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• A novel deep learning model for network-wide traffic prediction

• Designed framework for extracting hidden and dynamic spatial-temporal
features

• A virtual road graph used for further spatial feature extraction and
correction

• Use of two real-world traffic datasets in the evaluation of the proposed
model
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Abstract

We address the problem of traffic prediction on large-scale road networks. We
propose a novel deep learning model, Virtual Dynamic Graph Convolution
Neural Network and Transformer with Gate and Attention mechanisms (VDGC-
NeT), to comprehensively extract complex, dynamic and hidden spatial de-
pendencies of road networks for achieving high prediction accuracy. For this
purpose, we advocate the use of a virtual dynamic road graph that captures
the dynamic and hidden spatial dependencies of road segments in real road
networks instead of purely relying on the physical road connectivity. We fur-
ther design a novel framework based on Graph Convolution Neural Network
(GCN) and Transformer to analyze dynamic and hidden spatial-temporal
features. The gate mechanism is utilized for concatenating learned spatial
and temporal features from Spatial and Temporal Transformers, respectively,
while the Attention-based Similarity is used to update dynamic road graph.
Two real-world traffic datasets from large-scale road networks with differ-
ent properties are used for training and testing our model. We compare
our VDGCNeT against nine other well-known models in the literature. Our
results demonstrate that the proposed VDGCNeT is capable of achieving
highly accurate predictions – on average 96.77% and 91.68% accuracy on
PEMS-BAY and METR-LA datasets respectively. Overall, our VDGCNeT per-
forms the best when compared against other existing models.
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1. Introduction

It is projected that by mid-21st century, the world’s urban population will
almost double from over 3.4 billion in 2009 to 6.4 billion in 2050. The worst
hit areas by traffic congestion are typically urban areas. Worsening traffic
situation needs to be improved urgently. Intelligent Transportation Systems
(ITSs) [1] aim to offer innovative transport and traffic management services.
With emergence of new sensor and communication technologies, more data
are collected and shared between various ITS applications. This enables ITS
to provide timely traffic management functions to improve the efficiency of
road networks, reduce traffic congestion and improve road safety.

In this paper, we focus on traffic prediction which is an important func-
tion of ITSs. It aims to predict future traffic states based on historical traffic
states. It helps drivers to avoid traffic congestion by informing them the
traffic states in the road ahead in advance and also provides useful insights
to traffic management departments for devising efficient traffic management
strategies. Since the earliest work that used Auto-Regressive Moving Average
(ARMA) to predict traffic volume and occupancy [2], various works on traffic
prediction have emerged. Broadly, we see three distinct phases in the evolu-
tion of existing works: 1) the first phase mostly employs statistical methods
[2, 3, 4, 5]; 2) the second phase uses machine learning approaches [6, 7, 8];
3) the third phase advocates advanced deep learning models [9, 10, 11, 12].
The main breakthrough that led the transition from the first to second phase
is that machine learning models with non-linear kernels / activation func-
tions can efficiently analyze non-linear relations of traffic in time domain
while statistical models largely fail to capture such non-linear relations of
traffic data [13]. With new sensor technologies, traffic data can be collected
with more features. Deep learning models, capable of learning features from
large high-dimensional datasets, are then proposed, leading the methods of
solving traffic prediction problems to the third phase; overcoming the disad-
vantage of machine learning models that are shallow and often, insufficient
for analyzing high-dimensional traffic data.

Early deep learning models, e.g., Deep Belief Network (DBN) [9][10],
Recurrent Neural Network (RNN) [11] and its variants Long Short-Term
Memory (LSTM) [12] and Gated Recurrent Unit (GRU) [14] and Convolu-
tional Neural Network (CNN) [15], were proposed to extract temporal re-
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lationship of traffic data. However, [16] indicated that, besides temporal
relationship, road networks are also spatially correlated. Thus, sharing in-
formation among neighboring sensors can improve prediction accuracy. To
concurrently consider both temporal and spatial relationships of traffic data
on an entire road network, these deep learning models are then combined
to form ensemble models. For example, both [17] and [18] developed CNN-
based ensemble models to learn traffic patterns by first converting traffic
data to images before computing their predictions. FCL-Net [19], another
ensemble model, stacks and fuses multiple convolutional long short-term
memory layers, standard LSTM layers and convolutional layers. A Spatial-
Temporal Attentive Neural Network (STANN) [20] was developed based on
the encoder-decoder architecture with attention mechanisms for traffic speed
prediction, in which LSTMs with attention mechanisms are used in both
encoder and decoder. Meanwhile, Lui [21] introduced a LSTM module with
time-aware attention for modeling long-term features and a convolution mod-
ule for modeling spatial-temporal features towards time-aware location pre-
diction. Further, [22] designed an ensemble model exploiting LSTM, Deep
AutoEncoder (DAE) and CNN to improve prediction accuracy while [23]
developed a spatial-temporal dynamic network using local CNN and LSTM
to respectively handle spatial and temporal information. These ensemble
models tend to perform better than individual deep learning models.

The aforementioned models consider road networks as regular grids and
traffic data having regular Euclidean structure. However, road networks are
inherently irregular and traffic data may be non-Euclidean [24]. To overcome
these, the Graph Convolutional Network (GCN) [25] was introduced. GCN
allows convolutional operations on non-Euclidean data to obtain the rela-
tionships of traffic data in the space domain. Following this, [26] developed
the Diffusion Convolutional Recurrent Neural Network (DCRNN) for traffic
prediction on a road network graph, while [27] built the STGCN model that
consists of two spatial-temporal convolutional blocks and a fully-connected
output layer for network-wide traffic prediction. The TGC-LSTM model
[28] uses GCN to capture the spatial dependencies of neighboring road seg-
ments and LSTM to extract temporal dependencies. Their ensuing work [29]
proposed to use graph wavelet, instead of GCN, to extract spatial features.
STAWnet [30] is proposed for multi-step traffic prediction using self-attention
network for the dynamic spatial dependency analysis and temporal convo-
lution for the long temporal dependency analysis. An end-to-end global
spatial-temporal graph attention network (GST-GAT) proposed by [31] uses
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“global interaction + node query” to model the dynamic spatial-temporal
relations of traffic data. Furthermore, [32] embedded attention mechanism
into GCN to obtain dynamic spatial features by assigning a probability to
a road segment so as to contribute to the targeted road segment for traffic
prediction, while [33] designed a novel structure based on GCN, named GC-
TrellisNetsED, to capture the spatial correlation among metro stations and
also the dynamics of such correlations, working with a temporal module for
multi-step metro station passenger flow prediction.

The most recent works, that commonly use GCN to extract spatial de-
pendencies of traffic on road networks, usually consider actual physical road
connections between road segments. This requires topological data of the
road network (conventionally represented by an adjacency matrix). Since the
adjacency matrix only contains information on connections between adjacent
neighbors, k− hop matrix built based on the adjacency matrix is sometimes
used to extract connectivity information within a fixed local neighborhood.
These do not comprehensively encode the complex spatial dependencies hid-
den within the road network. The traffic congestion spreads not only to
its adjacent road segments but also to a local area, and this local area is
not fixed and changes over time [34]. Therefore, a fixed adjacency matrix
or k − hop matrix is insufficient to fully describe the complex and dynamic
spatial dependencies in the road network.

To account for these, virtual dynamic graph is introduced in this work to
explore hidden spatial dependencies. There are several existing works using
dynamic GCNs for traffic prediction. For example, [35] built a dynamic GCN
framework for passenger flow prediction using historical passenger flows to
model the relationships of traffic stations. Later focusing on long-term traffic
flow prediction, [36] adopted reinforcement learning approach and proposed
the graph convolutional policy network for generating dynamic graphs when
the dynamic graphs are incomplete due to data sparsity issue. In this paper,
we advocate the concept of virtual dynamic graphs and propose a novel deep
learning model named, Virtual Dynamic Graph Convolution Network and
Transformer with Gate and Attention mechanisms (VDGCNeT) for traffic
prediction on large-scale road networks. The main contributions of this paper
are as follows:

• Our VDGCNeT model makes predictions using a virtual dynamic road
network updated after each batch based on the similarity of historical
and targeted traffic data. This is inspired by the application of GCN
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on solving classification problems [37]. Instead of purely relying on
the physical road topology, we consider a number of randomly selected
traffic data for each node once. We then treat the historical traffic data
in those samples as the node features to analyze the relations of each
node to others on the network for generating and updating the virtual
dynamic graph. Not only can this method capture dynamic and hidden
correlations among road segments across the network, it also allows
the model to learn a graph to describe the area affected by each road
segment differently in the used road network (cf. Section 3.1). From
time domain, the learned graph can describe summarized patterns over
the whole past several months by continuously updating the learned
graph over the fed data in the training process. From space domain,
traffic state of each road segment in the learned graph depends on all
other road segments differently. This means that all different influences
by other road segments to the targeted road segment are considered.
Therefore, we consider that the trained model is more general and can
cover all different situations.

• We exploit the attention mechanism of the transformer technology [38]
to capture dynamic and hidden spatial and temporal features from
historical traffic data. We employ graph convolution neural network to
correct the learned dynamic spatially-fused features from transformers
on the updated dynamic graph (cf. Section 3.2).

• We compare our VDGCNeT model against nine well-known existing
models using two real-world large-scale traffic datasets. We further
conduct ablation experiments to gain insights into the characteristics
of our model by systematically evaluating it with removal of individual
constituent module.

The rest of this paper is organized as follows. Firstly, we formulate the
traffic prediction problem in Section 2. Then we present in detail our VDGC-
NeT model and the design rationale in Section 3. We discuss our evaluation
results in Section 4. Finally, we conclude our work in Section 5.

2. Problem Formulation

Considering a road network with a set of N geographically distributed
sensors, xi

t denotes the traffic speed measured at node i at tth time interval.
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The traffic speed data is written as xt = {x1
t , x

2
t , . . . , x

i
t, . . . , x

N−1
t , xN

t };xt ∈
RN . Typical time interval, m, could be 5, 15, 30, 45 and 60 mins [39]. The
datasets used for our experiments are with m = 5 mins. We then define XT

and XD as the traffic speed data collected from N sensors for T previous
time intervals and the same time interval with the targeted time interval in
D previous days, respectively. They are formulated as follows:

XT = {x1, x2, . . . , xt, . . . , xT};
XT ∈ RT×N , T = 1, 2, 3, . . .

(1)

XD = {X(T+T ′)− 24×60
m

×D, X(T+T ′)− 24×60
m

×(D−1), . . . ,

X(T+T ′)− 24×60
m

×2, X(T+T ′)− 24×60
m

×1};

XD ∈ RD×T ′×N , D = 1, 2, 3, . . . , T ′ = 1, 2, 3 . . .

(2)

In a similar manner, future traffic data is denoted asXT+T ′ = {xT+1, xT+2,
. . . , xT+t′ , . . . , xT+T ′} ∈ RT ′×N where T ′ is the prediction horizon. In this pa-
per, we consider multi-interval predictions where T ′ = {1, 2, 3, . . . , 12} cor-
responding to {5, 10, 15, . . . , 60} minutes. These are common values used in
the literature (e.g., [26][28]).

Conventionally (e.g., [40][41]), the road graph is represented as G = (V , E)
where V is the set of nodes representing road segments or sensor locations
with |V| = N and E is the set of edges representing connectivity between
road segments. G can be represented by A ∈ RN×N , the N × N symmetric
adjacency matrix, with its element Ai,j = 1 if there exists a link between node
i and j, otherwise Ai,j = 0. Since future traffic state of a node is influenced by
its own current state, G can then be written as A0 = (A+IN) ∈ RN×N where
IN is the N × N identity matrix. However, in our work, instead of purely
using physical road connectivity, we advocate the use of virtual dynamic road
graph (cf. Section 3). The virtual dynamic road graph generated by the Att-
Similar Block in our model is represented by Avd ∈ RN×N . Considering
that traffic speed has both short- and long-term temporal patterns [42], the
timestamps of traffic data XT , including the time interval of a day and the
day of a week, are defined as external features (i.e., TT ′ = {tT , tD};TT ′ ∈
R(T+T ′)×2, tT = {t1, . . . , tt, . . . , tT , tT+1, . . . , tT+t′ , . . . , tT+T ′} ∈ RT+T ′

; tt =
1, 2, . . . , 24×60

m
and tD = {td1 , . . . , tdt , . . . , tdT , tdT+1

, . . . , tdT+t′
, . . . , tdT+T ′} ∈

RT+T ′
; tdt = 1, 2, 3, 4, 5, 6, 7, respectively) and are used to embed external

6



temporal features. The timestamps of traffic data XD are defined as TDT ′ ∈
RD×(T+T ′)×2 in a similar manner. Based on traffic speed data and the road
graph information, the traffic prediction problem considered here can be
formulated as following.

X̃T+T ′ = F
(
XT ;XD;TT

′;TDT ′;G(V , E , A0)
)

(3)

where the objective is to learn the mapping function F(.) and then use the
learned F(.) to compute the traffic speed in the next T ′ time intervals based
on traffic speed data in T previous time intervals and in the same time interval
with the targeted time interval from D previous days, their timestamps and
the virtual road graph information.

3. Virtual Dynamic Graph Convolution Network and Transformer
with Gate and Attention mechanisms (VDGCNeT)

3.1. VDGCNeT Workflow

Fig. 1 presents the workflow of VDGCNeT for network-wide traffic pre-
diction given a road map. It predicts traffic in the next T ′ time intervals
using historical traffic data. It consists of two main phases (i.e., training and
testing phases) with each phase taking slightly different inputs.

Figure 1: The workflow of the VDGCNeT model for multi-interval traffic predictions.

In the training phase, VDGCNeT takes five inputs:

1. historical traffic data for T time intervals, XT ∈ RB×T×N (Note thatXT

is formatted to RB×T×N for the training process and the same operation
applies to other inputs. B is the batch size.),
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2. historical traffic data in the same time interval with the targeted time
interval from past D days, XD ∈ RB×D×T ′×N ,

3. the timestamps of time intervals in a day and days in a week, TT ′ ∈
RB×(T+T ′)×2 and TDT ′ ∈ RB×(T+T ′)×2D,

4. pre-embedded physical spatial matrix based on the original road graph,
G(V , E , A0),

5. virtual dynamic spatial matrix, Avd ∈ RN×N .

Particularly, the virtual dynamic spatial matrix, Avd, is updated after
each batch in the training phase by a similarity block that is built based
on the idea of the attention mechanism, named Att-Similar-Block. This en-
ables VDGCNeT to learn the dynamic and hidden spatial dependencies of
road segments across the network. This Att-Similar-Block maps and repre-
sents the relationships between historical traffic data XT and XT+T ′ via the
following:

Avd = Softmax(Reshape(XT )(Reshape(XT+T ′))⊺) (4)

where Reshape(.) is used to reshape RB×T (orT ′)×N into RN×BT (orBT ′) so as
to obtain the virtual dynamic spatial matrix Avd ∈ RN×N . This operation
enables each node to build the relationships with others through BT features
from B samples. It results in the learned spatial weight matrix that is (1)
dynamic as it is updated after each batch in the process and (2) general as
the learned spatial weight matrix is not specific to any time interval due to
fact that we use randomly selected B samples rather than particular fixed
time intervals.

After the training phase, the spatial dependencies of road segments on the
network would have been learned and encoded in the weight and bias matrices
of Avd. When the trained VDGCNeT model is tested, the virtual dynamic
spatial matrix, Avd, is replaced by the identity matrix, IN ∈ RN×N . This
aims to restore the obtained hidden spatial dependencies, that were learned
from historical data, by multiplying the learned spatial weight matrix by an
identity matrix and then use it for testing. This is because, mathematically,
any parameter matrix multiplied by the Identity matrix yields the parameter
matrix itself. In addition, it can also avoid information leakage and thus
ensure that model predictions are made only based on learned features and
historical traffic data.
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3.2. VDGCNeT Model Architecture

Since VDGCNeT uses the same internal structure to extract features from
XT and XD, we will only detail in the following the internal structure for XT

as depicted in Fig. 2. It consists of three main blocks, i.e., two Spatial and
Temporal Transformers blocks (STTras-Blocks), each consisting of a Spatial
Transformer (STm), a Temporal Transformer (TTm) and a Spatial-Temporal
Fusion (STFm) module, and a Dynamic Graph Convolution Network Block
(DGCN-Block), connected between the two STTras-Blocks. The STTras-
Blocks are used for spatial and temporal feature analysis. The DGCN-Block
is for dynamic spatial feature analysis as well as for correcting the learned
spatially-fused feature from the first STTras-Block. In addition, VDGCNeT
also includes two additional embedding modules, namely Spatial Embedding
(SEm) for spatial matrix (Es) embedding based on the physical road net-
work, A0, and Temporal Embedding (TEm) for temporal matrix (TT and
TT ′) embedding based on the timestamps of traffic data, TT ′. The Att-
Similar-Block is included only in the training phase for updating the virtual
dynamic spatial matrix Avd which takes place after each batch.

The embedded spatial matrix, Es, is generated by SEm using the physical
road graph, A0, while the embedded temporal matrices, TT and TT ′ , are
generated by TEm using the timestamps of the historical and targeted traffic
data TT ′. XT and Es are sent to STm in the first STTras-Block for spatial
feature learning while XT and TT are fed to its TTm for historical temporal
feature learning. Both learned spatial and temporal features are fused in
STFm based on the gate mechanism in GRU [43]. Then the output with
the virtual dynamic spatial matrix, Avd, are sent to the DGCN-Block for
further dynamic spatial feature analysis and learned spatially-fused feature
correction. The output of DGCN-Block, Avd, Es and TT ′ , are further fed into
the second STTras-Block for learning dynamic spatial and temporal features
by aligning the learned features from DGCN-Block with virtual dynamic
spatial matrix Avd in STm and with the targeted temporal embedding matrix
TT ′ in TTm. Finally, the fused dynamic spatial-temporal features from STFm
are sent to a Fully-Connected Layer for the final prediction. We detail the
operations of each VDGCNeT block and module next.

3.2.1. SEm

This module embeds the physical road network into a spatial matrix Es

using the node2vec algorithm [44]. It maps nodes in the network to a low-
dimensional space while keeping the node relationships to their neighbors.
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Figure 2: Internal structure of the VDGCNeT model.

In our work, the physical road network, A0 ∈ RN×N , is learned and mapped
as Es ∈ RN×F ;F < N by a biased random walk procedure, which provides
a flexible neighborhood size to each node for learning richer representations.
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3.2.2. TEm

This module embeds the timestamps of historical and targeted traffic data
as external temporal features. It consists of an encoding layer and a fully-
connected layer. The encoding layer applies the One-Hot Encoding technique
[45] to embed TT ′ ∈ RB×(T+T ′)×2 as TT ′

em ∈ RB×(T+T ′)×295 where 295 is the
sum of 288 (i.e., the time-interval timestamps in a day) and 7 (i.e., the number
of daily timestamps in a week). Hence, one value in the third dimension used
to present the time-interval timestamp from TT ′ is embedded into a vector
of length 288 while the other one for the daily timestamp is embedded into
a vector of length 7. Both embedded vectors are concatenated. Then, TT ′

em

is sent to a fully-connected layer before being split into TT ∈ RB×T×F as
historical-external temporal features and TT ′ ∈ RB×T ′×F as targeted-external
temporal features where F is the number of embedded features in the Fully-
connected layer.

3.2.3. STTras-Block

This block aims to analyze dynamic spatial and temporal features. Its
internal structure is shown in Fig. 3. It consists of three modules: STm,
TTm and STFm.

STm (dark blue box in Fig. 3) is responsible for dynamic spatial fea-
ture extraction. It consists of two main types of layers: Fully-Connected
Layer and Spatial Attention Layer. First, the input XT passes a Fully-
Connected layer for embedding more features as XSTm;fc1

T ∈ RB×T×N×F .
Then the embedded spatial matrix Es is joined into XSTm;fc1

T by the function,
(XSTm;Es

T = XSTm;fc1
T +Es;X

STm;Es
T ∈ RB×T×N×F ) so as to enable the traffic

input to carry spatial dependencies of road segments. To obtain more infor-
mation,XSTm;fc1

T andXSTm;Es
T are concatenated asXSTm;cl

T ∈ RB×T×N×2F for
generating (1) Queries, QS ∈ RB×T×N×(h×dsq), (2) Keys, KS ∈ RB×T×N×(h×dsk)

and (3) Values, V S ∈ RB×T×N×(h×dsv) through three Fully-Connected lay-
ers with ReLU activation functions (1) QS = ReLU(ws

qX
STm;cl
T ), (2) KS =

ReLU(ws
kX

STm;cl
T ) and (3) V S = ReLU(ws

vX
STm;cl
T ) where ws

q, w
s
k and ws

v

are learnable weight matrices, dsq, d
s
k and dsv are embedded spatial features of

each sensor for QS, KS and V S, respectively and h is the number of heads.
After obtaining the three high dimensional spatially-fused features (QS,

KS and V S), dynamic-spatial dependencies SS ∈ RB×T×N×F are calculated
by a Spatial Attention layer, given by
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Figure 3: (Color online) The STTras-Block with its constituent modules including (1)
STm (the left dark blue box), (2) TTm (the right yellow box) and (3) STF (the bottom

grey box)

SS = Softmax

(
Avd

(
QS(KS)

⊺)√
dsk

)
V S (5)

where QS(KS)
⊺ ∈ RB×T×N×N represents the relationship of each road seg-

ment to others in the network and Avd is used to correct this spatial rela-
tionship. ⊺ stands for matrix transpose operation. Note that the correction
of the spatial relationship should be done before multiplying a scaled dot-
product attention 1√

dsk
. Otherwise, the dot-products grow larger again in

magnitude, which could push the Softmax function into regions where it
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has extremely small gradients [38]. In addition, Avd is set as ”None” in the
first STTras-Block to learn the initial physical-spatial dependencies. In or-
der to explore interactions among latent features, a Fully-Connected layer
with ReLU activation function is used for computing dynamic spatial fea-
tures SS

output ∈ RB×T×N×F with the residual connection, which is formulated
as follow:

SS
output = ReLU(ws

oS
S) +XSTm;fc1

T (6)

where ws
o is the learnable weight matrix and SS

output is the output of STm.
TTm (yellow box in Fig. 3) is responsible for dynamic temporal feature

extraction. Similar to STm, it consists of Fully-Connected Layer and Tem-
poral Attention Layer. Existing works (e.g., [28, 41, 46]) either used GRU or
LSTM to capture temporal features due to their abilities in analyzing long-
term dependency using recurrent units to deliver temporal features from the
current time interval to the next time interval. However, transformer-based
models use the attention mechanism to distribute different weights to traffic
data from previous time intervals to contribute to traffic data in the future
time intervals.

TTm requires historical traffic data, XT , and historical-external tempo-
ral features, TT as input. Note that TT is replaced by the future-external
temporal features, TT ′ , in the second STTras-Block. This aims to learn the
historical-external temporal features first and then align with the future-
external temporal features, TT ′ , to improve prediction. The first Fully-
Connected layer embeds more features into XT as XTTm;fc1

T ∈ RB×T×N×F ,
and then an Added layer enables the embedded features to be enhanced by
the historical-external temporal features viaXTTm;TT

T = XTTm;fc1
T +unsqueeze

(TT );X
TTm;TT

T ∈ RB×T×N×F . The unsqueeze(.) function expands an addi-
tional dimension to match the XTTm;fc1

T format. To correct the embedded
features and obtain more information, XTTm;fc1

T and XTTm;TT

T are concen-
trated as XTTm;cl

T ∈ RB×T×N×2F before being sent to three Fully-Connected
layers for generating (1) Queries QT ∈ RB×N×T×(h×dtq), (2) Keys KT ∈
RB×N×T×(h×dtk) and (3) Values V T ∈ RB×N×T×(h×dtv) by Eq. (7).

QT = ReLU(wt
qX

TTm;cl
T )

KT = ReLU(wt
kX

TTm;cl
T )

V T = ReLU(wt
vX

TTm;cl
T )

(7)
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where wt
q, wt

k, wt
v are learnable weight matrices for QT , KT and V T , re-

spectively while dtq, dtk and dtv are the corresponding embedded temporal
features of each time interval. After achieving the three high dimensional
temporally-fused features (QT , KT and V T ), dynamic-temporal dependen-
cies ST ∈ RB×N×T×F are calculated by a Temporal Attention layer as given
in Eq. (8).

ST = Softmax

(
QT (KT )

⊺√
dtk

)
V T (8)

whereQT (KT )
⊺ ∈ RB×N×T×T represents the relationship of each time interval

to all others. We follow [47] to set dtq = dtk = dtv = 8. Furthermore, a
Fully-Connected layer with ReLU activation function is used to generate
dynamic temporal features ST

output ∈ RB×N×T×F with the residual connection
via Eq. (9).

ST
output = ReLU(wt

oS
T ) + (XTTm;fc1

T )
⊺

(9)

where wt
o is the learnable weight matrix and ST

output is the output of TTm.
STF fuses dynamic-spatial and dynamic-temporal features (SS

output and
ST
output) into SST ∈ RB×T×N×F based on the gate mechanism of GRU [43].

First, the dynamic-spatial features SS
output are added to the dynamic-temporal

features ST
output after passing a Fully-Connected layer with Tanh activation

function (as given in Eq. (10)). Then, the gate mechanism (cf. Eq. (11)) is
used for calculating the output of STF, SST

G ∈ RB×T×N×F .

SST =Tanh
(
wssS

S
output + wst(S

T
output)

⊺)
(10)

SST
G =SST × SS

output + (1− SST )× ST
output (11)

where wss and wst are learnable weight matrices of SS
output and ST

output respec-
tively.

3.2.4. DGCN

This block corrects the learned spatial relationships of sensors or road seg-
ments by conducting the convolutional operation on the virtual dynamic spa-
tial matrix Avd and then joining the corrected spatial relationships into SST

G .
It consists of a GCN layer with ReLU activation function and a Batch Nor-
malization layer. The inputs of this block are the updated virtual dynamic

14



spatial matrix Avd and SST
G . The output of this block, GCNd ∈ RB×T×N×F ,

representing the corrected spatially-fused features, is computed via Eq. (12).

GCNd = BN(ReLU((wdgcnAvd + bdgcn)S
ST
G )) + SST

G (12)

where wdgcn ∈ RN×N is the learned virtual spatial weight matrix, bdgcn ∈ RN

is the related bias and BN(.) is the batch normalization that enhances the
stability of the neural network, regularizing the model, and reducing its sensi-
tivity to parameter initialization. (wdgcnAvd+ bdgcn) is used to capture global
structural information while ReLU(...) is ReLU activation function that in-
troduces non-linearity and enables the model to learn complex patterns. In
the end, (... + SST

G ) represents the residual connection that preserves the
original information through the layer, alleviating the problem of vanishing
gradients and promoting more effective learning.

3.2.5. Fully-Connected Layer

This fully-connected layer is used for the final prediction. The output
from the second STTras-Block for analyzing XT , (SST

G )2T ∈ RB×T×N×F ,
and the output from the second STTras-Block for analyzing XD, (S

ST
G )2D ∈

RB×T ′×N×Fd , are concatenated as SST
TD ∈ RB×T×N×(F+Fd) (Notes that T =

T ′). The final-connected layer takes the reshaped SST
TD ∈ RB×N×

(
T×(F+Fd)

)
as its input and then makes the final prediction (cf Eq. (13)).

X̃T+T ′ = FC(SST
TD) (13)

where FC represents the fully-connected layer.

4. Experiments

4.1. Datasets

To evaluate our VDGCNeT model, two real-world datasets from large-
scale road networks, labeled as PEMS-BAY and METR-LA [26], are used. The
locations of loop detectors from both networks are presented in Section 4.5.
The PEMS-BAY dataset is collected from California Transportation Agencies
(CalTrans) Performance Measurement System (PeMS) [48] and contains the
traffic speed data from 325 sensor stations in Bay Area. This dataset covers
traffic measurements for a period of six months (i.e., 1st January – 30th June
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2017). The time interval for the data is 5 minutes and the total number
of observed traffic data points is 16,937,700 (= 52,116 × 325). The second
real-world dataset, METR-LA, is collected from loop detectors in the highways
of Los Angeles County [49]. It includes 207 sensors and covers traffic data
for a period of four months from the 1st of March to the 30th of June in
2012. The time interval is 5 minutes and the total number of observed traffic
data points is 7,094,304 (= 34, 272× 207). Compared to PEMS-BAY, METR-LA
exists serious data missing due to sensor incidents. Totally, it missed 575,302
data points, which accounts for 8.11% (= 575,302

7,094,304
× 100%) of all data points.

TABLE 1 gives the basic statistics of both datasets. From the table, it
can be observed that the traffic recorded in METR-LA has higher volatility
with a larger standard deviation and variance. For both datasets, undirected
graphs with edge weights are used to construct their corresponding adjacency
matrices. The road distances between sensor locations are first computed
and then a thresholded Gaussian Kernel [50] is used to build the adjacency
matrix. The edge weights are calculated by Eq. (14):

W e
i,j =

{
exp(−dist(i,j)2

2σ2 ), if dist(i, j) < dthreshold

0, otherwise
(14)

where W e
i,j is the edge weight between sensor location i and j, and dist(i, j)

represents the actual physical distance between sensor location i and j. The
standard deviation of the distances is denoted by σ and dthreshold is the thresh-
old.

Table 1: Characteristics of both traffic speed datasets

Dataset Max Min Mean Std Var Size

PEMS-BAY 85.10 0.00 62.62 8.56 85.41 135.90 MB

METR-LA 70.00 0.00 53.72 19.19 374.85 57.00 MB

4.2. Evaluation Metrics

To evaluate our model, we use conventional evaluation metrics as used
in [9][16][51]. Specifically, we use three types of errors, including Mean Ab-
solute Error (MAE) (Eq. (15)), Mean Absolute Percentage Error (MAPE)
(Eq. (16)) and Root-Mean Square Error (RMSE) (Eq. (17)).
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MAE =
1

N × T ′ ·
N∑
i=1

T ′∑
t=1

|xi
t − x̃i

t| (15)

MAPE =
1

N × T ′ ·
N∑
i=1

T ′∑
t=1

|xi
t − x̃i

t|
xi
t

× 100% (16)

RMSE =

[
1

N × T ′ ·
N∑
i=1

T ′∑
t=1

(xi
t − x̃i

t)
2

] 1
2

(17)

MAE is the average absolute difference between the real and predicted traffic
states. MAPE is the percentage of absolute difference between the real and
predicted traffic states and is utilized to measure the percentage of prediction
error. RMSE is the standard deviation of the residuals, which is the difference
between the real and predicted traffic states. Finally, we define the accuracy
of the prediction as (100%−MAPE).

4.3. Parameter Study

To optimize VDGCNeT, there are three types of parameters needed to
be set and learned as follows:

(1) For input, the parameters include historical time intervals T , targeted
time intervals T ′, previous days D and batch size B. We follow [26][52]
and set historical time intervals T , targeted time intervals T ′, and pre-
vious days D as 12, 12 and 1, respectively. For batch size B, we ex-
perimentally find the best value as it refers to the number of features
(=B × T ) used to update the virtual dynamic spatial matrix Avd and
directly affects the performance of our VDGCNeT. If B is too large,
it would bring too many features when updating the virtual dynamic
spatial matrix. If it is too small, it would not maximize the general-
ization of the learned virtual dynamic spatial matrix. We show this in
Fig. 4 which shows the relationships of batch size and averaged MAE
for both PEMS-BAY (blue line with dot marker using left y-axis) and
METR-LA (black line with star marker using right y-axis). For METR-LA,
the lowest average MAE is achieved when B is equal to 17 while, for
PEMS-BAY, B is 23. The reason of requiring larger B for PEMS-BAY is
that PEMS-BAY contains 325 sensors and needs more features (=B×T )
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Figure 4: The relationship of batch size and MAE.

to update the virtual dynamic spatial matrix Avd, compared to 207
sensors in METR-LA.

(2) For our model, hyper-parameters include the number of multi-heads h
and the number of embedding features {dtq, dtk, dtv, dsq, dsk, dsv}. We follow
[53] to set both the number of embedding features and the number of
multi-heads to 8. Therefore, the number of the embedded features F
from the first Fully-Connected layer in both STm and TTm is equal to
64 (= 8×8). In addition, the total number of parameters for PEMS-BAY
and METR-LA are 298,849 and 235,955, respectively. Again, more pa-
rameters are required for PEMS-BAY due to the higher number of sensors,
resulting in more parameters in DGCN-Block.

(3) For the training phase, parameters include learning rate, r and the
number of epochs, e. Slow learning rate will typically make a training
algorithm converge slowly and conversely, a large value for learning
rate may make the algorithm to diverge. Using experimental methods
to find the best learning rate is usually time consuming. In our work,
we use the Cyclical Learning Rates (CLR) method [54] to optimize the
learning rate. Based on this, the optimized learning rate is 1.12e−03.
In addition, we use stop early strategy to find the number of epochs.
Specifically, the stop early strategy will stop the training process when
the training loss continues to decrease in 10 consecutive epochs while
the validation loss increases. This avoids the problem of over-fitting.
Fig. 5 presents the relationships of training loss, validation loss and the
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number of epochs. The x-axis represents the number of epochs and the
y-axis gives the MAE loss (left y-axis for training loss and right y-axis
for validation loss). Due to the stop early strategy, the training process
stops at epoch 13 for PEMS-BAY (cf. Fig. 5 (a)) and at epoch 12 for
METR-LA (cf. Fig. 5 (b)) where the validation losses are the lowest.

(a)

(b)

Figure 5: The relationship of training and validation MAE losses with the number of
epochs.

Since Adam [55] has been shown to be efficient for optimizing parameters
of deep learning models, we also use Adam as the Optimizer. We follow
the convention (e.g., [53]) and use 70% of the dataset for training, 10% for
validation and 20% for testing. All experiments are conducted on a machine
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equipped with a GeForce RTX 2080 Ti GPU card with 11 GB Memory and
1545MHz Boost Clock and PyTorch is used to implement this work.

4.4. Analysis of the VDGCNeT Model

4.4.1. Comparison against Ground Truth Data

Fig. 6 and Fig. 7 respectively shows the real and predicted traffic states by
VDGCNeT and two well-known models in a day from two randomly selected
sensors in PEMS-BAY and METR-LA. The locations of the two selected sensors
are shown in Fig. 8 with blue pointers (400030 for PEMS-BAY and 773869 for
METR-LA). In Fig. 7, we indicated serious missing data in the METR-LA dataset
with shaded area (e.g., traffic speed continues to be Nan between 2012-03-04
08:20:00 and 2012-03-04 09:10:00.) and, even so, VDGCNeT can still predict
traffic states and follow the trend over time. Furthermore, our VDGCNeT
predicts traffic states more accurate than the other two models, especially
for large traffic prediction horizons. Besides, Fig. 6 and Fig. 7 also show
that the predictions of VDGCNeT are more accurate on PEMS-BAY than on
METR-LA. From 5-min to 60-min prediction, the predictions are increasingly
less accurate but overall, still follow the trend of changes over time.

Fig. 8 compares the real (left) and predicted (right) traffic speed by
VDGCNeT on both networks, PEMS-BAY in Fig. 8(a) and METR-LA in Fig. 8(b).
We see close agreements between the real and the predicted traffic speed for
both sets of sensors across the two road networks. This suggests that VDGC-
NeT is capable of offering accurate predictions on large-scale road networks.
Besides, Fig. 8 also shows that the very low or high traffic speed happens on
several continuous sensors for both road networks. It indicates that traffic
states at one location are influenced by its neighbors. Meanwhile, similar
traffic speed at a time interval can be observed at sensors which are far away
from each other. It indicates that traffic states may be hidden network-wide
spatial dependencies. Our model takes such dependency into account by gen-
erating a virtual dynamic road graph that describes the hidden and dynamic
connections between road segments with respect to traffic states.

4.4.2. Parameter Visualization

In this section, we compare the learned spatial weights computed by
VDGCNeT against the physical road network to reveal the hidden spatial de-
pendency. Fig. 9 shows the adjacency matrix A0 of the physical road network
and the learned spatial weights, wdgcn (cf. Eq. (12)), from the DGCN-Block
of VDGCNeT model for historical traffic in previous time intervals, XT and
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Figure 6: (Color Online) Real (black line) and predicted (red line) traffic speed
(miles/h) in a week with 288 (= 1days∗24hours∗60mins

5mins ) time intervals by VDGCNeT on
PEMS-BAY with a time interval = 5 mins. The x-axis represents the time and the y-axis is
traffic speed. The prediction horizons are 5-min, 15-min, 30-min, 45-min and 60-min

from top to bottom, respectively.

in the same time interval with the targeted time interval from previous days,
XD on PEMS-BAY (top row) and METR-LA (bottom row). For clarity, only the
first 100 sensors are shown. Both x- and y-axis present the sensor ID. The
color describes the spatial dependency relationship (darker = more relevant).
By comparing Fig. 9 (b) and (e) against Fig. 9 (c) and (f), we see that the
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Figure 7: (Color Online) Real (black line) and predicted (red line) traffic speed
(miles/h) in a week with 288 (= 1days∗24hours∗60mins

5mins ) time intervals by VDGCNeT on
METR-LA with a time interval = 5 mins. The x-axis represents the time and the y-axis is
traffic speed. The prediction horizons are 5-min, 15-min, 30-min, 45-min and 60-min

from top to bottom, respectively.

targeted traffic data is more dependent on T previous time intervals than on
the same time interval from D previous days (i.e., darker shades in Fig. 9
(b) and (e)). In addition, the principal diagonal of the spatial weight matri-
ces have significantly darker shade, indicating that traffic states are strongly
related to its own historical traffic states. This is more obvious in Fig. 9 (c)
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Recorded real traffic speed Predicted traffic speed

(a)

(b)

Figure 8: (Color Online) Visualization of real (left sub-figures) and predicted (right
sub-figures) traffic speed at a time interval on two road networks: (a) PEMS-BAY and (b)

METR-LA. The lower traffic speed, the darker color.

and (f) since historical traffic states from neighbors in previous days have less
impacts on traffic state in the targeted sensor. Between the two networks, (b)
and (c) for PEMS-BAY is darker than (e) and (f) for METR-LA. It indicates that
the spatial dependencies of sensors in PEMS-BAY are more significant than
METR-LA. From spatial weight matrices, some sensors, which are far away
from the targeted sensor, still generate important impacts on the targeted
sensor. It shows that traffic states of non-adjacent sensors affect each other.
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(a) Adjacency matrix A0 (b) Learned dynamic spatial
weights for XT

(c) Learned dynamic spatial
weights for XD

(d) Adjacency matrix A0 (e) Learned dynamic spatial
weights for XT

(f) Learned dynamic spatial
weights for XD

Figure 9: (Color online) The adjacency matrix A0 and learned dynamic spatial weight
matrices for XT and XD ({(a), (b), (c)} for PEMS-BAY and {(d), (e), (f)} for METR-LA).
These matrices show the spatial dependencies of the first 100 sensors on both datasets.
Both the X-axis and the Y-axis represent the sensor ID. The color indicates the spatial

dependency relationship, the darker the more relevant.

4.4.3. Ablation Experiment

We further analyze our VDGCNeT model via ablation experiments to
study the contribution and importance of each block towards the final pre-
diction. For this, we create three variants that are built by removing one
module from the proposed VDGCNeT as follows.

• GCNTG: This variant uses the adjacency matrix A0 instead of the
virtual dynamic spatial matrix Avd. Comparing GCNTG and VDGC-
NeT allows us to understand the contribution of the virtual dynamic
graph proposed in this work to the final prediction.

• GCNTG*: This variant utilizes the Identity matrix I instead of the
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virtual dynamic spatial matrix Avd. Comparison of GCNTG* and
VDGCNeT could help us to understand how important of the virtual
dynamic graph proposed in this work is to achieve high accuracy of
traffic prediction.

• VTGA: This variant is developed by removing the DGCN-Block of
VDGCNeT and aimed at investigating the role played by the DGCN-
Block in the full-fledged VDGCNeT model.

• VDGCNeT*: For this variant, we remove the second STTras-Block
in VDGCNeT to understand the contribution of correcting learned fea-
tures from DGCN-Block by aligning them with the virtual dynamic
spatial matrix Avd in STm and the targeted temporal embedding fea-
tures TT ′ in TTm.

TABLE 2 presents the results of our ablation experiments on the two
real-world datasets for T ′ = {1, 3, 6, 9, 12} (i.e., {5-min, 15-min, 30-min, 45-
min, 60-min} prediction horizons). Overall, VDGCNeT achieves the best
performance in both networks. We observe the following:

• The virtual dynamic spatial matrix Avd, generated by the Att-Similar-
Block to learn the dynamic spatial relationships of road segments, is
important for improving the prediction accuracy. This conclusion is
derived from the better result achieved by VDGCNeT over GCNTG
and GCNTG*. This further supports our design of VDGCNeT in using
virtual dynamic graph rather than on the physical road connectivity.

• The DGCN-Block conducts convolution operation on virtual dynamic
graph Avd. It efficiently learns dynamic spatial-temporal features and
also joins the spatial relations of historical traffic and future traffic into
the learned features from the first STTras-Block. The contribution of
the DGCN-block can be seen when comparing the prediction accuracy
between the full VDGCNeT and VTGA whereby VTGA performed
0.13% (PEMS-BAY) and 0.04% (METR-LA) worse without the DGCN-
Block.

• The removal of the second STTras-Block results in the largest perfor-
mance deterioration. This can be observed by the difference in accuracy
achieved by the three variants compared to VDGCNeT whereby VGC-
NTGA* obtained the largest decrease in accuracy. This is due to the
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fact that VGCNTGA* loses (1) the functions of the virtual dynamic
spatial matrix Avd in STm to correct the learned spatially-fused fea-
tures and (2) the targeted temporal embedding features TT ′ in TTm
to build the external relationships of historical and future traffic data.
Specifically, for the virtual dynamic spatial matrix, Avd, by removing
the second STTras-Block, the model can no longer correct the spatial
features in the learned spatially-fused features from DGCN-Block.

• The full VDGCNeT model with the special framework design takes ad-
vantages of long-term predictions when compared to its three variants.
This could be observed from the best results for 30-min, 45-min and
60-min predictions achieved by the full VDGCNeT model.

Table 2: Results from different modules

Model PEMS-BAY METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

GCNTG 1.1003 2.86 6.8591 2.3646 5.86 4.2179

GCNTG* 0.9910 2.38 3.9845 2.4316 6.21 4.3956

VTGA 0.9674 1.87 2.3618 2.3821 5.98 4.2690

VDGCNeT* 1.0249 2.23 2.0095 2.4370 6.30 4.3864

VDGCNeT 0.9400 1.94 2.5783 2.3828 6.04 4.3205

(b) 15-min future prediction (T’=3)

GCNTG 1.4172 2.94 4.1556 2.7558 7.25 5.3458

GCNTG* 1.3923 3.13 4.0627 2.8219 7.52 5.5491

VTGA 1.2182 2.86 3.3051 2.8954 7.87 5.8241

VDGCNeT* 1.4147 3.09 3.0655 2.8276 7.68 5.5742

VDGCNeT 1.1678 2.38 2.3652 2.7796 7.42 5.4790

(c) 30-min future prediction (T’=6)

GCNTG 1.7085 3.76 4.6548 3.1933 8.96 6.5808

GCNTG* 1.6948 3.75 4.1683 3.1547 8.83 6.4394

VTGA 1.6407 3.48 3.8876 3.0853 8.66 6.3775
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VDGCNeT* 1.7298 3.91 4.0023 3.1729 9.08 6.5595

VDGCNeT 1.5648 3.35 3.5141 3.0971 8.62 6.3267

(d) 45-min future prediction (T’=9)

GCNTG 1.8622 4.23 5.1092 3.3315 9.52 6.9529

GCNTG* 1.8569 4.12 4.2767 3.3682 9.68 6.9817

VTGA 1.8513 4.07 4.3450 3.3509 9.80 7.0739

VDGCNeT* 1.8864 4.37 4.3868 3.3884 10.04 7.1581

VDGCNeT 1.7584 3.90 4.0445 3.3014 9.42 6.8548

(e) 60-min future prediction (T’=12)

GCNTG 1.9692 4.55 5.4609 3.4987 10.20 7.3640

GCNTG* 1.9683 4.41 4.5139 3.5237 10.28 7.3468

VTGA 1.9510 4.36 4.5637 3.4580 10.29 7.3303

VDGCNeT* 1.9728 4.61 4.4966 3.5500 10.77 7.5696

VDGCNeT 1.8769 4.27 4.3248 3.4577 10.08 7.2180

4.5. Comparison Study

We proceed to conduct a comparison study pitting our VDGCNeT against
the following baseline models.

• GRU [43] is a variant of RNN. It has less gates than LSTM so as to
allow faster computing while still retaining competitive performance
against LSTM.

• CNN-LSTM [56] integrates CNN and LSTM modules for single-service
traffic prediction and interactive network traffic prediction. CNN and
LSTM analyze spatial and temporal dependencies, respectively.

• T-GCN [46] uses GCN to learn complex topological structures in the
space domain and GRU to learn dynamic changes of traffic data in the
time domain.

• TGC-LSTM [28], similar to T-GCN, uses GCN to learn complex topo-
logical structures in the space domain and LSTM, instead of GRU, to
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learn dynamic changes of traffic data in the time domain. The main
difference to T-GCN is extracting spatial features from k − hop neigh-
borhoods and then concatenating them as the final spatial features,
instead of only using the features from the k − hop neighborhood for
the final prediction.

• STGCN [27] composes of two spatial-temporal convolutional blocks
(ST-Conv) and a fully-connected layer. Each ST-Conv block consists of
two temporal gated convolution layers and a spatial graph convolution
layer in the middle to mine spatial and temporal dependencies.

• ASTGCN [52] uses a spatial-temporal attention mechanism to analyze
dynamic spatial and temporal features, a GCN for the spatial pattern
analysis and a CNN for temporal feature analysis.

• DCRNN [26] models traffic as a diffusion process on a weighted graph
using diffusion convolution neural network to learn spatial dependencies
and recurrent neural network to learn temporal dependencies.

• GMAN [53] models spatial and temporal dependencies in an encoder-
decoder architecture. It builds a spatial-temporal embedding to model
the graph structure and time information and embeds it into multi-
attention mechanisms.

• GA2+GALEN [57] uses a Graph Adjacency LEarning Network (GALEN)
to construct traffic graph for a graph learning based traffic predictor
of Generative Adversarial Graph attention (GA2). GALEN can cap-
ture the inter-sensor correlation from raw historical traffic data using
attention on graphs.

Fig. 10 presents the prediction accuracy (100%-MAPE) of all models for
both PEMS-BAY (Fig. 10 (a)) and METR-LA (Fig. 10 (b)). Overall, the predic-
tion accuracy of all models is higher for PEMS-BAY. Our VDGCNeT achieves
the highest prediction accuracy on average – 96.77% prediction accuracy on
average for PEMS-BAY and 91.68% for METR-LA, followed by GMAN (96.60%
and 91.47% respectively), DCRNN (96.05% and 91.39% respectively) and
GA2+GALEN (96.47% and 91.47% respectively). At the other end of the
spectrum, T-GCN and TGC-LSTM are almost always the worst on both
datasets and their average prediction accuracy are 93.71% and 92.18% for
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(a) PEMS-BAY

(b) METR-LA

Figure 10: The prediction accuracy (100% - MAPE) of all models for different prediction
horizons.
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PEMS-BAY and 83.86% and 87.06% for METR-LA, respectively. The one proba-
ble reason is that fixed neighbor matrices are used in the GCN module. For
instance, spatial features considered by T-GCN are restricted to relations of
each sensor with its adjacent neighbors. In addition, the differences of perfor-
mances among all models become larger over longer prediction horizons. This
indicates that all the models including the simpler models (e.g. GRU) com-
pute better predictions for shorter prediction horizons. For longer prediction
horizons, more complex models with the abilities to analyze dynamic spatial
and temporal dependencies are needed to obtain high prediction accuracy.

TABLE 3 compares the MAE, MAPE and RMSE across both datasets for
the nine baseline models and our VDGCNeT. All models perform better for
PEMS-BAY than for METR-LA. For instance, their MAPEs are less than 8.00%
across all prediction horizons for PEMS-BAY as opposed to under 20.00% for
METR-LA. One reason for this is due to the missing data in the METR-LA

dataset. From the results, we see that our VDGCNeT mostly obtains the best
results for all prediction horizons across both datasets with the exception for
5-min and 15-min prediction horizons where DCRNN narrowly outperforms
our model on both datasets. Again, all types of errors achieved by all models
increase when the prediction horizons become longer.

Table 3: Results achieved by all models for both datasets

Model PEMS-BAY METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

GRU 1.6913 3.45 2.8974 3.3369 7.83 5.8201

CNN-LSTM 1.8765 3.88 3.1958 3.3888 7.80 6.0269

T-GCN 2.4687 5.58 4.5619 4.9543 12.44 8.1131

TGC-LSTM 2.9314 6.83 4.4761 4.6452 11.37 7.5632

STGCN 1.8384 3.81 3.1105 3.6787 8.22 6.5665

ASTGCN 0.9347 1.88 1.7710 2.4857 6.43 4.4114

GA2+GALEN 1.0431 2.17 2.7548 2.3233 5.89 4.3219

DCRNN 0.9170 2.22 1.6999 2.3325 5.77 4.0161

GMAN 0.9493 1.86 1.7579 2.4445 6.16 4.4177
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VDGCNeT 0.9329 1.81 1.7064 2.3828 6.04 4.3205

(b) 15-min future prediction (T’=3)

GRU 2.1303 4.58 3.7916 4.1811 10.25 7.6012

CNN-LSTM 2.1933 4.81 3.9610 4.3127 10.35 7.8845

T-GCN 2.5660 5.88 4.7532 6.1823 15.32 9.7222

TGC-LSTM 3.0190 7.63 4.6935 4.8673 11.64 8.1579

STGCN 2.1103 4.51 3.7309 4.1964 9.69 7.9137

ASTGCN 1.4671 3.19 3.0985 3.0786 8.58 6.0340

GA2+GALEN 1.3610 2.97 3.7819 2.9671 7.74 5.8964

DCRNN 1.3434 3.26 2.8615 2.7775 7.38 5.3535

GMAN 1.3533 2.86 2.9219 2.8269 7.58 5.6075

VDGCNeT 1.3599 2.80 2.9192 2.7796 7.42 5.4790

(c) 30-min future prediction (T’=6)

GRU 2.5033 5.66 4.5481 5.0948 12.72 9.1599

CNN-LSTM 2.4535 5.59 4.5984 5.1480 12.65 9.3875

T-GCN 2.6843 6.20 5.0002 6.8121 16.65 10.6894

TGC-LSTM 3.0817 7.85 5.0683 5.3021 12.51 9.2798

STGCN 2.4834 5.66 4.6108 4.9270 11.59 9.2209

ASTGCN 1.9311 4.53 4.3212 3.6345 10.71 7.4193

GA2+GALEN 1.6713 3.72 4.7034 3.1367 8.93 6.6617

DCRNN 1.6805 4.23 3.8619 3.1839 8.95 6.4789

GMAN 1.6422 3.71 3.7884 3.1499 8.90 6.5428

VDGCNeT 1.5648 3.35 3.5141 3.0971 8.62 6.3267

(d) 45-min future prediction (T’=9)

GRU 2.7262 6.31 4.9696 5.6871 14.46 10.0219

CNN-LSTM 2.5918 5.98 4.8798 5.8488 14.45 10.2587

T-GCN 2.8726 6.72 5.3505 7.1436 17.46 11.1565

TGC-LSTM 3.2164 8.17 5.3697 5.7701 13.93 10.3849

STGCN 2.7979 6.63 5.2562 5.5858 13.09 10.1572
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ASTGCN 2.2188 5.34 5.0119 4.0540 12.36 8.3200

GA2+GALEN 1.8209 4.03 5.4321 3.3293 9.63 6.9753

DCRNN 1.8706 4.82 4.3794 3.4493 10.02 7.1828

GMAN 1.7885 4.14 4.1667 3.3485 9.72 7.0905

VDGCNeT 1.7584 3.90 4.0445 3.3014 9.42 6.8548

(e) 60-min future prediction (T’=12)

GRU 2.8705 6.66 5.2104 6.2478 15.88 10.6667

CNN-LSTM 2.6922 6.31 5.0876 6.4159 15.98 10.8960

T-GCN 2.9401 7.06 5.5091 7.7986 18.81 11.9359

TGC-LSTM 3.4623 8.26 5.8917 6.2531 15.26 11.7954

STGCN 3.0762 7.50 5.7680 6.1128 14.32 10.8037

ASTGCN 2.4518 5.96 5.5218 4.4138 13.75 9.0173

GA2+GALEN 1.9041 4.75 6.0316 3.5417 10.47 7.7365

DCRNN 1.9998 5.20 4.6791 3.6755 10.91 7.7280

GMAN 1.8857 4.41 4.3726 3.4815 10.30 7.4331

VDGCNeT 1.8769 4.27 4.3248 3.4577 10.08 7.2180

From TABLE 3, on PEMS-BAY, VDGCNeT, GMAN, DCRNN, GA2+GALEN
and ASTGCN are always the top five best performers across all prediction
horizons. Among them, VDGCNeT always achieves better results as the pre-
diction horizon is increased from 15-min to 60-min. This owes to the virtual
dynamic road graph Avd comprehensively mining the hidden spatial depen-
dencies of road segments as well as the spatial- and temporal-transformers in
VDGCNeT. For the remaining models, (GRU, CNN-LSTM, T-GCN, TGC-
LSTM and STGCN), GRU performs better than others and achieves 3.45%
MAPE for 5-min prediction horizon mainly due to its effective function on
long-term dependency analysis. TGC-LSTM is the worst performing model
with 2.9314, 6.83% and 4.4761 recorded for MAE, MAPE and RMSE re-
spectively. For 30-min, 45-min and 60-min prediction horizons, CNN-LSTM
is better than GRU, T-GCN, TGC-LSTM and STGCN. This is likely due
to the spatial features extracted by CNN module in CNN-LSTM where it
becomes more important for longer prediction horizons. In addition, the 1D
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CNN layers in the CNN module enable traffic information from all sensors in
the road network to contribute to the targeted sensor, as opposed to T-GCN,
TGC-LSTM and STGCN that only consider traffic information from several
neighbors. Note that the spatial features extracted by 1D CNN in CNN-
LSTM and GCN in T-GCN, TGC-LSTM and STGCN can be considered as
global and local spatial features, respectively. To some degree, the global
spatial features offer better performance than local spatial features but with
high computation cost.

For METR-LA, the rank of all considered models is similar to PEMS-BAY but
the accuracies are worse due to the missing data issue. Similar to PEMS-BAY,
the top five models are still VDGCNeT, GMAN, DCRNN, GA2+GALEN
and ASTGCN. For 5-min and 15-min prediction horizons, DCRNN obtains
5.77% and 7.38% of MAPE followed by our VDGCNeT with 6.04% and
7.42%. For other prediction horizons, VDGCNeT is consistently the best.
This is because VDGCNeT not only uses more features from previous time
intervals and the same time interval with the targeted interval in previous
days to analyze spatial and temporal dependencies, it also generates a dy-
namic road graph (Avd) to fully mine the hidden and non-uniform spatial
relations among sensors or road segments in the network. These can effi-
ciently take into account the sudden changes caused by the missing data and
incidents which are considered as big challenges for others. For the other
five models (i.e., GRU, CNN-LSTM, T-GCN, TGC-LSTM and STGCN),
T-GCN remains the worst performing model with its MAPE increases from
12.44% for 5-min prediction horizon to 18.81% for 60-min prediction hori-
zon. STGCN is almost always the best among these five for all prediction
horizons.

4.6. Prediction Accuracy vs Computation Time

We have thus far shown the performance of the different models in terms
of prediction accuracy. In this subsection, we turn our attention to the com-
putation time. For this purpose, we run a set of experiments comparing our
VDGCNeT with STGCN, ASTGCN, DCRNN and GMAN. To ensure the
fairness, for all models, we set the batch size as 18 in the training phase and
run them on the same machine equipped with a GeForce RTX 2080 Ti GPU
card with 11 GB Memory and 1545MHz Boost Clock. We obtain the aver-
age computation time of seven runs. We present the training time of four
baselines and our VDGCNeT for both datasets in TABLE 4. From the table,
we observe that the training time for both STGCN and ASTGCN are much
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shorter than the other models. However, the prediction accuracy of these
two models are much lower than the other three, especially when the predic-
tion horizons are large. Among top three models in terms of accuracy (i.e.,
DCRNN, GMAN and our VDGCNeT), VDGCNeT appears to be the most
efficient compared to the other two. The longest training time of DCRNN is
caused by the sequence learning in RNN while, for GMAN, the longer train-
ing time is due to the setting of the number of ST-Attention Block as L = 3
[53] that incur high computation cost. Our experiment results suggest that
our proposed model, VDGCNeT, offers the best tradeoff between accuracy
and computation time.

Table 4: Computation time of four baselines and our proposed model when the batch
size is set as 18.

Training Time (seconds of per epoch/Total)
Model Name PEMS-BAY METR-LA

STGCN 196.72s/8458.96s 104.09s/4059.51s

ASTGCN 119.07s/5477.22s 67.64s/3111.44s

DCRNN 662.13s/35087.59s 384.56s/18843.44s

GMAN 834.71s/21702.46s 472.59s/10869.57s

VDGCNeT 516.63s/12036.37s 187.95s/5074.65s

5. Conclusion and Future Works

In this paper, we present a novel deep learning model, VDGCNeT, for
addressing the traffic prediction problem on large-scale road networks. Con-
sidering the complex and dynamic spatial dependencies of traffic at road
segments hidden within the road networks, exploring these hidden and dy-
namic spatial dependencies is important for achieving high prediction ac-
curacy. Instead of purely relying on the use of the adjacency matrix and
other neighborhood matrices that describe the physical connectivity between
road segments, we developed an algorithm in the training phase of VDGC-
NeT to generate a virtual dynamic road graph that comprehensively mines
the hidden and dynamic spatial dependency of the road network. We fur-
ther designed a novel framework for our VDGCNeT based on GCN and
the attention mechanism-based Transformers to analyze temporal and spa-
tial dependencies with correction. We trained and tested our VDGCNeT on
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two large-scale real-world road networks: PEMS-BAY and METR-LA. We com-
pared it against nine well-known models in literature including: GRU, CNN-
LSTM, T-GCN, TGC-LSTM, STGCN, ASTGCN, GA2+GALEN, DCRNN
and GMAN. To further gain insights into the characteristic behavior of our
model, we conducted ablation experiments and compared the full-fledged
VDGCNeT against four of its variants that are built with a removal of one
module from the full model. The experimental results indicate that our
proposed model, VDGCNeT, obtains the best performance (average accu-
racy ≈ 96.77% for PEMS-BAY and ≈ 91.68% for METR-LA) and for almost
all prediction horizons, only being closely challenged at the shortest predic-
tion horizon (i.e., at 5-min and 15-min horizons). The MAEs, MAPEs and
RMSEs on PEMS-BAY are less than 1.8800, 4.30% and 4.3300, and less than
3.4600, 10.10% and 7.2200 on METR-LA, respectively. These results indicate
that our VDGCNeT can efficiently improve the prediction accuracy on large-
scale road networks, even on the dataset suffering from missing data (e.g.,
METR-LA).

Based on findings in this work and other recent related works, we identify
three directions that could potentially offer significant improvement of the
prediction accuracy in the future.

• For spatial feature analysis, traffic lights around the targeted sensor
on the physic road network could be considered as one of features for
traffic prediction. This consideration is from observations of very busy
traffic around traffic lights. If the intersections on the road network
are controlled by traffic lights, time phase for each direction controls
traffic flow and also influences traffic nearby. When analyzing traffic
on a targeted sensor, traffic lights around this sensor play an important
role on the changes of traffic state and could also offer useful spatial
features for the traffic prediction.

• For the temporal feature analysis, future traffic state on a road segment
heavily depends on previous time steps, particularly under abnormal
traffic situation such as serious long-term traffic congestion where traf-
fic state in much more previous time steps are relevant to future traffic
state. Furthermore, each road segment in a road network has differ-
ent traffic situation so that the length of historical traffic data used to
predict future traffic states on different road segments should be consid-
ered differently. This requires dynamic length of historical traffic data
used to predict future traffic state for each sensor along time domain.
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• Furthermore, events and weather conditions that influence traffic states
by changing peoples’ transportation choices could be also considered as
features of future traffic prediction.

For the future work plan, we will focus on the first potential research
direction to find the relationship of traffic state on a road segment
and time phase of each direction in nearby traffic lights and use this
relationship as one of features for future traffic prediction.
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