, rather to provide an overall impression 

of their story. This abstraction provides the students with 

two main benefits: form the main idea for their movie and to 

be able to express themselves in a prompt format. 

In the movie pitch the group needs to present their movie 

idea and a trailer (advertisement of their movie) to the class. 

The aim of the movie pitch is to generate anticipation and 

interest in their movie. The groups are required to use 

abstraction and present their idea in a way that provides 

enough information for the audience to understand the story 

without getting into lot of details. Creating a trailer for their 

movie is an excellent example for students to develop an 

understanding of abstraction.   

Abstraction as well as problem decomposition teaches 

students to gain an overall view of an issue and develops 

their conceptual thinking skills. However, these two 

elements of CT differ. With problem decomposition one 

breaks through the complexity of a project and creates 

smaller, more manageable tasks, while with abstraction one 

gains understanding by removing unnecessary details. For 

example, when a student is assigned the role of an actor in 

the group that is problem decomposition, but when that 

student is trying to understand the personality of that 

character is abstraction. By reflecting consciously of the 

similarities and differences between problem decomposition 

and abstraction students are supported in developing a better 

understanding of both. 

4.3.4.   Algorithm 

Algorithm refers to solving a problem by developing a set of 

steps taken in a sequence to achieve the desired outcome 

(Katai, 2014). The project-based assessment does not focus 

on developing technical step-by-step instructions for 

creating a movie, rather it aims to provide the students with 

the steps to confidently undertake any future projects in their 

university studies. 

At the end of the project, students are required to reflect on 

the process, identify and evaluate steps that they took in 

creating their final movie. This assessment hopes to provide 

the students with the algorithm of successfully solving the 

challenges of complex, group assignments. 

4.4.  Feedback from students on the use of CT elements 

115 students filled in the final survey after the completion of 

the project. Their response on the use of CT skills in the 

project-based learning was very positive, approx. 85% of the 

students agreed or strongly agreed that they have acquired 

skills that they will use at university, skills that will help 

them in to do well in other subjects, and skills in problem 

decomposition.  
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Figure 3. Student feedback on the use of CT elements in 

project-based assessment 

5. CONCLUSION 
Computational thinking skill development exercises being 

incorporated into K-12 Australian curriculum. Therefore, 

university preparatory courses need to provide similar 

opportunities for international students to gain knowledge 

and skills in CT. 

Computational thinking components are being used in non-

STEM subjects. In this paper, a case of using CT elements 

in a project-based assessment is presented. It is found that 

many elements of the CT process can also be applied for 

project-based learning. Feedback from the students who 

completed the assessment favours the incorporation of 

computational thinking into curriculum. 
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摘要 

本研究主要目的為設計一套應用 Scratch 之運算思維教

材，應用在大學課堂中，探討教材實施後的教學成效。

實施過程中使用的教學工具為 Scratch，研究結果顯示，

經過四週的單元式教學活動，可以顯著的提升學生在

運算思維的學習成效。 

關鍵字 

運算思維；Scratch；教材設計；高等教育。 

1. 前言 

因科技日益進步，為因應其快速變遷，各國政府在課

程的推動上，資訊教育已是其中一項重要的主軸，其

中「運算思維Computational Thinking」是現今各國推動

資訊教育的一項重點。電腦運算思考的技巧，並非電

腦科學家的專利，而是每個人都應該具備的  (Wing, 

2006)，指出像電腦一樣的思考，是所有人都應具備的

基本能力，這裡所指的「電腦運算思考的技巧」就是

運算思維（Computational Thinking）的概念。雖然

Wing 所指的運算思維不僅侷限在電腦相關課程或技能，

但目前用以培訓學生運算思維能力的教學模式，編寫

程式課程是用來提升運算思維能力的良好方式（Lye & 

Koh, 2014），程式設計教學可以培養學習者之邏輯思

考和問題解決的能力（洪駿命、黃國禎、黃意雯，

2012），可以透過程式設計課程，建構學生的運算思

維概念，已有許多國家正將程式設計課程納入課鋼中，

如臺灣 107 年課綱、美國和其他如澳洲、英國、法國、

愛爾蘭等 16 個國家（Schoolnet, 2015）。 

可見運算思維在未來資訊教育中具相當重要性，學習

運算思維較佳方式為程式設計教學，雖目前坊間已有

許多程式設計教學的教材或是相關的學習機構，但其

設計者的教學方向與預期的教學結果並非透過程式設

計方式學習運算思維技能，教學內容多以遊戲設計、

程式設計為主題。本研究將以運算思維教學為基礎設

計教材，教學工具使用 MIT 開發之 Scratch，並進行教

學實驗，探討應用 Scratch 之運算思維教材實施後的教

學成效。 

2. 文獻探討 

2.1. 運算思維內涵 

Google（2010）認為運算思維是問題解決的過程，其包

括邏輯排序和資料分析、透過有序的步驟（或是演算

法）找出問題解答，可應用於所有的學科。Google 並

將運算思維分為 11 個概念：Abstraction（抽象化）、

Algorithm Design（演算法設計）、Automation (自動化)、

Data Analysis(資料分析)、Data Collection（資料蒐集）、

Data Representation（資料表示）、Decompositon (分解)、

Parallelization(平行計算)、Pattern Generalization（一般

化）、Pattern Recognition（模式辨識）、Simulation

（模擬）。 

Brennan & Resnick (2012)提出 TDIA（three-dimensional 

intergrated )，分為三個向度，分別為 1. 運算概念：序列、

迴圈、平行、事件、條件、運算子、資料。2. 運算實踐：

增值與迭代、測試與除錯、再用與混合、測試與除錯、

再用與混合、抽象化與模組化。3. 運算視野：表達、連

接、質疑；Zhong、Wang、Chen & Li(2016)則提出改自

TDIA 的架構，與 TDIA 一樣為三個向度，但內涵略有

調整，分別為 1.運算概念：物件、指令、序列、迴圈、

平行、事件、條件、運算子、資料。2.運算實踐：計畫

與設計、抽象化與建模、模組化與再用、迭代與最佳

化、測試與除錯。3.運算視野：創造與表達、溝通與合

作、瞭解與質疑。 

綜上所述，運算思維是一種電腦化思考的問題解決過

程，各機構或學者所提出的內容有很多相同的部份，

本研究礙於授課時數有限及學生程度，因此僅挑選基

礎且共通的重要向度發展教學教材，並進行教學實驗。 

2.2.  圖形化程式設計軟體 Scratch 

Scratch 是由麻省理工學院媒體實驗室（MIT Media Lab）

的終身幼兒園團隊（Lifelong Kindergarten Group）所開

發的視覺化程式設計軟體，開發團隊也認為，Scratch

可以幫助使用者創造性地思考，有系統的進行推理並

且可協同合作(MIT, 2007)。目前已有許多應用 Scratch

進行教學的研究，如楊書銘（2008）研究結果發現利

用 Scratch 教學，對於學生的問題解決能力和部分創造

力有顯著提升。Calder(2010)認為 Scratch 能提升問題解

決能力，加強數理概念。Tanrikulu 與 Schaefer（2011）

的研究結果顯示：scratch具備直觀的介面、易學易用；

指令積木化，減少語法錯誤問題（王秀鸞，2013）。

本研究透過 Scratch 進行程式設計教學，幫助學生在程

式設計過程中學習運算思維概念。 

3. 研究方法 

3.1. 實驗設計 

本研究之實驗方法為單組前後測設計，實驗對象為臺

灣中部某大學二年級學生，樣本數為 49 人，其中有效

樣本 45 人，無效樣本 4 人，教學課程實施四週，每週

二節課的實驗教學(100 分鐘)。實驗前後各進行一週

（60 分鐘）的測驗（前測/後測）。 

3.2.  研究工具 

本研究採用的統計分析軟體為 SPSS(Statistical Product 

and Service Solutions) 18.0 套裝版本。以成對樣本 T 檢

定作為統計方法，用以分析教學成效。 



 

73 

3.2.1.  Scratch 

本研究採用麻省理工學院開發之 Scratch，Scratch 有網

頁版的編輯器和離線版的編輯器，是一種圖形化介面

的程式設計軟體，可以使用 Scratch 創造出問答方式或

互動式的故事、動畫、遊戲等內容，也可將設計的作

品分享至全世界(鄭苑鳳，2014)。 

Scratch 的積木功能共分為 10 個類別：動作、事件、外

觀、控制、聲音、偵測、畫筆、運算、資料、更多積

木等，本研究會透過 Scratch 的這些積木功能進行程式

設計教學，並從中進行運算思維教學。 

3.2.2.  運算思維教材設計 

本研究使用自編的運算思維教材，教材內容使用

Scratch 作為教學工具，共計五個單元，其教學主軸包

含六種運算思維概念：物件、序列、迴圈、條件、運

算子及演算法設計。期藉由圖像化的 Scratch 教學，讓

學生可從教學過程中，習得運算思維的概念。 

教材為單元式的課程設計，每一個單元皆以以下教學

流程作為設計，課程時間為 100 分鐘： 

1. 主題式設計的不插電活動：以運算思維概念為

中心，以貼近學生生活經驗之案例分享與思考，

用以引起學生學習動機。(10 min) 

2. 介紹該單元的運算思維概念，以及在 scratch 中

對應的程式積木。(10 min) 

3. Scratch 任務設計：基本包含三個任務，基礎任

務包含環境設定與主要積木應用，再由基礎逐

漸增加任務難度（增加條件），任務內容皆環

繞主題設計，最後則附加挑戰的任務，提供給

高能力或進階的使用者。(60 min，講解任務與

實作) 

4. 測驗題是以該單元主題進行設計的診斷試題。

(10 min) 

5. 總結－回顧與反思。(10 min) 

以單元二時尚秀為例，此單元以迴圈（Loops）為運算

思維主題，在不插電活動以歌詞中的副歌重複片段、

舞蹈中重複的動作、規律圖形中重複的部份來引入概

念。 

第二部份即以迴圈指令繪出基本圖形，藉以展示

scratch 的功能應用。 

而後則進行本單元的任務，分為時尚秀、變換造型、

添加任務、挑戰任務。 

1. 時尚秀：透過指令讓角色（物件）移動與重複

出現（迴圈），如圖 1 所示。 

 

圖 1 重複指令教學活動 

2. 變換造型：透過事件執行指令不斷地變換角色

造型（迴圈），並讓角色中途暫停。 

3. 添加任務：共有三個子任務，分別為添加音樂、

變換角色的動作與拍照效果，任務內會使用到

物件、指令、迴圈、運算子、事件、演算法設

計等。主要是增加主要任務的複雜性，也做為

控制教學時間的彈性。 

 

圖 2 添加任務教學活動 
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圖 3 挑戰任務與運算思維隨堂測驗 

4. 挑戰任務：在時尚秀的活動中，利用複製的功

能事件，產生角色的分身縮影，並透過迴圈讓

此特殊功能可以重複被使用，如圖 3 所示。 

完成任務後，提供三題測驗題檢測學生本單元的學習

成果，最終為單元總結，進行本單元的回顧與反思。 

3.2.3.  運算思維評量工具 

本研究使用的評量工具為擷取國際運算思維挑戰賽 

(International Challenge on Informatics and Computational 

Thinking)試題與自編試題，前測與後測卷各 25 題，為

複本試題，試卷涵括了四週授課內容中的運算思維概

念及其他的基礎概念。 

4. 研究結果與討論 

1. 本研究的實驗結果，使用成對樣本 T 檢定分析

後如表 1 及表 2，由表 2 可見顯著性為 0.014，

已達顯著差異，可得知該實驗班級經過四週的

Scratch運算思維教材教學，已具有教學成效。 

表 1 測驗資料敘述統計量 

 平均

數 

個

數 
標準差 

平均數的 

標準誤 

前測分數 51.378 45 18.586 2.771 

後測分數 55.911 45 16.080 2.397 

表 2 成對樣本 t檢定表 

前 測-

後測 

平均

數 
標準差 t 

自由

度 

顯著性

（雙

尾） 

-4.533 11.927 -2.550 44 .014* 

 顯著性（P）<0.05* 

2. 運用 Scratch 為實作工具，透過自編的運算思

維教材，建構學生的運算思維概念，如物件、

序列、演算法等，由實驗的成果可知，此教材

設計方式應用於運算思維的教學可提升學習成

效。 

3. 對參加的學生進行背景調查，大約一半的學生

對於程式設計方面是完全的新手，從未接觸過

程式設計課程，但於後測後，所有的學生皆需

繳交一份創意成果報告，全體同學皆已可自行

設計簡單的遊戲並具備創意表達能力，多數的

學生亦表示希望繼續此類學習課程。 

4. 在研究限制方面，本次研究受限於教學時間僅

有四週，在課程設計上僅能設計較基礎的課程，

故在運算思維概念學習成效上，進步較為有限，

建議未來可以完整的運算思維架構來設計整體

課程，可能會具有更顯著的成效。 
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ABSTRACT 
Synergistic learning of computational thinking (CT) and 

STEM has proven to be an effective method for enhancing 

CT education as well as advancing learning in many STEM 

domains. Domain Specific Modeling Languages (DSML) 

facilitate the building of computational modeling 

frameworks that are directly linked to STEM content, thus 

making it easier for students to focus on concepts and 

practices. At the same time, teachers can more easily relate 

curricular content to the model building tasks. This paper 

discusses the design, development, and implementation of a 

robotics DSML to support a middle school geometry 

curriculum. 

KEYWORDS 

DSML, robotics, STEM, geometry 

1. INTRODUCTION 
Recent developments show how computational tools have 

influenced research and practices in mathematics and 

science education (National Research Council, 2012). In 

parallel, rapidly evolving educational technologies have 

influenced pedagogy and curriculum development, 

primarily by integrating computational tools into the study 

of STEM disciplines (Grover & Pea, 2013, Hutchins, Zhang, 

& Biswas, 2017). While the limited availability of skilled 

teachers, financial constraints on educational institutions, 

and the inertia in changing current curricular practices has 

impeded the introduction of Computer Science (CS) courses 

into middle and high school classrooms, curricula supported 

by educational software that exploit the synergies between 

STEM and CT and integrate with current K-12 curricula 

have found success (Basu, Biswas, & Kinnebrew, 2017; 

Jona et. al., 2014, Sengupta, et. al., 2013; Weintrop, et. al., 

2016). 

In the past, model-based design has been employed to 

facilitate a necessary convergence among physical processes 

and software control design, thus supporting many Cyber 

Physical System (CPS) applications (Jackson & 

Sztipanovits, 2008; Jensen, Chang, & Lee, 2011). In this 

paper, we extend this design process to Open Ended 

Learning Environments (OELEs) and focus on the design 

and integration of curricular scaffolding in OELEs to 

support student learning in STEM and CS domains.  

This paper outlines the development of a WebGME design 

studio centered on the application of a domain specific 

modeling language (DSML) for robotics to support a middle 

school mathematics curriculum. To do so, we analyze the 

literature and establish curricular and software requirements, 

describe the design and development of our WebGME 

design studio, and conclude with case studies from a 

usability study. 

2. BACKGROUND 
To implement a set of learning tasks, while assuring well-

formed model realizations (Jackson & Sztipanovits, 2008), 

we conducted a thorough analysis on the DSML design 

requirements in combination with the curricular needs of a 

middle school mathematics classroom. Here we cover four 

topic areas that directly relate to our research.  

2.1. Computational Thinking (CT) 

Following Wing’s call for the increased introduction of CT 

in classrooms (2006), significant work was completed 

towards an applicable definition as well as an outline of key 

concepts and practices that can be used to assess learning 

gains in CT. The Royal Society defined CT as “the process 

of recognizing aspects of computation in the world that 

surrounds us and applying tools and techniques from 

Computer Science to understand and reason about both 

natural and artificial systems and processes” (Royal 

Society, 2012). In Grover and Pea’s systematic review 

(2013), the authors listed essential CT constructs and, for the 

purposes of our work, we have focused on flow of control, 

decomposition, efficiency and performance constraints, and 

debugging. 

To facilitate CT and the acquisition of basic geometry skills, 

appropriate scaffolding must be incorporated into the design 

of the DSML. Significant success with synergistic learning 

of CT and STEM disciplines through the use of block-based 

DSMLs (Hasan & Biswas, 2017) has supported increased 

integration of this style of programming at the K-12 level 

and we seek to extend this effort through the use of a DSML 

created in a model-based design environment such as 

WebGME. In our platform, CT provides the framework for 

building computational models or algorithms to define and 

debug the movement of robots. The metamodel and model 

building visualizer described in Section 5 provide a level of 

curricular abstraction that eliminates many of the burdens of 

text-based programming. In addition, our model-based 

design environment is supported by a necessary utilization 

of CT constructs, such as debugging and problem 

decomposition.  

Furthermore, our robotics platform provides multiple 

representations with the utilization of a physical robot (as 

opposed to a virtual sprite), a physical coordinate plane, and 

a bird’s eye view of the grid space with several overlays 

(e.g., movement traces, lines, points, etc.). Abstraction is 

provided in the model building visualizer that the student 

uses to construct their command sequence. As pointed out 

above this combination of representations and abstractions 



 

78 

is desired so that a student is fully capable of systematically 

processing their solution or debugging a problem utilizing a 

CT approach (Basu, Biswas, & Kinnebrew, 2016). 

2.2. General Robotics Courses 

Many schools offer after school programs or summer camps 

using VEX®  or LEGO Mindstorms®  robotic kits. These kits 

come with a substantial amount of supporting information 

and resources including forums, tutorials, and fully 

executable curriculum sets. Hendricks et al. (2012) and 

Panadero et al. (2010) report an increase in computational 

thinking activities and learning outcomes when students use 

these kits.  Other robotics courses offered as summer camps 

have been successful in increasing student engagement, 

motivation, teamwork, critical thinking, and problem 

solving (Darrah, Kuryla, & Bond, 2018; Goldman, Eguchi, 

& Sklar, 2004; Ansorge & Barker, 2007), all directly related 

to the application of CT constructs in a STEM domain.  

2.3. Robotics in Mathematics 

Barreto & Benitti (2012) noted that activities which integrate 

robotics into a math or science classroom should “possess a 

high-level of structure that helps the robot to correctly guide 

the activities and the students through them,” and that self-

directed activities that “promote personalized 

comprehension of STEM concepts through experimentation” 

showed significant success - and added support for our 

approach in this domain as design space exploration activity. 

Our DSML has been highly scaffolded as a means of 

supporting these robotic integration requirements. In 

addition, the experimentation requirement is further 

supported through the display of curricular feedback 

following the execution of a robot sequence, to be described 

in Section 6. 

Two recent studies were carried out by researchers from 

NYU that explored the use of a robotic agent to teach 

geometry to middle school students (Muldner, et. al., 2013; 

Girotto, et. al., 2016).  Their environment consisted of a 

projector, a LEGO Mindstorms®  robot, and two iPods for 

communication. These studies highlight the effectiveness of 

a tangible learning environment (TLE) in terms of delivering 

a much richer learning experience than traditional classroom 

methods. Moreover, TLEs have found considerable success 

in fostering creativity (Goldman, Eguchi, & Sklar, 2004), a 

benefit to our design space exploration approach, while also 

increasing motivation (Windham, 2007). 

2.4. Domain Specific Modeling Language (DSML) 

Van Deursen defines a domain specific language as “a 

programming language or executable specification 

language that offers, through appropriate notations and 

abstractions, expressive power focused on, and usually 

restricted to, a particular problem domain” (2000). 

Typically, DSMLs are developed to facilitate the work of 

domain experts in application tasks. But they can also play 

an important role in helping learners focus on domain 

concepts when building models and solving problems in the 

domain. In our work, the DSML developed allows a student 

to define a set of instructions for a robot to solve middle 

school mathematics problems that are centered on concepts 

derived from coordinate geometry and solving path planning 

problems.  

The benefit of developing a DSML is the affordability it 

creates in curricular implementation and expansion. 

Students can “express and develop solutions … at the level 

of abstraction of the target domain,” “build programs that 

are concise and self-documenting,” and “verify and validate 

models and results generated from the models” (Hasan & 

Biswas, 2017). This provides a highly structured 

environment that enables the student to experiment with 

various solutions in a self-directed manner. This structure 

comes in part by how the model building environment is 

presented to the student (visualizer), how the model blocks 

themselves appear (decorator), and how the model is 

executed on the robot (communication plugin), to be 

detailed in Section 5. 

Jackson and Sztipanovitz (2008) highlight three applications 

of DSML syntax: model transformations, correct-by-

construction, and design space exploration. In the context of 

an educational setting, students engage with a robotics-based 

design studio to learn mathematics and CT concepts by 

performing tasks with their robots. The syntax our DSML 

most closely supports is the notion of design space 

exploration. This enhances “the expressiveness of 

metamodeling constraints” and the ability “to project 

behavioral properties on the syntactic level” (2008). Our 

robotics DSML supports model building and problem 

solving with robotics in a way that students can seamlessly 

learn domain and CT concepts and practices.  

As it relates to our DSML development, we aimed to 

simplify the interactions between the robot and the students, 

so they may focus on learning the required mathematics and 

geometry concepts and applying them to planning and 

problem-solving tasks. An added goal is to provide for easy 

exploration within the domain, so that the open-ended nature 

of the learning is retained, and students can learn through the 

direct application of CT practices such as model 

construction and algorithm development.  

Finally, as an educational product, it is imperative to 

understand the ramifications this implementation has on 

teacher curriculum development and productivity in the 

classroom. In Tennessee, the licensure and examination 

process does not require any assessment of computer science 

or CT knowledge (The Praxis Study Companion, 2017). As 

such, we assume limited CS experience of middle school 

mathematics teachers. To account for this, our DSML can be 

tailored at the classroom level to account for the capabilities 

of the teacher. This flexibility eases the transition from 

learning the system to learning the instructional material the 

system delivers. 

3. CURRICULUM DEVELOPMENT 
Understanding how students conceptualize, acquire, and 

retain geometric concepts must be understood in sufficient 

detail before designing a curriculum in conjunction with a 

TLE. Burger and Shaughnessy (1986) concluded that there 

are five major stages to student’s understanding of geometric 

concepts: visualization (pure visual reasoning), analysis 

(based on visualization), abstraction (understanding the 

properties), deduction (formal reasoning), and rigor 

(comparing different systems). Students are not typically 
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exposed to deduction or rigor until a high school geometry 

course.  

We focus primarily on visualization, analysis, and 

abstraction by introducing a new concept with a description, 

graphic, and how this topic is relevant in a student’s 

everyday life. Then we provide a set of problems in which 

the student must give the robot the correct information so it 

can achieve its goal. Geometric properties and definitions 

are introduced with their respective problems, and students 

are required to not only demonstrate mastery by generating 

the correct command sequences, but also with summative 

assessments at the end of each module. Below is a sample 

curriculum outline that is well suited for middle school 

geometry: 

1) Coordinate Plane (Axis definitions, Points) 

2) Lines (Properties, Line segments, Slope, Midpoints) 

3) Shapes (Properties, Squares, Rectangles, Triangles) 

4) Path Planning (Shortest path reasoning, Manhattan 

distances, Straight line distances) 
 

As described in the introduction and requirements, our goal 

with the development of a robotics DSML was to provide 

the basis to enable an engaging, applicable curricular unit for 

a middle school mathematics classroom that connects the 

computational modeling task to modeling and problem 

solving in geometry. Our new learning environment 

promotes knowledge acquisition through a hands-on, visual-

feedback approach that is consistent with the design of TLEs 

(Darrah, Kuryla, & Bond, 2018) and linked to the 

visualization, analysis, and abstraction stages of geometry 

understanding described by Burger and Shaughnessy. Our 

development of a model via WebGME (given the abstraction 

afforded in the DSML) with the added benefit of watching a 

real-life robot complete the programmed paths allows for 

easy applications of CT and geometry constructs and 

students will be more motivated by the experience. 

As it pertains to CT learning gains, our curriculum is most 

applicable to the assessment of students’ knowledge and 

abilities in implementing algorithms, understanding and 

addressing efficiency and performance constraints, and 

debugging. These practices, as defined by Grover and Pea 

(2013), are utilized in each curricular task designed to target 

the elements provided in the curriculum outline, above, as 

students are required to use our scaffolded DSMLs in a 

sequential order given physical and command constraints of 

the robot in order to complete each task. We surmise that the 

repetitive use of these practices to solve geometry problems 

will enhance students CT abilities for these practices. 

4. ENVIRONMENT 
With the establishment of our system requirements, the 

second step in our process was to design and develop our 

system environment. Our robot operates on a 7ft by 7ft 

platform that has been sectioned into a 10x10 grid. The robot 

is equipped with sensors that allow it to track its location on 

the grid. As such, if it is told to move forward by 3, the robot 

will travel forward until it has reached the third black line 

that is perpendicular to the direction the robot is moving. A 

video camera set-up is centered above the grid as shown in 

the figure. The video feed generated can be used by the 

student or a teacher to track the robot as it moves along a 

path and verify the correctness of the path.  

4.1. Robot 

When activated, the robot starts a TCP server to 

communicate with the WebGME plugin and opens a serial 

port to communicate with the Arduino MCU. It manages 

these processes on separate threads.  The main thread 

manages the various modes the user can utilize to control the 

robot, such as manual mode, sequence mode, or GME mode 

(the mode used in conjunction with this paper). The MCU 

runs one program that takes input from 3 IR tx/rx modules 

(line following sensor) and its output controls the motors.  It 

communicates with the SBC as well to provide feedback for 

received commands and for mode switching. Figure 2 

provides an overview of the modular system architecture. 

The robot communicates with WebGME using the cross-

platform socketio library. The plugin generates a JSON 

formatted string that is parsed within a minimal Flask web 

server running on the robot. Upon receipt, the Arduino MCU 

executes the command sequence and signals to the RCM 

when it is finished. 

 

Figure 2. System Architecture 

5. META-MODEL 
As previously described, the utilization of a DSML provides 

curricular benefits in that it is constructed at a suitable level 

of abstraction to allow the learner to focus on what is 

important, and abstract away other CS details (e.g. syntax 

concerns). Through the analysis of geometry and CT 

requirements, our meta-model (Figure 3) was developed 

based on the implementation of four goals:  

1. a scaffolded, curricular driven approach that focuses 

student actions on the concept(s) being addressed;  

2. a simplified integration of robotics and mathematics 

that makes it easier for the teacher to follow the student 

work and assess it; 

3. scalability in the classroom context; and 

4. a systematic, stable connection between the robot 

environment and modeling environment that is easy to 

understand. 

The students’ problem-solving tasks (e.g., building shapes, 

following paths) are scaffolded, as exemplified through the 

four available commands. The reduced set of commands 

allows students to focus on the planning and computational 

components of their activities.  In addition, the organization 

of the commands and sequences showcases the model’s 

potential scalability and ease-of-use for the teacher.   
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Figure 3. Robotics Meta-Model 

5.1. Decorator 

The target audience for this activity includes middle school 

students that may not have any programming experience. As 

such, the visual component of the environment may play a 

role in the motivation and buy-in of students, regardless of 

their capabilities, which is directly linked to positive 

learning outcomes. A Decorator is a component of the 

WebGME Design Studio that alters the way a node in the 

model looks in composition view (the student’s view). 

Figure 5 provides a zoomed-in image of relevant decorator 

components. Students can select the next command in their 

sequence via a drop-down menu located on the current node. 

When a command is selected, the transition between the two 

nodes is automatically created. In addition, each node 

contains the command name, attribute value, and an image - 

not only allowing for multimodal learning acquisition, but 

also easing the debugging process described in Section 2.2. 

 

Figure 5. Model Decorator 

5.2. Plugin 

The final component needed to configure our WebGME 

design studio is the plugin that coordinates the compilation 

and delivery of the sequence of commands implemented by 

the student to be executed by the robot. In other words, the 

JavaScript plugin sends the visually represented sequence of 

commands to the robot in a machine-readable format. In the 

making of the plugin, we defined three requirements: 

Parsing the student defined command sequences into a 

standard structure, validating the sequence alongside 

reporting the errors, and finally, sending the commands to 

the robot.  

Upon starting a session, the plugin connects the editor 

environment with the robot using the parameters defined in 

the “Connection Parameters” node. This is achieved through 

a one-to-one socket connection, which remains open until 

the user ends the session. To make sense of the visual chain 

of commands the plugin starts by querying the sequence to 

find the start node. It then records this block and its relevant 

attributes. Next, the outgoing connection is followed to 

similarly parse the next blocks until the stop command is 

reached. This information is then stored in JavaScript Object 

Notation (JSON) format and sent to the robot by emitting a 

submission event that the robot is listening for. The robot 

then parses the sequence and executes the commands as 

detailed above.  

6. Implementation 
Following the development and design of the robotics studio 

and accompanying geometry curriculum, we had three 

middle school students complete the designed tasks as a 

means of testing the system and getting feedback on ease-

of-use and system benefits or drawbacks. In this section, we 

present an application of our system in a classroom 

environment and demonstrate the use of the robotics design 

studio as a tool to complete a sample path planning module 

at the middle school level. 

6.1. Sample Problem Set 

A subset of the curriculum described in Section 3 includes 

three general problems: 

1) Identifying the axes and positive or negative values 

2) Plotting points given (𝑥, 𝑦) and deriving (𝑥, 𝑦) from a 

set of points 

3) Path planning with multiple points, calculating the 

shortest Manhattan distance  

Figure 6 illustrates the visual interface that provides the 

instructions for each task along with the overhead webcam 

feed in conjunction with the WebGME design studio. In this 

assignment, students are tasked with finding the most 

efficient path the robot can take ensuring stops at the police 

station, the fire station, and the courthouse prior to ending 

its trip at the post office. Typically, this type of assignment 

at the introductory level is distributed as on paper, limiting 

the multi-modal approach to learning that may benefit 

certain students.  

 

Figure 6. Virtual Interface for Example Path Planning Problem 

The direction the robot is facing, its current location, and 

number of spaces moved are displayed at the top of the 

information section which helps the student during the 

solution construction process. The problem is given below 

that, along with various hints that are given at predetermined 

times. 

In the scenario shown in Figure 6, the student first identified 

the coordinates of all locations the robot must visit. When 

all points are correctly located, their coordinates are shown 

on the video feed. From the image provided, it can be seen 

that the student then completed a shortest path problem in 

which they generated the correct command sequence for the 

robot to visit all locations, starting at the Amazon warehouse 

(2,−2). The automatic feedback response of “Nice Work!” 

is shown – demonstrating the successful completion of the 

task 
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In Figure 7, the solution to the above problem is shown. 

Upon closer inspection, the distance values can be seen as 

well. Sequences can become significantly long, making the 

debugging process difficult should an error occur in the 

robot’s path. The availability of the command name and 

attribute value as text on the node as well as images of blocks 

allow for an easier analysis of the complete path during the 

debugging process.  

 

Figure 7. Student Solution to the Path Planning Problem 

6.2. Case Study: CT Gains  

For our usability study, students were asked to complete a 

pre- and post- challenge. The challenge contained two parts: 

the first included a debugging task in which they were asked 

to analyze a given robot sequence and improve the efficiency 

of the sequence while also ensuring the end location was 

correct. This challenge component was designed to assess 

student abilities in the CT constructs of flow of control and 

debugging. The second task involved the development of a 

sequence that would allow the robot to draw a given shape 

with the minimum commands possible in the grid space 

depicted in Figure 1, thereby assessing student 

understanding of efficiency and performance constraints as 

well as another application of flow of control. This pre- and 

post- nature of the challenge was implemented to identify 

potential improvements in applying these CT constructs.   

S1 is a 13-year-old middle school male student and S2 is a 

14-year-old middle school female student. Both students 

identified as having little to no experience with the listed 

geometry concepts and practices and both identified as 

having some previous programming experience using block-

based programming languages. For the purpose of this case 

study, we will focus on student work in part 1 of the 

challenge.  

In the pre-challenge, S1 and S2 failed to debug the given 

path in Part 1 in a manner that provided the fastest path for 

the robot to complete the task. In addition, both S1 and S2’s 

robot sequences could not make the robot arrive at the 

correct location, indicating that both students struggled to 

debug the entire algorithm. However, S1 and S2 were able 

to identify two of the five identified errors indicating that 

they had a preliminary understanding of flow of control.  

Following the geometry assignments, S1 and S2 completed 

the robotics post-challenge. This time, S1 was able to 

identify three of the five identified errors and the final 

sequence allowed the robot to finish at the desired location. 

It should be noted that the student drew a path on the given 

image of the grid that accounted for the two missing errors 

in the algorithm, but those errors were not identified in the 

algorithm. As S1 was able to identify the most efficient path 

in the image, we believe it may be necessary for us to assess 

how we described the challenge in order to be as clear as 

possible on how each student should define his or her 

response.  

S2’s approach to Part 1 of the post-challenge changed 

significantly from the pre-challenge. In Part 1 of the post-

challenge, S2 drew her robot’s shortest path sequence on the 

grid provided, with dots along the grid indicating that she 

was counting various path options (an action she commonly 

did with her finger via the virtual interface during the 

geometry assignments). While her new path followed the 

expert model path between a few specified target points, a 

few sub-paths were significantly different than the expert 

model path. However, her final path was shorter than the 

given problem to debug and one away from the shortest path 

possible. Given her search-based, debugging approach in the 

post-challenge, it can be seen that her utilization of CT 

constructs improved.  

6.3. Case Study: Geometry Gains 

Our final student, S3, reported significant experience with 

block-based programming environments like Scratch and 

Netsblox. S3 achieved a perfect score on the CT related 

questions of the pre-challenge. A key point here should be 

made - S3 is younger than both S1 and S2, who report no 

experience with DSMLs, and outperformed them both on the 

pre-challenge, supporting our hypothesis that DSMLs are 

linked to the utilization of CT strategies when solving 

problems. During the geometry tasks, S3 initially struggled 

with the coordinate plane unit, including the identification 

of quadrants and moving the robot to desired 𝑥, 𝑦points on 

the plane. However, this student made use of the system 

feedback given. After repeating similar tasks, the time spent 

solving coordinate plane tasks decreased. Based on these 

observations, it can be seen that while learning gains in CT 

could not be measured due to the perfect pre-challenge 

score; abilities in geometry improved.  

7. Results and Future Implications 
This paper details the theoretical and systematic design and 

development process of a robotics DSML for use in a middle 

school mathematics classroom. Through an analysis of 

curricular and software requirements, our group 

implemented a robotics design studio using WebGME that 

allows for an applicable and scalable robotics activity to 

support CT and STEM learning. In addition, our usability 

studies indicate potential CT learning gains acquired 

through the completion of the geometry curriculum in our 

environment. The potential benefits of integrating robotics 

into other STEM classrooms has not been actualized to the 

extent that it was theorized by renowned educational theorist 

Seymour Papert (1993). The application of this highly 

scaffolded DSML in a middle school classroom may allow 

for a fruitful analysis on the level or extent of programming 

needed to not only advance CT learning and understanding, 

but also ensure the successful delivery of relevant STEM 

content.  
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ABSTRACT 

Computational thinking is increasingly important within 

modern society. It is essential that K-12 students are 

introduced to the powerful ideas of computational thinking 

and given opportunities to develop their computational 

thinking practices. Virtual reality (VR), a technological tool 

with increasing prevalence in society and schools, has the 

potential to widen computational thinking exposure for 

students not only in STEM environments, but also across the 

curriculum. Virtual reality is an engaging medium that has 

been shown to increase student learning. In this paper, we 

argue that virtual reality can serve as an effective means for 

helping students develop computational thinking practices 

related to systems thinking, data practices, and modeling. To 

do this, we present virtual reality-based lessons used in a 

classroom and show how they promote the development and 

use of computational thinking practices. These lessons are 

accompanied by findings reporting students’ impression of 

virtual reality use within the classroom. The contribution of 

this work is in showing how virtual reality can serve as a 

possible means to integrate computational thinking within 

existing classrooms, thus giving students added exposure to 

these essential practices.  

KEYWORDS 

Computational Thinking, Virtual Reality, Computational 

Thinking Across the Curriculum  

1. INTRODUCTION 
The focus on computational thinking has expanded over the 

last decade. While the central ideas of computational 

thinking have been around for decades (Papert, 1980), 

Wing’s (2006) call for the importance of computational 

thinking has renew enthusiasm for the idea. In response to 

this call, educators at all levels have increased focus on 

computational thinking both within computer science 

courses and in other subject areas. With the acknowledged 

need for further computational thinking education and the 

expansion in the number of subjects that can incorporate 

computational thinking, new learning opportunities are 

being continuously developed. As the number of jobs 

requiring coding and technology is expected to increase over 

the next decade, a growing need to educate students in 

computational methods has emerged, especially within the 

Science, Technology, Engineering, and Mathematics 

(STEM) fields (Weintrop et al., 2016). At the same time that 

computational thinking education is increasing within 

schools, virtual reality equipment is becoming more 

affordable (Greenwald et al., 2017) and, therefore, more 

available to schools. Researchers have long found benefits 

to using VR and virtual environments including increased 

interest, motivation, and learning (Limniou et al., 2008). 

With its ability to “improve learners’ ability of analyzing 

problems and exploring new concepts” (Pan et al., 2006, 

p.20) and equipment being more available, VR could be a 

conduit for teaching computational thinking practices within 

a variety of subjects.  

In this paper, we argue that VR can serve as one potential 

way to introduce foundational computational thinking ideas 

and practices to learners. We will discuss the benefits of 

incorporating VR into the classroom and explore ways that 

such inclusion could serve as an opportunity for the 

development of computational thinking. We will present VR 

as a mechanism for students to engage with computational 

thinking through examples of lessons that have been taught 

using VR and potential computational thinking practices that 

can be developed using similar lessons. Data from students 

reporting their impressions of VR will also be presented. The 

importance of computational thinking education is clear, our 

focus must now shift to methods through which 

computational thinking can be brought into the classroom. 

2. BACKGROUND 

2.1. Computational Thinking 

Wing (2008) defines computational thinking as “taking an 

approach to solving problems, designing systems and 

understanding human behaviour that draws on concepts 

fundamental to computing” (p. 3717). It focuses on how not 

only computers, but also humans can think and solve 

problems, specifically detailing the concepts that are used in 

problem solving and interactions, not the software or 

hardware that are developed (Wing, 2006). Computational 

thinking shifts the focus of computing from emphasizing 

computer programming skills to focusing on the principles 

of computing (Wing, 2008). This shift in emphasis does not 

seek to redefine the discipline of computing, but rather to 

help clarify the importance of computing and the knowledge 

one needs to effectively use it, drawing it out of a focus 

solely on computer programing and making connections 

between the existing principles of computing and themes 

that exist within current curricula (Henderson, Cortina, & 

Wing, 2007).  

Computational thinking is ubiquitous in the modern era. 

According to Henderson et al. (2007), “computational 

reasoning is the core of all modern Science, Technology, 

Engineering and Mathematics (STEM) disciplines and is 

intrinsic to all other disciplines from A to Z” (p. 195). It has 

changed the way that work is completed, no matter the field 

(Barr, Harrison, & Conery, 2011) and these changes create 

a need to introduce computational thinking into classrooms, 

preparing students to be a part of the modern workforce 

(Weintrop et al., 2016). Although the number of 

undergraduates who are exposed to computational thinking 

has already increased, bringing computational thinking in 

the K-12 realm would have a greater impact on the number 

of students who are reached (Settle et al., 2012) and 

exposure to computational thinking early will help students 
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to have greater success when taking later computer science 

and computational thinking courses (Grover & Pea, 2013). 

Computational thinking activities allow “computational 

representations to make significant shifts in the way students 

learn, think, and practice science and mathematics” (Orton 

et al., 2016, p. 706), making them extremely important for 

K-12 students. The growing importance of computational 

thinking is signaled by its inclusion in the Next Generation 

Science Standards and points to the connection between 

mathematics, science, and computation (NGSS Lead States, 

2013). Barr et al. (2011), argue that computational thinking 

is essential skills across K-12 curricula. They describe the 

importance of data collection, analysis, and representation 

within social studies and language arts for the analysis of 

historical events and linguistic patterns, algorithms and 

procedures for the writing of instructions and decomposition 

supporting the development of outlines, and simulations 

enabling reenactments for learning across the humanities. It 

might often be associated with STEM fields, but 

computational thinking can be applied to any content, as 

argued by Orton et al. (2016), by “having students employ 

these practices to various problems in diverse content areas, 

we can reinforce the broad applicability of these skills while 

both providing students concrete contexts to employ them” 

(p. 710). 

Within this paper, we will use the computational thinking 

taxonomy developed by Weintrop et al. (2016). In this 

framework, computational thinking is broken into four 

separate, yet interconnected categories: data practices, 

modeling and simulation practices, computational problem 

solving practices, and systems thinking practices. The 

taxonomy acts as a guide for teachers as they incorporate 

computational thinking into classrooms, allowing for both a 

deepening of content understanding and an authentic 

environment in which to learn computational thinking 

practices (Weintrop et al., 2016). This paper focuses on three 

of the taxonomy’s categories: data practices, modeling and 

simulation practices, and systems thinking practices. Data 

practices include the collection, creation, manipulation, 

analysis, and visualization of data. Modeling and simulation 

practices consists of using models to understand concepts, 

find and test solutions, and assessing, designing, and 

constructing models. The category includes working with 

both models that others have generated and student created 

models. Systems thinking practices pertain to the 

investigation of a complex system as a whole, examining the 

relationships within a system, thinking in levels, 

communicating information about a system, and defining 

systems and managing complexity in order to examine 

individual parts of the system and how the system functions 

in its entirety (Weintrop et al., 2016). This taxonomy is 

useful for this work because the taxonomy’s goal is “not to 

radically change the existing practices of experienced 

teachers; instead…[it] serve[s] as a resource for augmenting 

existing pedagogy and curriculum with…computational 

thinking practices” (Weintrop et al., 2016, p. 129). 

2.2. Virtual Reality 

According to Huang, Rauch, and Liaw (2010), “virtual 

reality (VR) is understood as the use of 3D graphic systems 

in combination with various interface devices to provide the 

effect of immersion in an interactive visual environment” (p. 

1172). There are many different types of VR: virtual 

environments include those on desktop computers controlled 

by mice and keyboards, projection based VR systems that 

project on an image at room scale, and head mounted visual 

displays  (Greenwald et al., 2017; Limniou et al., 2008). 

Many have discussed the potential and success of VR due to 

its engaging nature and ability to transport students to 

locations where they cannot physically travel, whether due 

to physical, time, or money constraints, to rare experiences, 

or to gain access to experts (Greenwald et al., 2017). 

Especially since VR has had previous success in education 

and training environments, the increased availability of VR 

in the internet-age is only expected to bring it further success 

and new users and creators (Greenwald et al., 2017). 

Virtual reality has the potential to enable learning 

experiences not possible with other, low-tech methods 

(Greenwald et al., 2017). This ability provides students with 

an immersive experience in an environment with which they 

can react, giving virtual environments the potential to lead 

students to knowledge construction (Winn, Windschitl, 

Fruland, & Lee, 2002). Multiple studies have shown that 

participating in VR activities increases student knowledge. 

For example, Limniou et al. (2008) demonstrated through 

chemistry and the observation of molecules that 

participating in 3D animation environments within a room-

based VR projection led students to better comprehend 

molecular structure and changes based on chemical 

reactions as compared to students who used a desktop based 

2D animation. The VR experience allowed students to 

develop a better sense of the volume of objects within a 

space. A second example can be seen with Merchant, Goetz, 

Cifuentes, Keeney-Kennicutt, and Davis (2014), who found 

that games, simulations, and virtual world were all 

successful in increasing learning outcomes. Even desktop 

virtual environments, although they are not fully immersive, 

enhanced learner engagement. Pan et al. (2006) describe the 

successful use of virtual reality in a number of different 

contexts including the use of synthetic characters to train 

students in group work, simulate peace keeping missions, 

and promote and enable storytelling. In all, participation in 

VR can lower the cognitive load that users are experiencing 

because the simulation is so real, enabling more learning to 

occur (Huang et al., 2010). Virtual environments can also 

support experimental and constructivist learning. Students 

are drawn to VR because it provides them with the 

opportunity to have first-person experiences. Students report 

feeling as though they are inside the phenomena being 

studied. This allows students to build their knowledge based 

on personal experiences (Limniou et al., 2008). 

Constructivist experiences occur by students situating 

themselves within a real situation and doing a realistic task, 

interacting with objects and events within virtual worlds, 

and using characters and avatars to learn through role 

playing (Huang et al., 2010). 

For the purpose of this paper, we will be discussing the use 

of a stereoscopic, head mounted VR system. This means that 

users use VR goggles that block out the classroom 

environment and “provide to the eyes of the viewer two 

different images, representing two perspectives of the same 

object, with a minor deviation similar to the perspectives that 

both eyes naturally receive in binocular vision” (Limniou et 
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al., 2008, p. 585). The use of full immersion increases the 

benefits of VR by elevating interest and motivation while 

encouraging observing from various perspectives, active 

participation, and the asking of questions (Limniou et al., 

2008). This leads “immersed students [to] learn more than 

non-immersed students” (Winn et al., 2002, p. 497). 

Immersed students also feel as though they are more 

“present” to the learning environment, leading them to take 

longer to complete the task and to say more as they are 

working. The immersion is especially beneficial when 

encountering concepts that are supported by the ability to 

look around and examine the surroundings (Winn et al., 

2002).  

3. METHODS 
Alongside exploring potential instructional opportunities 

around bringing computational thinking into classrooms 

through VR, this paper presents data related to students’ 

experiences of using VR in their classrooms. The data was 

collected by a teacher in the middle school of a Pre-K – 8 

religious school in the Northeastern United States. The 

mission of the school includes serving immigrant families 

resulting in a diverse student body with 70% of students 

receiving financial aid. After participating in classroom 

lessons using VR technology for a year, students were asked 

to complete questionnaires asking about their experiences 

with the technology. Altogether, 65 students participated in 

the study: 22 6th grade students, 29 7th grade students, and 14 

8th grade students.  

The lessons that students participated in were taught by 

multiple teachers across subjects including science, Spanish, 

social studies, and religion. Virtual reality was used within 

the existing curriculum to enhance understanding of topics 

already present and gave students proficiency both as 

participants in lessons and acting as the guides leading other 

students on VR trips. A subset of these lessons are presented 

in this work. For teacher-led activities, the lessons generally 

took place during a single 45-minute period while student-

led activities were usually part of larger projects that allowed 

students more time to find their VR component and present 

it to the class. While computational thinking was not a focus 

of the instruction, in this paper we highlight potential 

synergies and design opportunities for this integration. 

Students used handheld Mattel ViewMaster headsets with 

Asus ZenFone 2 devices (Figure 1). Most VR experiences 

were facilitated through the Google Expeditions App, but 

students also participated in a few activities facilitated by 

Google Street View and YouTube. After multiple exposures 

to the VR technology, students completed an end of the year 

survey detailing their impression of the technology and their 

learning from it. The survey that students completed was 

hosted online and students were asked to complete it as part 

of their end of the year activities. Students were aware that 

their teacher would see their responses and that aggregate 

data from the survey would be shared with the grant agency 

that funded the purchase of the VR equipment for the school.  

 

Figure 1. Mattel ViewMaster headset with Asus ZenFone 2 

on the Google Expeditions platform 

4. INTEGRATING COMPUTATIONAL 

THINKING AND VIRTUAL REALITY  
Within the classroom, VR has the potential to engage 

students in computational thinking. Due to the unique 

perspectives and interactions enabled by VR, students are 

able to view places and interact with objects not typically 

accessible to K-12 students, creating opportunities for 

developing important computational thinking practices. In 

this section, we detail potential ways to integrate VR and 

computational thinking across the curriculum. We conclude 

with a brief report of student perception on the use of VR in 

their classrooms. While VR technology was used with 

students throughout the school year and in a variety of 

subjects, here we present lessons from the science, Spanish, 

and social studies classrooms. These lessons are intended to 

demonstrate how students used VR equipment within the 

classroom and the computational thinking development that 

can occur through these lessons. This is not an exhaustive 

list of potential ways to integrate computational thinking via 

VR but serves as a demonstration of what it could look like 

to blend the two. 

4.1. Computational Thinking in Science Class 

VR was used to investigate both the cells and systems of the 

body during a 7th grade life science course. While studying 

the parts of a cell, the teacher guided students on a virtual 

tour of the cell through the Into the Cell Google Expedition 

(Figure 2). Each student received a VR device and was able 

to look on his/her own as the teacher led students through 

the series of computer generated images. Students were 

asked to identify various parts of the cell as the teacher 

pointed them out and the class together discussed cell 

functioning. Students were given time to use their devices to 

look around the image and work on their own to explore how 

the various parts of the cell come together and exist in 

relation to each other. In later classes, the teacher referred 

back to the VR experience, giving students the opportunity 

to recall their observations and apply them to their learning 

throughout the unit.  

 

Figure 2. Into the Cell virtual expedition. 
 

This lesson demonstrates a possible use of virtual reality to 

engage learners with modeling and simulation practices 
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including using computational models to understand a 

concept, using computation models to find and test 

solutions, and assessing computational models (Weintrop et 

al., 2016). Although students are not able to create models 

within the virtual environment, they are able to think 

critically about the bounds of model, assess what is included 

and excluded, discuss how the technology represented the 

phenomena, and answer questions through scientific inquiry 

gaining information from the model. Within this specific 

lesson, the use of models in VR allowed students to better 

visualize a cell while discussing the various parts of cells and 

their interactions. The ability to examine cell structure from 

all angles allowed students to instigate shape, proximity, and 

size in a way that is not possible through basic images. 

Further, students were better able to examine the 

relationship between parts of a cell. In this way, the VR 

context enabled new ways of learners engaging with the 

computational thinking practice of using computational 

models to understand a concept. As one student stated, 

“[virtual reality] helped me learn, because when we read 

straight from the textbook you can’t really visualize what 

you are reading. However now with the virtual reality you 

can.” Another student commented on how VR “helped me 

see the world in a different way…i never actually knew what 

was inside a cell, but [with virtual reality] i felt like i was 

living a part of that world.” These virtual, computational 

models were pedagogically useful in their ability to explain 

the relationship between parts of a cell and allowed students 

to use and interpret scientific models.  

In a later unit, students used VR to study the systems of the 

body. Students were responsible for working in small groups 

to complete an in-depth study of one body system and 

present it to the class using VR to demonstrate their findings. 

To conduct their research, students used the VR devices and 

the Google Expeditions platform. The expeditions that 

students selected used computer graphics to demonstrate the 

various body systems from inside the body and used images 

to move through the system. Some of the expeditions that 

were selected also allowed students to demonstrate how the 

body system worked by demonstrating functionality based 

on their purpose, such as showing the spread of viruses. This 

activity provided opportunities for students to engage in 

systems thinking practices such as investigating a complex 

system as a whole, understanding the relationships within a 

system and thinking in levels (Weintrop et al., 2016). 

Although the ability to develop systems thinking practices 

by studying the systems of the body and their interaction is 

possible through other methods, VR acts as an excellent 

conduit for this knowledge. Systems thinking practices 

include the ability to both view a system as a whole rather 

than simply as individual parts as well as to think in levels 

and move between different perspectives on the same system  

(Wilensky & Resnick, 1999). Virtual reality excels in 

supporting such practices as it allows for both an in-depth 

study of a system as a whole and studies of individual pieces 

and how those pieces interact. As with the use of VR in the 

study of cells, VR allows students to enter locations they 

would not be able to such as inside the lungs or the middle 

of the digestive system. With their 360 views of each of 

these parts, students are able to look at individual elements 

separately to investigate the behaviors they promote, two 

important parts of systems thinking (Weintrop et al., 2016). 

Overall, systems thinking learning can be enhanced by 

studying those systems through VR and the unique views it 

enables. 

4.2. Computational Thinking in Social Studies Class 

While studying the American Civil War (1861-1865), 

students in the 8th grade used VR to visit Smithfield 

Plantation in Virginia. A plantation is a large farm or estate 

that grows a single crop. In the United States during this 

time, slaves were the primary form of labor on plantations. 

This virtual field trip allowed students to explore a 

plantation as part of their learning about life in the South and 

slavery. Prior to this field trip, students had spent time 

studying the development of slavery in the United States and 

life in the northern United States.  

Using the Google Street View platform, students were given 

five minutes to “walk” around the plantation and make 

observations. After the time spent investigating the 

plantation individually, students shared their discoveries 

with the class and the entire class was given time to find the 

locations discovered by classmates. The following day, 

these observations were used as the class continued to talk 

about life on plantations and students were able to reference 

the physical landmarks of the plantation they saw as well as 

the differences between the plantation house and the cabins 

and quarters visible from the roads.  

Since the taxonomy was created for use with mathematics 

and science courses, we diverge from it slightly while 

talking about social studies, but it still serves as a useful 

resource with regards to discussing computational thinking 

across subjects, especially with respect to the treatment and 

analysis of data. New technologies have enabled not only the 

collection of data to change, but also how those data are 

viewed and the connections that are made with them. 

Students need to learn to draw meaning from data rather than 

expecting the data to come with clearly visible patterns or 

conclusions (Lehrer, Giles, & Schauble, 2002).  Visiting a 

plantation through immersive digital representations as seen 

in VR allows for an extension of concepts and data 

previously presented through less interactive forms like 

lectures and textbooks. This new context allows students to 

experience and engage with a new representation of data that 

they have seen previously. The context of VR can enable 

new ways to manipulate, analyze, and visualize data, all of 

which are valuable computational thinking practices. As a 

student noted, the use of VR demonstrated “how connected 

you can really be with the real world.” Virtual reality allows 

students to experience data in a completely different way 

and deepen their engagement with it. This experience 

develops computational thinking practices related to 

interacting with, communicating about, and drawing 

meaning from data, all mediated by a technological 

platform. 

A second computational thinking in mathematics and 

science taxonomy category this lesson links to is systems 

thinking, although in this case, we are exploring a social 

system rather than a scientific one. Asking students to 

explore the plantation was part of a larger instructional goal 

of helping students understand Southern society during that 

period and the role of slavery in the culture. Through 
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immersive experiences such as these, students could 

investigate different dimensions of the culture and explore 

the relationship between slaves, slave-owners, industry, and 

the economic factors that contributed to the Civil War, 

viewing the various levels of the system and gathering 

information that can be used to discuss the relationships 

within the system and the system as a whole. 

4.3. Computational Thinking in Spanish Class 

In Spanish class, students used VR to visit Spanish speaking 

countries throughout the year. Classes visited Hispanic 

neighborhoods in the United States, Latin American 

countries, and Spain. While completing a Spanish culture 

unit that included study of the regions of Spain, 7th grade 

students had two opportunities to use VR. First, the teacher 

used VR in a series of stations that introduced some of the 

best-known landmarks of the country. The class concluded 

with a full class discussion of the similarities and differences 

between the sites themselves and between the sites and the 

United States. Later, students created a presentation about 

one region of the country and selected one major landmark 

that represented the region to share via VR. After working 

on the project for a week, students shared their presentations 

with the class in a gallery walk fashion, leaving their 

presentation and VR destination for other students to 

discover as they walked around the classroom.  

The opportunities for computational thinking within this 

lesson are very similar to those experienced in the social 

studies lesson. Students are able to utilize data practices by 

making connections between what they had learned 

previously, viewing it represented in a new manner, and 

potentially treating the images that they are viewing as data 

themselves for data analysis. Additionally, students are 

experiencing a social and cultural system, employing the 

systems thinking practices to understand relationships and 

think in levels. The presentation of these computational 

thinking practices in Spanish class serves as yet another 

context for learners to develop these skills. 

4.4. Student Impressions of Virtual Reality  

Students recognized VR as a productive learning tool within 

their classrooms. Using a five-point Likert Scale, 94% of 

students agreed or strongly agreed that VR helped them 

learn, with a mean score of 4.33 out of 5 (SD .64). According 

to one student, “it made my understanding of the place better 

because we didn’t have to hear about it we could see the 

place ourselves.” Alongside this perceived learning utility, 

students’ reported increased feelings of engagement and 

connections with course material through the VR 

environment. Ninety-two percent of students agreed or 

strongly agreed that they felt more engaged in classes 

because of VR (Mean 4.48 out of 5, SD .64) and 97% agreed 

or strongly agreed that they made connections between what 

they were seeing the viewer and what they learned in class 

(Mean 4.50 out of 5, SD .56). When asked how VR helped 

them learn, students highlighted the engagement that they 

felt using the technology. Students stated that they were 

“really engaged because it was like we were really their and 

it was very interesting” and “[virtual reality] helped [me] 

become more focused and involved in a lesson.” Students 

also showed enjoyment from using VR calling the 

experiences “truly awesome” and “really enjoyable” while 

requesting the use of VR more often and in more classes.  

Given this reaction to the use of VR in the classroom and the 

opportunities for it to serve as a context for the development 

and employment of computational thinking practices, the 

partnering of the two provides a productive means by which 

to introduce students to computational thinking across 

contexts.  

5. DISCUSSION 
Virtual reality has the potential to be a powerful tool for 

bringing computational thinking into the classroom, both 

within and beyond STEM subjects. The unique views that it 

allows, along with the increased engagement and learning 

that the environment brings, create a medium with great 

potential for computational thinking. The lessons in this 

article demonstrate a few of the ways in which VR can be 

used to situate computational thinking across the curriculum. 

This work aims to help start the discussion regarding VR as 

a conduit for computational thinking. By viewing social 

systems through a systems thinking lens and using three 

dimensional models as a context for learners to explore ideas 

and engage with data, students have the ability to develop 

computational thinking practices, no matter the subject they 

are studying.    

Virtual reality demonstrates the breadth of computational 

thinking and shows how it can be experienced beyond 

computer science classrooms. Further, the flexibility of VR 

to fit across the curriculum provides a mechanism to show 

how computational thinking can serve as a set of cross-

cutting practices without disciplinary constraints. Given the 

possibilities for incorporating computational thinking in the 

humanities, more work needs to be done on defining what 

computational thinking looks like in these contexts and how 

it differs from the presentation of computational thinking 

practices in STEM subjects.  

Although VR is becoming increasingly accessible, there are 

still limitations to using it within the classroom. The cost of 

the equipment has decreased, but it remains out of reach for 

many classrooms. Additionally, the availability of VR 

programs limits classroom activities and most teachers do 

not have the skills to design their own VR programs. With 

the development of VR mainly driven by consumer 

electronics and technology companies, teachers need to be 

aware of the economic motivation of VR platforms and 

consumer opinions of such platforms. Teachers should also 

be aware of the effect that novelty can have on students and 

use of new technologies and ensure that the substance of a 

lesson is not missed due to being distracted by the novelty 

of a learning tool. Lastly, especially with head mounted 

devices, physical discomfort can be experienced by users. 

Some students require adjustments to use the technology 

comfortably.  

6. CONCLUSION 
Computational thinking is an important skill for all students 

to develop. With the ever-growing number of fields that rely 

on computation and an increasingly technical world, 

students must be prepared through diverse exposure to 

computational thinking tasks. Virtual reality offers one way 

to enable such exposure. Students are drawn to the 

technology and can benefit from the engagement, learning, 
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and connections that it offers. With VR and computational 

thinking working together, students will have the 

opportunity to experience computational thinking in not 

only STEM fields, but also in the humanities. There is a great 

need for computational thinking in modern society and VR 

is a tool that will help develop this essential mindset.  

7. ACKNOWLEDGEMENTS 
The authors would like to thank the McCarthey Dressman 

Education Foundation for the Academic Enrichment Grant 

which made these lessons possible and the students for 

inspiring us to develop new learning opportunities.  

8. REFERNECES 
Barr, D., Harrison, J., & Conery, L. (2011). Computational 

thinking: A digital age skill for everyone. Learning and 

Leading with Technology, 20–23. 

Greenwald, S. W., Kulik, A., Kunert, A., Beck, S., Fröhlich, 

B., Cobb, S., … Maes, P. (2017). Technology and 

applications for collaborative learning in virtual reality. In 

Making a Difference: Prioritizing Equity and Access in 

CSCL, 12th International Conference on Computer 

Supported Col- laborative Learning (CSCL) ,719–726. 

Grover, S., & Pea, R. (2013). Computational thinking in K-

12: A review of the state of the field. Educational 

Researcher, 42(1), 38–43. 

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). 

Computational thinking. Proceedinds of the 38th SIGCSE 

Technical Symposium on Computer Science Education - 

SIGCSE ’07, (February 2016), 195. 

Huang, H. M., Rauch, U., & Liaw, S. S. (2010). 

Investigating learners’ attitudes toward virtual reality 

learning environments: Based on a constructivist 

approach. Computers and Education, 55(3), 1171–1182. 

Lehrer, R., Giles, N., & Schauble, L. (2002). Data Modeling. 

In R. Lehrer & L. Schauble (Eds.), Investigating real data 

in the classroom: expanding children’s understanding of 

mathematics and science (pp. 1–26). New York: Teachers 

College Press. 

Limniou, M., Roberts, D., & Papadopoulos, N. (2008). Full 

immersive virtual environment CAVE in chemistry 

education. Computers & Education, 51(2), 584–593. 

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, 

W., & Davis, T. J. (2014). Effectiveness of virtual reality-

based instruction on students’ learning outcomes in K-12 

and higher education: A meta-analysis. Computers and 

Education, 70, 29–40. 

NGSS Lead States. (2013). Next Generation Science 

Standards: For States, By States. Retrieved from 

http://www.nextgenscience.org 

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., & 

Wilensky, U. (2016). Bringing computational thinking 

into high school mathematics and science classrooms. In 

Transforming Learning, Empowering Learners: The 

International Conference of the Learning Sciences (ICLS) 

(pp. 705–712). 

Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). 

Virtual reality and mixed reality for virtual learning 

environments. Computers and Graphics (Pergamon), 

30(1), 20–28. 

Papert, S. (1980). Mindstorm: Children, Computers, and 

Powerful Ideas (1st ed.). New York: Basic Books, Inc., 

Publishers. 

https://doi.org/10.1017/CBO9781107415324.004 

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., 

Rennert-May, C., & Wildeman, B. (2012). Infusing 

computational thinking into the middle- and high-school 

curriculum. In Proceedings of the 17th ACM annual 

conference on Innovation and technology in computer 

science education - ITiCSE ’12. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., 

Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and science 

classrooms. Journal of Science Education and 

Technology, 25(1), 127–147. 

Wilensky, U., & Resnick, M. (1999). Thinking in levels : A 

dynamic systems approach to making sense of the world. 

Journal of Science Education and Technology, 8(1), 3–19. 

Wing, J. M. (2006). Computational thinking. 

Communications of the ACM, 49(3), 33–35. 

Wing, J. M. (2008). Computational thinking and thinking 

about computing. Philosophical Transactions of the Royal 

Society, 366, 3717–3725. 

Winn, W., Windschitl, M., Fruland, R., & Lee, Y. (2002). 

When does immersion in a virtual environment help 

students construct understanding. In Proceedings of the 

International Conference of the Learning Sciences, ICLS 

(pp. 497–503).



Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih, 

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking 

Education 2018. Hong Kong: The Education University of Hong Kong. 

89 

A Development of a SW-STEAM Education Program using the Flipped Learning 

Hae-nam SONG*, Sun-gwan HAN   

Department of STEAM Education, GyeongIn National University of Education, South Korea 

goska9997@naver.com, han@gin.ac.kr

ABSTRACT 

In this study, we developed SW STEAM education program 

that can be provided by using flipped learning.  To do this, I 

applied flipped learning to a class of 4th grade elementary 

school in Gyeonggi Province, progress the online course site 

related to SW education at the same time. After that, we 

applied a program that combines the existing textbook theme 

with scratch. This will help students improve their 

Computational Thinking and motivation. In the future, it is 

expected that SW STEAM education will be activated in 

elementary education field by using flipped learning. 

KEYWORDS 

Computational Thinking, Flipped Learning, SW Education, 

STEAM, STEAM Education. 

1. INTRODUCTION 
In the 21st century society, more people need to be able to 

think convergently based on knowledge rather than those 

who memorize and understand simple knowledge. This 

change in social paradigm is too fast to catch up with the 

existing knowledge-based lecture education. Elvin Toffler 

diagnosed this as a "educational delay" and called for a 

change to a creative and STEAM education. 

Flipped learning is emerging as a teaching method that can 

effectively cope with this educational crisis and raise 

talented people capable of fused thinking. Teachers can 

create and distribute video about the core contents of the 

curriculum to be delivered so that students can study at 

home. In the classroom, learning is organized by learner-

centered activities. It is not a passive class that receives 

knowledge, but a class that worries for oneself to solve 

problems. In this process, students can naturally develop 

fusion thinking skills. 

Although many educators agree on the effectiveness of 

flipped learning, it is difficult to apply it in schools. The 

reason why it is difficult to apply flipped learning to the 

school is 'difficulty in using the device'. Secondly, 

'production burden of pre-learning video' may be the reason. 

On the other hand, as the 4th industrial revolution is 

accelerating, the need for software education is increasing. 

The Ministry of Education and the Ministry of the Future 

revised the curriculum so that it emphasizes the software 

education. Now, study to software is essential. No one can 

deny that SW education is necessary for future social talent 

training. 

As the need for STEAM education and SW education is 

increasing, practical learning programs are needed in 

elementary schools. Elementary SW STEAM education 

should enable the learner to be able to participate actively 

while maintaining interest and concentration. It also needs 

to be presented by the easy way to access, with topics related 

to curriculum. 

Therefore, this study utilize MOOC - based flipped learning 

which uses pre - developed teaching - learning site lectures, 

learn the pre-production video by using the extra-curricular 

time. By using this method, we intend to conduct SW 

STEAM lesson connect with subjects(Korean, Mathematics, 

Science). During class, students can create a scratch project 

that fits their subject matter.   

2. BACKGROUND 

2.1. Concept of Flipped- learning 

'Flipped' is a name given in the sense of reversing lectures 

and homework. In other words, it is a class that overturns the 

traditional way of teaching in terms of studying videos at 

home and conducting classroom activities based on what 

they have learned. 

The concept of flipped learning can be defined as follows. 

Flipped learning is a learner-centered approach to self-study 

of core knowledge to learn in the home or school, making 

the network, communicating with friends, conducting 

project activities, group discussions, and quizzes. 

2.2. Concept of SW Education  
Software education is expanded from ICT education which 

teaches the functions of information devices such as word 

processor. Software education provided computer theory, 

and ability to think through procedural thinking and solve 

problems by using software. With the 4th Industrial 

Revolution, production methods in all sectors of the industry 

are changing, and software is at the center. The ability to deal 

with software, and the ability to solve various real-life 

problems using software is becoming important. Software 

education is rapidly spreading in educational fields around 

the world. Korea is also taking a step closer to change by 

strengthening SW education in the 2015 revision curriculum.  

SW education aims to develop creative talents who have the 

ability to solve problems by collecting data and analyzing 

information on the basis of thinking rather than nurturing 

students as programmers who are simply coding. Therefore, 

it is not a one-time coding education, but real-life problems 

are solved through algorithms and programming in a 

practical subject.  

2.3. Flipped-learning of the SW Education. 

  Students can learn basic functions necessary for SW 

education beforehand at home in the pre-learning stage 

through video. Beyond simple video viewing, teachers 

should provide opportunities for students to share their 

thoughts in a quiz or mind map.  

In SW education, learning about EPL (Educational 

Programming Language) like scratch basic functions is 

essential, but there are limited class hours and difficulty for 

one teacher to proceed. Therefore, the difficulty of applying 

SW education can be solved through flipped learning. 
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3. RESEARCH METHOD  

3.1. Research Psrocedure 
In this study, we have found subjects and theme that can 

apply SW STEAM education. Among the 4th grade subjects, 

they were selected as 'talking' in Korean, 'polygon' in 

mathematics, and 'change of state of water' in science. After 

the selection of the topic it was subdivided and refined to 

implement the learning objectives to scratch without 

modifying the existing curriculum content. In order to 

increase the applicability in the field of elementary 

education in the future, we selected topics that can be 

connected with SW education among existing contents of 

textbook rather than modification of curriculum contents.  

In addition, the selected online teaching and learning site 

allows students to study at home the function of the scratch 

program by flipped-learning. At the school, based on the 

functions learned at home, we conducted mind map and 

discussion learning  

3.2 Application 
A total of 19 students were selected, including 8 boys and 11 

girls, in the 4th grade of K elementary school in Gyeonggi 

Province. There is one student with an intellectual disability, 

and that student is excluded from the application group 

because that student takes special classes in Korean 

language and mathematics. There are no students who have 

been exposed to scratches in advance, and there are no after 

school computer attendants, and there is no SW education 

experience. 

4. DESIGN OF SW STEAM PROGRAM  

4.1. Learning Model of Flipped Learning 

The flipped Learning model to be applied in this study is 

based on the ‘core activity process of flipped learning based 

instruction model’, from the perspective of using scratch, a 

tool for SW education, was modified according to research 

characteristics, with reference to ‘Development of flipped 

learning instruction model based on smart education’. 

Table 1. Leaning model of flipped Learning 

Process Core Activities Rule 

Before 

The class 

(outside of 

classroom) 

▪Prior Learning 

 (watching the 

video) 

▪Confirm contents 

of subject 

▫Presenting pre-

learning tasks by 

Mind-map, Scratch 

quiz, post-it quiz 

▫Upload to classroom 

site after creating the 

reviewing project 

In class ▪Readiness check 

▫Prior knowledge 

check 

▫Identify the 

individual level with 

pre-learning 

assignments and 

reviewing project 

analysis 

▪Objectives 

Recognition 

-Provide 

Motivational data 

-Curiosity 

inducing 

▫Solvable Problems 

by Cooperation 

among students 

▪Understanding the 

Knowledge 

And providing 

Feedback 

-Explore 

individual 

information 

activity 

-Individual 

Knowledge 

Organization 

Activities 

▫ Confirm textbook 

And Formalization of 

knowledge. 

▫ Individual 

structured data  

▪ Seeking 

application 

examples for 

knowledge 

production and 

reconstruction 

-Team cooperative 

learning 

-Professor and peer 

evaluation  

▫ Utilize project 

subject topics 

▫ Making a plan 

specifically for what 

learners should do to 

solve problems 

▫ Consider cognitive 

and social interaction 

▪ Learning 

outcomes cleanup 

-Sharing and 

presenting  

▫ Announced creative 

activity outcomes 

▫ Teacher's facilitator 

activity  

▪ Learning theorem 

and Reflection 

▫Self-reflection with 

Writing reflective 

journals 

After class 

 

(outside of 

classroom) 

▪ Providing the 

Deepening 

learning and 

Supplementary 

learning 

-Sharing activity, 

Interactive activity 

▫Providing the 

Deepening activities 

based on students' 

creativity through 

experiential 

knowledge  

4.2. Application of Flipped Learning 

In the conventional flipped learning class, the teacher has to 

prepare and provides the class related video. However, in 

this study, the video is already produced and distributed on-

line, So that the burden on the user can be reduced. In this 

study, Junior SW site (koreasw.org) was utilized.  All of the 

lectures on this site were produced by teachers and agreed 

with the curriculum and were suitable for flipped learning of 

learners within 8 to 10 minutes. Based on the contents that 

students have heard from the online-learning site, teacher 

suggested prior learning so that students can share their 

thoughts with each other. 



 

91 

Table 2. Application plan for flipped Learning 

Class 

time 
Subject Flipped Learning Activity 

1 Introduction 

◊ Introduction to Online 

Learning Site 

◊ Join Scratch site 

2 

 ‘Let's be the 

main 

character.’ 

◊ Watching a video (Pre-

learning assignment) 

◊ Create mind map 

3 

 ‘Let's move 

the 

character.’ 

◊ Watching a video (Pre-

learning assignment) 

◊ Write new points on post-it 

4 

‘Let’s 

Decorate 

aquariums’ 

◊ Watching a video (Pre-

learning assignment) 

◊ Unravel the quiz 

5 
 ‘Dance 

Party’ 

◊ Watching a video (Pre-

learning assignment) 

◊ Summarize the contents of a 

lecture 

6 
 

‘Fireworks’ 

◊ Watching a video (Pre-

learning assignment) 

◊ Write Lecture Notes  

In this study, it is aimed to reconstruct with SW STEAM 

Education using MOOC based flipped learning, by 

presenting real-life problems, pursuing connectivity with 

other subjects, stimulate students' interest and naturally 

develop communication skills and problem-solving skills. 

4.3. SW STEAM Education Project Production  

1) LANGUAGE ART 

Table 3.  SW KOREAN STEAM education Contents 

Making 

polite 

conversati

on 

Collection

s 

Clas

s 

time 

1 

Presen

ting the 

situatio

n 

Create a polite 

conversation scratch that 
Anyone can easily see  

Clas

s 

time 

2~3 

Creati

ve 

Desig

n 

- Think about Situation of 

conversation with adults Ⓐ 

- Think about the manners 

you need to talk to adults Ⓐ 

- What blocks do you need 

to make the scratch that 

seems to be talk? Ⓣ 

- Using scratch, Making 

polite conversation 

Collections Ⓔ 

Clas

s 

time 

4 

Emoti

onal 

experie

nce 

 

(Experi

ence of 

success

) 

- Uploading the project to 

classroom site  

- Creating a ‘polite 

conversation Collections ' 

by collecting all of your 

projects ⓉⒺⒶ 

- writing a comment 

Watching each other's 

projects 

2) MATHEMATICS 

Table 4.  SW Mathematics STEAM education Contents 

Square 

maker 

Class 

time 

1 

Presen

ting the 

situatio

n 

Create a tool that 

accurately draws a Square 

Class 

time 

2~3 

Creati

ve 

Desig

n 

- Think of the square 

features  

(Rhombus, Parallelogram, 

Rectangle)Ⓜ 

- What blocks do you need 

to draw a square accurately? 

Ⓣ 

Clas

s time 

4 

 

Emoti

onal 

experie

nce 

 

(Experi

ence of 

success

) 

- Draw a rectangle using 

scratch ⓂⒺ 

- Uploading the project to 

classroom site  

- writing a comment 

Watching each other's 

projects 

3) SCIENCE 

Table 5.  SW Science STEAM education Contents 

Creatin

g a 

‘Moon 

survival 

game’ 

Class 

time 1 

Prese

nting 

the 

situati

on 

Let's play with your friends 

by creating a game that you 

need to survive on the moon 

 

Class 

time 

2~3 

Creat

ive 

Desig

n 

- Think about the difference 

between Moon and Earth Ⓢ 

- Why can not a creature 

live on the moon? Ⓢ 

- Designing the game 

situationⒶⒺ 

- Exploring the block Ⓣ 

 

Class 

time 4 

Emot

ional 

experi

ence 

(Exper

ience 

- Making game  

‘Moon survival 

game’ⓈⓉⒺ 

- Game with friends 
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of 

succes

s) 

- Share each other's rules 

and games 

4) Implementation of SW-STEAM Class 

Table 6. Picture of class 

SW 

KOREAN 

STEAM 

 

SW 

Mathematics 

STEAM 

 

SW Science 

STEAM 

 

 

5. DISCUSSION 
The developed SW STEAM education applied to 4th grade 

students. The purpose of this study is to investigate the effect 

of the program on learning motivation by tests divided into 

pre and post motivation and analysis the satisfaction survey. 

It can be seen that SW STEAM class using flip learning 

gives a very high learning motivation than traditional lecture 

class. 

Table 7. Result of motivation test  

Analysis Corres- 

pondence 

Average SD t p 

Attention Pre 3.4722 .74206 -2.536 .021 

Post 3.9444 .78850 

Relevance Pre 3.0889 .49573 -3.194 .005 

Post 3.5444 .52156 

Confidence Pre 3.4889 .91065 -2.279 

 

.036 

Post 3.9667 .81818 

Therefore, when SW STEAM class using flip learning is 

applied to students, it can positively affect students' 

motivation for learning. Especially, it showed improvement 

in attention, relevance, and confidence among the sub - areas 

of learning motivation. 
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ABSTRACT 

Computational Thinking (CT) is being considered as a 

critical skill for students in the 21st century as it is 

increasingly valuable in education and workplace settings 

with the economy grows more dependent on digital literacy. 

Given the importance of CT, Malaysia has been integrating 

CT into Malaysian syllabus since January 2017. However, 

integration of CT into the Science curriculum is still a 

challenge. This study therefore aimed to develop an 

interdisciplinary module namely Brain-based learning, 

Inquiry-based approach and Computational thinking (BIC)-

Science Module. In this paper, we first present the needs of 

the module to Malaysia’s education and then presenting the 

approaches of BIC through the conceptual framework. We 

then propose activities that can jointly foster the 

development of computational thinking and elaborate on the 

instructional model to develop the module. Finally, we 

discuss the benefits of our module for future research.  

KEYWORDS 

Interdisciplinary, Brain-based learning, Inquiry, 

Computational thinking, Primary Science. 

1. INTRODUCTION 
In August 11th of 2016, the Prime Minister of Malaysia has 

announced that computational thinking and computer 

science will be added to the curriculum of primary and 

secondary schools in Malaysia (Abas 2016), which aimed to 

provide Malaysian students with the CT to be globally 

competitive. The Prime Minister highlighted every student 

from Primary One to Form Five should be taught CT and 

coding languages to give them a good foundation in 

preparing them for future digital economy jobs.  

The implementation of CT has been rolled out as part of the 

new Standard Based Curriculum for Primary (KSSR) and 

Standard Based Curriculum for Secondary (KSSM) which 

has been started in January 2017 that will benefit up to 1.2 

million students across 10,173 schools nationwide (Abas, 

2016). The integration of CT, problem-solving and 

technology for the primary school curriculum will be across 

all of their subjects. Meanwhile, the integration of CT for 

secondary school curriculum is through their elective 

subject. These initiatives are spearheaded by Ministry of 

Education (MOE) and supported by Malaysia Digital 

Economy Corporation (MDEC) and aimed to participate 1.3 

million students participating in co-curricular activities and 

digital production hubs with 260,000 students groomed for 

future digital economy jobs, e.g. data scientists and game 

developer (Ng, 2016).  

A national study, S&T Human Capital: A Strategic Planning 

Towards 2020 in Academy of Sciences Malaysia (2015) 

confirmed that the country will need one million S&T 

workers by 2020, of which 500,000 will require at least a 

diploma or university degrees. At the same time, it is 

projected that a ratio of 70: 10,000 research personnel to 

workforce would be needed. Hence, the underlying 

statement indicates that Malaysia still does not have enough 

talent. 

The implementation of the first National Science and 

Technology Enrolment Policy of 60:40 since 1970, which 

guaranteed that 60 percent of students would be enrolled in 

science with the remaining 40 percent in arts is still 

unachieved with the ration stood at 21:79 in 2015. Regarding 

the latest statistics on mean score in Program for 

International Student Assessment (PISA) and the Trends in 

International Mathematics and Science Study (TIMSS) 2012 

which assess a variety of cognitive skills such as application 

and reasoning, Malaysia’s science and mathematics 

achievement still ranked below the average mean score. 

Therefore, Malaysia education system aspires to be in the 

top third countries of international assessments such as 

TIMMS and PISA in 15 years (Ministry of Education, 

2015).  

In order to achieve the national goals, this paper proposed 

the interdisciplinary module that supports the development 

of students’ scientific expertise for the design of coherent 

curriculum in which computational thinking are not taught 

as separate topic but are interwoven with learning in the 

science domains. Bringing computational tools and practices 

into science classrooms gives learners a more realistic view 

of what science fields are and better prepare students for 

STEM careers (Augustine, 2005; Osman, 2013). These 

practices are also central to the development of expertise in 

scientific and mathematical disciplines (Basu et al., 2012). 

In establishing this framework, we first propose the 

following three components: 

a. Relationship between BIC and Science Learning: In 

section 2.1, we explicitly identify the synergies between 

BIC and science learning; 

b. Fostering CT with BIC-Science Module: In section 2.2, 

we provide examples for the integration of CT in the 

selected topic that are amenable to our technology, but 

at the same time illustrate the generality of our 

approach; 

c. Instructional design of BIC-Science Module: In section 

2.3, we elaborate the Morison, Ross and Kemp (MRK) 

instructional model for developing the module. 
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2. DEVELOPMENT OF MODULE 

2.1. Relationship between BIC and Science Learning  

In order to comprehend the continuous development in the 

discipline of science, students should be aware of the basic 

science terms and they should gain the science skills 

throughout their schooling process (Fogarty, 2002) which 

can be achieved through interdisciplinary approach 

presented in this module. Interdisciplinary can be defined as 

a knowledge view and curriculum approach that consciously 

applies methodology and language from more than one 

discipline to examine a central theme, issue, problem, topic 

or experience (Jacobs, 1989). Figure 1 shows the conceptual 

framework that shows the key concepts in developing the 

module. 

Computer science element focused in this module is the use 

of computational thinking as the skills to solve problem 

systematically in the lesson. Meanwhile, the science 

learning will be focused on the curricular contexts in the 

topic of “Matter” which is difficult and important curricular 

topic at Year 5 level. Research reports some of the ideas 

students have about the particulate nature of matter as 

misconceptions, preconceptions, naive conceptions, or 

alternative conceptions (De Vos & Verdonk,1996).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual framework.  

 

BIC model is adapted from the model proposed by Cheah 

(2016) as an effective pedagogy that should consist of: 

a. structure: Brain-based learning; 

b. approach: Inquiry-based approach; and  

c. skill: Computational thinking.  

The structure is the brain-based learning that recognized the 

need for constructing knowledge, prior conceptions into new 

knowledge through questioning and readjusting knowledge 

to fit with real-life experiences (Gardner,1991 in Mangan, 

2007). This can be achieved through the Seven Stages of 

Brain-based Planning that can be applied in science 

classroom to “access the vast potential of the human brain 

and, in very real sense, improve education.” (Caine & Caine, 

1991). In BIC-Science Module, every science lesson is 

structured into seven stages according to Jensen (2008) 

namely: 

i. Pre-exposure is the stage which provides the brain with 

an overview of the new learning before really digging in. 

Pre-exposure helps the brain develop better conceptual 

maps. Example: Students can use their prior knowledge 

about different types of materials around them to help 

them to understand the nature of different states of matter 

that can exist as solid, liquid and gas. 

ii. Preparation is the stage at which curiosity or excitement 

is created. It is similar to the ‘anticipatory set’ but goes 

further in preparing the students. Example: Students are 

instructed to put their hand into three closed black boxes 

which contain different types of matter separately. Each 

box may contain ice which represents solid, water which 

represents liquid and smoke which represents gases. 

iii. Initiation and acquisition is the stage which provides the 

immersion. Students are flooded with an initial virtual 

overload of ideas, details, complexity and meanings. The 

students are allowed to be temporarily overwhelmed. 

This will be followed by anticipation, curiosity and 

determination to discover meaning for oneself. It builds 

on what the learners already know and understand and 

helps them assimilate and integrate new information. 

Over time, the students are able to sort out the 

knowledge. Example: Students are allowed to do 

experiment to describe that water can change its state 

through several processes. 

iv. Elaboration is the stage for processing which requires 

genuine thinking on the part of the learners. This is the 

stage to make intellectual sense of the learning. Example: 

Students discussed openly the algorithm they 

experienced in changing the states of matter in water into 

solid or gas. Teachers and other students may ask 

questions to improve the algorithm. 

v. Incubation and memory encoding is the stage for the 

importance of downtime and review time is emphasized. 

Example: Students write the key points about the 

"changes in states of matter" in the form of thinking map 

in their journal.  

vi. Verification and confidence check is for the students to 

confirm their learning. Learning is best remembered 

when students possess a model or a metaphor regarding 

the new concepts or materials. Example: Students 

answered short quiz regarding the subtopic learned. 

vii. Celebration and integration is the stage which engage 

emotions. This stage instills the all-important love of 

learning. Example: Stickers are given to students who 

perform well and actively throughout the lesson. Top 

presentations are selected to be presented during Science 

Week. 

While brain-based learning develops deep learning of 

science phenomenon as a process, inquiry-based approach 

offers the ability to do the scientific processes and the 

knowledge about the processes through student-centered 

exploration. Students are encouraged to raise questions and 

think critically throughout the exploration of lesson 
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activities which also will provide opportunity for students to 

learn by doing. The national performances in TIMMS and 

PISA proved that our students are still lacking in inquiry 

skills. Therefore, the design of activities in this module will 

be developed from the basic which is structured inquiry to 

guided inquiry or open inquiry (NRC,2000). Banchi and Bell 

(2008) differentiate the four levels of inquiry (confirmation 

inquiry, structured inquiry, guided inquiry and open inquiry) 

based on the amount of information and guidance the teacher 

provides the students. The information and guidance 

provided in the module will be minimized as the inquiry 

level shifts from structured inquiry to open inquiry. 

CT will equip the module with relevant skills according to 

the science activity. The term “computational thinking” in 

education was first used in child education by Papert (1980) 

with reference to Logo, a computer language designed for 

children who believes that certain uses of very powerful 

computational technology and computational ideas can 

provide children with new possibilities for learning, 

thinking, and growing emotionally. According to Curzon et 

al. (2009), computational thinking is the 21st century skills. 

This is an idea explored by Jeannette Wing from Carnegie 

Mellon University: 

 Computational thinking is a way of solving problems, 

designing systems, and understanding human behavior that 

draws on concepts fundamental to computer science.  

(Wing, 2006). 

In this study, CT skills are needed to prepare a lesson for the 

learner in a systematic manner. Four concepts of the CT 

skills (CSTA, 2012) defined in Table 1 will be utilized. 

Table 1. Four concepts of CT 

Concept Definitions (Google, 2015) 

Decomposition Breaking down data, processes, 

or problems into smaller, 

manageable parts 

Pattern recognition Observing patterns, trends, and 

regularities in data 

Abstraction Identifying the general principles 

that generate these patterns 

Algorithms Developing the step-by-step 

instructions for solving problem 

2.2. Fostering CT with BIC-Science Module 

The long-term goal of this study is to support the 

development of CT throughout the Primary Science 

curriculum. BIC-Science module is designed to promote a 

specific set of CT skills for the topic. Table 2 below shows 

examples that incorporates CT skills in the module. 

Table 2. CT Concepts Explored with BIC-Science Module 

Concept Examples  

Decomposition Students decomposed the changes in 

states of matter which occur during the 

phenomena of rain. 

Pattern 

recognition 

Students classify the materials/objects 

in the classroom into solid, liquid and 

gas. 

Abstraction Students use abstraction to explain the 

changes in states of matter during the 

heating of naphthalene ball. 

Algorithms Students explore logical organization 

and sequencing when animate the 

movement of particles in solid, liquid 

and gas using visual programming 

application; Scratch. 

2.3. Instructional design of BIC-Science Module 

Morison, Ross and Kemp (MRK) model provide flexibility 

in manifesting the cyclical process of instructional design 

(Morrison et al., 2007) in the development of this module. 

This circularity is achieved by viewing the nine core 

elements of the model as interdependent rather than singular 

and independent. This allows instructional designers a 

significant degree of flexibility because they are able to 

begin the design process with any of the nine components, 

rather than being constrained to work in a linear fashion 

(Akbulut, 2007). Every aspect of the module design and 

learning process is taken into consideration. This model 

focuses on these nine core elements which will be applied in 

this module: 

 identifying instructional design problems and 

specifying relevant goals, 

 examining learner characteristics, 

 identifying subject content and analyzing task 

components that are related to instructional goals, 

 stating instructional objectives for the learners, 

 sequencing content within each unit to sustain 

logical learning, 

 designing instructional strategies for each learner to 

master the objectives, 

 planning instructional delivery, 

 developing evaluation instruments, and 

 selecting resources to support learning activities. 

3. CONCLUSION 
The development of BIC-Science module will be the 

foundation for a longer-term learning progression to 

integrate computational thinking into the science 

curriculum. The design of science lesson activities using 

brain-based learning, inquiry-based approach and 

computational thinking will be able to provide a student-

centered, systematic and meaningful learning environment. 

With computational thinking’s growing importance in 

preparing relevant talent in digital age, this paper is a call to 

action for more research to integrate computational thinking 

in other disciplines and in the different level of education.     
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ABSTRACT 

Thinking in parts and wholes is a basic principle in 

Computer Science. Breaking down complex structures, 

objects, and systems into its componential parts and 

figuring out how they make the whole what it is, is an 

essential thinking skill that forms understandings on the 

functionalities on how these things work. But this skill, 

which is defined and presented as Part-Whole-Thinking in 

this paper, is also applicable to grasp non-physical ideas 

such as concepts, processes, and definitions. Either way, 

Part-Whole-Thinking is an often subconsciously happening 

cognitive process that forms knowledge representations. 

The contribution at hand aims at working out in which way 

Part-Whole-Thinking belongs and relates to Computational 

Thinking. By reviewing literature on suitable definitions of 

the involved terms it is shown that Part-Whole-Thinking 

plays a huge role in Computational Thinking processes. 

Afterwards, it is argued that a more vigorous inclusion of 

this essential thinking skill in Computer Science Education 

improves the overall understanding of Information 

Technology. 

KEYWORDS 

Part-Whole-Thinking, Computational Thinking, Cognitive 

Organization, Computer Science Education 

1. INTRODUCTION 
The term Computational Thinking (CT) is increasingly 

being used in discussions about Life Long Learning (LLL) 

recently. However, since Wing was the first to use the term 

in educational contexts in 2006, many authors defined this 

term differently in their work. We argue that CT is not only 

thinking like computers/computer scientists, IT-devices, 

etc.; more importantly it is a skill that enables thinking and 

reasoning about the way these devices work. Since it is a 

well-known fact, that breaking down problems into parts is 

a basic principle of Computer Science (CS), the core aspects 

of Part-Whole-Thinking (PWT) must be considered when 

discussing about pursued inclusions of CT skills in 

educational contexts. In this paper, the role of PWT in the 

context of CT is discussed and presented. 

A literature review on suitable definitions for the terms CT 

and PWT is presented in the following Sec. 2. Afterwards, 

it is discussed how PWT; CT, and Computer Science 

Education (CSE) refer to each other in Sec. 3, before a 

summary is given and an overview on work to be done in 

the future is presented in Sec. 4. Considering these aspects, 

the contribution at hand aims at presenting the massive role 

that PWT plays in the context of CT. 

2. THINKING ABOUT THINKING 
Thinking is generally seen as a cognitive process that 

“allows humans to make sense of, interpret, represent or 

model the world they experience, and to make predictions 

about that world” (Kisak, 2015). This mental act leads to an 

acquisition of knowledge, a development of thoughts, and a 

formulation of reasons (Presseisen, 1991, p. 56). Besides, 

thinking generates “higher processes, like judging, problem 

solving, or conducting critical analyses” (Presseisen, 1991, 

p. 56). A huge emphasis in thinking skills is on reasoning as 

a major cognitive skill, “although cognition may account for 

several ways that something may come to be known – as in 

perception, reasoning, and intuition” (Presseisen, 1991, 

p. 56). One of the involved thinking skills getting more and 

more notice in discussions on possibilities to equip students 

with skills enabling Life Long Learning is Computational 

Thinking (CT). CT is defined in the following Sec. 2.1. 

Through cognitive processes like thinking, complex 

relationships, which “may be interconnected to an 

organized structure and may be expressed by the thinker in 

a variety of ways” (Presseisen, 1991, p. 56), are developed. 

Presseisen classifies the essential thinking skills involved in 

these cognitive processes and identifies the detection of 

Part-Whole-Relationships as one of them (Presseisen, 1991, 

p. 58). The involved ability to think in parts, wholes, and 

their relationships to each other is described as Part-Whole-

Thinking (PWT) in the following Sec. 2.2. 

2.1. Computational Thinking 

Since Wing introduced the term “Computational Thinking” 

for the first time in 2006 (Wing, 2006), there has been a 

huge confusion about its exact definition (Selby, 2015, 

p. 81). Thus, it is no wonder that many different authors 

define this term differently in their publications. Many of 

these definitions “suggest that CT relates to coding or 

programming” (Shute, Sun, and Asbell-Clarke, 2017). By 

presenting three publications of Wing and two of authors 

that discuss her definition of CT it is shown that 

“considering CT as knowing how to program” (Shute, Sun, 

and Asbell-Clarke, 2017) definitely is too limiting. Instead 

of CT skills just being needed by programmers and software 

developers, all pupils should acquire CT skills in school to 

act responsibly in the Digital Age in both their future 

working and everyday lives. 

2.1.1. Wing (2006, 2008, 2010) 

When Wing was the first to coin the term “Computational 

Thinking” in her article of the same title in 2006, she 

originally presented her work with the subtitle “It represents 

a universally applicable attitude and skill set everyone, not 

just computer scientists, would be eager to learn and use” 
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(Wing, 2006, p. 33). According to her “the essence of 

Computational Thinking is abstraction” (Wing, 2008, p. 

3717), which “focuses on modeling the workings of a 

complex problem/system” (Shute, Sun, and Asbell-Clarke, 

2017, p. 4). It involves (Wing, 2008, as cited in Shute, Sun, 

and Asbell-Clarke, 2017, p. 3): 

(a) abstraction in each layer,  

(b) abstraction as a whole, and 

(c) interconnection among layers 

The abstraction process is the “most important and high-

level thought process in computational thinking” (Wing, 

2010, p. 1) to her. As Wing describes, “abstraction gives us 

the power to scale and deal with complexity” (Wing, 2010, 

p. 1), while “it is defined as the ability to decide what details 

of a problem are important and what details can be ignored” 

(Wing, 2008, as cited in Selby, 2015, p. 81). Thereby the 

“layers of abstraction […] reduce the level of complexity of 

a problem or a representation (Selby, 2015, p. 81). 

Wings definition of abstraction in the context of CT is very 

close 1  to the one of (problem) decomposition (cf. 

Sec. 2.1.4.), which is another aspect being part of CT 

according to many authors as presented in the following 

Sec. 2.1.2. and 2.1.3. 

2.1.2. Selby (2015) 

The definition of CT Selby presents includes 

 decomposition, which is “breaking down into 

smaller […] parts” (Selby, 2015, p. 81), 

 abstraction, which is “the ability to decide what 

details of a problem are important and what details 

can be ignored” (Wing, 2008, as cited in Selby, 

2015, p. 81), 

 algorithm design, which “is related to the idea of 

procedural thinking […] [and defined] as a step-

by-step set of instructions that can be carried out 

by a device” (National Research Council, 2010, p. 

11, as cited in Selby, 2015, p. 81), 

 generalization, which is a “powerful component of 

problem solving […] [and] describes the ability to 

express a problem solution in generic terms” 

(Selby, 2015, p. 81), and 

 evaluation, which is “the ability to evaluate 

processes, in terms of efficiency and resource 

utilisation, and the ability to recognise and 

evaluate outcomes” (L’Heureux, et al., 2012, as 

cited in Selby, 2015, p. 81). 

According to her, these skills are “necessary for applying 

the tools of computer science to understanding the world 

around us” (Selby, 2015, p. 80). 

                                                                 

1  Especially the separation between abstraction in each layer, 

abstraction as a whole, and the interconnection among layers is 

very close to the basic idea of PWT (cf. Sec. 2.2). 

2.1.3. Shute, Sun, and Asbell-Clarke (2017) 

Shute, Sun, and Asbell-Clarke worked out five cognitive 

processes/components of CT that are engaged “with the 

goal of solving problems efficiently and creatively” (Shute, 

Sun, and Asbell-Clarke, 2017, p. 3) as stated by Wing 

(2006) for their part: 

1. problem reformulation: “Reframe a problem into 

a solvable and familiar one” (Shute, Sun, and 

Asbell-Clarke, 2017, p. 3) 

2. recursion: “Construct a system incrementally 

based on preceding information” (Shute, Sun, and 

Asbell-Clarke, 2017, p. 3) 

3. problem decomposition: “Break the problem down 

into manageable units” (Shute, Sun, and Asbell-

Clarke, 2017, p. 3) 

4. abstraction: “Model the core aspects of complex 

problems or systems” (Shute, Sun, and Asbell-

Clarke, 2017, p. 3) 

5. systematic testing: “Take purposeful actions to 

derive solutions” (Shute, Sun, and Asbell-Clarke, 

2017, p. 3) 

2.1.4. Comparison and Summary of the Definitions of 

Computational Thinking 

As this very brief literature review on profound definitions 

of CT already suggests, a huge part in CT skills is derived 

to the decomposition of whole systems into its 

componential parts. The ability to decompose is “required 

when dealing with large problems, complex systems, or 

complex tasks” (Selby, 2015, p. 81). Thereby “the divided 

parts are not random pieces, but functional elements that 

collectively comprise the whole system/problem” (Shute, 

Sun, and Asbell-Clarke, 2017, p. 12). The parallels to PWT 

are more than obvious at this point. But additionally, core 

aspects of PWT can be found in the understanding and 

definition of abstraction in the context of PWT, which the 

second aspect that each of the presented publications (cf. 

Sec 2.1) see as a part of CT. The ability to abstract includes 

the identification of “patterns/rules underlying the 

data/information structure” (Shute, Sun, and Asbell-Clarke, 

2017, p. 12) amongst others. Again, this definition is very 

close to the understanding of PWT as defined in the 

following Sec. 2.2. 

2.2. Part-Whole-Thinking 

The almost endless variety of objects and living things in 

our world forces us as human beings, which are only 

equipped with limited cognitive resources, to map cognitive 

categories. The task of these “category systems is to provide 

maximum information with the least cognitive effort” 

(Rosch, 1978, p. 28). Since the objects in the world as we 

perceive it are in any ways structured by nature, “one 

decisive aspect of our thinking is the ability to detect 

similarities and differences between these various elements 

and then cognitively grouping them based on their 

differentiations and classifying them into categories” 
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(Tversky and Hemenway, 1984, as cited by Pancratz and 

Diethelm, 2018). These conceptual hierarchies are 

organized by subconsciously identifying, which parts the 

respective objects are made of (Tversky and Hemenway, 

1984). 

“The part-whole relation plays an important role […] in 

knowledge processing, e.g. reasoning about objects” (Gerstl 

and Pribbenow, 1995, p. 865), and beyond: Generally, Part-

Whole-Relations help “understanding objects, systems, 

processes, definitions[,] and concepts” (Pancratz and 

Diethelm, 2018) by “identifying the parts that constitute the 

whole, the function of each individual part and its 

contribution to the function of the whole” (Rao, 2005, p. 

174). Views on the functionalities and principles of 

complex objects and systems are developed based on the 

knowledge about the single parts and their relationships to 

each other (Gerstl and Pribbenow, 1995, p. 867). In the 

context of our research we define this cognitive – and often 

subconsciously happening – process of partitioning as Part-

Whole-Thinking (PWT). It is significant for many reasons: 

“knowing the parts of a whole, how the parts are 

determined, how they are related, and what they do is a 

crucial part of understanding the whole” (Tversky, Zacks, 

and Hard, 2008, p. 437 f.). 

According to Tversky, Zacks, and Hard (2008) the 

following questions need to be considered when discussing 

and analyzing PWT processes: 

 “Wholes: How are wholes determined – that is, 

how are they distinguished from backgrounds? 

 Parts: How are wholes partitioned into parts, and 

on the basis of what kind of information? Parts 

may be further partitioned into subparts; do the 

same bases for partition hold for the subparts? 

 Configuration: How are the parts of the whole 

arranged? 

 Composition: Each whole entity has a set of parts, 

which may be parts of other wholes as well. How 

does the entire set of parts get distributed to 

wholes? 

 Perception-to-function: Are there relations 

between perception and appearance on the one 

hand and behavior and function on the other?” 

(Tversky, Zacks, and Hard, 2008, p. 437 f.) 

3. HOW PART-WHOLE-THINKING, 

COMPUTATIONAL THINKING, AND 

COMPUTER SCIENCE (EDUCATION) 

REFER TO EACH OTHER 
Breaking down problems into parts is a basic principle of 

CS. Typical examples are (Pancratz and Diethelm, 2018): 

 the programming paradigm Object Orientation 

 the algorithmic strategy Divide and Conquer 

 the logical partitioning in software design called 

Modularity 

Besides, many Information Technology (IT) devices, 

systems, and concepts make use of Part-Whole-

Relationships (Pancratz and Diethelm, 2018): 

 The Internet consists of many different servers, 

clients, and routers. 

 Computers have processing units, graphic cards, 

motherboards, and storage units. 

 Algorithms are composed of a finite number of 

well-defined steps. 

 Relational Databases consist of various tables and 

relations. 

These two lists can easily be stretched. Generally speaking, 

“part-whole relations often play a fundamental role in the 

modeling of information systems” (Guarino, Pribbenow, 

and Vieu, 1996, p. 257). 

As depicted in Sec. 2.1, “Computational thinking involves 

solving problems, designing systems, and understanding 

human behavior, by drawing on the concepts fundamental 

to computer science. Computational thinking includes a 

range of mental tools that reflect the breadth of the field of 

computer science.” (Wing, 2006, p. 33). As the just given 

examples show, many CS concepts make use of PWT. 

Therefore, CSE could provide the perfect showcase to equip 

students with this essential thinking skill. Thus, it is quite 

criticizable that the focus of education in schools lies on 

conveying content (“what to think”) instead of teaching 

critical thinking skills (“how to think”) so far (Rao, 2005, p. 

173), though thinking skills like CT enable us to acquire 

further knowledge on our own amongst other things (cf. 

Sec. 2.1). Rao for example noticed an improvement in 

learners’ cognitive learning processes when explicitly 

teaching them to use CT skills like PWT in class (Rao, 

2005, p. 177).  

PWT can especially be found in two of the core concepts of 

CT: While the definition of (problem) decomposition 

obviously fits very well to the core concepts of PWT, even 

the ways in which abstraction in the context of CT can be 

understood imply the close role that PWT plays in CT (cf. 

Sec. 2.1.1). In the end, CSE provides the perfect platform to 

include the fruitful skill of PWT. 

4. SUMMARY AND FUTURE WORK 
We are more and more surrounded by IT devices that rashly 

change and massively influence the Digital World we live 

in. Therefore, it is becoming progressively important to 

obtain further knowledge by oneself in order to succeed in 

one’s personal and working life. Discussions about this 

topic include the term Life Long Learning (LLL) recently. 

The possibilities of CT for LLL are obvious. In this paper, 

the massive role of PWT in the context of CT is presented.  

To the authors of this paper, CT is not only thinking like a 

computer (scientist) to solve problems, but also to become 

acquainted with the basic principles of CS and IT devices 

and thereby grasp objects, systems, processes, definitions, 

and concepts of the most different disciplines (and not only 

CS). Since a massive amount of CS principles makes use of 

PWT aspects, we suggest to always have the underlying 
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Part-Whole-Relationships in mind when discussing, 

planning, and applying CT skills in educational contexts. 

With this in mind, it is remarkable that according to Selby 

decomposition is the most difficult CT skill to master 

(Selby, 2015, p. 84). According to her, “teachers indicate 

that learners struggle with implementing the process of 

decomposition” (Selby, 2015, p. 85). The reasons for this 

fact “include a lack of experience, incomplete 

understanding of the problem to solve, and the order of 

teaching programming” (Selby, 2015, p. 85). Though 

students seem to understand the concept of breaking a 

problem down, they are “able to use the skill […] more 

successfully in situations where they already know the 

solution or understand the problem very well” (Selby, 2015, 

p. 85). Selby points out that “understanding decomposition 

[…] is a prerequisite for abstraction, algorithm design, and 

evaluation” (Selby, 2015, p. 85). “As such, it must be 

mastered, to some extent, before the complexity of the 

following levels can be accessed” (Selby, 2015, p. 85). 

The fact that decomposition is a prerequisite to the other 

aspects of CT already answers one of the challenges that 

Wing posed in 2008: “What would be an effective ordering 

of [CT] concepts in teaching children as their learning 

ability progresses over the years?” (Wing, 2008, p. 3721). 

The authors of this paper assume that an early on teaching 

of PWT has huge potential to improve the outcomes of 

education. Another challenge Wing describes is that “we do 

not want people to come away thinking they understand the 

concepts because they are adept at using […] tool[s]” 

(Wing, 2008, p. 3721). She clarifies this challenge with the 

example of “using a calculator versus understanding 

arithmetic” (Wing, 2008, p. 3721). Again, this shows the 

importance of CSE in the Digital Age: The imagination of 

people being surrounded by technical artifacts they don’t 

understand simply is alarming. A proper knowledge in CS 

is becoming more and more important. With the paper at 

hand it is suggested that a more vigorous inclusion of PWT 

in CSE improves the overall understanding of our students. 

In order to achieve this, our future work lies on investigating 

PWT in CSE alongside the Model of Educational 

Reconstruction (Diethelm, Hubwieser, and Klaus, 2012). 
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摘要 

對於社會快速成長的科技與經濟，STEM 教育的推動已

成為全球教育的趨勢。本研究將 STEM教育運用創客概

念結合 Arduino 設計結合遊戲任務導向及運算思維的學

習活動。學習活動性質包含運算思維的基礎程式學習、

問題解決與競爭學習等面向。程式學習使用 mBlock 圖

形化程式語言結合多變化性的 Arduino 進行軟硬體整合，

應用在船體航行路線的設計。在學習活動中，期望本

研究能提升學生對於程式的認知與興趣並學習運算思

維的概念，引導學習者自發思考並將想法付諸實行。

本研究實驗結果顯示，此活動有助於程式能力以及空

間概念的提升，能讓原本對於學習程式感到困難的人

也提起對於撰寫程式的興趣。 

關鍵字 

STEM；Arduino 微控制器；運算思維；競爭學習；遊

戲式學習 

1. 緣由與目的 

運算思維的能力可藉由 STEM教育來實施（林育慈、吳

正己，2016）。STEM 教育主要強調未來的學生應培養

跨領域素養與解決問題的能力。現今許多學校將 STEM

教育融入課程與教育政策中來提升學生科技發展的競

爭力，讓學生不僅具備知識，更具備解決問題的能力，

懂得實證精神，以及能將各種資訊整合為可用資源的

思維（Huang, Tseng & Shih, 2017）。STEM 的重點概念

為以「學生為本」的教學法，培養學生創造、協作和

解決問題的能力、創新思維，建立學生的開拓與創新

精神。STEM 具備教育改革的積極意義，力圖打破理科

偏重課堂和傳統教育模式，釋放學生的自主學習精神。 

為了增加學生的學習動機，本研究以遊戲任務的方式

進行，藉由遊戲式學習影響學習者互動性引發內在學

習動機，透過同儕之間的互動溝通以及操作經驗的回

饋，進而增進其學習效果。然而，在真實的社會中，

競爭是常見的社會現象；此外，在教學環境中，教師

也經常使用競爭的心理來激發學生的學習成效與動機

（Lin, Huang, Shih, Covaci, & Ghinea, 2017）。競爭學習

是指學習者在學習活動中和其他學習者互相比較、抗

衡以打敗對手成就自己的成功來達成設定的目標。有

鑑於此，本研究設計一套創客奇航-遊戲任務導向之運

算思維活動，以培養學生的運算思維。藉由程式設計

的概念，製作出實體船隻，使之在水中航行；將遊戲

任務、STEM 教學及運算思維，融入於競速以及賽道的

變化。透過遊戲競賽的方式，讓學習者使用圖形化程

式語言mBlock連結Arduino，以手機應用程式操控船隻

的航行，學習程式語言的撰寫，培養方向和空間的概

念。希望運用遊戲任務及 STEM教學，將運算思維融入

教學活動中，讓學習者在教學活動中除了能習得課程

知識外，也能學習運算思維的能力。 

2. 文獻探討 

2.1.遊戲式學習（Game-Based Learning） 

遊戲式學習所建立的學習成效，主要是來自於學習者

在遊戲中所得到的經驗以及立即的回饋，在遊戲中要

引發的是競爭和合作的精神，且是好玩、可達成與富

挑戰性（Prensky, 2003）。 

其中競爭學習為遊戲式學習裡常見的模式之一，是指

學習者在學習過程中與他人做比較，互相抗衡，以別

人的失敗造就自己的成功，以達到某一個目標（黃政

傑、林佩璇，1996）。在這樣的情況下，在人與人之

間存在著消極的互賴關係、視其他人為競爭對手、使

自己在競賽中獲得有利的位置或資源。但競爭學習也

被證實會使學生在學習過程中產生焦慮、引發學生自

私的心理、使學習低成就的學生感覺到低落、同儕間

的相處處於敵對的狀態，進而使學生備感壓力。

Johnson和 Johnson（1991）為了改善上述情況也提出一

些建議：例如在競爭活動時，學習者常只為了贏過對

手，卻忘了學習的樂趣。因此，在施行競爭活動時教

師可搭配有趣的小遊戲降低競爭所帶來的焦慮感，為

學習帶來歡樂的氣氛並告知學生學習樂趣比輸贏更為

重要；或者，採用組間競爭，而不強調個體間競賽，

在特定情況下，組間競爭可有不錯的學習成效。 

除此之外，競爭的策略更被廣用於教學活動上，以激

起學生的學習動機。Johnson和 Johnson（1987）發現，

所有的學生會把 85%以上的作業用競爭的方式完成。

由此可知，在教育上，競爭可被用於提高學生的學習

動機。 

2.2. STEM 教育 

STEM教育集結了四個學科，分別是科學（Science）、

科技（Technology）、工程（ Engineering）及數學

（Mathematics），鼓勵發展問題解決式、探索發現式

學習的課程模式，這個模式要求學生積極參與，以尋

求解問題的解決方法。STEM 教育乃強調綜合運用科學、

工程、技術與數學等知能，解決日常生活中的問題，

在學習上具有探究性與統整性，而正因為它涉及生活

中現實的問題，所以也具有趣味性與挑戰性。 

2.3.運算思維（Computer Thinking） 

運算思維（Computer Thinking）是一種分析的思維，也

是製定問題所涉及的思考過程，藉由數學思考

（Mathematical Thinking）來解決問題的方式，運用科
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學思維使得電腦或機器人能夠有效地執行（Wing, 

2014）。 

運算思維是解決問題的方法，當面對複雜的問題，能

夠理解問題本質、發展可能的解決辦法。在運算思維

中，有四個基礎：分析，將複雜的問題拆解成容易理

解與分類的部分；模式識別，找出問題之間的相似之

處；抽象，將重要的部分列出，忽略不重要的部分；

演算，為每個問題找尋解決的步驟。這四個方式能讓

電腦和人明白與理解如何處理問題。而學習程式語言，

就是將這四種方式，有系統的學習與組合，並解決問

題。 

綜合上述之相關文獻數位遊戲式學習近年來在輔助教

學上受到廣泛討論與應用，而培養邏輯思維能力也在

台灣蔚為風潮。本研究運用運算思維融入 STEM教育來

設計教學活動，希望增加學習者問題解決與創新等能

力之培養，並將競爭導入遊戲式學習活動中期望藉此

提高學習者的學習成效及改善學習者的學習心態，並

提升運算思維的能力。 

3. 系統設計 

本研究使用的是 Android 系統，Android 系統為開放性

系統，軟體支援多樣化，適合運用在自行開發軟體之

運用，設計一套可在水上航行的船，其系統架構如圖 1

所示。 

 

圖 1 為系統架構圖 

搭配 MIT所開發的 App Inventor設計操控裝置之應用程

式，其功能包含：手機應用程式與 Arduino 船體藍芽裝

置配對、船體基本航行功能、船體零件改裝參數變化

確認。使用者可在遊戲活動中，藉由應用程式的操作

與其他學習者進行競速以及船隻航行的控制，藉此學

習到零件配置對船體性能的影響。 

4. 活動設計 

其學習活動分成二個階段，第一階段為學習者遙控測

試的參與（Engage），此階段為激發學習者的學習興

趣，讓學習者熟悉船隻的基本操作，透過遊戲的方式

提升學習者的參與程度，其過程中經由探索（Explore）

與解釋（Explain）階段，使學習者理解課程的主題為

程式撰寫船隻運行航道，並且由玩家所創造出的變化

場域，練習程式撰寫。並思考先前操作過的經驗，不

斷提升對於航行路線規劃與方向感。在此階段學習者

透過策略性競爭，刺激學習者對於時間、空間與邏輯

概念的整合。之後第二階段則進行實作（Engineer）與

深化（Enrich）的運算思維階段，讓學習者實際根據指

定賽道編寫船隻航行的程式，藉由實作了解課程主題

的核心，讓學習者有更深度的探究。並經由程式編寫

後直接反饋在船體的運行，以加深對於程式學習內容

的吸收。因此，學習者完成地形觀察後，根據自己的

路線規劃編寫程式。因為是水上航行，所產生的變數

較多，所以玩家必須根據船隻狀態已及船與水的互動

狀態進行應變，以增加對於問題解決能力的訓練。如

果失敗了則記取經驗對於程式進行改寫，直到到達終

點為止。此階段學習者可以不斷改寫程式與下水測試，

並思考不同路線的規劃，利用最短時間到達終點者為

贏家。為了評估學習者在此活動的成效，最後將進行

成效評估（Evaluation），經由填寫活動滿意度問券以

瞭解學習者透過其活動的設計，達到的學習成效為何。 

5. 實驗結果與分析 

本研究實驗受測者為 20 位大學生，10 位為資訊相關科

系的學生，而另 10 位為非資訊相關科系的學生。受測

者在撰寫程式的過程中，必須依據地形規劃航行路線，

並且根據上次的錯誤進行反覆的更正。因此學生在過

程中需要預判船隻在空間中的位置，判斷航行方向輔

助程式的撰寫，並且由錯誤中來回更正與學習，藉此

提升學習者對於程式的熟悉度，下圖 2 為自動航行程式

撰寫的實驗照。 

從圖中可以發現，學習者在撰寫過程會模擬船隻航行

的方向，而船舵轉彎的角度會影響空間概念，所以可

以看到學習者會有肢體的動作。再者，對於空間的航

行距離及轉彎角度概念較不佳的學習者，下水測試的

次數就會變多。 

 

  

圖 2 自動航行程式撰寫實驗照 

從實驗的觀察中可以發現，資訊相關科系學生由於有

程式撰寫的經驗，因此在撰寫控制船隻航行方向的程

式時較容易上手，整個學習活動時間平均為 45 分鐘，

在判斷船隻位置時也較快速，因此撰寫次數較少。而

非資訊相關科系學生因對於程式撰寫較不熟悉，需要

反覆操作才能完成學習活動，所以平均花費時間為 60

分鐘，但非資訊相關科系的學生在整個活動中參與非

常踴躍，且願意多次嘗試；由此可見整體學習活動並

沒有對非資訊背景的學生帶來太大的負擔。 

另外，為了瞭解學習者對本研究活動設計的看法，使

用問卷來調查，經由統計分析結果顯示，此問卷統計

Cronbach'sα=.876，表示此問卷有高度的可信度。其活

動效益的部份結果如表 1。 
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表 1 活動效益描述性統計資料 

題目 M SD 

1.此活動能使我對寫程式產生興趣 4.25 .716 

2.此活動能幫助我了解程式的基本概念 4.40 .681 

3.此活動能提升我的方位概念 4.30 .657 

4.此活動能提升空間布局與設計 4.20 .696 

5.此活動能增進我對於速度的測量與計算 4.15 .671 

6.這類活動能提升我對物理概念的興趣 3.70 .865 

其中大部分學生皆認為此活動有助於程式能力以及空

間概念的提升，且認為此活動相當有趣，能讓原本對

於學習程式感到困難的人也提起對於撰寫程式的興趣。

此外，非資訊相關科系學生在活動流程中的學習力，

與資訊相關科系學生是相近的，此活動對他們來說並

沒有太大的負擔，且非資訊相關科系學生在活動中撰

寫程式的速度以及嘗試的次數非常多，相當踴躍參與。 

在開放式問卷的回覆中，有幾位受測者提出關於船隻

穩定性的建議，船在航行時，由於藍芽以及供電力的

不穩定，導致遙控的靈敏度下降，因此本研究期望依

照受測者所提出的建議對船的零件穩定性進行改善。 

6. 結論 

本研究以 Arduino 製作出一艘實體船搭配遊戲任務導向

之運算思維的學習活動，學習者經由自動航行計分賽，

讓學習者判斷船隻的空間、方位及運算思維，過程中

經由圖形化程式編輯介面撰寫路徑程式，藉以增加學

習者程式學習的興趣、增進學習者的運算思維，同時

增加空間及方位的概念。  

實驗活動中發現，非資訊相關科系學生較不具程式學

習經驗者，對於本研究所設計之活動皆具有極高興趣，

並踴躍參與且順利完成遊戲任務。這樣的結果也顯示，

其實驗對象可以向下延伸至國中小，培養他們的方向、

空間及運算思維的能力。 

但在進行實驗的過程中，受測者大多有提出遙控船船

體需要更加堅固、改善其穩定性與速度控制的意見，

且活動場地的規畫需要能隔絕自然阻力，才不會因為

開放空間若是風大會影響船隻的航行。 

另外，透過 Arduino 的控制板結合 Maker 的概念，讓學

習者能透過貿易遊戲取得實體零件，藉由手中現有的

零件經由插件的方式改造船體，進而影響 Arduino 的馬

達參數與旋轉幅度參數，使船體在速度與馬達轉幅等

性能具有更多的靈活性。以此讓學習者實際測試各個

功能與大小不同的零件對於水的阻力，方向的控制等

影響，並且透過反覆操作經驗與創意運用使船達到最

高效能，希望能從中培養學習者自造創新與解決問題

的能力，並且透過結合數位遊戲進行學習活動，藉以

增進學習成效。 
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ABSTRACT 

This paper outlines a study in which we integrate 

computational action – a pedagogical shift in computing 

education towards educational designs that focus on students 

learning about, and creating with, computation in ways that 

connect to their lives and communities – into engineering 

and design classes at a large urban high school. This paper 

also outlines methodological approaches for understanding 

how a computational action curriculum can change students’ 

perceptions of their computational identities and digital 

empowerment. 

KEYWORDS 

computational action, computational thinking, digital 

empowerment, computational identity, mobile computing 

1. INTRODUCTION 
Current approaches to computational thinking have largely 

followed Wing’s (2006) model, which advocated for 

teaching computing with a focus on the “fundamentals” of 

programming, such as loops, variables, conditionals, data 

handling, and parallelism. However, subscribing to only this 

approach threatens to decontextualize computing education 

from the real-lives of learners, making them feel that it isn’t 

something they need to learn, believing they won’t need to 

use it in the future – a problem regularly faced by in math 

and physics (Williams et al., 2003; Flegg et al., 2012). In 

response, our work suggests an alternate framing of 

computing education that focuses on computational action. 

Computational action posits that young people should learn 

about, and create with, computing in ways that provide them 

the opportunity to have direct impact in their lives and their 

communities (Tissenbaum, Sheldon & Abelson, submitted). 

Below we outline the theoretical foundations for 

computational action and outline the design of a high school 

curriculum that uses computational action to empower 

traditionally underrepresented students to use computing to 

have an impact in their communities. 

2. COMPUTATIONAL ACTION 
While approaches such as problem-based learning (Kay et 

al., 2000) have attempted to situate computing education in 

real-world contexts, they are often generic (e.g., designing 

supermarket checkout systems) and fail to connect to 

students’ personal interests and needs.  

While important for all students, the need to feel their work 

has the potential to have an impact in their lives and 

communities, is particularly critical for young women and 

groups traditionally underrepresented in computing and 

engineering (Pinkard et al., 2017). By refocusing computing 

education into the real lives of learners we can help them feel 

empowered to use computing to effect change and to pursue 

career paths that employ computational problem solving. 

We have termed this shift toward educational designs that 

focus on students learning about, and creating with, 

computation in ways that connect to their lives and 

communities computational action. To understand how to 

design and support learner engaging in computational 

action, we suggest it comprises of two key dimensions: 

computational identity and digital empowerment 

(Tissenbaum et al., 2017). Computational identity is a 

person's recognition that they can solve problems using 

computing and may have a place in the larger community of 

computational problem solvers. Digital empowerment is the 

belief that a person can put that identity into action in 

meaningful and impactful ways. 

3. SUPPORTING COMPUTATIONAL 

ACTION WITH MIT APP INVENTOR  
Many of the challenges faced when implementing a 

computational action curriculum can be attributed to where 

the learning takes place – traditional computer labs, which 

are far removed from their everyday lives. With the 

explosive growth of mobile and ubiquitous computing (e.g., 

the Internet of Things – IoT), students now have the 

opportunity to take what they build out into the world. This 

creates opportunities to contextualize what students can 

create, and perhaps more importantly, why they create it 

(Lee et al, 2016). 

In addition to environments that allow development for 

mobile and ubiquitous devices, we also need environments 

that allow students to quickly build, test, and deploy their 

creations, and that provide powerful abstractions to harness 

today’s incredible computing infrastructure with minimal 

previous experience. App Inventor is one such environment, 

a blocks-based programming language that allows learners 

to build fully functional mobile apps. App Inventor employs 

a drag-and-drop designer interface that allows users to 

layout the front-end (user facing) elements of their apps, 

abstracting away much of the complicated code usually 

required. App Inventor also allows users to harness a wide 

range of software and hardware logic, including creating and 

storing data locally or in the cloud, or accessing the phone’s 

camera, GPS, or Bluetooth functions. Because it supports 

creation of mobile apps, can connect to IoT devices, and 

allows those new to programming to quickly access these 

and other powerful computational features, while not the 

only option, we believe App Inventor is particularly well-

suited for supporting computational action-focused learning. 

mailto:hal@mit.edu
mailto:shermanm@mit.edu
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4. DESIGNING A COMPUTATIONAL 

ACTION CURRICULUM 
To study how a computational action curriculum might 

support students as they begin to recognize their capabilities 

for making a real impacts in their lives using computation, 

we co-designed, with two teachers, (CITE) a 10-week 

curriculum for grade-10 students at a large urban American 

high school.  

The students would come from two classrooms, taught by 

our two co-design teachers. The two classrooms were 

particularly interesting for a computational action approach. 

One class was an engineering design class, and the other a 

traditional computing class. In the computing class, the 

students would normally learn the basics of JavaScript, 

HTML, and a light introduction to Java. Additionally, the 

computing class had an extremely diverse population; nearly 

half the students were English language learners (ELL). The 

teachers recognized that these students traditionally felt 

outside of the computing culture (i.e. did not have strong 

computational identities) at the school. Thus, the teachers 

wanted to revamp the computing class to help these students 

develop their computational identities. 

In discussions with the teachers, they identified an issue that 

was of interest to many of the students at the school: the local 

river was polluted and the students wanted to develop 

solutions to clean it up. The local river was ideal context for 

supporting students to engage in computational action and 

for them to engage in digital empowerment. 

To situate students’ projects in authentic contexts, the 

engineering design class developed IoT approaches for 

capturing and exploring river data. The engineering students 

then became the “clients” or partners of the computing class, 

presenting their designs and asking the computing students 

to develop apps that could work with and enhance their 

designs. To facilitate the design process, we adapted the 

Stanford D-School’s design process. We also developed a 

set of design documents to help the students break down 

(decompose) their designs into more manageable sub-

components. The paired groups met once a week in feedback 

sessions to coordinate and refine their designs. The 

curriculum will culminate with the students presenting their 

work at an annual work fair held at the school, which is 

attended by students, administrators and city officials. 

In order to understand changes in students computational 

identities, digital empowerment, and computational problem 

solving skills over the course of the curriculum, we adapted 

several measures based on our own prior work, and other 

established identity measures. To understand changes in 

students computational identity and digital empowerment, 

we are using a combination of an adaptation Snow et al.’s 

(2017) validated multiple choice tool for measuring changes 

in students’ CT perspectives, and open-ended reflective 

statements that previous research (Authors, submitted) has 

shown to reveal important changes in students perceptions 

of their ability to use computing to solve real world 

problems.  Using a combination of field notes, classroom 

observations, and regular individual interviews and focus 

groups throughout the intervention, we are developing rich 

case studies to reveal how students identities changed over 

time.  

5. RESULTS AND DISCUSSION 
As this work is currently underway, this poster will report 

on our early findings and will aim to engage visitors on 

critical discussions around the role of computational action 

as a new framing for computing education. We believe this 

work represents an important shift in what the goals of 

computing education can be and how we motivate students 

to be the empowered computational creators of the future. 
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ABSTRACT 

This paper aims at identifying the use, benefits and 

challenges of integrating Minecraft in teaching students with 

autism. Classroom observations, students-created manifests 

and interviews were conducted in two Chinese-speaking 

special schools in Hong Kong. It is concluded that Minecraft 

does have positive impact on how children with ASD learn. 

Students were more engaged in class, showed improved 

collaboration and communications skills, developed deeper 

relationship with their classmates and the teachers, and were 

more motivated to learn. Some potential challenges and 

concerns are discussed. 

KEYWORDS 
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1. INTRODUCTION 
Autism spectrum disorder (ASD) is defined by two core 

features that are restricted and repetitive behavior and 

interest; and impairment in social interaction. Both can 

negatively affect the academic performance, well-being and 

social engagement. Researchers have acknowledged that the 

simulation techniques used in computer/video games would 

provide significant results for motivation and 

comprehension, promote engagement and active learning for 

students including those with special learning needs. 

(Habgood, Ainsworth & Benford, 2005; Mohammadi & 

Fallah, 2007; Ke & Abras, 2013).  Meanwhile, computer and 

playing video games are always the favorite learning 

activities for children with ASD (Eversole, 2016). To 

accommodate different learning styles and to maximize the 

learning effect for students with ASD, educators examine 

the appropriate teaching strategies and content delivery 

mechanisms that meet mostly the individual preferences of 

ASD.  

Minecraft and its use in education 

Minecraft is a “Three-dimensional Lego-like environment in 

which the user can build and interact with a virtual world” 

(Bos, Wilder, Cook & O’Donnell, 2014, p. 56). According 

to Zedda-Sampson (2013), about 40% of kids with ages 8 to 

10 play Minecraft. The graphics of Minecraft are 

intentionally pixelated and blocky, which make them 

appealing to children, especially those with ASD (Kulman, 

2015).  

Minecraft has currently emerged as a tool that has clear 

educational values (Mark, 2015). Many educational 

activities based on Minecraft have been developed to teach 

students in subjects including History, Language, Arts, 

Science, Math, Engineering, Architecture, and Computer 

coding (Overby & Jones, 2015).  Minecraft sparks children’s 

creativity and imagination, and enhances other important 

skills such as self-awareness, self-control, flexible thinking, 

and planning & organization (Kulman, 2015). Hollett and 

Ehret (2015) stressed that Minecraft helps children express 

and control their emotions, build strong social ties, enhance 

peer engagement and promote teamwork. Ringland (2016) 

stated that autistic population may possibly practice a wide 

variety of social skills in Minecraft. Furthermore, Minecraft 

may be considered as a kind of Computer Mediated 

Communication. For example, within Minecraft, users may 

communicate with each other by sending text through a chat 

window or talking with the help of modified accessories. 

The Minecraft space links tightly to other social platforms 

such as YouTube, discussion forums, and Wiki software 

(Pellicone & Ahn, 2014), that helps the social 

communication among individuals with ASD. They need not 

to face with the difficulties associated with face-to-face 

social interaction that requires nonverbal social cues such as 

eye contact, facial expression, and gestures (Mazurek, 

Engelhardt & Clark, 2015). 

Efforts have been made to promote the use of Minecraft in 

schools in Hong Kong. In 2014, over 550 local school 

primary and secondary schools participated in a contest 

organized by Hong Kong Cyberport. The City University of 

Hong Kong completed a case-study to explore the teaching 

and learning of Chinese History in Minecraft in Hong Kong 

secondary schools (Zhu, 2017).  

2. OBJECTIVES OF THE STUDY 
In Hong Kong, there are 61 aided special schools with about 

7,800 students with special educational needs. 41 of these 

schools are for students with intellectual disabilities 

classified into mild, mild to moderate, moderate and severe 

grades (Education Bureau, 2017). While Minecraft is 

popularly used in teaching and learning in mainstreaming 

schools, there is limited research on how Minecraft is used 

for students in special schools. It is worthwhile to study the 

use and effectiveness of Minecraft, particularly the 

strategies, benefits and challenges in teaching students with 

ASD in special schools.  

3. METHOD 
As a pilot study, two teachers, one principal and 15 students 

with ASD from two local special schools for students with 

mild intellectual disabilities in Hong Kong were invited in 

this study. All students were male, attending classes from 

grade three to grade seven.  

A semi-structured interview was conducted for examining 

the use of Minecraft in classroom teaching. The guidelines 

were prepared with reference to the past work on exploring 

the use of Minecraft in education (Smeaton, 2012). It aimed 
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at examining how teachers used the game and incorporating 

it into their existing teaching practices. Furthermore, more 

data was collected from the classroom observations, weekly 

diary for after-class Minecraft interest club and students’ 

“digital footprints”. The student-created work in Minecraft 

and student-managed Minecraft servers were tracked by 

using the screen captures and recorded videos. The data 

source from the interview data, observation notes, student-

created Minecraft works helped the thematic analysis. 

4. FINDINGS 

4.1.  The use of Minecraft in special schools 

Minecraft were used in teaching different subjects such as 

Visual Arts, Computer, Language, Mathematics and Social 

Study. Teachers reported topics with architectural and 

storytelling elements were particularly suitable for using 

Minecraft. Topics with animals, space and history were also 

reported.  

The schools supported the use of Minecraft by setting up a 

private Minecraft server in school with restricted access.  

Only students who have been given the permission can log 

in the server to play. Since no one else can access the server, 

students will feel free and safe to socialize and work with 

each other. Two servers respectively for the new users and 

experienced players were set up. Students who were new to 

Minecraft used the server for beginners to play and 

socialized with their fellow classmates.  

In addition to using Minecraft in classroom teaching, 

teachers also organized the after-school interest club and 

workshops. A teacher organized a Minecraft workshop with 

the theme "Smart Home" in the summer vacation. A group 

of about 6 students with ASD worked together to design and 

build a smart home for the elderly inside Minecraft.  

The Principal attempted to explore the effectiveness of using 

Minecraft in his school and highly encouraged his teachers 

to use the tool in the classroom. He started an after-school 

interest group that met on every Friday. Students worked 

together to learn Chinese, Mathematics and Social Subjects 

through Minecraft under the teacher guidance. 

Minecraft provided an interesting way for students to learn 

the 3-dimensional modelling. With some software tools (e.g. 

‘Mineways’, a free and open-source program for exporting 

Minecraft models for 3D printing), students were able to 

export what they had built in Minecraft for 3D printing. 

It was observed that autistic children often had difficulty in 

expressing their thoughts in words. Minecraft became a 

language for them to communicate with others. When the 

students were building in Minecraft, they were acting out a 

story in their own mind. And they might tell that story by 

using screenshots of different Minecraft scenes. 

4.2. Benefits  

Enhancing collaboration and teamwork  

Working with other people is probably one of the most 

challenging aspects of school life for students with ASD. 

Effective teamwork requires the students to learn skills such 

as negotiating, active listening, following directions and 

accepting criticism. Playing in Minecraft offers a lot of 

opportunities to develop these skills. Large-scale creation in 

Minecraft can seldom be built by a single student.  It requires 

a team of at least 4-6 students, working seamlessly together 

to complete.  

“Students choose their own role based on their own 

expertise and interest. For example, some students are good 

at building railways, some are good at building Redstone 

devices and some are good at crafting building”.  

When working together in Minecraft, students have many 

opportunities to discuss with members of their own team or 

other teams. Building is a truly collaborative effort. 

“…during construction, when one student found that he did 

not have enough space, he would proactively propose to 

another student and ask for more space"  

Even when they are not working together in the same 

project, the students are still playing in the same virtual 

environment, trying to ignore distractions and avoid 

conflicts from the outside world. In school, teachers can 

teach the students how to work together effectively by 

planning, building, and presenting a Minecraft project 

together as a group.  

Improving social interaction and developing relationship  

Lack of social communication and interaction is a core 

deficit of students with ASD, and as a result, most of them 

have difficulties in developing and maintaining relationship 

with other people. When working together on a Minecraft 

project, the students must learn to express their needs and 

opinions, make suggestion, ask for help and negotiate with 

others.  

“A parent shared with me that his child never called his 

classmates at home. But now when he faced with a problem 

in completing a task in Minecraft, he would take the 

initiative to call his classmates for help." 

Students are willing to talk and share their interest in 

Minecraft with peers and teachers. A common interest helps 

develop new friendship and deepen the relationship among 

teachers and students. 

 “When they see their classmates building something 

interesting, they will go over and ask them how they did it. 

There is a strong motivation to interact with each other.” 

 “There are WhatsApp groups between me and the students, 

as well as among the students themselves. And they regularly 

exchange information about Minecraft. Many of them would 

report on their tasks and share their creations in Minecraft 

with me. I am getting closer to my students.” 

Minecraft is a social game among all the players. The desire 

of completing and sharing their work in Minecraft 

encourages students with ASD to practice communication 

and social skills. The active social interaction and develop 

deeper relationship with their classmates. 

Becoming active learners  

Learning through Minecraft encourages the students to be 

active learners and to take full responsibility of their own 

learning. They have the freedom to choose what to learn and 

how they are going to learn it. 

“They will go online (for example, YouTube) to find 

solutions. Even if the video is not in Chinese, they will find a 
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way to understand the materials.  They are learning how to 

learn independently which is an important 21st century 

skill.” 

“E-learning is not just a one-way instruction from the 

teacher. Instead, students find the answers to their questions 

by interacting with others, and develop the spirit of inquiry 

along the way.” 

When creating stories in Minecraft, students must find their 

own contents that made up the story. In the process of 

creation, the listening, speaking, writing and logical thinking 

skills of the students are greatly enhanced.  

4.3. Issues and challenges 

Online addiction and safety 

The online addiction and safety are the concerns. It was 

noted that teachers restricted the playing time of Minecraft 

to prevent addiction. Teacher A set the school Minecraft 

servers to be available from 7 am to 11 pm. Teacher B and 

the Principal only allowed their students to use Minecraft in 

school under teacher supervision. 

Teachers needed to prevent cyber bullying before it 

happened. Teacher A decided to set up her own private 

server to protect the students from potential harassment by 

strangers. Teachers and students jointly setup playing rules, 

such forbidding the use of “TNT”, killing of animals, or 

bullying each other, etc. 

Detailed instructional design  

It is not an easy task integrate Minecraft in classroom 

learning. Teachers reported to spend a lot of time on 

instructional design and material preparation. This was 

especially true in the beginning when the teachers did not 

have a lot of experience in using Minecraft.  

“I once conducted a project of building a “smart school” in 

Minecraft. Firstly, I need to guide the students to discuss 

what should be built and where, what information they need 

to find out, before they can actually build them.” 

In projects that require cooperation among the students, the 

teacher had to help the discussion, instead of leaving the 

students on their own. Some teachers also used thinking 

tools such as mind map to help students discuss the project 

approach and work allocation. Teachers also needed to have 

good time management skills and kept reminding the 

students of the time management. 

 “They need to think about who the protagonist is, what time 

the story happens, etc. I need to give them enough 

instructions or they will get stuck in some parts of the story 

and neglect the rest.”   

When recreating a story in Minecraft based on the story "pig 

nose elephant", the students had to fully understand the story 

and then answer some important questions beforehand.  

“When a chicken suddenly appeared in the Minecraft virtual 

world, the students all got excited and joked to burn the 

chicken. I immediately explained why we should not do 

that.” 

Sometimes the students' reaction was observed to be fierce 

and brutal. Educators must seize the opportunity to tell the 

students how they should properly behave. These are all very 

challenging tasks that require a lot of experience and 

wisdom from the teachers. 

Home-school cooperation  

Parents are the important stakeholders in learning and 

understanding Minecraft with their children. Many parents 

worried about their children getting addicted to Minecraft. 

But some parents were willing to explore how to play the 

game with their children. It is very important to get the 

understanding and support from the parents. 

“Whether you let them play or not, they will play. You don't 

know what they're doing if you don't get actively involved. 

Parents will see that the child is not just playing game, 

he/she is doing homework assigned by the teachers. Showing 

the products made by the students to their parents helps.” 

As teachers came to understand the benefits of using 

Minecraft for learning, they began to share this information 

with parents. Teachers and parents worked together to 

determine the proper use of Minecraft. Eventually, parents 

understood that game-based learning under proper guidance 

really helped their children learn. 

5. DISCUSSION AND CONCLUSION 

Using Minecraft as an alternative educational tool  

Minecraft has been used as the main, optional or 

supplementary educational tool in many mainstream schools 

(Petrov, 2014). One major difference in the approach taken 

by the special schools is the extent to which Minecraft is 

being used.  In these schools, Minecraft is more likely to be 

used as an alternative teaching tool for students with special 

needs to express their understanding because these students 

vary a lot in both their capability and their interests. This is 

consistent with the philosophy that special education should 

respect individual differences and emphasize individualized 

learning. 

In the case study, the use of Minecraft is not mandated to the 

whole class. Both paper-pencil worksheets and other digital 

tools are also available to students. Students with ASD, 

however, prefer to use Minecraft over other means. But even 

for those who have chosen to use Minecraft, they are using 

it in many ways. Students with lower communication skills 

may choose to use just screen captures and voice recording 

to present their work. 

Student learning and teacher competency 

The two school cases started their Minecraft journey very 

differently but they achieved the positive outcome in 

supporting the learning of students with ASD. Teachers 

reported that they recognized how their students reacted to 

the use of Minecraft and the impact that Minecraft had on 

behavior, motivation and learning. They used Minecraft for 

the benefit of the students.  

While playing Minecraft, the students are often the experts. 

Learning with and from students allows the students to be 

the center of learning. Previous research and experience 

using Game Based Learning have shown how useful a Game 

Based Learning approach can be in creating student-

centered learning environment (Motschnig-Pitrik & 

Holzinger, 2002). Teachers who use Minecraft in their 

schools must maintain a student-guided mentality for the 
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best outcome (Petrov, 2014). In this research, the teachers 

may not be the experts in using the Minecraft but they allow 

students the full autonomy in managing the school Minecraft 

server and structuring their learning experience. With this 

approach, students develop self-learning skills, take more 

responsibility for their own learning and have more freedom 

to choose what they want to take. 

Even though students can learn by themselves, teachers play 

an important role in facilitating and supporting the learning 

of the students. Technology provides many learning 

opportunities that are both engaging and motivating to the 

students. However, it will work effectively if teachers 

integrate it appropriately in the course design.  

Some stated that teachers must be familiar with the contents 

of the video games so that they can use them to support 

teaching (Barbour, Evans & Toker, 2009). On the other 

hand, Smeaton (2014) argued that instruction experience is 

an even more important factor because experienced teachers 

would be able to deliver knowledge more effectively. 

Students with ASD demonstrated grat motivation when 

using Minecraft to learn, but they also required strict 

behavior management from the teacher. One of the reasons 

why computer games such as Minecraft fails as a teaching 

tool could be due to the lack of preparation and 

understanding by the teacher. The experience of the teacher 

is a crucial factor. According to the research findings, the 

familiarity with Minecraft is not a decisive factor.  The 

caring of the students and the design of the learning activities 

are much more important than the teacher’s personal 

interests and skills in the game. 

Conclusion 

It was concluded that the use of Minecraft does help the 

learning of students with ASD. The result associated with 

this practice was positive. Students were more engaged in 

class, showed improved collaboration and communications 

skills, developed deeper relationship with their classmates 

and the teachers, and were more motivated to learn. Despite 

the benefits of using Minecraft, some major challenges and 

issues were also identified. The cases presented in this study 

suggest that Minecraft can be a valuable educational tool in 

special school and inspire more evidence-based practice and 

further research. 
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摘要 

本研究旨在結合運算思維概念幫助國小學習障礙學生

進行數學學習活動，本研究依據明確教學原則

（Explicit Instruction）的教學模式與考慮學習障礙類別

學生的特殊需求（例如：書寫困難、文字理解困難

等），使用數學概念中的空間推理概念設計不插電的

校園地圖 PAPAGO 的運算思維教學活動，教導學生如

何運用運算思維概念辨認地圖上方向、路徑規劃等數

學相關概念。 

關鍵字 

運算思維；學習障礙；空間推理。 

1. 前言 

運算思維近年來已受到各國教育上的重視，過去研究

提出運算思維不僅侷限於資訊科學領域，例如在閱讀、

寫作和算術皆需要用到運算思維(Wing，2006)，在數學

教育領域方面，國際研究也開始關注於如何運用運算

思維來學習數學與增進數學能力，並探究如何將運算

思維應用於學校的一些數學主題以改善或豐富傳統教

學(Sysło & Kwiatkowska, 2016)，顯示運用運算思維於

數學教育已備受重視。但運算思維的教學活動在特殊

教育需求的學生仍較少研究，相對應的教材仍相對缺

乏，因此本研究在於幫助特殊需求的學習障礙學生設

計一套結合運算思維教學的數學學習活動，以幫助學

生運用運算思維概念進行數學解題。 

2. 運算思維在特殊教育領域之探究 

近幾年有學者提出在特殊教育領域對於運算思維的教

學方式是一項重要且具挑戰性的研究，尤其如何在特

殊教育領域導入運算思維的教學是值得探究之研究議

題(Snodgrass, Israel, & Reese, 2016)。Barefoot(2016)提出

教導特殊需求學生學習運算思維有幾項優點：(1).運算

思維是運算課程中重要的核心概念，培養學生問題解

決的能力並可應用於課程中，例如分解與調整問題的

能力可以應用於數學或是運算問題中。(2).運算思維是

一種具有創造性、可行的方法來增進課程中的學習。

(3).科技可以幫助有特殊教育需求或是障礙的學生通過

學習、資訊與休閒的教學活動。  

3. 不插電之運算思維教學活動 

過去已有研究針對運算思維教學設計不插電的運算思

維教學活動， Bell、Witten與 Fellows(2010)設計不插電

的活動來教學生資訊科學的概念，例如透過海戰棋讓

學生能夠了解運算思維中的演算法，且學生須對於數

字大小的排序了解與幾何概念中的圖形探索與空間座

標。目前也有幾個網站，例如Code.org、Barefoot、ICT 

in Practice 等網站都有設計不插電的運算思維教學活動，

顯示針對不插電的的運算思維教學活動設計成為近年

來的教育研究趨勢之一，但針對特殊教育需求學生的

相關教學活動仍非常缺乏。 

4. 校園地圖 PAPAGO 教學活動之發展 

本研究主要是結合運算思維發展國小特殊教育需求的

數學教學活動，其研究對象以學習障礙學生為主，而

學習障礙學生又分為數學障礙、閱讀障礙與書寫障礙，

因此在設計教學活動時須考慮到這三組障礙類別的特

殊需求。 

過去研究提到數學障礙的學生多半在訊息處理過程中

對於涉及方位或方向的數學解題或數線問題有學習上

的困難（邱上真，2001），因此本研究設計地圖相關

的不插電遊戲進行教學活動，並運用運算思維的概念

教導學生。而為了能夠結合學生實際生活中會遭遇之

情境，本研究設計了校園地圖 PAPAGO 教學活動，透

過巧拼模擬校園地圖，帶學生透過地圖的教學活動來

學習運算思維的概念，也希望能夠幫助學生增進其中

的數學概念。本研究設計的教學活動所對應之運算思

維概念與數學概念如表 1。 

本研究參考 Israel 等學者(2015)對於運算思維在特殊教

育需求中提出的明確的教學原則(Explicit Instruction)來

設計運算思維教學活動，教學活動的設計也需考慮學

生學習較弱的部分，例如書寫障礙的學生受限其書寫

能力，本研究改用紙牌讓學生進行紙牌排列，此外紙

牌上會以圖形化呈現紙牌代表的方向、前進的步數，

減輕閱讀障礙的學生對於文字閱讀的困難等，本研究

設計的教學課程範例如表 3，依照任務設計的方式，讓

學生透過不同任務學習運算思維概念。學生須利用提

供的方向與前進步數的紙牌，排列出從起到如何到達

指定位置。 

5. 未來研究工作 
本研究目前已設計一套國小特殊需求學生的運算思維

進行數學教學課程，後續將先進行資料蒐集，進行思

維教學活動的數學課程教學，從教學活動中以「錄影」

或是「觀察紀錄」的方式了解學生對於教學活動與練

習單元的反應與學習狀況，並於活動結束後分析學生

在任務單元的作答狀況，並對照運算思維概念與行為

及數學概念的觀點，了解學生的學習程度，並詢問教

學教師之建議，修改所設計的教學課程。 
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表 1 校園地圖 PAPAGO 教學概念對應 

活動目標 1. 讓學生能夠讀懂地圖 

2. 讓學生能具備基本空間概念，包括方位、距離 

運算思維概念 物件、序列、條件、模式辨認 

數學概念 1. 能辨識日常經驗「向右轉」視為順時針轉 90 度，「向左轉」視為逆時針 90 度。 

2. 能辨識日常經驗「向後轉」視為轉了 180 度的平角。 

3. 能從平面圖形的放大或縮小，分辨任兩點之間的長度距離也以相同的比例放大或縮小。 

4. 能理解用不同個別單位測量同一長度時，其數值不同，並能說明原因 

 

表 2 運算思維教學原則範例(Israel et al., 2015) 

明確教學法的教學元素 教學說明 

Focus instruction on critical content 決定要教導運算思維的哪一個能力（例如：演算法、模式辨識）。 

Sequence skills logically 針對問題的解題歷程，逐一運用運算思維概念與行為模式進行教學。 

Provide step-by-step demonstrations 根據本研究開發的不插電運算思維教學活動提供每一步驟的教學演示

或是範例，例如教導學生如何找出遊戲的規律。 

Provide immediate affirmative and 

corrective feedback 
當學生實際進行數學解題結果時結果並不如預期或是錯誤時，老師可

以藉由引導式提問教導學生正確的解題方式。 

 

表 3 校園地圖 PAPAGO 教學活動範例 

活動流程 教材或教具 時間 運算思維概念 

*辨認東西南北、方位、地圖 

帶領小朋友辨認方位，並教導學生辨認地圖上的建築物 

*實際演練 

老師：等一下我們要來玩一個遊戲，你要按照老師給你的指令來進

行動作喔，請用紙牌排列出你要走的路徑。 

任務 1. 校門口在地圖上的右下角，現在你面對北方，請直走 3 步，

再往左 2 步，請問你會到達哪裡？ 

任務 2. 那現在要請你動動腦，設計一條和剛剛不同的路線回來起點 

地圖(以巧拼製

作，不同顏色代

表不同建築物，

白色代表道路)  

學習單 

30 分鐘 物件 

序列 

條件 

  

圖 1、地圖範例與排列路徑之紙牌卡
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ABSTRACT 

The interdisciplinary field of data science requires a strong 

foundation in computational thinking (CT) concepts and 

practices. In this paper, we describe the use of qualitative 

and quantitative methods to study data science projects 

completed by undergraduate students who are learning data 

science but have already learned computer programming. 

The projects are stored as Jupyter notebooks: documents that 

store code, as well as its output from execution, formatted 

text for self-explanations, and graphics. Our analysis of the 

notebooks discovers two kinds of student attitudes: 

explorers, who work iteratively, and goal accomplishers, 

who work incrementally. Despite varying attitudes, we find 

that students often fluctuate between the two learner types 

depending on their computational goals for a given 

notebook. Moreover, when students practice the explorer 

approach, they often engage more actively with many CT 

skills such as pattern generalization and communication of 

results. Finally, we propose ways to utilize these findings to 

encourage CT practices in future data science curricula.  

KEYWORDS 

computational thinking, data science education, Jupyter 

notebooks, learner types  

1. INTRODUCTION 
As we are still debating the theoretical and operational 

definition of computational thinking (CT), it is worthwhile 

to engage in the question: how can we observe, describe, and 

quantify its expression in learners, if at all possible? Such an 

exercise has the potential to shed light into the kind of 

thought processes in which learners already engage or are 

trying to master as they go about solving problems through 

computation.  Given that learners of different ages and at 

different stages in their learning will display different levels 

of understanding, we need to study a variety of situations 

and groups of learners engaged in computational thinking to 

arrive at a more complete picture. 

Our focus in this paper is undergraduate students who have 

already completed at least two courses in computer science: 

an introductory course in Python to learn computational 

concepts such as sequencing, loops, and conditionals, and a 

second course about data structures in Java, which provides 

opportunities to engage in CT practices such as program 

design, testing and debugging, and accessing and writing 

documentation.  After completing these two courses, the 

students enrolled in an introductory data science course 

taught in Python that utilized Jupyter notebooks 1  as its 

environment for learning and practicing data science.  

Data science, with its current focus on large amounts of 

automatically captured data, provides a rich context for 

observing CT in practice because it offers a wide range of 

                                                                 

1 http://jupyter.org 

problems that are new and challenging, but also meaningful 

to explore—something that motivates learners. Concretely, 

in the examples analyzed for this paper, the students were 

able to work with a variety of real-world datasets ranging 

from their personal email inbox to the web server entry logs 

for the courses offered in our computer science department. 

Finding answers to questions about these datasets was not 

trivial. To be more efficient, students had to learn new data 

structures and new operators. There was no established 

algorithm for coming to a solution, thus, they needed to be 

creative, work incrementally, and iterate often, all practices 

inherent to computational thinking.  

In this paper, we begin by providing background on Jupyter 

notebooks and some previous methods for assessing 

computational thinking that were helpful in framing our 

work. We then continue to discuss the data and methodology 

for our notebook analyses and the variables that we created 

from the raw notebooks. We discuss our findings from the 

data analysis including our uncovered learner types 

(explorer and goal accomplisher) and conclude with a 

discussion of how we propose to integrate computational 

thinking practices in data science education in the future.  

2. BACKGROUND 
We shaped our work with both the nature of the Jupyter 

notebooks and previous methods to assess computational 

thinking in mind. In this section, we provide some historical 

background and previous research on both these topics. 

2.1. Jupyter notebooks 

The choice of a programming language and its integrated 

development environment (IDE) impacts what can be taught 

and how it can be taught (Pears et al., 2007), especially when 

teaching novice learners. The rapid adoption in recent years 

of block-based programming environments such as Scratch 

and App Inventor for teaching programming is due in part to 

their ability to allow learners to focus on what is important—

the computational concepts—while avoiding the struggle 

with the syntactical details of the underlying languages (Bau 

et al., 2017). Similarly, teaching data science benefits from 

environments that allow for frequent data exploration, 

incremental problem solving, and easy access to previous 

results of analysis. For these reasons, the Jupyter notebook 

is a strong candidate for teaching data science at any level of 

the curriculum. Furthermore, Jupyter notebooks have 

become the environment of choice for many computational 

scientists (Kluyver et al., 2016) because they encourage 

reproducibility in science, a practice that is important to 

foster in students early in their data science endeavors. 

The Jupyter notebook traces its roots to the IPython 

(interactive Python) extension for the Python programming 

language (Pérez and Granger, 2007). From its inception, 
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IPython was designed to augment the Python interactive 

shell with features that go beyond the usual read-evaluate-

print loop (REPL), common in most interpreted languages. 

The evolution from shell interaction to the notebook (as a 

single document that captures all aspects of a programming 

session) was inspired by the existence of notebooks for 

teaching Mathematics in proprietary software such as 

Mathematica and Maple. By making the Jupyter notebook 

open-source, web-based, and language-agnostic (i.e., it can 

be used with many different programming languages in the 

back-end), its community of developers has created a 

platform with broad appeal for educators and practitioners 

alike. The fact that it is also used by practitioners makes it 

appealing to undergraduate students who prefer real-world 

development environments (where they learn by doing) to 

pedagogical ones (Oblinger, 2004). 

2.2. Assessment of CT 

For our purposes, we adopt the terminology presented in 

Brennan and Resnick (2012), who define computational 

thinking as a composition of computational concepts, 

practices and perspectives. More specifically, computational 

concepts refer to the concepts students engage with when 

they program (e.g. iteration and parallelism). Computational 

practices refer to the various practices students develop as 

they engage with the concepts (e.g. being incremental and 

iterative in design). And, lastly, computational perspectives 

refer to shifts in perspectives about the world around the 

student (e.g. by expressing and connecting their work). 

Past research on both measuring and assessing these 

computational thinking skills has focused primarily on 

developing assessment material for pre-college programs. 

Brennan and Resnick’s work specifically, which 

concentrated on young students working with Scratch, 

described a variety of different assessment approaches 

including project content analysis and artifact-based 

interviews. Boechler et al. (2012) took a slightly different 

approach in that they calculated a variety of metrics as 

evidence of CT skill development in Scratch applications. 

Specifically, they calculated the number of scripts, number 

of blocks, number of variables, number of child scripts, and 

the nesting complexity of student Scratch projects. More 

recently, Moreno-León et al. (2017) obtained quantitative 

measurements of seven different CT dimensions in Scratch 

projects using a static code analyzer, Dr. Scratch, in order to 

cluster projects based on CT complexity. In similar block-

based programming environments, students' CT skills have 

been assessed by way of analyzing student programming 

actions in their log data (Grover et al., 2017). In this instance, 

researchers designed specific programming tasks to draw 

out CT skills to make for easier evaluation. Likewise, 

Bienkowski et al. (2015) created design patterns for major 

CT practices as a way to assess how learners may be 

applying such skills as they develop a deeper computational 

understanding.  

In light of the specific assessment of CT, many 

computational thinking researchers have explicitly 

emphasized the importance of data and information as a core 

CT practice. Barr and Stephenson (2011) include data 

collection, data analysis, and data representation as three of 

their nine core concepts and capabilities of CT. Further, 

communication in the sense of explaining computational 

results is one of the six practices found to complement the 

content knowledge of computer scientists by The College 

Board (2014). Despite the undisputed importance of these 

data science elements of CT, we find that their evaluation 

has been explored to a lesser extent than that of other CT 

practices (abstraction, design complexity, etc.) in the 

assessments described above.  

3. DATA & METHODOLOGY 
For this study, we focus on assessing and evaluating 

computational thinking in the context of data science 

learners. We analyze student work in the form of Jupyter 

notebooks from students who took an introductory data 

science course at Wellesley College, a female population, in 

either Spring 2016 or Fall 2017. In total, we analyzed 132 

notebooks created by 37 students from the two times the 

course was offered. The notebooks ranged in focus, utilized 

different (but often similar) data sets, and worked through 

the data science process (Figure 1) in one way or another to 

solve a problem. Since problem solving through 

computation is becoming a popularized manner of 

completing a data science workflow, each student notebook 

emphasized various CT skills while working to answer a 

question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The data science process by Pfister and Blitzstein 

(2013). 

Jupyter notebooks are automatically stored as JSON 

(JavaScript Object Notation) files, a format common on the 

Web. This allows for an easy analysis of the notebooks, 

especially to extract the input cells that contain the code 

entered by the students, the output cells that contain the 

result of the code execution, the Markdown cells (special 

text cells that can contain formatting such as headings, lists, 

emphasized text, formulas, etc.) that contain self-

explanations or other useful comments. We don’t 

manipulate the Jupyter notebooks to collect data beyond 

what the notebook itself stores. Moreover, we wrote a script 

to extract 15 different metrics that encompass computational 

thinking skills and computational complexity in one way or 
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another from each notebook in JSON format (Table 1). 

These metrics aim to quantify CT skills such as problem 

breakdown, pattern recognition, and communication. We 

then calculate descriptive statistics for each of these metrics 

in order to better understand how they vary in practice.  

Table 1. Calculated metrics for a given Jupyter notebook. 

We further discover that from the information in the 

notebooks it is possible to identify two distinct types of 

behavior in these problem solving scenarios that we 

qualitatively label as "goal accomplisher" and "explorer". In 

brief, a goal accomplisher is a student that works 

incrementally toward the desired outcome, while an explorer 

engages in multiple iterations and sometimes off-track 

activities. Of all the Jupyter notebooks collected, we labeled 

71 notebooks (44 “goal accomplisher” and 27 “explorer”) 

from 19 students in the second course offering based on 

manual review of each notebook. Because nature of the 

assigned projects differed between the two course offerings, 

we chose to only label notebooks in the second course 

offering to reduce a potential course-based dependency in 

our metrics when comparing the learner types. We went on 

to plot the trajectories of each student’s notebook executions 

in an effort to visually depict the learner type of a given 

notebook. We also used the labeled notebooks to determine 

which of our extracted CT metrics are critical in 

differentiating the learner types. With this, we also looked to 

see if certain students are prone to practicing one of these 

learner approaches more than the other. 

4. RESULTS 
4.1. Features to quantify CT behavior in notebooks 

We defined 15 different variables (Table 1) in an attempt to 

properly assess student computational thinking ability with 

our JSON scraping script. After calculating these metrics for 

all 132 student Jupyter notebooks, we found that the 

distribution of values for all the features varied greatly 

across the notebooks (Figure 2). Based on this, we observed 

how some students were stronger in particular CT skills than 

others.  

More specifically for example, the maximum number of 

self-declared functions in a notebook (a metric relating to 

both pattern recognition ability and knowledge of existing 

software tools) was 27 as compared to the minimum of 0 

self-declared functions. Because these students are taught to 

utilize existing Python packages to manipulate data, we 

found that computationally stronger students were 

somewhere in between these two extremes. We observed 

that students who declare more functions often are over-

declaring in the sense they aren’t actively utilizing functions 

from other packages and they’re often repetitively writing 

similar functions. On the other side of the spectrum, students 

who don’t declare any functions tend to manually 

manipulate their data with code that is copy-pasted from 

their earlier code—suggesting a potential weakness in both 

their pattern generalization abilities and knowledge of 

existing software tools. 

Another notable feature with a great range in values was the 

mean number of words in a markdown cell, a variable that 

links directly to the communication abilities of these data 

science learners. Since students were encouraged to utilize 

Markdown to communicate, evaluate, and explain results 

from their code, we found that this feature directly correlated 

with a student’s ability to communicate their understanding 

with others. Specifically, students stronger on the 

communication front had more Markdown in their Jupyter 

notebooks. 

4.2. Explorers vs. Goal Accomplishers 

In addition to utilizing our JSON scraping script with the 

student Jupyter notebooks, we classified the notebooks into 

two groups based on behavioral trends in a student’s 

approach to the data science cycle, trends that visually stood 

out in the trajectory of their notebooks.  

Our “explorer'” archetype consisted of students who 

behaved more iteratively in their approach to a given data 

science task. These students would often find something 

interesting in their analysis then go beyond—building on 

their conclusions by modifying their initial analysis and 

taking it numerous steps further. Additionally, these students 

were effective in their use of text explanations throughout 

their notebooks in order to explain and discuss both their 

thought processes and their computational approach to the 

analysis. They also provided ideas as to how they could 

extend their analysis and conclusions even further.  

On the other hand, our “goal accomplisher” archetype 

featured students whose notebooks focused on answering a 

specific scientific question with the intention to reach a 

conclusion to that question and thus end their analysis. Once 

identifying and planning out their approach, these students 

would spend most time cleaning the data before going on to 

use this cleaner data set to answer their initial research 

Figure 2. Boxplot depicting the distribution of selected 

features calculated based on all student Jupyter notebooks. 

 



 

118 

question. Though these students generally had a shorter data 

exploration period within a given notebook, they were 

particularly strong at identifying a major takeaway or trend 

from their analyses. 

In our “explorer” example (Figure 3), the student tried to 

analyze her email behavior by creating new questions to 

answer throughout the course of her notebook. She started 

by importing the data and organizing it into a DataFrame2 

with some slight data cleaning and exploring. However, 

early on she reimported the data, presumably because she 

wanted to use the original data for deeper analysis (A). A bit 

later in the notebook she defines a function to label the day 

of the week an email was received to explore daily email 

variation (B). We see that this function is executed much 

earlier than surrounding cells—this is because she went back 

to rerun old cells but never needed to update the function 

itself. Then, after some initial analyzing and visualizing her 

email behavior on a daily basis, she went on to see trend 

variation on a monthly timescale and between her various 

social groups (C). Generally, here the student went back and 

forth between cells when she decided to modify her analysis 

as she developed new interest in the various contexts 

(temporal and social) of the data. 

 

Figure 3. Example notebook of an explorer. 

Our “goal accomplisher” (Figure 4) began her notebook by 

defining functions specific to formatting her data in a way 

appropriate to answer her scientific question: “who are my 

emails from and how does this change over time?” (A). Once 

she had successfully validated the cleanliness of her data, 

having categorized individual emails using her initially 

defined function, she immediately went on to analyze the 

categorized emails as a function of time and plotted the 

result (B). Continuing on, she further subsetted her 

categorized emails with modified functions and replotted the 

result once again—determining that most of her emails were 

“Wellesley Emails” with peaks occurring during specific 

points of the semester (C). In particular, throughout this 

notebook she worked on the same question with impeccable 

focus and continued to smoothly progress until she 

successfully found her answer. 

                                                                 

2 a two-dimensional labeled data structure that organizes a 

dataset into columns of potentially different (data) types 

 

Figure 4. Example notebook of a goal accomplisher. 

4.3. Differentiating learner types 

We wanted to determine whether our learner types were 

differentiable with our variables extracted using our JSON 

scraping script. After labeling 71 of the notebooks as 

“explorer” or “goal accomplisher” style, we ran two-sample 

t-tests to compare all our metrics between the two groups 

(Table 2). We found a significant difference ( = 0.05) in 

the number of code cells, the number of Markdown cells, the 

number of lines of code, the number of Markdown words, 

the number of images, the maximum execution, the 

execution range, the mean execution per cell, the number of 

function calls, and the mean function use between an 

explorer notebook and a goal accomplisher notebook. For all 

these variables, explorers had a significantly higher average 

value than goal accomplishers.  

Table 2. Results of two-sample t-tests comparing CT 

metrics between explorer and goal accomplisher 

notebooks. 

 

Additionally, we wanted to evaluate these behavioral 

patterns across students and see if students tend to favor one 

learner type over the other in their notebooks. We found that 

most students had notebooks in both styles (Figure 5). This 

suggests that students work differently depending on the 
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purpose of a given notebook. Furthermore, with this it 

appears that students are flexible in many of the CT practices 

that we quantify with extracted features from the notebooks. 

In particular, explorer notebooks typically featured a higher 

number of images (or data visualizations), a metric that 

directly exhibits a student’s ability and effort to visualize 

their data and communicate information to non-experts. This 

metric, however, varied greatly across notebooks for an 

individual student, often depending on the learner style of a 

particular notebook (Figure 5). This suggests that most 

students have already developed many of these CT skills but 

that they selectively apply them, naturally, in situations 

where they are more useful. 

 

Figure 5. Number of images in a Jupyter notebook based 

on student and learner type. 

5. DISCUSSION 
In this paper, we presented our findings from both a 

quantitative and qualitative evaluation of student Jupyter 

notebook projects for an undergraduate data science course 

in the context of computational thinking. We developed a 

script to scrape the JSON-formatted notebooks for various 

metrics that relate to the computational ability and efforts of 

a student. We further found that we could classify student 

behavior into two groups based on behavioral trends in their 

notebooks, a classification that could be visually depicted by 

the trajectory of a student’s notebook execution. 

Furthermore, utilizing our extracted metrics we found that 

students practicing the “explorer” approach in their 

notebook often engaged in greater CT habits than those 

practicing the “goal accomplisher” approach. Seeing as 

explorers are more iterative by our definition and that 

iteration is a CT skill on its own, it appears as though many 

CT practices correlate and perhaps promote one another. 

Though we found that the “explorer” notebooks were 

typically more iterative in their data science process and 

more thorough in their utilization of CT skills, we believe 

that both learner types are important to data science 

workflows. Since it was apparent that very few students 

practiced only one of the two approaches in their notebooks 

(68.4% of students had at least one notebook of each learner 

type), it makes sense to consider the learner types as flexible 

measures that depend on the desired goal of a project 

notebook. A “goal accomplisher” is not inferior to an 

“explorer” but rather a “goal accomplisher” at the time may 

be seeking something specific to glean in their notebook as 

opposed to undergoing a full project that seeks to deeply 

uncover something new. As this is the case, however, we 

encourage data science instructors to promote the “explorer” 

approach if they’re concurrently attempting to stimulate the 

development and practice of CT. 

It is also possible that the “explorer” approach is less natural 

to a young computer scientist than the “goal accomplisher” 

approach. When exploring a student needs to be flexible as 

compared to when they have a goal in mind and they 

generally already know how to accomplish it. This idea is 

similar to the “expertise effect” seen in chess: an expert 

chess player sees the field in terms of patterns whereas a 

novice player sees it as a list of the positions of all the pieces. 

The expertise here comes with familiarity of the data and 

knowledge of the tools available to work with it efficiently 

and effectively. Since computer science students are often 

used to completing assignments with concrete instructions 

and purpose, working in the goal accomplisher manner may 

be more intuitive for new data science students. With the 

greater discomfort that may come with the explorer 

approach, students may be naturally practicing already 

developed CT skills as they iteratively work through a 

problem. 

Notebook behavior also likely depends on both the 

individual and the type of task. Though most individuals 

(68.4%) exhibited both learner type behaviors in their 

notebooks, 31.6% of students only featured one learner type 

in their notebooks (15.8% of students were explorer 

exclusive and 15.8% of students were goal accomplisher 

exclusive).  Students whose notebooks focused more heavily 

on data cleaning tended to favor the goal accomplisher style. 

In contrast, student notebooks that were more focused on 

understanding the data in a variety of ways, often including 

some sort of modeling aspect, favored the explorer style. We 

noticed this trend in learner type based on notebook focus 

particularly in the email inbox analysis project in which 

student analysis was less structured and more up for student 

interpretation than some of the other projects.   

Additionally, it is important to note that a binary 

classification for a given notebook may not always be 

appropriate. For our purposes, we felt that the notebooks we 

labeled fit well into one of the notebook styles based on a 

manual review of the student’s approach. However, based 

on the statistics of the measured CT metrics for each learner 

type, we know that there is a great range in CT expression 

within both styles so a binary classification may not be 

applicable in all cases. We believe it is important to further 

explore the idea that there may exist a spectrum between the 

two learner types observed here. 

Even more, since data science requires individuals to solve 

complex problems with computation it also requires 

continuous learning. Here, we looked at the work of students 

new to data science but not new to computer science—they 

all had previously taken at least two other courses. Based on 

our feature extraction, it appears that some students are more 

flexible and willing than others to adopt new tools and 

practices that are taught (e.g. consider the function 

declaration and use metrics). This student resistance to 

upgrade their skills and learn new tools (when they believe 

they already have the tools to solve a problem) we feel can 
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hinder CT and instructors need to be conscious of this 

problem. With this, we think our metrics should be utilized 

in a cautionary manner for instructors to use to evaluate 

student flexibility and effort in learning new material. 

6. CONCLUSION 
Learning data science requires students to utilize a variety of 

computational thinking concepts and practices. Here, we 

developed an approach to convert Jupyter notebooks into a 

series of metrics that might be associated with certain CT 

skills. These metrics include, but aren’t limited to, the 

number of functions created—a feature that may depict signs 

of pattern generalization—and the mean number of lines of 

code—a feature that may correlate to algorithmic efficiency. 

However, more research is necessary to connect all our 

metrics with concrete CT skills and practices. Further, we 

find that when these metrics are compared across various 

students, it becomes easier to assess how students are 

performing in relation to one another and perhaps helps to 

identify weaknesses in certain CT areas of individual 

students. 

One advantage of our findings is a “minimum effort 

approach” that can be used by instructors without the need 

for a sophisticated research infrastructure. Jupyter has an 

online version, JupyterHub, which makes it easy for students 

to upload their work online. Over time, this should make it 

easy for an instructor to observe student skills by utilizing 

our learning analytics. However, to be successful in practice 

our approach relies on students following instructions about 

storing everything in their Jupyter notebook by considering 

it exactly as a personal notebook where they record 

everything that happens during their learning and not as a 

polished, final product to submit for a grade. Additionally, 

we will continue to develop these metrics and ideally go on 

to produce a type of teacher dashboard in which a teacher 

can see data about the progress of their students. We also 

aim to provide feedback and potential recommendations for 

what CT skills may need to be worked on from this tool. 
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ABSTRACT 

With the new CS Curriculum in the Republic of Croatia, 

Computational thinking (CT) has finally been introduced in 

the educational process. In addition to the benefits that CT 

concepts bring to CS education, the question of evaluating 

CT and programming learning outcomes is also opening. 

The purpose of this paper is to present a model of evaluation 

of CT concepts based on the learning outcomes of the 

Croatian CS Curriculum using the Evidence-center design 

approach. The model is independent of the programming 

tool or environment and is intended for use with students 

who are CS novices.   

KEYWORDS 

Computational thinking, evaluation, programming novices, 

evidence-center design. 

1. INTRODUCTION 
New trends in technology development have a great impact 

on our daily lives. Technology enters the fabric of our lives 

regardless of the occupation area, but also regardless of the 

age of the user. We hear more demands for changes in K12 

education. Also, regardless of the type of technology 

students use and the occupations they are being educated for, 

they are increasingly expected to possess some generic 

competencies such as ability to solve problems in everyday 

life, disaggregate complex problems to simpler ones, 

generalize solutions, etc. The fundamental question today is 

how to respond to such challenges. Leaders of CS education 

increasingly emphasize the need to modify existing CS 

curricula and to include the development of these 

competencies. Jeannette Wing (Wing J. M., 2006) points out 

that besides the standard types of literacy, such as 

mathematical, engineering and reading literacy, students are 

expected to have the ability to solve problems. She defines 

CT as “…the process of formulating problems and their 

solutions, but in ways that solutions are presented in a form 

that enables them to perform effectively with some 

information processing agent " (Wing J. M., 2010). 

2. COMPUTATIONAL THINKING 
There is still a lot of confusion over the very definition of 

the concept of computational thinking, and many 

surrounding questions and challenges need to be addressed. 

It is considered to be the universal competence of every child 

that would, together with analytical skills, be the foundation 

for each child's school learning (Wing J. M., 2006). Denning  

(Denning P. J., 2009) discusses whether CT belongs 

exclusively to the field of CS. Guzdial (Guzdial, 2008) 

describes CT like a 21st century literacy that is necessary to 

a whole series of faculties. It is often discussed how CT 

differs from algorithmic thinking, and Denning adds that "... 

CT means interpreting the problem as an information 

process for which we are then trying to find an algorithmic 

solution" (Denning P. , 2010). To create an operational 

definition of CT, the ISTE and CSTA organizations 

analyzed feedback from about 700 surveyed teachers, 

scientists and CS researchers. The result was formulated in 

the operational definition of CT for K12 education as a 

problem-solving process which includes formulating 

problems, logically organizing, analyzing and representing 

data with abstractions, automating solutions through 

algorithmic thinking and generalizing the problem-solving 

process (ISTE & CSTA, 2011). When talking about teaching 

and learning CT, perhaps the most interesting is the role of 

programming. How much programming, if any, is needed to 

adopt CT? There is no unique answer, but practice points to 

different levels of programming involvement. Some define 

CT as a fundamental ubiquitous problem-solving tool and 

suggest several activities and projects which address CT 

(Astrachan, Hambrusch, Peckham, & Settle, 2009). Other 

approaches suggest various ways of incorporating 

programming into teaching and learning of CT, from those 

in which programming is the fundamental CT skill to those 

that integrate CT through various general education courses.  

3. CT IN THE CROATIAN PROPOSAL OF 

CS CURRICULUM 
In May 2016, Croatian Ministry of Education published 

Proposal of CS Curriculum for K12 education. The proposal 

was a promising hope for CS teachers since most of them 

were restrained by the old and outdated curriculums. 

Moreover, CS curriculum proposal finally accepted CT to be 

a significant part of the CS education in general.  Croatian 

curriculum subject domains are e-Society, Digital literacy 

and Communication, Information and Digital technology 

and CT and Programming  (Brođanac, et al., 2016). The role 

of CT and programming domain in CS Curriculum aims to 

make students to be involved in logical thinking, modeling, 

abstracting and problem-solving because solid ICT 

education, based on CT and creativity, should enable 

understanding and alteration of the world around us 

(Brođanac, et al., 2016). CT learning outcomes are created 

from the beginning of primary education starting with 

elementary pupils, age 6-7, through middle school pupils,  

age 11-14, and finally high school students, age 15-18 

(Brođanac, et al., 2016) 

4. HOW TO ASSESS CT? 
Everyone agrees that learning programming is hard, but it 

seems that evaluating new knowledge through evaluating 

new definitions and programming commands is far simpler 

than evaluating the way students apply computing and 

programming language to solve problems and to design 

different computer work. To assess CT, it is necessary to 

find evidence of a deeper understanding of the problem 
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solved by the student or to find evidence of understanding 

how the student created his coded solution. Since CT 

concepts include, for example, abstraction (ISTE & CSTA, 

2011), it means that we must find ways to evaluate how 

student applied abstraction in his solution while trying to 

solve a problem. As there is very little agreement about the 

CT definition, it is even less known about the tools for 

assessing such thinking. However, there are approaches for 

evaluating the development of CT that are currently in use 

or are still in development. They could serve as a solid 

foundation for developing a general approach for evaluating 

CT. Brennan and Resnick propose a valuation method that 

includes project portfolio analysis, document-based 

interviews, and development of design scenarios (Brennan 

& Resnick, 2012). Such approach estimates the fluidity of 

computer-based practice of testing and debugging, 

experimenting and repetition, abstraction and modulation, 

and reusing and remixing/scaling. Expertise is assessed 

through three levels: low, medium and high. The evaluation 

approach of student's documentation consists of building 

creative projects from students but also of creating visible 

traces of their work on the project. Such traces could be 

achieved in the form of paper or digital diaries. Also, it could 

be achieved by using Scratch's commentary capabilities for 

explaining some project's features and screen views that will 

graphically present the project, its intent or the main 

advantages and disadvantages. Still, there is not enough 

research data to validate this approach. Dorling and Walker 

specifically study the practice of teaching CT in the 

classroom environment and propose a framework for 

evaluating the Computing Progression Pathway that 

recognizes the major areas of CS and offers specific levels 

of adoption (Dorling, 2014). Within the PACT project 

(Principled Assessment of CT) general CS practice is 

represented through some design patterns which emphasize 

application and reviewing of design skill while solving the 

computational problem rather than evaluating the 

knowledge of the concepts necessary to apply such skills  

(Bienkowski, Snow, Rutstein, & Grover, 2015). This 

approach is based on Evidence-centered design (ECD) 

(Hendrickson, Ewing, Kaliski, & Huff, April, 2013) for 

creating a structured description of the domain evidence 

argument and highlights knowledge and skills complexity or 

other features or behaviors that should be valued. The ECD 

approach is usually represented through five layers: domain 

analysis, domain modeling, conceptual evaluation 

framework, evaluation application and delivery. SRI 

Education group, within the PACT project, proposed 

application modes for every layer to create the practice of 

CT assessment. Also, it is possible to find several published 

computer-based or paper-pencil tests that differ in context, 

intended for the age of those who are important in testing 

and reevaluating (Werner, Denner, & Campe, 2012). This 

paper offers a framework for assessing CT demonstrated on 

Croatian Learning Outcomes of CT and Programming 

Domain based on ECD and PACT evaluation proposal.  

5. PROPOSAL OF CT ASSESSMENT 
Despite the advantages of introducing CT into the new 

curriculum, we can’t ignore possible difficulties and new 

problems that arise from this new approach to teaching CS. 

Evaluation of CT becomes a new challenge in the present 

CS educational work and requires a more serious approach 

than finding individual solutions by teachers’ practitioners. 

One proposal of CT evaluation will be presented in the next 

paragraphs. It uses ECD as an orientation towards multiple 

activities necessary to create useful documentation like 

domain analysis, domain modeling, construction of 

framework and assessment implementation and delivery 

(Mislevy & Harertel, 2006). 

5.1. Domain analysis 

Appropriate pedagogical practice, emphasizing the 

constructivist approach to learning and putting students at 

the heart of the learning process, should develop the 

competencies like independence, self-confidence, 

responsibility, and entrepreneurship. CS curriculum created 

according to the learning outcomes instead to the prescribed 

content, enables the realization of learning and teaching 

directed at each student level and the development of his or 

her potential. It provides flexibility and gives freedom to the 

teachers in designing the learning and teaching process. The 

basic goal of the domain analysis layer is to find and explore 

all relevant materials concerning the target learning 

outcomes. In this article, we will use the sixth-grade CT 

learning outcomes, student age 11-12 (http://bit.ly/2018cte, 

Table 1). These learning outcomes stem from several 

documents but mostly Croatian National Educational 

Standards, CS Teacher Standards and Proposal of Croatian 

CS Curriculum. Croatian National Educational Standards 

defines the way in which CS is involved in Croatian primary, 

secondary and higher education. Croatian CS Curriculum 

and CS Teacher Standards defines CS learning outcomes at 

each educational level with its adoption level specification. 
Every learning outcome is expressed in detail within Bloom 

taxonomy, through different adoption levels: satisfactory, 

good, very good and exceptional level (http://bit.ly/2018cte, 

Table 2). These learning outcomes are a basis for our 

assessment process.  In following sections, we will try to 

identify more design patterns that will help us create 

appropriate evaluation. 

5.2. Domain modeling 

Domain modeling has the task to identify elements for 

describing the domain we want to evaluate. According to 

ECD approach, Domain modeling is organized into five 

categories: fundamental and additional knowledge, skills 

and features, possible working products, variable feature and 

possible observations (Bienkowski, Snow, Rutstein, & 

Grover, 2015). An example of domain modeling for CT 

sixth-grade learning outcomes can be found on author’s 

personal page (http://bit.ly/2018cte, Table 3). 

5.3. Assessment framework 

CT evaluation is highly dependent on the context within 

which the evaluation is performed. Is it necessary to conduct 

CT assessment using some programming tool or 

environment? The question of the connection between CT 

and programming must be defined regarding the context of 

the applied evaluation. There are different approaches to 

incorporating programming into the process of teaching and 

thus the process of CT assessment. We differentiate them 

according to the role of programming and CT in the course 

curriculum (Astrachan, Hambrusch, Peckham, & Settle, 

2009). In this paper, assessment of CT is achieved through 
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the approach that is not dependent on the programming tool 

or environment. This approach could serve for evaluation of 

adopted learning outcomes in real classroom situations at 

some stage of education. Precisely, the independence of the 

programming tool or environment enables wider application 

of the evaluation tool and highlights the concepts of 

evaluation rather than the syntax of a programming tool or 

environment possibilities. For the same reason, such a tool 

could be used with students that have no programming 

background. According to ECD (Hendrickson, Ewing, 

Kaliski, & Huff, April, 2013), evaluation framework aims to 

assist assessment designers while they validate their task 

model. Every assessment designer should validate his work 

with questions regarding construct relevance, specificity, 

and scalability and questions related to item statistics and 

item complexity. This evaluation framework should provide 

information about evidence, students model and task model, 

observable characteristics, measurement models and test 

specifications. For testing this model of evaluation, a similar 

measuring instrument adapted to Python programming 

language was conducted during 2016/2017 school year. 

Evaluation instrument was applied after 12 weeks (6th 

grade) or 14 weeks (7th grade) of learning and teaching 

process on a sample of 15 students of 6th grade (8 female) 

or 10 students of 7th grade (3 female). The positive and 

promising results of probe evaluation encouraged the 

creation of this evaluation model, independent of the 

programming tool and the programming environment. 

Model of students  

Given that the evaluation is intended for use in middle and 

secondary schools in the Republic of Croatia where there is 

a big diversity in applied programming tools and languages, 

an evaluation that is not dependent on the programming tool 

could be widely applicable. Programming tool or 

environment independence emphasizes on CT concepts 

rather than the ability to work with specific tool or 

environment. Also, if it is crucial for the actual CS 

curriculum to use certain programming tool or an 

environment, these tasks could be easily customized and 

constructed in it. 

Model of tasks 

Evaluation tasks are created for students with little or no 

programming knowledge. Each represents one puzzle used 

to help the main character in solving problems. Puzzles are 

supposed to assess one or more CT concepts. CT concepts, 

concealed in puzzles, have been selected and aligned with 

the expected learning outcomes (Brođanac, et al., 2016) and 

detailed domain analysis (http://bit.ly/2018cte, Fig. 2). 

Assessment tool should be implemented in the form of 

online knowledge test consisted of 10 questions. The types 

of questions that will appear in the evaluation tool are: 

multiple choice questions (mostly used for identification of 

some fundamental misconceptions or unsustainable mental 

model), short answer questions; essay questions (used for 

student's authentic algorithmic solutions). Feedback for 

multiple choice questions should be defined automatically, 

while short answer questions and essay questions should be 

manually evaluated by the researcher or teacher.  

Model of evidence 

Design and application of high-quality assessment are very 

demanding and also time-consuming. According to ECD 

approach (Hendrickson, Ewing, Kaliski, & Huff, April, 

2013) our assumptions and hypothesis represent evidence 

about the way student’s abilities are represented in his work. 

Such evidence should reveal student’s adoption of learning 

outcomes. Each algorithm solution is always difficult to 

evaluate automatically. Evidence analysis helps us in 

creation of evidence model for similar tasks. While 

analyzing possible student’s answers, it is crucial to know 

which computational concepts are evaluated with the default 

task (http://bit.ly/2018cte, Table 4). Evidence of student 

work varies from the situation where the student doesn’t 

even try to do anything, further through several partial 

solutions and finally to a fully correct solution 

(http://bit.ly/2018cte, Table 5).  

Task 8. Dangerous 

frogs appeared on 

different places in 

the labyrinth. Frog 

wants to stop Maja 

on her way to the 

yellow flower. So, 

in order to help 

Maja we will 

allow her to jump 

over the frog whenever she encounter one while going up. 

We apply the new rule: if Maja encounters the frog on her 

way up, she may jump over it by doing two steps at once.   

Write your own commands in the form of new Action 

go_up_jumpover_frog for Maja moving up and jumping 

over the frog.        

Figure 1: Example of essay task question 

Model of measurement 

To complete domain analysis and modeling, it is necessary 

to define the model of measurement. For the task example in 

Fig. 1, the possible evidence is presented according to its 

complexity. If the student does not offer any response or his 

answer has no links to the task itself, such answer should be 

rewarded with zero points With each of the following 

evidence, it has been recognized a higher level of adoption 

from the previous one  (http://bit.ly/2018cte, Table 5).  

5.4. Assessment implementation/delivery 

The realization of the test assessment, adopted for Python 

programming tool and conducted during the 2016/2017 

school year, was performed as online assessment within 

Loomen Learning Management System (LMS). The 

assessment consisted of eight tasks (one pairing task, four 

multiple choice tasks, three essay tasks) and was conducted 

during a 45-minute regular school class. The students 

showed great satisfaction by conducting online assessment 

instead of standard paper-pen assessment even though it was 

their first real encounter with such form of evaluation. The 

assessment task discrimination analysis showed that as 

many as six tasks proved to be excellent (task discrimination 
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index > 0.35) while two of them were discarded from further 

modeling due to the negative index of discrimination. As for 

the task difficulty, two of them have proved to be extremely 

simple (0.93), but they have already been dismissed from the 

further modeling because of their extremely low 

discrimination. Two tasks had recommended difficulty (0.5-

0.6) and four task acceptable difficulty index (0.3-0.7). 

Further application of the assessment tool will be used to test 

the validity and reliability of the measuring instrument and 

will help in creating this new CT assessment model. CT 

assessment model proposed in this paper will also be 

organized in the form of online testing within the Loomen 

LMS. Students’ access to Loomen LMS will be enabled 

through their unique user data, provided to every middle and 

secondary student in the Republic of Croatia. In that way, 

the authenticity of the research participants’ data will be 

preserved. In the phase of pilot research, it is expected the 

involvement of 50-60 students with the purpose of testing 

the clarity of task texts and detecting potential ambiguities 

or some other problems. Also, several CS teachers will be 

invited to evaluate the assessment tool as valuable 

practitioners with attention on measurement model. After 

defining the final version, the assessment tool will be applied 

to as many 11-12year old students as possible who are just 

encountering fundamental concepts of CS. In addition to the 

evaluation tool, the students will be previously asked to fill 

out a questionnaire that aims to collect some personal 

information interesting to the research like general data such 

as gender, general academic achievement or some data 

related to programming knowledge. Also, evaluation tool 

will be applied even with some number of high school 

students. The results of the research should reveal the power 

of the tool itself, but also could explore if there is a 

difference in the results among participants who have some 

programming experience from those who have none, and 

further investigate whether there are differences in gender 

related to results and so on.  

6. CONCLUSION 
Many teachers are increasingly emphasizing the need for a 

stronger involvement of the CT concepts in CS courses, but 

it is also noticed within some other sciences such as biology, 

physics, mathematics, chemistry (Interdisciplinary 

Computational Thinking, 2017). The purpose of this paper 

was to present one approach to the assessing CT adapted to 

the actual classroom situation. The proposed assessment tool 

was developed knowing that there are several programming 

tools and environments used in CS education in the Republic 

of Croatia, but also accepting the fact that CS is an elective 

subject in elementary/middle schools where programming is 

only minor part of the subject curriculum. The new CS 

curriculum proposal introduces the concept of 

computational thinking, and thus opens the question of 

evaluating its concepts. The proposed evaluation model is 

based on defined learning outcomes from the CT and 

programming domain of the new CS curriculum proposal 

and offers the possibility of assessing CT concepts 

independently of applied programming tools and 

environments in the teaching process. Also, it could serve as 

the basis for making similar assessment tools. The real 

power of the tool, its validity, and reliability, but also its 

weaknesses will be able to reveal through its application, 

which is our next step. 
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ABSTRACT 
The current paper proposes a grey-based approach to 

conduct cross comparison analysis of multiple 

Computational Thinking (CT) activities, which could be 

used to better inform decision makers and policy makers in 

education about the exact CT activities which they might 

like to consider selecting for the learners; regardless of 

whether these CT activities are screen-based block-based 

programming (such as Blockly or Scratch), or text-based 

programming (such as using the Python, or Java, or C# 

programming language, et cetera), or unplugged CT 

activities, or physical computing activities (such as 

programmable robots, or circuit boards with 

microcontrollers such as Arduino and the BBC Microbit). 

Further, this grey-based cross comparison approach can be 

used regardless of the rubric or test being used to assess each 

individual CT activity (for example, CT-Profile, PECT, 

PACT, Dr Scratch, CTt psychometric test, ACTMA, CT-

Stem, or Bloom’s Taxonomy, or SOLO Taxonomy). 

Potentially, this grey-based approach of cross comparing 

multiple CT activities could be useful for anyone who is 

interested in pulling together all of the analyses for different 

CT activities into one coherent meta-analysis of multiple CT 

activities. 

KEYWORDS 
Computational Thinking, evaluation, multiple comparisons, 

Grey-based approach, assessment 

1. INTRODUCTION 

1.1 Computational Thinking 

Griffin (2016) points out that it is important for novice 

programmers to develop a mental model of a notional 

machine (du Boulay, O’Shea, & Monk, 1981), which is a 

rudimentary model that describes the instructions of a 

computer program. Strong interest in how the novice 

programmer could develop this mental model have more 

precisely elucidated this mental model of a notional machine 

into what is now known as Computational Thinking (CT) 

(Wing, 2008). The constituents of this mental model of CT 

include decomposition, algorithmic thinking, abstraction of 

data, abstract of functionality, evaluation, and 

generalization. Indeed, CT is indispensable to problem-

solving in the real world, and is considered to be essential in 

education (Wing, 2008). According to Gouws et al. (2013), 

decomposition refers to the process of breaking down a 

problem into multiple steps in order to solve it. Algorithmic 

thinking refers to the repetitive execution of patterns of 

instructions, which might involve loops for iteration or 

recursion. Abstraction of data and functionality refers to the 

notion of representations in data storage and the 

manipulation of those data in functions. Generalization 

refers to the ability to create adaptable solutions that are 

reusable for a wider range of problems. Evaluation is the 

ability to select the best solution for a given problem, as well 

as to identify and correct errors.  

The following is an overview of various CT assessments that 

are useful for assessing the suitability of individual CT 

activities for learners, prior to doing a cross comparison of 

multiple CT activities using the proposed grey-based 

approach in the current paper. 

1.2 CT Assessments of screen-based CT activities 

Screen-based CT activities involve block-based 

programming using drag-and-drop graphical elements. 

Examples of block-based programming include Scratch, 

Alice, and AgentSheets. A seminal assessment framework 

for block-based programming is the Systems of Assessments 

for Deeper Learning of Computational Thinking for K-12 by 

Grover (2015). 

1.3 CT Assessments of Unplugged CT activities 

Unplugged CT activities teach computing concepts without 

screen-based devices. They include those offered by CS 

Unplugged (Bell, Alexander, Freeman, & Grimley, 2009), 

Code.org, and CAS London. Assessments for unplugged CT 

activities have been propounded by Rodriguez (2015) and 

also by Takaoka, Fukushima, Hirose, and Hasegawa (2014). 

1.4 CT Assessments of Physical Computing activities 

Examples of physical computing in education include 

Arduino, Raspberry Pi, and the BBC Microbit.  Assessments 

for computational thinking in physical computing-based 

activities include (ACTMA) Assessing Computational 

Thinking in Maker Activities, and the CT-Stem taxonomy 

(Weintrop et al., 2014). 

1.5 Research Problem 

Although there is myriad of CT assessments, almost nothing 

exists in the extant literature which looks at systematically 

performing comparisons in a transparent way across 

multiple CT activities, which could be used to inform 

educators and policy makers about the developmental level 

of CT skills involved in each activity, thus enabling them to 

select those activities that might best fit the learners’ CT 

skills development needs.  

In assessments, there are usually four types of measurement 

scales – nominal, ordinal, interval and ratio (Anderson, 

1961). A nominal scale assigns numbers that can be utilized 

to categorize items. For example, a CT activity might be 

assessed according to whether it is a screen-based activity, 

or an unplugged activity, or a physical computing activity. It 
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does not compare whether one category is superior to 

another, and vice-versa.  

An ordinal scale uses variables of increasing or decreasing 

values to provide meaningful information for comparing 

categories of items. For example, a CT activity might be 

assessed according to whether it is low-level, medium-level, 

or high-level in terms of difficulty. 

An interval scale provides precise information on the rank 

order of the item being measured, with equidistant 

“spacing”, however the interval scale does not have an 

absolute zero point. For example, a CT activity might be 

rated on its age-appropriateness by assessors, which 

normally does not include the point of birth (age at absolute 

zero number of years).  

The ratio scale provides the most amount of information; not 

only is it equidistant, it also has an absolute zero point. 

Examples that utilize the ratio scale might include the length 

of time that a CT activity takes, or the amount of money that 

a CT activity costs.  

Hence, it can be challenging to compare multiple CT 

activities. “Poor information” or “incompleteness of 

information” is likely due to a lack of consensus when 

comparing multiple CT activities, each of which might have 

utilized a different measurement scale, or even multiple 

measurement scales. Incompleteness in information is the 

fundamental meaning of being “grey” (Deng, 1989), which 

is also what makes comparison of multiple CT activities 

challenging. Therefore, we proffer that a grey-based 

approach is particularly suitable for comparing multiple CT 

activities. 

In the present paper, we propose a grey-based approach of 

cross comparing multiple CT activities. The rest of the paper 

is organized as follows: in Section 2, Grey Theory (Deng, 

1989) will be briefly discussed with a more specific focus on 

grey-based (MADM) Multiple Attribute Decision Making 

(Li, Yamaguchi, & Nagai, 2007), which forms the 

foundation upon which this proposed method of a grey-

based approach to conduct cross comparison analysis of 

multiple CT activities is built on. In Section 3, a worked 

example will be used to apply the proposed grey-based cross 

comparison approach to a set of hypothetical data from six 

CT assessments. Finally, the implications for education of 

this proposed cross comparison of multiple CT activities will 

be discussed. 

2. GREY-BASED APPROACH 
Following Liu and Lin (2010, p. 15), we use the conceptual 

notion of “black” to represent completely unknown 

information, “white” to represent completely known 

information, and “grey” to represent partially known and 

partially unknown information. A grey number is defined as 

a number with uncertain information and is denoted as G 

(Deng, 1989; Liu & Lin, 2010; Liu, Yang, & Forrest, 2016). 

A grey-based approach of performing cross comparison of 

multiple CT activities is proposed in this paper, because it 

excels in comparing multiple entities in situations where 

there might be a diversity of characteristics in the various 

entities, uncertainty, scarcity of quantitative data, or 

incomplete information; situations which educators or 

decision makers might find themselves in when evaluating 

different CT activities offered by different people for their 

learners.  

Using a grey-based approach, ratings of CT attributes 

described by qualitative linguistic variables from different 

CT Assessments can also be expressed in grey numbers (see 

Table 1), after consensus has been reached by the decision 

makers. To illustrate the point that the grey intervals agreed 

upon by the decision makers do not even have to be strictly 

equidistant, Advanced (A) has a slightly wider grey interval 

compared to the rest of the developmental levels of CT skills 

in this suggested example of a grey interval table. This 

proposed grey-based approach is not a rigid framework. It is 

intended to be flexibly adapted by the CT evaluators. 

To ensure fairness in the assessments, each of the decision 

makers would be independently assessing the CT activities 

"blind"; unaware of what ratings the other assessors might 

give. There would be no need to address how agreement or 

disagreement between the assessors was handled in the 

procedure. Hence, interrater reliability calculations between 

the assessors would be unnecessary. 

 

Table 1: Scale of CT skills attribute ratings using intervals 

of grey number G 

 
 

3. APPLICATION AND ANALYSIS 

A grey-based approach for the comparison of multiple CT 

activities, which could include but are not limited to 

activities that are screen-based, unplugged or physical 

computing, is proposed as follows: in this worked example 

(see Table 2), let us suppose that there are six CT activities 

Si (i = 1, 2, . . . ,  6) selected for comparison against five CT 

skills attributes Qj ( j =  1,  2, . . . ,  5). The CT skills attribute 

Q1 represents Abstraction, Q2 represents Algorithmic 

Thinking, Q3 represents Decomposition, Q4 represents 

Generalization, and Q5 represents Evaluation respectively.  



 

127 

Table 2: Attribute rating values for Computational 

Thinking Activities 

 

A committee of four CT activities assessors, who can also 

be referred to as Decision Makers D1, D2, D3 and D4 has 

been formed to express their preferences of CT activities for 

the learners. Examples of CT assessors or decision makers 

could include, for example, teachers, heads of departments, 

school principals, or researchers.  

Step 1 

The equation for calculating the average of the lower and 

upper bounds of the grey intervals respectively is: 

               

 

            (1) 

 

in which 𝐺𝑖𝑗
𝐾 is the average value of the attribute ratings for 

each CT Activity, where 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1,2, … , 𝑛 

Step 2 

Normalize the grey decision matrix (see Table 3). The 

normalization method is utilized to preserve the property 

that the ranges of the normalized grey number belong to, 

that is [0, 1]. 

 

Table 3: Grey normalized attributes for CT Activities 

 

Each normalized grey interval is expressed as 

 

              (2) 

 

Step 3 

As a suggestion, perhaps we could consider taking the more 

“conservative” lower value from each grey interval that 

corresponds to each CT skill (see Table 4).  

 

Table 4: values of the lower bound in grey intervals 

 
 

Step 4 

Comparison of the six CT activities that are being 

considered for their suitability to the learners’ CT 

developmental needs can be accomplished using, for 

example, a bar chart (see Figure 1) or a box and whiskers 

chart (see Figure 2). 

 

 
Figure 1: Bar chart comparing multiple CT activities 

 
Figure 2: Box and whisker chart comparing multiple CT 

activities 

4. IMPLICATION FOR CT EDUCATION 
Researchers (such as Bers, Flannery, Kazakoff, & Sullivan, 

2014; Grover, 2013; Portelance & Bers, 2015) concur that 

CT developmental activities ought to be age- and grade-

appropriate. Instead of relying on one decision maker’s “gut 

feel” or the words of the marketing manager of a third-party 

CT activity training provider to gauge whether some CT 

activities would be suitable for the educational institute’s 

learners, a grey-based approach has been proposed in the 

current paper for the cross comparison of multiple CT 

activities. Different combinations of CT skills development 

offered by each CT activity could be used to inform the 

decision makers in educational institutions about the 

suitability of each of the CT activities for their learners. For 

example, CT Activity 6 (see Figure 1) might involve a lower 

developmental level of Algorithmic Thinking; however, this 

type of CT Activity might be more age- or grade- 
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appropriate for beginner learners of CT. Conversely, CT 

Activities 1 and 2 might involve higher developmental levels 

of CT skills, which suggests that they could be more suitable 

for learners who need to be engaged with something more 

challenging. Further, in situations where multiple third-party 

training providers approach educational institutions to offer 

their CT training services, this proposed approach could be 

used by the stakeholders (for example, Ministry of 

Education, principals, vice-principals, heads of departments, 

and teachers) of the educational institutions to document the 

cross comparison process of multiple CT activities offered 

by these third-party vendors, thus contributing to increased 

transparency in the educational institutions’ corporate 

governance. 

5. CONCLUSION 
The focus of the paper is on the lack of tools that show what 

CT skills are addressed and to what extent across various CT 

activities, especially when there is no consensus on what the 

CT skill of Algorithmic thinking means, for instance. The 

tool is useful when dealing with such ambiguity by 

averaging the inputs of multiple evaluators. Until now, 

although there are many frameworks for assessing 

individual CT activities (as mentioned earlier in Section 1), 

there is no approach in the extant literature for performing 

the cross comparison of multiple CT activities, which could 

be used to transparently document the selection criteria by 

multiple decision makers. These decision makers could 

include teachers, heads of departments, school principals, 

researchers, or the Ministry of Education. The transparency 

of this grey-based approach could potentially contribute to 

the democratization of the selection process of CT activities, 

as the input of each decision maker is taken into serious 

consideration. A worked example of cross comparison 

between multiple CT activities using hypothetical data has 

been used to illustrate a proposed grey-based approach. This 

proposed grey-based approach is a reasonably easy to 

understand, easy to calculate, and easily implementable CT 

evaluation tool, which we hope would be considered by 

decision makers in educational institutions for performing 

cross comparison of multiple CT activities when they need 

to evaluate them to find out if they are at the appropriate 

developmental levels for their learners. 
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ABSTRACT 

Development of Computational Thinking (CT) is an area of 

many initiatives in the last years, due to the importance of 

having CT skills. There are many environments that allow 

learners to develop such skills, for instance Scratch and MIT 

App Inventor, in a visual and intuitive way. As in 

professional software development, assisting tools that help 

and guide learners are starting to appear. In this paper, we 

discuss the current status of these tools, based on an analysis 

of what state-of-the-art CT assessment tools, such as Dr. 

Scratch for Scratch and CodeMaster for App Inventor, offer. 

We report their limitations and envision and discuss future 

enhancements.  

KEYWORDS 

computational thinking, tools, assessment, Scratch, App 

Inventor 

1. INTRODUCTION 
The inclusion of computer programming and computational 

thinking (CT) skills in the school curriculum is one of the 

main trends in the educational landscape worldwide. This 

movement has motivated a deep interest among scholars and 

research institutions, who are analyzing and comparing the 

approaches and plans of the different initiatives. The reviews 

on the state of CT in education that have been performed 

coincide in three main, fundamental aspects that require 

urgent attention from academia: assessment of CT skills, 

transference of CT skills and factors affecting CT skills. The 

topic of this paper is related to assessment of CT skills, 

although its reach is beyond that specific topic. 

There are many initiatives fostering the development of CT 

skills (Lye & Koh, 2014), such as tools where learners can 

acquire programming skills by means of using visual 

programming languages. Some of the most commonly used 

tools to support CT learning are Scratch 

(https://scratch.mit.edu/), MIT App Inventor 

(http://appinventor.mit.edu), Code.org (https://code.org/), 

Snap! (https://snap.berkeley.edu/), among others. 

In the teaching of CT in schools, practical activities are 

typically carried out where learners develop programs using 

these tools. The resulting projects need to be evaluated in 

relation to the extent to which they reached the pedagogical 

goals and also in relation to other aspects, such as: 

fundamentals of algorithms, use of variables, flow control, 

modularization of complex tasks, etc. (CSTA, 2017). Most 

of these aspects can be evaluated in an automated way, 

through analysis of the source code developed by the 

learners (Moreno-León et al., 2015), thus supporting the 

educator in the assessment and grading of learner’s work. 

Currently, there are some tools that perform the assessment 

of CT aspects through the static analysis of projects 

developed by learners, such as: Dr. Scratch 

(http://www.drscratch.org/), CodeMaster 

(http://apps.computacaonaescola.ufsc.br:8080/), Quizly 

(http://appinventor.cs.trincoll.edu/csp/quizly/), and Ninja 

Code Village (http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/), 

among others. 

This type of assessment presents some limitations, first of all 

because the tools generally work on the source code, 

typically only after the learner has finished his/her work. 

This focus on the source code also limits the assessment, not 

covering essential CT practices like creativity and 

collaboration, and sometimes does not provide valuable 

support for the learner. 

The goals of this paper are following: (1) to review the 

current state of computational thinking assistance tools, and 

(2) to propose future enhancements for them.  

The paper is structured as follows: In the next section we 

will introduce the state of the art in assessment of CT skills, 

and focus on two CT assessment tools (Dr. Scratch and Code 

Master). Section 3 reports the limitations and deficiencies 

that the aforementioned tools present, while Section 4 offers 

some enhancements to address those limitations. 

Conclusions are drawn in Section 5. 

2. ASSESSMENT OF CT 
Assessment of CT skills is a topic that has gained attention 

of the research community in recent years. Besides, Dr. 

Scratch (see Section 2.1) and CodeMaster (see Section 2.2), 

many other research efforts have been devoted to it, such as 

Quizly (Maiorana et al., 2015), Fairy Assessment (Werner et 

al., 2012) and REACT (Koh et al., 2014). 

2.1. Dr. Scratch 

Dr. Scratch (Moreno-León, Robles & Román-González, 

2015) is a free/libre/open source tool that analyzes Scratch 

projects to assess their level of development of CT skills by 

inspecting their source code. Dr. Scratch 

(http://www.drscratch.org/) is inspired by Scrape (Wolz, 

Hallberg & Taylor, 2011) and is based on Hairball, a static 

https://scratch.mit.edu/
http://appinventor.mit.edu/
https://code.org/
https://snap.berkeley.edu/
http://www.drscratch.org/
http://apps.computacaonaescola.ufsc.br:8080/
http://appinventor.cs.trincoll.edu/csp/quizly/
http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/
http://www.drscratch.org/
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code analyzer for Scratch projects that detects potential 

issues in the code (Boe et al., 2013). 

The CT assessment of Dr. Scratch is based on the degree of 

development of seven dimensions of the CT competence: 

abstraction and problem decomposition, logical thinking, 

synchronization, parallelism, algorithmic notions of control 

flow, user interactivity and data representation. Each 

dimension is assigned a score, resulting in an aggregated 

total mastery score. With this information Dr. Scratch 

generates a feedback report that include ideas and proposals 

to enhance the CT score by encourage learners to try new 

blocks and structures. 

Different actions have been performed to validate Dr. 

Scratch from distinct points of view, showing that the tool is 

useful for learners and proving its ecological validity 

(Moreno-León et al., 2015), and comparing Dr. Scratch 

results to other measurements, such as educator grades of 

Scratch projects or software engineering complexity 

metrics, showing convergent validity (Moreno-León, 

Robles, & Román-González, 2016a; Moreno-León et al., 

2017; Román-González et al., 2017). 

Finally, since Scratch creations are categorized under 

different types of projects, such as games, stories or music 

creations, among others, the results of the analysis of 250 

projects of 5 different types show that this topology is 

replicated when projects are analyzed with Dr. Scratch, thus 

proving its discriminant validity (Moreno-León, Robles & 

Román-González, 2018). 

2.2. Code Master 

CodeMaster is a free web-based tool 

(http://apps.computacaonaescola.ufsc.br:8080) developed to 

facilitate the assessment and grade of App Inventor and 

Snap! projects, in a problem-based context, focusing on 

learning computational thinking in K-12 education. 

CodeMaster can be used by learners to evaluate their own 

projects obtaining direct feedback and also by educators to 

assess and grade all class projects at once, in a 

comprehensive assessment. 

CodeMaster measures the complexity of the App Inventor 

and Snap! learners’ projects using an extended rubric based 

on the CT framework by Brennan & Resnick (2012), 

Dr.Scratch and the Mobile CT rubric (Sherman &  Martin, 

2015). CodeMaster, thus, evaluates several dimensions of 

CT, such as abstraction, synchronization, parallelism, flow 

control, user interactivity and data representation. 

Assessment results are presented to the learner in a visually 

appealing and stimulating way, represented by a character 

who has a varied color badge depending on the score reached 

in the code assessment.  

The tool has been tested and applied in real environments 

and has been observed as a useful, functional, performance-

efficient tool to support the assessment of App Inventor and 

Snap! projects.  

3. CURRENT LIMITATIONS 
In their current form, the main beneficiaries of CT 

assessment tools are not learners, but educators. This is 

because the tools offer an evaluation that is based on the final 

product, emphasizing the abilities that learners have. If the 

tools would address more the learning process, they should 

emphasize feedback on bad practices and on how the learner 

can learn more (Robles et al., 2017).  

The exclusive focus on source code analysis tends to 

facilitate the assessment of CT aspects that can be evaluated 

by automation. However, this focus limits in several ways a 

more comprehensive assessment of the CT development. It 

is very difficult, if not impossible, to evaluate creativity or 

collaboration, for example, only by the static analysis of a 

learners’ piece of source-code. 

Despite automated assessment allows educators to devote 

time to pedagogical issues that require more educator-

learner interaction, which has proven to be very positive 

(Ala-Mutka, 2005), offering an important support to the 

educator, it may not be directly contributing to the learning 

process itself. 

Automated CT assessment tools typically do not provide a 

personalized learning experience, tracking the entire 

learning process, but only evaluating the outcomes at the end 

of the development process. So, the opportunity to support 

the learner throughout the learning process and to suggest 

systematic ways for the development of learner’s skills is 

been lost. 

In summary, even if not comprehensive, educators are the 

main beneficiaries of current CT assessment tools. Their 

evaluation can be supported and enhanced with these tools; 

so, even if some aspects such as user interface quality and 

creativity may not be considered by the tools, the 

information they offer and the amount of time saved is of 

high value for educators. 

4. ENHANCEMENTS 
In this section, we propose a set of enhancements that could 

be implemented in CT assistance tools. 

4.1.  Tools More Learner Driven 

Tools should focus more on the learner and on the learning 

process. This means that the major point of interest should 

not be on the blocks that are used, but on the identification 

(and explanation of) bad smells (i.e., bad programming 

practices), dead code (i.e., parts of the program that are never 

reached), among others (Robles et al., 2017). The rationale 

for this is that learners are familiar with their own code and, 

if done properly, will understand the problems of their 

current solution. 

4.2.  Assess UI of Projects 

Despite its importance, the quality of User Interfaces (UI) 

has been, in general, ignored during CT learning. Some tools 

only count the interface components and if some type of 

arrangement is used. Although some artistic aspects of UIs 

are difficult to assess, other dimensions of the UI quality, 

however, can be objectively evaluated, using well-known 

good practices as a basis. This type of evaluation, if 

automated, can help learners to improve the quality of their 

developed UIs. 

4.3.  Personalize (and follow) the Assessment Process 

Tracking the development of CT learners’ skills becomes 

important in order to customize his learning experience. To 

make this possible, automated assessment and learning 

http://apps.computacaonaescola.ufsc.br:8080/
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support tools need to be able to identify the learner through 

the creation of individual accounts. 

In addition, individual identification enables educators to 

follow the development of each learner abilities in the 

various aspects of the CT, allowing to identify if the 

learner’s progress is adequate and to personalize the tasks 

and exercises, among others. 

4.4 .  Educator Dashboard 

Every modern learning management system includes 

educator dashboard and learning analytics tracking systems, 

in order to assess and intervene in real-time and in a 

personalized way (Kalelioğlu, 2015).  

Similar functionality should be included in the assistance 

tools to help educators have a comprehensive view of their 

learners, and to follow their learning process. The educator 

dashboard should be designed in such a way that it highlights 

the most relevant information, i.e., that information that is 

easily to obtain in an automated way (i.e., a learner lagging 

behind or abandoning), but that requires human intervention 

to solve. 

4.5.  Identification of Learning Gaps 

As in any other formal language, computer programming 

must be learnt in a systematic way, ensuring that there are 

no gaps between computational concepts (Rich et al., 2017). 

If computational concepts are not developed systematically, 

and if learning gaps are not identified, then misconceptions 

are likely to appear. 

Thus, assistance tools should not only score the presence of 

certain computational concepts, but also to point out the 

absence of others in between (Grover & Basu, 2017). 

4.6.  Identification of Learning Paths 

In the same vein, computational concepts can be 

progressively developed, by means of programming projects 

with increasing complexity. Current learning paths are 

monolithic. As shown in (Moreno-León, Robles, & Román-

González, 2018, in press), Scratch guides generally begin 

with programming animations, music and art projects, 

continues with stories, and finish with games, showing in the 

process concepts and elements of increasing complexity. 

This, however, supposes a barrier to those learners who are 

not interested in games, as their disinterest may lead to not 

develop higher CT skills.  

However, Moreno-León, Robles, & Román-González 

(2018, in press) also reports that for every category there are 

projects that show basic, intermediate and advanced CT 

skills. Thus, it is possible to allow users to set a learning path 

with the number of phases of their choice and the types of 

project to include in each level. Future assistance tools 

should not be limited to receive and assess the projects of the 

learner, but also to propose him/her feasible and significant 

learning paths. 

4.7.  Use of Recommender Systems 

Furthermore, the aforementioned learning path can be 

enhanced by providing the learner with prototypical 

examples than can be remixed (Dasgupta et al., 2016). Then, 

assistance tools should not only give feedback about the 

ongoing programming projects of the learner, but also to 

propose him/her new projects to be remixed, which are 

placed in his/her "Zone of proximal development" (ZPD) 

(Vygotsky, 1978).  

4.8.  Other Abilities and Skills 

Assistance tools should embrace the analysis and assessment 

of not-so-objective computational thinking practices based 

on learner’s behavior while programming. High-level skills 

that should be addressed are reusing, abstracting, 

modularization, debugging and modeling. 

Targeting these skills is not easy as they are tight to the 

process and obtaining information about them is complex. 

Nonetheless, we argue that this could be done indirectly by, 

for instance, the identification of bad smells (see 4.1) and 

observing how the learner solves them. 

4.9.  Integrated Instructional Feedback 

Currently, a learner interested in receiving automated 

feedback on a project developed in one of the popular tools 

(e.g. Scratch, App Inventor or Snap!), needs to export it, and 

submit it in another tool (e.g., Dr. Scratch or CodeMaster). 

This tends to difficult the use of such tools and leading the 

learner to submit his project to analysis only at the end of the 

development process. 

The integration of instructional feedback directly to the 

development environment could give fast results, as it has 

been observed in other scenarios (Gonçalves et al, 2017). 

4.10.  Share and Socialize 

Along the formative assessment of the CT skills of the 

learner, the corresponding assistance tools should not only 

give feedback to the learner, but also share and socialize 

his/her achievements with a broader community. 

Recent research has demonstrated that individuals who 

perform more social actions during the learning process, 

reach higher levels of sophistication in their CT skills and 

computer programs (Moreno-León, Robles, & Román-

González, 2016b). Other research has found that 

professional developers make a surprisingly rich set of social 

inferences from the networked activity information, such as 

inferring someone else’s technical goals and vision when 

they edit code or guessing which of several similar projects 

has the best chance of thriving in the long term (Dabbish, et 

al., 2012). 

5. CONCLUSION 
Computational Thinking is a skill that is vital for the 

personal and professional development of the citizenship of 

the 21st century. There are many initiatives that have 

simplified the acquisition of these skills, mainly by 

programming in learner-friendly visual interfaces, such as 

Scratch or MIT App Inventor. In recent times, assistance 

tools are starting to appear that -on top of the aforementioned 

platforms- offer assessment and guidance through the 

learning process. However, at this point these tools are 

mostly useful for educators. In this paper, we offer some 

insight of future lines that can make assistance tools better 

suited for learners. These enhancements range from the 

introduction of personalized elements that adapt the learning 

process to the learner, including recommender systems and 

learning paths, to the evaluation of other skills, such as 

abstraction, modeling or debugging. We hope to see in the 
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near future many ideas and implementations targeting these 

issues to the benefit of educators and learners. 
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摘要 

随着计算思维教育的开展，如何有效地评估学生的计

算思维发展水平是近年来国内外教育研究者关注的重

点。本研究汇总了 2013 年至 2017 年近五年有关计算思

维评估的 SSCI 文献，并在评估方式、评估对象、评估

类别、评估内容等方面进行了对比分析，结果发现计

算思维的评估方式可以分为传统型和基于表现型两大

类，主要对计算思维技能、计算概念、计算实践和计

算观念等方面进行评估。希望通过本文的分析给教育

研究者在促进学生计算思维的发展、进行计算思维评

估设计上提供参考借鉴。 

關鍵字 

计算思维；评估设计；评估内容 

1. 前言 

计算思维是所有学习者的宝贵技能，可以应用于日常

解决问题的活动，并且还可以应用于许多其他学习领

域。2006 年，周以真（Jeannette Wing）提出计算思维

的概念，这个概念也逐步受到教育教学领域的广泛重

视。2011 年国际教育技术协会（ISTE）联合计算机科

学教师协会（CSTA）开发了计算思维的操作性定义。

近年来各国也开始将计算思维纳入课程学习计划当中，

比如 2013 年 9 月，英国教育部公布全新的以计算思维

为核心的计算课程计划，2014年 2月美国 College Board

以计算思维实践和若干核心概念为主体开发面向高中

学生的课程框架。国内外教育研究者开展了一系列有

关计算思维教育理论与实践的探索，评估也成为研究

者们关注的重点，近五年来有关计算思维评估的研究

数量也在逐年增长，本研究对已有文献中计算思维的

评估设计展开探索。 

2. 文献综述 

2.1. 计算思维 

计算思维是一种通过计算工具进行信息处理的问题解

决过程。计算思维无处不在，小到日常生活中的琐事，

大到社会问题的处理过程，都可以抽象为信息处理任

务过程中的各种指令或行为。周以真(Wing, 2006)将计

算思维界定为一种能力，这种能力通过熟练地掌握计

算机科学的基础概念而得到提高，计算思维存在于教

育教学领域中的多个方面，不同研究者对计算思维有

着不同的认识，如 Flanigan, Peteranetz, Shell, & Soh 

(2017)认为计算思维和创造性思维是计算机科学内部和

外部有价值的工具，在研究中通过一系列计算创造性

练习提高学生计算机科学课程的成绩，结果表明，计

算创造性练习对成绩有积极影响，有助于提高学生的

计算思维和创造性思维。Jaipal-Jamani & Angeli(2017)

对机器人课程职前教师的自我效能感、对科学概念的

理解和计算思维进行前后测，发现利用机器人进行教

学，能培养对科学概念的理解，促进计算思维能力的

发展。随着计算思维教育的发展，研究者意识到评估

在计算思维教育中发挥着重要作用，只有了解如何进

行评估，才能把握学生的计算思维发展水平，从而制

定有效的课程计划，更好地开展计算思维培养方面的

课程。 

2.2. 计算思维评估 

计算思维评估的研究是近几年相关教育研究者关注的

重点，比如Grover等 (2017)在提供直观的视觉操作界面

的开放式编程活动中，记录学生在完成编程任务过程

中解决问题的行为和表现，以此为证据衡量和评估学

生的计算思维概念和计算思维实践。Korkmaz, Ç akir, & 

Ö zden (2017)在研究中将计算思维被定义为由 ISTE

（2015）提出的 6 项基本技能，并以此为基础开发计算

思维评估量表，通过问卷、访谈形式来衡量大学生的

计算思维水平。Chen 等 (2017)在机器人课程的学习过

程中借助基于计算机科学教师协会标准开发的评估工

具，通过纸笔测验，观察学生操作机器人的编程过程

以及日常事件推理等形式来评估小学生计算思维的应

用技能，结果表明，该工具具有良好的心理测量特性，

并有可能揭示学生在计算思维学习方面的挑战和发展。

(Román-González, Pérez-González, & Jiménez-Fernández, 

2017)试图采用心理测量的方法来定义和测量计算思维，

目的在于在提供一个新的计算思维测量仪器，通过测

量发现：计算思维与空间能力、推理能力和问题解决

能力之间存在显著的相关性。Baichang Zhong, Qiyun 

Wang, Jie Chen, & Yi Li (2016)设计了三维综合评估框架

（TDIA），将方向性、开放性和过程性三个维度整合

到评估任务的设计当中，从计算思维的三个维度：计

算概念、计算实践和计算观念进行全面评估。Choi, Lee, 

& Lee(2017)开发了基于拼图的算法学习程序（PBAL），

并探究这个程序对学习者计算思维的影响，通过观察

学习者问题解决的过程、访谈面试等形式评估测量学

习者计算思维技能水平；与传统的算法学习方法相比，

PBAL 对提高计算思维技能水平有较好的效果。通过文

献整理发现，对于计算思维评估设计的探究是多元而

非单一的，不同研究基于计算思维不同概念框架对学

习者的计算思维进行评估，本文的目的在于研究计算

思维评估的现状，分析整理近五年内在计算思维评估

的方式、对象、类别、内容等方面的研究，为相关教

育研究人员提供计算思维评估设计上的参考。 
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3. 研究问题 

通过文献分析，本文提出的研究问题如下： 

（1）近五年的相关研究中，研究者是如何评估学生的

计算思维发展水平？ 

（2）在评估过程中会涉及到计算思维的哪些方面？ 

（3）计算思维的评估方式与评估对象、评估内容之间

是否有关系？ 

4. 研究方法 

4.1. 文献纳入标准 

基于一定的标准对文献进行评估，选择符合标准的文

章纳入本文的研究，本文纳入标准如下： 

（1）教育教学领域内计算思维的相关研究； 

（2）研究内容涉及计算思维评估； 

（3）实证研究； 

（4）在 SSCI 期刊上发表； 

（5）在 2013 年至 2017 年发表。 

4.2. 文献检索与筛选 

文献检索与筛选过程分为以下几个阶段进行： 

首先，两位研究者通过 Web of Science 核心合集数据库，

以“Computational Thinking”为关键词，对从 2013 年到

2017 年的 SSCI 期刊文章进行了检索，共获得 337 篇文

章。 

其次，两位研究者对检索到的文章的摘要进行浏览，

舍弃不属于教育教学领域内计算思维的相关研究；接

下来对剩余的 52 篇文章进行全文通读，不是实证研究

的、研究内容不涉及计算思维评估以及没有具体介绍

计算思维评估过程的研究被排除。如果对研究是否保

留存在疑问，则两名研究人员独立审查全文，然后一

起作出最终决定。 

最后，共有 11 项研究符合纳入标准。 

 4.3. 文献编码 

确定符合纳入标准的研究后，本研究的编码方法由两

个主要部分组成： 

（1）基本信息：作者、发表年份、国家或地区。 

（2）评估设计：评估方式、评估主体、评估对象、评

估类别、评估内容。 

5. 结果 

研究结果从以下四个方面展开叙述： 

5.1. 纳入研究的基本信息 

从表 1 的统计可以看出，对于计算思维评估的研究逐渐

受到各个国家和地区的重视，评估对象涵盖中小学阶

段、大学生和职前教师，大多数研究的评估对象是 K-

12 阶段的学生。2014 年 2 月美国 College Board 发布了

最新版的计算机科学原理（Computer Science Principles）

课程框架，该课程面向高中学生，以计算思维实践和

若干核心概念为主体，在 K-12 教育阶段注重计算思维

的培养与评估更有助于学校了解学生的计算思维现状，

为以后开展计算思维的教学实践，提高学生计算思维

水平提供参考依据。 

 

表 1国家或地区、评估主体和评估对象梳理 

5.2. 评估方式 

根据文献资料，把文献中出现的评估方式以及篇数整

理如图 1 所示，在进行计算思维评估时，研究者主要采

用量表、框架等工具来进行评估，评估方式一般分为

两类：一类是传统方式，即纸笔测试，另一类是基于

学生课堂表现的新型评估方式，如课堂观察、访谈面

试、学生编码方案、口头表达、反馈报告、设计方案

等。Jaipal-Jamani、Basu 和 Atmatzidou 在研究中都选择

用前后测来了解学生已有的知识水平和学习的进步程

度，这说明在知识掌握方面，传统的测试方式得到了

较好的认可。需要说明的是，Byeongsu Kim, Taehun 

Kim, & Jonghoon Kim(2013)针对于非计算机专业的大学

生，采用纸笔编程的策略，注重于将我们的心智模型

转化为落在纸面上的逻辑表示，以提高他们对计算思

维的理解和运用，增加学习计算机科学的兴趣，虽然

研究 国家

或地

区 

评估主体 评估对象 

(Grover 等, 2017) 美国 研究人员 9、11、

12 年级学

生 

(Korkmaz, Çakir, 

& Özden, 2017) 
土耳

其 

教师、研

究人员 

大学生 

(Chen 等, 2017) 美国 研究人员 5 年级学

生 

(Jaipal-Jamani & 

Angeli, 2017) 
美国 研究人员 职前教师 

(Tsai, Shen, Tsai, 

& Chen, 2017) 
台湾 教师 大学生 

(Basu, Biswas, & 

Kinnebrew, 2017) 
美国 研究人员 6 年级学

生 

(Choi, Lee, & Lee, 

2017) 
美国 教师 4-6 年级

学生 

(Román-González, 

Pérez-González, & 

Jiménez-

Fernández, 2017) 

西班

牙 

教师 5-10 年

级学生 

(Atmatzidou & 

Demetriadis, 2016) 
希腊 教师 初中、高

职学生 

(Baichang Zhong, 

Qiyun Wang, Jie 

Chen, & Yi Li, 

2016) 

中国 研究人员 6 年级学

生 

(Byeongsu Kim, 

Taehun Kim, & 

Jonghoon Kim, 

2013) 

韩国 研究人员 大学生 
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不借助于计算机，采用传统的纸和笔，但区别于传统

评估方式测试题目的形式，其目的在于观察学生的编

程过程方案、逻辑思维转换等，没有明确的量化等级

评判标准，也看作是一种基于学生表现的评估方式。

虽然研究者们都在积极开发新型的评估方式用于计算

思维发展水平的评估，但传统的评估方式在评估学生

知识基础方面作用毋庸置疑，因此许多研究者采用传

统型与基于表现型相结合的多元评估方式评估学生的

计算思维发展水平，如表 2 所示。 

 

图 1 评估方式篇数统计 

5.3. 评估类别 

针对 K-12 阶段，表 2 从评估方式、评估类别、评估内

容三个维度进行了整理。为了有效评估学生的计算思

维发展水平，研究人员、教师运用一套综合的评价体

系，提供给学生不同的展示机会，通过各种各样的方

式评估学生的知识储备、课堂表现。综合的评价体系

包括三大评价类别：诊断性评价、形成性评价和总结

性评价。 

5.4. 评估内容 

如表 2 所示，计算思维技能、计算概念、计算实践和计

算观念是研究者进行计算思维评估的主要内容维度。

美国麻省理工学院媒体实验室从三个维度上定义分析

计算思维，即计算概念、计算实践和计算观念，是大

部分研究者进行计算思维评估的概念框架。还有部分

研究者评估学生的计算思维技能，但对于计算技能的

评估维度确定存在一定的差异，例如 Atmatzidou & 

Demetriadis(2016)根据五个维度的计算思维概念框架，

从抽象、概括、算法、模块化、分解五个方面评估学

生的计算思维技能， Korkmaz 等(2017)设计计算思维评

估量表，包含六个方面技能的题目，这六个方面分别

是交际技能、算法思维、批判思维、合作性、创造力

和问题解决技能。还有 Jaipal-Jamani、Chen在编程环境

下，通过记录学生编程过程、布置测试题的形式评估

学生计算技能的发展。 

此外，通过文献整理，我们发现评估方式与评估对象、

评估内容之间有着微妙的联系，对大学生和职前教师

的计算思维评估更倾向于使用传统的纸笔测试，而基

本上 K-12 阶段的评估都采用基于表现型或传统型与表

现型相结合的方式，本研究认为评估方式的选择与评

估对象的认知发展水平有一定的联系，随着年龄的增

长，学生的认知发展水平提高，对题目的理解程度也

随之提升。研究还发现评估与概念相关的内容时，大

多采用传统的纸笔测验，进行前后测的对比来分析学

生计算思维知识的发展情况；在评估与实际操作相关

的实践类内容时，多采用课堂观察、访谈面试记录学

生编程过程等基于表现的方式进行评估。评估对象的

定位也是选择计算思维评估方式、评估类型的主要参

考依据。 

表 2 K-12阶段计算思维评估方式、类别、内容梳理 

 

6. 讨论 

本研究对计算思维评估方式、类别、对象以及内容的

整理分析给缺乏评估经验的研究人员、教师提供一些

实践参考。 

据了解，澳大利亚、英国、台湾等国家或地区曾举办

计算思维挑战赛，目标人群是 K-12 阶段的学生，比赛

题目类型多为选择题，考察内容涵盖排程、优化、算

法等等，说明计算思维已经受到各国家、地区的重视。

在实际教学过程当中，学生作为学习的主体，也可以

参与评估体系的建设，增强教育者与受教育者的相互

交流，有助于评估体系的建立。评估类别、方式推崇

多元化，如传统方式与表现型方式相结合，形成性评

 

研究 

评估 

方式 

评估类

别 

评估内容 

传

统

型 

基

于

表

现

型 

形

成

性

评

估 

总

结

性

评

估 

计

算

思

维

技

能 

计

算

概

念 

计

算

实

践 

计

算

观

念 

(Grover 等, 

2017) 
✔ ✔  ✔  ✔ ✔  

(Chen 等, 

2017) 

 ✔ ✔  ✔    

(Basu, Biswas, 

& Kinnebrew, 

2017) 

✔ ✔  ✔ ✔ ✔   

(Choi, Lee, & 

Lee, 2017) 
✔ ✔  ✔ ✔    

(Román-

González, 

Pérez-

González, & 

Jiménez-

Fernández, 

2017) 

 ✔ ✔  ✔    

(Atmatzidou 

& 

Demetriadis, 

2016) 

✔ ✔ ✔ ✔ ✔    

(Baichang 

Zhong, Qiyun 

Wang, Jie 

Chen, & Yi Li, 

2016) 

 ✔ ✔   ✔ ✔ ✔ 
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估与总结性评估相结合，更清楚地定位学生的水平和

教师的教学结果。 

在未来的研究中，如何提高教师、学生计算思维发展

水平，如何更有效开展计算思维相关教学活动是计算

思维相关研究者持续关注和探索的方向。 
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摘要 

大規模線上開放式課程（Massive Open Online Course, 

慕課）已在全球高等教育發展為成熟的學習模式，如

何針對慕課大規模且不同程度、年齡的學習者提供有

效的評量機制為發展慕課之新興議題。有別於傳統以

教學者為核心的線上課程，慕課主要以自我調整學習

（Self-regulated Learning）作為發展模式，由於學習先

備知識（Prerequisites）不同導致程度落差極大，慕課

具有根本性的問題：如完課率低落與缺乏學習指引，

本研究針對慕課之缺陷進行相對應的系統設計。透過

專家知識地圖的結構，建構慕課學習輔助之自動化知

識地圖，將可成為提升課程品質與個人化學習的方法。 

關鍵字 

慕課；自我調節學習；先備知識；知識地圖。 

1. 前言 

慕課在全球都相當盛行且對於高等教育造成重要變革，

最為人所詬病的就是完課率非常低落（Freitas, Morgan, 

Gibson, 2015; Perna, Ruby, Boruch, Wang, Scull, Ahmad, 

& Evans, 2014），然而慕課同儕互評的威脅、網絡作弊

等 相 關 議 題 一 再 挑 戰 著 慕 課 發 展 的 地 位

（Hew & Cheung, 2014）。傳統的線上學習評量機制雖

然可以提供有效的指引原則，如何針對慕課大規模且

不同程度、年齡的學習者提供有效的網路化評量機制

實為有效發展慕課課程的新興議題。 

慕課上的學習者需要根據自身程度，訂定學習目標、

學習策略以精熟課程的內容。透過一系列的教學影片、

隨堂練習、討論區以及其他互動功能，學習者需要能

夠發展適切的「自我調整學習」能力引導良好的自主

學習。有鑒於自我調整學習對線上學習的重要性及慕

課中評量系統的缺陷。本研究將發展「知識地圖」的

學習工具，協助學習者引導慕課上的思維能力，提升

學生學習成效及自我調整能力。 

2. 文獻探討 
面對慕課如此大規模的學習模式，應抱持著正面的態

度設計、轉化、改變，以證據為基礎（evidence-based）

之研究方法改善並提升慕課之相關設計。本研究將針

對慕課之缺陷做相對應的完善設計，透過學習概念的

知識結構化提升慕課自主學習者成效，進而增進其自

律學習策略與目標。 

2.1. 慕課 
慕課特色是修課人數多、學生基礎差異大、全部線上

授課（沒有實體教室）、授課時間較短（5 至 8 週）、

線上考試、沒有學分。慕課起源於開放教育資源運動

和學習連接主義的思潮。強調大規模（大量學員）之

線上課程，能提供更多的線上師生互動以及同儕互動

學習機制，同時將學習自主權以及學習的節奏交還給

學員（黃能富，2015）。 

2.2. 慕課評量機制的缺失 

許多研究指出慕課具有根本性的疑慮，最為人所熟知

的 就 是 慕 課 完 課 率 非 常 低 （ Freitas, Morgan, & 

Gibson, 2015）與高學習流失率（Daniel, 2012），由於

無法即時監控作答，潛在許多作弊的缺失，如此限制

慕課無法成為具公正性、甚至授予可信賴的課程學分

或是修課證明（Bady, 2013），因此，運用有效的測量

工具以檢驗學生在混成、遠距、或虛擬學習環境的學

習投入有其需求且十分重要（Henrie, Halverson, & 

Graham, 2015）。 

2.3. 自我調節學習 

自我調節學習為學習者進行自律學習，於過程中系統

化的實現其“學習目標” （Zimmerman & Schunk, 2001），

Zimmerman 認為在環境中學習者自我調節學習能力是

不可或缺的，強調於培養利用良好的自我管理技能去

因應突發狀況的能力，過程中個人技能運作的知識與

意願更應完備，同時定義為學習者自身於學習過程中

自我的計畫、執行和評價，其涉及在學習循環過程中

持續決定認知、動機和行為（Zimmerman, 2000）。自

我調整學習的觀點注重於學生的知識、後設認知技能、

動機和認知，強調自我調整學習是將「知識」和「技

能」進行相互協調；並將自我調整學習定義為「將個

人自動化和控制相連結，個人呈現自我監控狀態，調

整朝向目標的行動，發展出類似專家般的知識並且自

我改善。」（Patrick & Middleton, 2001）。 

2.4. 知識地圖 

目前盛行於測驗界針對認知診斷的研究主要是假設認

知概念間彼此應視為是相依且依循某種合理的結構（de 

la Torre, 2010）。知識地圖（Knowledge Map, K-Map）

透過圖形化的描述知識分布與結構、知識關聯結構，

余民寧（2011）認為認知診斷為「根據某種認知科學

的理論為基礎，以該理論設計診斷測驗試題，再提出

評量該理論的可能知識理論模式，以驗證該理論下的

評量是否成立」。 
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3. 研究設計 

3.1. 研究發展平台 

本研究使用台灣清華大學學聯網（ShareCourse）平台，

ShareCourse於 2012年由清華大學創立，根據 2014年全

球最大的慕課課程評比「果殼網 MOOC 學院調查研究

報告」，ShareCourse 更在「課程質量最佳」榮獲全球

第二的殊榮。目前台灣計有超過 50 個大專院校等單位

加入學聯網，總計開設超過 300 門課程，目前已開發行

動作業系統（Android與 iOS）的慕課應用軟體（APP），

並積極提供各種客製化需求，進而符合課程授課教師

的作業、考試需求等。 

3.2. 研究發展課程 

研究預計使用台灣清華大學數學系顏東勇教授所錄製

的微積分課程，顏教授具有多年開設慕課課程的豐富

經驗，2016 年 9 月開設於「中國大學 MOOC」，總修

課人數達兩萬四千多人。微積分課程為奠定一般理工

學院所需的基本數學能力，將針對單元主要定義或定

理作講解，同時推導定理或公式，並配合例題運用之。

任何具備中學數學程度者皆可學習，將可奠定工程數

學、複變函數與高等微積分的學習基礎，同時經由演

算之過程培養學生邏輯分析之能力，是一門大學生必

修的基礎重要課程，下表 1 為微積分十五週課程之教學

內容。 

 

表 1 微積分教學內容 

週次 預計教學內容 

零 前測與線上問卷發放 

一 Limit and Continuous function 

二 Continuity and Differentiation 

三 Differentiation and the Mean Value Theorem 

四 Mean value theorem 

五 第一次考試 

六 Applications of the first and second derivatives 

and Integral 
七 Integrations and Fundamental Theorem of 

Calculus 
八 Areas and volumes from definite integrals 

九 The natural logarithm functions 

十 第二次考試 

十一 
The natural exponential function and the inverse 

trigonometric functions 

十二 Integration by parts and the trigonometric 

identities 
十三 The trigonometric substitution and the partial 

fractions 
十四 L’Hopital’s rule and improper integrals 

十五 期末考 

 

3.3. 建構知識地圖 

傳統的學習評量只在測驗後提供一個評斷的分數或標

準參照，然而慕課有別於ㄧ般的線上學習方式，每位

學生的學習能力與速度皆不同，慕課的教學設計為教

師設定學習步驟，學生依循學習影片、練習、作業與

測驗等進度，並無完整知識層面闡述與說明，缺乏學

習依歸與指引，因此本實驗課程為教師依照學科專業

判斷單元知識結構，依據概念學習順序與其階層，建

構出知識地圖，下圖五為台灣清華大學慕課：微積分

第一週「極限與連續」知識地圖。 

 

圖 1 微積分第一週知識地圖(教師編排) 

3.4. 自動建構知識地圖 

傳統教學設計原則為先行設計課綱，教師依據課綱編

排課程素材，慕課教師設計課程以往為遵循實體課堂

安排，後續將視頻模組化，因此無法具體將知識結構

呈現。教師依照慕課編排反思此知識地圖需要花費相

當多心力，因此本模組透過文字探勘（Text Mining）

技術，萃取教材投影片（PDF）文字的上下層級關係、

字型大小以及文字斷詞，透過資訊檢索與文字挖掘的

常 用 加 權 技 術 TF-IDF （ Term Frequency–

Inverse Document Frequency）將重點關鍵字詞萃取出來，

再利用所分析出的上下層級關係，將重點關鍵字建立

上下層級的關係，並建立出課程整體架構，最後將資

料視覺化，畫出具有方向性的知識結構圖。最終讓教

師、教學助理（TA）修正此知識地圖，除了可符合慕

課的學習順序規劃，也大幅縮短教師與助教製作知識

地圖的時間。 

 

 

圖 2 微積分第一週知識地圖（系統生成） 
 

分析講義 PDF 的部分，透過 Open Source：Pdfminer 將

資訊從 PDF 文件中萃取出來的一種套件，其主要是專

注於 PDF 檔案裡文字資料的取得，對於教材的解析有
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著極大的幫助。其作法如下，首先輸入 PDF 文件，文

件分析以「頁」為單位，更進一步分析頁面中的所有

物件。一頁中，會有許多物件，每個物件的所屬類型

不同，有文字、圖片、表格。如下圖 3 為例，頁面具有

5 個物件（如紅框所示）。 

 

 

圖 3 知識地圖萃取範例 

 

3.5. 系統架構 

本研究建構之診斷教學系統架構圖，將以目前學聯網

平台 ShareCourse 為架構進行大規模線上診斷評量系統

開發，建構主從架構（client/server）的 internet 作為網

路骨幹，由 server 端（web server）負責 client 端

（browser）的管理控制，當資料在 client 端做前置處理

後，傳回 server端的題庫系統（MySQL）配合出題。為

避免網路傳輸時擁塞的情形，及施測時學生作答的獨

立性，以網際網路上能執行運作為主，線上測驗系統

以 Linux Cent OS 作為工作平台，PHP 程式語言為基礎

撰寫 client 端前置作業之準備，如試題測驗。而在後端

處理上，同樣以 PHP 作為 Web server 和 MySQL溝通的

橋樑，負責記錄測驗結果，系統架構圖如下圖 4 所示。 

 
圖 4 系統架構圖 

4. 預期成效 
(1) 本研究將製作出專家知識結構模組，透過專家判定

知識上下位結構與其關聯性，模組可新增單元概念矩

陣並依照其關聯，產生專家知識結構圖。 

(2) 檢視實驗組與控制組的成績級距與顯著差異，作為

教師改進慕課教學的參考指標。 

(3) 以既有慕課規劃，設計學習者知識結構圖，省去教

師重新錄製課程，並提供未來課程改進的建議。 

(4) 透過知識結構提供學員概念指引並導入學習概念影

片回顧，協助學員提升慕課上的思維能力，嘉惠平台

上廣大的學員。 
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ABSTRACT 

The purpose of this paper is to share on the method used in 

creating self-realization among Malaysian Educators on the 

needs of adopting Computational Thinking (CT) Skills. This 

is an important step to begin the process of change. Once 

they have accepted the needs of CT, they could be the 

change agents to shift the Malaysian Education’s paradigm 

by integrating CT into their teaching and learning skills 

successfully. A total of 21 participants attended a CT 

training conducted by the author, and the training was aimed 

to create awareness on (i) educators’ perspective on how the 

human minds work towards the teaching and learning 

process, (ii) understand that CT is a unique school of 

thought, and (iii) it is one important skills in this 21st 

Century. Unplugged activities were being used to create the 

awareness where the findings clearly showed that the 

activities used during the training brought much positive 

results for the whole purpose of this study. 

KEYWORDS 

Computational Thinking, Unplugged Activity, School of 

Thought, Reshape Perspective.  

1. INTRODUCTION 
Malaysia started to promote Computational Thinking (CT) 

in the year 2016 and integrated it into learning modules 

especially in ICT subject. This was stated in the 11th 

Malaysia Plan, which would run from the year 2016 until 

2020 (Economic Planning Unit, 2015). The Malaysia Digital 

Economy Corporation (MDEC) is the sole driving force in 

making sure the success of this plan ultimately. This is a 

huge project involving teachers training, alteration of the 

curriculum, and change management for the stakeholders’ 

readiness. 

1.1 Teacher Training 

In 2016, MDEC had organized a training programme called 

“Computational Thinking & Computer Science Teaching 

Certification Programme” (CT&CS TCP). This certification 

programme was aimed to build teachers’ understanding on 

CT, and ultimately transfer CT skills to the students in all 

the schools. The programme started off with the training for 

selected 100 lecturers from the Teacher Training Institution. 

Once they had gone through the entire certification process 

and certified as a Master Trainer (MT), they could start 

training all the pre-service teachers. In the following years, 

36 lecturers from 6 public universities were trained and 

certified as MT to conduct the same training for all the other 

in-service teachers. 

The CT&CS TCP consists of 3 parts. Part 1 is a 5-day face-

to-face training (8 hours a day) conducted by the author for 

over one week. Part 2 required participants to submit a 

programming project. They had to exemplify a range of 

programming techniques learned during the Part 1 training. 

They would start this project right after the Part 1 and were 

given two weeks to complete it. In Part 3, the participants 

needed to show some particular aspect of CT pedagogy by 

carrying out a classroom investigation. They had to submit 

their own video and report on their findings after they had 

conducted similar lessons in actual classrooms, which 

demonstrated how the CT pedagogy had effectively helped 

their weaker students in learning certain difficult topics. 

1.2 Curriculum 

In order to ease the teachers’ implementation of CT 

education, MDEC had successfully developed a series of 

teaching modules. These teaching modules covered all the 8 

subjects of the primary level, Computer Science Foundation 

for the Year 7 – 9, and Computer Science for the Year 10 – 

11. It gave these teachers some basic ideas on the various 

ways CT could be integrated into their Teaching and 

Learning (T&L). 

1.3 Change Management 

As for the stakeholders’ readiness, MDEC works closely 

with the Ministry of Education (MOE) Malaysia and various 

State Education Departments to conduct different 

workshops for the principals, school managements, teachers 

and students for this CT awareness. 

The CT is truly a new concept to the Malaysians, where 

many teachers were often being confused by this different 

school of thought. Some of them had thought that CT was 

actually focused on the engineering thinking, or scientific 

and mathematical thinking. Some wrongly thought it was 

just another problem solving skills and couldn’t understand 

why it was being focused on. The investigation by Ling et al 

in 2017 showed that teachers often related this CT to ICT 

instead. They thought that one must acquire the ICT 

knowledge to be able to integrate the CT into teaching and 

learning (Ling, Saibin, Labadin, & Abdul Aziz, 2017). 

2. BACKGROUND OF THE STUDY 
There are three main purposes to this study. It is to 

demonstrate how Unplugged Activities would: 

i. enable educators to reshape their perspective on 

human mind in T&L process, 

ii. demonstrate that CT is a unique school of thought. 

iii. create realization on the importance of CT. 

The three unplugged activities were: 1: Tangram 2: Monster 

face 3: Algorithm (further discussed in page 3). 
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2.1 Reshape the Educators’ Perspective on human mind 

in T&L process 

According to the statistics conducted by the Higher 

Education Leadership Academy at the Ministry of Higher 

Education Malaysia in 2011, the results showed that 50% of 

the lessons delivered by 41 schools across Malaysia were 

unsatisfactory. The researchers had followed 125 lessons, 

and most of the lessons did not engage students into learning. 

These lessons were being conducted using the teacher-

centered learning method. Most emphasis was towards 

memorizing the questions and answering techniques, instead 

of instilling higher order thinking skills. The assessments 

were mostly tested on the student’s ability in recalling 

concepts (70% of all the lessons observed) rather than to 

analyse and interpret data (18%) or synthesize information 

(15%) (Project Management Office 2012). 

Siti Hendon Sheikh Abdullah had conducted a qualitative 

research in 2013, where she observed the trainee teachers of 

9 primary schools who had delivered various Physics topics. 

The results clearly showed that those trainee teachers had 

tried to use the inquiry approach, but it was not being 

conducted effectively. That was due to the trainee teachers’ 

failure in carrying out the teaching and learning 

constructively. Those trainee teachers were not skillful 

enough in using the Inquiry-Based Approach to conduct 

teaching and learning because they had failed to think 

constructively (Abdullah, 2013). 

There is a definite need to build the educators’ constructive 

thinking skills and we must bring this awareness to their 

conscious level, so that they could recognize this deficit 

(Adam, n.d.). Once they are fully aware on the areas of their 

weakness, they could easily adapt and materialize the 

changes immediately. 

2.2 Computational Thinking as a unique school of 

thought 

There were famous Mathematicians like John Napier, 

Charles Babbage, Lady Ada Lovelace and etc who were the 

pioneer contributors to the formation of computer science as 

a discipline. The Engineers like Herman Hollerith and 

Vannevar Bush (just to name a few) had also built punch 

card and electric motors which became the fundamental 

architecture design of the modern computers (CMU, n.d.). 

All these developments had led some people to mistakenly 

believe that the CT resembles the mathematical, 

engineering, or Scientific Thinking. 

In the book titled “Mastery Algorithms”, the author 

Domingos had written a good description on how the CT is 

different from these schools of thought. He pointed out that 

a scientist focuses on theories and the engineer focuses on 

practical, while the computer scientist actually works on 

both the theories and practical together (Domingos, 2015). 

In a more layman understanding, a scientist forms formula 

while the engineer uses this formula to build things, but a 

computer scientist needs to come up with formula (example: 

syntax) and work on the transistors (engineering work). 

When someone focuses on the computer science related 

coding work for a period of time, it will eventually change 

their thinking patterns. Kim et al had done a research in the 

year 2013 and discovered that computer programming 

enhanced creative problem solving ability for both ordinary 

and gifted learners (Kim, S., Chung, K., Yu, H., 2013). This 

implicates that programming activity could enhance a 

person’s thinking. 

The author views CT as a collective of schools of thought, 

which is a deeper and more revolutionary thinking level. Just 

like dementia is a collective of various symptoms, whereby 

Alzheimer and Parkinson actually branched out from it; The 

Computational Thinking is a collective schools of thought, 

where scientific thinking, engineering thinking, and 

mathematical thinking are all part of it. 

2.3 The importance of Computational Thinking 

The arrival of the 21st Century, where technology advances 

exponentially (Nagy, Farmer, Quan & Trancik, 2013), has 

led to a paradigm shift in education. In order to equip our 

future generations with problem solving skills to solve 

complex problems brought by the advanced technology, we 

need to redesign our educational standard by imparting 

thinking skills, especially CT in this context, to benefit our 

young learners. 

All the educators today should see the coming of this 

technology wave, where the Industry Revolution 4.0 would 

be sweeping around the globe soon. We should therefore 

prepare our young learners and future leaders with this CT 

skills. 

3. METHODS 
The study used qualitative pre-post “self-assessment” 

approach (Bhanji, F. et al, 2012). 

3.1 Participants 

A total of 21 lecturers from various university faculties who 

had not attended any CT training had participated in this 

study. They were selected lecturers from a mixture of the 

faculties of computer science, engineering, and education. 

3.2 Pre-training assessment 

A pre-training survey was conducted for self-assessment on 

i. understanding on CT, 

Q: In your opinion, what is Computational 

Thinking (CT)? 

This question was used to assess the understanding 

of the participants on CT. By knowing that CT was 

a new concept to them, author would need to 

synchronize with all the participants and get them 

to understand to the importance of CT, before the 

training of CT could be conducted. 

ii. ability to view from the students’ perspective, 

Q: I am able to identify the students’ thinking 

pattern and make full use of it for teaching & 

learning process. 

This question eventually led to close the gap 

between the teacher and students towards the 

process of teaching and learning. 

iii. problem solving skills. 

Q: I think my problem solving skills is _____, 

because ____________________. 
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This question was aimed to demonstrate that CT is 

a unique problem skills / thought process. The 

participants would have to assess if CT training had 

helped to scale up and improve their problem skills. 

3.3 Unplugged Activity 1 

The training began with Unplugged Activity 1. It was 

modified from Algorithm Unplugged Activity 6 by 

Code.org. 

 

Figure 1. Unplugged Activity 1 

All the participants worked in groups of three / four persons. 

Each group was given a different tangram picture. They had 

to use their problem solving skills to write instructions for 

the computer to form the same tangram picture. Once they 

had written the instructions, two groups were paired to take 

turns in playing their roles as the computer and also as the 

programmer. When they were the programmer, they had to 

read out the instructions. The other group who role played 

as the computer and sat back to back with the programmer, 

had to form the picture based on the instructions heard. 

This activity demonstrated clearly how the humans need to 

carefully plan a successful communication with a computer, 

which also raised up the participant’s awareness on its 

importance to see from the second person’s perspective in 

real-life communications, especially throughout the 

teaching and learning process. 

3.4 Unplugged Activity 2 

The next activity was Unplugged Activity 2. It was adopted 

from Barefoot CAS UK. The original name for this 

Unplugged Activity was “Crazy Character Algorithms” 

(Barefoot) 

This activity simplified the problem by providing the 

“ingredients” of the crazy character with simple instructions 

next to it. 

 

Figure 2. “Ingredients” of the crazy character 

All the participants drew different versions for this crazy 

character by using the “ingredients” in Figure 2. Next, they 

wrote their instructions for others to draw the same crazy 

character by just reading the instructions without knowing 

what was being drawn by that person. 

3.5 Unplugged Activity 3 

Unplugged Activity 3 showcased how a computer scientist 

could abstract problems and solutions. It was modified from 

“Graph Paper Programming Unplugged Activity 4” by 

Code.org. 

This time, the “ingredients” were not being only given for 

the problems, the solutions were also being abstracted to the 

simplest way. 

 

Figure 3. Unplugged Activity 3 
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Figure 4. Simplified solutions 

All the three Unplugged Activities demonstrated different 

levels of problem skills, and how this CT could simplify 

(abstract) the solution (algorithm) by eliminating human 

errors. 

3.6 Post-training assessment 

After all the three Unplugged Activities were completed, the 

participants went through the Computational Thinking 

training which was designed by the author. 

A post-training survey was conducted to assess on 

participants’ view and understanding on Computational 

Thinking: Their view on CT as a deeper level of problem 

solving skills, and does CT help them better observe how 

students learn and communicate with others. 

4. RESULTS 
We demonstrated our finding on the participants’ 

i. understanding on CT, 

ii. ability to view from the students’ perspective, 

iii. problem solving skills. 

4.1 Understanding on CT 

Prior to the training, all the participants were asked on their 

understanding towards this Computational Thinking. Table 

1 shows the answers from the 19 (out of 21) participants. 

Table 1. Pre-training – Understanding on Computational 

Thinking. 

Question: In your opinion, what is Computational 

Thinking (CT)? 

Partici

pant 

Answer 

1 Problem solving technique which follows 

specific steps and procedures / guidelines. 

2 I have less exposure on CT, but in general I 

think it is the way of how we view and solve 

problems. 

3 Logical thinking with use of technology in 

solving real life problems. 

4 Student able to generate new idea using several 

process and produce the idea using new era 

computing. 

5 Thinking about how to use technology 

effectively to solve problem. 

6 Students know how to use the technology 

efficiently or in other words, use it with 

wisdom and have the knowledge on how the 

process happen (to solve problems using the 

computer or technology). 

7 Breaking down a big problem to smaller pieces 

and then combine them to get the final 

solution. 

8 Problem solving techniques in CS. 

9 Sorry, not really sure. Its may about logic 

thinking as a coding in computer 

programming. 

10 Using technology as a problem solver. 

11 CT (skills and ways of thinking) can be used to 

support problem solving process when writing 

computer programs. 

12 CT is a set of processes for solving problems in 

logical way. 

13 To provide solution to problem using 

computer. 

14 CT is cognitive an thought processes involved 

in formulating problems and solutions so that 

the solutions of the problems could be 

represented in a form that can be effectively 

carried out by an information-processing agent. 

15 Not sure 

16 Logical thinking about how to solve problems. 

17 Mind thinking to be as computer thinking. 

18 Method used by computer scientist to solve 

problems. 

19 Computational Thinking is the thought 

processes involved in formulating a problem 

and expressing its solution(s) in such a way 

that a computer-human or machine. 

 

Table 1 shows that most of the participants had no prior 

knowledge on CT. They thought it was the use of technology 

or computing in solving problems. 

4.2 Ability to view from the students’ perspectives 

After the participants had gone through the three Unplugged 

Activities, the participants eventually realized they would 

definitely need to rethink how they should conduct their 

teaching lessons from all the students’ perspective. 

Table 2. Pre-training self-assessment: Understanding the 

students’ learning perspective. 

Question: During the teaching & learning process, I 

am able to see from students’ perspective. This is how 

I do it: 

Partici

pant 

Answer 

N (Before) 



 

145 

Observing their learning patterns and how 

they answer assessment questions, 

(After) 

While going through the exercises and the 6 

concepts of CT, I realize that as an educator, I 

should know the prior knowledge that the 

students have, so that the activities created for 

them are suitable and they’ll be able to gain 

the CT skills. 

M (Before) 

I set my mind that I am a students which is new 

to the subject. 

(After) 

Don’t expect students to think like we think. 

Q (Before) 

Observe and evaluate the student performance 

(results & responses from the students when I 

asked questions to them) 

(After) 

I have learned that we cannot feel frustrated if 

students are unable to follow all of our 

instructions. It is because at sometimes we 

must see from their perspectives too in order to 

be get mutual understanding. 

I 

(Before) 

Yes? 

(After) 

Instruction must be clear. 

W 

(Before) 

Provide the question to student and ask them to 

solve it, observe the way how they solve the 

problem, and then discuss with them if there is 

any issue. 

(After) 

From today’s training, I get to know that the 

different between instructor and students. 

Instructor will always think that student 

understand them, however, that is not 100% 

true, most of the time, if the instructor did not 

give them the evaluation, such as provide the 

exercise, and ask them to try, at the end, the 

student will totally learnt nothing, as they 

never try and know their mistake. Thus they 

don’t have chance to correct it. 

S 

(Before) 

Through arguments in their reports 

(After) 

What I know, what my colleagues know, and 

what the trainer knows is quite different. 

Therefore, we can not set standards that are 

too high at first, where we must allow the 

learning process to change positively over 

time. 

 

The participants were conscious on the strength and 

weakness of the human mind especially in this area of T&L 

process after they had gone through Unplugged Activity 1. 

“Human mind cannot process too many instruction / 

complex.” 

“Human mind can make assumptions and prediction, but it 

can get tired and confused.” 

“Human can predict and make assumption. But they also 

tend to forget and have negative feelings.” 

“Human is able to guess, assume and predict when they start 

to propose a solution. However, they will feel frustrated and 

sometimes get easily annoyed if they cannot solve the 

problem using the proposed solution.” 

“Strength of human mind-can guess, predict, assume, has 

prior knowledge, and can judge. While, weakness of human 

mind- get tired and easily disrupted.” 

“Strength: Human can think wisely, and then improvise. 

Moreover, human can do the logical reasoning, they able to 

identify the correct or wrong. However for human’s 

weakness, is they have feeling, have emotion, and 

sometimes, the bad emotion, will causing them to make the 

wrong decisions.” 

“The strength of human mind is able to think logically and 

creatively while the weakness is lack of focus and 

concentration.” 

“Human can do reasoning, they tend to make guess, predict, 

tired, confused based on their old information.” 

4.3 Problem Solving Skills – CT is a unique school of 

thought 

All the participants were encouraged to rate their own 

problem solving skills prior to the CT training. During the 

training, they would be able to see the three different levels 

of thought process from the three Unplugged Activities. 

From these hands-on activities, they eventually realized they 

still needed to improve their problem solving skills. 

These participants provided their thoughts on their own 

problem solving skills after three Unplugged Activities. It 

could be summarized into a few format: 

“I am more clear about how I think/thinking process while 

solving problems during training activities.” 

“I realized my problem solving skills was just moderate.” 

“I realized my problem solving skills improved after 

learning all the 6 CT concepts.” 

“I realized my problem solving skills need to be improved.” 

“I realized my problem solving skills was just average.” 

“I realized my problem solving skills can be enhanced by 

incorporating the computational thinking skill. The skill that 

I learned the most is abstraction, which is learnt to identify 

the important features when solving the issue, and also must 

first to break the problem into the small part which can be 

manageable.” 

All the participants were questioned on whether this CT is 

an important skill to be taught to their students and a high 

majority of the participants fully agreed that this CT would 

greatly to help prepare the students to contribute new 

solutions to the seemingly impossible problems (Figure 5). 
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Figure 5. Computational Thinking is important 

5. DISCUSSION 
The ultimate results showed that Unplugged Activity 1 had 

successfully created awareness and brought it to the 

conscious level of all the participants which they could 

recognize this deficit. They agreed that they had wrongly 

thought they could easily understand how their students 

would think but in actual fact there are much room for 

improvement. This CT has shaped their general perspective 

on how their students learn after understanding and 

identifying the ways the human minds work. 

Besides this, the results also showed that the participants 

agreed to the importance of this CT and that it greatly helped 

to improve their problem solving skills. 

6. LIMITATIONS AND FUTURE WORK 
The survey and training were conducted entirely in English 

language. According to the feedback, it showed that the 

majority of these participants’ English level were not at the 

proficient level. They may have also misunderstood the 

meaning of some given questions, or were unable to absorb 

all the information shared during training. 

A more carefully planned self-assessment questions for both 

pre and post trainings should be developed, in order to 

successfully provoke the participants’ thoughts on the core 

of the questions. 

Before we can popularize the CT in Malaysia, we need to 

create effective awareness to the needs of this CT. It could 

be a road block for changes to take place if we do not help 

the educators to unlearn the old concepts, so that they can 

relearn this CT. 

On top of that, the importance of closing the gap between 

the educators and the learners is very important. It should 

start from how these educators can view all the students’ 

learning skills from their perspective. From there, these 

educators could use their CT skills to decompose the lesson 

towards these students’ manageable level, and make 

learning more fun and achievable. 

We need to think of the effective ways to maintain trained 

educators’ thinking pattern, so that they would not fall back 

to their old patterns too. 
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ABSTRACT 
While many countries have recognized the importance of 

computational thinking and coding skills and are 

implementing curricular changes to introduce coding into 

formal school education, a necessary and critical success 

factor involves the preparation of and support for teachers to 

teach coding. Thus, understanding the perceptions of 

teachers towards coding is most important, together with 

knowing the kinds of support they received, and their 

readiness and challenges to teach. The purpose of the current 

study is to compare teachers’ attitudes towards the 

importance of ICT skills and coding skills in Finnish, 

Chinese and Singapore K-12 schools. The findings indicate 

that Singapore and Finnish teachers believe that coding is 

useful even if students will not work in ICT jobs while 

Chinese teachers are undecided. China and Singapore have 

more positive views towards how to prepare for future-ready 

learners.  

KEYWORDS 

computational thinking; coding skills; 21st century skills; 

primary school; comparative research; attitudes  

1. INTRODUCTION  
Countries and regions around world, such as Australia, New 

Zealand, United States, United Kingdom, South Korea, 

Finland, China and Singapore, have recognized the 

importance of coding. They are taking rapid measures to 

introduce it through all levels of the school curriculum. Both 

Finland, China and Singapore have to date revised national 

standards and curriculum to focus learning goals on higher-

order thinking, inquiry, and innovation, as well as the 

integration of technology to the curriculum. In these 

countries, the need for educating students in 21st century 

skills is commonly acknowledged. These countries 

(Shanghai region for China) have also been top performers 

in PISA rankings. 

The purpose of the current study is to compare teachers’ 

attitudes towards the importance of 21st Century skills, 

especially computational thinking (CT) and coding skills in 

Finland, China and Singapore, in K-12 schools. Specifically 

we aim to compare teacher’s attitudes towards the 

importance of teaching coding skills already in basic 

education, the importance of 21st Century Skills in students’ 

future jobs, and preparing students for the digital century. 

The findings and results of comparative education studies 

are valuable resources also for the administration of 

education systems and is one of the main reasons this 

approach was chosen for this study. 

2. ICT AND CODING POLICIES IN THE 3 

COUNTRIES 
We first provide a backdrop of policies regarding ICT use 

and teaching of coding the three countries. 

Finland 

The teaching of ICT started in Finland in 1980s, first in high 

schools. Official reports and curriculum projects stated 

clearly that students should learn the basics of this new 

literacy. However, software support was weak and there was 

not much in-service teacher training in computing. In 

secondary schools, the actual subject of ICT was brought 

into the curriculum between 1987 and 1988, as an optional 

subject. A few years later, ICT was no longer taught as an 

individual subject, and ICT skills were integrated into other 

subjects (Vahtivuori-Hänninen & Kynäslahti 2012).  

Since fall 2016, coding is a mandatory, cross-curricular 

activity that starts from first year of school and spans 

both primary and lower secondary education. Finland has 

outlined that coding is one of the learning skills – just like 

reading, writing, counting and drawing. The Finnish 

Ministry of Education has outlined that ICT skills, and 

coding in particular, is a fundamental part of the Finnish 

National Core Curriculum (FNCC) from 2016 (FNBE, 

2016). It is still not an independent subject, but it is 

integrated into other subjects. The FNCC defines several 

transversal skills that should be taught and learned in every 

subject. ICT competence is among these transversal 

competencies. The FNCC states that pupils should work 

with digital media and age-appropriate programming tasks. 

Key content areas related to the objectives of mathematics 

in grades 1 and 2 state that, “the pupils began familiarizing 

themselves with the basics of programming by formulating 

and testing step-by-step instructions” thus supporting the 

development of logical thinking and problem solving.  

China 

Computer technology has been utilized in Chinese education 

since the 1980’s (Mok &Leung 2012) According to Niemi 

and Jia (2016), the growing popularity of the Internet and 

communication technology from the 1990’s onwards 

brought a wider concept of ICT, which was then introduced 

into China and Chinese education (Niemi and Jia 2016, 9). 

In 2010, a national plan for educational reform and 

development was issued by the central government. It 

declared that ICT will have a revolutionary impact on 

education (MoE China 2010). Since that time, there has been 

a steady increase of government expenditure on education, 

and vast investment from central and provincial 

governments has gone to the application of ICT in education 

(Niemi and Jia 2016, 9; Han and Ye 2017). 
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In 2016, the National People’s Congress approved the 13th 

five-year plan for national economic and social development 

which stressed to enhance the educational level of all people 

and to promote modernization of education. The concrete 

approaches detailed in this plan include the development of 

online education and distance learning, the integration of all 

kinds of digital resources and their service for society as a 

whole, and the deep integration of ICT with teaching and 

learning (National People’s Congress China, 2016). Based 

on Jia and Niemi (2016), “The purpose of ICT integration 

into ordinary teaching and learning is to cultivate students’ 

basic knowledge, skills, and literacy in the information era, 

to foster their creativity, and to prepare them for the future 

workplace” (Jia and Niemi 2016, 315).  

A new round of high school curriculum reform program has 

been announced in 2016 and enacted from 2017, which takes 

CT as one of the four core elements of the discipline of 

information technology. The move indicates that CT has 

been be given more importance at the national curriculum 

level which will influence the enactment of new curriculum 

standards, composition of new teaching materials and 

guidance of new college entrance examination.  

Singapore 

Singapore is a small city-state with key national focus on 

developing human capital, its ICT in Education policies are 

formulated with the goals of preparing its student citizenry 

for the knowledge-based economy, and to enhance the 

learning experiences of students in schools. Since 1997, the 

government has launched four Masterplans for ICT in 

Education to equip students with ICT-enhanced approaches 

to learning. 

In 2014, Singapore launched the Smart Nation Programme 

which is a nationwide effort to harness technology in the 

business, government and home sectors for improving urban 

living, building stronger communities, growing the 

economy and creating opportunities for all residents to 

address the everchanging global challenges (Smart Nation, 

2014). One of the key enablers for the Smart Nation 

initiative is to develop computational capabilities. 

Programmes are implemented to introduce and develop CT 

skills and coding capabilities from pre-school children to 

adults. To develop CT capabilities and support the Smart 

Nation initiative, several programmes have been 

implemented to introduce and develop CT skills and coding 

capabilities in every Singaporean, from pre-school children 

to adults (Seow, Looi, Wadhwa, Wu & Liu, 2017).  

Singapore’ approach is to provide opportunities for students 

to develop their interests in coding and computing skills 

through touchpoint activities at various ages. Computing and 

CT skills are introduced to the children that are age-

appropriate and engage them in learning. Children 

progressively develop interest and skills leading them to 

offer Computing as a subject for grade levels 9 and 10.  

There are major differences between China, Finland and 

Singapore in terms of their respective populations, 

languages, history, cultural roots, and educational systems 

(Jia and Niemi 2016, 318). However, when discussing new 

ways to teach and learn, these countries face similar 

opportunities and challenges. In these countries, ICT and 

new learning environments are perceived as tools for 

teaching and learning. These countries emphasize that new 

digital tools and materials should be pedagogically relevant 

and that teachers need support and training to learn how to 

use them. 

3. DESIGN OF SURVEY 
The survey is designed based on three major guiding 

questions: 1) What are the perceptions of teachers on ICT 

use in schools? 2) What are the readiness levels of teachers 

for teaching coding skills?  3) What are the perceptions of 

teachers towards teaching coding skills? It comprises 74 

questions in total, including 5 questions on teacher profiles, 

14 questions on ICT use, 14 questions on teachers’ readiness 

to teach coding skills, and 41 questions on teachers’ 

perceptions and attitudes related to coding skills. The survey 

questions on perceptions and readiness use a 5-Likert scale 

(1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-

Strongly agree).  

4. FINDINGS OF SURVEY 
In total there were 702 respondents, 406 from China, 143 

from Singapore and 153 from Finland. The teachers from 

China are all from the Shanghai region. According to Chi-

Square test, the gender distribution in the data is statistically 

different, X2(2) = 21.26, p < .001. The majority of the 

respondents were female teachers (79.4%). In China, there 

were 84.2% female teachers and in Finland 78.9%. In 

Singapore, 65.4% of all respondents were female. 

According to Chi-Square test, in the age distribution of the 

respondents there is a significant difference, X2(16) = 

212.04; p < .001. Respondents in China are younger 

compared to Singapore and Finland. From an one-way 

ANOVA test, the teaching experience in school years in 

Finland, Singapore and China is not statistically different, 

F(2,696) = 4.48, p = .012.  

According to one-way ANOVA test, the school level in 

Finland, Singapore and China there is a significant 

difference, F(2,633) = 214.21, p < .001. From Finland, there 

were no respondents from early childhood teaching, whereas 

from China 10.2% of all respondents were in early childhood 

schools. In Finland, 36.6% of all respondents were in upper 

primary schools (0% in China). Almost all respondents from 

Singapore were from secondary school (99.3%). 

4.1. Coding skills for all or for some 

The question posed is: Coding skills should be taught only 

to students that are aiming to work on the field of 

information technology (1 Strongly disagree, 5 strongly 

agree). The result indicates that there is a significant 

difference between China, Singapore and Finland. Finnish 

teachers (M = 2.46, SD = 1.34) think that coding skills are 

needed also for those who are not aiming to be professional 

programmers while Chinese teachers are undecided (M = 

3.13, SD = 1.21). The teachers in Singapore (M = 2.46, SD 

= 1.13) think similarly as the Finnish teachers, F(2) = 37.73, 

N = 701, p < .001. 

According to one-way ANOVA, the were no differences 

between the teachers in different age groups, F(8) = 2.03, p 

= .041, or gender, F(1) = 3.06, p = .080. In addition, the were 

no differences between the teachers who had different 
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amounts of school experience as a teacher, F(6) = 1.22, p = 

.292. 

4.2. Best method to learning coding skills 

On the question on what is the best method to learn coding 

skills (1 Strongly disagree, 5 strongly agree), teachers in all 

countries agree that coding is learned best by writing the 

code, with visual programming environments, building 

robots and outside school clubs. Teachers in China agree that 

coding is also best learned at school with the teacher’s 

guidance, but Finnish teachers are undecided. The difference 

is statistically highly significant, F(2) = 80.50, p < .001. 

Teachers in China agree that coding is also best learned from 

books and dedicated websites, but Finnish and Singapore 

teachers are undecided. The difference is statistically highly 

significant, F(2) = 76.58, p < .001. 

  M SD N F(2) Sig. 

At school, with the 
teacher's 
guidance  

China 
Finland 
Singapore 

4.23  
3.34 
3.6  

.71  

.84 

.97 

393 
153 
138 

80.50 .000 

From books and 
dedicated 
websites  

China 
Finland 
Singapore 

4.00  
3.12 
3.39  

.78 

.85 

.83 

393 
152 
138 

76.58 .000 

By actually 
writing/rehearsing 
the code  

China 
Finland 
Singapore 

3.99  
3.86  
4.13  

.82 

.91 

.88 

391 
153 
138 

3.55 .029 

Through visual and 
graphical coding 
languages like 
Scratch  

China 
Finland 
Singapore 

3.98 
3.87 
3.81 

.82 

.75 

.78 

394 
152 
138 

2.64 .072 

Through building 
and programming 
robots  

China 
Finland 
Singapore 

3.85 
3.95 
3.76  

.85 

.80 

.76 

396 
152 
138 

2.01 .135 

In informal 
activities such as 
coding clubs, and 
other outside of 
school events 

China 
Finland 
Singapore 

3.98 
4.11 
3.86  

.79 

.70 

.75 

394 
153 
138 

4.09 .017 

 

When the gender is used as a factor in the one-way ANOVA, 

there is a statistical difference only in the item “by actually 

writing/rehearsing the code “, F(1) = 10.98, p = 0.001. Male 

teachers agree that coding should be learned by writing the 

code (M = 3.93, SD = .85) more compared to female teachers 

(M = 4.20, SD = .86). 

In addition, according to one-way ANOVA, there is a 

statistically significant difference in the item “at school, with 

the teacher's guidance”, in different age groups, F(8) = 4.26, 

p < .001. In general, teachers under 45 more that the coding 

should be learned at school, with the teacher's guidance than 

the teachers who are over 46. 

In addition, according to one-way ANOVA, there is a 

statistically significant difference in the item “from books 

and dedicated websites”, in different age groups, F(8) = 

4.31, p < .001. In general, teachers under 45 more that the 

coding should be from books and dedicated websites than 

the teachers who are over 46. When the teacher’s school 

experience is used as a factor in the one-way ANOVA, there 

are no statistically significant differences between the 

groups. 

4.3. ICT used by students in schools 

The question posed is: How often your students use the 

following technologies in your classroom? A four point 

scale was used, rated from 1 (not at all), 2 (once a month), 3 

(once a week) to 4 (daily). The hypothesis we had is: The 

amounts of use of technologies in the classroom does not 

differ in China, Finland and Singapore. 

The result indicates that computers are used more in China 

(M = 3.23, SD = 1.11) compared to Finland (M = 2.74, SD 

= .92) or Singapore (M = 2.28, SD = 1.01). The difference is 

statistically highly significant, F(2) = 43.96, p < .001.  

Internet is used in Singapore (M = 2.69, SD = .95) less than 

in China (M = 3.21, SD = 1.05) or Finland (M = 3.14, SD = 

.85). The difference is statistically highly significant, F(2) = 

14.68, p < .001. 

Digital cameras and videos are also used more often in China 

(M = 2.66, SD = 1.09) compared to Finland (M = 1.81, SD 

= .83) and Singapore (M = 1.83, SD = .90). The difference 

is statistically highly significant, F(2) = 57.34, p < .001. 

Educational applications and games are used in Singapore 

(M = 1.96, SD = .89) less than in China (M = 2.71, SD = 

1.12) or Finland (M = 2.54, SD = .89). The difference is 

statistically highly significant, F(2) = 126.57, p < .001. 

Notebooks and tablets and mobile phones are used in 

classroom similar amounts in both countries. 

  M SD N F(2) Sig. 

Desktop/ 
laptop 
computers  

China 
Finland 
Singapore 

3.23 
2.74 
2.28 

1.11 
.92 
1.01 

382 
152 
138 

43.96 .000 

Notebooks/ 
tablets  

China 
Finland 
Singapore 

2.19 
2.35 
1.95 

1.26 
1.04 
1.01 

390 
152 
133 

4.07 .017 

Internet  China 
Finland 
Singapore 

3.21 
3.14 
2.69 

1.05 
.85 
.95 

385 
152 
138 

14.68 .000 

Educational 
applications/
games  

China 
Finland 
Singapore 

2.71 
2.54 
1.96 

1.12 
.89 
.89 

393 
152 
134 

26.57 .000 

Digital 
cameras/ 
videos  

China 
Finland 
Singapore 

2.66 
1.81 
1.83 

1.09 
.83 
.90 

386 
149 
136 

57.34 .000 

Digital 
projectors/ 
interactive 
whiteboards  

China 
Finland 
Singapore 

2.98 
2.74 
1.93 

1.16 
1.31 
1.20 

389 
153 
134 

38.49 .000 

Mobile 
phones 

China 
Finland 
Singapore 

2.35 
2.69 
2.43 

1.30 
1.08 
.97 

392 
151 
136 

4.34 .013 

 

When the teacher’s age is used as a factor in the one-way 

ANOVA, there is a statistically significant difference only 

in the use of digital cameras and digital videos in the 

classroom, F(8) = 4.74, p < 0.001. The teachers in the age 

groups 20 to 25 (M = 2.68) and 40 to 45 (M = 2.65) use 

digital cameras and videos the most, whereas the teachers 

from 60 to 65 use the least (M = 1.67). There are no such 

differences in the use of other technologies. 

4.4. Teachers’ levels of programming skills 

The subscale had 2 questions (Cronbach alpha = 0.868): 

How would you evaluate your own competence on the 

following skills? 

 Programming languages (e.g. Python)  
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 Visual coding software (e.g. Scratch)  

The results suggested that there was no difference in the 

programming skills of the teachers for China (M = 3.45, SD 

= 1.90), Singapore (M = 3.93, SD = 2.56) and Finland (M = 

3.65, SD= 1.87), F(2,684) = 2.93, p = 0.054. 

According to Kruskall-Wallis test, there is statistically 

highly significant difference between the male (M = 4.74, 

SD = 2.48) and female (M = 3.29, SD = 1.82) teachers in the 

programming skills, H(1) = 44.00, p < .001, N = 675. From 

an one-way ANOVA, there is not a significant difference in 

the programming skills between the teachers in different age 

groups, F(8) = 2.30, p = .019. In general, in the scale from 2 

to 10 (a sum of two 5 point Likert items), the programming 

competence of the teachers is low (M = 3.59, N = 677, SD = 

2.05). 

4.5. Attitudes towards the importance of the future skills in 

students’ future jobs 

The subscale had 8 questions (Cronbach alpha = 0.908): The 

following skills have a great importance in your students' 

future jobs: logical thinking, problem solving, creativity, 

programming, social and collaboration skills, 

entrepreneurialism, language and communicational skills, 

analytical thinking. 

The results show that there was statistically highly 

significant difference in the attitudes towards the importance 

of futures skills of the teachers for China (M = 37.18, SD = 

4.03), Singapore (M = 35.89, SD = 3.65) and Finland (M = 

35.04, SD = 3.96), F(2,673) = 17.68, p < .001. The Chinese 

teachers attitudes towards the importance of future skills are 

more positive compared to the Singapore and Finnish 

teachers attitudes. 

According to Kruskall-Wallis test, there is statistically 

significant difference between the attitudes towards the 

importance of futures skills between male (M = 35.88, SD = 

4.20) and female (M = 36.60, SD = 4.00) teachers in the 

skills, H(1) = 4.49, p = .034, N = 664. The female teachers 

attitudes towards the importance of futures skills is more 

positive that the male teachers attitudes. 

In addition, according to one-way ANOVA, there is a 

statistically significant difference in the attitudes towards the 

importance of futures skills in different age groups, F(8) = 

4.22, p < .001. In general, teachers under 45 have a more 

positive attitude the importance of futures skills than the 

teachers who are over 45. 

4.6. Attitudes towards teaching future skills in basic 

education 

The subscale had 8 questions (Cronbach alpha = 0.884): The 

following skills should be taught to everyone in primary 

schools: logical thinking, problem solving, creativity, 

programming, social and collaboration skills, 

entrepreneurialism, language and communicational skills, 

analytical thinking. 

We found that there was statistically highly significant 

difference in the attitudes towards the teaching the futures 

skills already on basic education of the teachers for China 

(M = 36.19, SD = 5.37), Singapore (M = 33.98, SD = 4.01) 

and Finland (M = 34.61, SD = 4.25), F(2,682) = 13.06, p < 

.001. The Chinese teachers’ attitudes towards the 

importance of teaching the future skills already in basic 

education are more positive compared to the Singapore and 

Finnish teachers attitudes. 

According to Kruskall-Wallis test, there is no difference 

between the attitudes towards the teaching the future skills 

between the male (M = 34.96, SD = 4.997) and female (M = 

35.54, SD = 4.97) teachers, H(1) = 1.52, p = .217, N = 673. 

In addition, according to one-way ANOVA, there is a 

statistical difference in the attitudes towards the teaching the 

future skills in different age groups, F(8) = 3.04, p = .002. In 

general, teachers under 45 have a more positive attitude 

towards the teaching the future skills than the teachers who 

are over 46. 

4.7. Attitudes towards the technological change 

The subscale had 4 questions (Cronbach alpha = 0.712): 

• I believe that almost all businesses will be computerized in the 

future 

• I have a good understanding of the effects of technology on 

the environment, society, and individuals. 

• I think most well-paying technology jobs will require workers 

who are highly-skilled. 

• I think that most jobs in the future that require the use of a 

computer will require strong thinking skills. 

The results show that there was a statistically highly 

significant difference in the attitudes towards the 

technological change of the teachers for China (M = 17.45, 

SD = 2.58), Singapore (M = 16.46, SD = 1.95) and Finland  

(M = 14.62, SD = 2.30), F(2,696) = 77.22, p < .001. The 

Chinese and Singapore teachers’ attitudes towards the 

technological change are more positive compared to the 

Finnish teachers attitudes. 

According to Kruskall-Wallis test, there are no statistical 

differences between the genders in the attitudes towards the 

technological change, H(1) = 1.65, p = .199, N = 683. 

In addition, according to one-way ANOVA, there is a 

statistically significant difference in the attitudes towards the 

technological change in different age groups, F(8) = 3.77, p 

< .001. In general, teachers under 45 have a more positive 

attitude towards the technological change than the teachers 

who are over 46. 

5. DISCUSSION 

5.1. Differences between countries 

There was not a significant difference in the programming 

skills of the teachers when we examined both the scripting 

languages and visual programming languages together. 

However, the level of programming skills with Python or 

similar scripting languages was quite low in Finland (M = 

1.58, SD = 0.923) and China (M = 1.66, SD = 0.940). In 

Singapore, the programming skills with Python or similar 

languages level was higher (M = 2.06, SD = 1.382). In 

contrast, the skills for using visual programming 

environments were higher in Finland (M = 2.08, SD = 1.097) 

compared to China (M = 1.79, SD = 1.050) and Singapore 

(M = 1.87, SD = 1.260). In the open-ended question, several 

teachers from Finland and China said that coding is a totally 

unknown area to them. 
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In general, Chinese and Singapore teachers’ perceptions of 

their ICT skills are higher compared to the Finnish teachers. 

The Chinese teachers’ attitudes towards the importance of 

teaching the future skills in basic education and the 

importance of role the future skills in their students’ future 

jobs are more positive compared to the Finnish teachers. In 

addition, the Chinese teachers’ attitudes towards the 

technological change are more positive compared to the 

Finnish teachers’ attitudes.  

Based on our study, the Chinese and Singapore teachers’ 

perceptions towards the usefulness of ICT in the classroom 

and school ICT support are more positive compared to the 

Finnish teachers’ perceptions. There are differences in the 

ICT and programming skills of male and female teachers. In 

general, male teachers evaluate their ICT and programming 

skills higher than female teachers. In addition, there is 

statistically significant difference in the attitudes towards the 

importance of the future skills in students’ future jobs 

between male and female teachers. The female teachers’ 

attitudes are more positive. 

5.2. Differences between genders 

Based on our data, there is no gender difference on teachers 

perceptions on to whom should be taught coding skills. 

However, when we asked what the best method to learn 

coding skills is, there was a difference between male and 

female teachers. Male teachers agree that coding should be 

learned by writing the code (M = 3.93, SD = .85) more 

compared to female teachers (M = 4.20, SD = .86). 

5.3. Differences between the age groups 

There were no difference between the age groups on the item 

“Coding skills should be taught only to students that are 

aiming to work on the field of information technology”. 

However, when asked about what is the best method to learn 

coding skills, teachers under 45 think that the coding should 

be learned at school, with the teacher's guidance compared 

to the teachers who are over 45. In general, teachers under 

45 think that the coding should be learned from books and 

dedicated websites compared to the teachers who are over 

46 who are less likely to think so. 

5.4. Differences between perceptions of computing for all 

or for some 

Singapore and Finland teachers believe that coding is useful 

even if it is not for ICT jobs; China teachers are undecided.  

6. SUMMARY 
Teaching coding skills does not happen without the teacher. 

It is important that teachers are educated, guided, and 

supported at a practical level to meet the requirements of the 

coding skills in the curriculum. Many countries are 

including 21st century skills, computational thinking, and 

coding skills, as a part of the curricula, but many countries 

are lacking, at the national level, official and adequate 

education and training of the teachers on how to implement 

coding-based activity into their school work. 

Singapore and Beijing teachers’ preparedness to use ICT is 

high, compared with Finland. Singapore and Finland 

teachers believe that coding is useful even if it is not for ICT 

jobs; Beijing teachers are undecided. Singapore and Finland 

have more positive views towards how to prepare future-

ready learners 

Chinese and Singapore teachers’ attitudes towards the 

importance of teaching future skills already in basic 

education are more positive compared to the Finnish 

teachers’ attitudes. The Chinese and Singapore teachers’ 

attitudes towards the importance of teaching future skills in 

basic education, and the importance of the role the future 

skills will play in their students’ future jobs are more 

positive compared to Finnish teachers. Additionally, the 

Chinese and Singapore teachers’ attitudes towards 

technological change are more positive compared to Finnish 

teachers’ attitudes.  

One of the most striking findings that concern all three 

countries is the fact that the majority of the teachers in all 

three countries are not yet competent in any coding 

languages. While this result is to be expected, that teacher 

educators cannot expect teachers to effectively teach 21st-

century information and media literacy skills that they 

themselves lack (Fry and Seely 2011, 217). This particular 

finding clearly suggests adding basic coding skills as a part 

of the teacher training and in-service, professional 

development, but also not forgetting the other aspects of 

teaching the 21st century skills as well. According to 

Lambert and Gong (2010), there “exists a critical need for 

suitable curriculum materials to train pre-service and in-

service teachers in 21st century concepts related to 

pedagogy, content, and technology” (Lambert and Gong 

2010, 67).  

Teachers in all countries agree that coding is learned best by 

writing the code, with visual programming environments, 

building robots, and through participation in outside school 

clubs. Teachers in China and Singapore agree that coding is 

also best learned at school with the teacher’s guidance and 

from books and websites, but Finnish teachers are 

undecided. The Chinese teachers consider all presented 

methods as potential for learning coding. The study indicates 

that Finnish teachers favour the active learning methods 

(writing the code in a programming environment, by 

building robots, and learning in informal learning 

environments).  

The lack of programming and computer education at K–12 

level is increasingly recognized as a serious issue in many 

Western countries (Dagiene et al. 2014; Guerra et al. 2012). 

Dagiene et al. (2014) states that, “although informatics has 

been taught as a subject in many European countries as early 

as in the 1970’s, many of these efforts were dropped for 

various reasons” (Tuomi, Multisilta, Saarikoski, & 

Suominen 2017, 13). As a result, students graduate from 

secondary school with a lot of experience using computers 

and software, but they do not have computational thinking 

and coding skills, and do not understand the basic principles 

of how computers and networks operate (Dagiene et al. 

2014). This is why it is important to obtain information 

relating to best practices of having coding as a subject in 

schools. The best practices could contribute to the 

modernisation of education and training systems. The results 

obtained in this study benefit the school principals, teachers, 

and educational policy-makers. In all, computational 

thinking and coding skills are challenges that many countries 



 

152 

and schools face. New research that results in providing 

functional guidelines for teachers, as well as students, to 

teach and learn coding skills, contributes to the creation of 

high-quality schools of the future (Tuomi, Multisilta, 

Saarikoski, & Suominen 2017, 13).  

Caveats of this study include: Small sample size from each 

country, and teachers are not from equivalent school levels 

(early childhood, primary and secondary from each 

country). For future research, it is planned to gather similar 

data from other Asian and European countries and regions 

such as Hong Kong, the Netherlands, South Korea, Taiwan 

and USA in order to execute more comparisons and cross 

analysis between participating countries.  
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ABSTRACT 

The purpose of this study is to investigate how pre-service 

teachers perceive and conceptualize computational thinking 

(CT) concepts within K-12 education. We conducted a pilot 

case study that was situated in a teacher technology licensure 

course in the United States. After the CT exposure through 

a hands-on exploration of programming and robotics as well 

as an extension research activity, forty-four pre-service 

teachers’ learning artifacts were collected for a content 

analysis.  

In the initial findings, we found that pre-service teachers 

were trying to understand practical examples of CT, were 

inspired by the social justice issues related to computing, and 

shared CT is in alignment with their educational beliefs. 

Though a conceptual change of CT occurred among pre-

service teachers, there were assumptions and concerns 

among the pre-service teachers about its application in the 

classroom.  

KEYWORDS 

Computational Thinking, Teacher Education, Pre-service 

Teachers, Technology Integration, Professional 

Development.  

1. INTRODUCTION 
Computational Thinking (CT) is becoming a fundamental 

ability to have in the digital age (Barr, Harrison & Conery, 

2011). Despite its importance, most pre- and in-service 

teachers lack the knowledge and ability to purposefully 

incorporate CT into classrooms (Freeman, Adams Becker, 

Cummins, Davis, & Hall Giesinger, 2017; Grover & Pea, 

2013). The majority of research on training teachers about 

CT as a concept and how to integrate CT into the curriculum 

has focused on in-service teacher professional development 

(Yadav, Gretter, Good, & McLean, 2017). 

Enabling a student to become a “computational thinker” has 

been added to the International Society for Technology in 

Education’s Standards for Students (ISTE, 2016). In 

collaboration with the Computer Science Teachers 

Association (CSTA), ISTE has suggested that teachers 

cultivate students’ use of CT as a process for problem 

solving, algorithmic thinking, and solution building. 

Shifting CT to a central role within education requires a 

comprehensive approach including integrating CT into K-12 

pre-service education programs (Yadav, Mayfield, Zhou, 

Hambrusch, & Korb, 2014; Yadav et al., 2017). 

As both researchers and teacher educators, we found a lack 

of CT training within our pre-service education program and 

wished to explore what could be done to change this within 

our context. To examine this issue, we provided an 

opportunity for pre-service teachers to engage in CT 

experiences in a teacher-licensure course.  

This case study is an attempt to introduce pre-service 

teachers to CT through hands-on exploration. Our driving 

research questions for this case study are: (a) how do pre-

service teachers conceptualize the role of CT within K-12 

education? (b) what are implications for teacher educators to 

support pre-service teachers’ understanding of CT?  

2. SUPPORTING LITERATURE 
There are myriad of definitions and approaches to the 

concept of CT. It has been described as a problem-solving 

process (Balanskat & Engelhardt, 2015), a “cognitive skill” 

(National Research Council, 2010), a framework of concepts 

and capabilities (Barr & Stephen, 2011), and an identity 

(ISTE, 2016). Google (2015) broke down CT into four 

components for educators: decomposition, pattern 

recognition, abstraction, and algorithm design. Educators 

are encouraged to incorporate the four CT components into 

teaching, such as having students discover the principles of 

a pattern within learning materials. Brennan and Resnick 

(2012)’s definition of CT has three components: (1) 

computational perspectives- how young people identify with 

computing participation; (2) computational concepts- 

vocabulary and skills needed to engage in computing; and 

(3) computational practices- processes used to work with 

computers.  There are clear overlaps with the different 

definitions of CT but also unique lenses to the various 

approaches (Voogt, Fisser, Good, Mishra, & Yadav, 2015). 

Moving from “what is CT” to “how to use CT”, we look to 

Yadav et al. (2014) who provided CT modules in a teacher 

education program to develop pre-service teachers’ 

understanding of CT and learn more about their attitude 

towards the concept. As for professional development in 

general, previous research (Israel, Pearson, Tapia, Wherfel, 

& Reese, 2015) identified limited instructional time and lack 

of technology and support as barriers to integrating CT into 

classrooms. Their findings indicated that supportive 

resources such as ongoing professional development and 

coaching play a vital role in increasing teachers’ ability to 

integrate CT seamlessly. Their findings also showed that 

struggling learners, students with disabilities, and low 

socioeconomic status students benefit from building CT 

skills. 

There are more opportunities than ever for students to 

experience coding and computational thinking through 

online platforms such as code.org or new robots and tools 

designed for the K-12 context (Shellenbarger, 2016).  

Researchers are concerned that CT skills should not be 

learned only through separate coding programs but 
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integrated into core content (Barr & Stephenson, 2011). We 

need to re-design instructional approaches (e.g., problem-

solving) and pedagogical strategies (e.g., group 

collaboration) in curriculum and interdisciplinary subjects to 

engage learners in practicing CT (Grover & Pea, 2013; Lye 

& Koh, 2014). Goode, Margolis, and Chapman’s (2012) 

Exploring Computer Science teacher professional 

development is one exemplar model for helping teachers 

integrate CT into the core curriculum. 

3. METHODOLOGY 

3.1. Context 
This case study was situated in a 1.5 credit, required course 

for teacher candidates on technology integration in K-12 

education, at a Midwest public university in the United 

States. This teaching-licensure course had to address ten 

state standards for effective teaching related to topics such 

as instructional strategies, assessment, and learning 

environments. The instructor had complete autonomy over 

pedagogical approaches and the exact curriculum to address 

the standards. The blended course met seven times face-to-

face with online activities between classes. One of the 

researchers on this study was also the instructor for three 

sections of this course during the spring and summer of 

2017. Pre-service teachers who completed the course session 

on CT exploration met the criteria in this study for research. 

They were asked to share their coursework for research 

purposes after the end of the course. Participants included 

forty-four pre-service teachers, 5 male and 39 females, who 

are majoring in elementary education, special education, or 

early childhood education.  

CT is not a topic that is traditionally addressed in this course 

but given its increased presence in K-12 education and 

implications for students we felt it was important to expose 

pre-service teachers to the concept. One barrier to including 

CT was the lack of time in an already full curriculum. In this 

case, CT exposure took place three activities: (1) a 10-min 

introduction about the coding movement, (2) an hour-long 

unstructured exploration of hands-on tools and resources, 

and (3) an online extension activity. To be more specific, 

during the one hour free exploration, pre-service teachers 

had access to a Makey-Makey, a Blue-Bot robot, a Dash and 

Dot robot, an Osmo, an Ozobot and a stations of coding 

platforms designed for elementary students, such as 

Code.org and Scratch. The classroom was set up by having 

each resource displayed at one station around the classroom. 

Participants were encouraged to interact with at least one 

resource to help them gain new ideas from hands-on 

experiences. After the in-class CT exploration, teacher 

candidates were asked to find one online resource related to 

CT or coding and share their own reflective ideas about CT. 

Their responses to this activity were posted in the course’s 

online learning management system. Their responses were 

visible to their peers but it was not a requirement for them to 

interact with their peers within the discussion thread. 

3.2. Data Analysis 
Forty-four reflective posts were collected from teacher 

candidates. To analyze these posts each researcher 

independently open coded all of the journals. We then 

compared our initial codes with each other to find alignment 

and missed insights. Next, we collaboratively utilized 

pattern coding to develop major themes from the data. To 

enhance internal validity, we continued to member check as 

we tested the themes against the data. Within this stage, five 

patterns emerged: (1) CT resources, (2) personal meaning of 

CT, (3) CT and teachers’ expertise, (4) conceptual changes 

of CT, (5) assumptions of CT.  During coding process, the 

researchers also used the constant comparative method to 

enhance the validity of results. 

4. PRIMARY FINDINGS 
The pre-service teachers started to gain awareness of CT 

through their own educational beliefs and teacher expertise. 

Among all the resources that they shared in the extension 

activity to support their understanding of CT, pre-service 

teachers revealed a need to find concrete teaching examples. 

This included the desire to explore how CT works in 

classrooms, subjects, and curriculum by utilizing YouTube 

to view classroom showcase videos and blogs from 

Edutopia. They also demonstrated their interest in looking 

for free online coding platforms as a useful teaching 

resource and learning environment.  Practical resources 

were the most sought after to translate the experience they 

had just had into a tangible tool for their future students. 

Particularly for the pre-service teachers specializing in early 

childhood and special education, it was difficult to identify 

specific resources or address concerns in order to support 

their students’ development. Additionally, we found that 

pre-service teachers described the nexus of CT with their 

educational beliefs in creativity and constructivist learning 

theories. They showcased the role CT could play in content 

and pedagogical style. For example, some teachers 

mentioned potential ways to design a group discussion such 

as “getting students working together to figure out how to 

create a story using critical thinking and problem solving 

skills” (PT#202) and another shared an idea for formative 

assessment “track students’ progress as well as view student 

solutions for each level” (PT#103). 

The pre-service teachers communicated a variety of 

perceptions of the importance of CT. The most influential 

factor on their conceptualization seemed to be the  

implication on humanity. Some of the participants talked 

about the intersection of computing with social justice issues 

such as gender, race, and socioeconomic status. For them, 

seeing non-profits focused on addressing representation with 

computing gave the topic importance. Giving their future 

students opportunities to succeed and career options was a 

motivating factor to integrate CT. 

During their extension activity research, many of the pre-

service teachers referenced campaigns and non-profits such 

as Hour of Code, Code.org, Made with Code by Google, 

Girls Who Code, Code2040, or Black Girls Code. The 

exposure of these social justice centered campaigns 

prompted reflection on gender, race and socioeconomic 

issues in the technology field. One pre-service teacher stated 

that “I am amazed about the amount of girls that have begun 

to code, and have become interested in computer science 

and [I] love [that the coding program] empowers women” 

(PT#106). Likewise some pre-service teachers were amazed 

by free coding resources like Code.org “can make learning 
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computer science more accessible for female and minority 

students […] in the hopes of changing [the] narrative” 

(PT#305), or like Code2040 which “believes that as 

minorities rise, their presence in technology and innovation 

related companies needs to increase as well” (PT#313).  

One implication of the pre-service teachers referencing the 

non-profits is the programming that these organizations 

provide primarily resides in out-of-school time. This seemed 

to confuse some of the teacher candidates and position CT 

and coding as an ‘extra’ activity. 

Many of the pre-service teachers connected CT with their 

with their specialty within education. For example, 

participants discussed the unique role of early childhood, 

elementary and special education settings. This reflection 

also brought about questions of how to use CT for students’ 
learning such as ‘what does this look like for early learners?’ 

or ‘what is age appropriate?’. The participants also shared 

confusion on how to use CT pedagogically and how to 

integrate CT into different subjects. Pre-service teachers 

demonstrated their student-centered beliefs that align with 

computational thinking and the teaching sector that they 

focus on. This implies that we should not lose the insight of 

teachers’ professional knowledge since this could add 

pedagogical insights on infusing computational thinking 

into curriculum.  

We found that pre-service teachers strongly demonstrated a 

positive attitude toward CT after the classroom exposure and 

the extension activity. However, pre-service teachers started 

to recognize the value of teaching CT to build problem 

solving skills within their future students. Some of the 

teacher candidates also reflected on the alignment of 

students having these skills and successful technology 

integration. 

Though most participants had positive attitudes about CT, 

some pre-service teachers shared assumptions about is 

applicability. For example, a few of the teacher candidates 

already assumed only particular students would be interested 

in CT practice. They did not recognize the bias their 

reflections carried. In addition, while recognizing CT’s 

value in education, some were inclined not to include CT in 

their teaching due to perceived age appropriateness, time 

restrictions, and access to resources. 

5. DISCUSSION 
The findings from this case study provide an account of a 

first attempt to integrate CT into a teacher preparation course 

on educational technology. Our findings showed (a) an 

initial understanding of how computational thinking can be 

conceptualized for pre-service teachers’ expertise and (b) a 

clearer understanding of barriers among pre-service teachers 

to translate CT into classroom. We will use these findings 

personally to update the design of the course. 

In the context of a 1.5 credit teacher preparation educational 

technology course with a long list of required contents, we 

struggled with a limited time frame to expose the pre-service 

teachers to CT. Our instructional design had positioned the 

hands-on exploration as the motivational factor within the 

CT activity. We had not anticipated the pre-service teachers 

being as interested in the larger societal impacts of 

computing. In the future, we intend to outline these social-

justice issues as a hook to increase interest at the beginning 

of the CT activity. 

Additionally, it seemed the bulk of their content knowledge 

on CT came from the extension activity research where the 

teacher candidates found a resource to share. This self-led 

online research resulted in a wide variety of 

conceptualizations of CT. Misconceptions of CT amongst 

pre-service teachers is a common finding in similar research 

on training teacher candidates on CT (Sadik, Ottenbreit-

Leftwich, Nadiruzzaman, 2017; Yadav et al., 2014). In the 

future, we will present a specific model of CT and give time 

for the pre-service teachers to discuss as a group how they 

could integrate CT into their future instruction. 

6. SUBSTANTIATED CONCLUSION 
Educational technology courses such as the one in this study 

need to be updated to build pre-service teachers’ 

competencies of CT integration in content areas (Yadav et 

al., 2017). While these teacher candidates are new to the 

profession they brought to the course knowledge, skills, and 

beliefs about education that should not be undervalued. 

Exposing pre-service teachers to CT helped the teacher 

candidates understand the relationship between ‘what is 

taught’ (content), ‘how it is taught’ (pedagogy) and ‘why it 

is taught’ (rationale and relevance) (Yadav, Hong, & 

Stephenson, 2016). 
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ABSTRACT 

This study investigated the perspectives of the K-12 

principals who took part in the teacher education of 

computational thinking. The scales of the readiness survey 

questionnaire included object readiness, teacher readiness, 

instructional resource readiness, and leadership support. 

Moreover, this study also explored the TPACK of teachers 

for computational thinking education. The integrated 

questionnaire reports two validity statistics – the acceptable 

internal consistency (alpha reliability coefficient), and 

discriminant validity – for the refined 35 items. The results 

of the survey showed that those principals perceived the 

present situation which was significantly lower than the 

degree of importance they preferred. In other words, all the 

dimensions of the survey will have to be strengthened in the 

2 years before conducting computational education for the 

12-year compulsory education from August 2019 in Taiwan.  

KEYWORDS 

Computational thinking, teacher education, leadership, 

TPACK, readiness 

1. INTRODUCTION 
Computational thinking (CT) is a necessary form of literacy 

in the world with digital devices everywhere. CT is not only 

a kind of expertise which only computer engineers use in our 

stereotypical thinking. On the contrary, everyone should 

have an active attitude toward CT in order to understand and 

make use of this attainment (Wing, 2006). The competence 

and limitations of CT are both based on the process of 

operation and computing processing. No matter whether the 

computational process for solving a problem is executed by 

the human brain or computed by a computer, we can classify 

it into the process of CT. For example, through the process 

of reduction, embedding, transformation, and simulation, the 

operation of CT can decompose a seemingly complicated 

problem into several understandable and solvable ones 

(Wing, 2006). To put it simply, CT is a way of thinking 

which uses the basic concept of computer science to do 

problem-solving, system design, and understanding of 

human behavior. In the meantime, CT makes people adopt a 

thinking mode which the computer scientists adopt when 

they encounter difficulties (Grover & Pea, 2013). A previous 

study has found that most countries have tried to integrate 

CT courses into K-12 curricula based on a survey of 17 

European countries (Balanskat & Engelhardt, 2014). In 

addition, the elementary and secondary schools in Australia 

have introduced CT into courses for a period of time, and 

have placed the literacy of CT in the national education 

curricula (Falkner, Vivian, & Falkner, 2014). Therefore, 

currently, many teachers are trying to integrate CT into 

various courses (Heintz, Mannila, & Färnqvist, 2016). With 

the development of digital technologies and the present 

concerns about CT literacy, how should the teacher 

education be prepared for CT? 

Recently, Orvalho indicated that teachers should follow the 

methodology for pre-service teachers: Before teaching 

students how to do CT, teachers should learn knowledge and 

abilities related to CT first (Orvalho, 2017). Yadav also 

pointed out that introducing computer science into pre-

service courses can efficiently enhance teachers’ 

understanding of CT. Moreover, students’ reactions during 

their learning process tend to be more complicated. 

Therefore, the teacher can not only learn how to involve the 

literacy of CT in their courses, but can also help the students 

cultivate their problem-solving capabilities (Yadav, 

Mayfield, Zhou, Hambrusch, & Korb, 2014). Mouza 

combined CT with the TPACK (i.e., Technology, Pedagogy, 

and Content Knowledge) instructional method, and teachers 

designed CT courses associated with K-8 education when 

they were trained in teacher education. The result showed 

that the pre-service training not only had a positive influence 

on the teachers, but could also help them to develop and 

practice instructional content embedded with CT (Mouza, 

Yang, Pan, Ozden, & Pollock, 2017). 

As CT is applied to teachers’ training, the teachers know 

what CT is and how to integrate it into their courses. 

Moreover, the teachers can be earlier confronted with the 

possible failure that may happen in their teaching process in 

the future. Israel (2015) has applied CT to teacher education 

to overcome the obstacles for the teachers to achieve the 

expertise of the introduction to computer science course. On 

the other hand, the teachers would realize what difficulties 

the students with deficient resources may encounter. 

Through the teacher education for pre-service teachers, 

those pre-service teachers would benefit a lot and could 

know how to give support and assistance to their students 

(Israel, Pearson, Tapia, Wherfel, & Reese, 2015). In 

addition, when it comes to CT, visual programming cannot 

be forgotten. When the teachers design CT-related courses, 

they mostly use Scratch for the basic level. Cetin (2016) 

considered CT to be the foundation, and applied Scratch to 

pre-service teachers’ training. The result indicates that this 

did indeed help teachers in arranging beginner courses, and 

the visual programming environment could help teachers 

better understand CT (Cetin, 2016). 

The current study applied the same course mentioned above 

before research questions one to three (i.e., visual 

programming for mathematical learning unit) in the teacher 

training for the K-12 newly appointed principals. We then 

investigated the readiness of their schools via four scales: 
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technology readiness, teacher readiness, instructional 

resource readiness, and leadership support. In addition, we 

also investigated the technology, pedagogy, content, 

knowledge and the overall TPACK of CT based on the real 

conditions they perceived at present.  At the same time, we 

also surveyed the preferred importance which the principals 

revealed for the same eight scales. We then explored the 

difference between the perceived present situation and the 

preferred importance demonstrated by the principals.  

2. METHOD 

2.1. Sample 

There are 24 newly appointed principals participating in the 

teachers’ training course for cultivating their literacy of 

computational thinking.  

2.2. Questionnaire and Reliability Analysis 

There are eight scales in the questionnaire. The first four 

scales were revised from the readiness questionnaire of 

mobile learning (Yu, Liu, & Huang, 2016). That 

questionnaire was named the support-object-personnel (SOP) 

m-learning readiness model, and was developed to assess the 

capacity for mobile learning readiness in primary and 

secondary schools in the previous study (Yu, Liu, & Huang, 

2016). Darab and Montazer (2011) proposed an eclectic e-

learning readiness scale which includes object readiness, 

software readiness, and leadership support (Darab & 

Montazer, 2011). In addition, Machado (2007) emphasized 

the importance of teacher readiness such as the professional 

application capabilities for e-learning. Cheon (2012) 

proposed the higher education m-learning readiness model 

based on the theory of planned behavior (TPB), and found 

that the attitude of a school had impacts on the 

undergraduates’ perspectives on mobile learning (Cheon, 

Lee, Crooks, & Song, 2012). Accordingly, object readiness, 

teacher and instructional readiness, and leadership support 

are important scales for evaluating the readiness for putting 

something into practice at school, such as e-learning, mobile 

learning, or computational thinking, and so on. 

Table 1. Descriptive Information for the first four Scales: 

Readiness 

Scale Name Description Sample Item 

Object readiness For the current 

situation of 

equipment in the 

school, please 

answer the 

following questions. 

There are enough 

information appliances 

such as computers for 

learning in the school, 

providing resources for 

technological courses. 

Teacher 

readiness 

For the current 

condition of 

teachers in your 

school, please 

answer the 

following questions. 

There are full-time 

Information Technology 

teachers in my school. 

Instructional 

resource 

readiness 

For the arrangement 

of teaching 

materials for 

Technology domain, 

please answer the 

following questions. 

The teachers in my school 

have capabilities to employ 

the official textbooks in the 

information technology 

courses. 

Leadership 

support 

For the attitude of 

school management, 

School management 

proposes visions, policies, 

or projects that support and 

please answer the 

following questions. 

encourage the teaching as 

well as learning in the 

technological domain. 

 

Scholars have revised the model of pedagogical, content and 

knowledge (PCK) and proposed the model of TPACK (i.e., 

Technological Pedagogical Content Knowledge) (Mishra & 

Koehler, 2006). The framework clearly pointed out the relationship 

between the technological, pedagogical, and content knowledge of 

the teachers. Therefore, many studies have employed the TPACK 

model to evaluate the professionalism of teachers or the 

effectiveness of teacher education (Chai, Koh, & Tsai, 2010; 

Koehler, Mishra, & Yahya, 2007). Moreover, another study has 

introduced this model for the teachers to do self-assessment 

(Schmidt, Baran, Thompson, Mishra, Koehler, & Shin, 2009). This 

study also employed the TPACK model for the principals to do 

self-description for the school teachers in the technology domain at 

their schools.  

Table 2.  TPACK for Computational thinking teachers 

Scales Questionnaire items 

Knowledge of 

technology 

TK1-Our teachers know how to solve their own 

technical problems. 

TK2-Our teachers can learn new technology 

easily. 

TK3-Our teachers have the technical skills and use 

the technologies appropriately. 

TK4-Our teachers are able to use computational 

thinking tools or software to do problem-solving. 

Knowledge of 

pedagogy 

PK1-Our teachers can adapt their teaching style to 

different learners. 

PK2-Our teachers can adapt their teaching based 

upon what students currently understand or do not 

understand. 

PK3-Our teachers can use a wide range of 

teaching approaches in a classroom setting 

(collaborative learning, direct instruction, inquiry 

learning, problem/project based learning etc.). 

PK4-Our teachers know how to assess student 

performance in a classroom. 

Knowledge of 

content 

CK1-Our teachers have various ways and 

strategies of developing their understanding of 

computational thinking. 

CK2-Our teachers can think about the subject 

matter like an expert who specializes in 

computational thinking. 

CK3-Our teachers have sufficient knowledge 

about computational thinking. 

TPACK TPACK1-Our teachers can teach lessons that 

appropriately combine computational thinking, 

technologies and teaching approaches. 

TPACK2-Our teachers can use strategies that 

combine content, technologies and teaching 

approaches. 

TPACK3-Our teachers can select technologies to 

use in the classroom that enhance what they teach, 

how they teach and what students learn. 

TPACK4-Our teachers can provide leadership in 

helping others to coordinate the use of content, 

technologies and teaching approaches at my 

school. 

 

Table 3 reports two validity statistics – namely, the internal 

consistency (alpha reliability coefficient), and discriminant 

validity – for the refined 35 items, including 20 items for 

readiness and 15 items for TPACK. Data are reported 
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separately for the perceived and preferred versions. The 

reliability data suggest that the refined version of each scale 

for readiness and TPACK has acceptable internal 

consistency. The reliability data suggest that the refined 

version of each scale has acceptable internal consistency. 

Table 3. Internal Consistency (Cronbach Reliability 

Coefficient), and Discriminant Validity (Mean Correlation 

with other Scales), for Perceived and Preferred Versions. 

Scale Form 
Alpha 

Reliability 

Number 

of items 

Mean 

Correlat

ion 

Technology 

readiness: The 

educational 

hardware of 

technology 

domain at school 

Perceived 

present situation 
0.701 5 0.17 

Preferred 

importance 
0.728 5  

Professional 

development of 

the teachers in 

Technology 

domain 

Perceived 

present situation 
0.673 5 0.17 

Preferred 

importance 
0.804 5  

The resource of 

instructional 

material 

Perceived 

present situation 
0.646 5 0.20 

Preferred 

importance 
0.759 5  

Leadership 

support 

Perceived 

present situation 
0.835 5 0.28 

Preferred 

importance 
0.766 5  

Knowledge of 

technology 

Perceived 

present situation 
0.840 4 0.28 

Preferred 

importance 
0.876 4  

Knowledge of 

pedagogy 

Perceived 

present situation 
0.884 4 0.27 

Preferred 

importance 
0.795 4  

Knowledge of 

content 

Perceived 

present situation 
0.943 3 0.42 

Preferred 

importance 
0.869 3  

Overall TPACK 

of computational 

thinking 

Perceived 

present situation 
0.908 4 0.38 

Preferred 

importance 
0.939 4  

3. DIFFERENCE BETWEEN PERCEIVED 

AND PREFERRED SITUATION 
The results found that the principals perceived that their 

teachers had not fully prepared 2 years before conducting the 

12-year compulsory education for computational thinking. 

The 12-year compulsory education will be carried out in 

August, 2019 while the investigation was done in 2017. 

From Table 4, it could be found that the preferred situation 

was significantly higher than the present situation in each 

dimension.  

In terms of readiness, the technology readiness should be 

improved in 2 years. This part seems to be the easiest part to 

achieve in the future, but the teachers have to be trained at 

the same time. Otherwise, they may not know how to use the 

new equipment in their teaching. 

Table 4. Paired Sample t test between perceived present 

situation and preferred importance. 

 

In terms of TPACK, it was worrying to find that the 

principals tended to not have confidence in their teachers as 

they perceived that their knowledge of technology, 

pedagogy and content had not achieved the degree they 

expected. Therefore, the teacher education institutes have to 

put more effort into the development of instructional 

material and train the teachers to have the capabilities to 

develop their own material for computational thinking in the 

near future.  

4. CONCLUSIONS 
Based on the results of this investigation of the K-12 

principals in Taiwan, there are some suggestions to enhance 

the preparation for involving computational thinking 

education in the 12-year compulsory education.   

For object readiness, which refers to the educational 

hardware of the technology domain at school, it looks like it 

is the easy part if the government devotes money to the K-

12 schools. However, the teachers have to be trained to know 

how to operate the new equipment, regardless of whether 

they are maker environment or computer technology 

products; otherwise, the payment for the hardware will be 

wasted. That perfect environment which is supposed to be 

constructed in the 2 years could not work without 

professional teachers. Therefore, future studies could further 

analyze the regression between the readiness of the teachers 

in the technology domain and the readiness of the hardware, 

and find direct evidence for this inference.  

Unfortunately, the participants perceived that the leadership 

and management levels have not provided enough support 

for conducting computational thinking education. In other 

words, many people agree that computational thinking 

education is important; nevertheless, the leadership has not 

put enough emphasis on it. This study infers that the reason 

for this strange situation is that the literacy of computational 

thinking will not be regarded as one part for the senior high 

school or college entrance examination. However, normal 

education is also important. Schools should not only pay 

attention to the subjects related to the senior high school or 

college entrance examinations. Liberal education should be 

encouraged more.  
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In the 2 years, the related institutes have a large amount of 

work to do. The most important part is teacher education. 

The teachers in the technology domain should be trained to 

afford the requirements of instruction in the technology 

domain. 

ACKNOWLEGEMENTS 
This study is supported in part by the Ministry of Science 

and Technology in Taiwan under contract number: MOST 

105-2628-S-003-002-MY3.  

5. REFERENCES 
Balanskat, A., & Engelhardt, K. (2014). Computing our 

future: Computer programming and coding-Priorities, 

school curricula and initiatives across Europe: European 

Schoolnet. 

Cetin, I. (2016). Preservice Teachers’ Introduction to 

Computing: Exploring Utilization of Scratch. Journal of 

Educational Computing Research, 54(7), 997-1021.  

Chai, C. S., Koh, J. H. L., & Tsai, C. C. (2010). Facilitating 

Preservice Teachers' Development of Technological, 

Pedagogical, and Content Knowledge (TPACK). 

Educational Technology & Society, 13(4), 63-73. 

Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An 

investigation of mobile learning readiness in higher 

education based on the theory of planned behavior. 

Computers & Education, 59(3), 1054-1064. 

doi:10.1016/j.compedu.2012.04.015 

Darab, B., & Montazer, Gh. A. (2011). An eclectic model 

for assessing e-learning readiness in the Iranian 

universities. Computers & Education, 56(3), 900-910. 

doi:10.1016/j.compedu.2010.11.002 

Falkner, K., Vivian, R., & Falkner, N. (2014). The 

Australian digital technologies curriculum: challenge and 

opportunity. Paper presented at the Proceedings of the 

Sixteenth Australasian Computing Education Conference-

Volume 148. 

Grover, S., & Pea, R. (2013). Computational thinking in K–

12: A review of the state of the field. Educational 

Researcher, 42(1), 38-43.  

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of 

models for introducing computational thinking, computer 

science and computing in K-12 education. Paper presented 

at the Frontiers in Education Conference (FIE), 2016 

IEEE. 

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & 

Reese, G. (2015). Supporting all learners in school-wide 

computational thinking: A cross-case qualitative analysis. 

Computers & Education, 82, 263-279.  

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the 

development of teacher knowledge in a design seminar: 

Integrating content, pedagogy and technology. Computers 

& Education, 49(3), 740-762. 

Machado, C. (2007). Developing an e-readiness model for 

higher education institutions: Results of a focus group 

study. British Journal of Educational Technology, 38(1), 

72-82. doi:10.1111/j.1467-8535.2006.00595.x 

Mishra, P., & Koehler, M. J. (2006). Technological 

pedagogical content knowledge: A framework for teacher 

knowledge. Teachers College Record, 108(6), 1017-1054. 

Mouza, C., Yang, H., Pan, Y.-C., Ozden, S. Y., & Pollock, 

L. (2017). Resetting educational technology coursework 

for pre-service teachers: A computational thinking 

approach to the development of technological pedagogical 

content knowledge (TPACK). Australasian Journal of 

Educational Technology, 33(3).  

Orvalho, J. (2017). Computational Thinking for Teacher 

Education. Paper presented at the Scratch2017BDX: 

Opening, Inspiring, Connecting. 

Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P., 

Koehler, M. J., & Shin, T. S. (2009). Technological 

Pedagogical Content Knowledge (TPCK): The 

development and validation of an assessment instrument 

for preservice teachers. Journal of Research on 

Technology in Education, 42(2), 27. 

Wing, J. M. (2006). Computational thinking. 

Communications of the ACM, 49(3), 33-35.  

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, 

J. T. (2014). Computational thinking in elementary and 

secondary teacher education. ACM Transactions on 

Computing Education (TOCE), 14(1), 5.  

Yu, Y.-T., Liu Y.-C., & Huang, T.-H. (2016). Support-

Object-Personnel Mobile-Learning Readiness Model for 

Primary and Secondary Schools. Journal of Research in 

Education Sciences, 61(4), 89-120. 



Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., 

Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational 

Thinking Education 2018. Hong Kong: The Education University of Hong Kong. 

161 

Two Studies of Perceived and In-Situ Readiness for  

Implementing the Computing Education in Singapore 

Longkai WU*, Chee-kit LOOI*, Meng-leong HOW, Liu LIU 

 National Institute of Education, Singapore  

longkai.wu@nie.edu.sg, chee-kit.looi@nie.edu.sg, mengleong.how@nie.edu.sg, liu.liu@nie.edu.sg 

ABSTRACT 

Computing education is garnering more attention from 

policy makers and educators both locally and globally. In 

Singapore, nineteen schools are beginning to offer the 

computing curriculum at the GCE “O” level, that is, for 

grades 9 and 10. If it is the case that computing education is 

standing on the verge of being formalized and offered as a 

mainstream subject, it will be important to understand 

teacher and student readiness towards the status quo of 

computing education in schools. This paper describe two 

studies: a survey study of computing teachers’ from the 

nineteen schools on their perceived readiness towards 

implementing computing curriculum; and an ethnographic 

study of four secondary schools with different degrees of in-

situ readiness for both teachers and students during their 

implementation of the computing curriculum. Based on the 

two studies, we propose more systematic ways of preparing 

teachers to teach and students to learn the computing subject.  

KEYWORDS 

Computing Education, Computational Thinking, Teacher 

Readiness, Student Readiness 

1. INTRODUCTION 
In 2017, Singapore’s Ministry of Education (MOE) 

implemented a new curriculum for the Computing subject 

for grade 9 and 10 students in 19 schools. The new 

curriculum is a distinct shift teaching students from informal 

activities (infocomm clubs, code for fun, extracurricular 

activities et al.) to formal school education in development 

of students’ Computational Thinking (CT) skills and 

programming competencies. O Level MOE curriculum has 

provided guiding framework for computing teachers and 

students to take up their practices, but it takes time for them 

to build capacities and alignment in enactment. This paper 

tries to investigate different degrees of teacher and student 

perceived and in-situ readiness in local secondary schools 

prior to and during their implementation of computing 

curriculum and address the issue of formalization for 

teaching CT and programming in K-12 schools.  

2. PREPARE TEACHERS AND 

STUDENTS FOR COMPUTING 

CURRICULUM  
It is paramount to prepare in-service and future teachers to 

face the challenges of teaching Computational Thinking 

(García-Peñalvo et al., 2016). Hodhod, Khan, Kurt-Peker, 

and Ray (2016) argue that for students to acquire this 

important skill, teachers must acquire in-depth knowledge of 

the problem-solving strategies that utilize CT, and the 

strategies for integrating CT into their lesson plans. Some 

CT training workshops for teachers focus on K-12 students, 

such as the one offered by Franklin et al. (2015) which 

provides advice for best practices in curriculum, content 

delivery, interfacing with schools, and classroom layout.  

In the preparation of teachers for the teaching computing, 

Voogt, Fisser, Good, Mishra, and Yadav (2015) suggest 

adopting a multi-perspective approach, because many EU 

countries have computing teachers at the upper secondary 

school level, but too few at the lower secondary and primary 

school levels. At the primary school level, Voogt et al. 

(2015) assert that it is imperative for teacher education 

programs to recruit computer science specialists who can at 

least teach the basic notions of computing. In Israel, there is 

a shortage of computing specialists to teach in high school 

and it was necessary to train teachers of other subjects to 

teach CS by training them through a crash course which was 

comprised of about ten courses that form the basics of 

computer science (Gal-Ezer & Stephenson, 2014). Lepeltak, 

the director of learning focus in the Council of European 

Professional Informatics Societies (CEPIS), calls for a 

professionalization of teachers who are asked to impart CS 

lessons, even in other non-CS classes. Further, both Voogt 

and Lepeltak concur that teacher training could be pushed at 

the EU level to embark on the professionalization and the 

training of teachers (Bocconi et al., 2016). 

3. STUDY 1: A SURVEY STUDY OF 

COMPUTING TEACHERS’ PERCEIVED 

READINESS TOWARDS IMPLEMENTING 

COMPUTING CURRICULUM 
In Dec 2016, prior to the formal implementation of 

computing curriculum, we conducted a survey on computing 

teachers to seek their degrees of understanding, interest 

levels, capacities and challenges regarding the teaching of 

computing. 36 computing teachers (27 male and 9 female) 

from 19 schools participated in our survey. 

 

Figure 1. Perceived Confidence in Teaching Computing 

Subject 
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As to perceived teacher confidence to teach in computing 

subject (Figure 1), 56% teachers agreed that (14% strongly 

agree) they are confident to teach and implement CT in their 

classes. 24% are neutral while 14% consider that they are 

not ready.  

Figure 2. Perceived Readiness to Implement CT in Class 

As to perceived teacher readiness to implement CT in Class 

(Figure 2), 63% teachers agree (7% strongly agree) they 

have been ready to incorporate and implement CT in their 

classes. 24% are neutral while 14% consider they are not 

ready.  

As to perceived student readiness to learn computing in 

Class (Figure 3), 52% teachers considers (4% strongly 

considers) their students have been ready to learn 

computing. 28% are neutral while 21% consider they are not 

ready and CT is too complex to learn at the level of their 

students.  

 

Figure 3. Perceived Student Readiness to Learn Computing 

Thus, a discrepancy on the confidence and readiness in 

computing subject and to incorporate CT into the teaching 

and learning is observed among the computing teachers. A 

considerable portion of teachers lacks confidence in 

teaching CT and is unclear on how to bring out expected 

learning outcomes.  

As to the challenges in teaching computing, lack of teaching 

resource (94%) ranks the first and lack of pedagogical 

knowledge (83%) ranks the second among the seven options 

(Table 1). When responding to open-ended questions, they 

also mention that they would need shared lesson plans and 

best practices by other schools to help their teaching. It is 

obvious that teachers are much more concerned about the 

resource for teaching and how to teach rather than what to 

teach, i.e. content knowledge.  

Table 1. Perceived Challenges in Teaching Computing. 

 Percentage Count Ranking 

Teaching 

Resources 

94% 34 1 

Pedagogical 

Knowledge  

83% 30 2 

Ways to 

Motivate and 

engage 

students 

69% 25 3 

Instructional 

Skills  

67% 24 4 

Community 

Support 

64% 23 5 

Content 

Knowledge  

61% 22 6 

Computing 

Infrastructure 

in school  

42% 15 7 

4. STUDY 2: AN ETHNOGRAPHIC 

STUDY OF TEACHERS’ IN-SITU 

READINESS IN IMPLEMENTING 

COMPUTING CURRICULUM  
The literature has been mainly focused on preparing in-

service and future teachers through professional 

development programs or workshops before computing is 

introduced into the curriculum at schools. It has been rare or 

lacking to develop an in-situ view to understand the 

readiness for computing of in-service teachers, as well as 

their students, as computing curriculum have been 

implemented in authentic classrooms.   

To this end, we have adopted an ethnographic approach to 

conduct a field study in four local secondary schools which 

have implemented computing curriculum during the whole 

year of 2017. The researchers participated in the building 

and enactment of computing curriculum as active 

participants and took extensive field notes to record the 

observations, surveys and interviews. After the whole year 

implementation, we differentiate the four schools 

considering their different degrees of readiness to implement 

computing curriculum with respect to teachers and students.  

4.1. School A – Basic Student and Teacher Readiness 

As the teacher is new to teaching the computing subject, 

School A does not have a specific plan about what they are 

going to teach for the following weeks although provided 

with the Scheme of Work (SoW) by MOE. The topic and 

content may just be decided just before the class. The 

reasons could be the inexperience of teaching computing, as 

well as unfamiliarity with the computing curriculum.  

Meanwhile, quite a large number of students respond to our 

survey revealing that they have chosen computing subject 

under the circumstance that they are not able to be enrolled 

into additional mathematics for the O-Level, which could be 

a better choice for them. Besides low motivation, it is also 
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noticed that this batch of computing students may not have 

sufficient English proficiency to do well in computing as 

language proficiency is considered by the teachers as 

important in articulating their answers in paper exam.  

Thus, the degree of preparedness of the teachers and the 

students in School A to implement the computing 

curriculum can be further improved. More engaging 

activities can be incorporate into the learning of computing 

which the teachers are starting with be more familiar with 

over the year. Over the school year, the teacher is seen to be 

gaining more proficiency in teaching. 

School B – Basic Student Readiness, High Teacher 

Readiness 

In School B, the teacher has a high passion for teaching 

computing as he is highly interested in computing related 

knowledge or gadget. He advocates the coupling of 5E 

framework with the unplugged activities and argues that 

unlike the scientific inquiry process, computing subject can 

develop a cross-disciplinary mindset stressing for logic and 

conceptualization. He also believes that CT is not only about 

coding but also high-level planning that involves designing, 

decomposition and implementation. The students, in his 

opinion, should not become mere coders or coding workers. 

Instead, they should be equipped with a systematic mindset 

to solve complex problems.  

During the class observation, researchers find that the 

teacher’s scaffolding plays a significant portion in guiding 

students’ actives. However, the students are not passionate 

or active in computing classroom as we have expected or 

comparing to other schools. They are also not quite used to 

teacher’s scaffolding. The teachers explain that school B is 

a neighborhood school which the enrolled students are likely 

to be considered as low achievers since they have not 

performed well in The Primary School Leaving Examination 

(PSLE).  

Therefore, school B teacher has developed a high degree of 

readiness in teaching computing in terms of beliefs and 

strategies. But the enactment has not been quite satisfying in 

the classroom with a relatively basic degree of readiness of 

students towards computing subject. 

School C – High Student Readiness, Medium Teacher 

Readiness 

In school C, the researchers conduct a focus group interview 

with seven Sec 3 students and find that all of them chose the 

subject out of their interests in technology. They believe the 

computing subject has met their interest and satisfied their 

curiosity to technology after taking the subject for the whole 

year. More surprisingly, the school actually does not provide 

any computing related course at levels of Sec 1 or Sec 2. 

These students’ interests derive more from their parents’ 

impact or future job considerations. Most of these students 

claim that they would continue to study computing when 

they are to be enrolled in polytechnic or university. They 

have also been very active and highly motivated in 

computing class. They tend to work in groups and initiate 

their own discussions about the computational problems. 

Peer learning has been undergoing when the high-achieving 

students actively help the low-achieving students. Their 

proficiency and creativity in coding has also been 

surprisingly high as exhibited in their mini projects.  

To meet the students’ need, the two teachers who co-teach 

in this class intentionally enact their computing lessons at a 

difficulty level a bit higher than the O-level computing 

syllabus. However, they fell that their competency regarding 

content and pedagogy is not sufficient to teach this group of 

students as students always ask questions beyond their 

capacities. They also found difficulties in designing suitable 

practice tasks and exam questions for students. They rely a 

lot on an online learning system for homework assignment 

and grading which would save them time in grading 

students’ codes. They complain that they do not have the 

one-year training in teacher training institute on computing 

like other subject teachers. Thus, they have to learn and 

teach at the same time all by themselves. 

Thus, school C has a situation where the students are more 

ready to learn computing based on their own interests to an 

extent whilst the teachers are not sufficiently ready to teach. 

4.2. School D – High Student Readiness, High Teacher 

Readiness 

School D has two teachers and sixteen students in the 

computing class. Both of the teachers have gone through a 

computing education training course, which focuses mostly 

on content knowledge rather than the pedagogy or the 

knowledge about how to teach a specific computing topic. 

The teachers have to enhance content delivery with their 

own experiences in pedagogical aspects. Through the class 

enactment, the leading teacher creates his own version of 

unplugged activities (e.g., kinesthetic activities) to introduce 

computing topics and motive students to explore, corporate 

and present. He believes that communication and 

presentation is key in computing subject instead of being a 

silent coder who cannot make the design and solution to be 

understood. As to the student feedback, they have developed 

their interests in computing subject mainly because the 

teachers are highly enlighteningly in helping them to realize 

computing is to affect everybody’s life and what they have 

learnt can be linked with real applications.  

The 16 students in the computing class are mostly 

considered by teachers as high achievers. They like the 

computing subject since the interactive and immersive 

process has made it more interesting and attractive 

comparing to other O’ level subjects. In the focus group 

discussion, they are confident and determined to be “A” 

scorers in the coming O’ Level exam for computing subject. 

Their concern are more with the opaque opportunities to 

continue to learn computing subjects after secondary school 

level.  

Therefore, both teachers and students in School D have a 

high level of confidence and competency in computing. 

Comparing to other schools, they are capable to implement 

computing curriculum mainly with their resources and 

capacities.    

5. DISCUSSIONS AND CONCLUSION 
In this paper, we describe a survey study and an 

ethnographic study on both perceived and in-situ readiness 

in the implementation of the computing curriculum. We find 
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that the degrees of perceived and in-situ readiness of 

teachers and students to teach and learn in computing subject 

vary among the different schools. The factors influencing 

students’ readiness have mainly been their interests, 

motivation, and learning competencies. For teachers, their 

degrees of readiness are more related to their beliefs, 

teaching strategies, pedagogical preparations and available 

teaching resources. Readiness towards computing of 

teachers and students seem to be more self-initiated, rather 

than school-initiated. A lack of systematic ways to prepare 

more teachers and students to be enrolled in computing 

subject, is perceived. Students need more resources to 

cultivate their interests in computing, whilst teachers require 

more training and teaching resources to develop adaptive 

expertise to instruct different groups of students.  The 

schools also need to adopt more adaptive strategies for 

different computing teachers and different groups of 

students to maximize learning effectiveness.  
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摘要 

臺灣 K-12 課程中的「資訊科技」科目新課綱是以培養

學生運算思維為主軸，預定於 2019 學年度實施，現職

資訊科技教師（computing teachers）能否掌握「資訊科

技」學科教學知識是新課綱實施成功的關鍵因素。本

研究以線上問卷調查方式讓中學資訊科技教師自我評

量其學科教學知識，共回收 50 份有效問卷。結果顯示，

整體上，教師自評之 PCK 足以勝任新課綱教學。在

「程式設計與運算思維」面向中的自評結果，資訊系

所畢業教師優於非資訊系所，高中教師優於國中教師，

而非師範體系畢業教師優於師範體系畢業教師。未來

建議擴大研究樣本，並透過訪談對教師的 PCK 做更深

入的分析。 

關鍵字 

資訊科技課程；學科教學知識；程式設計；運算思維 

1. 前言 

面對全球化競爭、培育國家人才需求及因應資訊科技

的迅速發展，包括美國、英國、德國、以色列和澳洲

等先進國家皆已重新調整資訊科技課程之理念與架構，

除獨立設立科技領域亦致力於推動資訊教育課程改革，

顯見資訊教育的發展已日趨重要。當前臺灣時值新課

綱的編修階段，在因應資訊科技日新月異、國際教育

發展潮流和強化臺灣未來競爭力之迫切需求下，已在

新課綱中增設「科技領域」，並規劃由「資訊科技」

與「生活科技」兩項學科組成，而資訊科技科目也被

列為中學教育階段之必修課程（教育部，2016）。此

外，有鑑於數位時代中運算思維於生活中密不可分，

臺灣將培養運算思維能力納入新制訂的資訊科技課程

中，期能有效培養學生運算思維，而學習程式設計為

實踐目標行之有效的根本途徑（林育慈、吳正己，

2016）。 

Shulman（1986, 1987）將學科教學知識（pedagogical 

content knowledge, PCK）界定為學科內容知識與教學知

識二者的融會，是教師教學專業的重要知識。各方學

者也針對教師應具備之 PCK 的知識種類、內涵、定義

及發展脈絡也分別提出不同闡釋（Grossman, 1988；

Tamir, 1988；Cochran, DeRuiter, & King, 1993）。PCK

共同核心為教師在面對各教學情境時，須能運用有效

的表徵方式和統整資源來呈現特定學科主題內容，同

時亦須掌握學生先備知識與學習困難，並據以轉化為

學生易理解之方式教學。NARST（National Association 

for Research in Science Teaching）與美國 NRC（National 

Research Council ） 所 提 出 之 國 家 科 學 教 育 標 準

（National Science Education Standards, NRC, 1996）亦

標榜 PCK 之重要性，並將之列為教師專業能力的評鑑

指標。 

PCK 為特定學科教師應具備的知識，不同學科領域之

教師所須具備的 PCK 迥然有別。近年 PCK 的相關研究

早已在各學科領域中蓬勃發展，有些研究以質性方式

探討教師 PCK 的發展、PCK 對教學的影響、或比較資

深與新手教師間 PCK 的差異（Grossman, 1988；邱美虹、

江玉婷，1997）；有些研究以量化方式，讓學生填寫

量表或問卷，並輔以相關質性資料來了解教師的 PCK

表現（Lederman, Gess-Newsome, & Latz, 1994；王國華、

段曉林、張惠博，1988）。陳彥廷（2014）則以自行

編 製 的 MPCK （ Mathematics Pedagogical Content 

Knowledge）量表提供國小數學教師自我評量 PCK能力。

有關「資訊科技」科目 PCK 的研究較少，相關文獻僅

發現對資訊科技教師專業能力模型（Competences for 

Teaching Computer Science Model）及資深與新手資訊

科技教師分別應具備的 PCK 能力進行探討（Berges et 

al., 2013；Margaritis & Magenheim, 2015），且研究內容

多側重於一般教師的教學知識要求，並非針對資訊科

技教師所持 PCK 進行探討。 

面對新課綱的推展，課程中新的教學理念、教材與教

法，對教學現場的資訊科技教師均是新的挑戰和要求。

資訊科技教師必須熟悉資訊科技學科內容知識，了解

學科獨有的 PCK 來進行資訊科技教學。目前臺灣缺乏

資訊科技教師 PCK 的相關研究，對於現職資訊科技教

師 PCK 能力現況仍不明；進一步的，對教師「程式設

計與運算思維」面向 PCK 之掌握更是刻不容緩。本研

究旨以編製「資訊科技教師 PCK 自我評量問卷」，調

查臺灣現職中學資訊科技教師 PCK 之現況，並分析不

同的背景變項對教師在「程式設計與運算思維」面向

PCK 的影響，以提供因應新課綱實施資訊科技師教學

專業發展的參考。新課綱僅於中學有資訊科技課程，

本研究以中學教師為研究對象，茲列研究目的如下： 

（一） 了解現職資訊科技教師學科教學知識現況。 

（二） 探討不同背景的資訊科技教師在「程式設計與

運算思維」面向學科教學知識之差異。 

2. 研究方法 

2.1 研究參與者 

本研究透過寄發電子郵件發送給各校資訊科技教師填

答，共有 74 位中學教師填答，61 份為完整填答問卷，

其中共有 50份有效問卷。填答者背景資料如表 1，包括

28 位男性及 22 位女性教師，任教學校教育階段分布平

均，國中教師（48%）、高中教師（52%）；填答者大
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部分任教年資 6 年以上（86%），且大都畢業於資訊相

關系所（80%）。 

表 1  研究參與者背景資料 

背景變項 屬性 N % 

性別 
男 28 56.0 

女 22 44.0 

年齡 
40 歲（含）以下 16 32.0 

41 歲（含）以上 34 68.0 

任教年資 

1-5 年 7 14.0 

6-15 年 7 14.0 

16-25 年 20 40.0 

25 年以上 16 32.0 

畢業系所 
資訊相關系所 40 80.0 

非資訊相關系所 10 20.0 

修畢教育專業

課程的學校 

師範或教育大學 37 74.0 

非師範或教育大學 13 26.0 

修畢資訊專門

科目的學校 

師範或教育大學 21 42.0 

非師範或教育大學 29 58.0 

任教學校教育

階段 

國中 24 48.0 

高中 26 52.0 

學校位於臺灣

所在區域 

北部 27 54.0 

中部 11 22.0 

南部 12 24.0 

學校位於所在

縣市之 

都會市區 30 60.0 

一般鄉鎮地區 20 40.0 

2.2 實施程序與工具 

本研究分為四個階段進行： 

(1) 定義資訊科技教師 PCK 內涵 

參考相關文獻後將 PCK 歸納為六類知識面向，分別為

課程、學習者及其背景知識、學科整體知識、學科教

學方法與情境、程式設計與運算思維及學科學習成效

評估知識。 

(2) 編製問卷題目初稿 

以臺灣教育部（2016）「科技領域師資職前教育專門

課程規劃計畫」報告為主要架構，並參考「國小教師

數學教學知識（MPCK）知覺量表」（陳彥廷，2014），

針對各知識面向編製問卷題目初稿，共 40 題。 

(3) 問卷定稿 

邀請資訊教育專家學者及四位中學資訊科技教師，檢

視問卷內容並提供修改建議，修訂成正式問卷，定名

為「資訊科技教師 PCK 自我評量問卷」。問卷內容除

詢問教師基本資料外，包含六類知識面向的 PCK，共

有 38個自評問題。自評採 Likert 五點量表形式，以 1至

5 分分別表示：非常不同意、不同意、普通、同意及非

常同意等自評結果。另有一題開放式問題，調查教師

期望研習之教學專業發展課程主題。 

(4) 實施問卷調查 

蒐集中學資訊科技教師電子郵件地址，寄發邀請填寫

問卷函，請教師於線上填寫。撰寫本文時，共有 74 位

教師填寫問卷。 

3. 結果與討論 

資訊科技科目新課綱著重培養學生運算思維，本文結

果與討論將著重在資訊科技教師於「程式設計與運算

思維」面向之自評結果為主（3.2 及 3.3），惟仍將概略

呈現資訊科技教師在各知識面向之自評結果（3.1）。 

3.1 各知識面向 PCK 自評結果 

資訊科技教師 PCK自評結果如表 2。整體上，教師認為

他們具備的 PCK 能夠符合新課綱的教學需求，各知識

面向平均分數皆在 4 分（同意）左右；其中學科整體知

識（M = 4.09）得分最高，其次為學習者及其背景知識

（M = 4.03）。顯示教師認為自己已充分掌握資訊科技

學科知識體系，並瞭解學生學習相關的知識。平均最

低的項目為學科學習成效評估知識（M =3.85），顯示

教師們認為自己在學習評量方面的知識略顯不足。 

表 2 各知識面向 PCK 自評結果（N = 50） 

知識面向 題數  Mean SD 

1. 課程 5 3.95 .55 

2. 學習者及其背景知識 3 4.03 .53 

3. 學科整體知識 6 4.09 .49 

4. 學科教學方法與情境 14 3.88 .53 

5. 程式設計與運算思維 7 3.89 .50 

6. 學科學習成效評估知識 3 3.85 .60 

3.2 「程式設計與運算思維」PCK 自評結果 

教師於「程式設計與運算思維」面向各題自評結果如

表 3 所示。在程式設計部分，第 2 題到第 4 題平均分數

皆達到 4 分，表示教師普遍了解各類型程式設計學習工

具的特性，並能選用適合的學習工具，同時也理解學

生學習程式設計的困難。另外，「能否運用適當的策

略來教授程式設計」的得分相對較低（第 1 題，M = 

3.76），這意味著教師對目前使用的教學法能否有效幫

助學生學習程式語言可能較無把握。由教師於開放問

題的填答亦獲得相呼應，多數教師表示希望有關單位

能提供程式設計教學法增能課程研習機會。 

表 3 「程式設計與運算思維」面向自評結果（N = 50） 

「程式設計與運算思維」面向 Mean  SD 

1. 我知道運用適當的策略來教授程式

設計。 
3.76 .66 

2. 我可以用不同的程式設計工具

（如：文字式、積木式、流程圖

等）來解決問題。 

4.08 .75 

3. 我能依學生程度選擇合適的程式設

計學習工具（如：文字式、積木

式、流程圖等）。 

4.06 .68 

4. 我知道學生學習程式設計時容易遭

遇的困難。 
4.04 .75 

5. 我了解運算思維的意涵。 4.00 .61 

6. 我會設計培養學生運算思維的學習

活動。 
3.84 .68 

7. 我能結合其他學習領域於運算思維

教學。 
3.44 .76 
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有關運算思維方面，教師認為自己是了解運算思維內

涵（第 5 題，M = 4.00），但在設計培養運算思維的學

習活動（第 6 題，M = 3.84）及結合其他學習領域於運

算思維教學（第 7 題，M = 3.44）的信心與教學知識略

顯不足。推論是由於運算思維是近年才被提出的概念，

過去未納入在師資培育課程中，顯然現職教師過去所

學未足能應付課程內容的變革，而此結果也反應在開

放式問題的回饋中，多數教師指出運算思維課程設計

為亟須增辦的研習主題。 

除此之外，於「學科學習成效評估知識」的知識面向

中，其中一題項與運算思維相關，題目內容為「我能

選用合適的評量方法評出學生整合運算思維與資訊科

技來解決問題的能力」（M = 3.78），是該面向中平均

得分最低的項目，顯示教師對如何評估運算思維與問

題解決能力較無把握。何榮桂（2015）指出新課綱強

調兼重資訊科技之學科理論與實作，而兩者的評量方

式不盡相同，從實務面該如何評估運算思維能力，是

新課綱內容應具體示例說明，提供給教學現場教師有

所依循。 

3.3 教師背景與程式設計與運算思維面向自評差異 

此部分資料使用單因子變異數分析，探討資訊科技教

師不同背景變項對其「程式設計與運算思維」PCK 的

影響。 

依「任教學生年段」背景變項的分析結果顯示，高中

教師在運用程式設計教學策略（F = 5.58, p < .05）、使

用程式設計工具（F = 14.36, p < .05）、依學生程度選

用程式設計學習工具（F = 8.18, p < .05）、了解學生學

習時容易遭遇的困難（F = 19.11, p < .05）、設計培養

運算思維的學習活動（F = 4.97, p < .05）和結合其他學

習領域於運算思維教學（F = 6.66, p < .05）上的自評結

果高於國中教師。 

其次，在「畢業系所是否為資訊相關科系」背景變項

分析結果顯示，畢業系所為資訊相關科系之教師在依

學生程度選用程式設計學習工具（F = 6.29, p < .05）與

結合其他學習領域於運算思維教學（F = 4.49, p < .05）

上的自評結果高於非資訊相關科系畢業教師。 

於「修畢教育專業課程之學校是否為師範或教育大學」

的背景變項結果顯示，非師範或教育大學修畢教育專

業課程之教師在結合其他學習領域於運算思維教學（F 

= 5.47, p < .05）上的自評結果高於在師範體系修畢教育

專業課程之教師。 

然而，不同性別、年齡、任教年資、修畢資訊專門科

目的學校屬性、任教學校位於臺灣所在區域與位於所

屬縣市之屬性等背景變項對教師在「程式設計與運算

思維」面向的自評結果無顯著的影響。 

4. 結論與建議 

由前述調查結果顯示，整體而言，資訊科技教師認為

他們能夠勝任新課綱的教學需求，尤其在資訊科技的

「學科整體知識」面向最佳，但在「學科學習成效評

估知識」面向則略顯不足。 

在「程式設計與運算思維面向」之自評結果則顯示，

教師已掌握各類型程式設計工具特性和學生學習程式

設計時易遭遇的困難，且能依學生程度來選擇適合的

學習工具；而教師自我感覺在教授程式設計運用的教

學策略與方法為其次，運算思維是新興概念，雖然結

果顯示教師已了解運算思維的內涵，但過去未能在師

資職前課程中獲得有關教學專業知識，在運算思維課

程設計與評量工具的部分是亟待有關單位能增辦研習

活動，幫助教師專業成長。 

不同背景之教師對「程式設計與運算思維」各題 PCK

之自評，因任教學生年段、畢業系所是否為資訊相關

科系、及是否為師範或教育大學畢業而有顯著差異。 

建議未來研究應擴大問卷填答人數，並進行訪談，以

深入分析與釐清教師所具備的 PCK 全貌，據此針對不

同背景教師提供增能研習，以提升教師學科教學知識。 
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摘要 

在新一轮修订的中国大陆高中信息技术新课标中，界
定了计算思维作为信息技术学科的核心素养要素而应
该被重点培养。但是就计算思维的培养而言，教师起
着至关重要的作用。本文在前人研究的基础上提出了
计算思维教师培训课程的四阶段模型，并根据此模型
设计开发了为时 4 天的 workshop 活动课程，探索了教
师在参与课程前后对计算思维的感知上的变化。结果
发现，通过此次培训，教师对计算思维的理解、自我
效能感发生了显著的变化，而内在动机和计算思维的
课程整合则无显著影响。 

关键字 

计算思维；教师培训；感知；  

1.前言 

计算思维是当前国际计算机界广为关注的一个重要概

念，也是当前计算机教育需要重点研究的重要课题，

是当前一个颇受关注的涉及计算机科学本质问题和未

来走向的基础性概念。1996年，麻省理工学院（MIT）

的西蒙派珀特最早提出这一概念，但在 2006 年 3 月，

美国卡内基梅隆大学的周以真教授在 ACM 会刊

《Communications of the ACM》上第一次将计算思维推

向前台。她认为，学会计算思维是在信息社会中创新

的需要。如同所有人都具备“读、写、算”（简称 3R）

能力一样，计算思维是必须具备的思维能力(Angel，

2016)。目前，计算思维已经引起了计算机科学家和教

育界人士的广泛关注。在新一轮修订的中国大陆高中

信息技术新课标中，界定了计算思维作为信息技术学

科的核心素养要素而应该被重点培养。但是就计算思

维的培养而言，编程教育是培养学生计算思维的有效

方式，对学生在计算思维的培养方面有着得天独厚的

优势，有利于培养学生的问题分析能力和问题解决能

力。 

2017年 7月，国务院印发《新一代人工智能发展规划》，

明确指出人工智能成为国际竞争的新焦点，应逐步开

展全民智能教育项目，在中小学阶段设置人工智能相

关课程、逐步推广编程教育、建设人工智能学科，培

养复合型人才，形成中国人工智能人才高地。可见，

无论是国家的政策层面要求还是计算思维的内涵所在，

培养学生的计算思维都很有意义且迫在眉睫。在我国，

信息技术课主要承载着培养学生计算思维的主要任务。

但是本研究前期对北京市海淀区的信息技术教师（含

电教教师）进行了有关计算思维的调查（问卷详见附

录），结果显示虽然 95%的教师都认为很有必要为学

生开设计算思维相关的课程，但是 89.5%的教师没有接

受过这方面的学习以及不知道如何将其整合到自己的

课程中，基于此，本研究对如何开展计算思维的教师

培训课程进行了深入探究。 

2.文献综述 

2.1.计算思维 

计算思维是计算机科学实践的核心，是 21 世纪数字公

民的一项基本素养。2006 年，美国卡内基梅隆大学周

以真（Jeannette Wing）教授提出，计算思维是运用计

算机科学的基本概念进行问题解决、系统设计与人类

行为理解的过程。2010 年，她再次补充定义计算思维

是一种解决问题的思维过程，能够清晰、抽象地将问

题和解决方案用信息处理代理（机器或人）所能有效

执行的方式表述出来(Wing, 2006)。计算思维提供了一

种能够广泛应用于工作、学习和生活中的组织与分析

问题的新视角，同时它可以连结计算机科学与其他学

科知识领域，突破了专业知识技能与思想的局限，促

使学习者进行技术使用者到创造者的角色转变。她还

提出计算思维包括算法、分解、抽象、概括和调试五

个部分。 

2011 年，美国国际教育技术协会（International Society 

for Technology in Education, ISTE）联合计算机科学教师

协会（Computer Science Teachers Association, CSTA）

基于计算思维的表现性特征，给出了一个操作性定义：

“计算思维是一种解决问题的过程，该过程包括明确问

题、分析数据、抽象、设计算法、评估最优方案、迁

移解决方法六个要素”。 

虽然关于计算思维的定义，目前还没有达成共识，但

是周以真提出的计算思维所包含的 5 个要素得到了很多

研究者的认可。抽象，是指在解决问题时去掉次要的

细节；概括，是指总结、发现规律或相似点的过程，

发现整个大任务中已经熟知的部分，或者在其他地方

已经了解过的部分，进而使算法变的简单；分解，就

是将大的问题分成较小的部分，进而简化问题，更易

于向别人解释；算法，就是通过设计一系列具体有序

的步骤来解决问题；调试，就是不断发现错误、改正

错误的过程。综上所述，本研究认为计算思维是一种

包含抽象、概括、分解、算法和调试 5 个要素的问题解

决过程。 

2.2.计算思维的研究现状－—K-12 阶段 

计算思维往往和编程同时出现，Lye(2014)认为编程是

一项需要将问题进行抽象和分解的活动，使得学生进

行思考并因此促进计算思维能力的发展。Werner, 

Denner, Campe, & Chizuru Kawamoto(2012)通过让学生

使用编程软件 Alice 完成特定的任务来衡量学生计算思

维能力的发展。很多研究者 (eg. Wilson, Hainey, & 

Connolly(2013); Pardamean & Suparyanto(2015))认同这
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一观点，同时也促进了编程工具在教育领域的发展。

目前比较流行的是图形化编程环境，如 Scratch, Alice, 

Game Maker 等，这些工具对于初学者来说简单易用，

只用拖拽相应的模块就可以实现一些功能(Grover & Pea, 

2013)。除此之外，美国《中小学计算机科学标准》分

阶段设计了计算思维的教学实施方案，建议在 K-6年级，

将学习内容设计成创造性和探究性活动，嵌入到社会

科学、语言艺术、数学和科学课程中；7-9 年级，学校

可以根据情况开设独立的计算机课程，也可以整合学

科内容到其他课程中；10-12 年级以必修课的方式达成

学习目标。 

与美国混合式教学不同，英国则采取独立开课模式。

自 1988 年以来，信息技术课程就一直作为英国中小学

生的必修课程。为顺应时代发展，该课程先后经历了

从信息技术(Information Technology, IT)到信息通信技术

(Information and Communication Technology, ICT)，再到

计算(Computing)的变革。英国教育部于 2014 年 9 月引

入新的计算机教学大纲，将课程要求划分为四个阶段：

K-2 年级，理解算法概念，能够创建和调试简单的程序

等；3-6 年级，编程解决实际问题，了解计算机网络，

有效使用搜索技术等；7-9 年级，理解几个反映计算思

维的关键算法，掌握 1-2 门程序设计语言解决计算问题，

熟悉计算机组成等；10-11 年级，培养计算机科学、数

字媒体和信息技术的知识、能力和创造力，发展问题

分析、解决、设计和计算思维能力等。 

2.3.计算思维的教师培训 

教师学会将计算思维整合到课堂实践中对于培养学生

的计算思维是非常重要的（Prieto, 2014）。有研究者尝

试对职前教师和在职教师进行培训，如Blum (2007)通

过历时一周的工作坊活动，向教师们介绍计算思维以

及计算机科学与其他学科的联系，研究了工作坊活动

是否影响教师对计算机科学的认识，结果发现教师对

计算机科学的认识发生了显著地变化，并且愿意将计

算思维的相关内容整合到自己的教学实践中来，研究

者还发现在职教师想要更多的实践层面的指导以及更

多的教学资源。虽然很多研究都关注在职教师的专业

发展，但是很少呈现教师培训课程如何设计及实施状

况。Angeli等(2016)提出了k-6阶段的计算思维教学通用

框架，并从TPCK的角度出发，探讨了教师在进行计算

思维教学时应具备的基于计算思维的学习者知识、教

学法知识、技术知识和学科知识（见图1）。 

 

图 1 TPCK 模型 

3.研究目的 

本研究设计教师培训课程帮助在职教师学习如何开展

计算思维课程，并且在课程实施的过程中，探索教师

在参加培训课程前后对计算思维的态度变化及自己的

理解。 

4.研究过程 

4.1.参与者 

本研究的研究对象为北京市海淀区几所学校的在职教

师。这门课程是由海淀区教育科学研究院发起的，旨

在培训教师有关计算思维及相关课程的设计和实施，

推进人工智能的发展。选课人数为 27 人，去除未填写

前测问卷或后测问卷的教师，最终样本为 16 人，95%

的教师都在原学校教授信息技术或通用技术课程，其

中男生 9 人，占 56%；女生 7 人，占 44%。 

4.2.研究流程 

本研究的流程如图 2 所示。首先，研究者根据教师培训

的框架及计算思维的特性设计并开发出培训课程；然

后，在课程实施之前，对教师进行前测，包括计算思

维的理解、自我效能、参与培训的内在动机及对计算

思维的课程整合的看法等；接下来，实施培训课程，

整个培训课程历时四天，以 workshop 的形式开展，不

仅有个人的学习，也有小组的挑战任务；最后对教师

进行后测及访谈。 

                    

图 2 研究流程图 

4.3.课程设计 

本课程设计基于的学习工具为 Swift Playgrounds，这是

一款在 ipad 上使用的 app，让编程变得更加轻松、灵活。

学习者可以一边写代码，一边看到代码造就的成果，

并且大量运用所熟知的单词和词组，学生通过钻研并

打通一个又一个关卡，不断完善编程技巧，逐步夯实

编程知识的基础。但是，在完成项目的时候，编程只

是所需能力中的一小部分，更重要的是实施的策略、

寻找错误和解决问题的能力、分享和协作的能力以及

面对挑战的能力等，这些也是非常重要的。 

本研究在 TPCK模型的基础上，结合计算思维的特点，

提出了计算思维教师培训的四阶段模型，见图 3。 
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图 3 教师培训四阶段模型 

第一阶段是让教师了解计算思维的相关理论，包括计

算思维的概念、计算思维对于学生发展的重要意义等；

第二阶段，让教师学会使用 Swift Playgrounds，知悉其

中所包含的编程的基本知识和方法，如算法、序列、

条件、判断和调试等；第三阶段，让教师掌握使用该

工具开展课程教学的策略、过程和方法等；第四阶段，

也即培训过程中需要达到的最高目标，让教师学会开

发计算思维课程（基于任一学习工具），四个阶段的

难度是逐级递增的，因此达到不同阶段目标的教师的

数量也是不同的。 

需要特别说明的是，对编程基本知识学习的过程中，

教师学习知识只占其中的一小部分，更多的是了解课

程是如何设计的、是怎样培养计算思维的不同要素以

及思考怎么将此课程带到原学校实施。第四天的课程

开发阶段，教师需要选取以往自己设计的教案，带到

培训课堂上，用培训课程中学到的相关知识重构自己

原来的课程，通过分享和交流实现碰撞。 

4.4.研究工具 

本研究所用的计算思维感知量表改编自(Yadav, Zhou, 

Mayfield, Hambrusch, & Korb, 2011)和(Shim, Kwon, & 

Lee, 2017)的量表。该量表主要测量学习者对计算思维

的理解、自我效能、参与培训的内在动机以及对计算

思维的课程整合的看法四个维度，共 15 道题，采用李

克特5点量表，包括“完全不同意”、“比较不同意”、“同

意”、“比较同意”、“完全同意”五个选项，分别计 1-5分，

分数越高表明学习者的计算思维感知越好，问卷的前

后测信度系数分别为 0.838 和 0.876，表明信度良好。 

5.研究结果 

本研究采用 SPSS20.0 对数据进行处理和计算，采用配

对样本 t 检验对教师参加培训前后对计算思维的感知结

果进行分析，以检验培训课程对教师计算思维的的理

解、自我效能、内在动机、课程整合等的影响。表 1 是

计算思维感知量表四个维度前后测量的结果。在对计

算思维的理解上，sig=0.001(<0.05)；在自我效能感这

一维度上，sig=0.006(<0.05)；而内在动机和课程整合

方面，sig 值分别为 0.931 和 0.188。可以看出在参与培

训前后，教师对计算思维的理解和自我效能感发生了

显著的变化，显著提高；而在内在动机及计算思维的

课程整合方面没有显著的影响。 

表 1 计算思维感知前后测配对样本 t检验结果 

6.讨论 

本文探索了如何设计有关计算思维的教师培训课程，

企图让教师明确计算思维的要素以及整合到课堂中来，

是培养学生计算思维的重要一步。通过结果分析，初

步证明了该培训课程对于教师的计算思维的感知上的

影响，教师对计算思维的概念和对学生的重要意义有

了更加深刻的理解、通过短期的培训使得教师相信自

己能做好此方面的工作，但是内在动机没有变化，可

能跟培训的时长较短有关系。其次，就计算思维与其

他课程的整合而言，由于目前国内缺少优秀的整合案

例，不能在培训过程中给教师以更加针对性地指导，

只能教师之间讨论重构课程的难处和方法，这在一定

程度上限制了教师对于课程整合的态度和能力发展。 

通过访谈可知，大多数教师更喜欢参与性、互动性比

较强的培训课程，如果在学习的过程中，动手实践并

有适当的产出，则会大大激发教师们的学习热情；他

们非常认可培训课程中所用到的教学工具－ Swift 

Playgrounds，认为其比较适合中小学生学习编程，弥

补了目前可视化、拖拽式工具的不足，为学生之后过

渡到纯代码层面的编程很有帮助。虽然国家在大力提

倡人工智能、强调计算思维对于学生发展的重要性，

但是就计算思维的培养而言，目前大多数教师的知识

储备和认识都有待更新，只有通过系统地学习，才能

更好地推动落地。除此之外，一些教师表示，领导不

重视、课时有限以及缺少相应的软硬件的支持，都是

限制因素。就培训课程而言，提高教师的参与热情、

提供更多的教师交流平台和相关的教学资源是改进此

课程的方向之一。针对软硬件皆能保障的学校，本着

教师自愿报名参与的原则，发展第一批“种子教师”，试

点尝试利用本次培训中学到的有关计算思维课程实施

的策略和方法进行开课，并且将学生参与课程的反馈、

教学反思和经验等分享给其他教师，这是后续培训课

程的发展方向，也是本研究未来的研究方向。 

维

度 

类别 人

数 

均值 标准

差 

   t Sig.(

双侧) 

CT

的

理  

解 

前-后 16 -.334 .322 -4.142  .001 

自

我

效  

能 

前-后 16 -.562 .704 -3.195  .006 

内

在

动  

机 

前-后 16 -.019 .856 -.088  .931 

课

程

整  

合 

前-后 16 -.188 .544 -1.379  .188 
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摘要 

本研究在師資培育大學中，實施了運算思維課程並探

討師資生的學習成效。運算思維是 21 世紀中，教師必

須要學習和教育兒童的重要技能之一。在臺灣十二年

國教中，也強調其重要性並制定對應的能力指標。故

影響了近來老師培訓和師培教育。然而，懂得如何教

運算思維的教師甚至能將運算思維融入課程的教師仍

為少數。本研究利用Code.org運算思維課程，培訓師資

生 12 小時，讓其了解運算思維定義，並透過可視化代

碼和圖形編程模塊進行練習。根據 15 位師資生前測與

後測結果，發現前後測成績有顯著差異。因此應用

Code.org 運算思維課程能有效地提高運算思維的學習成

效。 

關鍵字 

運算思維；Cord.org；師資生；國民小學。 

1. 前言 

運算思維(Computational Thinking)是一種問題解決的思

考過程，透過「問題分解(Problem Decomposition)」來

將複雜和開放性問題分解成數個較小但較容易處理的

小部分來闡述問題，並透過「演算法設計和程序  

(Algorithm Design and Procedure)」的開發，解決這些小

部分問題的系統方式與電腦可以處理的步驟，告訴電

腦如何去處理並協助解決問題。運算思維幾乎可以協

助所有學科的解決問題，包括數學，科學和人文科學。

在課程中學習運算思維的學生可以開始看到學科之間

以及學校和課外生活之間的關係 (Wing, 2006; Wing, 

2011; ISTE & CSTA, 2011; Barr & Stephenson, 2011; Lee, 

Martin, Denner, Coulter, Allan, Erickson, Malyn-Smith, & 

Werner, 2011; Aho, 2012; Grover & Pea, 2013; Google, 

2016)。 

國際教育技術教育協 (The International Society for 

Technology in Education, ISTE)，計算機科學教師協會

(Computer Science Teachers Association, CSTA)和英國計

算學校(The UK Computing at School, CAS)工作組與教育

和工業代表合作，為教育工作者開發運算思維的教學

資源(ISTE & CSTA, 2011; CAS, 2014; ISTE, 2016; Google, 

2016)。美國總統歐巴馬也在 2014 年親自錄製影片宣傳

「Hour of Code」，期藉由程式設計輔助運算思維所需

的認知任務工具並展現運算思維能力(林育慈、吳正己, 

2016)。由此可知，許多國家都紛紛推展運算思維，顯

示運算思維的重要性。 

在臺灣國家教育研究院「十二年國民基本教育課程綱

要國民中小學暨普通型高級中等學校科技領域草案」

中也提到，資訊科技課程發展需關照科技與科學、數

學、社會、藝術領域間的統整，課程設計將以「運算

思維」為主軸，透過電腦科學相關知能的學習，培養

邏輯與系統化思考等「運算思維」能力，並透過資訊

科技 之設計與問題實作，提升學生「運算思維」的應

用能力、問題解決能力、團隊合作能力與創 新思考能

力(國家教育研究院, 2016a)。 

故本研究在臺灣師資培育大學中，利用Code.org運算思

維課程，針對師資生(具有修習師資職前教育課程資格

的學生)進行 6 週共 12 小時的課程，再搭配前測與後測，

來了解師資生在運算思維技能的提升狀況。 

2. 文獻探討 

2.1. 運算思維 
隨著電腦與網路科技的快速進步，目前資訊的大量流

通與改變快速，培養學生擅用電腦和網路，是新時代

教育的一個重要內容。今天的資訊科技，透過機器學

習、人工智慧的技術，打造出具有智慧的機器人，可

以回答艱澀問題，甚至 AlhpaGo 以 4:1 的成績戰勝人類

頂尖棋手李世石。但這些技術是人類科學家演算法和

智慧的結晶，電腦通過深度學習技術，在大數據的支

撐下，可以做出更理性和精准的判斷，然而這一切，

都是利用程式設計來實現。程式設計思維就猶如智力

體操，並非要栽培未來的程式設計師，而是為了培養

孩子的運算思維，開拓更寬廣的學習途徑，學習創意

思考、有系統的推論、團隊合作並借助電腦實作解決

問題能力，這些技能不僅在各專業領域都受用無窮，

更是生活中不可或缺的能力。(劉耘, 2013; 洪士灝, 2016; 

葉丙成, 2016; 尚吉剛, 2016)。 

Zhong, Wang, Chen, & Li (2016)分析了運算思維定義提

出三個觀點，分別為運算思維是問題解決的過程、形

式的表達與三維架構(Brennan & Resnick, 2012)包含「概

念 (Concepts) 」 、 「 實 踐 (Practices) 」 與 「 視 野

(Perspectives)」(圖 1)。 

A. 概念：學生在設計演算法會用到的程式概念，包含

「物件 (Objects)」、「指示 (Instructions)」、「序列

(Sequences)」、「迴圈(Loops)」、「事件(Events)」、

「條件(Conditionals)」與「運算(Operations)」。 

B. 實踐：學生在利用概念設計與測試演算法會用到的

步驟，包含「抽象化(Abstraction)」希望能從具體問題

或特定實例中萃取理解和解決問題的相關資訊、基本

要素、共同特徵或動作來簡化問題。(Wing, 2006; ISTE 

& CSTA, 2011; Barr & Stephenson, 2011; Lee et al, 2011; 

Grover & Pea, 2013; Google 2016)、「演算法設計和程序
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(Algorithm Design and Procedure) 」透過建立一系列有序

的指令建立解決問題的工具來執行任務以達成部分目

標 (ISTE & CSTA, 2011; Grover & Pea, 2013; Google, 

2016)、「資料表示(Data Representation) 」指能了解不

同格式資料，有邏輯地組織和分析資料，並採用適當

的圖形、圖表、文字或圖像來描述和組織數據(ISTE & 

CSTA, 2011; Barr & Stephenson, 2011; Google, 2016)、

「問題分解(Problem Decomposition) 」能將資料、處理

過程或問題分解成數個較小可管理且容易處理的部分

(Wing, 2006; Barr & Stephenson, 2011; Google, 2016)、 

「 模 式 辨 識 和 一 般 化 (Pattern Recognition and 

Generalization)」透過觀察資料模式，找出資料趨勢和

規律，來建立模型、規則、準則或理論，仿照現實狀

況建立模擬資料，並使用條件、迴圈、遞迴或迭代方

式來藉此驗證一般化的預測結果與解決問題 (ISTE & 

CSTA, 2011; Google, 2016)。 

C. 視野：學生透過表達、連結與詢問來形成對於現實

世界問題的觀點，包含「創意和表達 (Creative and 

Expressing) 」 、 「 溝 通 和 合 作 (Communicating and 

Collaborating) 」、「理解和質疑 (Understanding and 

Questioning)」。 

 

 

圖 1 本計畫採用之運算思維三維度架構 

 

2.2  Code.org 課程 
美國非營利組織 Code.org 發起的編寫程式活動「Hour 

of Code」(圖 2)，讓學童透過活潑有趣的方式，在程式

遊戲中嘗試、探索與創造，培養運算思維、想像力以

及解決問題的能力， 並在熟悉程式設計的基本概念同

時，讓學童提早具備面對國際競爭的能力。小朋友可

以用視覺程式語言，透過簡單的搬移拖拉方式，來建

立演算法的區塊，學習用邏輯性的語言來思考與解決

問題(Code.org Teacher Community, 2016; Google, 2016)。 

 

  

(a) 課程操作畫面 (b) 堆疊後的程式碼 

圖 2  Hour of Code 中的 Write your first computer program 

課程 

 

Code.org 針對不同年齡層的學生提供完整的運算思維課

程，其中「課程 1」是針對年齡 4-6 歲的學生，裡面的

程式區塊，大多是採用可視化的圖形介面，降低學生

的閱讀負擔。課程 2 是適用於年齡 6 歲以上的學生，除

了學生須具備基本閱讀能力外，也提高了區塊的使用

難度，例如增加轉向的概念。課程 3 則是課程 2 的延續

課程，其年齡設定為 8~18歲的學生。課程 4則是課程 2

與課程 3 的進階課程，裡面包含更複雜的程式設計概念，

還包括帶有參數的函式。 

 

 

圖 3  Code.org課程 1 的部分課程介面 

 

除此之外，Code.org 也針對教師角色進行介面設計，學

生可以透過課程代碼，直接與老師指定課程連結。老

師因此可以看到學生的學習進度，作答狀況，甚至給

予學生測驗或額外課程。 

目前已經有研究顯示，在 K12學生採用 Code.org，並解

發現學生在使用Code.org課程訓練運算思維能力時，對

於程式語言會抱持比較正面的態度，且男女生之間的

能力相當(Kalelioğlu, 2015)。有鑑於 Code.org 的課程已經

提供 4-18 歲學生相關的課程，因此第一線的老師可以

很容易利用相關課程來提升 K1~K12 學生運算思維能力。

因此，本研究認為讓目前師資生了解何為運算思維、

提升其運算思維能力、使用Code.org教授運算思維利，

是目前師資培育大學重要的課題之一。 

3. 研究方法 

本研究的參加對象為臺灣中部某一所師資培育大學，

在教育學群的選修課程「教學媒體與運用」導入 6 週共

12 小時的運算思維課程，共有 15 位學生完整參與課程
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與前後測驗。運算思維課程是根據 Code.org課程 3提供

的單元內容，包含「運算思維介紹」、「函式」、

「條件判斷」、「巢狀迴圈」、「條件迴圈」與「除

錯」等。 

由於本課程之目標除了加強師資生運算思維技能外，

也需要要培養師資生教授運算思維課程的能力。因此，

老師在授課時，除了讓學生進行 Code.org 課程 3 課程

外，也需而外花時間教導學生如何利用Code.org開設課

程，與觀看學生學習狀況，如學生學習進度、回應、

評量/調查等。 

在課程實施前，本研究根據運算思維定義中的概念與

實踐(圖 1)，並參考國際運算思維挑戰賽，設計了兩套

互為複本的測驗。其中一套為前測測驗，待完成 6 週課

程後，在進行後測測驗。每套測驗共有 25 道式題，作

答時間設定為 60 分鐘。為了能夠判斷學生運算思維成

績的題生狀況，會要求學生認真作答，若不會作答，

請跳過該題，不要硬猜答案。表 1 為本研究開發部分前

後測試題與其對應的到運算思維概念與實踐技能對照

表。 

表 1 部分前後測試題與其對應的到運算思維概念與

實踐技能對照表 

試
題
編
號 

概念 實踐 

物
件 

指
示 

序
列 

迴
圈 

事
件 

條
件 

運
算 

抽
象
化 

演
算
法
設
計
和
程
序 

資
料
表
示 

問
題
分
解 

模
式
辨
識
和
一
般
化 

1   V V         

2          V   

4      V       

5         V    

8    V        V 

9    V   V      

10    V  V V      

11    V  V V      

13        V     

14         V    

15           V  

16      V V      

22      V V      

23            V 

24    V         

25         V    

4. 實驗結果 

本研究使用之前測與後測試卷的信度 Cronbach 值

分別為 0.800與 0.835，皆高於 0.8，故前後測試卷屬

於高可信度。因此，本研究採用 15 位學生在 25 題

式題的前測與後測總分來進行成對 t考驗分析，藉此

探討師資生透過 Code.org 課程 3 學習後，其運算思

維概念與實踐技能是否有提升。 

表 2 為 15 位學生的前後測成對 t 考驗分析表，其中

15 位學生的前測平均為 57.6 分，後測平均為 63.2 分，

所以後測平均與前測平均差為 5.6 分，其 t 值為 1.86，

p 值為 0.04 小於顯著水準 0.05。 

 

表 2  前後測之成對 t 考驗分析表 

前測 

平均 

後測 

平均 

後測平均

-前測平

均 

t 
顯著性 

(單尾) 

57.6 63.2 5.6 1.86* 0.04 

 

5. 結論 
本研究將 Code.org 運算思維課程導入師資培育課程，

希望能藉此提升師資生運算思維能力，並讓師資生

了解如何透過 Code.org 課程來教授學生運算思維技

能。透過 6 週共 12 個小時的教學，初步分析結果顯

示，師資上在運算思維的能力有顯著進步(t=1.86*)。

故建議師資培育大學可以考慮將 Code.org 導入課程

之中，除了能夠教導師資生運算思維概念與提升師

資生運算思維能力外，也可以培養師資生透過

Code.org 課程來教授運算思維的能力。 

這個研究為初步研究，在課程實施過程中，一開始

師資生接觸可視化代碼和圖形編程模塊進行運算思

維課程時，是具有高度興趣的。但隨著重複在電腦

上的課程訓練，師資生在學習上會漸漸對這樣的課

程失去興趣，產生疲乏。故未來建議可以在課程當

中增加一些不插電的活動，提高老師與師資生之間

的互動，維持師資生的學習興趣。 
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ABSTRACT 

This case study reports a pilot study of designing 

computational thinking (CT) assessment instruments in a 

per-service teacher course in Korea. We describe the 

implementation of a CT course for pre-service teachers who 

did not major computer science. We report two instruments: 

a survey and a team project guideline. The results suggest 

that two assessment instruments have the potential to help 

pre-service teachers gain self-confidence and become 

motivated to incorporate CT concepts across all disciplines. 

KEYWORDS 

computational thinking, assessment, pre-service teachers, 

multimodal representation   

1. INTRODUCTION 
With the ever increasing need for teaching computational 

thinking (CT) to learners of the digital age, teacher educators 

need to develop a curriculum to enable teachers and teacher 

candidates “to better conceptualize, analyze, and solve 

complex problems by selecting and applying appropriate 

strategies and tools” (Computer Science Teachers 

Association, 2011, p. 9). In this light, much attention has 

been paid to the design of K-12 CT curricula in many 

countries including South Korea (Heintz, Mannila, & 

Farnqvist, 2016) as we are discovering the positive effects 

of computer programming in K-12 education. However, it 

has been a challenge to better prepare pre-service teachers to 

embed CT activities across subjects and contexts (Kazakoff 

& Bers, 2012). To address this challenge, this case study 

aims to design and implement CT assessments for Korean 

pre-service teachers who did not major computer science.   

2. LITERATURE REVIEW 
Computational thinking (CT) was first used by Papert (1996) 

in an article about mathematics education. However, a 

definition for this term was not provided until years later 

when Wing (2006) mentioned it to entail “solving problems, 

designing systems, and understanding human behavior, by 

drawing on the concepts fundamental to computer science” 

(p. 33). With the clear rise in the importance of CT, many 

countries are introducing computing as a core curriculum 

subject (Heintz, Mannila, & Farnqvist, 2016).  

However, bringing CT into teacher education is at its early 

stages of development and lacks curriculum studies to 

design teacher education (Yadav et al., 2011) and assess the 

development of CT (Brennan & Resnick, 2012). Although 

CT is considered to be critical 21st competencies, little is 

known about how to assess CT expertise development (Lye 

& Koh, 2014). 

3. THE STUDY & METHOD 
This case study was part of a series of design-based research, 

and in this paper, we report only designing CT assessment 

instruments for pre-service teachers at a national university 

of education in Korea. In order to design a survey 

instrument, we have incorporated the five sub-components 

of CT derived from a meta-analysis conducted by Selby and 

Woollard (2010). We have also added categories to make it 

applicable for pre-service teachers’ CT courses (i.e., 

programming course, problem solving via CT, etc.).  

Further, we have developed ‘a team project guideline’ for 

pre-service teachers when they present their team projects 

(i.e., animations, games, quizzes, etc.) based on their 

understanding of core CT concepts. This team project 

guideline aimed to help pre-service teachers to reveal their 

comprehension of CT explicitly and to collaboratively 

reflect on their CT team projects.  

4. RESULTS 
The survey instrument with 15 items on a 4-point Likert 

scale (1 = strongly disagree, 2 = disagree, 3 = agree, 4 = 

strongly agree) was developed to assess CT skills. There are 

three categories in the survey: the degree of experiencing CT 

during the course, self-efficacy of teaching CT, and CT 

transfer. Each category has five items pertaining to five sub-

components of CT: algorithmic thinking, evaluation, 

problem decomposition, abstraction, generalization. For 

example, self-efficacy includes “if I teach elementary 

students Scratch programming in the future, I would be able 

to help them to solve problems with algorithmic thinking”.  

Overall, pre-service teachers reported positive experiences 

in terms of high level of CT concepts, self-efficacy and 

prospective use of CT. More detailed results will be reported 

somewhere else. A team project guideline was developed for 

pre-service teachers to reveal their ability to think 

computationally while preparing for a presentation of their 

programming projects.  

The guideline included the five sub-components of CT 

(algorithmic thinking, evaluation, problem decomposition, 

abstraction, generalization) as well as a description of the 

problem, sprites (or images), background, variables, roles of 

team members and reflection. Figure 1 shows an example 

created by a team from a preliminary study using Scratch 

programming: breaking the problems into smaller problems 

and defining each smaller problem. 
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Figure 1. Scratch team projects. 

 

5. CONCLUSION & DISCUSSION  
The results suggest that two assessment instruments have the 

potential to help pre-service teachers gain self-confidence 

and become motivated to incorporate CT concepts across all 

disciplines. The instruments were designed to assess the 

impact of the CT instruction using Scratch programming for 

pre-service teachers who did not major computer science. In 

particular, collaboratively incorporating the team project 

guideline in a team allowed pre-service teachers to critically 

reflect on their learning progress and intensify collaborative 

efforts. Further, in addition to written language, they 

effectively incorporated multimodal representation (e.g., 

visual images) to communicate their CT concepts. Drawing 

upon this finding, we will continuously design another cycle 

of design-based research to initiate a student-generated 

rubric for CT assessment to promote student agency, 

collaboration, and multimodal representation.      

6. REFERENCES 
Brennan, K., & Resnick, M. (2012). New frameworks for 

studying and assessing the development of 

computational thinking. Paper presented at the American 

Educational Research Association. Canada: British 

Columbia 

Computer Science Teachers Association. (2011). CSTA K-

12 computer science standards. Retrieved from 

https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K

-12_CSS.pdf 

Heintz, F., Mannila, L., & Farnqvist, T. (2016). A review of 

models for introducing computational thinking, 

computer science and computing in K–12 education. 

Paper presented at 2016 IEEE Frontiers in Education 

Conference.  

Kazakoff, E., & Bers, M. (2012). Programming in a robotics 

context in the Kindergarten Classroom. Journal of 

Educational Multimedia and Hypermedia, 21(4), 371-

391. 

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and 

learning of computational thinking through 

programming: What is next for K-12? Computers in 

Human Behavior, 21, 51-61. 

Papert, S. (1996). An exploration in the space of 

mathematics educations. International Journal of 

Computers for Mathematical Learning, 1(1). doi: 

10.1007/bf00191473 

Selby, C. C., & Woollard, J. (2010). Computational 

thinking: The developing definition. SIGCSE 2014.  

Wing, J. M. (2006). Computational thnking. 

Communications of the ACM, 49(3), 33-35.  

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, 

J. T. (2011). Introducing computational thinking in 

education courses. Paper presented at the Proceedings of 

the 42nd ACM technical symposium on Computer 

science education.   

https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf


Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J., Shih, 

J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking 

Education 2018. Hong Kong: The Education University of Hong Kong. 

179 

Which Parts of Computer Science Concepts Do Future Teachers Identify? First 

Results of a Part-Whole-Thinking Analysis in Computer Science Education  

Nils PANCRATZ*, Ira DIETHELM 

Department of Computing Science 

University of Oldenburg, Germany 

nils.pancratz@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de 

 

ABSTRACT 

The ability to detect Part-Whole-Relationships and to 

interconnect these to an organized structure is one of the core 

cognitive processes through which knowledge is acquired. 

However, the sharing of this capability, which belongs and 

relates to Computational Thinking skills and is called Part-

Whole-Thinking, is lining up behind the conveyance of 

content in Computer Science classes and courses still. In 

order to support a more vigorous inclusion of Part-Whole-

Thinking into Computer Science Education, various aspects 

need to be considered and investigated in the first place. The 

Model of Educational Reconstruction for Computer Science 

Education illustrates the elements to be taken into account 

when designing and arranging Computer Science lessons 

and courses. One of the elements under consideration is the 

investigation of the teachers’ perspectives. The contribution 

at hand presents first results of an analysis of future teachers’ 

Part-Whole-Thinking of Computer Science Concepts. 

KEYWORDS 

Part-Whole-Thinking, Computational Thinking, Computer 

Science Education, Teachers’ Perspectives, Model of 

Educational Reconstruction  

1. INTRODUCTION 
Part-Whole-Relations play a decisive role in cognitive 

processes that are inevitably involved in understanding 

various objects, systems, processes, definitions, and 

concepts (Gerstl and Pribbenow, 1995). The essential ability 

of Part-Whole-Thinking (PWT) belongs to core concepts of 

Computational Thinking (CT) as originally defined by Wing 

(2006).  Since many Information Technology devices make 

use of Part-Whole-Relationships, these need to be 

adequately included in explanations in Computer Science 

(CS) classes. Rao and Shafique (Rao, 2005; Shafique and 

Rao, 2006) could already successfully improve their 

students cognitive learning processes by including PWT in 

their CS courses.  The benefits they noticed mainly included 

improved thinking skills in the students and an improvement 

in teaching skills (Rao, 2005). But as the lack of publications 

on this subject since 2006 shows, their attempt “to bring 

these issues to the notice of the computer science 

community” (Rao, 2005, p. 173) has been in vain. Many 

different aspects have to be considered when supporting a 

more vigorous inclusion of PWT or “the transfer of 

knowledge from research to the classroom” (Diethelm, 

Hubwieser, and Klaus, 2012, p. 164) in general. To illustrate 

these facets for Computer Science Education (CSE), 

Diethelm, Hubwieser, and Klaus (2012) extended the Model 

of Educational Reconstruction. One of the aspects they 

included concerns the investigation of teachers’ 

perspectives. This issue is especially important for the 

design and arrangement of CS lessons and courses, since CS 

teachers generally have very different educational 

backgrounds and qualifications (ibid., p. 167). They “regard 

the teachers’ perspective as a key factor for the design of 

lessons as well as for educational research” (ibid., p. 167). 

One question they ask for is, which conceptions “the 

teachers actually apply to explain the chosen phenomena 

themselves” (ibid., p. 167). 

The contribution at hand and the belonging poster present 

first results of an analysis of PWT in CSE. Questionnaires 

were filled out by 21 students of a CSE lecture at the 

University of Oldenburg, Germany. The students were asked 

which parts they identify of eight typical CS concepts. The 

following research questions were pursued during this 

specific research approach: 

1. Which parts do future teachers identify of common 

CS concepts? To which extend are the parts 

identified correctly? 

2. To which extend is the used method of asking for 

parts of concepts through questionnaires suitable 

for the purpose of investigating PWT? 

2. METHODOLOGY 
In this pilot study, questionnaires were designed to 

investigate the future teachers’ perceptions. After three 

closed questions on the biographical background of the 

participants, an everyday example (parts of cars: tires, 

wheel, engine, bonnet, doors, …) on the following task (“In 

the following you have to identify Part-Whole-Relationships 

of Computer Science concepts”) was presented in the 

questionnaire. The CS concepts under consideration (cf. 

Tab. 1) were chosen through an analysis of the core concepts 

that are included in the CS curriculum of Lower Saxony, 

Germany (Niedersächsisches Kultusministerium, 2014). 

The participants had 25 minutes to answer the questions. In 

order to analyze the questionnaires, the answers were 

digitalized, translated from German to English, and 

normalized in the first place. The normalization included a 

combination of all abbreviations (e.g. combining the 

answers “PSU” and “power supply unit” to “power supply 

unit (PSU)”) and synonymous listings (e.g. combining 

“provider” and “Internet provider” to “(Internet) provider”) 

and a re-movement of plurals. Afterwards, the occurrences 

of identical listings of parts for each investigated concept 

were counted. In addition to that it was counted, how many 

parts each participant identified of each concept and an 

average for each concept was calculated (cf. Sec. 3). After 

this descriptive statistic analysis, the answers were checked 
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for content-related correctness on the meta-level by the 

authors (cf. Sec. 4). 

3. RESULTS 
An overview on the CS concepts under investigation, the 

amount of parts that each participant identified in average 

(parts/person), the number of various identified parts in total 

(#various Parts), and the number of parts that were identified by 

at least two respondents (#id. sev. times) is given in the following 

Tab. 1. 

Table 1. Overview on the results 

CS concept parts/person #various parts #id. sev. times 

Computer 4.3 29 20 

Internet 4.0 40 16 

Email 3.7 41 13 

Automaton 3.4 40 13 

Website 3.0 43 14 

Algorithm 2.8 44 11 

Database 2.5 29 10 

Data 1.8 28 5 

A detailed overview on the answers is presented in the 

poster, which interested readers of this contribution gladly 

will be provided with by request via email. 

4. CONCLUSION AND DISCUSSION 
In Tab. 1, the concepts are sorted in descending order 

according to the amount of parts that each participant 

identified in average. It can easily be seen that the less parts 

are identified by the students the more abstract, complex, 

and theoretical the concepts are: While “computer” — a 

physical device and concrete product — is the concept that 

the students identified the most parts of in average, they had 

issues with finding parts of “data” — which is a very 

theoretical and abstract concept in contrast. While this fact 

alone might not be that surprising, there is another 

interesting aspect that needs to be mentioned at this point: 

While all of the repeatedly identified parts of “computers” 

are completely reasonable, comprehensible, and correct, 

there are huge mistakes in the main parts that the students 

identified of the more theoretical and abstract concepts. For 

example, it is an obvious error that “information” is a part of 

“data”. Instead, data requires some sort of interpretation to 

get information. Similar obvious mistakes can be found for 

“algorithms” and “websites”: While “algorithms” are parts 

of “applications” and “methods” instead of the other way 

around — as identified by many students —, it is also wrong 

to say that “the Internet”, “servers”, and “browsers” are parts 

of “websites”. Another interesting aspect is the fact that the 

more complex the concepts are — excepting “database” and 

“data”1 — the more various parts are identified. By analogy, 

the amount of several times identified parts decreases with 

increasing complexity and abstractness of the concepts. To 

describe it differently, these two facts mean that the students 

are more disagreeing on what parts the more complex and 

theoretical concepts consist of. 

Generally speaking it seems as if the students of the 

investigated introductory CSE lecture had huge problems 

with the task of finding parts of complex CS concepts. Many 

students listed elements as parts that simply do not fit. 

Without a doubt, it is way more difficult to identify parts of 

“data” than “computers”. So, it is not at all remarkable, that 

the students listed less parts of the more abstract concepts 

than the concreter ones. However, it is quite worrying that 

they tended to give wrong answers when they were asked to 

identify parts of more complex CS concepts to a not 

negligible extent. At this point it is mentionable, that this 

lecture is intended to be attended by students in their fourth 

bachelor semester. So, a lack of knowledge on CS concepts 

is probably not the reason for the deficits that were found out 

in this study.  

As already mentioned, Part-Whole-Relationships play a 

huge role in CS. PWT (mostly subconsciously) helps to 

understand objects, systems, processes, definitions and 

concepts. But surprisingly there is almost no literature 

available on infusing it into CSE (Rao, 2005). The only way 

to achieve this infusion is through the CS teachers. So, this 

study aimed at an investigation of future teachers’ PWT to 

make a start. Future work will lie on a deeper investigation 

of PWT in CSE alongside the Model of Educational 

Reconstruction. Therefore, a suitable research method will 

be designed in the first place, since deficits were seen with 

naively asking for an identification of parts of wholes 

through questionnaires. 
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1 This mainly results from the fact that every fourth student did not 

find any parts of these two concepts at all, though they both were 

positioned in the middle of the questionnaire. 
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ABSTRACT 

This paper describes progress towards the development of a 

Framework for Computational Thinking (CT) from a 

Disciplinary Perspective. The work aimed at discovering 

how CT can be encouraged, taught and practiced within 

disciplines throughout primary and secondary education. It 

identifies an initial set of “elements” describing CT practices 

that bridge learning and working in highly sophisticated 

STEM environments and shares examples of these practices 

used by STEM professionals at work and developed by 

students in schools. It is hoped that this paper will provoke 

dialogue among educators advocating for CT as a core skill 

for all and will contribute to breakthroughs in thinking about 

how CT should be learned and assessed in and out of school. 

KEYWORDS 

Computational thinking, K-12 education, workforce 

development, human-technology frontier.  

1. INTRODUCTION 
The proliferation of new technologies has changed the way 

we live, learn, and work. Although the future of work is 

unclear, experts envision a new machine age, where 

technologies (sensors, communication, computation, and 

intelligence) are embedded around, on, and in us; where 

humans will shape technology and technology will shape 

human interaction; and where technologies and humans will 

collaborate to discover and innovate. In short—the Human-

Technology Frontier. 

Without question, the global workforce will need a new set 

of skills and competencies to succeed in the future work 

environments on this frontier—that feels closer with each 

new technological advance. A recent report by EDC’s 

STELAR Center (Malyn-Smith et al., 2017) identified 

computational thinking as one of the essential skills needed 

by future workers for success in work at the Human-

Technology Frontier. As our society works to understand 

and identify strategies to overcome these complex and 

interrelated challenges, important questions include: What 

can we do to prepare today’s students to succeed in work at 

the Human-Technology Frontier? and What steps can we 

take to make this happen? If we are to believe that the 

Human-Technology Frontier is upon us, we need to 

reconsider how computational thinking is taught in order to 

advantage our students, not only in developing CT skills, but 

also in developing the CT practices used in STEM 

workplaces (EDC, 2011). 

2. BACKGROUND 
Since noted computer scientist Jeannette Wing (2006) 

proposed CT as a new “core skill” various groups have tried 

to define CT for education and training purposes (e.g. 

Grover & Pea, 2013, 2018). CT (focusing on problem-

solving, algorithms, data representation, modeling and 

simulation and connections to other fields) is a prominent 

strand of the K-12 Standards for Computer Science 

developed by the Computer Science Teachers Association 

(CSTA, 2011). Individual states (including Massachusetts 

and New Jersey, USA) have instituted computer science 

(CS) and digital literacy standards that use the term CT. Next 

Generation Science Standards (NGSS Lead States, 2013) 

include computational thinking in one of their eight 

scientific practice standards. National Science Foundation 

(NSF) funded projects are conducting research on several 

different approaches to CT.  Data practices, modeling and 

simulation practices, computational problem solving 

practices and systems thinking practices are proposed by 

Weintrop et al. (2016). Lee et al. (2011) propose that youth 

develop CT skills as they use, modify and create with digital 

tools and technologies. While these initiatives signal a broad 

based, grassroots interest in computational thinking, their 

simultaneous development and independent implementation 

leaves us without consensus on a precise definition of CT. 

(Barr & Stephenson, 2011; Voogt, Fisser, Good, Mishra, & 

Yadav, 2015; Weintrop et al., 2016). Most agree, however, 

that Computational Thinking is formulating problems and 

their solutions in a way that a machine (computer) can be 

used to represent the problem and carry out its solution. 

What has emerged from these varied research and practice 

efforts aimed at CT is a debate over how CT is best taught 

and learned. Many computer science educators believe that 

CT is best taught through programming where students’ 

development of CT can be ensured and uniquely 

observed.  Others believe that to best prepare today’s youth 

for tomorrow’s world, CT should be taught/learned in the 

service of disciplines. While many of the efforts described 

above define CT by dissecting it into its component parts, 

little has focused on what results from integrating CT and 

disciplinary learning. To guide teaching and learning of CT 

within the disciplines, a new kind of computational thinking 

framework was needed – one which captured and clarified 

what students were able to do using CT – and unable to do 

without CT. 
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3. DEVELOPING A FRAMEWORK  
A group consisting of principal investigators, researchers, 

and educators from National Science Foundation funded 

ITEST (Innovative Technology Experiences for Students 

and Teachers) and STEM+C (STEM+Computing) projects 

convened in August and November 2017 to explore the 

development of an Interdisciplinary Framework for 

Integrating CT in K-12 Education. Their goal was to draft a 

framework defining computational thinking from a 

disciplinary perspective. The 54 workshop participants 

provided a good balance of researchers and practitioners, 

who represented grade spans Kindergarten-2nd grade, 3rd-5th 

grade, 6th-8th grade, and 9th-12th grade, as well as disciplines 

including science, mathematics, engineering, social science, 

computer science and the humanities.  In total there were 31 

researchers, 18 teachers / practitioners, 3 participant 

observers, and 2 staff members. (13 of the participants were 

from colleges/universities, 15 from schools, 15 from non-

profits, 1 from business, 3 from foundations including the 

NSF). The primary goals were to develop a framework for 

computational thinking from a disciplinary perspective that 

built on the work of the foremost researchers and 

practitioners focused on helping youth develop CT skills. 

Progress towards the goals was guided by some of the 

foremost CT thought leaders in the U.S. including Irene Lee 

of Massachusetts Institute of Technology, Shuchi Grover, 

Fred Martin of University of Massachusetts Lowell and 

CSTA, and Michael Evans of North Carolina State 

University. 

As a first step, participants were asked to submit examples 

of their work to share with other participants prior to the 

workshops. Educators/practitioners shared curriculum and 

activities that illustrated CT in action in their 

classrooms. Researchers shared their lessons learned 

through research on various aspects of CT skill development 

and integration. Together the group explored these examples 

and found that a number of common “elements” emerged. 

During the workshops, participants were asked to provide 

additional examples of CT integration by grade level and 

discipline.  These examples were subsequently reviewed and 

discussed within the emerging framework of common 

elements.    

Thought about the goal of developing a framework for CT 

in the service of disciplines crystallized around the larger 

goal of education – that of preparing youth for success for 

living, learning and working after compulsory 

education.  Thus, focusing on building a bridge between the 

CT skills developed in school and the professional practices 

involving CT, particularly those in scientific workplaces 

became paramount. 

A traditional way CT is integrated is shown at the bottom of 

Figure 1 illustrated with the Massachusetts digital learning 

and computer science (DLCS) standards component areas of 

abstraction, algorithms, programming and software 

development, data collection and analysis, and modeling and 

simulation. Typically, individual CT components are taught 

then linked in pairs and clusters leading up to potentially 

more powerful CT activities at with older age groups. 

 

 

Figure 1. Bridging between traditional teaching of CT and 

CT as used in CT integrated fields. 

 

Stronger connections between these CT components and the 

powerful practices used by professionals in CT-integrated 

scientific fields (e.g. computational biology, bioinformatics, 

cheminformatics, computational economics and others) 

were sought. The aim in making these connections was to 

ensure that the CT integrated in K-12 concept areas provided 

a strong foundation for the computational thinking used by 

practicing scientists and would bridge the skills transition 

from school to work.   

4. CT from a Disciplinary Perspective – 

examples from STEM workplaces 
To further explore the elements that might form a framework 

for CT from a disciplinary perspective, examples of CT 

commonly used by practicing scientists specifically, 

examples of what can be accomplished using CT that would 

be difficult, if not impossible, without CT were gathered. 

From these examples of CT used by practicing scientists in 

CT integrated fields, the elements emerged and were tested 

as organizers for other examples of CT.  The initial 

examples considered follow. 

4.1. Ensemble modeling 

Scientist use multiple models are used to predict the 

behavior of complex systems. For example, weather 

forecasting now uses ensembles of models to understand 

weather patterns (Gneiting & Raftery, 2005; Krishnamurthy 

et al., 2000).  Each model in an ensemble simulates the 

global weather system taking different sets of parameters or 

initial conditions into account. Instead of making a single 

forecast of the most likely weather, a set (or ensemble) of 

forecasts is produced. This set of forecasts aims to give an 

indication of the range of possible future states of the 

atmosphere.  

4.2. Computational chemistry 

Scientists innovate with computational representations - For 

example, the SMILES (simplified molecular-input line-

entry system) notation is a representation for describing the 

structure of chemical compounds using short ASCII strings 

(O’Boyle, 2012). This revolutionized computational 

chemistry and drug design by enabling computers to read 

and operate on chemical sequences (including searching and 

database indexing). 

4.3. Bioinformatics 

CT is used in bio-informatics workplaces. In Next 

Generation Sequencing Data Analysis, dozens of whole 

genomes can be sequenced in rather short time, producing 

huge amounts of data (McKenna et al., 2010; DePristo, et 
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al., 2011). Complex bioinformatics analyses are required to 

turn these data into scientific findings. To run these analyses 

quickly, automated workflows on high performance 

computers are state of the art. Scientists design processes to 

achieve high throughput processing of genomic data. 

4.4. Environmental science 

Environmental scientists use crowd-sourced data in water 

management (Fienen & Lowry, 2012; Stepenuck & Green, 

2015; McKinley et al., 2015). When considering water 

management strategies for a region, data for various 

communities with different water usage and needs (for 

example, for growing different crops or industrial uses) is 

necessary to understand the larger picture of water usage and 

needs, as well as the local variations. 

4.5. Machine learning  

To a larger and larger extent, scientists are using machine 

learning to make predictions.  In supervised machine 

learning, scientists build models by running algorithms on 

“training sets” of inputs matched with correct responses 

(Srivastava et al., 2014; Lecun, Bengio, & Hinton, 2015). 

These models can then be used to offer predictions (or 

responses) when given new inputs. Changes in the training 

set data can have implications on the machine learning 

model built and can introduce biases if the training data is 

not representative of the target. 

5. The Elements of CT integration from a 

Disciplinary Perspective   
The examples from advisors and researchers along with 

lessons and activities provided by educators were examined. 

Evidence was found that K-12 subject area teachers were 

integrating CT in ways that were consistent with its use in 

CT-integrated fields. The following five Elements of CT 

Integration from a Disciplinary Perspective that emerged 

from the reviews and discussions were:   

1. Understand (complex) systems. 

2. Innovate with computational representations. 

3. Design solutions that leverage computational 

power/resources. 

4. Engage in collective sense making around data.  

5. Understand potential consequences of actions. 

5.1. Understand complex systems  

Modeling how interactions of many individuals or 

components in a system lead to aggregate level emergent 

patterns is difficult to do without CT. Complex systems in 

particular are not amenable to traditional mathematical 

analysis. Simulating a system’s change over time and real-

time feedback in the form of simulations help scientists 

visualize complex systems dynamics. These systems are 

often hard to predict due to having a multitude of interrelated 

factors and levels. In K-12 education, computer modeling 

and simulation of these systems offers a way to see how the 

systems behave under different circumstances, with 

different inputs. 

5.2. Innovating with computational representations 

The design and development of innovations is made possible 

through CT. New ideas, conceptualizations, representations, 

and processes can be thought of and developed as 

computations. For example, thinking of the brain as a 

network and creating neural networks as artificial brains has 

led to advances in artificial intelligence and cognitive 

science.  In K-12, students can be introduced to 

computational representations by learning about how colors 

are represented on computers as RGB values.  

5.3. Design solutions that leverage computational power 

and resources  

Scientists working with large data sets or on computationally 

intensive calculations design solutions that leverage the 

efficient use of resources and computational power to 

optimize their time. In some cases, distal collaborators can 

pool and share computational resources and in other cases 

co-located collaborators can access distributed resources to 

achieve their goal. Some speedups are achieved by 

decomposing datasets and/or processes to run in parallel. In 

K-12 settings, educators can challenge students to think 

about how they would solve a problem differently if the 

input set was of large scale. For example, rather than 

developing processes to assemble 10 finished copies of an 

item, how would students go about assembling 10,000 

copies? 

5.4. Engage in collective sense making around data  

Data sets can be amassed through crowd-sourcing or 

collection by multiple individuals or sensors. These data can 

be analyzed to uncover patterns. Visualization of 

multidimensional data enables students to see patterns that 

might not otherwise be apparent. When possible in the K-12 

education setting, teachers can ask small groups of students 

to run simulations on a subset of the inputs, then share their 

output data and analyses. Gathering and analyzing the 

combined data illustrates how each part of the data 

contributes to the understanding of the whole. 

5.5. Understand potential consequences of actions  

Scientists envision the future through simulation and use 

machine learning to make predictions. Using parameter 

sweeping, the space of all possible combinations of inputs 

can be tested to see the variety and probability of outcomes. 

In K-12, students can learn how cause and effect 

relationships can be used to predict outcome. Students can 

also begin to understand the space of inputs created by 

parameterizing models. 

Notably, these elements of CT integration go beyond the 

mechanics of learning to program a computer.  They form a 

bridge between CT as it has traditionally integrated in K-12 

classrooms (through the introduction of computer 

programming activities) and professional practices.  
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Figure 2. CT integration elements as a bridge between 

traditional CT integration in K-12 education and CT as 

powerful practices used in CT integrated fields. 

Figure 2 illustrates how the thinking progressed from the 

idea of direct teaching of CT skills through programming - 

to a realization that to help students develop CT skills 

through STEM disciplinary learning, their education needs 

to include a stronger focus on computational tools, 

techniques, and processes used in the CT integrated fields. 

6. CT from a Disciplinary Perspective – 

examples from K-12 classroom teachers 
Through the examination of  lessons provided by K-12 

educators, it was determined that a subset of the disciplinary 

teachers were already integrating CT within K-12 that 

aligned with the elements presented above.  Several lessons 

and activities teachers provided from their curricula 

illustrate how these elements can be introduced in K-12 to 

help students develop CT skills aligned with professional 

practices. 

6.1. Middle school science 

In middle school ecosystems lessons (Lee, 2011; Project 

GUTS, 2014) using the StarLogo Nova modeling and 

simulation environment, middle school students in science 

classrooms used, modified and created computer models and 

ran simulation to understand complex systems; multiple 

models were produced and compared; students engaged in 

collective sense making around data (by crowdsourcing data 

generated from multiple runs of each of the models); and 

students learned about potential consequences of actions 

(such as the impact of removing a top predator). 

6.2. Elementary school mathematics  

In a 5th grade mathematics classroom, students were asked 

to generate a language to describe a minimal set of actions 

to be performed by robots tasked to build a tower. Within 

this activity students were innovating with computational 

representations, and designing solutions that leverage how 

computers process data (in this case, instructions).  

6.3. High school engineering  

In a high school engineering classroom, a teacher used a 

multi-step physical construction task to illustrate domain vs. 

task decomposition as method of parallel processing in high 

performance computing. Students designed processes to 

make many copies of a Lego figure that leveraged 

“processing” resources (other students) then optimized the 

design based on collective sense making from data on time 

to complete the task. 

6.4. Middle school mathematics 

In a middle school mathematics classroom, students using 

the iSENSE data-sharing platform were able to collect and 

add locally generated data to a large student-generated data 

set. They could then analyze their data and compare it to data 

provided from other classrooms (Willis et al., 2015).  

6.5. Across subject areas 

There is a large window of opportunity for K-12 students to 

learn about consequences of actions, in areas ranging from 

cause and effect in programming to decision-making and 

prediction in machine learning. 

7. CHALLENGES 
While the path towards CT integration from a disciplinary 

perspective is growing clearer, many challenges remain. 

First, we acknowledge that the majority of K-12 teachers are 

still struggling with the integration of CT in terms of 

teaching the basics of computer programming.  Introducing 

the elements of CT integration can be viewed as a conflicting 

definition instead of a further elaboration on a trajectory of 

CT from K-12 to professional practice.  

Another challenge is the rate at which fields are innovating 

with CT. The examples of CT integrated fields presented in 

this paper are only a few of the many fields that have been 

greatly impacted by CT.  Many additional fields are 

incorporating computational tools, techniques, and 

practices. Across fields, innovations and discoveries made 

possible by the integration of computational tools, 

techniques, and practices are increasing. 

The rapid rise of machine learning raises yet another 

challenge. Across disciplines, the need for analysis of 

computational systems, especially those used to make 

predictions that greatly impact human life, is paramount. 

The inclusion of the CT integration element “Understanding 

potential consequences of actions” addresses this important 

need.  

8. CONCLUSION 
The authors believe that learning CT needs to extend beyond 

learning to program. It must include engagement in 

computational practices used in the sciences that harness the 

power of computers to enhance scientific discovery. The CT 

Integration Elements presented here  provide a framework 

for foundational learning of CT within disciplines beginning 

in elementary school and extending through high school and 

beyond.  Examples provided by K-12 teachers shed light on 

ways K-12 educators have integrated powerful practices 

from professional CT integrated fields. It is hoped that the 

framework can aid teachers in the development of CT 

lessons, and ensure that the CT that teachers promote has 

links to the CT used in scientific workplaces.  Still, this 

Framework is a work-in-progress. It is hoped that it will 

evolve as researchers continue to examine—and K-12 

educators increasingly engage in—CT integration in the 

classroom. 
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ABSTRACT 

Immersive media such as virtual reality (VR) and augmented 

reality systems provide new ways of experiencing digital 

environments. Connecting the sense of presence to ones and 

zeros leads to questions on how we perceive digitally created 

content for it to become our subjective reality. 

Computational Thinking (CT) merges human abilities with 

computer affordances, already covering aspects ranging 

from data representation to the critical handling of and 

reflective attitude towards different forms of information 

and media. Combining the existing CT skills with the 

information and media literacy approach in terms of VR 

leads to the requirement of Virtuality Literacy as the critical 

reflection and production of the representation of human 

perception through immersive digital media. Virtuality 

Literacy as a new CT skill covers the thematic fields of the 

representation of sensory stimuli, immersion and presence 

as well as virtual information and media literacy. Enhancing 

Virtuality Literacy at an early age may lead to a better 

understanding of why and how immersive media can 

influence peoples’ perceptions of various aspects of reality. 

Future studies will have to investigate the implementation of 

Virtuality Literacy in different learning environments. 

KEYWORDS 

Virtual Reality, Computational Thinking, Representation of 

Information, Information and Media Literacy 

1. INTRODUCTION 
Virtual Realities (VRs) as completely synthetic and 

immersive digital environments (Milgram, Takemura, 

Utsumi, & Kishino, 1994) are currently in the public eye 

following the latest technological developments. In 

contemporary Computer Science Education (CSE), the 

process of virtualizing information from the real world is 

characterized by the concept of data representation 

(Atchison et al., 1968; Brinda, Puhlmann, & Schulte, 2009) 

but efforts to combine these aspects with concepts of 

perceptual psychology are still lacking. As life becomes 

more digitized, it has become particularly important to 

acquire a better understanding of how different stimuli, 

transmitted by human sensors (visual, auditory, tactile, etc.) 

affect out perception of reality. This article focuses on the 

concept of Virtuality Literacy as the ability to critically 

reflect and produce human perception through immersive 

digital media.  

2. CONNECTED CONCEPTS OF 

COMPUTATIONAL THINKING 

2.1. Representation of Information 

The process of encoding information into data structures has 

been recognized as an important part of CSE. Hubwieser and 

Broy (1999, p. 166) describe the process of representation of 

information: “In order to make information accessible to any 

kind of processing it has to be transformed into a physical 

representation according to the rules of a more or less formal 

language”. Relating this to CT, understanding the concept of 

computational abstraction using various forms of data 

representations has been identified as a fundamental CT skill 

(Barr, Harrison, & Conery, 2011; Wing, 2006). Together 

with abstraction, efficiency and heuristics, information 

representation has emerged as a perspective in ordinary 

human activities on a daily basis (Lu & Fletcher, 2009). As 

the concept of the representation of information underlies 

every form of digital data processing, it incorporates all 

kinds of immersive electronical media, including Virtual and 

Mixed Realities. 

2.2. Information and Media Literacy 

The requirement of knowing how to ‘read’ media in terms 

of a critical understanding as well as knowing how to ‘write’ 

in order to be able to produce them leads to a form of media 

literacy. Combining the different concepts of (digital) media 

literacy with the requirement of ‘reading’ and ‘writing’ 

information in a critical way the concept of information and 

media literacy becomes a fundamental 21st century skill for 

everyday and working life (Hobbs, 2010). As an unthinking 

use of immersive media would be critical due to the many 

possibilities of influencing users through simulating virtual 

and mixed realities (Fox, Bailenson, & Binney, 2009), 

information and media literacy must be the basic framework 

of every work with immersive virtual environments (VEs). 

Hence a Virtuality Literacy results when combining CT 

skills with information and media literacy in terms of virtual 

and mixed realities.  

3. VIRTUALITY LITERACY 
The term literacy includes reading and writing skills, 

whereas Virtuality Literacy (as a CT skill) addresses the 

abilities and competencies of analyzing, reflecting and 

producing information in immersive VEs. Wing describes 

CT as a thought process that formulates problems and their 

solutions by means of abstraction and decomposition in such 

a manner that a computer can effectively process the given 

problem (Wing, 2006). Virtuality Literacy focuses on the 

transfer process of information from the real or fictional 

world into a virtuality and vice versa. To split Virtuality 

Literacy into teachable segments, we distinguish the 

Representation of Sensory Stimuli, Immersion and Presence 

as well as Virtual Information and Media Literacy as partial 

competences of the transdisciplinary CT concept of 

Virtuality Literacy.  

3.1. Representation of Sensory Stimuli 

Representation of Information as a part of CSE maps the 

transformation of information to ones and zeroes. This 

classical element of the CSE curriculum is an important part 

of the creation of VEs as some are meant to represent a 

credible version of the real world. What this CT skill does 

not cover is the perception behind an abstraction of real 

world concepts. The model neglects completing the process 
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of the transmission of information to the recipient’s brain 

through perception. This is essential to understanding 

immersive media since our perception of reality is the 

product of our brain’s preselection and rearrangement of 

sensory stimuli. Figure 1 shows the Representation of 

Perception model as an extension of the Information-

Oriented Concept from Breier and Hubwieser (2002). 

 

 
Figure 1. The Process of the Representation of Perception 

 

The representation does not become information before 

being perceived by the user. Instead, it is transmitted directly 

to the human senses. In this model, real and fictional world 

are seen as a black box, as we only perceive reality through 

our senses. Only if the first representation (the encoded 

expressed perception of the experienced real or fictional 

world issue) equals the second representation (the encoded 

expressed perception of the experienced representation), this 

form of representation is valid. The ability to understand and 

apply this kind of abstraction is the main CT skill in 

Virtuality Literacy. 

3.2. Immersion and Presence 

Presence “refers not to one’s surroundings as they exist in 

the physical world, but to the perception of those 

surroundings as mediated by both automatic and controlled 

mental processes” (Steuer, 1992, p. 76). The different types 

of presence are physical, social and self-presence (Biocca, 

1997). With an understanding of the Representation of 

Perception, it is possible to examine how these types of 

presence as the feeling of being there arise. While 

representations of physical objects have a long history in CS, 

representing social feelings and self-identification in a VE 

through ones and zeros are a CT skill of abstraction that has 

not yet been explored. Immersion as “a quantifiable 

description of a technology” (Slater, Linakis, Usoh, & 

Kooper, 1999, p. 3) is what turns the ones and zeros into 

perceived reality. The linking of the subjective feeling of 

presence and the technological immersion of human sensors 

(addressing the visual and auditory senses) and actuators 

(collecting data from gyro sensors for head tracking or 

different types of positional tracking) comprises the process 

of retrieving and sending data and human-computer-

interaction as central CT skills.  

3.3. Virtual Information and Media Literacy 

As the representation of social feelings and self-

identification in terms of social and self-presence is possible 

in immersive media, a critical reflection on these perceptions 

is needed. Even though Virtual Information and Media 

Literacy would be a media educational or media semiotic 

skill rather than a CT skill, it requires a CSE foundation. 

Virtual Information and Media Literacy covers aspects of 

‘reading’ virtual information critically with the background 

knowledge of its possible influence on social feeling and 

self-identification. Thus, in order to obtain an overall 

understanding of information and media in immersive VEs 

using the Representation of Perception approach, one has to 

combine technological insights from a CSE perspective, 

apply a media educational and media semiotic angle and also 

view the subject through the lens of cultural and historical 

views and pictorial science research. The same goes for the 

‘writing’ skills that allow the production of one’s own 

immersive information and media content.  
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