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Summary

There is a need for accurate models of small and highly dynamic one-way valves
such as those found in engine oil systems. Such reduced order models can then
be included in larger oil system models that are too complex to model at high
resolution.

Two one-way valves are introduced and analysed using a fluid structure in-
teraction simulation. The behaviour of the valves is examined, and the results
generated are then used to develop two reduced order methodologies.

The first is physics based. It combines physical phenomena and steady state
simulation results to build up an accurate valve model. This model provides good
results but is limited by the applicability of steady state simulations to dynamic
behaviour, which is itself dependent on valve geometry and fluid properties.

The second approach is based on a type of continuous-time recurrent neural
network. This allows training on fluid structure interaction simulations with
no need for physical insight. The network is trained directly on the dynamic
behaviour and accurately reproduces it. Training methods are discussed. A
multiple particle swarm methodology and in situ training technique is presented.
The neural network-based model is applied to a more complex valve. Network
architecture and size are investigated. A comparison is done over a range of time
step sizes.

Finally, an example workflow is given presenting the steps to train a neural
network and use the resulting reduced order model within a larger oil system
model.
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Chapter 1

Introduction

This work investigates methods for improving reduced order modelling of one-

way valves. This objective is driven by a need of Schaeffler, the industrial sponsor

of this research. Using Swansea’s own fluid structure interaction tool, a better

understanding is gained and then applied to both physics, and neural network

based reduced order models. Finally, a workflow for creation of reduced order

models is presented that could be used at Schaeffler in the future.

1.1 Hydraulic valves and applications

To reduce emissions and improve efficiency, internal combustion engines are be-

coming increasingly complex. The management systems of these engines often

rely on one-way hydraulic valves to operate key components. Any improvement

in modelling and understanding the response of these valves will allow the engine

management system to provide a finer level of control, thus maximising perfor-

mance. Many such valves must operate at a high frequency so commercial fluid

dynamics tools cannot be used due to the large added mass effects. Example

uses of the valves such as those discussed in this work are hydraulic valve lash
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adjusters and belt tensioners.

Valve lash adjusters remove backlash between the cam shaft and the engines

intake and exhaust valves. This allows more accurate valve control. Valve train

systems must account for the change in length of components such as push rods

and the valves themselves as the engine warms up. Prior to the introduction

of hydraulic adjusters fixed systems were used. The lash had to be set with

the engine hot such that expansion of components did not result in the engine

seizing up. This resulted in poor performance when the engine was started cold.

Fixed systems must also be regularly adjusted to account for component wear.

Hydraulic lash adjusters are powered by the engine oil system. Oil pressure

extends the length of the adjuster such that it is always in contact with the

cam shaft. However, the load on the adjuster is much greater than that which

could be provided by the engine oil pump alone. A one-way valve prevents the

oil being squeezed back out of the adjuster. This means the adjuster can only

increase in length. While the intake or exhaust valve is not active the oil pressure

extends the adjuster length as much as possible, via the one-way valve it then

locks solid when it is compressed by the cam shaft. Of course, as the engine heats

up the adjuster must reduce in length, to accomplish this a small leak path is

incorporated. The increase in length each cycle due to the action of the valve

is always more than the reduction due to the leak path. The adjuster behaves

as if solid in the high frequency time frame of the cam shaft but maintains its

ability to account for thermal expansion and wear that occur in a much slower

timeframe. See ”The Valve Train System” for some examples of the Schaeffer

components that utilise one-way valves [1], some images from that publication

are included below.
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(a) The adjuster is compressed by the cam
shaft, the ball valve closes and the adjuster
locks. A small leak path allows the adjuster
to compress very slowly to account for ther-
mal expansion.

(b) The adjustment phase, load is reduced
and the ball valve opens allowing engine oil
pressure to extend the adjuster. It is this
adjustment capability that takes up any ware
in the system removing the need for frequent
servicing.

Figure 1.1: Hydraulic adjuster operational examples from ”The Valve Train Sys-
tem” [1]. Shown is a cam shaft and engine poppet valve. The hydraulic adjuster
is the component in between, inside the adjuster is a ball valve of the type con-
sidered in this work.

1. Outer housing

2. Piston

3. Inner housing

4. Valve ball

5. Valve spring

6. Valve ball retainer

7. Return spring

8. Oil carry-over

9. Oil reservoir

10. Oil reservoir

11. Leakage gap

12. Guide gap

13. high pressure chamber

14. Oil supply grove

15. Intake bore
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(a) Cut away showing internal ball valve
from ”The Valve Train System” [1].

(b) Disassembled example.

Figure 1.2: Finger follower type hydraulic adjuster. This is an alternative ar-
rangement to achieve the same result. The follower is the pivot of a third class
lever, the round ball bearing runs on the cam shaft and flat end actuates the
poppet valve.

1.2 Industrial motivation

Schaeffler designs and produces valves that are used throughout the automotive

industry. Due to the small size and high frequency nature of these valves (1000

to 7000 rpm) it is impossible to observe and measure them in situ. Higher

level specifications can be found such as the opening pressure and closing time.

However, to gain an insight into what is going on inside the valve simulations

must be used. This allows improved geometries to be developed. This work

concentrates on the next step, taking those improved geometries and allowing

them to be included in full oil system simulations. Within the context of a

vehicle’s oil system valves cannot be considered in isolation, their effect on other

components must be understood. Full fluid structure interaction simulations of
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the whole system are not possible, it is too complex. The next best solution is to

use a reduced order model of each component. These reduced order models can

then be used in combination to model the whole system. For the whole system

model to be representative each individual reduced order component model must

be as accurate as possible.

1.3 Objectives

The key industrial objective of this work is to develop and document a work-

flow for producing an accurate reduced order valve model from high resolution

simulations. The approach should be as versatile as possible allowing different

valve types and geometries to be represented. The resulting reduced order models

should be of a type that allows integration into simulations of larger systems.

1.4 Overview of thesis

The second chapter of this work looks at high resolution modelling of hydraulic

valves. This provides results which the reduced order models developed in the

following chapters will be compared to. Two variants of one-way valves are

introduced, a disk valve and ball valve. The disk valve is used as a benchmark

to compare Swansea’s fluid simulation software against that used at Schaeffler.

An in-depth look is taken into the ball valve with fluid structure interaction

simulations.

The third chapter covers a physics based approach to creating a reduced order

model. Firstly, purely theoretical methods are investigated. A lookup based

methodology is then built up from a number of basic phenomena. An approach

to parameter generation for the model is presented and then applied to the disk
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valve. Finally, the methodology is applied on the ball valve and its shortcomings

discussed.

In the fourth chapter a neural network approach is presented. The network

architecture is described along with a scheme for integrating the network into

a reduced order model. Methods to increase the accuracy and complexity of

functions a network can represent are covered. Training methods are discussed

along with methods to increase consistency.

The fifth chapter takes the neural network based reduced order model pre-

sented in the preceding chapter and applies it to the ball valve. An investigation

is done into network architecture and reduced order model robustness.

The final chapter follows a case study applying the neural network approach

to a new valve. The reduced order model is then incorporated as a smaller part

of a larger system simulation. This outlines the workflow that could be used at

Schaeffler and accomplishes one of the main objectives of this work. Again, an

investigation into robustness and architecture is presented.
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Chapter 2

High resolution computational

modelling

A source of high-resolution models was required to inform and benchmark the

reduced order models developed in this work. Swansea’s Multi Physics Analysis

Program (MPAP) was used for this. To ensure reliable results a test problem

was used to compare MPAP with Open-source Field Operation and Manipulation

(OpenFOAM) which is used extensively at Schaeffler. This also allowed the

author to gain experience operating both programs and gain confidence in the

setup and operation of MPAP. All simulations in this work are axisymmetric, the

valve geometries considered lend themselves to axisymmetric simulation thanks to

their simple geometry and low Reynolds numbers. Both MPAP and OpenFOAM

require a visualization and analysis tool to interpret results. ParaView was used

for this purpose and to perform calculations such as integrating to find the fluid

kinetic energy or measuring the pressure at specific points [2].
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2.1 MPAP

Swansea’s Multi Physics Analysis Program (MPAP) has been developed over

several years specialising in fluid structure interaction. MPAP employs a stag-

gered scheme to solve both 2D and 3D problems [3]. In this work strictly rigid

bodies are considered although MPAP has the capacity to model fluid-flexible

structure interaction. MPAP was then extended to add support for a stabilised

immersed boundary method on hierarchical b-spline grids [4] and solid-solid con-

tact [5]. MPAP was run in steady state mode where there was no need to capture

transient flow.

2.2 OpenFOAM

As the name suggest OpenFOAM is an open-source toolbox for numerical solvers

[6]. There are dozens of solvers for various problems, on the recommendation of

Schaeffler the pimpleFOAM solver was used for this comparison. PimpleFOAM

is a finite volume transient solver for incompressible fluids [7] [8].

2.3 Check valve

A basic test valve was chosen for the comparison of simulation tools. This took

the form of a check valve, also known as one-way valve, with a moving disk

and a straight seat. In operation a positive pressure causes the disk to move

away from the seat where it is be retained by a stop or spring. A negative

pressure moves the disk element against the seat causing it to seal preventing

any further fluid flow. There is no additional seal or sealing material required.

The metal on metal contact of the disk and seat seals providing the components

are manufactured with sufficient tolerances. Dimensions of the test valve are
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shown in Figure 2.1. This valve is designed to operate with engine oil therefore

the simulations were done using a fluid density ρ of 850kg/m3, kinematic viscosity

ν of 3.05∗10−5m2/s and dynamic viscosity µ of 0.02593kg/ms. The valve throat

radius rt was 1.325mm with disk radius rd of 2.625mm. This comparison was

performed using velocity boundary conditions of ±0.5m/s on the upper edge of

the domain. The disk element was fixed with a height h of 0.24mm. In both

MPAP and OpenFOAM the outer edges of the valve and disk element used no-slip

Dirichlet boundary conditions.

Figure 2.1: Check valve overview

2.3.1 MPAP

MPAP requires an input file defining the vertices and edges of the geometry

to be modelled. There must be at least one vertex per mesh element, vertices

must be defined clockwise around the perimeter of the geometry. This process

was automated using MATLAB. Thus, a rectangle could be defined with four

vertexes and automatically split into the correct number of vertexes for a given
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mesh density. The tool also shows a preview of the geometry and refinement

zones allowing the user to quickly double check the geometry without having to

generate the final mesh. An example input geometry for the test valve is shown

in Figure 2.2a and the resulting geometry as output from the MATLAB script is

shown in Figure 2.2b.

(a) Geometry as input into the MATLAB
tool, red lines show switched off edges at the
domain boundary, refinement zones shown in
green, body one points in blue and body two
points in red

(b) Geometry as output by MATLAB tool,
element size increased to demonstrate vari-
able point spacing depending on refinement
level, bodies automatically sifted right to al-
low Axis-symmetric simulation about x = 0

Figure 2.2: MPAP MATLAB input file tool input (a) and output (b)

2.3.2 OpenFOAM

OpenFOAM requires a mesh to be constructed using a secondary tool, in this

case BlockMesh was used [9]. In order to perform an axisymmetric simulation

OpenFOAM requires a wedge shape mesh of one element thickness [10]. Again,

a MATLAB script was produced to generate the input file for BlockMesh. The

code takes 2D geometry blocks as defined by the user and rotates them 2.5 de-
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grees clockwise and anticlockwise, resulting in the 5-degree wedge mesh. Each

face must then be assigned a type and appropriate boundary conditions manu-

ally. The blocks as input into the MATLAB tool are shown in Figure 2.3. The

pimpleFOAM solver does not have a dedicated steady state mode so as such

transient simulations were run for a sufficiently long period to reach steady state.

Figure 2.3: BlockMesh 2D representation of the valve, seven blocks are required
to insure no block edges are split

2.3.3 Results

Both OpenFOAM and MPAP were run with a prescribed velocity of ±0.5m/s

at the upper boundary. The force acting on the disk was calculated for each

simulation to allow comparison. This force becomes important when consider-

ing moving disk simulations where the force will affect the opening and closing

response. The pressure distribution on the upper and lower surface of the disk

was also compared, this highlights any differences in flow behaviour that may be

masked by comparing the total force alone.
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Force values for positive inflow are 1.1548N for MPAP and 1.0994N for Open-

FOAM. This is a difference of 5.04%. A better match is achieved for outflow with

MPAP giving −7.976N and OpenFOAM −7.908N a difference of 0.86%. Both

flow directions result in a difference of ≈ 0.05N , this may be due to differences

in the mesh but is more likely due to OpenFOAMs transient solver picking up

effects that MPAP misses in steady state mode. Comparison of the pressure dis-

tribution on the upper and lower surfaces of the disk are a close match. Inflow

is shown in Figure 2.4a and outflow in Figure 2.4b.

The velocity and pressure plots also show a close correlation between MPAP

and OpenFOAM. They give an insight into the flow behaviour that will have to

be considered when modelling the valve in greater depth. Inflow velocity and

pressure distribution are shown in Figure 2.5 and Figure 2.6 respectively. In the

inflow condition a large vortex forms due to the accelerated flow through the gap.

The maximum velocity is ≈ 40m/s, using the gap height of 0.24mm this results

in a Reynolds number of re ≈ 300. Therefore it is safe to assume nonturbulent

flow. Outflow velocity and pressure distribution are shown in Figure 2.7 and

Figure 2.8 respectively.

(a) Inflow (b) Outflow

Figure 2.4: Disk upper and lower surface pressure distribution comparison
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(a) MPAP velocity magnitude (b) OpenFOAM velocity magnitude

Figure 2.5: Inflow velocity distribution

(a) MPAP pressure (b) OpenFOAM pressure

Figure 2.6: Inflow pressure distribution

30



(a) MPAP velocity magnitude (b) OpenFOAM velocity magnitude

Figure 2.7: Outflow velocity distribution

(a) MPAP pressure (b) OpenFOAM pressure

Figure 2.8: Outflow pressure distribution
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2.4 Ball valve

With confidence gained in MPAP a more complex ball valve was simulated. Ball

valves have the advantage of a reduced seat region allowing faster opening and

closing. Transient fluid structure iteration simulations were run with a range

of sinusoidal boundary conditions. No comparison to OpenFOAM was possible

due to the large added mass effects. The valve consists of a generic ball and

seat geometry with a spring holding the valve closed. Fluid with density ρ of

800kg/m3, kinematic viscosity ν of 2.35 ∗ 10−5m2/s and dynamic viscosity µ

of 0.02kg/ms was used. A virtual spring with preload of 0.007N and spring

constant k of 0.3N/mm holds the ball against the seat. Minimum ball height

is limited to 0.1mm, this prevents the domain closing completely and reduces

the need for very small elements in the seat region, the flow rate through the

domain approaches zero in this condition. Figure 2.9 shows the valve geometry

and Figure 2.10 shows an example velocity distribution in the opening case.

Figure 2.9: Ball valve overview and boundary conditions
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Figure 2.10: Velocity distribution, opening

2.4.1 Results

Figure 2.11 shows the results of simulations with boundary condition pressure

frequencies from 160Hz to 1.25Hz. Even at the highest frequency tested the

behaviour remains largely periodic, the valve can close sufficiently to re-set the

domain. There is some difference between the first period and subsequent periods

as the flow becomes established, this is most noticeable when comparing the two

highest frequency shown in red and pink. The integrated kinetic energy and

vorticity over the whole domain were calculated, it was hoped that these values

would give some insight into vortex formation. The three lowest frequencies

tested approach steady state with little difference in response between them.
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No mesh or integration convergence studies were done. The goal of this section

is not to provide highly accurate simulations of a particular value geometry.

Rather this work provides representative valve behaviour for the reduced order

methods explored in the subsequent chapters to be benchmarked against.

Figure 2.11: Ball valve results, 160Hz, 80Hz, 40Hz, 5Hz, 2.5Hz, 1.25Hz, nor-
malised to periods
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Figure 2.12 highlights the unintuitive ball height behaviour seen, this is present

in all frequencies except the highest, 160Hz. To ensure this behaviour was not

an interaction with the boundary condition an increased upper domain size was

also tested. As the frequency increases the peak height is delayed in the cycle

due to the increasing dominance of inertial effects of both the ball and fluid. The

slower simulations show a quite extreme double peak in height, the ball opens

nearly as high as it does when first opening. Rather than a second opening these

simulations show a reduced height at the peak pressure. This height set back is

due to vortex formation above the valve. The faster simulations reach a much

larger peak height. As the frequency increases the double peak effect is reduced.

The fastest simulation tested shows no second peak as the vortex does not have

time to form.

Figure 2.12: Double peak behaviour, 160Hz, 80Hz, 40Hz, 5Hz, 2.5Hz, 1.25Hz,
normalised to periods
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The vortex can be clearly seen in Figure 2.13. The vortex sits over the ball in-

creasing the pressure on is upper surface, this causes the ball to close slightly, thus

accelerating the flow in the gap region further feeding the vortex, this feedback

effect is seen in the 40Hz simulation (blue) Figure 2.12.

Figure 2.13: Vortex well established above ball in 1.25Hz simulation
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Chapter 3

Physics based reduced order

model

Armed with the knowledge gained from simulations a physics based reduced

order model was derived. Initially this effort concentrated on the simpler disk

check valve. Several opening and closing simulations were run using MPAP for

comparison. In order to make the problem more physical and remove boundary

effects the upper boundary condition was changed from the velocity boundary as

described in section 2.3 to a pressure boundary condition. The lower boundary

remains zero pressure. The goal of the reduced order model was to remove

the requirement to run any full fluid structure interaction simulations. This

would allow the model to be generated from simulations that could be run in

OpenFOAM. Initially this work concentrated on the disk valve.

3.1 Preliminary investigations

To predict the disk’s movement, the force acting on it must be calculated. This

force can be calculated by finding the pressure distribution across the surface of
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the disk and integrating over surface area. Theoretical methods to achieve this

were investigated. Non-dimensionalization was also investigated as a method of

maximising the range of valves and fluids the model could be applied to.

3.1.1 Theoretical pressure distribution

Any calculation must account for the change in gap height as the disk moves.

When the disk is very close to its seat the flow rate will be greatly diminished

and viscous effects will dominate. In these viscous flow conditions, the direction

of flow will have no effect on the magnitude force acting on the disk, only its

direction. This is because viscous pressure drop is independent of flow direction.

At larger disk heights and there resulting increased flow rates inertial terms will

be dominant.

To allow direct comparison with MPAP a new simulation was set up using

pressure boundary conditions. This allows a direct comparison between the com-

putational results and the theoretical calculation. The valve geometry was also

extended, moving the upper edge of the domain away from the disk as shown

in Figure 3.1. This removes complex interactions with the boundary conditions

that could not be matched using the basic theoretical calculation.
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Figure 3.1: Extended disk valve geometry. Upper portion of the value is extended
from 2.5mm to 15mm to move the upper boundary away from the disk. All
other dimensions are unchanged, see Figure 2.1. Upper boundary condition is
also changed from velocity to pressure.

Viscous pressure drop

When viscous flow is dominant the flow rate is small, therefore only the pressure

drop in the gap region was considered. There it is assumed there is no pressure

drop above the disk, its upper surface is considered to have a uniform pressure

equal to that at the upper boundary. Likewise, the pressure on the disk above the

throat is assumed to be uniform and equal to that at the lower boundary. These

assumptions will result in the calculated force being larger than the simulated
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one, there will always be a small pressure drop over these regions.

The pressure in the gap region is calculated using a logarithmic drop to ac-

count for the radial flow with increasing cross-sectional area. This is then inte-

grated over the surface area of the disk to calculate the force. This calculation

results in an accurate match for MPAP simulations for small disk height. As the

disk height increases viscous effects become less dominant and the calculation

becomes less accurate as shown in Figure 3.2. At disk heights of 0.01mm or less

the viscous force is a close match. The effect of vortex formation above the disk

is clear, there is a much larger reduction in force due to inertial effects in the

opening flow direction than seen in the closing direction.

Fupper = Pupperπrd
2 (3.1)

Flower = Plowerπrt
2 + π

∫ rd

rt

(
log(r/rd)

log(rt/rd)
(Pupper − Plower) + Plower

)
r (3.2)

Fdisk = Flower − Fupper (3.3)
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Figure 3.2: Calculated force from viscous pressure drop vs simulated

Velocity profile pressure drop

To accurately calculate the force at higher disk heights where inertial terms dom-

inate a different method is required. An equation was found that accounts for

the change of area and velocity profile as the flow travels through the gap, see

Figure 3.3, Equation 3.4 [11]. This equation is derived from first principles as-

suming superposition of viscous wall shear and inviscid ideal diffusion. This

allows the calculation to better match the simulated results. Although in this

case the height of the disk is included in the equation the pressure is assumed

to be uniform across the gap height. The MPAP simulation was sampled to give

the pressure at half the gap height, this should give the best-case match for the

equation.
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Figure 3.3: Calculating pressure distribution as a function of flow rate and ve-
locity profile

P (r)− Pupper
ρŪ2/2

= 24
rd/h

NRh

(
rt
rd

)
ln
(rd
r

)
+ βerf

(
rt
rd

)2

− βe
(rt
r

)2
(3.4)

Ū =
Q

2πrth
(3.5)

Nrh = Ūh/ν (3.6)

This equation is driven by the average velocity at the throat radius (Ū), this

can be easily calculated from the flow rate (Equation 3.5). The Reynolds number

with respect to disk height is also required, see Equation 3.6. Correct selection

of the velocity distribution factor β can result in a close fit to the simulated

pressure drop. The velocity distribution factor must be defined at each point of

the radius. It was found that using three values for β provided a good fit. β is
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defined at rt, rd and halfway between the two, a piecewise linear interpolation

between the three points is then used. A value of β = 1 results in a uniform flow

profile, β = 1.5 would be a parabolic flow profile. It was found that β values of

≈ 2 provided a good fit, see Figure 3.4.

Although a good fit for the pressure drop in the gap was achieved it was found

to be difficult to successfully calculate the pressure drop between the upper and

lower surface of the disk and the pressure acting on the inner disk radius. Correct

selection of values resulted in a good fit for one disk height and one flow direction,

new values were required if either were changed. To get a good fit for a range

of disk heights the values would have to be selected to provide the best match

for a simulation. If a simulation had to be run for each valve height anyway

calculation of the force is unnecessary, a lookup table can be used. Therefore,

this method of force calculation was not taken forward.

Figure 3.4: Half gap pressure vs radial position. Calculated using Equation 3.4
compared to simulation value for the outflow case.
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3.1.2 Buckingham π non-dimensionalization

As theoretical calculations were found to provide poor results a lookup table-

based method was considered. Buckingham π non-dimensionalization is a method

that would allow a minimum number of simulations to be run and provide a

representative sample for similar valves and fluids [12]. For the test valve a

range of simulations could be carried out and a look-up table constructed, the

non-dimensionalization allows this look-up table to also apply to other valves.

Pi parameters

To perform a Buckingham π non-dimensionalization for force and flow rate the in-

dependent parameters must be listed. These are the parameters that, if changed,

would affect the force or flow rate. In this case three parameters define the fluid

properties and the applied pressure; a single geometry parameter is required for

flow rate and three geometry parameters for force. All parameters contain only

three fundamental units: mass, length, and time. This means that force can be

reduced to three non-dimensional parameters (Equation 3.9) and flow rate can

be reduced to a single non-dimensional parameter (Equation 3.10).

Fdisk = F (P, ρ, ν, h, rt, rd) (3.7)

A = 2πrth Q = Q(P, ρ, ν, A) (3.8)

Fdisk
Prt2

= f

(
Prt

2

ρν2
,
h

rt
,
rd
rt

)
(3.9)

Q√
Aµ

= f

(
PA

µ2ρ

)
(3.10)

From simulation data the π parameters can be calculated, and then the un-
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known functions plotted. A line or curve of best fit will allow un-simulated results

to be interpolated. Steady state simulations of the disk valve are used to illus-

trate this below. Flow rate fits a curve well at low disk height values but is poor

for the highest height and resultant larger flow rate, Figure 3.5. Force fits a curve

when the two remaining π parameters are constant (Figure 3.6) but not when

they are varied (Figure 3.7).

Figure 3.5: Flow rate Buckingham π terms, disk valve. Small disk heights provide
good results, poor fit as large disk heights where large flow rates develop.
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Figure 3.6: Force Buckingham π terms, h
rt

and rd
rt

constant, disk valve.

Figure 3.7: Force Buckingham π terms, rd
rt

constant, disk valve.
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3.2 Physical phenomena

The naive reduced order model has two very simple equations. F̄ and Q̄ represent

look-up tables based on Buckingham π theory as described in the previous section.

Equation 3.11 was split into two first order differential equations for disk height.

Those equations where then solved using MATLABs ODE45 tool [13]. As shown

in Figures 3.8 and 3.9 the force and therefore the disk height are a poor match

for MPAP. The force is too large causing the disk to move too fast and shut much

sooner than the simulated valve. The flow rate shown in Figure 3.10 is also a

poor match, it jumps to the steady state value rather than starting at zero.

F̄ (P, h)−mdiskv̇ = 0 (3.11)

Q = Q̄(P, h) (3.12)

Figure 3.8: Disk height naive model
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Figure 3.9: Disk force naive model

Figure 3.10: Flow rate naive model
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3.2.1 Added mass

When the disk is moved some fluid will also have to be moved out of the way and

into the void left behind. This is called added mass. In the case that the disk was

as wide as the tube it travelled in no fluid could get past the disk, thus the entire

fluid would have to be accelerated with the disk. The opposite of this is the disk

in free space which has a added mass coefficient of Ca = 2
π

[14]. This coefficient

is multiplied by the mass of a sphere of equal radius to the disk with the density

of the surrounding fluid. The given value is based on theoretical calculations, it

presents a lower limit in this case due to the proximity of the valve walls. The

equation of motion can be updated to take this into account (Equation 3.14).

This updated equation of motion applies the force to both the disk mass and

the added mass. In order for a direct force comparison with MPAP the force

acting on only the disk must be found, see Equation 3.15. Equation 3.11 then

becomes Equation 3.16. Correct selection of the added mass coefficient results in

an improved disk height fit, see Figure 3.11, force and flow rate are still a poor fit

Figures 3.12, 3.13. The step change in force is due to the removal of the added

mass when the disk becomes stationary.

madded = Caρ

(
4

3

)
πrd

3 (3.13)

F̄ (P, h)− (mdisk +madded)v̇ = 0 (3.14)

Fdisk = F̄ (P, h)
mdisk

mdisk +madded

(3.15)

F̄ (P, h)
mdisk

mdisk +madded

−mdiskv̇ = Fdisk −mdiskv̇ = 0 (3.16)
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Figure 3.11: Disk height, added mass model

Figure 3.12: Disk force, added mass model
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Figure 3.13: Flow rate, added mass model

3.2.2 Damping

If under zero flow rate the disk was manually moved there would be a resistance to

movement. This is damping, the disk-seat-system is acting like a dashpot. Unlike

an ideal dashpot the geometry of the valve changes significantly as the disk moves

towards the seat. After a little trial and error the effect of the changing geometry

was found to be proportional to 1
h3

, this is the ’squeezing’ effect as fluid must be

quickly forced out the gap region as it becomes increasingly small. This is again

included in the force Equation 3.17. The damping coefficient c is chosen for best

fit, this results in improved force and disk height fit, see Figures 3.15 and 3.14.

Flow rate remains a poor fit, Figure 3.16.

Fdisk = F̄ (P, h)
mdisk

mdisk +madded

− vc 1

h3
(3.17)
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Figure 3.14: Disk height, damping model

Figure 3.15: Disk force, damping model
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Figure 3.16: Flow rate, damping model

3.2.3 Fluid inertance

To improve the flow rate results the fluid mass must be accounted for. Just as

with solids the fluid must start at zero flow rate and accelerate proportionally

to its mass. Fluids however may not be moving at a uniform velocity, so it

is much harder to calculate their inertance. To make the comparison easier a

range of MPAP simulations were done with the disk at a fixed height, this allows

the reduced order model to be simplified. The look-up table for flow rate is

inverted such that Q̄(P, h) becomes P̄ (Q, h). The change in flow rate can then

be calculated, Equation 3.18. This is then solved as the third equation in the

MATLAB ODE45 tool. Figure 3.17a shows that the acceleration and viscous

pressure drop always add up to the total pressure drop applied at the boundary,

200kPa in this case. The flow rate shown in Figure 3.17b is initially a good fit

but reaches steady state much faster than the simulation. This is due to the
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formation of the large vortex as seen in Figure 2.5. This vortex causes a large

increase in the fluid inertance that is not accounted for in the reduced order

model.

Q̇ =
P − P̄ (Q, h)

I
(3.18)

(a) Relationship between viscous and accel-
eration pressure drop

(b) Flow rate

Figure 3.17: Fluid inertia, fixed disk at 0.24mm

The flow rate also influences the force acting on the disk. This is due to the

developing flow causing a pressure to change. The force however does not start

at zero, it may be more or less than its steady state value. It was found a good

approximation for this initial force is the average between the magnitude of the

steady state force at the pressure being tested and its negative. This results in

Equation 3.19. The force is then scaled by the ratio of P̄ (Q, h) to P so the force

reaches its steady state value at the same time as the flow rate. Fdisk therefore

becomes Equation 3.20. This results in an improved force fit for both the static

and dynamic valve, Figure 3.18 a and b. The disk height is still a good fit (Figure

3.19) and the flow rate is much improved (Figure 3.20).

Finital =
|F̄ (P, h)|+ |F̄ (−P.h)|

2
sign(F̄ (P, h)) (3.19)
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Fdisk =

(
Finitial

(
1− P̄ (Q, h)

P

)
+ F̄ (P, h)

P̄ (Q, h)

P

)
mdisk

mdisk +madded

− vc 1

h3
(3.20)

(a) Fixed disk at 0.24mm (b) Moving disk, closing

Figure 3.18: Force on disk with fluid inertia term

Figure 3.19: Disk height, fluid inertia model

55



Figure 3.20: Flow rate, fluid inertia model
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3.2.4 Displacement flow rate

If under no pressure the disk was moved it would not only need to overcome the

damping of the fluid but would cause a resultant flow rate through the valve.

This flow rate will have the same velocity as the disk but may not have the

same area. Not all the fluid moved by the disk will exit the domain, some may

circulate internally, Figure 3.21. The area of the displacement flow rate is defined

by an effective radius r. The inertia of this fluid mass is accounted for by the

added mass. The force it causes is accounted for as the damping force. The

displacement flow rate is therefore simply added to the previously calculated

flow rate outside of the ODE45 solver. It is assumed the displacement flow rate

has no effect on force or disk movement. The addition of the displacement flow

rate further improves the flow rate in both opening and closing tests. Once the

opening valve reaches the end of its travel the jump in flow rate is replicated.

Qdisplacment = vπr2d Qtotal = Q+Qdisplacment (3.21)

Figure 3.21: Displacement flow rate
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(a) Opening (b) Closing

Figure 3.22: Displacement flow rate

3.3 The reduced order model

The final reduced order model incorporates all the effects above to provide a close

match for MPAP results. The model requires a look-up table for force and flow

rate based on steady state simulations. Five variables must be defined to allow

best fit. These values have been chosen to provide the best fit to MPAP dynamic

simulations.
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ḣ = v

v̇ = f1(P, h, v,Q) f1(P, h, v,Q) =
f3(P, h, v,Q)

mdisk

Q̇ = f2(P, h,Q) f2(P, h,Q) =
P − P̄v(Q, h)

I

Fdisk = f3(P, h, v,Q)

f3(P, h, v,Q) =

(
Finitial

(
1− P̄ (Q, h)

P

)
+ F̄ (P, h)

P̄ (Q, h)

P

)
mdisk

mdisk +madded

− vc 1

h3

Finital =
|F̄ (P, h)|+ |F̄ (−P.h)|

2
sign(F̄ (P, h))

madded = Caρ

(
4

3

)
πrd

3

Qtotal = Q+Qdisplacment Qdisplacment = vπr2d

Ca = 3.6 c = 2.74752e−13 I = 1.4125e6
kg

m4
rd = 1.2mm
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3.4 An alternative derivation

An alternative derivation that may be more intuitive to the reader was also found.

This approach splits the force required to move the disk into a solid and a fluid

force. That is the force to move the mass of the disk itself and the force required

to move the fluid out of the disk’s way.

Total force is the sum of that acting on the fluid and solid.

Ftotal = Ffluid + Fsolid (3.22)

Solid acceleration applies the solid force to only the solid mass.

a =
Fsolid
mdisk

(3.23)

Fluid acceleration applies the fluid force to the fluid, including the damping

term.

Q̇ =

(
Ffluid−Fsteady

πrd2

)
Idisp

=
Ffluid − Fsteady

Idispπrd2
Fsteady = vc

1

hcpower
(3.24)

Q̇ = aπrd
2 =

Fsolid
mdisk

πrd
2 (3.25)

The two Q̇ equations are then equated and Ftotal − Fsolid substituted in for

Ffluid.

Ftotal − Fsolid − Fsteady
Idispπrd2

=
Fsolid
mdisk

πrd
2 (3.26)
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This can then be solved for Fsolid.

Fsolid = (Ftotal − Fsteady)
mdisk

mdisk + Idispπ2rd4
Fsteady = vc

1

hcpower
(3.27)

This approach replaces original added mass term with displacement inertance.

This can be seen by substituting Equation 3.15 and Equation 3.27.

madded = Idispπ
2rd

4 (3.28)

3.5 Results

3.5.1 Obtaining parameters from fixed simulations

For the reduced order model to match the MPAP results five variables are re-

quired: Inertance I, Added mass coefficient Ca, Damping factor c, Damping

power cpower and displacement radius rd. It is desirable to obtain these values

from non fluid structure interaction simulations. This removes the need to run

full fluid structure interaction simulations to give benchmarks for manual param-

eter selection. This chapter outlines two simulations that allow all the required

variables to be derived.

Added mass, damping force and displacement radius

In order to calculate the force and flow rate caused by the disk’s movement

a steady state simulation can be used to approximate the resultant fluid flow.

Zero pressure is applied at the top and bottom of the domain and a constant

velocity boundary condition applied to the disk for both the opening and closing

case (Figure 3.23a). This is a snapshot of the disk moving through the domain,
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however it is non-physical as the disk does not move. The flow would never

reach the steady state simulated here due to the movement of the disk. It was

found however that the steady state solution provides good results when used

in the reduced order model. A range of disk heights were run at a range of

boundary condition velocities. These velocities were chosen to cover the range of

disk velocities seen in the dynamic simulation.

(a) Boundary conditions (b) Fluid velocity

Figure 3.23: Velocity boundary condition simulation

The damping force can then be found directly from the force on the disk. The

force is shown in Figure 3.24, points show the force from the simulation and lines

show the fit of the equation used in the reduced order model with the parameters

calculated for the best fit. Although the equation provides a good fit if sufficient

data points are gathered a look up table can be substituted for an exact match.

Fdamping = −vc 1

hcpower
c = 4.7734e− 12 cpower = 2.838 (3.29)
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Fdamping = ¯Fdamping(h, v) (3.30)

Figure 3.24: Damping force vs disk height. Points show simulations, lines show
the fit resulting from Equation 3.29. The left hand side of the graph simulates
the disk moving away from the seat as the value opens and the right hand side
simulates the valve closing as the disk moves toward the seat.

The flow rate out of the domain caused by the velocity boundary condition

can be used to calculate the displacement radius. The radius can be clearly seen

in Figure 3.23b, the split between fluid flowing through the inlet and round the

disk is clear. This split location is the displacement radius. It was found that a

constant value of radius provides a good fit, however in this case as all the data

had been collected a look up table was used (Figure 3.25).

Qdisplacment = vπr2d rd =

√
Q

vπ
rd = 1.91864mm (3.31)
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rd = r̄d(h, v) (3.32)

Figure 3.25: Displacement flow rate vs disk velocity

The added mass coefficient can then be calculated from the total kinetic

energy of the fluid. The added mass is the mass that when moved at the same

speed as the applied boundary condition velocity would provide the same kinetic

energy. In this case the results found do not fit a constant value so either a one

dimensional look up table with respect to height can be used or a two dimensional

look up table with respect to both height and velocity, Figure 3.26.

E =
1

2
ρπ

∫∫
D

rvmagnitude
2 dy dr ma =

2E

v2
Ca =

ma

4
3
ρπrd3

(3.33)

Ca = C̄a(h) Ca = C̄a(h, v) (3.34)
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Figure 3.26: Added mass coefficient vs disk height

Inertance

Inertance can be calculated in two ways. The first method requires a fixed geom-

etry transient simulation. This is the same simulation as run for the initial force

calculations, an instantaneous constant pressure differential applied across the

domain with the disk held in a fixed location. The inertance is then calculated

from the change in flow rate, this is done by finding the initial gradient of the

flow rate (Figure 3.27). The average inertance was calculated to be 1508200 kg
m4 .

I =
P

Q̇
(3.35)
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(a) valve opening (b) valve closing

Figure 3.27: Flow inertance initial gradient method

The second method is to calculate the steady state inertance from a steady

state simulation. This has the advantage of utilising simulations that have been

run anyway for force calculation and eliminating the need to run transient sim-

ulations. The resulting steady state inertance is less applicable to modelling

dynamic behaviour but has still been shown to provide good results.

Figure 3.28 shows a comparison between the two methods. Each method

results in different values with a different trend, but both provide values of a

similar scale. The steady state inertance is larger at larger disk heights due to

the formation of a vortex. As a wide range of data is available a single inertance

value can be substituted for a look up table.

E =
1

2
IQ2 I =

2E

Q2
(3.36)

I = Ī(h, v) (3.37)
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Figure 3.28: Flow inertance calculation methods comparison
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Complete reduced order model

The lookup tables for model variables derived in the preceding section are then

substituted into the reduced order model, resulting in the final formulation.

ḣ = v

v̇ = f1(P, h, v,Q) f1(P, h, v,Q) =
f3(P, h, v,Q)

mdisk

Q̇ = f2(P, h,Q) f2(P, h,Q) =
P − P̄v(Q, h)

Ī(h, v)

Fdisk = f3(P, h, v,Q) f3(P, h, v,Q) = Fsolid

Finital =
|F̄ (P, h)|+ |F̄ (−P.h)|

2
sign(F̄ (P, h))

Ftotal = Finitial

(
1− P̄ (Q, h)

P

)
+ F̄ (P, h)

P̄ (Q, h)

P

Fsolid =
(
Ftotal − ¯Fdamping(h, v)

) mdisk

mdisk + ¯Idisp(h, v)π2rd4

Qtotal = Q+Qdisplacment Qdisplacment = vπr̄(h, v)2

3.5.2 Opening and closing the valve

This finalised reduced order model was then tested against the original MPAP

results as showing in Figures 3.29 and 3.30. The new method of deriving param-

eters from simulations results in a fit as good as that achieved when selecting

parameters manually for best fit (also shown in Figures 3.29 and 3.30). This
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shows that the reduced order model can be fully derived from steady state and

transient simulations with fixed geometry. There is no requirement to run fluid

structure interaction simulations where the disk is moved by the fluid.

Figure 3.29: Updated model closing. Parameters derived from simulations vs
those manually selected for best fit.
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Figure 3.30: Updated model opening. Parameters derived from simulations vs
those manually selected for best fit.

3.6 Limitations

There are several limitations to this approach, it is possible to get a good fit using

only fixed geometry simulations. However, a larger number of steady state and

transient simulations must be run. Each simulation requires different boundary

conditions to be set, this is a significant effort. More complex transient behaviour

is missed completely from the steady state simulations that make up the majority

of the lookup tables. Several methods for improving the reduced order model were

considered but none provided satisfactory results.

No formulation could be found to include spring force holding the valve shut.

The increased opening force resulting from the addition of a spring also increases

the flow rates and velocities in the values, these moves the flow further from the

steady state data set the reduced order model largely based on.
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3.6.1 Displacement flow rate

An improvement would be to consider the interaction of flow rate and displace-

ment flow rate and the resulting effect on inertance and added mass. An investiga-

tion was done to see if the steady state values for displacement flow rate represent

the dynamic behaviour. Transient simulations where the disk was moved at a

constant speed found that the displacement radius develops with time, Figure

3.31. This is because initially it is much easier for the flow to move around the

disk than out of the domain. The steady state displacement radius is correct

when the flow is only experiencing viscous pressure drop because it has stopped

accelerating. Due to the time it takes for this flow to develop the steady state

displacement radius value is incorrect when it has the largest effect, a fast moving

disk.

So far, a way to model this effect accurately has not been found, using a value

closer to throat radius does improve the flow rate results, but this moves away

from the methodology outlined in the previous section for deriving parameters.

(a) Boundary conditions (b) Displcment radius with time

Figure 3.31: Displacement radius investigation by moving disk a constant velocity
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3.6.2 Ball valve without spring

To further test the reduced order model the ball valve was considered. This valve

was run in opening and closing conditions as a benchmark. The reduced order

model is based on a total of 198 steady state simulations. The parameters for

the reduced order model are derived as outlined in the previous section.

The reduced order model was then compared to MPAP for opening and closing

simulations. Figure 3.33 and 3.32 show closing and opening respectively. Flow

rate is a much poorer fit than seen for the disk valve, which is due to the large

inertance values calculated from the steady state simulations. The large vortex

seen in Figure 2.13 results in a large inertance value, as this vortex takes a

significant time to develop. The valve opens before the vortex has formed and

therefore experiences a much reduced inertance. Manually selecting an inertance

value of one fifth of that calculated from steady state simulations results in a

better fit. Results using the updated inertance are also shown in Figures 3.33

and 3.32, flow rate fit is much improved although some oscillation is seen at very

small flow rates. This estimated inertance could potentially be replaced with a

value derived using the initial gradient method, but that would require running

fixed ball transient simulations. Damping effects are also much reduced due to

the ball valves much more open seat geometry.
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Figure 3.32: Reduced order model opening

Figure 3.33: Reduced order model closing
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Chapter 4

Neural network reduced order

model

Having found the limitations of a physics based approach, it was thought that

rather than running many steady state simulations it may be better to run a

small number of full fluid structure interaction simulations to build a training

dataset. Although these take significantly longer to run there is a reduction

in the manual setup and post processing time associated with running a range

of initial conditions and the unusual boundary conditions presented in section

3.5.1. Neural networks are a method of modelling complex systems based on

such a training dataset. They typically require no physical insight, this work

includes some insight in order to improve the performance for a given network.

4.1 Neural networks

Networks operate as a black box transfer function. A network is made up of at

least one neuron in at least one layer. As the name implies neurons are inspired

by those found in nature, taking several inputs, and returning a single output.
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The properties of the neuron are tuned by two values: a weight and a bias. Each

input value is multiplied by a weight then the bias value added. A simple transfer

function is then applied, and the resulting value passed on to the next neuron

[15].

Multiple neurons are arranged in a series of layers to make up an intercon-

nected network. Each neuron in a layer is connected to each neuron in the

following layer. Where a single neuron receives inputs from several neurons in

the preceding layer each connection has a weight, the weighted values are then

summed, see Figure 4.1. Networks can be interconnected in more complex ways,

for this work only fully connected feed-forward networks were considered. Rel-

atively small networks were found to be sufficient to achieve the goal of this

work, larger networks with many layers and more complex structures are loosely

collected under the umbrella term ”Deep Learning” [16].

Figure 4.1: Single neuron with three input values

Equations 4.1 to 4.3 can be used to evaluate a feed forward network. Input

and output layers are a special case, the layers in-between, if any, are known as

hidden layers and there can be any number of these. The output layer applies a

linear transfer function, see Figure 4.2.
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Input layer: Input is a vector with length of the number of inputs. w1 is a

matrix of size: inputs neurons, hidden layer neurons. Biases b1 and output a1 are

arrays of length hidden layer neurons.

Input layer→ a1 = f (b1 + w1Input) (4.1)

Hidden layer: again b2 and a2 are of length of the number of neurons in the

layer. w2 is a matrix of size: neurons in previous layer, neurons in current layer.

Hidden layer→ a2 = f (b2 + w2a1) (4.2)

Output layer: as above, however no transfer function is applied (a linear

transfer function of one).

Output layer→ out = b3 + w3a2 (4.3)

Figure 4.2: Neural network architecture
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4.1.1 Transfer functions

The transfer function in each individual neuron is selected to suit the problem

and training method, although other transfer functions were experimented with

this work focuses on two. Firstly a hyperbolic tangent sigmoid (Equation 4.4),

commonly known as tansig. The second transfer function used was the rectified

linear unit, commonly known as ReLU (Equation 4.5). Both transfer functions

are shown in Figure 4.3.

Figure 4.3: Neuron transfer functions

tansig (x) =
2

1 + e−2x
− 1 (4.4)

ReLU (x) = max(0, x) (4.5)
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4.2 The reduced order model

The network itself takes two types of input. Firstly, driving variables, in this case

pressure. A more advanced model could have multiple driving variables, fluid

temperature for example. These driving variables are equivalent to boundary

conditions. The second input type is the known state of the valve. This is ball

height, flow rate and integrated kinetic energy of the domain. The rate change

of the known state variables are given as the network output. Unlike long short

term memory (LSTM) networks outputting the rate change of variables allows

(and requires) this model to be used within a external time integration scheme.

This architecture is shown in Figure 4.4, for simplicity each variable group is

shown as a single input and output neuron, in reality there maybe more than one

neuron per group.

Figure 4.4: Simplified network as used in reduced order model

To use the network within a reduced order model the network is evaluated in a

forward Euler integration scheme. This gives a form of continuous-time recurrent

neural network [17]. There are several other methods of modelling time series

data with networks, however in this case the ability to use variable time step

sizes is key for integration into larger system models.
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Figure 4.5: Neural network in reduced order model

Algorithm 1 shows the scheme is implemented in pseudocode.
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Algorithm 1 Network evaluation and integration scheme

procedure evaluation(weight, bias, driving variable, time, ini-
tial conditions)

state[1, :] = initial conditions

for n ← 1, length(time) do
Dt = time(n+1) - time(n)

// network input values, including single delta time multiple
network inputs = [driving variable[n], state[n,:]]

// network input layer with ReLu transfer function
net out = max(0, bias[1]+weight[1]*network inputs)

// evaluate hidden layers
for i ← 1, num layers do

net out = max(0, bias[1+i]+weight[1+i] * net out)
end for

// output layer
net out = bias[2+num layers]+weight[2+num layers]*net out

// forward Euler integration
state[n+1,:] = state[n,:] + net out * Dt

end for

return state
end procedure

4.2.1 Unknown State variables

Some of the valves internal state is captured by the known state variables: ball

height, flow rate and kinetic energy. However, the valve has some additional

state that is not captured by these. Physically one might think of the vorticity

might change how the valve responds, after all vortexes are seen in the simulation
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results. However, knowing the vorticity value of the fluid is does not add value to

the larger system model. Extra known state variables also require extra time to

train as they must be included in the cost function. Rather than including extra

known state variables states with unknown values are added. These are integrated

along with the known state variables giving the network additional ability to

track the systems state. We could think of these unknown states as tracking the

vorticity, or some other physical property, the reality is not so tangible. The

unknown nature of these new states requires that all training simulations start

with the same initial conditions, unknown states are initialised at 0. The updated

structure is shown in Figure 4.6.

Figure 4.6: Network with unknown states

4.2.2 Delta time multiples

In the valve example one of the known network states is ball height, the cor-

responding output is therefore ball velocity. The equation for this motion is

known:

v = v0 + a0∆T +
1

2
j∆T 2 (4.6)

However, a network with the simple feed forward architecture cannot represent
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multiplications of inputs directly. Given enough neurons the network can make

good approximations. As we have some insight into the physical nature of this

problem, we can provide the inputs we know the network will need. This allows

equation 4.6 to be exactly represented by a single neuron with three weights and

no transfer function, Figure 4.7.

Figure 4.7: Neuron representation of Equation 4.6

In reality we do not have exactly the velocity, acceleration and jerk as known

state variables. However, they could be represented in the unknown state vari-

ables. As the representation of the unknown states is unknown all states are

given a ∆T multiple. Training is relied upon to apply zero weighting to those

that are not useful. Any number of ∆T multiples could be used; however, each

adds a significant number of weights that must be trained. In practice one or

two provide a good middle ground, resulting in a network architecture as shown

in Figure 4.8.
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Figure 4.8: Network with unknown states and two delta time multiples

This approach gives the network a ”head start” based on insight into the

physical system but is not a requirement. A larger network could represent

the same equations of motion, however being larger it will also require a longer

training period.

4.3 Training

The values of the network’s weights and biases must be found such that the

network outputs the desired values for given inputs. For even a small network this

results in tens or hundreds of design variables. For example the network shown

in Figure 4.8 has ninety weights and twelve biases for a total of one hundred and

two design variables. All training methods require hundreds of iterations and

more typically tens of thousands. The size of the network must be considered,

a larger network with more neurons and more hidden layers can fit increasingly

complex functions. This comes at the expense of requiring more design variables
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and therefore a longer training time [18]. It is possible to train a network on a

dataset for too long, which is known as over fitting [19]. In that case the network

continues to improve its fit to the training data set but begins degrading its fit

to the underlying function. Some training methods hold back a portion of the

dataset for validation testing to protect against over fitting.

Backpropagation

Backpropagation training takes advantage of the known network architecture to

directly calculate the required change in weight and bias values to move the

network towards the desired output values. This requires that network is feed

forward, and that the neuron transfer function is differentiable. In this work the

Levenberg-Marquardt back propagation method included in MATLAB’s neural

network toolbox was used [20][21]. The tansig transfer function is used, the

training datasets input values must be scaled to ±1. This puts the starting

point of the network on the steep gradient of the tansig curve allowing for rapid

gradient descent.

Common back propagation methods can only train directly on the network’s

output. This prevents training on the complete time integration scheme. The

required output value must be calculated beforehand, and the network trained

to give those values. This method has the advantage that all data points can

be evaluated in parallel. This however results in a fragile model when included

within the time integration scheme. Small errors build up over time moving

the state away from the range of the training data, so the output then quickly

diverges.
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4.3.1 Problem agnostic optimisation methods

Generic optimisation methods can also be used with neural networks, this does

not require any knowledge of the network architecture. This allows nondifferen-

tiable transfer functions and more complex architecture. This also allows complex

cost functions that do not need to train directly on the network output. With

generic training the ReLU transfer function is preferred, this has two advantages.

Firstly, there is no constraint on the magnitude of either input or output value,

this removes the need to pre-scale the training data set. Secondly the function

is quicker to evaluate, with tens of neurons, thousands of data points, and tens

of thousands of iterations the transfer function is evaluated millions of times.

Saving a couple of floating-point operations and the exponential required for the

tansig function can save hours from the total training time. When evaluating the

network, the array of design variables from the optimisation must be converted

into a network structure of weights and biases.

In Situ cost function

Generic optimisation methods allow an in situ cost function to be used. This

evaluates both the networks performance and that of the time integration scheme.

This removes any build-up of errors over time and ensures a stable model. This

also allows the network to cancel out any inaccuracy caused by the integration

scheme. The disadvantage of this method is the extra time required to calculate

the cost value; each training data set must be run in series from start to end.

Figure 4.9 gives an example of cost function, the area between the target output

and current output is cost value. This cost function is the same as the final use

case of the network within the time integration scheme.
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Figure 4.9: Cost calculated from the integral of the difference between the data
and simulation

If there are several known state values, the cost of each is summed. In the

case of a valve this might be ball height and flow rate. A weighting must be

applied to the cost of each output variable to normalise them relative to each

other, this stops the optimisation favouring one output over another because it

happens to have a larger value due to the units used. An alternate approach,

that was not considered in this work, is a multi-objective optimisation method

[22].

Genetic Algorithm

Expanding on the natural origins of neural networks genetic algorithms were

initially used for network training. Genetic algorithms are inspired by natural

selection, a population of possible networks are all evaluated [23]. The best of each

generation is taken forward and the worst removed. Initially the MATLAB GA

tool was used, for greater flexibility and speed a custom algorithm was developed
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[24]. The initial population is randomly generated. Genetic algorithms utilise

several ways to manipulate the population to explore the design space. The

population is first sorted from best to worst. The best is always kept unchanged.

A set percentage of the population is discarded using a randomised selection

process preferring to discard lower performing individuals. Children are then

generated from the remaining population to restore the original population size.

These children are made up of a random number of values from each of two

random parents. The whole population is then mutated slightly, except the best

individual. Figure 4.10 shows an example convergence, the cost is initially very

rapidly improved, the improvement then levels off towards a local minimum.

A mutation develops that moves out of the local minimum and it eventually

converges to a second minima. There is a small improvement in almost every

iteration however the improvement is so gradual that it is impractical to run the

algorithm long enough that it gets stuck completely.

One of the limitations of this method is that many different combinations of

network values can produce the same result. For example, a network with two

neurons in a single layer will give the same output if the weights and biases of

each neuron is swapped. A child of two such good networks made up of one

neuron from each parent results in a much worse fit.
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Figure 4.10: Convergence of genetic algorithm, improved generations in dark
blue, no improvement in light blue

One method tested to improve the speed of training is to initially train on

a smaller network with fewer neurons. As the optimisation begins to reach a

minimum a new neuron is added allowing it to move past that limit. Although

this does not improve the fit for a given network size, it was hoped that the

initial fit would be sped up because it is done on a smaller network. This is a

type of Topology and Weight Evolving Artificial Neural Network (TWEANN)

[25]. Figure 4.11 shows the evolution, initially the populations is dominated by

networks with a single neuron. Quickly these die out and are replaced by more

complex networks, in this example the maximum network size was limited to

fifteen neurons. After one thousand generations this largest network becomes

dominant.
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Figure 4.11: Number of neurons in population vs generations for a TWEANN
algorithm. Initially the whole population is made up of networks with only
a single neuron, as the population evolves neurons are added allowing a more
optimal solution to be found. As the optimisation progresses larger networks
begin dominate. In this case the maximum network size was limited to fifteen
neurons.

More complex optimisation methodologies were also tested, one of which

was NeuroEvolution of Augmenting Topologies (NEAT) [26]. This is a type

of TWEANN, giving the genetic algorithm more control over the network ar-

chitecture. Rather than just adding neurons NEAT allows links to be added

and removed, including loop backs such that the network may no-longer be feed

forward only. It was found that more complex algorithms would increase the

per generation cost value improvement, but at the expense of longer execution

times per generation. Due to this more advanced methods resulted in little or no

improvement for a fixed training period. This effect is very problem dependant,
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in this case the genetic algorithm update took a significant proportion of the

evaluation time. Problems with larger datasets where cost evaluation dominates

execution time will greatly benefit from more advanced optimisation schemes.

Particle Swarm Optimisation

In the hope of speeding up the training process Particle Swarm Optimisation

was investigated [27]. This proved to train faster than the genetic algorithm

providing equivalent results. Particle Swarm Optimisation overcomes the short

comings of genetic algorithms approach to combining two parents that does not

apply well to a neural network use case. Genetic algorithms population becomes

a swarm in particle swarm terminology, both refer to the pool of candidate solu-

tions. Each particle within the swarm is initialised at a random position with a

random velocity vector, each an array whose size is the number of dimensions of

the problem. As each iteration is run the best result of each individual particle

is recorded along with the overall best of the whole swarm. The velocity of each

particle is then updated to be the last velocity plus some velocity towards the

particles best and some velocity towards the swarm’s global best. Each of these

velocities has a scale factor. The factor applied to the particles last velocity is

called inertia, the personal and global best also each have a coefficient. These

scale factors are set to balance exploration where the particle has a high inertia

and tends to keep moving in one direction and exploration where the particle is

drawn toward the global best and exploits that local area. Typically, an optimi-

sation will be run with a high initial value of inertia and reduce it over the course

of the optimisation. This allows the swarm to cover a wide area initially and

then concentrate all particles around the global best as the optimisation begins

to converge, this is known as inertia damping. Algorithm 2 gives pseudocode for

the PSO algorithm used in this work, the full implementation can be found in
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the appendix.

Algorithm 2 Particle Swarm optimisation pseudocode - part 1

// randomly initialise particle position and velocity
position = rand(swarm size, number of dimensions)
velocity = rand (swarm size, number of dimensions)

// variables to store the best position and cost
best position = nan [swarm size, number of dimensions]
best cost = inf [swarm size]
global best position = nan [number of dimensions]
global best cost = inf

for i← 1, max iterations do

// evaluate the whole swarm
for j← 1, swarm size do

cost = cost function(position[j])

if cost < best cost[j] then
// update particle best
best cost[j] = cost
best position[j] = position[j]

if cost < gloabal best cost then
// update global best
global best cost = cost
global best position = position[j]

end if
end if

end for

if gloabal best cost < target then
return global best position

end if
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Algorithm 2 Particle Swarm optimisation pseudocode - part 2

// calculate velocity contributions
inertia velocity = velocity ∗ inertia
best velocity = best position ∗ best coefficient
global velocity = global best position ∗ global best coefficient

// update velocity and position
velocity = inertia velocity + best velocity + global velocity
position = position + velocity

// update inertia to move towards exploitation
inertia = inertia * damping

end for
return global best position)

The PSO was found to give good results, at least as good as the genetic al-

gorithm in less training time. Several alternate variations on PSOs were also

tested, for example Quantum Delta-potential-well-based Particle Swarm Opti-

mization (QDPSO) [28]. These variations did result in performance equivalent

or better to the standard PSO algorithm for a fixed number of iterations. How-

ever, as seen with the genetic algorithm, due to the additional complexity those

iterations would take longer. This realisation prompted a review of the PSO and

cost evaluation function with a view to improving efficiency. Staying within the

MATLAB environment this re-work concentrated on removing unnecessary op-

erations and vectorising calculations. Investigation was done into parallelisation;

it was found that for relatively small swarm sizes of a few hundred parallelisation

provided little additional benefit with more than four workers.

Multiple swarms

Both the testing done with the genetic algorithm and particle swarm showed

variable results. The optimisation would have to be run several times to get two
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good results, occasionally getting very good results but more often a poor fit.

This variation between runs is due to the random nature of the initial starting

points. This hit and miss training also makes it difficult to evaluate algorithm

changes as several runs are needed to give a fair comparison. This variation along

with reaching the limit of parallelisation improvements spurred an investigation

into methods running multiple particle swarms in parallel.

As with the PSO itself several more complex methods were tested before

settling on a relatively simple scheme. Several swarms are set off, in this case eight

each with four workers for parallel cost function evaluation. Each of these swarms

keep running until they fail to improve for a set number of iterations. These

swarms then return their best results to a management function. If the result is

the best seen so far, the swarm is re-started keeping its previous particle positions,

but its particle velocities and inertia are re-set. The MATLAB implementation

for this can be found in the appendix. This restarts an exploration phase around

the previous best. If the swarm is stuck and does not have the best result so

far it is restarted completely fresh. Figure 4.12 shows such a parallel swarm

optimisation. The blue line ahead of the others on the far right is the global

best, because of this it has the most iterations. The ending point of the lines

show the variability of a single swarm optimisation, it also shows several swarms

do reach very similar results. This parallel approach to the optimisation ensures

repeatable results. It was found to be more convenient to pick a run-time limit

than specify some acceptable cost threshold for completion.
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Figure 4.12: Convergence of parallel swarms, cost vs swarm iterations
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Chapter 5

Neural network based reduced

order model of ball valve

The neural network model was applied directly to the ball valve with spring.

This is a more realistic valve including double peak behaviour that could not be

picked up by the physics based model using steady state data alone. The neural

network approach also struggles to capture the step change in flow rate seen in

the disk valve as the disk reaches its software enforced upper limit. This step

change is a limitation of the simulation model, the addition of the spring removes

it. Valves are used with no spring; however, they still require a mechanical stop

that is not reflected in the simplified geometry explored in this work. Such an

upper stop would show a similar damping effect to that seen between the ball

and seat; this also results in a smoothing of the step change in flow rate that

would be easier for a neural network to represent.
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5.1 Network architecture

The network architecture is show in Figure 5.1. Pressure is the driving variable.

Ball height, flow rate and kinetic energy are the known state variables, two un-

known state variables are used. A hidden layer of fifteen neurons was used. This

network contains two hundred and forty weights and twenty biases for a total of

two hundred and sixty design variables. This network size gave the best results

for this problem, a number of different network sizes were also tested, this is

explored in section 5.3.2.
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Figure 5.1: Network with a single driving variable, three known states, two un-
known states and a single delta time multiple
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5.2 Results

5.2.1 Training

Training was done on four simulations each with sinusoidal pressure boundary

conditions ranging from 5Hz to 160Hz. This is a reactively small data set by

typical machine learning standards, the serial nature of the cost function evalu-

ation for each simulation makes long simulations prohibitively time consuming

to train. To ensure all state variables were weighted equally all data was scaled

to ±1. This removes any tenancy to favour one state over another due to the

units. All data was scaled up-front, this removes the need to scale as part of

the cost function thus speeding up training. Again, to speed-up training the

simulations were limited to two and a half periods, this is enough to capture two

opening and closing cycles of the valve. The number of time steps was also re-

duced. As this network evaluation loop is run millions of times over the course of

a training run significant effort was put in to speeding it up. This was done using

MATLAB coder; the evaluation function was generated as MEX file resulting

in an approximate ten times speed-up. Pre-existing platforms such as PyTorch

and TensorFlow were used as they provided limited frameworks for the In-Situ

training schemes used in this work [29][30]. The cost value was summed for each

training simulation with a scale factor applied to weight each equally independent

of length. This singular cost value was then used with the PSO scheme outlined

in the previous chapter. Figure 5.2 shows the convergence of the training run, in

this case a 32 hour run using 28 workers. The convergence plot shows that many

of the swarms reached low cost values, giving confidence that this result is not a

lucky one off.
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Figure 5.2: PSO training convergence

Fifteen neurons in a single hidden layer were used giving a total of two hundred

and sixty values to be found. Over the course of the optimisation three hundred

and fifty separate swarms were started each with one hundred particles. The

resulting fit is shown in Figures 5.3 to 5.6 training in green and network in red,

the error value of each of the variables is given in Y axis label. The network fits

the training data well, only missing some small oscillations in the open position.
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Figure 5.3: Training simulation - 5Hz

Figure 5.4: Training simulation - 40Hz
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Figure 5.5: Training simulation - 80Hz

Figure 5.6: Training simulation - 160Hz
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5.2.2 Validation

Validation is a step taken to provide a unseen data set to the model this will reveal

over fitting. A model may train to a very low error by learning the training data

set rather than the underlying process, that would result in a poor validation

cost.

To validate the trained model, it was compared against the full-length training

simulations at their original time step size along with four unseen simulations.

Rather than applying the validation throughout the training process the best

particle from each swarm is recorded and the validation check applied as a post

process. Figure 5.7 shows this validation cost compared with the training cost for

networks over the course of the optimisation. As expected, most points are above

the diagonal, their validation cost is worse than training. A couple of outliers

are better at validation than would be expected from there training cost, this

is just random luck. Some points have a low training cost and high validation

cost suggesting those networks may be over fitted. With increased training time

points should move diagonally down toward the origin.
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Figure 5.7: Validation vs training cost for the best particle in each swarm. In
normal training the validation cost would be expected to decrease in sync with
training cost, this results in the diagonal trend with points moving towards the
lower left corner with increased training time. If over fitting the training cost
continues to reduce but the validation cost increases resulting in points in the
upper left corner. Some networks get lucky and have a lower validation cost than
is expected for their training cost resulting in points in the lower right corner.

In this case the best validation network is not the same as the best training

network, although they are very similar. Figures 5.8 to 5.15 shows the best

validation network evaluated on the validation simulations.
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Figure 5.8: Validation simulation - 1.25Hz

Figure 5.9: Validation simulation - 2.5Hz
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Figure 5.10: Validation full length training - 5Hz

Figure 5.11: Validation simulation - 20Hz
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Figure 5.12: Validation full length training - 40Hz

Figure 5.13: Validation simulation - 60Hz
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Figure 5.14: Validation full length training - 80Hz

Figure 5.15: Validation full length training - 160Hz
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5.2.3 Testing

Several test simulations were run to evaluate the performance of the validated net-

work on unseen simulations. Firstly, sinusoidal simulations at unseen frequencies.

As expected from validation testing the network fits well for the unseen simu-

lation at 107Hz, this is within the frequency range of the training data (Figure

5.16). Evaluating at a higher frequency of 321Hz shows a good fit is no longer

maintained (Figure 5.17). This frequency is significantly higher than the highest

frequency seen in training, it is unrealistic to expect the network to maintain a

good fit to a frequency higher than that seen in the training. As shown by the

validation testing the network does work well for frequencies lower than that seen

in the training. If the lowest frequency in the training data set approaches steady

state it is reasonable to also expect a good fit at any lower frequency.

Figure 5.16: Test - 107Hz
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Figure 5.17: Test - 321Hz

A superimposed sine and cosine simulation shows the network can represent

more complex behaviour (Figure 5.18). Both long events holding the valve open

and very brief openings are correctly represented.
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Figure 5.18: Test - superimposed sine and cosine

Five opening simulations were run using a range of constant pressures (Figure

5.19 to 5.23). These show the network responds accurately to constant pressure

inputs despite being only trained on sinusoidal data. Lower pressure events are

also accurately represented despite a relatively small amount of the training data

being at low pressures.
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Figure 5.19: Test - opening 20% of max pressure

Figure 5.20: Test - opening 40% of max pressure
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Figure 5.21: Test - opening 60% of max pressure

Figure 5.22: Test - opening 80% of max pressure
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Figure 5.23: Test - opening 100% of max pressure

A limitation of unknown states is the requirement to always use the same ini-

tial conditions. This prevents testing valve closing directly with the ball starting

in a raised position. Instead, some smoothed impulses were used to first open the

valve and close it with a constant pressure, Figures 5.24 to 5.27. Again, these

show a good fit proving the versatility of training on sinusoidal simulations.
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Figure 5.24: Test - fast impulse 50% of max pressure

Figure 5.25: Test - fast impulse 100% of max pressure
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Figure 5.26: Test - slow impulse 50% of max pressure

Figure 5.27: Test - slow impulse 100% of max pressure
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5.2.4 Time step robustness

To evaluate the network performance at a range of time step sizes the training

simulations were evaluated with a reduced time step. Note that all four training

simulations already had different time step sizes. The model was not stable for

all training simulations at any larger time step. With a smaller time step size the

error does increase, it converges to just over thirty percent increase as time step

size is reduced (Figure 5.28). It is expected that the error increases as we move

away from the training data, this shows the scheme compensates somewhat for

the time step size used, if this was not the case the error would reduce with time

step. This increase seems quite large however this is relative to the original small

cost value. Plotting all evaluations shows a good fit to the training data is still

maintained (Figure 5.29).

Figure 5.28: Error percentage with decreasing time step size
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Figure 5.29: Model response with varying time step size, 80Hz

5.3 Investigation of alternative architecture

5.3.1 Number of unknown states variables

To verify the benefit of unknown state variables several networks were trained

with a varying number of unknown states. All networks were trained with the

same PSO scheme for a fixed time period. A network with only a single known

state, the flow rate, was tested first. With fewer known states additional unknown

states should provide more benefit. This benefit is clearly shown, each additional

unknown state improves the training result, until reaching four unknown states

(Figure 5.30). The network with three known states, ball height, flow rate and

kinetic energy integral, shows a similar improvement with one and two states but

degradation at three. This degradation starts at a similar number of total states

with more than five total known plus unknown states. Each additional state
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adds several additional weights to the network making it harder to train. This

decrease in effectiveness is most likely due to the use of a fixed training duration.

Figure 5.30: Training cost vs number of unknown state variables. Training cost
is the sum of the cost for each training simulation.

5.3.2 Network size

This work concentrates on relatively small networks, to explore the effect of

network size testing was done with a varying number of neurons. Networks with

a single hidden layer of ten, fifteen and twenty neurons were trained using the

PSO scheme for a fixed period. Multiple hidden layers were not investigated

in depth as part of this work, initial testing gave poor results so the focus was

kept on single layer networks. As outlined in section 4.2.2 only a single layer is

needed to represent higher order solutions. Again, varying numbers of unknown

states were tested. All networks give a very similar result with no unknown

states, this suggests the limitation is the input data to the network (Figure 5.31).

With a single unknown state both fifteen and twenty neurons show a much larger
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improvement than ten neurons, this suggests the ten-neuron network is reaching

the limit of what can be represented with so few neurons. Again, all networks

show a degradation with higher numbers of hidden states. This is thought to be

due to the fixed training time.

Figure 5.31: Training cost vs number of unknown state variables and network
size
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Chapter 6

Dynamic system simulation

Amesim is modelling and analysis software available under the Simcenter family

of simulation tools from Siemens [31]. Originally developed for use in the oil and

gas industry it is now also widely used in aerospace and automotive sectors [32].

Amesim uses a bond graph representation for multi domain systems, readers may

be more familiar with Simscape from MathWorks, it provides a similar graphical

representation of complex systems [33].

Amesim is used at Schaeffler for modelling engine lubrication systems, of

which the valves considered in this work are a small part. Individual compo-

nents are modelled with a relatively simplistic set of equations; however, the

overall system model gives meaningful results. To improve the fidelity of models

the methods explored in this work have been implemented as blocks in Amesim

allowing for drop-in replacements for the existing blocks.

6.1 Workflow

MATLAB was used extensively in the development of the reduced order methods;

it was a simple choice to use the integrated MATLAB and Simulink support
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within Amesim. This is by no means the only way in which this functionality

could have been implemented. As a first step a Simulink model was made to

evaluate a trained neural network and the results of this model were checked

against the existing evaluation code. This Simulink model was then exported

into Amesim. Amesim 17 was used, but the workflow should be similar newer

versions. For compatibility with Amesim 17 MATLAB R2018a was used.

6.2 Simulink

A combination of basic blocks and a custom function were used to evaluate a

trained neural network, the same approach could also be applied to the physics

based reduced order model. Basic constant, addition and scaling blocks are

used to convert to and from the normalised values used by the network. A

memory block returns its input value from the previous time step, they are used

to provide the time history of the state variables and calculate the time step

size. This removes the need for Amesim to provide a time history to the block.

Amesim only supports a single input and output node, so the required variables

are combined into an array using a mux block (Figure 6.1).

Figure 6.1: Simulink model evaluation
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6.3 Software integration

Importing the Simulink block into Amesim is straight forward once the envi-

ronment is setup correctly. For compatibility between Amesim and Simulink

both must use the same compiler, to achieve this Microsoft Visual C++ 2013

was installed and both Amesim and Simulink configured to use it. MATLAB

is then launched from the Amesim menu, this loads the Amesim libraries. The

sl2amecosim command is then used. The exported block then must be added to

the Amesim block libraries path. The block can then be used in any model.

6.4 Comparison with built in models

A comparison to a basic valve block makes a simple example of the complete

workflow. A training data set was generated using a Amesim ball valve block

with a sinusoidal pressure change at a range of frequencies (Figure 6.2).

Figure 6.2: Training data set generated from Amesim
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A neural network was trained on this data set using a single hidden layer of

twenty-five neurons and three unknown state variables (Figure 6.3). Training

completed quicker than that performed on data sets generated from CFD sim-

ulations. It is thought this is because the data is generated from a fixed set of

equations within Amesim, while more complex flow behaviours seen in CFD are

not captured by these equations.

Figure 6.3: Network input and output variables, note: reduced number of neurons
shown in hidden layer, true network used twenty-five neurons

This network was then included in the Simulink block and in turn imported

into Amesim. This allows both the original valve block and the trained model to

be compared within the same simulation (Figure 6.4).
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Figure 6.4: Original Amesim block and imported custom model

An evaluation of the error at different time step sizes was done to test the

robustness of the scheme. Unlike the previous example the same time step size

was used for all training data sets. The trained network shows very poor results

for larger time steps than those used in the training data. As might be expected

the lowest error is seen when the network is evaluated at the same time step size

as it is trained at (Figure 6.5).
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Figure 6.5: Error at a range of time steps

Faster simulations see error increasing as the time step is reduced, but in all

cases this converges to a steady value. Figure 6.6 shows the degradation is seen

at the point which the valve closes and at the point of flow reversal. This is the

fastest simulation tested and shows the worst degradation.
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Figure 6.6: Degradation with reduced time step 160Hz

If the training data set were to include a range of different time step sizes

it is hoped that this degradation could be minimised. Including input variables

scaled with time step proved not to help in this case, again it is thought this is

due to the constant time step size used across all training data.
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Chapter 7

Conclusions

Firstly, methods for producing high resolution models of valves were investigated.

Two one-way valves were introduced: a disk valve and a ball valve. The disk valve

was used to benchmark MPAP against OpenFOAM using steady state simula-

tions. MPAP was then used to investigate the dynamic behaviour of the ball

valves. As a result, high resolution models were available for benchmarking and

training the reduced order models developed in later chapters. The second chap-

ter presents a physics based reduced order model. This combines several physical

phenomena to build up a model that can accurately reproduce the dynamic be-

haviour of the disk valve based on only steady state simulations. This removes

the need for advanced simulation tools to run FSI simulations. However, this

methodology proved less effective when applied to the more complex flow be-

haviour seen in the ball valve. In that case the steady state simulations were

a poor representation of the dynamic behaviour. The third chapter describes a

neural network approach. This came from the realisation that if one had to run

FSI simulations to derive parameters for an accurate physics-based model then

one could use those simulations to train a network with no requirement for phys-

ical insight. The proposed network architecture is described, and three training
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methods compared. Chapter four applies the methodology outlined in the pre-

vious chapter to the ball valve. The training, validation and testing results are

presented. An investigation into different network architectures was performed.

The fifth chapter applied the neural network methodology to a new valve example

problem. A workflow is outlined that can be used to train a model and include

it as a component in a larger system simulation.

7.1 Achievements and observations

The main objective for this research was to develop a methodology for deriving

improved reduced order models for the complex behaviours seen in real world one-

way valves. A workflow to achieve this was presented in the previous chapter,

it is hoped that this methodology will be put to use at Schaeffler allowing for

improved modelling of larger oil systems.

7.2 Future work

The physics based neural network is very tightly linked to the one-way valves con-

sidered in this work. On the other hand, the neural network approach presented

could be applicable to wide range of physical systems. Further work into the

effectiveness of the presented approach to other problems with driving variables

and a requirement for variable time step sizes would be valuable. Extending the

methodology to other fluid systems such as pumps, and actuators could be a first

step. Applying a multi objective optimisation methods to the training of the

reduced order model could also show some improvement. Investigation into the

selection of training data sets could be done with a view to covering the widest

range of conditions with the smallest data set.
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Appendices

MATLAB source code for the multi PSO algorithm developed for this work can

be found at https://github.com/IamPete1/Matlab-PSO.
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