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Abstract

Deep Learning (DL) has seen an unprecedented rise in popularity over the last
decade, with applications ranging from machine translation to self-driving cars. This
includes extensive work in sensitive domains such as healthcare and finance with, for
example, models recently achieving better-than-human performance in tasks such
as chest x-ray diagnosis. However, despite these impressive results there are rela-
tively few real-world deployments of DL models in sensitive scenarios, with experts
claiming this is due to a lack of model transparency, reproducibility, robustness and
privacy; this is in spite of numerous techniques having been proposed to address
these issues. Most notably is the development of Explainable Deep Learning tech-
niques, which aim to compute feature importance values for a given input (i.e. which
features does a model use to make its decision?) - such methods can greatly improve
the transparency of a model, but have little impact on reproducibility, robustness
and privacy. In this thesis, I explore how explainability techniques can be used to
address these issues, by using feature attributions to improve our understanding of
how model parameters change during training, and across different hyperparame-
ter setups. Through the introduction of a novel model architecture and training
technique that used model explanations to improve model consistency, I show how
explanations can improve privacy, robustness and reproducibility. Extensive exper-
imentation is carried out across a number of sensitive datasets from healthcare and
bioinformatics in both traditional and federated learning settings show that these
techniques have a significant impact on the quality of these models. I discuss the
impact these results could have on real-world applications of deep learning, due to
the issues addressed by the proposed techniques, and present some ideas for further
research in this area.
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CHAPTER 1

Introduction

Over the past decade, Deep Learning (DL) has seen a meteoric rise in popularity.

From advancing machine translation [3], to autonomous vehicles [4] and even creat-

ing new artwork [5] it is hard to find areas of our lives that have not been affected

by the field. DL’s popularity largely stems from its ability to be successfully applied

to a wide-range of scenarios, with models beginning to outperform humans in some

tasks [6]. However, the field is not without its problems: concerns around data

privacy [7], biased decision making [8], lack of transparency [9] and model robust-

ness [10, 11] plague DL topics and affect real-world uptake in the techniques. Not

only do researchers have a moral obligation to address many of these issues but, as

lawmakers catch up with the rapid rise of neural networks with the introduction of

laws such as the European Union’s General Data Protection Regulations [12], they

must also be addressed to allow for further adoption of DL models in real-world

applications.

This is even more imperative in sensitive domains such as healthcare and fi-

nance [13], where these issues are significant roadblocks to the implementation of

DL models in clinical or financial practice. For example, whilst there has been

significant process in the area of automatic Chest X-Ray (CXR) diagnosis [14] us-
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ing neural networks, there are currently few-to-no applications of these models in

day-to-day practice despite evidence showing they can provide real-world benefit

to radiologists [15]. DL applications which have been approved by medical bodies

such as the US’ Food and Drug Administration (FDA) usually do so without ex-

plicitly labelling themselves as such - possibly due to the increased difficulties these

technologies traditionally face when under the scrutiny of public bodies [16].

These issues are numerous, and must be addressed before we are to see widespread

adoption of Machine Learning (ML) in many sensitive settings such as healthcare

and finance. While it is simple to say that models must be more trustworthy for

them to be used in these settings [13], this does not shed much light on how we can

make ML models trustworthy. In fact, trustworthiness can be thought of as many

constituent parts: explainability, transparency [17], quality (i.e. does it learn causal

or correlated features?) [18], privacy [19], robustness [20] and more.

Each of these individual problems have been extensively studied, with many

different approaches being suggested to combat them. For example, numerous dif-

ferent explainability techniques have been proposed [21–23], each with their own

advantages and disadvantages, which claim to “open up” black-box deep learning

models. Similarly, techniques such as Federated Learning [24] and Differential Pri-

vacy [19] have been proposed to improve the privacy provided by DL models; archi-

tectures such as hyperensembles [25] are suggested to create more robust models;

and causal learning techniques have been proposed to improve the quality of learned

features [26].

As these are all separate, independent strands of DL research it is not common

to see them all applied in practice: in order to create an end-to-end model that

addresses all of these issues, the amount of research and implementation one would

have to do to apply all of these independent techniques would be immense. Instead,

this thesis takes a more unified approach, utilising explainability techniques to un-

cover some of the issues with modern, deep neural networks. By using a unified

approach, the techniques presented in this thesis are able to encompass all of the

above problems by using explainability alone. Finally, these same explainability

techniques are used to create a single approach that aims to address many of the
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problems (such as privacy, explainability, robustness and transparency) that plague

modern deep learning models, and compare how this approach compares to each of

the current state of the art techniques in each of the sub-fields mentioned above.

1.1 Motivation

As previous studies have shown, advances in Deep Learning mean that models can

be successfully applied to increasingly complex tasks. Examples include applications

such as chest x-ray diagnosis [27], diabetes risk prediction [28], money laundering

detection [29] and criminal re-offending likelihood prediction [30]. All of these mod-

els have one thing in common: they operate in high risk settings, where the stakes

are high and the data used is extremely confidential. In such highly sensitive en-

vironments, model explainability, trustworthiness and robustness is of paramount

importance; for example, clinicians and patients alike are unlikely to trust a black-

box DL model which cannot explain its decisions [13].

Recently, many new explainability techniques have been developed that attempt

to address the problems of transparency and trustworthiness [31] with numerous

methods being proposed that aim to provide explanations for a DL model’s decision

[21, 32, 33]. Similarly, there are approaches that improve model robustness [25,

34] and generalisability [34–36]. However, despite these advances, there are still

comparatively few real-world deployments of DL in domains such as healthcare

and finance when compared to other less sensitive domains. Though the exact

reasons for this can differ between disciplines, many experts agree that there are

four main overarching concerns: data privacy [12], transparency [13], bias [37] and

robustness [9]. Without significant advances in these areas it is unlikely we will see

widespread adoption of DL techniques, despite the many advantages that they could

bring.

To date, all of these issues have been addressed independently of one another:

explainability techniques are proposed for transparency, privacy techniques for data

confidentiality and so on. However, many argue that many of these issues all stem

from our lack of understanding of the mathematical foundations of modern machine
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learning [38] - essentially, they are all results of the black-box nature of deep neural

networks. In this thesis, I explore how explainability techniques can be used to

open up this black-box and, thus, how model explainability can improve not only

model transparency but also model privacy, robustness and generalisability. I focus

experiments on settings where these problems are of paramount importance, such as

healthcare and bioinformatics, to explore how the techniques proposed throughout

the thesis can be applied to (and improve) highly sensitive applications. The overall

hope, then, is that the novel methods suggested can be used to allow DL to be

applied to situations in healthcare, bioinformatics and beyond to have a positive

impact on people’s lives.

1.2 Publications

The work contained in this thesis is the result of a number of linked peer-reviewed

publications I have produced throughout my PhD. In particular:

• Chapter 3 contains results from Watson, Matthew, and Al Moubayed, Noura.

“Attack-agnostic adversarial detection on medical data using ex-

plainable machine learning.” 2020 25th International Conference on Pat-

tern Recognition (ICPR). IEEE, 2021.

• Chapter 4 contains results from Watson, Matthew and Awwad Shiekh Hasan,

Bashar and Al Moubayed, Noura. “Agree to disagree: When deep learn-

ing models with identical architectures produce distinct explana-

tions.” Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision. 2022.

• Chapter 5 consists of the method and results in Watson, Matthew and Awwad

Shiekh Hasan, Bashar and Al Moubayed, Noura. “Using model explana-

tions to guide deep learning models towards consistent explanations

for EHR data.” Scientific Reports 12.1 (2022): 1-14.

• Chapter 6.1 consists of the work presented in Watson, Matthew and Awwad

Shiekh Hasan, Bashar and Al Moubayed, Noura. “Learning How to MIMIC:
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Using Model Explanations to Guide Deep Learning Training.” Pro-

ceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision. 2023.

• Chapter 6.2 Watson, Matthew and Awwad Shiekh Hasan, Bashar and Al

Moubayed, Noura. “Explainability-based Membership Inference At-

tacks and Defences.” Scientific Reports Under Review.

I also contributed to the following pieces of work which were also published

during my PhD, although they do not necessarily fit into this thesis’ theme:

• Zuo, Zheming and Watson, Matthew and Budgen, David and Hall, Rob and

Kennelly, Chris and Al Moubayed, Noura “Data Anonymization for Per-

vasive Health Care: Systematic Literature Mapping Study.” JMIR

Medical Informatics 9.10 (2021)

• Alhassan, Zakhriya and Watson, Matthew, et al. “Improving Current Gly-

cated Hemoglobin Prediction in Adults: Use of Machine Learning

Algorithms With Electronic Health Records.” JMIR Medical Informat-

ics 9.5 (2021)

• Watson, Matthew and Chambers, Pinkie, et al. “1859P Using deep learn-

ing with demographic and laboratory values from baseline to cycle 2

to predict subsequent renal and hepatic function.” Annals of Oncology

32 (2021)

1.3 Thesis Structure and Contributions

The thesis starts with Chapter 2, which is a thorough review of current DL meth-

ods as applied to sensitive applications such as healthcare and bioinformatics and

the hurdles that these algorithms must overcome to become more widely used in

practice. I then move on to go in-depth on the methods that have been developed

in an attempt to overcome these problems, providing thorough descriptions of all
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commonly used explainability methods, and metrics used to evaluate the effective-

ness of these techniques (as well as providing some rationale of why each different

algorithm exists). These explainability techniques are used throughout this thesis as

both ways to explore how neural network training works, and as a tools to improve

the quality of deep learning models. Chapter 2 continues with an exploration of our

current understanding of model robustness and generalisation, as well as techniques

that are commonly used to improve these attributes; this forms the basis of how I

evaluate the methods proposed in Chapter 5. Next I explore data privacy in deep

learning, along with training algorithms such as Federated Learning (FL) which are

designed to address these concerns, with these techniques being revisited in Chap-

ter 6.2 where I investigate the methods presented in Chapter 5 from a data privacy

perspective.

Chapter 3 examines how off-the-shelf explainability techniques can be used to

detect when malicious inputs are passed to DL models. Through the development of

two novel auxiliary model architectures that utilise feature attributions, I show how

adversarial inputs can be detected in both an attack- and model-agnostic manner.

I explore the efficacy of these techniques, showing that they beat current state-

of-the-art adversarial attack detection techniques, discuss the implications of this

for sensitive applications such as healthcare and why it seems to be the case that

explanations are so effective at classifying perturbed samples.

The success of the methods presented in Chapter 3 shows that model expla-

nations are sensitive to even imperceptible changes to inputs. Inspired by this, in

Chapter 4 I explore the use of explainability techniques to explore the training of

deep neural networks. Specifically, I look at how hyperparameters that are orthogo-

nal to the downstream task (such as the random seed or order of the training data)

can vastly affect the input features used by the model (even when model performance

is near identical). I discuss numerous avenues one could take to measure this incon-

sistency, and present a final quantitative metric that can be used to evaluate the

explanation inconsistency of DL models. Finally, this chapter briefly discusses the

implications of these results and why it is imperative that the problem is addressed.

The original post-processing technique described in Chapter 5 is designed to ad-
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dress the problem of explanation inconsistency which was introduced in the previous

chapter. Thorough experimentation of this technique on a number of healthcare and

biological tabular datasets verify that this technique does indeed reduce explanation

inconsistency however, as is discussed within the chapter, it also has a number of

disadvantages. To tackle these disadvantages, I take inspiration from the investi-

gation as to why the post-processing technique works and embed this into model

training. This results in an entirely novel Deep Explanation Ensemble (DEE) ar-

chitecture and training procedure that utilises feature attributions during training

and produces models with significantly better explanation consistency than current

state-of-the-art methods.

In Chapter 6 I extend the evaluation of DEEs to other data modalities, prob-

lems and training scenarios. In Chapter 6.1, DEEs are tested on chest x-ray im-

ages from the MIMIC-CXR-EGD dataset. Interestingly, this dataset also includes

the eye-gaze data from an experienced radiologist when analysing the same im-

ages. Through a comparison of this eye-gaze data with the explanations produced

by a variety of different models, I show that the more consistent explanations of

DEEs also have significantly more overlap with the expert’s eye-gaze data. Then,

in Chapter 6.2, DEEs are applied to the Federated Learning (FL) training setup

and are shown to vastly improve upon the susceptibility of such models to Member-

ship Inference Attacks whilst still achieving high levels of performance, unlike other

privacy-preserving techniques such as Differential Privacy (DP).

Finally, Chapter 7.4 consolidates all previous chapters, discussing how the novel

techniques presented in later chapters can be used to address the barriers to DL

adoption in sensitive scenarios that were addressed in the earlier chapters.

1.4 Notation

A neural network M : X → Y is a function that takes an input from a d-dimensional

training domain and outputs a value from the test domain; in this thesis, the target

will be either a class or regression value. A specific feature of any given input x ∈ X

is defined as xi. An explanation, E(M(x)) ∈ Rd, is a feature attribution map that
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quantifies the contribution of each feature of the input x to the value of M(x) (i.e.

how important is each feature to the final classification); the contribution of an

individual feature is dented by Ei(M(x)).
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CHAPTER 2

Literature Review

Machine Learning (ML), and in particular Deep Learning (DL), research has seen

a dramatic rise in use in healthcare applications [39]. DL has successfully been

applied to areas such as medical imaging [40], Electronic Health Record (EHR)

analysis [28] and bioinformatics [41] in research settings, with some DL models

achieving levels of accuracy that match [42] or even exceed [6] medical experts.

However, despite these impressive results, it is still rare to see DL models actually

deployed into real-world environments [16] and used day-to-day by clinicians. The

main barrier to further adoption of DL in clinical settings is gaining the trust of

medical professionals; in particular, clinicians cite the lack of transparency around

how DL models make predictions as well as privacy and data security concerns as

the main issues surrounding DL in healthcare [13,43].

This chapter reviews current applications of DL to the healthcare domain, and

how it has been applied in practice. For the majority of this thesis, a thorough un-

derstanding of the mathematics, notation and vocabulary outside of what is defined

in this section is not needed. A basic understanding of probability will be required

for some future definitions; these basic definitions have been omitted for the sake

of brevity, but readers requiring a refresh are directed to [44]. Similarly, I assume
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a basic knowledge of AI/DL definitions - neural networks, basic network structures

and the training process of a neural network are assumed knowledge. Again, these

basic definitions have not been included in this section for the need to stop some-

where - it is necessary to assume some base level of knowledge - and as the teaching

of DL techniques at (or even before) and undergraduate level is now commonplace,

this seems like a good baseline. Readers interested in a review of these definitions

are also referred back to [44].

It then briefly summarise the barriers DL must overcome before seeing widespread

adoption in medicine before discussing the most recent advances in DL that are

aimed at addressing these issues, such as explainability techniques for deep learning

models and DL model robustness.

2.1 Deep Learning Applications and Datasets in

Healthcare

There are three main areas that DL has been applied to in healthcare: medical

imaging, EHR data analysis and bioinformatics. These advancements are made

possible by the release of several large-scale medical datasets that enable the training

of DL models. These datasets range from real-world data collected from hospitals

that have been made freely available, such as MIMIC-CXR [45] and MIMIC-IV [46],

to smaller scale genomics datasets such as the Codon Usage dataset [47]. Due to

privacy concerns around publicly sharing patient’s private data, experiments are also

commonly carried out on private datasets [48]. Where possible, situations like these

should be avoided due to transparency and reproducibility concerns, however it is

sometimes an unavoidable consequence of sensitive data. This sub-section explores

the largest and most frequently used healthcare and bioinformatics datasets and

explains how they have been used to advance the field of healthcare DL. I then go

on to explain some of the issues facing DL models in healthcare, and discuss why

we haven’t seen more widespread adoption of DL models in clinical settings. All

datasets are summarised in Table 2.1 alongside the current state of the art model

performance on each task, which are used for baseline comparisons in all future
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chapters.

Table 2.1: Summary table of all datasets used, along with basic dataset statistics
and the state of the art results used as baselines for comparison throughout all
chapters.

Dataset Properties
Dataset Modality Num. Samples Num. Features Num. Classes Federated Baseline Accuracy
MNIST Images 60,000 784 10 ✗ 99 [49]

FEMNIST Images 805,263 784 62 ✓ 85 [50]
Synthetic Tabular 734,463 72 12 ✓ 70 [50]

INaturalist Images 2.7M 150528 10 ✓ 84 [51]
COMPAS Tabular 7214 466 2 ✗ 90 [30]

Adult Tabular 32,561 205 2 ✗ 75 [52]
Texas Tabular 348,700 252 100 ✗ 84 [53]

MIMIC-CXR-EGD Images 1,083 150528 3 ✗ 76 [1]
MIMIC-CXR (Pneumonia) Images 377,110 150528 2 ✗ 84 [27]

MIMIC-CXR (Cardiomegaly) Images 377,110 150528 2 ✗ 82 [27]
MIMIC-IV (Mortality) Tabular, Time Series 383,220 Variable 2 ✗ 81 [54]

Henan-Renmin Tabular 110,300 62 2 ✗ 73 [54]
Codon Usage (Kingdom) Tabular 130,000 64 5 ✗ 84 [47]

Codon Usage (DNA) Tabular 130,000 64 3 ✗ 99 [47]
KAIMRC (Classification) Tabular 66,652 15 2 ✗ 83 [28]

KAIMRC (Regression) Tabular 66,652 15 1 ✗ N/A
BCW Tabular 569 30 2 ✗ 99 [52]

2.1.1 Small-Scale Healthcare Datasets

It is only within the last 5 years that truly large-scale healthcare datasets have

become commonplace. Before this, most datasets consisted of comparatively few

records (e.g. less than 5000) and only a small number of features. However, these

small datasets are still commonly used as initial baseline tests when evaluation

novel deep learning techniques. For example, the Breast Cancer Wisconsin (BCW)

[55] dataset is a small 30-dimensional dataset of 569 records that contains features

extracted from images of (possible) breast cancer cells. This dataset is commonly

used to test binary classification models, where the task is to predict whether the

associated cell is malignant or not.

Similarly, the Pima Diabetes Dataset [56] is an 8-dimensional dataset of 768

patients from Phoenix, Arizona, USA. The dataset consists of general patient de-

mographic information (e.g. age), basic health-related variables (e.g. Body Mass

Index and number of pregnancies) as well as some blood-test results. The goal of

machine learning classifiers trained on this dataset is to predict whether or not a

given patient has diabetes. Although by today’s standards this dataset is small, it

is still commonly used to test the validity of a technique before moving on to test

on larger datasets [57,58].
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2.1.2 CheXpert

CheXpert [27] is a large, publicly available Chest X-Ray (CXR) dataset that consists

of 224,316 chest radiographs from 65,240 patients who attended Stanford Hospital

between 2002 and 2017. Using a rule-based label extraction tool on each image’s

associated (free-text) radiology report, each image is given up to 14 different la-

bels: No Finding, Enlarged Cardiom., Cardiomegaly, Lung Lesion, Lung Opacity,

Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion,

Pleural Other, Fracture, and Support Devices. Importantly, this dataset improved

upon previous CXR datasets by including uncertain mentions of a label in the free-

text report with each image having 4 possible values for each of the 14 labels: 0

(negative mention, i.e. “No signs of pneumonia”), 1 (positive mention, i.e. “Signs of

pneumonia”), -1 (uncertain mention, i.e. “May be signs of pneumonia”), or blank.

The automatic labeler was evaluated on a hold-out validation set of 1000 ra-

diology reports from 1000 distinct patients. Each of these validation reports were

examined by 2 expert radiologists, and their diagnoses compared with the automat-

ically extracted label from the original report. The labeler gained a macro-average

F1 score of 0.948 on positive mentions, 0.899 for negative mentions and 0.770 for

uncertain mentions.

2.1.3 MIMIC-IV

The Medical Information Mart for Intensive Care v4 (MIMIC-IV) [46] dataset is a

large, real-world dataset consisting of EHR data from patients admitted to inten-

sive care (ICU) at the Beth Israel Deaconess Medical Center, Massachusetts, USA.

The dataset was extracted from the hospital’s e-prescribing software and consists

of data on 383,220 ICU stays that occurred between 2008 and 2019. Each record

contains data on the patient’s demographics (e.g. age, sex, ethnicity, comorbidities,

etc.) as well as time-series data that contains their vital signs (e.g. heart rate,

blood oxygen level), lab results (e.g. the results of blood tests) and medications

prescribed throughout their stay in ICU. Each record also contains the reason they

were admitted to the ICU, any diagnoses that were made during their stay as well
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as the length of their stay.

Typically, MIMIC-IV is used to train mortality prediction models, although it

has also been used for multi-label disease classification and EHR knowledge graph

generation. It is important to note that the data in MIMIC-IV has been fully

anonymised, and so some patient data may be unavailable or masked. For example,

instead of providing the actual dates that a patient was admitted to and discharged

from hospital, modified anchor dates are provided. These anchor dates have been

carefully constructed such that the length of each patient’s stay remains the same,

but the exact dates the patient was in hospital for cannot be calculated.

2.1.4 MIMIC-CXR

MIMIC-CXR [45] is a special subset of patients included in the MIMIC-IV dataset

for which we also have a number of Chest X-Ray (CXR) images that were taken

during the patient’s stay in hospital. MIMIC-CXR contains 377,110 separate CXR

scans, taken from 227,835 radiography studies (i.e. each study may contain multiple

images). The patients included in the MIMIC-CXR dataset were admitted to the

ICU between 2010 and 2016, and their CXR images can be linked with their patient

data contained in MIMIC-IV. Originally, the MIMIC-CXR dataset consisted of the

raw DICOM files for each CXR image - these are large, uncompressed data files that

come straight from the x-ray machine, and require a large amount of pre-processing

before they can be used by a deep learning model. However, more recently, the

MIMIC-CXR-JPG [59] dataset released JPEG versions of these images after this pre-

processing had been applied. This is advantageous not only because it significantly

reduces the amount of computational power that needs to be spent on processing

the images, but also because it standardised the pre-processing that is applied to

the DICOM images.

Each study is related to a single patient, though each study may contain multiple

images (usually from different angles) and each patient may have multiple associ-

ated studies. Each study also contains a free-text report written by the experienced

radiologist treating the patient. Often, this dataset is used alongside labels auto-

matically extracted from these reports using the CheXpert labeler (Chapter 2.1.2).
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The CheXpert labeler was validated against the findings of 2 expert radiologists on

a hold-out validation set of size 687 from the MIMIC-CXR-JPG dataset, gaining an

average F1 score (across all 14 labels) of 0.83. Typically, these 14 labels are used

to train either a binary classification model (to predict 1 of the 14 findings) or a

multi-label classification model.

Typically, MIMIC-CXR is used to train models on this multi-label classification

task, although sometimes specific labels of interest are chosen. Due to the usually

small number of CXR images available, the de-facto standard for training such

models is to finetune a pre-trained image classification model. This is a process where

a network that has already been trained on a (usually extremely large) image dataset

is taken and trained on the CXR classification task, with the idea being that the pre-

trained model will have already learned to recognise important features that may be

shared across both datasets [60]. There is no standard model architecture used for

this throughout the CXR analysis literature, although Densenet-121, ResNet-18 and

ResNet-80 pretrained on the ImageNet [61] dataset are some of the most commonly

used methods [14] and as such are used throughout the rest of this thesis as baseline

models for comparative purposes.

More recently, Vision Transformers (ViT) [62] have overtaken classic, large CNNs

for image classification. Inspired by its success in Natural Language Processing, the

ViT architecture adapts the BERT Transformer-based architecture [63] to image

classification. Briefly, ViTs first split a given image into patches which are then

linearly embedded and added to a positional embedding. This embedding is then

passed to a standard Transformer, which creates the final feature map - for classi-

fication tasks, an extra learnable classification token may also be added. Although

ViTs have been shown to outperform classic CNN architectures on standard image

classification tasks such as ImageNet and CIFAR [62], they require an inordinate

amount of data during training. This makes them difficult to apply to CXR images,

where the amount of data is typically very limited - indeed, I briefly investigate

the use of Vision Transformers in Chapter 6.2.4, and find that with the extremely

limited amount of public data available they are unable to achieve even baseline

levels of performance.
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With the full release of MIMIC-IV, patient data can be linked between MIMIC-

CXR and MIMIC-IV, opening up opportunities for multi-modal models to be pro-

posed. This data linkage also allows for a wider range of classification tasks to be

performed, e.g. predicting comorbidities rather than the labels extracted from the

radiology reports.

2.1.5 MIMIC-CXR-EGD

The MIMIC-CXR-EGD [1] is a subset of 1,083 CXR images from the MIMIC-CXR-

JPG dataset that have been used to collect eye-gaze data (EGD) from an expert

radiologist. Through the use of eye-tracking software the radiologist’s eye-gaze was

recorded whilst they were analysing the image to provide a diagnosis, resulting in

a heatmap of how long was spent looking at each area of the image (an exam-

ple heatmap can be seen in Figure 2.2). A recording of radiologist’s speech whilst

analysing the image is also included (as well as an auto-generated transcript of

this speech). This data is checked for validity throughout the process: the audio

transcript was manually checked by three experts and checked by a qualified radiol-

ogist, whilst the eye-gaze data was calibrated throughout the data collection process

by presenting 59 calibration images at different points during the analysis process.

Alongside this information is a set of automatically-generated bounding boxes of the

image, containing each of the following important areas: ‘right lung’, ‘right upper

lung zone’, ‘right mid lung zone’, ‘right lower lung zone’, ‘left lung’, ‘left upper lung

zone’, ‘left mid lung zone’, ‘left lower lung zone’, ‘right hilar structures’, ‘left hilar

structures’, ‘upper mediastinum’, ‘cardiac silhouette’, ‘trachea’, ‘right costophrenic

angle’, ‘left costophrenic angle’, ‘right clavicle’, ‘left clavicle’.

Both raw eye gaze information and calculated fixation points are available for

the expert’s EGD. Both sets of data are calculated automatically from the eye gaze

tracking software used by the study. The raw eye gaze data is a fine-grained dataset,

containing data for each individual data sample collected. On the other hand, the

fixation dataset contains one data point per fixation, which is gained by averaging

the raw data to detect saccades.

The images included in this analysis were selected from the overall MIMIC-CXR-
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Figure 2.1: Flowchart detailing sampling process for the MIMIC-CXR-EGD dataset
[1].

JPG dataset based on a range of criteria detailed in Figure 2.1, including data from

the patient’s stay in ICU contained within MIMIC-IV. Most notably, each of the im-

ages must have 1 (and only 1) of the following diagnoses: Congestive Heart Failure,

Pneumonia or Normal. MIMIC-CXR-EGD is an interesting dataset as it differs from
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traditional data releases in that it does not have a specific task/classification goal

in mind; instead it is designed to enable the further analysis of automated segmen-

tation/classification models by encouraging researchers to incorporate the eye-gaze

data into their analysis.

Figure 2.2: A random sample from the MIMIC-CXR-EGD dataset (left), and the
same sample overlayed with the EGD heatmap (right).

As an example of how the eye-gaze data could be used in DL applications, the

authors of the dataset also explored how the eye-gaze data could be incorporated

into a multi-task U-Net model (Chapter 6.1) to improve the overall agreement be-

tween model saliency maps (generated using explainability techniques detailed in

Chapter 2.2) and the expert’s EGD. During training this multi-task U-Net model

takes as an input both the CXR image and the EGD, and aims to both reproduce

the EGD and produce an accurate classification label. A qualitative assessment

of how this proposed architecture improved the agreement between model saliency

heatmaps and the expert’s EGD, however no quantitative comparison was provided

(this forms the basis for the work in Chapter 6.1).

2.1.6 Codon Usage Dataset

Deep Learning is not limited to just EHR and medical imaging datasets, with it

being increasingly used in bioinformatics [64] with applications including protein

folding [65] and phylogenetic tree search [66]. The Codon Usage Dataset [47] is one of

the only large, freely-available dataset that facilitates this type of research, consisting

of the frequency of 64 different codons across more than 130,000 organisms. This

dataset can be used for two separate classification tasks: 1) predict the organism’s
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phylogenetic Kingdom (from 5 distinct classes), and 2) classify the DNA type of the

organism (from 3 distinct classes).

2.1.7 Private Datasets

Due to their sensitive nature many healthcare-related datasets are not released pub-

licly, mainly due to concerns around patient privacy [67]. Although this does raise

concerns around the reproducibility of an author’s work, it is somewhat of a neces-

sary evil; for a dataset to be publicly released, a number of extremely onerous steps

must be undertaken to ensure the dataset is fully anonymised, that no data can be

linked back to an individual and that patient consent has been given (although it is

important to note that the exact steps that must be undertaken will vary between

different regions and institutions) [68]. This process costs a lot of time and money,

resulting in many data owners keeping their data private. Additionally, under most

forms of anonymisation that are currently codified in law (e.g. GDPR), much of the

data’s utility is lost when it undergoes anonymisation [69] and thus makes it less

useful to researchers. All of this together means that, unfortunately, private medical

datasets are still somewhat of a necessity in DL for healthcare research.

To support this thesis’ research, I had access to one private EHR dataset from

the King Abdulaziz Medical City located in the central and western regions of Saudi

Arabia (KAIMRC) [28, 70, 71], which is used alongside publicly-available datasets

to evaluate the techniques presented throughout the thesis. The dataset, which was

originally collected to aid the development of ML models for diabetes prediction,

spans from 2016 to 2018 and includes both patient demographics (e.g. age, sex, etc.)

and lab results (e.g. cholesterol and eGFR levels) from a patient’s last 6 hospital

visits. The dataset contains 66,652 records of highly-detailed, pre-processed (i.e.

missing data has already been handled) data. The KAIMRC data can be used for

one of two tasks: 1) using longitudinal data to predict which patients will go on

to experience elevated HbA1c (a blood marker that is often used to diagnose pre-

diabetes) levels or, 2) a regression model to directly predict the HbA1c level of a

patient. This task has been extensively studied on this dataset [28, 70], giving a

number of baseline models that this thesis’ techniques can be evaluated against.
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2.1.8 Barriers to Further Adoption

As seen throughout Chapter 2.1, DL has enjoyed much success when applied to

healthcare data with models being able to match (or sometimes even outperform)

the performance of clinical experts. However, despite these successes, there are

relatively few examples of these models actually being deployed in hospitals [16].

Although this can in part be attributed to the relative infancy of DL as a viable

technique (and the need for healthcare models to undergo much more thorough

testing than in other domains), there are also a number of fundamental issues with

DL that prevents it from being more widely used [13,72].

Arguably the largest barrier facing DL models are concerns around the trustwor-

thiness of DL models [73]; both clinicians and patients alike must be able to trust

the decisions made by a model. It is widely agreed that the best way to achieve this

is to ensure that the models used are transparent and explainable - which is explored

in much more detail throughout this thesis - but also to ensure that they are not

prone to bias and can be held accountable for their decisions. Some of this requires

medical policy to be updated too; for example, who should be held accountable if the

decision made by a DL model is incorrect, and this results in harm to the patient?

Currently, much more work must be undertaken by policy makers to address these

issues [74] before we see further adoption of DL in healthcare. We explore current

explainability techniques in Chapter 2.2, and the rest of this thesis is dedicated to

how these methods can be used to overcome the barriers discussed in this section.

In order for DL models to be trustworthy, they must also be generalisable and

robust. A large issue with medical DL models is the uncertainty around how well

they will generalise to patient populations from different backgrounds to the one

the model was trained on: for example, it is common for a DL model to be trained

on data from only one (or perhaps a small number) of hospitals. However, this

hospital may have a hugely different patient population to another hospital that

wishes to also use the model [75] - this could result in the trained model performing

poorly on the unseen data. Furthermore, there is an inherent degree of randomness

present during the training of these models, which can affect the resulting model

- this is explored in detail in Chapter 4 - and this type of randomness can affect
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the amount of trust non-experts will place in a model. This lack of robustness and

generalisability is what makes DL models susceptible to adversarial attacks (such as

those discussed in Chapters 2.4.1 and 2.4.3), which can also increase the uncertainty

medical experts have in DL techniques.

The final significant issue facing DL practitioners in healthcare is patient privacy

[76]. Modern data protection laws such as the European Union’s General Data

Protection Regulation (GDPR) [12] specifically protect citizen’s health information,

which means that anonymisation techniques must be used before the data can be

used for DL purposes (unless patient consent has been given). Crucially, there is

a large amount of uncertainty around how exactly these laws affect DL techniques,

and where exactly the responsibility for data privacy lies: is it with the DL model

developer, the hospital, or the data collector [77]? These are policy issues that

must be sorted out on a case-by-case basis. Chapter 2.4 explores privacy from a

deep learning perspective, highlighting current techniques that are used to improve

a user’s privacy when using DL models. In Chapter 6.2 I then look at how we can

utilise model explainability to significantly improve the privacy of DL models.

2.2 Deep Learning Explainability

One of the main barriers facing DL practitioners in the healthcare domain is the lack

of transparency offered by today’s large, deep models [72]. This has led to the recent

explosion in explainable deep learning [78], where researchers attempt to open up the

black-box of DL. This research can be broadly split up into two distinct areas [79]:

post-hoc (where techniques are developed to explain models after training) and ante-

hoc interpretability (wherein new model architectures are built from the ground-up

to be interpretable by humans). There is an inherent explainability-performance

trade-off, particularly for ante-hoc explainability methods [80]: typically, the more

accurate a model the more complex it is and hence it is also more difficult for a

human to fully comprehend. This leads to an interesting philosophical argument:

what actually makes a model explainable? For example, decision trees are largely

regarded as a white-box, explainable model [17] but can become excessively large
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when used on complex data [81]. Even relatively small, well-tuned decision trees can

arguably be difficult for a human to fully understand, with the number of terminal

nodes increasing exponentially with depth. Is it truly possible for a human to fully

understand the decisions made by such models?

Figure 2.3: 4 samples from the CIFAR10 dataset with their associated absolute
SHAP attributions from a small CNN trained on CIFAR10.

For this reason, for much of this work we focus on model agnostic post-hoc ex-

plainability techniques. These methods are able to explain the decisions made by

any (or, in some cases, a wide-range of) deep learning architectures. Traditionally,

they are applied after the model has been fully trained (although in Chapter 5 I

will explore how they can be used during training) and produce local explanations

- that is, they explain a specific decision (e.g. given a specific test instance x ∈ Rd,

explain the features of x which contribute most to f(x)) rather than explaining the

whole model’s behaviour [79]. Specifically, we want to generate a feature attribution

map E(x) ∈ Rd, where each Ei(x) is the contribution of feature xi to the black-box

model’s output f(x); an example of the resulting attributions is shown in Figure 2.3.

This is a large, well researched area with an ever increasing number of explainability

techniques [78]. In the remaining part of this section, I explore some of these tech-

niques, limiting ourselves to the most commonly used and influential techniques - a
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thorough review of the area can be found in [78].

2.2.1 Explainability Terminology

It is only recently that a precise taxonomy of terminology for explainable machine

learning has been developed [82]. Prior to this, different studies may have used the

same words but have meant different things [79, 83] - for example, what is the dif-

ference between an explainable technique and an interpretable one? For many these

may mean the same thing, but there are subtle differences that should be defined.

For clarity, the rest of the thesis uses the following definitions of explainability and

interpretability, adapted from [17,82]:

• Interpretability is the ability to be able to provide meaning from a technique

to a human

• Comprehensibility is the ability of a model to present its learned knowledge

in a form suitable for humans

• Explainability is the ability to have an interface between a human and a

model which is both accurate to the model and comprehensible to the human.

Note that this allows explanations to change based on the target audience -

clinicians may require more detailed explanations than patients, for example

From these definitions, one can infer that an explainability technique is one

that makes a traditionally black-box model interpretable. As such, while this thesis

refers to improving the explainability of models, this is actually a proxy for im-

proving the interpretability of models. The remainder of this section introduces a

number of post-hoc explainability techniques that have been developed to provide

interpretability to deep neural networks.

2.2.2 LIME

Local Interpretable Model-agnostic Explanations (LIME) [32] is an explainability

technique that can be applied to any ML model. It aims to find an interpretable

local surrogate model that is locally faithful around a given data point (i.e. the
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point to explain). A surrogate model is locally faithful if it accurately mimics the

behaviour of the black-box model we want to interpret in the vicinity of the data

point we are interested in (but outside of this area, the surrogate model need not

correspond to the target model).

Given a black-box model f and some data point that we wish to explain, x,

LIME first produces many perturbed versions of x. Given this new dataset of

perturbed data points, LIME trains an interpretable model (e.g. a decision tree)

which is weighted by the proximity of the sampled instances to the instance of

interest. The weight each feature is given in this local model is then used as the

feature’s attribution value, as defined in Equation (2.1) where G is the class of all

interpretable models, Ω(g) is the complexity of g (this metric is model dependent,

e.g. for decisions trees it may be defined as tree depth) and πx is the set of perturbed

data points around x.

E(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.1)

LIME was one of the first widely used DL explainability techniques, mostly due

to its ease-of-use and adaptability - the family of interpretable models G can be

changed to suit almost any end-user, and allows the technique to be applied to

any data modality. However, LIME has been shown to be extremely unstable [84],

producing different explanations every time LIME is run. This is due to the random

nature in which πx is generated - every time LIME is run, a slightly different set

of data points will be used to train the surrogate model. There is also uncertainty

around how best to choose the size of πx; the size of the dataset, and how far away

we allow x′ ∈ πx to be from the original data point x, can have a significant affect on

the quality of the explanations and there is very little intuition on how to correctly

set this hyperparameter [23].

2.2.3 SHAP

SHapley Additive exPlanations (SHAP) [85] is perhaps still the de-facto explain-

ability technique used by DL practitioners. It is very closely tied to Shapley values
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from game theory [86], modelling each feature of the input as a player in a d-player

game - a feature’s attribution value is derived from their Shapley value, which is a

measure of their contribution to the final value of the game (i.e. f(x)). Lundberg

et al. [85] show that Shapley based methods satisfy three desirable properties:

• local accuracy - the explanation model matches the original model when

provided the same input

• missingness - if any given feature is missing, then that feature must have an

attribution value of 0

• consistency - if a model changes such that an input’s contribution increases

or stays the same regardless of other features, then its attribution should not

decrease

In particular, it is proven that only the explanation model given in Equation (2.2)

satisfies all three of these properties, where ϕi(f, x) is the importance of feature xi

to the model f , M is the number of features, z′ ∈ {0, 1}M is the coalition vector

(which indicates which features are present), |z′| is the number of non-zero entries

in z′ and fx(z′) = E[f(z)|zS] where S is the set of non-zero elements in z′.

ϕi(f, x) =
∑
z′⊆x′

|z′|(M − |z′| − 1)!

M !
[fx(z′)− fx(z′\i)] (2.2)

It is clear to see that it is extremely computationally intensive to compute Equa-

tion (2.2), with an exponential runtime due to the need to compute the change in

model output for all possible permutations of features. To combat this, numerous ap-

proximation techniques have been proposed [85], from model-specific techniques such

as TreeSHAP for tree-based models to model-agnostic methods such as DeepSHAP

and KernelSHAP. These approximations allow pseudo-global feature attributions to

be generated, where enough local explanations can be computed such that we can

begin to understand the overall internal workings of a model. However, these ap-

proximations are not always appropriate (for example, KernelSHAP ignores feature

dependence) and TreeSHAP has been known to produce unintuitive explanations.
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It has also been shown that SHAP, along with some other explainability techniques,

is susceptible to adversarial attacks [87].

2.2.4 Integrated Gradients

As the name suggests, Integrated Gradients (IG) [88] is a gradient-based approach

for calculating feature attribution for neural networks. IG was an important step in

the development of gradient-based attribution methods, as it was the first to not need

instrumentation of the network. As a gradient-based method, the interpretation of

IG is simple: the larger the absolute value of the gradient, the more influence that

pixel has. IG is calculated through Equation (2.3), where ∂f(x)
∂xi

is the gradient of

f(x) over the ith dimension and x′ is a “baseline” input which should be chosen such

that f(x′) ≈ 0 (e.g. an image of all-black pixels satisfies this for image classification

models).

IGi(x) = (xi − x′
i)

∫ 1

α=0

∂f(x′ + α(x− x′))

∂xi

(2.3)

In practice Equation (2.3) is computed via an approximation using summations,

which is both efficient and easily-implemented in most modern deep learning pro-

gramming libraries. This efficiency and ease-of-use is one of IG’s main advantages;

IG is also easily applied to any DL model architecture and data modality, making

it one of the most adaptable explainability techniques. However, the quality of the

resulting explanation is highly dependent on a suitable choice of x′ [89] and this

leaves the technique open to both abuse and improper use by DL practitioners.

2.2.5 GradCAM

GradCAM (Gradient-based Class Activation Maps) [90] is an explainability tech-

nique that has become incredibly popular for generating explanations of CNN im-

age classification models. GradCAM differs from IG as the gradients are back-

propagated only to the final convolutional layer, rather than through the entire

model; this results in an activation map that highlights important regions of the im-

age rather than the per-pixel attributions provided by IG and other explainability
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techniques. Additionally, unlike IG (and some other methods) GradCAM does not

require a baseline input thus removing one barrier to the adoption of the explainabil-

ity technique. GradCAM can also be used to produce counterfactual explanations -

that is, it can highlight regions of the image that, if changed, would cause the model

to change its prediction.

One of the main disadvantages of GradCAM is that it can only be applied to the

CNN architecture and as such is mostly limited to models that take images as their

input. It has also been shown to sometimes highlight incorrect regions of the image

[91] and be easily manipulated to produce any desired explanation [92]. However, it

is still commonly used in many applications, particularly medical imaging [22, 93],

due to its ease of use and highly-interpretable heatmaps.

2.2.6 Evaluating Explainability Techniques

As seen in the above sub-sections there have been numerous explainability tech-

niques proposed, each with their own advantages and disadvantages. This can make

it difficult to know which method should be used for which task, meaning the eval-

uation of explainability techniques is vital. This is a deceptively difficult task [17],

with there being no consensus on the best way to evaluate an explainability tech-

nique: is it better to focus on how faithful produced explanations are to the model?

Or should we focus on how easily the explanation can be interpreted by a human?

There are three main qualities that current metrics are currently designed to

measure:

• Faithfulness: does an explanation match the inner workings of the model?

• Understandability: are the explanations compact/simple enough that a hu-

man can understand them?

• Stability: are the explanations robust to small perturbations?

A number of metrics have been proposed that aim to address these questions

(and measure these qualities), and one should use a wide range of them to fully

understand the quality of an explainability method. This thesis is largely focused
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on the faithfulness and stability of an explanation; in particular, the explainability

metrics have been chosen to ensure that the methods introduced in this thesis are still

able to generate explanations that are as close to the underlying model as possible.

Indeed, this is especially important in Chapter 4, where explanations themselves are

introduced as a model quality metric. Explanation infidelity [94], is one measure

of how faithful explanations are to the model (i.e. how much does an explanation

change when the input is slightly perturbed). Infidelity is defined in Equation (2.4),

where I = x − x0 and x0 is some baseline input; it can be seen as the expected

error between the explanation and the difference in model outputs when the input

is perturbed.

INFD(E, f, x) = EI∼µI

[
(ITE(f, x)− (f(x)− f(x− I)))2

]
(2.4)

Similarly, explanation sensitivity-max [94, 95] is a measure of how much an ex-

planation changes when the input is slightly perturbed:

SENS(E, f, x, r) = max
∥x′−x∥≤r

∥E(f, x′)− E(f, x)∥ (2.5)

where r is the radius for which the perturbations will be sampled within. This

metric is useful as it can be quickly approximated via Monte-Carlo sampling. Both

infidelity and sensitivity-max are used to measure how much explanations change

compared with how much the DL model output changes (when an input is slightly

perturbed): ideally, one wants these metrics to be as low as possible, as this would

show the explanations are faithful to the original model. However, faithful expla-

nations are not sufficient for good explanations: they must also be interpretable by

humans (ideally to non-DL experts as well) and actually highlight regions of the

input that the model is finding “important” (it is conceivable that a given expla-

nation method may have low infidelity/sensitivity, but that the feature attributions

actually do not correspond to the features used by the model).

Explanation accuracy [17] is defined as the accuracy of a DL model when trained

on explanations rather than the original input; it attempts to measure how well the

explanations match the features used by the model (although it should be noted
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that this is extremely dependent on the performance of the explained classifier).

Evaluating the comprehensibility of the explanations is a much more difficult task;

it is difficult, if not impossible, to quantitatively measure such a property as it is

inherently related to the explanation’s audience. This type of explanation quality

can only be evaluated via qualitative, usually subjective, measures such as trust

and confidence [96]. Although this type of human-centred evaluation is critical

when deploying DL techniques in practice, it is costly in terms of both time and

money, meaning it is only really performed on small scales and towards the end of

a model’s development life cycle [97].

For image data, one interesting way of evaluating explanation quality is to com-

pare it with the Eye-Gaze Data (EGD) of an expert who was tasked with analysing

the image. While datasets with such ground-truth explanations are limited, those

that are available allow for a powerful analysis of deep learning models. For exam-

ple, [1] do this on a small set of CXR images: they asked a trained radiologist to

diagnose the x-rays, tracking their eye movements, and compared this data with the

GradCAM explanations from a model tested on the same set of images. Of course,

this method does not necessarily evaluate the explanation technique itself, and in-

stead actually evaluates the quality of the model’s learned features. Although an

argument could be made that this is not exactly a fair comparison - the radiologist

was analysing a high-resolution image, whereas the model is given a scaled-down

version (which, as such, may have fewer visible features) - in the case of these ex-

periments, the model explanations are so far out of alignment with any noticeable,

important part of the image (e.g. the general chest area) that we can conclude

the deep learning models are likely learning spurious correlations. As we will see in

Chapter 6.1, this work shows that the learned features of classical DL models is poor

(for CXR diagnosis, at least) and can be significantly improved upon by utilising

some of the explanations techniques seen in this chapter during training. Indeed,

the remaining chapters of this thesis all focus on how the methods introduced in

section can be applied in novel ways to improve the robustness and overall quality

of DL models (e.g. improving features such as privacy and security), and how this

could increase clinician’s trust in models when applied to healthcare tasks.
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2.3 Deep Learning Model Robustness

As DL becomes ever more popular, we are becoming increasingly aware of its limita-

tions. In many applications, DL models have been shown to biased decisions [8,98],

or be susceptible to shortcut learning (wherein a model learns to “cheat” and use

spuriously correlated features rather than those that are causally related to the tar-

get) [18]. The use of spurious correlations (that is, features that are correlated with

the target, but not the two are not causally related [99]) is worrying, as it leads

to models being more susceptible to privacy leaks, erodes trust and more generally

results in models that are not as robust as they could be [18, 100]. A particularly

egregious example of this from the healthcare domain can be seen in [101], which

studied a well-performing pneumonia detection model that took CXRs as an input.

While the model achieved a respectable AUROC of 0.773, the authors showed that

the model had actually learned to detect regions of the CXR that indicated which

hospital the image was taken in (due to different machines and setups being used in

different hospitals, CXRs can differ ever so slightly). As some hospitals had higher

rates of pneumonia than others, this was a good proxy for pneumonia prediction;

however, it is clear to see that the model would fail if deployed in practice. In

another more recent example, despite widespread claims of success in applying ML

to COVID-19 tasks [102], many of these models succumb to numerous pitfalls such

as making spurious correlations or being unable to generalise [103, 104]. The lack

of robustness to issues like this is one of the main barriers facing further adoption

of DL in healthcare. It is believed that a lot of these issues are down to our lack

of understanding of how deep neural network training actually works [105] - in this

section we briefly introduce some of these issues, as well as some techniques that

have been developed that aim to alleviate them.

2.3.1 Model Generalisation and Underpsecification

One major concern for DL applications is that, in many real-world scenarios, there is

a significant difference between the data used for training and the data the model will

be applied on in practice - often, there is such a significant shift that the underlying
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causal structure of the data will be different [10]. Even though some DL models

have been shown to generalise well to real-world datasets [36], it is still not fully

understood how or why this occurs; for example, how is it SOTA vision models

are able to converge and generalise, even when trained on unstructured noise [11]?

Couple this with recent work that suggests deep neural networks are immune to

the bias-variance trade-off, with networks not exhibiting the classical U-shaped test

error curve (Figure 2.4) [106, 107], and the picture becomes even more complex.

Specifically, overparamerterised networks (i.e. networks where there are many more

learnable parameters than training samples) are able to learn noisy datasets well

as they can simply ”remember” all samples in the training set. Typically, one

would expect a model that has learned in this way to achieve poor generalisation

performance (it has not learned any important features, simply the entirety of the

training set) and yet recent studies have shown that some such models are indeed

able to perform well on a fresh testing set [108]. This is a surprising result, and is

not yet fully understood - it is widely agreed that more theoretical work must be

carried out to investigate this phenomena [109].

Figure 2.4: The expected U-shape bias-variance trade-off curve for machine learning
models.

This lack of theoretical understanding can severely affect the development of DL

models. Clearly, these issues need to be addressed before DL models have any hope

of being widely adopted in sensitive scenarios such as healthcare.
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Moreover, shortcut learning [18] (or decision rules that work well on standard

benchmarks but fail to generalise to more complex situations) has recently been

shown to be prevalent across many different machine learning domains. This means

that we can no longer assume that a model’s performance on one dataset indicates

that it is well-suited to the task at hand [110] and suggests that many models may

not be as good at generalisation as was once thought [35].

Extensive work has gone into trying to explain these phenomena [20, 99, 111],

with many studies attempting to explore how models train and learn variations in

data, yet still no consensus has been reached. This thesis argues that the lack of

understanding of exactly how these deep learning models work [38] and generalise is

ultimately preventing us from addressing the aforementioned issues. Understanding

how the stochastic nature of the training process affects what properties of the data

is captured by the model is fundamental. Chapter 4 explores how DL explainability

techniques can be used to further explore DL model training, begin to uncover

how stochasticity affects training, and use these techniques to question a model’s

robustness. Then, Chapter 5 extends this work to propose an entirely new training

algorithm that addresses some of these questions.

2.3.2 Modern Neural Network Architectures

Modern deep learning architectures are not only designed to achieve higher levels of

task accuracy, but also increased robustness, generalisation and transparency. For

example, GaborNets [112] are a class of CNNs that utilise Gabor Filters [113] with

learnable parameters in the place of the first convolutional layer. Gabor Filters

are suggested to closely mimic the behaviour of a human’s vision cortex, detecting

lines with specific direction, spatial frequency and scale, and it has been shown

that GaborNets are able to more accurately capture orientation information (in

the first layer) than traditional CNNs. While GaborNets do see a slight reduction

in performance on baseline image classification tasks than traditional CNNs, it is

argued that having a network that closely models human behaviour is beneficial in

some sensitive applications, such as healthcare. However, as we will be explored in

Chapter 6.1, this is not necessarily the case.
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Ensemble models [114, 115] have long been proposed to improve model perfor-

mance. Ensemble methods take a number of models (also called the ensemble’s

sub-models) trained on the same task/data and combine the output of all of these

models to produce a final output (shown in Figure 2.5), with the idea being that

the error contained in any one of the sub-models will be compensated for by the

other sub-models. Ensemble techniques are typically used to improve upon the per-

formance of a baseline model, with ensemble architectures reaching the top of the

performance leaderboards for many DL tasks [116]. Due to their increased complex-

ity, ensembles are inherently less explainable than their regular counterparts [17] -

however, this issue is something that will be addressed via the introduction of the

novel Deep Explanation Ensemble technique in Chapter 5.

Figure 2.5: A basic ensemble modelling framework.

There are several reasons why ensemble techniques are able to achieve higher

levels of performance than a single model alone [117, 118]. Firstly, it is well known

that there are typically many hypotheses (i.e. set of weights) reachable by a DL

model that perfectly fit its training data (with this being particularly true when the

size of the training data is small) - this is precisely why DL is prone to overfitting

(i.e. remembering) the training data. This leads to a model achieving perfect

performance on the training set, but poor performance on anything outside the

training data. With an ensemble model, however, this issue is somewhat alleviated

as each of the sub-models will reach a slightly different hypothesis and so the chances

of them all overfitting to the same set of data is smaller. Secondly, ensembles allow

a wider range of models to be explored. By increasing the search space during
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training, we increase the likelihood that we will find a set of weights that accurately

model our data.

Furthermore, recent ensemble architectures have also been shown to increase

robustness to malicious inputs [115] and improve model generalisability [119]. In

particular, Hyper-deep Ensemble Models [25] have been shown to further increase

the generalisability of the model. These extend the idea of traditional ensemble

models, which consist of models with different weights, to also include models which

have been trained with different hyperparameters. This is a simple addition to the

training procedure, where not only are the sub-models trained with different random

initialisations (as with traditional ensemble techniques) but a random search across

the hyperparameters is also performed. These models are shown to outperform

traditional ensemble models on the CIFAR10/100 [120] benchmark datasets, as well

as showing they are more robust to data corruptions. However, as explored in

Chapter 4, they still produce inconsistent results when retrained - an issue which

Chapter 5 aims to address.

2.4 Privacy in Deep Learning

By its very nature, DL requires a lot of data and this naturally raises privacy

concerns, particularly when private information such as a person’s healthcare records

are involved; people can be reluctant to share their data for use in a DL model

when they are unsure exactly how it is used and how securely it will be stored

[7]. Furthermore, neural networks have been shown to be susceptible to host of

adversarial attacks, ranging from attacks that can trick a model into making a

certain decision to membership inference attacks. This section, explores some of

these attacks and current defences against them. Chapter 3 investigates how off-

the-shelf explainability techniques can be used to protect against some of these

attacks, and Chapter 6.2 explores how a new type of model training create models

that are inherently robust to such attacks.
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2.4.1 Adversarial Attacks

Adversarial attacks are a concerning weakness of DL models. It has been shown that

it is possible to construct an adversarial input for a DL model by taking a sample

from the dataset and adding some carefully constructed noise to it - this adversarial

input then results in the model outputting the incorrect prediction [121, 122]. Im-

portantly, the changes between original input and the adversarially perturbed input

can be so small that it is unnoticeable to the human eye. There are a number of dif-

ferent ways of constructing these attacks, with them most commonly being applied

to image data - although specific attacks have been developed for other modalities.

This section explores attacks that may be relevant in healthcare scenarios (e.g. those

on medical images and EHR data), although it is worth noting that many of the

attacks can also be applied outside of the medical domain (e.g. on any image, or

any time-series data).

Figure 2.6: Random adversarial examples generated on the MIMIC-CXR dataset.
Images on the left are the original images, the middle have been generated via PGD,
and the right via C&W.

Medical data has a number of properties that makes it more susceptible to adver-

sarial attacks than other data modalities [123]. In particular, medical imaging is a

highly standardised domain - images are typically collected under a very specific set

of circumstances, meaning there is not much variation between images. This makes
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it easier to generate adversarial attacks: they don’t need to be able to adapt to

different setups (e.g. lighting, orientation) like they do when applied to traditional

image classification tasks. Additionally, many medical images have an ambiguous

ground truth - it is not always clear, even to medical experts, what the correct diag-

nosis may be. If an attacker were to target these types of images, it makes it easier

to construct examples which humans correctly label but fool the DL model.

Both of these points result in traditional adversarial attacks being applicable to

medical images [123]. Projected Gradient Descent (PGD) [124] generates adversarial

samples by using gradient descent to maximise the model’s loss whilst keeping the

size of the perturbations small (typically within some L∞ ball). A set of three

more advanced attacks is proposed in [125] that use a similar approach but, instead

of using projected gradient descent, the optimisation problem in Equation (2.6) is

solved. Figure 2.6 shows examples of two adversarial attacks applied to medical

imaging data. This attack is shown to be more effective than the standard PGD

attack, being able to bypass even robust DL models. The authors of this attack

show that it never fails to produce an adversarial sample when tested on models

trained on MNIST, CIFAR and ImageNet.

minimise ∥δ∥∞ + c · f(x + δ)

such that x + δ ∈ [0, 1]n
(2.6)

Alongside these attacks, which are applicable to any data modality, some attacks

are designed with specific applications in mind. For example, the Longitudinal

AdVersarial Attack (LAVA) [126] is designed to create adversarial samples for time-

series data such as Electronic Health Records. EHR data proposes a unique challenge

in that it can be easier for a human to detect perturbed features - it is easier to

notice a change in one or two EHR features than it is in slight changes to pixels in

an image. LAVA combats this by using saliency scores to determine which features

should be perturbed: features with high saliency scores aren’t changed as much, as

it is assumed a clinician will focus closely on these features and thus be more likely

to notice an attack. On a private EHR dataset, the authors of LAVA showed that it
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was able to reduce model performance (AUROC) from 0.5 to 0.08, both beating the

performance-drop of PGD and whilst also perturbing fewer features (hence making

the attack harder to detect).

2.4.2 Defences Against Adversarial Attacks

As new adversarial attacks are developed, so must new defence mechanisms. A sim-

ple solution is to train a binary classifier on normal dataset samples and adversarially

perturbed samples with this method being shown to perform fairly well on the CI-

FAR10 dataset, detecting at least 75% of adversarial images (overall performance is

dependent on the type of attack used) [127]. However, this method requires a large

number of adversarial samples to be available, which is not only time-consuming to

generate but is also often impractical: in a real-world scenario, it is impossible to

know what type of adversarial attack will be used, and it is impossible to train a

binary classifier on all possible attacks.

It has also been shown that it is possible to detect noisy adversarial samples using

Bayesian uncertainty estimates and density estimates of the model’s final hidden

layer [128], with both techniques complementing each other to detect adversarial

samples the other cannot. By estimating the sub-manifold of data that correspond

to a class c, it is possible to detect samples which then lie outside this manifold - these

samples have likely been adversarially perturbed. Then, by calculating the Bayesian

uncertainty (available in networks that utilise dropout) we are able to detect samples

which the model is highly uncertain about - again, these are likely to be adversarial

samples. This pair of techniques has been shown to be able to detect attacks on the

CIFAR, SVHN and MNIST datasets with high accuracy, as well as working well on

medical images [105]. However, experiments in Chapter 3 will show that they do

not perform very well on EHR data and are extremely model-dependent.

ML-LOO [129] is an adversarial attack detection method that uses the Leave One

Out (LOO) explainability technique to detect perturbed samples. When using LOO,

feature attribution is calculated via the reduction in the probability of the selected

class when the feature is masked/removed. ML-LOO has been shown to outperform

all other classical adversarial attack detection methods, however it is extremely
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computationally intensive: for every combination of features, the model must be

ran. Furthermore, like all other techniques previously discussed, this technique

requires retraining as new adversarial attacks are created.

2.4.3 Membership Inference Attacks

In addition to adversarial attacks, it has been shown that deep learning models are

susceptible to memorising training data even when they have generalised well [130],

which leaves them open to a number of different Membership Inference Attacks

(MIA) [131, 132]. Given a DL model M , and input x, the goal of a MIA is to

determine if x was included in the training of the model. These attacks can be

used to infer information about x - for example, their relationship to the goal of the

classifier M . Susceptibility to these attacks is a large privacy concern, with the US

National Institute of Standards and Technology specifically classifying a successful

MIA as a privacy violation [133].

Broadly, membership inference attacks can be separated into two groups: black-

box and white-box attacks. White-box attacks assume that the attacker has full

access to the target model. On the other hand, black-box attacks only allow limited

access to the model (usually some form of its outputs) - black-box attacks are the

most well-researched MIA type, as they more closely mimic real-world attacks [131].

Standard DL models have been shown to be highly susceptible to this type of attack,

with membership inference being able to be inferred from the model output’s alone

[132], through the creation of “shadow models”. These shadow models are designed

to mimic (as closely as possible) the behaviour of the target model. This allows the

attacker to be able to train a black-box binary classifier on these shadow models,

which can then be transferred to the target model (all the while not requiring access

to the target model). It has been shown that similar attacks are viable even when

the target model is able to generalise well [134].

While all MIAs based on the shadow model architecture require access to the

target model’s confidence score, there are a growing number of attacks that require

access to the predicted labels only [135]. These attacks work by perturbing the

input x and observing how this affects the model’s output - these observations are
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then used to determine how close to the decision boundary x is, with the idea

being those samples which were in the training set will be further away from the

decision boundary. These attacks have been shown to work on a wide range of model

architectures [135]. Chapter 6.2 analyses how new training techniques introduced in

Chapter 5 create models that are extremely robust to membership inference attacks,

and investigate why this is the case.

2.4.4 Federated Learning and Differential Privacy

Federated Learning (FL) is an alternative deep learning training paradigm that is

designed to improve users’ privacy. In the FL setting, a central coordinator and

multiple distinct remote parties contribute to the training of a global model in such

a way that the remote parties’ data remains private [136, 137]. Traditionally, with

deep learning models this is achieved through Federated Averaging [138] wherein

each remote device trains its own version of the global model (with its own private

data), and the global server collates all private models into one global model; in this

setup, a user’s data never leaves their own device as only the final model is shared.

This has applications not only in situations where there are many individuals each

with their own private data (e.g. predictive text [139]), but also in scenarios where

multiple data processors have data on many individuals that they want to aggregate

into a single training set (e.g. hospitals, each with their own patient population [24]).

Although FL allows the training of a ML model without clients explicitly sharing

their data, it alone is not enough to provide sufficient privacy protection and instead

must be used in conjunction with additional privacy-preserving methods [140]. For

example, it has been shown that membership inference attacks are viable in the

FL setting [141] as well as other attack methods that utilise unique properties of

federated models [142].

One of the main defences against membership inference attacks (and many other

privacy-related issues) in both traditional and federating settings is the use of Differ-

ential Privacy (DP) during training [140,143,144]. For a model to satisfy (ϵ, δ)-DP

it must follow Definition 1; that is, it is formally guaranteed that for two datasets

X ,X ′ that differ by exactly one sample, two models trained on these datasets will
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produce statistically similar results (i.e. the similarity of the results are bounded by

ϵ).

Definition 1 ((ϵ, δ)-DP) A randomised model f : X → Y satisfies (ϵ, δ)-DP if,

for any two adjacent inputs x, x′ ∈ X and any subset of outputs S ⊆ Y it holds that

P[f(x) ∈ S] ≤ eϵP[f(x′) ∈ S] + δ

An algorithm that satisfies DP protects both the content and the output of the

model, though often at the cost of model performance and increased computation. In

the context of Deep Learning, DP is typically achieved via the DP-SGD algorithm,

which is a differentially-private version of Stochastic Gradient Descent (SGD) [143].

Briefly, DP-SGD works by injecting noise into the gradient at each batch (providing

the privacy required by DP) and clipping the norm of each gradient (ensuring that

one training sample does not have an overwhelming influence over training, which

could result in a privacy violation). It has been proven that differentially-private al-

gorithms provide an upper bound on the impact of MIAs [19,145], however when ap-

plied to real-world settings many assumptions required by DP no longer hold [99,146]

leading to over-estimated levels of privacy [147]. In fact, there is such a significant

difference between the theoretical analyses and real-world applications of DP that

it has been shown that it is not necessarily a sufficient defence against MIAs and

that deeper analyses are needed when studying MIAs on differentially-private algo-

rithms [53]. Chapter 6.2 will further explore how, under real-world assumptions, DP

and FL do not significantly reduce a model’s vulnerability to Membership Inference

Attacks, and investigate how explainability techniques such as those discussed in

Chapter 2.2 can be used to infer training set membership. Chapter 6.2 will then go

on to show how the training algorithm proposed in Chapter 5 can be utilised in a

federated setting, and explore its robustness to such attacks.
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CHAPTER 3

Attack-Agnostic Adversarial Attack Detection using

Explanations

As seen in Chapter 2.1, applications of machine learning in healthcare have shown

great success. However, in Chapter 2.4.1 we also saw that these models are highly

susceptible to adversarial attacks and that examples of such attacks are effective

when applied to medical data such as EHR [126] and imaging data [148]. The

presence of adversarial attacks is of particular concern in the medical domain as it

would be unethical to deploy a machine learning model to clinical practice if it is

considered vulnerable to such malicious attacks, even if the likelihood of an attack

is low [148].

Healthcare DL models are at particular risk of adversarial attacks [72,105,148].

Fraud is already pervasive in the US’ healthcare economy, with institutions systemat-

ically inflating costs and physicians billing for the largest amount possible [148,149]

and, with machine learning algorithms likely to be used for medical decisions in

the near future [150], adversarial attacks on ML models will be a new avenue for

fraud to occur. The pharmaceutical and medical device markets are also domains

where adversarial attacks on medical machine learning systems are a risk. The large

amounts of money involved in these markets (the median revenue for a single cancer
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drug is estimated to be $1.67 billion [151]) combined with the increasing number of

drug/device approval decisions being made based on digital surrogates for patient

responses (for example, in medical imaging [152]) means that extremely valuable

decisions are being made by machine learning algorithms and as such are a likely

target for adversarial attacks.

As Chapters 2.1.8 and 2.4.1 explains, medical DL models are particularly vul-

nerable to these attacks, and medical and policy experts alike agree that DL models

must be robust to such attacks in order for them to be deployed into real-world

scenarios. As part of this effort many techniques have been developed to combat

these attacks, ranging from techniques designed to detect adversarial samples to

modified training techniques that aim to make models that are inherently robust to

adversarial inputs. However, as discussed in Chapter 2.4.2, this is far from a solved

problem, especially in the medical domain - there are very few adversarial attack

defences designed for time-series EHR data, with other techniques yet to be tested

on medical data, and the majority of the best-performing techniques require re-

training when a new type of attack is discovered. This chapter further explores this

issue, showing that existing adversarial attack defences fail to sufficiently protect

healthcare-based DL models against perturbed samples. We also introduce a novel

method that utilises off-the-shelf explainability techniques to detect adversarial sam-

ples, and show that this detection technique is attack-agnostic. The contributions

of this chapter are as follows:

• It proposes the first adversarial sample detection technique that works effec-

tively with EHR data

• It proposes a novel and simple method for detecting adversarial attacks using

explainable techniques and demonstrate that it beats the state of the art on

both medical imaging and EHR data despite the sparse, temporal and high-

dimensional nature of the data

• It shows that the method is model agnostic and will support any machine

learning model, unlike previous techniques
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• By framing the adversarial detection as an anomaly detection problem, the

approach is able to generalise to any attack type without the need to retrain

3.1 Methodology

As adversarial attacks change parts of the input, I hypothesise that ML models

place more importance upon these perturbed sections of the input when passed an

adversarially perturbed sample - it then follows that one could use explainability

techniques to detect when these regions are activated. I introduce novel solutions

that utilise SHAP values to detect adversarial attacks and demonstrate that it works

on both medical imaging and EHR data. The proposed solutions consist of both

fully- and semi-supervised methods, and exploits the differences between the dis-

tribution of SHAP values of genuine and perturbed samples in order to accurately

detect adversarial samples. Furthermore, as SHAP values are consistent across the

entire genuine dataset, the semi-supervised solution is able to generalise to adver-

sarial attacks generated by alternative (i.e. unknown) methods without the need for

retraining.

3.1.1 Datasets and Classification Models

Throughout this chapter, all experimentation is performed on 2 EHR datasets

for experimentation: MIMIC-III [153] and Henan-Renmin1, and 1 medical imag-

ing dataset: MIMIC-CXR [45]. The Henan-Renmin dataset contains records from

110,300 patients, however with significantly fewer features than MIMIC-III; 62 fea-

tures per patient comprised of basic examinations and clinical tests. The class label

for each record is a combination of three possible diagnoses: hypertension, diabetes

and/or fatty liver. For further explanation of the two MIMIC datasets, refer back

to Chapter 2.1.

RETAIN [54] is a state-of-the-art model designed specifically to work with EHR

data. The model aims to mimic typical physician practice by inspecting EHR data

1http://pinfish.cs.usm.edu/dnn/
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in reverse-time order, such that more influence is given to more recent visits when

making the final classification. In order to provide interpretable results, RETAIN

has a two-level neural attention model that first detects key visits and then detects

the key diagnoses from these visits. I train RETAIN on the MIMIC-III dataset.

This results in an accuracy of 81% when predicting patient mortality. To ensure

that my adversarial attack detection method adapts to different datasets, I also

train the RETAIN model on the Henan-Renmin dataset to predict hypertension,

with an accuracy of 73%. Hypertension is chosen as it is the most prevalent single

label, providing mostly balanced classes. This is the same base task as originally

experimented on in [54], allowing the same set of hyperparameters to be used: all

hidden layers have size 128, dropout is performed with a probability of 0.6 and the

L2 regularisation coefficient is set to 0.0001. Both of these results show that the

baseline models are able to achieve levels of performance that would be expected

when compared with the results of other studies [54, 153].

In addition to EHR data, I also evaluate my proposed techniques on medical

imaging data. Specifically, evaluations is focused on CXRs with the Cardiomegaly

label, reducing the 14-label multi-label classification problem from MIMIC-CXR

to a simpler binary classification problem. To do so, first CheXpert is run on the

radiologists’ reports to extract the diagnosis which results in 14 labels, each of which

is classified as either a positive mention, a negative mention or an uncertain mention.

Following the methods of [27], all uncertain labels are treated as positive mentions,

and images without any Cardiomegaly labels are removed (if these were included,

it would be difficult to apply a label to them without making further assumptions).

The Cardiomegaly label was chosen as the evaluation task as this is both a common

diagnosis and provides a balance between positive/negative labels with a low number

of uncertain mentions. I fine-tune Densenet-121 [154] (pre-trained on ImageNet [61])

on MIMIC-CXR, based on the method presented by Rajpurkar et al. [40], to predict

a diagnosis of Cardiomegaly, achieving an accuracy of 82%. This model is fine-

tuned with the following hyperparameters, found after performing a grid-search on

the validation set: batch-size of 8 (limited due to compute resources available),

learning rate of 0.001, β1 = 0.9 and β2 = 0.999. Similarly to the EHR models, this
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is inline with the accuracy achieved by similar studies [40] and confirms that the

baseline models are properly trained.

3.1.2 Adversarial Sample Generation

State-of-the-art adversarial sample generation techniques introduced in Chapter 2.4.1,

that are known to be successful on medical data, are used to generate adversarial

samples of the three evaluation datasets. LAVA [126] is used for the two EHR

datasets. Both RETAIN trained on MIMIC-CXR and RETAIN trained on Henan-

Renmin see a significant reduction in accuracy, as shown in Table 3.1. The reduction

in accuracy is similar to that reported in [126].

Table 3.1: Table showing accuracy of the models on the original and adversarial
attack datasets. As PGD necessarily performs perturbations until the sample is
classified incorrectly, the MIMIC-CXR model must achieve an accuracy of 0% on
the adversarial set.

Model Accuracy original data Accuracy adv. data
MIMIC-III RETAIN 81% 43%

Henan-Renmin RETAIN 73% 44%
MIMIC-CXR Densenet121 82% 0%

Projected Gradient Descent (PGD) [124] is used to generate the CXR adversar-

ial samples. As can be seen from Figure 3.1, the attacks generated by PGD use

perturbations so small that they are impossible to detect via the human-eye, and

Table 3.1 shows that PGD successfully produces adversarial samples that are able

to mislead the model into making an incorrect classification. In order to test my

method’s ability to generalise to different attack types, I use the attack method

proposed by Carlini & Wagner [125] (C&W). Unlike PGD which uses L∞ norm to

measure perturbation size, C&W uses the L2 distance metric to produce a second

set of adversarial samples for the MIMIC-CXR dataset. These two approaches have

been chosen as they perturb the images differently and hence allow the adversarial

attack detection technique’s ability to generalise to be tested.
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Figure 3.1: Random adversarial examples generated on the MIMIC-CXR. Images
on the left are the original images, the middle have been generated via PGD, and
the right via C&W.

3.1.3 Adversarial Attack Classification

As adversarial attacks subtly change small parts of the input, I hypothesize the

SHAP values for an adversarial sample will be different than those for a genuine

sample. This hypothesis is confirmed by Figure 3.2, which shows how PGD and

C&W affect the distribution of SHAP values compared to the SHAP values of gen-

uine data (correlation is low between the two with most values away from the per-

fectly correlated linear line). This demonstrates that although adversarial attacks

methods aim to make the minimal feature perturbations possible, they still greatly

impact the distribution of the explanation of the model predictions. Figure 3.2 also

demonstrates that the PGD and C&W attacks perturb the samples differently.

In order to quantify the importance that our models place on different parts

of their respective inputs, SHAP (Equation (2.2)) values as calculated by Gradi-

entSHAP [85] are used. SHAP values reflect the contribution of each individual

feature to a model’s prediction, which is important when only a small number of
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(a) (b)

Figure 3.2: Figures showing the average absolute importance of each feature in the
original MIMIC-CXR dataset, calculated using SHAP values against the adversarial
samples. (a) Scatter plot of the SHAP values of PGD adversarial samples on the
Y axis against the SHAP values of original sample on the X axis, the dashed line
represents the ideal line while the red line is the linear fit. The histogram of each
axis is plotted. The Spearman Rank correlation value is reported.(b) Scatter plot
of the SHAP values of C&W adversarial samples on the Y axis against that of the
original set on the X axis.

features are changed under perturbation during the adversarial attack. SHAP val-

ues for the unperturbed (genuine) dataset are calculated, as well as for the set of

perturbed samples to generate the data for the negative and positive class respec-

tively. Figure 3.3 demonstrates how the SHAP values for a sample change when

the model is looking at a perturbed sample, illustrating how a model focuses on

different parts of the input when presented with an adversarial sample: notice how

the model seems to utilise clusters of pixels in the chest area in the original picture

while the important pixels are scattered across the attack images.

I propose both fully- and semi-supervised methods using SHAP values to detect

adversarial samples utilising this information.

SHAP-MLP: Trains a simple multi-layer perceptron (SHAP-MLP) on the set of

SHAP values from both genuine and adversarial samples of the dataset. The model

consists of an input layer, output layer and a single hidden layer. More details about

the model are in Chapter 3.2.

SHAP-Conv: Trains a convolutional neural network (CNN) on the set of SHAP
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values from both genuine and adversarial samples. The CNN consists of two convo-

lutional layers, the first going from 3 channels to 16 with a kernel of size 5 and the

second going from 16 channels to 32 with a kernel size of 5. We use max pooling

with a kernel size and stride of 2, and the ReLU activation function throughout.

Following the convolutional layers is a series of 3 fully connected layers of sizes

89888×256, 256×84 and 256×1. Dropout is applied with a probability of 0.4 after

the second convolutional layer and again after the second fully connected layer.

SHAP-AE & SHAP-VAE: Typically, an adversarial attack can be seen as any

sample which a model classifies incorrectly; this can include genuine images which

the model misclassifies. SHAP-MLP and SHAP-Conv both attempt to classify these

images as adversarial. However, it is often more useful to only detect samples which

have been specifically perturbed to be adversarial [128]. This results in a smaller

number of samples being present in the adversarial set. Therefore I propose the use

of anomaly detection methods to detect the adversarial samples.

Two semi-supervised models are experimented with: autoencoders (SHAP-AE)

and variational autoencoders (SHAP-VAE) [155] trained to reproduce SHAP values

of genuine samples. The reconstruction error of the autoencoder, i.e. the error

between the original and reconstructed value, is then used as a measure to detect an

adversarial sample. For SHAP-AE, mean squared error (MSE) is used as the loss

function. For SHAP-VAE, MSE plus the Kullback-Leibler divergence is used. As

the autoencoder is trained only on genuine SHAP values, the reconstruction error

from adversarial SHAP values is expected to be higher - the (V)AE has not learned

how to reproduce these adversarial values. An SVM can then be trained to classify

reconstruction error into two classes (adversarial and genuine). The performance of

both methods is reported in Chapter 3.2.

3.2 Experiments and Results

This section reports the results of our experiments and compare our approach to

two current state of the art adversarial attack detection methods: a Kernel Density

based approach and ML-LOO. These methods, introduced in Chapter 2.4.2, were
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chosen as they are two very different, yet both state of the art, methods. ML-LOO

uses feature attribution values calculated via the Leave-One-Out method to detect

adversarial attacks: however, unlike the proposed methods, I will show that it does

not generalise well to unseen attacks and is extremely computationally intensive.

The Kernel Density based approach, on the other hand, can only be applied to

models that utilise dropout and does not perform very well on EHR data.

3.2.1 Experiments on EHR data

I first report the results of experiments on EHR data. Throughout all experiments,

SHAP values are normalised such that they have a mean of 0 and variance of 1, and

utilise a train/test split of 80/20. SHAP-MLP is trained on both the genuine and

adversarial SHAP values from the MIMIC-III dataset. A grid-based cross validation

search method is used to find the optimal hyperparameters for SHAP-MLP, resulting

in a hidden layer of dimension 160 and a learning rate of 0.01 with the Adam

optimiser. This leads to an accuracy of 77%. Similarly, on the Henan-Renmin

dataset, a hidden layer dimension of 140 and learning rate of 0.01 are optimal,

achieving an accuracy of 81% (Table 3.2).

Table 3.2: Results of adversarial sample detection. HR column reports the accu-
racy on the Henan-Renmin. CXR (C&W) reports the accuracy on C&W generated
samples, having been trained on C&W samples and CXR (PGD) the accuracy of a
model trained on PGD samples tested on PGD samples.

Method Datasets
MIMIC-III HR CXR (C&W) CXR (PGD) CXR (Train: PGD;Test: C&W) CXR (Train: C&W;Test: PGD)

SHAP-MLP 77% 81% 100% 99% 58% 46%
SHAP-AE + SVM 65% 53% 79% 79% 77% 79%
SHAP-VAE + SVM 66% 53% 85% 88% 86% 88%
SHAP-Conv N/A N/A 100% 100% 55% 65%
Kernel Density [128] 67% 67% 84% 83% 72% 66%
ML-LOO [105] N/A N/A 71% 78% 71% 71%

A similar approach is used for testing the autoencoder-based methods. SHAP-

AE and SHAP-VAE are both trained on the set of genuine SHAP values from

MIMIC-III and Henan-Renmin. After performing the same hyperparameter opti-

misation method described above, a grid-search finds that an autoencoder with 2

hidden layers (in both the encoder and decoder), a latent space size of 20 and a

learning rate of 0.01 with the Adam optimiser provides optimal results. Experi-

ments find that an SVM with an RBF kernel with C = 1 and γ = 1
M

(where M is
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the number of features) gives the best results compared to logistic regression, and

SVMs with other parameters, that are validated using grid-based cross validation

search. Similarly, SHAP-VAE has a latent space size of 5 and a learning rate of 0.01

with the Adam optimiser. For the loss function, the MSE is added to the Kullback-

Leibler divergence. An SVM using an RBF kernel with C = 1 and γ = 1
M

(where

M is the number of features) gives the optimal results.

3.2.2 Experiments on Imaging Data

To test the proposed solutions’ ability to work on different data modalities, the same

set of experiments are performed on the MIMIC-CXR dataset. CNNs are shown to

achieve superior performance when compared to other model structures [156], hence

the use of convolutions in SHAP-Conv allows the model to work well on imaging

data. This is highlighted by the fact that it outperforms all other methods on

all medical imaging experiments carried out, achieving a 100% accuracy on both

attack types (Table 3.2). Class imbalances in the dataset do not affect the results as

the proposed adversarial attack detectors work on balanced classes (non-perturbed

images and perturbed images), and I have chosen to focus on the Cardiomegaly

label within MIMIC-CXR as it itself provides a balance of positive/negative classes,

reducing the possibility of any class imbalances in the training data affecting the

models.

To test the semi-supervised models’ ability to generalise to different attack types,

experiments wherein the models trained on the MIMIC-CXR PGD data on MIMIC-

CXR data perturbed by the C&W attack and vice versa are ran. Table 3.2 shows

that both SHAP-AE and SHAP-VAE are able to generalise to different attack types,

achieving identical accuracy when C&W-perturbed examples are added to the test

set, confirming that our model can generalise to different attack methods without

the need for retraining. This is extremely useful, as it means the proposed model

is able to detect unseen attacks. However, as SHAP-MLP and SHAP-Conv are

both fully-supervised and are trained on both the genuine and adversarial samples,

they are unable to generalise to different attack types. Interestingly, while neither

model are able to generalise, SHAP-Conv performs better when trained on PGD
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images whereas SHAP-MLP achieves a better performance when trained on the

C&W samples. This could indicate that PGD perturbs images in such a way that

higher-level features are affected (which will be more difficult for SHAP-MLP to

detect), whereas C&W changes features on a lower level which SHAP-MLP has

more success in recognising.

The ability of SHAP-AE and SHAP-VAE (both with SVMs) to generalise to

different adversarial attack techniques is further demonstrated through Figure 3.4;

both of these techniques have a significantly smaller inter-quartile range than the

other techniques tested, showing that the performance of these models is not affected

by the type of attack that they are attempting to detect. SHAP-VAE is the clear

best performer on CXR data with a stable high performance in all settings.

3.2.3 Comparison to existing methods

The adversarial sample detection method outlined in [105] is used to run the kernel

density based adversarial detection method presented in [128] on the MIMIC-CXR

and MIMIC-III datasets. The kernel density of the final hidden layer of both the

Densenet-121 and RETAIN models are estimated, performing grid-based cross vali-

dation search to find the optimal bandwidths, and then a logistic regression classifier

is fit on the estimated densities to detect adversarial samples. A bandwidth of 0.1

produces optimal results; the results are reported in Table 3.2. As seen by the signif-

icant 20% drop in accuracy when C&W images are added to the test set, this method

is unable to detect tasks it has not been trained on - a significant disadvantage when

new attacks are constantly being developed.

The proposed techniques are also compared against the state-of-the-art explainability-

based adversarial detection method ML-LOO [129]. The experiments of the authors

on Densenet-121 are followed, with LOO features being extracted from the same

layers, and the inter-quartile range of these feature attribution maps being utilised

to detect adversarial samples. ML-LOO’s ability to generalise is tested in the same

way as SHAP-AE and SHAP-VAE. ML-LOO is able to maintain comparable accu-

racy on the unseen attack type with a > 10% lower detection accuracy compared

to SHAP-VAE. The Leave-One-Out (LOO) feature attribution method is also ex-
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tremely computationally intensive, and is impractical for datasets with large feature

spaces. The proposed methods, however, does not suffer from the same issue as they

are able to utilise one of many possible approximations when calculating SHAP val-

ues (for example, throughout this chapter the GradientSHAP approximation [85] is

used).

The proposed methods outperform the state of the art on all data modalities,

as reported in Table 3.2. Additionally, SHAP-AE and SHAP-VAE are both able to

generalise to different attack types without retraining. In contrast, Kernel Density

suffers a significant drop in accuracy when tested on unseen attack types in the test

set, showing it is unable to accurately classify attacks it has not been trained on,

while ML-LOO maintains its performance but at a significant computational cost.

Our results are compatible with those of [105, 148] in terms of EHR being a more

difficult data to address with SHAP-MLP beating Kernel Density’s performance by

over 10% in accuracy.

3.3 Discussion

The presented results demonstrate the difficulty to detect adversarial attacks on

EHR data. This is due to both the challenges associated with the data, and how

LAVA generates adversarial samples; unlike the PGD and C&W attacks on medical

imaging data, LAVA is a saliency-based attack method. This results in smaller

changes being made to the SHAP values of adversarial samples, and so they are

naturally more difficult to detect.

The MIMIC-CXR data is easier to work with. However, a thorough inspection

of the distribution of original labels of the adversarial examples that the proposed

model fails to detect finds that for all labels apart from Cardiomegaly (the label our

model is trying to predict) the distribution of positive/negative labels is the same

as in the original dataset. Upon investigation of the distribution of Cardiomegaly

labels, I find that the proposed semi-supervised adversarial detection methods incor-

rectly classifies a higher proportion of positive samples as adversarial than negative

samples (40% of the incorrectly classified samples are CXRs with the Cardiomegaly
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diagnosis, whereas in the dataset only 29% of images have the label). This shows

that class imbalance in the dataset leads to difficult-to-detect adversarial samples.

As the original model will most likely also have an inherent difficulty to classify one

of the classes (due to the class imbalance in the training data), the adversarial sample

classifier needs to learn to classify both perturbed samples and misclassified-genuine

samples as adversarial. As the SHAP values of misclassified-genuine samples will be

much closer to that of the genuine training set, this is difficult to do.

The ability of all the proposed models to work on different datatsets is useful in

medical scenarios where multi-modal data [157] and non-standardised data formats

[148] are common. Additionally, the ability to detect adversarial samples from

unseen adversarial attacks is invaluable, as it reduces the need for bespoke detection

techniques to be developed when new attack methods are discovered.

3.4 Conclusion

In this chapter I’ve introduced a novel method of detecting adversarial samples using

SHAP values that is able to adapt to different attack types and data modalities. The

method is the first such technique designed (and proven) specifically to work on

both EHR and medical imaging data, despite the challenges of high-dimensionality,

sparsity and temporality that it presents, and as such beats the current state of the

art adversarial attack detection techniques on these data modalities. It is also able

to generalise to different attack methods without any additional training. By using

SHAP values we are able to explain how different attack methods work on different

datasets, and use this information to detect samples which have been adversarially

perturbed.

The novel methods presented in this chapter directly address one of the three

main issues that were introduced in Chapter 2.1.8 as barriers to further adoption of

DL in healthcare: that of robustness to adversarial attacks. Through a unique appli-

cation of off-the-shelf explainability methods in the DL pipeline, we have seen that

it is possible to make any classification pipeline robust to adversarial attacks, which

should increase clinician’s trust in DL approaches. In Chapter 5 and Chapter 6.2 I
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will expand upon these techniques even further and demonstrate how utilising expla-

nations directly in the training of DL models can provide model robustness against

a whole new attack vector, providing an extra layer of security that is “baked into”

the model itself.
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(a) (b) (c)

Figure 3.3: Each row is a different random sample from the MIMIC-CXR dataset
overlayed with SHAP values when that image is passed through the finetuned
Densenet121 model. (a) The heatmap of SHAP values overlayed on a genuine sam-
ple from the MIMIC-CXR dataset, (b) The heatmap of SHAP values overlayed on
the same image after being perturbed via PGD, (c) The heatmap of SHAP values
overlayed on the same image after being perturbed by C&W.
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Figure 3.4: Box plot reporting the performance of adversarial sample detection
methods on CXR data. The lower and upper limits of the boxes show the lower and
upper quartiles of the data, the middle of the box the median and the lower and
upper whiskers ±1.5× IQR.
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CHAPTER 4

Explanation (In)consistency

In the previous chapter we saw how explainability methods can be used as part of

a DL pipeline to supplement a non-robust model (i.e. how to make a model more

robust using explainability), and explored how this can be used to protect against

adversarial attacks and hence breaks down one of the barriers to the deployment of

DL models in real-world applications. However, there are still numerous issues that

must be overcome for DL models to become commonplace in sensitive domains.

Perhaps most importantly is the verification that our models are indeed learning

causal relationships, and not relying on the types of spurious correlations that we

saw in Chapter 2.1.8. For example, in healthcare we want our models to capture

the same important underlying causal inter-relationships that medical professionals

learn through experience. In order to ensure this, we must make our models both

transparent and explainable, in order to ensure that the relevant stakeholders (pa-

tients, medical practitioners) can place their trust in the model, and to help prevent

“catastrophic failures” [158,159].

A model that could be proven to use causal features would be robust to spurious

correlations and changes in model training perpendicular to the classification task;

however, this level of model analysis is currently extremely difficult (if not impossible
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in most real-world use cases) to achieve [160]. Without this level of robustness there

will be no trust for its use in the real-world. Current DL training methods often fail

to satisfy this requirement, as robustness/trust is yet to be an intricate part of the

evaluation and optimisation of said models [10, 99].

Recent theoretical and experimental work has demonstrated the challenge of gen-

eralisation for DL models and their vulnerability to small changes in the data [111].

Ensemble models, where multiple, slightly different models work together to make

a final prediction, have been proposed to alleviate these issues [115, 161]. How-

ever, while these techniques can improve the robustness of models, they are rarely

inherently explainable and do not necessarily understand causal relationships. Ad-

ditionally, a fundamental requirement of trustworthy models is the interpretability

of their decisions. The development of explainable DL techniques to date use either

model agnostic post-hoc or model specific approaches. However, the quality of ex-

plainable methods is still very difficult to quantify and is geared to be truthful to

the model not the data [79,94].

Chapter 3 shows how an over-reliance on non-causally related features can lead

to models being vulnerable to adversarial attacks. On the other hand, the novel

methods introduced in Chapter 3.1.3 show that explanations are extremely sensitive

to changes in a model’s inputs (so much so that they can detect malicious inputs

with near-perfect accuracy) - the next logical step is to investigate whether they

can also be used to measure differences between two models. This chapter aims

to answer this question, and explores the limits of explainable machine learning

and highlights fundamental problems in the training and generalisation of neural

networks. Most notably, it:

• Demonstrates how the noise learned by a deep learning model can change

significantly when factors such as the random seed, initial weights or even

training set order are changed (whilst all other variables remain unchanged)

• Proposes a measure of the consistency of explanations to quantify the prob-

lem and discuss its impact on the interpretation of the explainable output in

relation to the input features importance.
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• Shows that even the current state-of-the-art ensemble models present with the

same issues, and discuss the implications of these findings on the viability of

deploying machine learning models in sensitive fields such as healthcare.

4.1 Problem Motivation

As covered in Chapter 2.3.1, there is little in the way of a concrete, mathematical

understanding of why, how and to what degree DL models are able to generalise to

unseen data distributions. In particular we looked at issues such as shortcut learning,

spurious correlations and a bias-variance trade-off for DL models that contradicts

our traditional interpretation of model training. I argue that, ultimately, our lack

of mathematical understanding of neural networks is holding back the development

of DL models and that more work should be done to understand exactly how, and

why, DL models are able to train.

Inspired by the results in Chapter 3.2, which show that post-hoc explainability

techniques are very sensitive to changes in a model’s input, in this Chapter I look at

using explanations to understand the inner workings of model training - specifically,

I use explanations to investigate how changes to the training process (no matter

how small) can drastically change the resulting model. Notably, I demonstrate

that generated explanation can be unstable and inconsistent due to variations in

model training that are irrelevant to the classification task and that even model

architectures that are designed to overcome some of these problems (such as those

discussed in Chapter 2.3.2) fail to mitigate against this problem.

A closer look at explainable outputs of DL models allows us to understand how

the randomness introduced during the training significantly affects the explanation

of the model’s decisions despite consistent accuracy levels. This raises important

questions around the robustness of these models. On the contrary, kernel methods

(namely SVMs) are robust against these changes, suggesting that it is the stochastic

nature of deep learning model training that may be causing these issues to arise.

I argue that these issues significantly impede our ability to confidently suggest DL

models for use in healthcare, as they imply that the models might be relying on spu-
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rious correlations in the data leading to models producing inconsistent explanations

upon retraining.

4.2 Measuring Explanation Consistency

I argue here that consistency of the explanations produced by a model regardless

of orthogonal changes to hyper parameters (i.e. hyperparameter changes that do

not affect the architecture/structure of the model) is a strong surrogate to model

robustness. Fidelity of explanations on the micro level, i.e. input features, is the

basis to quantify explanations [94,162].

This chapter explores validating explainability on the macro level, i.e. the ro-

bustness of the produced explanation regardless of changes to model training that

are orthogonal to the model architecture, data content, and classification task. In-

tuitively speaking, the consistency of explanations across model variations engender

trust in these models as the end user does not expect changes in the explanation due

to an incremental model update. Existing similarity metrics (e.g. cosine similarity,

root mean squared error) are ill-suited to this task as they are unable to accurately

quantify the small (yet important) changes that we are particularly interested in. A

binary classifier is well-suited to this task, however, as even when the saliency maps

‘look’ similar, the classifier will be able to use these small differences to separate the

values.

4.2.1 A Measure of Consistency

Given a dataset X = {x1, ..., xN} ⊂ Rd, where d ∈ N is the dimension of the sample

data, we have a classification task Y (xi) ∈ {0, 1}n, where n is the number of classes

in a classification setting. The metric that will be proposed in this section aims to

evaluate the consistency of explanation method E, where E(Y (xi)) ∈ Rd assigns a

weight to every input feature based on its influence on Y (xi).

Assume we have V variations of the model Y , which will indicated as Y v, v ∈

{1, . . . , V }, then I define the explanation separability of any two of these variations

as:
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S(a,b) = Ei

[
D
(
E(Y a(xi)), E(Y b(xi))

)]
(4.1)

where i ∈ {1, . . . , N}, and D is a similarity measure between the two explana-

tions provided by E of the output of the two models Y a and Y b. The larger S(a,b) is

then the more distinct the explanations produced by the same model architecture

under the training conditions, a and b. As S(a,b) measures the (in)consistency across

all inputs in the dataset, S(a,b) takes the form of the expected value of the difference

between all tested hyperparameter pairs (a, b) data points.

Without loss of generality I assume S(a,b) to be normalised in the range [0, 1] and

define consistency as:

C = 1−
∑

(a,b) S(a,b)

α
(4.2)

where α is the number of comparisons made between variations of the trained

model. The separability metric S(a,b) should be defined such that when the expla-

nations are completely separable (i.e. S(a,b) = 1) then the consistency C = 0, and

vice-versa.

4.2.2 Choosing a Suitable Separability Metric

The definition of S(a,b) should be determined based on the characteristics of X,

e.g. data dimension and sparsity, and as such it makes sense that slightly different

definitions may be appropriate in different scenarios. There are numerous different

definitions that could be chosen ranging from information-theoretic measures of

similarity to statistical metrics of similarity (note that similarity metrics can be

modified to fit my definition of S(a,b) by “flipping” their output to ensure that S(a,b) =

0 when a, b are identical).

Throughout this chapter, and the remaineder of this thesis, I use the testing accu-

racy of a binary model, M(a,b), trained to classify between E(Y a(xi)) and E(Y b(xi))

for i ∈ 1, . . . , T , where T is the size of the testing set. Equation (4.2) can then be

re-written as:
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C = 1−
∑

(a,b) 2 ∗ |M(a,b) − 0.5|
α

(4.3)

where |.| is the absolute operator. S(a,b) is set to 2∗ |M(a,b)−0.5| to normalise the

classification accuracy and make it more meaningful as separability by measuring its

distance from theoretical random baseline. An accuracy M(a,b) = 1 means the two

explanations are completely separable with S(a,b) = 1 and C = 0, and on the other

extreme an accuracy M(a,b) = 0.5 means that there is perfect agreement between a

and b resulting in S(a,b) = 0 and C = 1.

However, while I have chosen to use the cross validated training accuracy of a

binary classifier to measure the distance, D, between the explainability values, as

noted earlier different distance measures could be used and it may be the case that

different distance metrics are suited better to different applications and datasets.

When choosing a separability metric, it is important to determine whether the chosen

distance metric is sensitive enough to detect the small changes in the explanations

that we wish to detect. Each possible consistency metric will have various advantages

and disadvantages, and it may be that some are better suited to different scenarios;

one of the reasons a binary classifier is used throughout this chapter is its suitability

to almost any scenario and data modality.

As there are so many separability metrics available to use, I provide evidence

that the chosen method (using a binary LR classifier) is indeed the best suited met-

ric to use for our specific scenarios. Table 4.1 contains the values of other, classical

consistency (i.e. divergence) measures that have been tested on 4 CNNs (of identical

architecture) trained on MNIST with different random seeds. Jensen-Shannon (JS)

divergence is based upon Kullback-Leibler (KL) divergence, and is a method of mea-

suring the similarity between two probability distributions; due to its relation to KL

divergence, JS divergence is common in machine learning applications, making it a

prime candidate for use here. JS divergence is better suited for measuring consis-

tency as it is normalised, and hence lies in the range [0, 1]. Its main disadvantage is

that it measures the divergence between probability distributions, and not samples

drawn from a distribution. This requires the distribution of the explainability values

for the two models we want to test to be estimated from the explanations we have
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generated. This adds an extra layer of complexity to the calculation, and could lead

to errors where differences in the techniques and assumptions used to estimate the

probability functions. For the experiments reported in Table 4.1 Kernel Density Es-

timation (KDE) was used, a method of estimating an unknown probability density

function using a kernel function [163]. While this has produced good results for this

set of experiments, the most effective kernel density estimation technique is entirely

problem-dependent, whereas the binary classifier method discussed in the previous

section is more generalisable to a wide range of data.

There are also a number of statistical hypothesis tests that are designed to test

whether two sets of samples are drawn from the same distribution. The 2 sample

Kilmogorov-Smirnov (KS) test is a two-sided test for the null hypothesis that the

2 sets of samples are drawn from the same continuous distribution [164]. Using

the KS test as a consistency measure has the benefit of having a solid statistical

underpinning, but it encounters problems when carrying out on real-world datasets.

While it is possible to accurately compute the test statistic (reported for a small

set of model in Table 4.1), the associated p-values are incomparable, meaning it is

impossivle to accurately complete the hypothesis test. In all experiments (except

those which are testing a model against itself, where a test statistic of 0 and p-

value of 1 was calculated), the test statistic calculations returned a p-value of 0.

A similar issue arises when the Wilcoxon signed-rank test is used, which is a non-

parametric alternative to the paired t-test which can work on highly non-normal

data that works on the null hypothesis that the median differences between pairs

of samples are 0. While these results (i.e. calculating a p-value of 0) highlight that

the results are highly statistically significant (and hence the null hypothesis can be

rejected, resulting in the conclusion that the explanations are drawn from different

distributions), as all of the calculated p-values are 0 it is not statistically correct

to use results from hypothesis tests to quantify to what degree the explanation’s

from two models are (in)consistent (i.e. we are unable to infer if one architecture

produces more consistent explanations than another), whereas our results with a

binary LR classifier allow us to do so.

This is not to say that JS divergence or KS/Wilcoxon hypothesis tests are entirely
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M1 Seed M2 Seed JSD KS Wilcoxon LR
1 1 0 0 0 0.5
1 12303 0.8062 0.9744 7.877e+09 0.973
1 15135 0.8012 0.9690 1.738e+10 0.978
1 16959 0.7346 0.8890 2.464e+11 0.975

12303 12303 0 0 0 0.5
12303 15135 0.8228 0.9913 4.350e+08 0.979
12303 16959 0.7900 0.9567 3.316e+10 0.974
15135 15135 0 0 0 0.5
15135 16959 0.8122 0.9810 6.611e+09 0.975

Table 4.1: Table reporting the Jensen-Shannon divergence, 2 sample Kilmogorov-
Smirnov and Wilcoxon signed-rank test statistics on the SHAP values from a small
subset of the MNIST CNNs tested. The p-values for all hypothesis tests were cal-
culated as 0. Kernel Density Estimation was used before calculating the Jensen-
Shannon divergence of the explanations. LR is the accuracy of Logistic Regression
classifiers trained on the SHAP values, as used throughout this paper as M(a,b).

unsuited to use as a consistency measure. This chapter focuses on experiments on

image data, where inputs contain a large number of features; applications where

inputs have fewer features may find it possible to calculate the p-values for hypothesis

tests, or to produce more accurate probability functions for the explanations. In

these cases, it may be appropriate to use one of these measures. However, my choice

of a binary classifier is easy to use in any scenario, to any dataset and is easy to

interpret and quantify.

4.3 Experimental Setup

Experiments are performed across two publicly available computer vision datasets.

MNIST is used for efficient baseline tests, with experiments then being expanded

to use MIMIC-CXR-JPG [59]. Experiments investigate a wide breadth of differ-

ent model architectures, explanation methods, and training variations. For both

datasets, the recommended train/test/val splits is used. For reproducibility, the

specific hyperparameters used for each experiment can be found in Table 4.4.

MNIST Experiments: Were carried out with the following model variations:

1) MLP with two hidden layers of sizes 412 and 512 respectively and a dropout layer,

2) Small-CNN, a convolutional neural network with 1 convolutional layer with
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kernel size 3, followed by a max pooling and fully connected layer, 3) CNN with two

convolutional layers with kernel size 3, using max pooling and fully connected layers

in between, 4) GaborNet, a Small-CNN network with the first convolutional layer

restricted to use Gabor filters [112], 5) ResNet18 [165] with the first convectional

layer modified to take 1 channel inputs and the final output layer to have an output

size of 10, and 6) SVM with RBF kernel. We also train two ensemble models:

1) ADP ensemble [115] using the default hyperparameters and consisting of 10

ResNet sub-models, and 2) Hyperensemble a hyper-batch ensemble [25] using the

default hyperparameters with 3 sub-models.

MIMIC-CXR-JPG Experiments: The dataset contains 377,110 chest x-rays

(CXRs) images from 227,827 studies [59]. Each study has up to 14 associated labels

denoting the disease(s) which are present in the CXR images. This study focuses

only on images with the Edema label; this gives a subset of 77,483 images of which

47.2% present with the disease (have a positive label) and the remaining 52.8%

do not (have a negative label). The labels are used as presented in the MIMIC-

CXR-JPG dataset: these have originally been extracted from free-text radiology

reports via the CheXpert tool [27, 59]. The MIMIC-CXR-JPG dataset is used to

demonstrate the issues raised in this chapter on a real-life healthcare application.

Experiments in this chapter have been focused on the Edema label as otherwise we

are left with a multi-label classification problem (as one CXR image may show mul-

tiple diagnoses), which would make isolating the source of variation very difficult to

guarantee. Specifically, the Edema label was chosen as it provides a large number

of images whilst also having largely balanced classes. The scope for experimenta-

tion with MIMIC-CXR-JPG is necessarily more limited than that with MNIST, as

the data requires more complex networks to gain optimal performance. For model

creation the same process as CheXNet [40] is followed, fine tuning a pre-trained

Densenet-121 model. Additionally, a voting ensemble consisting of 3 pre-trained

Densenet-121 models is also trained on subsets of the training dataset.

On both datasets, the models are trained repeatedly. For each run the model’s

hyperparameters are changed, leading to variations in the randomness used during

training without changing the architecture of the model. Specifically, the following
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Model Architecture Dataset Shuffle Random Seed Dropout
MLP MNIST 98.195± 0.9550 98.18± 0.94 98.25± 0.8292
SVM MNIST 93.825± 0.7746 94.218± 0.3943 n/a

Small-CNN MNIST 98.385± 0.0250 98.345± 0.015 98.3267± 0.0330
ADP Ensemble MNIST 98.5± 0.14 99.0875± 0.2573 n/a

CNN MNIST 97.5± 0.5 99.2170± 0.0443 99.1580± 0.0595
GaborNet MNIST 95.031± 0.2769 95.034± 0.2742 95.054± 0.2934
ResNet18 MNIST 99.083± 0.2514 99.471± 0.0438 n/a

Densenet-121 MIMIC-CXR 76.005± 0.8363 75.4535± 1.2539 n/a
Densenet-121 Ensemble MIMIC-CXR 81.98± 0.34 80.8533± 0.5311 n/a

Hyperensemble MNIST n/a 99.32± 0.0082 n/a

Table 4.2: Table reporting mean model accuracy (± standard deviation) across
model training variations on the base classification task.

hyperparameters are changed: 1) the random seed used during training, 2) the

dropout rate used in the networks (where applicable), and 3) the order of the training

data. It is important to note that the train/test/val splits remain the same, rather it

is the order in which the training data is passed to the model during training which

changes. The accuracy of the models on the base classification task (i.e. MNIST or

MIMIC-CXR) are summarised in Table 4.2.

To inspect the consistency of decision explanations as a result of changing these

hyperparameters, two state-of-the-art explainability techniques are used: SHAP [85]

and Integrated Gradients (IG) [88]. These two techniques were chosen as they rep-

resent a wide range of state of the art feature-attribution explanation methods: I)

SHAP is a permutation-based model-agnostic approach, so can be applied to the

output of any model II) IG is gradient based making it applicable for all neural

networks architectures. The explanation consistency for each explanation technique

per model and dataset is calculated, taking into account every training variation. A

Logistic Regression (LR) classifier is used as the binary model to classify between

E(Y a(xi)) and E(Y b(xi)) as per Equation (4.3). This LR model takes the explana-

tion values (i.e. SHAP values, IG values) of the two models as input, and is trained

to classify which model the values originated from. The average training accuracy

from 10-fold cross validation of the LR model is used. The higher the accuracy of

the LR models, the more separable the explainability values are, suggesting that the

two models are placing importance on significantly different parts of the input.

To confirm that the underlying problem lies in the models themselves, and not
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Figure 4.1: (a) Box plot of S(a,b) for SHAP across all training variations (a, b), for
all model architectures tested. (b) Plot of SHAP explanation consistency of model
architectures vs. SHAP infidelity and sensitivity of the same models across both
MNIST and MIMIC data.

the explainability techniques used, the quality of the explanations are measured

via three different explanation quality metrics (introduced in Chapter 2.2.6) that

are designed to ensure the explanations produced accurately represent the models:

(in)fidelity, sensitivity and explanation accuracy. These three metrics have been

chosen specifically as they each evaluate a different aspect of the explanation and

together provide a holistic view of an explanation technique’s quality.

4.4 Results and Discussion

Through visualisation of the explanation differences, it is possible to discern whether

the lack of consistency between variations is a cause for concern when deploying

deep learning models to real-world scenarios. Figure 4.3 demonstrates the change in

explanations between two variations of the same Densenet-121 model using SHAP.

There are two main sets of differences in the images: 1) areas of the image that

are clinically significant (e.g. the lungs and the heart), and 2) areas in background

portions of the image. Those differences that are in clinically relevant to diagnosis
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Figure 4.2: Boxplot of the separability S(a,b) of the Integrated Gradients explana-
tions. For clarity, note that the CNN and Hyper Ensemble models are trained/tested
on the MNIST dataset, and Densenet-121 on MIMIC-CXR.

can result in significantly reduced trust in the model, as we ideally want a model

which has learnt the entire set of causal links present in the data (whereas these

differences show that the two models have learnt to look at different sets of causal

features). The remaining differences are in the background noise of the images,

which suggests that the models are potentially picking up spurious correlations,

with each model learning different sets of spurious correlations. Neither of these

scenarios are desirable. Examples on Small-CNN trained on MNIST are shown in

Figure 4.5 - similarly to the CXR samples, changes in the SHAP values are mainly

centered around the areas of the image that are critical for number classification.

These results are significant - it suggests both that variations in the training setup of

a model changes the importance of the fundamental features that we would expect

to be causally linked to the final classification, and on more complex tasks are also

changing the spurious correlations learned by models.
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Figure 4.3: 3 random samples from the MIMIC-CXR-JPG dataset overlayed
(in green) with the difference between the normalised SHAP values from two
Densenet121 training variations.

Figure 4.4: Figures showing the CCA similarity as training progresses between layer
parameters. Each coloured line is a separate training variation pair of a CNN trained
on MNIST.

Following, the accuracy of all models tested on MNIST and MIMIC-CXR-JPG is

reported, as well as the consistency of the explainability methods per model/dataset.

Table 4.3 contains each model architecture’s consistency, and a further breakdown

of the consistency for the different types of training variation tested. For all model

architectures, the degree of consistency is similar irregardless of which hyperparam-

eters is changed; this suggests that deep learning models are sensitive to all training

hyperparameters, and not just a select few.

Figure 4.1(a) and Figure 4.2 further demonstrate the variation in the separability

measure (S(a,b)) across all models/datasets. These figures show that there is very
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Consistency
Model Architecture Dataset α Overall Shuffle Random Seed Dropout Accuracy

MLP MNIST 6 0.0668 0.062 0.066 0.0687 98.125± 0.9270
SVM MNIST 10 0.9444 0.96 0.94 n/a 94.0556± 0.6213

Small-CNN MNIST 6 0.0252 0.018 0.06 0.034 98.3486± 0.0360
GaborNet MNIST 12 0 0 0 0 95.038± 0.2824
ResNet18 MNIST 10 0 0 0 n/a 99.425± 0.0626

ADP Ensemble MNIST 6 0.2193 0.192 0.233 n/a 99.083± 0.2514
CNN MNIST 12 0.0652 0.052 0.0564 0.0914 98.9976± 0.5756

Densenet-121 MIMIC-CXR 6 0.3329 n/a 0.3329 n/a 75.6723± 1.1379
Densenet-121 Ensemble MIMIC-CXR 4 0.3367 n/a 0.3667 n/a 80.8± 0.7483

CNN (IG) MNIST 12 0 0 0 0 98.9976± 0.5756
Hyperensemble (IG) MNIST 2 0 n/a 0 n/a 99.32± 0.0082
Densenet-121 (IG) MIMIC-CXR 6 0.168 0.115 0.2033 n/a 75.6723± 1.1379

Table 4.3: Table reporting the consistency between training variations for the models
tested and the average accuracy of the model architecture on the base classification
task. The Shuffle, Random Seed and Dropout columns report the consistency of
models when only the respective hyperparameter was changed. The Overall column
reports the overall consistency of that architecture, taking an average of the consis-
tency across all hyperparameters. α refers to the number of models tested for the
overall architecture consistency (see Equation (4.2)). Please refer to Table 4.4 for α
values for the shuffle, seed and dropout consistencies.

little consistency of either SHAP and IG for any training variation when used with

deep learning models. The experiments find that SVMs do not suffer from the

same issue as deep learning models, achieving very high levels of consistency across

both random seed and training shuffle variations. This provides evidence for my

hypothesis that it is the stochastic nature of deep learning model training that may

be causing these issues to arise. Figure 4.2 shows the boxplot for IG, with even more

pronounced separability, which can likely be attributed to how IG is calculated based

on the weights of the network. Figure 4.1(a) does not show any real link between

the size/depth of a network architecture and its consistency.

Interestingly, both GaborNet and ResNet18 are completely inconsistent. The

purpose of Gabor filters in CNNs is to more accurately simulate our biological un-

derstanding of human vision, and so one would expect the feature maps learned by

these networks to more accurately represent those parts of an image that a human

would use for feature recognition. However, although this may still be the case, our

results show that these models may still be relying on noise and/or only learning a

subset of the important features each time the model is trained; if either of these

were not true, we would expect the models to be more consistent. The purpose
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Figure 4.5: The difference between normalised SHAP values from two CNNs (each
trained with different random seeds) for a randomly chosen sample from each MNIST
class.

of testing the ResNet18 architecture was to investigate whether overparameterised

networks also suffer from this inconsistency problem; as can be seen in Figure 4.1(a)

and Table 4.3, they do. This implies that even models which have many more times

the number of parameters than data points are converging to slightly different points

on the loss landscape when small hyperparameter changes are made. It also sug-

gests that even high capacity networks, which one would expect to be able to learn

the entire set of meaningful features, are in fact either not able to do so or are still

relying on some set of noisy features.

Figure 4.1(b) shows the correlation, or lack thereof, between explanation consis-

tency and (in)fidelity and sensitivity as measures of the explanation’s quality across

all experimental settings. For both cases there is a weak Pearson correlation (0.4

for (in)fidelity and -0.3 for sensitivity). This is not surprising as those metrics are

designed to be faithful to the model, not to the underlying data. This leads to these

quality metrics producing similar values across all variations, as they focus on the

whether the explanation is a good representation of what the model considers im-

portant whereas the purpose of this work is focus on how these important features

can change across runs. In general, ensemble approaches seem to have higher con-

sistency but it is still significantly lower than that of SVMs. To further measure the

quality of the SHAP and IG explanation, the explanation accuracy for each model is

also calculated. Each individual model’s explanation infidelity, sensitivity max and

accuracy is reported in Table 4.4. These explanation quality metrics support two
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conclusions: 1) the weak correlation between the quality metrics and consistency

shows that these metrics are unable to detect inconsistent models, and 2) as the

metrics are reporting that the explanations are indeed faithful to the model, then

it must be that the models themselves (or the training process) are responsible for

the inconsistency rather than the explanation techniques themselves.

SVCCA [166] is used to inspect the similarity of layer parameters between two

training variations, and investigate how these change as training progresses. SVCCA

views neurons using their activation vectors, and uses an amalgamation of Singular

Value Decomposition and Canonical Correlation Analysis to analyse these represen-

tations. Figure 4.4 shows the SVCCA similarity between layers of CNN trained on

MNIST with different random seeds. It clearly shows a high degree of similarity

for the final layer, whereas the middle convolutional layer (conv2) shows a signif-

icant difference. This corroborates the explainability consistency results; the final

layers (fc2) are similar (and so the models will produce similar outputs, resulting in

similar performance levels), whereas all other layers are significantly different (and

so the explanations, which take into account the whole model, are different). In

addition to this, the two convolutional layers show an extremely low degree of simi-

larity between the two models, hence the feature maps learned by these two models

are likely also not similar (resulting in the final explanations having high degrees of

separability).

4.5 Conclusion

In this chapter I’ve introduced a consistency measure of explainable machine learning

and demonstrated that deep learning models converge to learn different features

when the same model is trained with different random seeds, training set orders

and dropout rates. By validating the quality of the explanation techniques used,

and using both gradient-based and perturbation-based techniques, we have shown

that this is a fundamental problem with deep learning models rather than an issue

with the explanations. Additionally, I’ve verified that SVMs are immune to this

problem. I argue that there is still significant work that need to be done to build
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robust trustworthy deep learning solutions in real-life healthcare applications - in

Chapter 5 we will explore methods that utilise model explanations during training

that aim to address the problem of explanation inconsistency, and then explore how

this has positive affects in other areas of model robustness in Chapters 6.1 and 6.2.
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Model Type Dataset Dropout Seed Shuffle Explanation Accuracy Sensitivity Infidelity

CN
N

M
N
IS

T

0.0 1 False 96 2.40. 0.0019
0.1 1 False 97 2.04 0.0018
0.2 1 False 97 2.02 0.0020
0.3 1 False 98 1.69 0.0019
0.4 1 False 98 1.53 0.0016
0.25 1 False 98 1.84 0.0016
0.25 12303 False 98 1.70 0.0014
0.25 15135 False 98 1.58 0.0020
0.25 16959 False 97 1.67 0.0018
0.25 20878 False 98 1.61 0.0020
0.25 79266 True 99 1.51 0.0014
0.25 79870 True 99 1.67 0.0011

Sm
al
l-C

N
N

M
N
IS

T

0.0 1 False 99 1.07 0.1810
0.2 1 False 98 1.00 0.1429
0.25 1 False 98 1.00 0.1521
0.25 26417 False 99 1.02 0.1011
0.25 91110 True 99 1.01 0.1174
0.25 98281 True 99 1.01 0.1402

G
ab

or
N
et

M
N
IS

T

0.0 0 False 99 1.38 0.2808
0.1 0 False 99 1.41 0.2256
0.2 0 False 99 1.42 0.1900
0.3 0 False 99 1.44 0.1702
0.4 0 False 99 1.46 0.1523
0.25 257 False 99 1.17 0.1489
0.25 6339 False 99 1.34 0.2508
0.25 29062 False 99 1.40 0.1683
0.25 51303 False 98 1.45 0.2352
0.25 17939 True 98 1.34 0.1567
0.25 23682 True 98 1.28 0.1190
0.25 27442 True 99 1.31 0.1274
0.25 53307 True 99 1.27 0.1089

R
es

N
et

18

M
N
IS

T

0.25 21609 False 99 1.15 0.7214
0.25 23474 False 99 0.96 0.4426
0.25 29246 False 99 2.34 0.5284
0.25 48769 False 98 0.83 0.5007
0.25 58626 False 99 1.21 0.7121
0.25 72 True 98 1.21 0.5572
0.25 1507 True 98 1.42 0.8697
0.25 4439 True 99 0.97 0.5402
0.25 10250 True 99 2.10 0.8867
0.25 21033 True 99 1.01 0.9018

M
LP

M
N
IS

T

0.0 1 False 99 3.49 0.1748
0.2 1 False 99 5.56 0.1573
0.25 1 False 99 4.85 0.1508
0.25 27833 False 99 3.76 0.1926
0.25 72 True 99 3.39 0.1427
0.25 79870 True 99 3.74 0.1399

D
en

se
ne

t1
21

M
IM

IC

n/a 2 False 99 1.5966 0.9994
n/a 3 False 99 1.5031 1.0719
n/a 4 False 99 1.5987 1.0020
n/a 5 False 99 1.1431 0.4659
0.25 6 True 99 1.5122 0.9994
0.25 7 True 99 1.6078 1.1217

A
D
P

M
N
IS

T

n/a 0 False 99 1.2187 0.9110
n/a 42 False 99 1.4250 1.4376
n/a 100 False 98 1.2297 0.9730
0.25 1 True 99 1.3491 0.9912
0.25 10 True 98 1.3100 1.266

D
N
E

M
IM

IC
n/a 1 False 80 1.5499 1.0357
n/a 42 False 84 1.3709 0.7340
0.25 4242 True 81 1.5683 0.6510
0.25 1000 True 82 1.6932 0.8493

SV
M

M
N
IS

T

n/a 30828 False 99 1.5763 0.2070
n/a 31599 False 99 1.1686 0.9074
n/a 8253 False 99 1.0238 0.6214
0.25 91244 True 99 1.5439 0.5006
0.25 79870 True 99 1.5894 0.4823

Table 4.4: Table reporting explanation quality metrics on SHAP across all model
architectures and training variations tested. DNE denotes Densenet-121 Ensemble.
Where Shuffle is True, Seed refers to the seed used for shuffling the dataset and not
the training seed.
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CHAPTER 5

Deep Explanation Ensembles

Through a novel application of explainability techniques the previous chapter has

shown how there are inherent problems with the stochastic nature of neural network

training which results in notable inconsistencies in model explanation’s when hyper-

parameters such as the training seed and order of the training data are changed. This

is a significant problem when it comes to sensitive applications such as healthcare

and finance where, as discussed in Chapter 2.1.8, transparency and explainability

is paramount. This, coupled with concerns between the gap between training and

real-world data distributions and shortcut learning (Chapter 2.3.1), suggests that

possibly DL models are not learning causal features and instead are relying on spu-

rious correlations.

In this chapter I explore this problem further, by investigating and proposing

solutions to the inconsistency between models trained on the medical and biological

tabular datasets introduced in Chapter 2.1. I focus on these applications as it is in

these sensitive situations that inconsistent models pose the most significant risks and

barriers to the adoption of ML. These are also highly specialised areas of expertise

where interpretation of model output can have significant influence and can also be

directly challenged. Furthermore, by initially restricting my evaluations on tabular
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datasets it allows a more focused analysis of the proposed methods; tabular data

are inherently easier to understand and explain than other data modalities with

a (typically) small number of features that are usually well understood by domain

experts. Note, however, that I extend the analysis of the Deep Explanation Ensemble

technique proposed in this chapter to image data in Chapter 6.1.

Concretely, this chapter:

• Extends the experiments in Chapter 4.3 to 6 tabular classification tasks

• Proposes and evaluates a post-processing technique that can be applied to ex-

planations from any model architecture that significantly improves explanation

consistency as defined in Chapter 4.2

• Proposes a novel ensemble architecture and training algorithm that takes ad-

vantage of explainability techniques during model training to produce an over-

all model that is more consistent than the sum of its parts

• Evaluates the effectiveness of this new architecture on the same tabular datasets

as our initial experiments, and compare our results to the current state of the

art

• Discusses how this technique could be used in practice and identify potential

future directions.

5.1 Methods

This section initially proposes a novel post-processing technique that can be applied

to explanations from any model architecture. The ideas introduced in this method

are then taken and embedded in the training of a novel ensemble architecture, creat-

ing a model that learns to produce consistent explanations. The following notation

is used to describe models and their explanations. A machine learning model mi

is passed an input x to produce an output o, such that mi(x) = o. For classifica-

tion tasks, the final prediction p of mi is then the class with the highest predicted

probability argmaxmi(x) = p. An explanation for input x on model mi is given as

Emi
(x), with the importance value for a given feature xj,k given as Emi

(xj,k).
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5.1.1 Post-processing Technique

In signal processing, it is common to reduce the amount of noise present in a mea-

surement by taking a number of replicated measurements and averaging them out,

in a process called signal averaging [167]. The following post-processing technique

takes inspiration from signal averaging - the two problems are similar in that the

spurious features in the explanations can be seen as the noise, with our goal being

to maximise the “signal” (i.e. importance) of the causal features (and minimise

the importance of the spurious features). This results in a method which takes

the explanations from P models (each of the same architecture, but trained with

different hyperparameters), take the average of these explanations and then apply

some thresholding to the resulting explanation (with the purpose of the thresholding

being to include only those features that are most important across all P models).

However, to be able to effectively apply this technique, one must consider how the

thresholding is applied (is it applied pre- or post-averaging?), how is the threshold

level chosen, and how should cases where the P models do not agree on the prediction

be handled (two models, m1 and m2 that produce different outputs on the same input

will likely have wildly different explanations). The final question is the simplest to

answer - the method should take the most prevalent class as the final prediction p

and only include explanations from models where argmaxmi(x) = p, similarly to

ensemble models.

When considering whether to apply thresholding pre- or post-averaging, it is

prudent to first consider when it is easiest to determine the threshold level. If this

were to occur after averaging, the decision becomes much more difficult - one would

have to consider how the averaging of the explanations may affect the distribution

of explanation values. If instead the thresholding is performed pre-averaging, then

a technique can easily use the distribution of each individual model’s explanations

to determine a threshold.

This leads onto how to choose the threshold level. Initially, experiments focused

on using a single value t that could be tuned as a hyperparameter, such that any

feature xi with importance Emi
(xi) ≤ t is set to 0. However, this results in a number

of problems - most importantly, it is extremely hard to tune as the appropriate
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value can vary vastly depending on the task (and by extension, the dataset) learnt

by the model. Instead of this hand-tuning approach, I propose a probability density

function (PDF) based approach, allowing for a much simpler choice of threshold - one

can choose to remove any feature which has probability ≤ t of appearing (in essence,

removing the lower t percentiles of features). Note, however, that when using this

technique one must also choose how to estimate the PDF of the explanations as

accurately as possible. For this I propose using Kernel Density Estimation (KDE)

with a Gaussian kernel, although it should be noted that the performance of KDE

depends a lot on choosing the right hyperparameters [168]. In this scenario, Scott’s

rule of thumb [169] is sufficient for choosing an optimal value for the bandwidth;

this has been shown to work extremely well for distributions that are normal (which,

given a large enough number of samples, we can assume model explanations will be),

although is also surprisingly robust in cases where the underlying distributions are

non-normal too [170].

This results in the following end-to-end post-processing technique:

1. Train P separate models (of the same architecture, but with different training

hyperparameters) on the task

2. On the test set X, compute an explanation Emi
(X) for each model m1, ...,mP

3. Use KDE to estimate the PDF for each set of explanations Emi
(X)

4. Use the PDFs/CDFs to determine a threshold t such that P (x ≤ X) = p

(where p is the desired proportion of features we wish to ignore)

5. Use the calculated threshold t to threshold the explanations Emi
(X):

Emi
(X) =

Emi
(X) if Emi

(X) > t,

0 otherwise

The efficacy of this method is discussed in Chapter 5.2.3, however there are both

advantages and disadvantages to this method which can be discussed without the

need for quantitative results. The process is easy to follow, and can be easily ap-

plied to any model architecture and explanation technique. Yet, a large part of
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the method’s effectiveness relies on the accuracy of the KDE calculation - which

can be very difficult to discern without an accurate ground truth to compare to.

Furthermore, the threshold probability p must be chosen by hand, and there is no

easy way to do so without trial and error - the ideal p will vary greatly between

tasks and even different model architectures trained on the same task. This choice

is made even more difficult by the fact that there is no single metric that can be

used to determine how well a chosen value performs, as there needs to be a balance

between having a high explanation consistency whilst still retaining explanations

of the important features (e.g. setting p = 1.0 will result in perfect explanation

consistency, but will set the entire explanation to 0). An ideal solution would retain

the generalisability of this one whilst reducing the need for by-hand trial and error

hyperparameter tuning, and also ensuring the explanations remain useful and faith-

ful to the model. Furthermore, as a post-processing technique, this method does not

actually fully address the issue of inconsistent models - ideally, a full solution would

result in models whose learned features are consistent. In the following section, I

introduce a completely novel model architecture and training algorithm that utilises

some of the ideas from this post-processing technique to create models that (as we

will see in Chapter 5.2) learn consistent features.

5.1.2 Deep Explanation Ensembles

Deep Explanation Ensembles (DEE) are a novel ensemble architecture that improves

explanation consistency. As Chapter 4 showed, ensemble models do slightly increase

the explanation consistency of their sub-models. Furthermore, as explored in Chap-

ter 2.3.2, it has been frequently shown that ensemble architectures out-perform

non-ensemble models, reduce the risk of overfitting and perform more complex clas-

sification tasks than would be possible with a single model alone [171]. More complex

architectures have been shown to be more robust, be less susceptible to adversarial

attacks and allow for better uncertainty quantification [20,25,172]. In particular, hy-

perparameter ensemble models have recently been proposed, wherein the ensembles

not only combine weight diversity, but also hyperparameter diversity [25] - however,

despite improving in many areas upon baseline models, we saw in Chapter 4 that
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these models do not show any significant improvement in explanation consistency.

However, in this section I have combined a modified ensemble architecture with

a unique training procedure to create a model that produces consistent explanations

by considering explanations from a wide set of models trained with differing hyper-

parameters. The final model is encouraged to use only important features that are

shared between every model trained, resulting in a fully trained model that produces

consistent explanations.

The core idea of this new architecture is that each ensemble consists of S sub-

models e1, ..., eS, each of which is trained with a different hyperparameter setup.

Note that only the random seed or order of the training set should be changed;

hyperparameters such as learning rate and hidden layer size should remain identical

across all S sub-models. The S sub-models are trained in tandem, with the loss

function designed to force each ei to learn to use similar features (this is described

in more detail in Chapter 5.1.2). The final explanation ensemble model is then an

average across all sub-models, such that E(x) =
∑

S ei(x)

S
. This section describes the

explanation ensemble architecture in more detail, including the training process and

discriminator that allows the sub-models to learn similar features.

The Explanation Ensemble Discriminator

The aim of an explanation ensemble is to make each of the S sub-models to learn

to use a similar set of features, with this being achieved through the training of a

discriminator D. If the S sub-models cover a wide range of hyperparameters, then

one would expect that they will cover a wide range of learned features (this is follows

from the results of inconsistent explanations shown in [173]), and as such the final

model will have learned to ignore a large set of noisy (i.e. spurious) features. These

two models are trained in tandem, in a minimax two-player game: the goal of D is

to learn how to discern between real and fake samples while the goal of G is to learn

the features of the true data distribution in order to fool D into making incorrect

classifications.

I propose to use a discriminator D in the training of the ensemble model, which

is trained on the explanations from the ensemble sub-models; the purpose of this
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discriminator is to then classify which of the S sub-models the explanation originated

from. The goal of the training of the S sub-models is then to modify their weights

such that the generated explanations then fool D into making incorrect decisions

(whilst still balancing the final accuracy of the sub-models too). The exact details

of this training process are described in Chapter 5.1.2.

The proposed discriminator D is a simple Multi-Layer Perceptron (MLP) with

1 hidden layer: there is an input layer (of the same size as the data samples), 1

hidden layer of size 32, a ReLU activation and finally an output layer (of size S,

the number of sub-models). This discriminator joins S sub-models to create the

whole explanation ensemble model, where each of the S sub-models can be of any

architecture suited to the base task at hand (e.g. an MLP for classification or

regression). Figure 5.1 shows an overview of our explanation ensemble architecture.

Explanation Ensemble Training

The training for explanation ensembles is the most important aspect of the model

- there are a number of conflicting goals that it is aiming to achieve, and it is

imperative that the training is setup in such a way that each of these goals can be

achieved whilst also ensuring the model is easy to train. There are two objectives

of the training process: 1) maximise model accuracy on the task at hand, and 2)

minimise the difference between generated explanations of the S sub-models (i.e.

maximise the error of D) - the resulting ensemble model should then have high

performance/accuracy and, as the final feature importance values have been learnt

across S different hyperparameters (and thus “averaged-out”), high(er) explanation

consistency. Summarising these two objectives leads to the following loss function

for the explanation ensemble

loss =
∑
i

CELoss(mi(x), y)− β · CELoss(D(Ei(x)), i) (5.1)

where CELoss(·, ·) is cross-entropy loss, y are the ground truth labels for the

training task and β ∈ [0,∞) is a hyperparameter for specifying the weight the

discriminator plays during training. For all experiments in this chapter, β is set
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Figure 5.1: Diagram of our explanation ensemble architecture and data flow

such that the two parts of the loss function have the same order of magnitude. This

loss function requires that explanations are generated for each sub-model in each

training epoch; any explanation technique (within the limits of the computational

power available: many explanations techniques are too computationally intensive
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to make them viable options to be calculated across the whole training set S times

each epoch) could be used here.

Equation (5.1) describes how the explanation ensemble model learns to fool

the discriminator while minimising the classification (or regression, or other task-

specific) loss. During an epoch where this loss function is used, only the weights of

the S sub-models are updated - the discriminator remains the same. Thus, every n

epochs just the discriminator D alone is trained (without back-propagating through

the sub-models), allowing the discriminator to learn how to accurately classify which

sub-model a given explanation was calculated from. Chapter 4 shows that, for many

(if not most) tasks, this explanation classification task is easy for an ML model to

learn to a high degree of accuracy (in fact, this is a direct result of the fact that ML

models so far have shown low levels of explanation consistency) and so D is able to

learn how to do so in a single epoch. To summarise, the general training process of

an explanation ensemble is as follows, and is formally detailed in Algorithm 1:

1. For each i ∈ [S] run mi(x) with the correct hyperparameters (i.e. training

seed)

2. Calculate the explanations Ei(x)

3. If e mod n = 0 update the discriminator D using the loss CELoss(D(Ei(x)), i),

where e is the current epoch

4. Otherwise, update each of the S sub-models according to the loss function in

Equation (5.1)

Training of the proposed architecture is inherently unstable; for instance, the

loss of the discriminator is minimised if every feature in the data is given the same

importance value - however, for this to be possible each of the sub-models must

necessarily be outputting the same class, regardless of the input x. This leaves n

as a hyperparameter that can be optimised (e.g. using a grid-search), though as

an initial starting point n = 2 has been found to result in stable training across all

experiments.
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Algorithm 1 Explanation Ensemble Training

for e ∈ [0..epochs] do
for x, y ∈ batches do

for i ∈ [S] do
random seed← random seeds[i]
data order← data orders[i]
outputs← mi(x)
explanations← Ei(x)

end for
if e mod n = 0 then ▷ n is input as a hyperparameter

loss = CELoss(D(Ei(x)), i) ▷ CELoss(·, ·) is cross-entropy loss
else

loss =
∑

i CELoss(mi(x), y)− β · CELoss(D(Ei(x)), i) ▷ β ∈ [0,∞)
end if

end for
end for

5.1.3 Explanation Computation

To generate explanations for all models tested, SHAP [21] values across the whole

dataset are calculated. As discussed in Chapter 2.2.3, SHAP is highly versatile

and can be applied to any data modality; alternative feature attribution methods

such as Grad-CAM and Information Bottleneck Attribution [174] are restricted to

certain data types. The methods presented in Chapter 4.2 are used to calculate the

explanation consistency for these models.

5.1.4 Alternative Explanation Consistency Calculations

As was discussed in Chapter 4.2.2, there are a number of other methods that can

be used to measure the consistency of the model explanations. To further explore

where different consistency measures may be applicable, as well as using binary LR

classifiers to measure explanation separability, I also approach the problem from an

information theoretic background, using statistical distance measures to quantify

the difference between the produced explanations. Being symmetric, smooth, and

bounded Jensen-Shannon Divergence (JSD) is aptly suited to this task [173, 175],

allowing the comparison between the probability distributions of the explanations

for two models. The main disadvantage of this technique is that JSD is only defined

for probability distributions, whereas we only have a finite number of samples for
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each model’s explanations. To alleviate this issue, Kernel Density Estimation (KDE)

is performed on the explanations from a model to estimate the probability density

function. For each dataset/task pair, KDE is ran on the explanations for each

model (both baseline and explanation ensemble models). Then, for each pair of

baseline models and each pair of explanation ensembles (for a given task), the JSD

is calculated, with higher values indicating the two sets of explanations are dissimilar.

This can be used to calculate the JSD consistency of the explanations

CJSD = 1−
∑

(a,b) J(a ∥ b)
α

(5.2)

where J(a ∥ b) is the JSD between the explanations of model a and model b.

5.1.5 Explanation Quality Metrics

To test the faithfulness of the explanations to the models (that is, to ensure that

the explanations are accurately describing the changes in the model), I use explana-

tion sensitivity, explanation infidelity and explanation accuracy from Chapter 2.2.6,

where each quality metric was chosen as they measure faithfulness in different ways.

5.1.6 Statistical Hypothesis Testing

As well as reporting the results for both performance and consistency the statistical

significance of the results is also investigated by performing statistical hypothesis

tests on both the model performance results and the explanation consistency results.

Note that one cannot assume that the data (i.e. the performance metrics and

explanation consistency) is normally distributed, and so parametric tests such as

Student’s t-test are not viable. Similarly, one cannot assume that the distribution

of the differences between the baseline ensembles and explanation ensembles are

symmetric and so the Wilcoxon Signed Rank test would also be invalid. Instead, a

non-parametric version of these tests must be used - specifically, the Mann-Whitney

U test is used, setting the null hypothesis H0 as the two distributions being equal.

Both the test statistic U and the corresponding p-value are calculated for each

dataset, comparing both the performance metric and the separability between the
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baseline ensembles and explanation ensembles. The hypothesis tests are performed

at the α = 0.05 significance level, meaning that the null hypothesis H0 will be

rejected if p < 0.025 (using a two-sided version of the Mann-Whitney U test).

5.1.7 Ablation Study

Like any ensembling technique, explanation ensembles are more computationally ex-

pensive during both training and inference time than traditional models, and that

this may have an impact on their use in production environments [176]. It is also

important to determine that all parts of the proposed technique are critical to the

end result, and that improved explanation consistency is not a result of a single

part of the system. Three post-training methods that attempt to address this issue

are evaluated: submodel averaging, random sub-model selection, and a combination

of checkpoint and submodel averaging. Checkpoint averaging is a weight averaging

technique that has been shown to lead to better model generalisation [34]. Check-

point averaging is performed (by taking the 10 most recent saved checkpoints at

the end of training) on both the baseline models and the normal ensemble models,

calculating the explanation consistency for these two techniques as detailed above.

In submodel averaging, one creates a single model by averaging the model weights

of each of the n sub-models trained in the explanation ensemble - this results in

just one model that will be much quicker to run at inference time. In random sub-

model choosing, one simply picks one of the sub-models of the explanation ensemble

at random to use at inference time; with the intuition being that, as the model

has still been trained to produce explanations similar to those of the other n − 1

sub-models, it should still produce better explanations than traditionally trained

models. Furthermore, the checkpoint averaging technique that has been tested on

normal architectures is also combined with submodel averaging.

5.2 Results

To thoroughly test the ability of the proposed explanation ensemble model to im-

prove the consistency of the produced explanations, models are trained on 6 different
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tasks on 4 distinct healthcare/biological datasets. First, these tasks and datasets

are briefly re-introduced (having first been fully introduced in Chapter 2.1), explain

the motivation behind the inclusion of each dataset, then report the results of the

experiments.

5.2.1 Datasets and Base Model Architectures

In an effort to keep these initial experiments as simple and interpretable as possible,

experiments are limited to tabular datasets. Decisions based on tabular data are

inherently easier to understand and explain - there are a (typically small) number

of distinct features, and often these features will be well understood by domain ex-

perts. In contrast, features (and thus explanations) of more complex data modalities

are harder to define. For example, in an image each individual pixel is a feature

and yet humans (and indeed many ML models) will utilise superpixels (groups of

pixels) when making decisions. This makes explanations on these data types more

difficult to analyse. It also introduces difficulties when comparing the explanations

of two different samples - in tabular data, feature importance values can be directly

compared, whereas this comparison is difficult to accurately define as the features

between most other data modalities are not necessarily aligned. For these reasons,

initial evaluations in this study are limited to measure the effectiveness of our pro-

posed methods on tabular data, and leave investigations on other data types to

Chapter 6.1.

Deep learning models are being increasingly used to analyse Electronic Health

Record (EHR) datasets for the prediction of mortality, phenotyping, de-identification

and other related tasks [177]. Further examples of tabular dataset come from genome

analysis, on tasks such as pattern identification and kingdom classification [178]. The

application of ML to both of these areas also rely heavily on model interpretabil-

ity, and the trust of domain experts (e.g. clinicians and biologists) [9], and so by

extension consistent explanations from models are imperative. The purpose of this

chapter is to investigate the (in)consistency of explanations produced by models on

these datasets, and inspect whether our proposed explanation ensemble architec-

ture improves upon the consistency. Therefore, for each dataset, a state-of-the-art
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neural network for the given dataset is re-implemented and used as the base model

for the explanation consistency experimentation. This results in a base model archi-

tecture for each dataset/task which forms the basis of the experimentation. These

base model architectures are then taken and used as sub-models to train a normal

ensemble architecture, as well as the proposed Deep Explanation Ensemble (DEE)

architecture. This allows comparison of the proposed network with both a standard

baseline and an ensemble baseline. A summary of the datasets, tasks and baseline

models (and hence ensemble sub-models) used can be found in Table 5.1.

EHR Datasets

Three different EHR datasets are used, all of which are first introduced in Chap-

ter 2.1 - here they are briefly re-introduced alongside descriptions of the baseline

models used as sub-models for the DEEs and as used for baseline comparisons. The

Breast Cancer Wisconsin (BCW) dataset [55] is a small, classical ML dataset

that has been used frequently as a baseline test for the performance of ML models

on healthcare data. Each entry in the BCW dataset consists of a set of features

extracted from a digitized image of a fine needle aspirate of a breast mass, with

the features describing: radius, texture, perimeter, area, smoothness, compactness,

concavity, concave points, symmetry and fractal dimension. The aim of the task is

to train a classification model to predict which tumors are malignant. Following the

results of [179], a small Multi Layer Percetpron (MLP) is used for this classification

problem. The MLP consists of an input layer, a hidden layer of size 40, a second

hidden layer of size 15 and then the output layer; the ReLU activation function is

used, with LogSoftmax being used on the output of the final layer. The model is

trained over 14 epochs, with a learning rate of 0.001, batch size of 64, Negative Log

Likelihood (NLL) loss and the Adam optimiser.

The second EHR dataset used is KAIMRC: a private EHR dataset collected

from King Abdulaziz Medical City located in the central and western regions of Saudi

Arabia [28]. The dataset spans 2016 to 2018, and includes patient demographics (e.g.

age and Body Mass Index), lab results (e.g. cholesterol levels) and vital signs during

this period. For a detailed description of the features included in the dataset, and
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their clinical relevance, we refer the reader to [28]. The dataset was collected to

aid the development of ML models for diabetes prediction. This dataset is used

for two separate, albeit related, tasks. 1) To train a classifier to predict patients

with elevated HbA1c levels using longitudinal data, and 2) To train a regression

model to predict HbA1c levels. The KAIMRC classification task is similar to the

BCW task in that it is a binary classification problem, but the KAIMRC dataset

is much larger and more complex than BCW and thus has been chosen to evaluate

our proposed explanation ensemble models on real-world datasets. Similarly, the

KAIMRC regression task is used to verify the proposed deep explanation ensemble

methods work on regression as well as classification. The methods presented in [28]

are followed to create the baseline MLP models. The KAIMRC classification MLP

uses 3 hidden layers of sizes 48, 48, and 24 respectively, using ReLU activation

functions after each hidden layer and Sigmoid on the output. Mean-squared error

(MSE) was used for the loss function and the Adam optimiser was used. The

KAIMRC regression model follows the same general structure, with dropout with

probabilities 0.2 and 0.1 after the first and second hidden layers respectively.

The final EHR dataset used is MIMIC-IV [180]. MIMIC-IV is a large, freely-

available medical dataset collected from the critical care unit of Beth Israel Dea-

coness Medical Center from 2008 to 2019. MIMIC-IV contains patient information

(e.g. age, weight, height, comorbidities), lab events (e.g. cholesterol, creatinine,

bilirubin, HbA1c levels), vital signs and medication prescribed of 383,220 patients.

MIMIC-IV is a time-series dataset and as such each record (e.g. patient) will have

a different number of features, and the exact features present for each record will

vary. The flexible-ehr framework [181] is used to train a model for mortality

prediction. flexible-ehr consists of an embedding layer (embedding the input to

a layer of size 32) followed by a Long Short-Term Memory (LSTM) module (with

a hidden dimension of size 256), which is then passed into an MLP (with 4 hid-

den layers of sizes 32, 64, 128, and 256) [182]. The setup and hyperparameters

suggested in the original paper are followed exactly, and are reported in Table 5.1.

This dataset and model architecture not only allows the evaluation of the proposed

method’s ability to perform on very large-scale datasets, but also the effectiveness
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of explanation ensembles on complex sub-model architectures; all other experiments

in this paper use MLPs of varying layouts, whereas flexible-ehr is a much more

complex architecture consisting of an embedding layer, LSTM and MLP.

Genomics Datasets

One genomics dataset is utilised for two different tasks. The codon usage dataset

[47] consists of the usage frequency of 64 codons for more than 13,000 organisms.

The methods presented in [47] are followed to train two different models; one to

classify the organisms kingdom (from 5 distinct classes), and the other to classify

the DNA type of the organisms (from 3 possible classes). The same data pre-

processing (removing organisms with less than 1000 codons and those with DNA

types in categories 2 or higher) is performed, resulting in 12,964 samples in the final

dataset. As per their methods, both MLPs consist of a single hidden layer with 9

neurons. The purpose of evaluating the proposed techniques on these two tasks is

to evaluate the performance of explanation ensembles on multi-class classification

problems (whereas previous classification-based experiments are exclusively binary

classification problems).

Dataset Descriptors Baseline Model Hyperparameters Baseline Training Hyperparameters
Dataset Name Task Num. Samples Num. Features Num. Classes Model Architecture Num. Hidden Layers Num. Epochs Learning Rate Batch Size

Breast Cancer Wisconsin Binary classification 569 10 2 MLP 2 14 0.001 64
KAIMRC Binary classification 18,844 24 2 MLP 3 14 0.001 32
KAIMRC Regression 18,844 24 N/A MLP 3 14 0.001 32
MIMIC-IV Binary classification 383,220 N/A 2 flexible-ehr 4 20 0.0005 128

Codon Usage (Kingdom) Multi-class classification 12,964 64 5 MLP 1 16 0.0001 32
Codon Usage (DNA) Multi-class classification 12,964 64 3 MLP 1 20 0.0001 32

Table 5.1: Summary of the dataset and tasks used to evaluate Deep Explanation
Ensembles alongside baseline model and training hyperparameters. Note that MIMI-
IV is a time-series dataset and so each entry will have different numbers of features,
and the KAIMRC (Regression) task has no target class as it is a regression problem.

5.2.2 Model Performance Results

Multiple versions of each baseline model are trained and then inspected to investi-

gate how changing their training hyperparameters affects model performance and

explanation consistency. For each training task the training hyperparameters are

systematically changed, changing only one hyperparameter at a time, in order to

isolate the affect of each change. The experiments are designed to investigate both
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changing the random seed and training set order. For each task 10 models are

trained with the same random seed but different training set orders, and another 10

models with different random seeds but the same training set order. Each model is

given the same train/test split - it is only the order the training set is passed to the

model that is changed.

Traditional ensemble models are also trained on each classification task. Each

ensemble consists of 10 sub-models, using the same architectures described in Chap-

ter 5.2.1. The results of these models are compared and contrasted with those from

the explanation ensembles in order to discern whether any changes in model perfor-

mance/consistency originates from the use of the general ensemble architecture or

the proposed specific explanation-based architecture.

The proposed deep explanation ensemble architecture is also trained, with the

baseline model architectures for each task used as the deep explanation ensemble

sub-model as detailed in Chapter 5.2.1. Initially, 10 sub-models per ensemble are

used. As detailed in Chapter 5.1.2, the discriminator is trained on alternate epochs

and with a low learning rate of 0.00001. Qualitative experiments show that β should

be set such that the discriminator loss is one order of magnitude less than that

of the classification loss, and so β = 0.1. 10 explanation ensemble models are

trained with different random seeds (but keeping the training set order the same)

and 10 models are trained with different training set orders (but the same random

seed). The experiments are repeated 3 times (with different seeds/orders) to allow

for the calculation of standard error (noting that the availability of compute time

limited the scale of these experiments). The performance of the models and the

consistency of the explanations are recorded and compared with the results from the

base models. Similarly to the experiments on the normal ensembles and baseline

models, checkpoint averaging of explanation ensembles is also evaluated.

Tables A.1 to A.4 report the performance metrics and hyperparameters used

for each individual baseline model trained, for the KAIMRC, BCW, Codon Usage

and MIMIC-IV datasets respectively. These results are compared to the current

state-of-the-art results for each dataset. The reason for this is twofold: 1) it ensures

that when the explanation ensembles are compared to the baseline models one can
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easily compare it to state of the art models, and 2) it will help to confirm that

any explanation inconsistency present in the baseline models are not the result of

improper training. Table 5.2 shows a summary of the performance of the baseline

models, alongside the variation in performance when training hyperparameters are

changed. It also highlights how all of the baseline models achieve equal (or near-

equal) levels of performance compared with the current state of the art for their

respective tasks.

Dataset (Task) Seed Shuffle Overall SotA Performance
KAIMRC (Classification) 82.576± 0.4668 83.381± 0.1811 83.12± 0.4779 83.22

KAIMRC (Regression) 0.5927± 0.0113 0.579± 0.0122 0.5858± 0.01326 n/a
BCW 92.185± 1.7315 91.5± 2.8319 91.843± 2.3172 99.04

Codon Usage (Kingdom) 85.280± 1.8029 85.38± 1.1778 85.33± 1.4367 84.25
Codon Usage (DNA) 99.268± 0.0950 99.166± 0.0921 99.217± 0.1033 99.15

MIMIC-IV 76.362± 2.5808 79.736± 1.8906 78.049± 2.7769 84.72

Table 5.2: Summary of mean accuracy/R2 (± standard deviation) for the baseline
models when the seed and training set order is changed during training. The state
of the art (SotA) model performance is also reported to confirm the models are
properly trained.

Model Architecture Dataset (Task) Seed Shuffle Overall

Normal Ensemble

KAIMRC (Classification) 83.244± 0.2367 83.212± 0.0920 83.228± 0.1702
KAIMRC (Regression) 0.51± 0.01673 0.524± 0.03007 0.517± 0.02532

BCW 77.890± 11.563 71.736± 11.466 74.813± 11.330
Codon Usage (Kingdom) 90.134± 1.6527 90.568± 1.2715 90.351± 1.4088

Codon Usage (DNA) 99.150± 0.2141 99.122± 0.2270 99.136± 0.2086
MIMIC-IV 77.23± 0.7935 75.96± 0.6299 76.60± 0.7520

Explanation Ensemble (Ours)

KAIMRC (Classification) 72.173± 0.3998 72.423± 0.6856 72.298± 0.5365
KAIMRC (Regression) 0.5504± 0.0181 0.5408± 0.0243 0.5515± 0.0197

BCW 87.824± 4.0860 86.783± 2.5061 87.361± 3.3173
Codon Usage (DNA) 98.032± 0.5420 97.6523± 0.5411 97.863± 0.5447

Codon Usage (Kingdom) 89.176± 1.1797 89.055± 1.0404 89.110± 1.0497
MIMIC-IV 77.338± 0.000083667 77.32± 0.0001225 77.329± 0.0001370

Table 5.3: Summary of mean accuracy/R2 (± standard deviation) for the normal
ensemble models and explanation ensemble models (ours) when the seed and training
set order is changed during training.

Similarly, the performance of the baseline “normal” ensemble models is reported

in the same way. Tables A.5 to A.7 list the accuracy of each individual model

trained, and the hyperparameters used during training. A summary of the spread

of performance of the baseline, normal ensemble models is shown in Table 5.3 -

by comparing this table with the results in Table 5.2, one can see that the normal

ensemble models neither improve nor degrade performance when compared to our

baselines and the current state of the arts.
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(a) Average base ensemble model vs. av-
erage explanation ensemble model per-
formance, with error bars (standard er-
ror). The consistency C of each archi-
tecture is also plotted. Performance for
the Breast, DNA and Kingdom datasets
is measured as accuracy

100 , regression uses
R̄2 and mortality AUROC.

(b) Boxplots highlighting the difference
between the Jensen-Shannon Divergence
(JSD) of the explanations produced by
base models and explanation ensemble
models. Lower is better.

(c) Boxplot showing the separability of base model explanations vs. explanation ensem-
ble explanations. Lower separability values indicate the binary classifier found it more
difficult to distinguish between the explanations from two models trained with different
hyperparameters, and results in higher explanation consistency. Lower is better. Stars
indicate datasets where the difference between the two architectures is statistically signif-
icant, following the results of a Mann-Whitney U test.

Figure 5.2: Figures comparing the explanation consistency C (a), JSD explanations
consistency CJSD (b), and explanation separability (c) between baseline models and
our proposed explanation ensembles across all tasks tested.
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The performance of the baseline models is compared against the performance of

explanation ensemble models trained on the same task. Tables A.8 to A.11 report

the individual performance of our explanation ensembles, alongside the hyperparam-

eters used during training. Table 5.3 summarises these results, and also shows the

degree of variation when training hyperparameters are changed. This information

is summarised in Figures 5.2a and 5.3, which highlight the differences in spread and

location of model performance when training hyperparameters are changed. For all

datasets the mean explanation ensemble performance is always within a 10% range

of the base model performance; although this does represent a slight decrease in

model performance when explanation ensembles are used, I argue that this is only a

slight decrease that would be worth the trade-off given that explanation consistency

is significantly improved.

5.2.3 Post-processing Technique Consistency Results

Figure 5.4 show the general trend of explanation consistency as the threshold value p

is increased, across all datasets. As expected, the explanation consistency increases

as the threshold value p increases; the larger the p value the more feature attributions

the post-processing technique will remove and so one would expect the consistency

to increase. This is further supported by the hypothesis that features with lower

attribution scores from explanation techniques are typically the noisy features (i.e.

non-causal) learned by models, and that it is in these low-valued features where

much of an explanation’s inconsistency stems from [173] - removing these noisy

features will then necessarily increase explanation consistency.

However, Figure 5.4 also shows that the standard error of the results is very high

across most datasets. As the post-processing technique heavily relies on the results

of kernel density estimation, the performance of the technique heavily relies on the

performance of the KDE. KDE is known to be extremely sensitive to the choice

of hyperparameters (namely, bandwidth) [170], with the quality of the computed

PDF being very dependent on the chosen bandwidth and underlying data. As the

proposed technique chooses KDE bandwidth based on a rule-of-thumb (refer back

to Chapter 5.1.1 for more details), it is possible that some experimental setups are
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Figure 5.3: Violin plots showing distribution of model performance across all
datasets, for both the base and explanation ensemble architectures. The dashed
lines represent the 25th, 50th and 75th quantiles respectively. Performance for the
Breast, DNA and Kingdom datasets is measured as accuracy

100
, regression uses R̄2 and

mortality AUROC. Stars denote datasets where there is a statistically significant
difference in the two architectures, following the results of a Mann-Whitney U test.

inadvertently using poor choices of bandwidth (and that this is in turn resulting in

varying results from our post-processing technique). This is an inherent limitation

of the post-processing technique, and is one of its disadvantages over the proposed

explanation ensemble architecture. Furthermore, the post-processing technique uses

explanations from multiple independently trained models, whereas the sub-models

of explanation ensembles are trained together (albeit with different seeds) - this is

also likely to introduce much more variance to the method.

Furthermore, one must consider the quality of the resulting explanations - it is
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Figure 5.4: Graph showing the increase in explanation consistency (± standard
error) as the threshold p for the post-processing technique is increased (i.e. as more
of the original explanation is subject to thresholding)

not necessarily the case that explanations with high consistency are good explana-

tions, nor faithful to the underlying predictive model. This is particularly the case

with this technique as, unlike in the explanation ensemble method, we are modifying

the final explanations without any consideration of the underlying models nor their

predictive power. This post-processing technique has a significant affect on how

well a human is able to perceive the final explanations - although higher threshold

values p result in higher explanation consistency, they also result in much more of

the explanation being removed. This necessarily affects one’s ability to interpret the

explanation, and in extreme cases will make the explanation useless. The explana-
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tion ensemble technique does not suffer from this problem, as it does not rely in the

thresholding/removing of feature attributions and instead trains multiple models to

learn features consistent to one another.

5.2.4 Explanation Consistency Results

Table 5.4 reports the consistency, C (Equation (4.2)), on all tasks tested - C is calcu-

lated for all training variations and architectures. Table 5.4 shows that the proposed

Deep Explanation Ensemble architecture significantly improves the consistency of

the produced explanations.

Table 5.4 also shows that the degree to which explanation consistency improves

varies greatly on the dataset/task - for example, the Codon Usage Kingdom clas-

sification task sees an increase of only 0.07167 whereas the KAIMRC classification

task sees and increase of 0.35417. I hypothesise that this is due both to differences

in the dataset and differences in the baseline model (and thus also the explanation

ensemble sub-models) architectures. The KAIMRC dataset consists of only 2 classes

and 24 features, whereas the Codon Usage Kingdom classification task has 5 classes

and 64 features; intuitively, one would expect it would be easier for the explana-

tion ensemble models to learn consistent features for the smaller, simpler KAIMRC

dataset than the Codon Usage dataset.

Figure 5.2c demonstrates the difference in spread of the mean separability, S(a,b) =

2 ∗ |M(a,b) − 0.5|, between each individual training variation tested. This allows for

a more fine-grained analysis of the explanation consistency than the high-level sum-

mary that explanation consistency C provides, noting that the higher the separabil-

ity the worse the results. Figure 5.2c shows that the mean separability of explanation

Dataset (Task) Base Model C Explanation Ensemble C Base Model CJSD Explanation Ensemble CJSD

BCW 0.12282 0.4450 (262%) 0.24682 0.273065 (11%)
Diabetes (Classification) 0.58550 0.93697 (60%) 0.51667 0.543646 (5%)

Diabetes (Regression) 0.52691 0.600067 (13%) 0.35389 0.65568 (85%)
Codon Usage (DNA) 0.34279 0.5564 (62%) 0.28114 0.340558 (21%)

Codon Usage (Kingdom) 0.22220 0.29387 (32%) 0.34702 0.39391 (14%)
MIMIC-IV 0.02433 0.10111 (315%) 0.15518 0.17912 (15%)

Table 5.4: Explanation Consistency (C) and JSD Explanation Consistency (CJSD)
for the baseline models and explanation ensembles across all tasks tested. The
percentage increase from baseline C (CJSD) to explanation ensemble C is shown in
brackets.

96



ensembles is lower than that of the baselines across all datasets, and that the sepa-

rability is also spread across a lower range of values than both the baseline models

and baseline ensemble models. These figures confirm that the discriminator portion

of the explanation ensemble architecture is successfully encouraging each ensemble

sub-model to learn similar features, and that this is in turn successfully forces models

with different training hyperparameters to learn similar features.

As also reported in Table 5.4, these explanation consistency results are verified

by also calculating the JSD consistency, CJSD (Equation (5.2)), for each dataset.

These results conclusively confirm the results of the original consistency measure

C, with the baseline models having low CJSD and explanation ensembles having

higher CJSD values. Figure 5.2b showcases these difference in JSD values across the

baseline and ensemble models - the similarity to Figure 5.2c further confirms the

results.

BCW Diabetes (Class.) Diabetes (Regr.) CU (DNA) CU (Kingdom) MIMIC-IV
Baseline Models Checkpoint Averaging 0.2117 0.75322 0.53356 0.06585 0.06378 0.1527

Normal
Ensemble
Models

Checkpoint Averaging 0.2497 0.2790 0.5604 0.0007 0.2264 n/a
Random Submodel 0.1392 0.3062 0.5075 0.0440 0.01722 n/a
Submodel Averaging 0.1952 0.4597 0.4713 0.3882 0.1738 n/a

CA-SA 0.2906 0.551 0.5193 0.5654 0.1638 n/a

Explanation
Ensemble
Models

Checkpoint Averaging 0.2485 0.0175 0.5322 0.2510 0.2695 0.2954
Random Submodel 0.1365 0.2641 0.0625 0.2939 0.0193 0.01333
Submodel Averaging 0.2983 0.0355 0.8389 0.0953 0.0330 0.2080

CA-SA 0.3964 0.89222 0.8529 0.6462 0.3481 0.1784

Table 5.5: Explanation consistency, C, of checkpoint averaging, submodel averaging
and random submodel picking on baseline models and both normal and explanation
ensembles. CA-SA is checkpoint averaging followed by ensemble submodel averag-
ing, CU the Codon Usage dataset, class. is classification and regr. regression.

Table 5.5 reports the results of checkpoint averaging, submodel averaging, ran-

dom submodel picking and checkpoint averaging followed by submodel averaging.

The results are consistent across all architectures: neither checkpoint averaging, sub-

model averaging nor random submodel picking improves explanation consistency.

When compared to the results of the baseline techniques in Table 5.4, explanation

consistency decreases when these extra steps are added, confirming that the pro-

posed method produces the best results. In the case of submodel and checkpoint

averaging, I hypothesise that this is the result of the averaged model using noisy

features from all of the models used in the averaging process, whereas the deep ex-

planation ensemble technique is designed to instead encourage all models to learn
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to use similar features before the averaging takes place. Conversely, the explanation

ensemble technique is not powerful enough to force each of the submodels to learn

exactly the same set of features, with this explaining why using one of the trained

explanation ensemble submodels (at random) doesn’t work as well; the averaging

out of the (smaller than normal) set of noisy features across each of the submod-

els in the explanation ensemble plays a large part in the generation of consistent

explanations.

This hypothesis is further verified by analysing the results of the checkpoint-

averaging-followed-by-submodel-averaging (CA-SA) experiments reported in Table 5.5.

By analysing the results in the normal ensemble models one sees that this combi-

nation of techniques increases the explanation consistency of the models, implying

that averaging at both stages of the model is required. The results of the same

experiment on explanation ensembles back this up, with the proposed architec-

ture improving again upon the results of the normal ensemble CA-SA experiments.

Thus, the benefits of explanation ensembles followed by CA-SA are two-fold: 1) it

improves explanation consistency even further, and 2) it results in a much smaller

model that can be run at inference time, significantly reducing computational costs

whilst adding very little to the (one-time) training cost.

5.2.5 Explanation Ensemble Size Results

Research suggests that larger ensembles result in improved performance [25]. Exper-

iments find this also transfers to explanation ensembles with Figure 5.5 showing how,

in general, explanation consistency increases as the number of sub-models increases.

Intuitively, this is to be expected - the more sub-models present in an ensemble, the

wider the range of parameters available for the ensemble to “average out” over.

It is important to note, however, that as the number of sub-models increase, the

practicality of the model decreases due to the computational and memory require-

ments needed to train the model. This is particularly important to consider when

the sub-model architectures themselves are also large - for example, it is difficult

to train explanation ensembles of size ≥ 10 on the MIMIC-IV mortality prediction

task due to the memory required by the resultant ensemble network. However, as
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can be seen in Figure 5.5, there does become a point across all datasets where the

explanation consistency begin to plateau.

It is interesting to consider why the point at which the consistency beings to

plateau differs across datasets (and even different tasks with the same dataset). I

hypothesise this is due to the number of features that are causally related to target

versus how many features are spuriously correlated with the target. Explanation

ensembles are designed such that the spurious correlations will be “averaged out”

as the sub-models gradually learn to utilise only features present across all sub-

models, and so in the ideal scenario the whole set of spurious features is covered by

(at least) one of the explanation ensemble sub-models. Considering this hypothetical

ideal scenario, it is clear that datasets with a smaller set of spurious features will

require a smaller set of sub-models to achieve the best consistency by an explanation

ensemble architecture possible. This hypothesis also extends to different tasks within

the same dataset - each task will have a different subset of the dataset’s features,

one of which will be smaller than the other.

5.2.6 Explanation Quality Metrics

Tables A.12 and A.13 report the explanation infidelity and sensitivity max on each

individual baseline and explanation ensemble model tested. Across all datasets, each

model has low explanation infidelity and sensitivity max - this confirms that SHAP

is producing explanations that are faithful to the models. As the reported infidelity

measure is the mean infidelity across the whole dataset, this also shows that the

explanation methods provide global fidelity.

As Table A.13 shows, explanations generated from explanation ensembles are

also high quality; the range and spread of the values is the same as the baseline

models, implying that the new architecture does not affect the quality of the pro-

duced explanations. Importantly, this confirms that the explanations are also faith-

ful to explanation ensembles, meaning that the improved explanation consistency is

due to the changes in the architecture (i.e. the SHAP discriminator) rather than

inconsistencies present in the explanation generation method (i.e. SHAP, in this

case).
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Figure 5.5: Explanation consistency (± standard error) of explanation ensembles as
the number of sub-models within an ensemble increases across all datasets.

5.2.7 Statistical Significance Results

Both the test statistic U and the p-value are reported, for both the performance

metric and explanation separability comparisons between the baseline and explana-

tion ensemble models. Figures 5.2c and 5.3 also show for which datasets we report

statistically significant results. Table 5.6 reports the relevant values for each dataset.

Across all datasets, the results of the Mann-Whitney tests support the conclusion

that the proposed explanation ensemble architecture results in significantly improved

explanation consistency C; all of the hypothesis tests result in significant results,

highlighting that there is a significant difference between the results. This, coupled
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with the visualisation of explanation separability and JSD in Figures 5.2b and 5.2c,

provide strong evidence that the proposed Deep Explanation Ensemble technique

significantly increases explanation consistency.

5.3 Discussion

It is clear from both the initial consistency results on the baseline models, and from

the corresponding studies carried out in Chapter 4, that the inconsistency of ex-

planations is an important issue that is present in across a range of deep learning

models; I hypothesise that it is a direct result of the stochasticity of training. Re-

cent reports from industry [183–185] underline the importance of having explainable

ML in industry (especially in sectors such as healthcare and finance), and how the

lack of good quality explanations and the “unpredictable” nature of ML (which

is highlighted by the inconsistency of explanations) are seen as barriers to wider

adoption.

In this chapter, I have presented both a model-agnostic post-processing tech-

nique that improves explanation consistency and an entirely new architecture that

can be trained specifically to learn more consistently. Through thorough experimen-

tation on tabular data, I have shown that both of these methods are able to produce

significantly better explanations (in regards to their consistency) whilst still retain-

ing high levels of model performance and explanation quality (as measured through

other, non-consistency, quantities). Through the use of a wide range of tasks we have

seen that the proposed methods are able to work across both binary and multi-class

Model Performance Explanation Consistency
Dataset (Task) U Statistic p-value U Statistic p-value

BCW 75 0.00249292 774 0.009378
KAIMRC (Regression) 81 0.00040946 6475 1.634× 10−6

KAIMRC (Classification) 51 0.04988344 3066 6.382× 10−13

Codon Usage (DNA) 81 0.00039825 5606.5 3.855× 10−13

Codon Usage (Kingdom) 0 0.00018267 11205 1.179× 10−12

MIMIC-IV 72 0.10397974 1350 8.226× 10−16

Table 5.6: U test statistic and p-values as calculated for the differences between the
model performance and explanation separability S(a,b) of the baseline and explana-
tion ensemble models; a two-sided test was used.
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classification, as well as regression, tasks and have exhibited the usefulness of our

techniques in the healthcare sector by focusing on healthcare datasets.

Through experimentation with multiple different model weight averaging tech-

niques, I have shown that checkpoint averaging followed by ensemble submodel

averaging can improve explanation consistency. Through the application of this

technique to my Deep Explanation Ensemble architecture, I show that the architec-

ture can beat the explanation consistency of current state of the art techniques even

further whilst also significantly reducing the cost of running the proposed network

at inference time. The final result is a comprehensive step towards creating consis-

tent, robust models that can be deployed in sensitive domains such as healthcare

and finance.

Parallels between the DEE architecture and modern feature selection algorithms

(particularly self-guided algorithms such as [186]) can be drawn - the submodels of

a DEE should essentially be learning to use only features which are very strongly

correlated with the target. However, unlike most feature selection methods, the

proposed technique does so in a self-supervised, end-to-end manner and is easily

applied to any data modality. Furthermore, the DEE architecture will never com-

pletely remove a feature from use (unlike feature selection algorithms, where after it

has been applied, some features will be completely removed from the model). This

allows DEEs to still use these features in the edge-case scenarios where they may

still be useful for classification purposes.

DEEs still exhibit the previously discussed explainability-performance trade-off

phenomena and, while the performance differential is small (in the region of a couple

of percent across all experiments), it would be prudent in the future to attempt to

further address this issue. A simple solution would be to increase the number and

complexity of the DEE’s submodels - however, this would quickly become computa-

tionally challenging. For future work, it would be interesting to further investigate

how the hyperparameters β, S can be tuned for performance (whereas this study

has focused on tuning them for explanation consistency).

In Chapter 6 I explore the efficacy of DEEs when applied to different data modal-

ities, and apply them to different sensitive applications outside of the healthcare
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domain. I also expand on the work done in Chapter 3 and investigate another type

of malicious attack (the Membership Inference Attack), evaluating the robustness

of DEEs against this type of attack and explore what makes them so robust.
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CHAPTER 6

Applications of Deep Explanation Ensembles

The previous chapter introduced the concept of Deep Explanation Ensembles (DEEs),

a completely novel model architecture and training algorithm that utilises model ex-

planations during training. Through extensive evaluation, it was shown that this

technique greatly improves the explanation consistency of models trained on tab-

ular datasets. In this Chapter I explore the efficacy of DEEs on vision datasets,

comparing and contrasting the agreement between model explanations from DEEs

and expert’s eye-gaze data. I then explore how DEEs can be applied to Federated

Learning scenarios to improve user’s data privacy, and discuss how these results

could affect the applicability of deep learning to real-world scenarios. Specifically,

this chapter:

• Evaluates the efficacy of DEEs on different data modalities (not just tabular

data)

• Investigate whether DEEs improve the overlap between features used by DL

models and domain experts, and discuss whether this has an impact on expla-

nation quality

• Explores how model explanations can be used for Membership Inference At-
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tacks

• Evaluates DEEs susceptibility to Membership Inference Attacks

• Investigates the usefulness of DEEs in Federated Learning settings

6.1 Applications to Medical Imaging Data

Applications of Deep Learning (DL) to healthcare have been growing rapidly in a

wide range of medical scenarios; ranging from critical care [187] and diabetes risk

prediction [28] to the diagnosis of chest x-rays (CXRs) [14]. This is partly driven by

the rising accuracy of such models, with some beginning to achieve performance on-

par with (or even exceeding) that of medical professionals [150]. However, despite

these developments we are yet to see a similar growth in the number of DL models

being deployed into real-world medical scenarios [16]. This is down to numerous

limiting factors; most notably, before such techniques can become established in the

medical field, they must be ethical in their decision-making, trustworthy, transparent

and explainable [188,189].

It is in these areas that many DL models can perform poorly. In particular, many

models fail to accurately capture the causal relationships between input features and

the output classification and rely instead on task irrelevant features. For example,

a wide-ranging study on the use of Machine Learning (ML) and DL techniques for

COVID-19 prediction from chest x-rays (CXRs) [104] has shown that many models

are making spurious correlations, leading to the models being unable to accurately

generalise. Furthermore, we saw in Chapter 4 that changes to training hyperpa-

rameters can greatly affect the learned features and discussed how this damages

the trust between clinicians and DL techniques as it highlights just how sensitive

to small changes the models are, even when those changes are independent of the

medical questions the model is trying to answer.

Thus, the gold-standard for any ML model is to be able to achieve high-levels

of performance whilst learning the concrete causal relationships present in the data.

Unfortunately, the presence of learned causal features is extremely difficult to verify
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due to a lack of useful data supporting the task. Following practices in pedagogy,

expert’s Eye Gaze Data (EGD) can be used as a proxy for causal relationships

[6,190]. The release and initial analysis of the MIMIC-CXR-EGD dataset [1] showed

that even current state-of-the-art CXR classification models fail to learn the same

set of features as used by radiologists in their diagnoses.

This sections evaluates the Deep Explanation Ensemble architecture presented

in Chapter 5 on medical imaging data. Using the MIMIC-CXR-EGD dataset, which

to the best of my knowledge is the only large-scale image dataset with accompany-

ing expert eye-gaze data, I compare the similarity between explanations computed

from DL models and the EGD from radiologists. Experiments show that there is a

significant increase in overlap (increasing from -0.4634 to 0.5410 when measured by

Normalised Scanpath Saliency and improving from 9.1233 to 0.8398 when measured

by Kullback-Leibler Divergence) between explanations from DEEs and the EGD

than there is from any other model architecture tested; including current state-of-

the-art methods specifically designed to combat this issue. This section also shows

that DEEs produces more consistent explanations than previous models on medi-

cal imaging data, increasing explanation consistency (Equation (4.2)) from 0.1785

to 0.5333 with no cost to model performance nor the need for specialist’s EGD at

inference time.

6.1.1 CXRs and Eye Gaze Data

Previous work (Chapter 2.3) has used explainability techniques to investigate the ro-

bustness and adaptability of DL models [172], finding that even small changes to the

training procedure can result in significant changes to the learned features. These

results, coupled with many network’s susceptibility to issues such as adversarial at-

tacks [122] and shortcut learning [18], suggest that many modern DL architectures

are not necessarily learning causal relationships in the data to achieve high perfor-

mance and might be relying on spurious correlations. It can be extremely difficult to

verify that the learned features are indeed causal - there are only a limited number

of mostly toy datasets that include descriptions of their causal relationships [191].

In the absence of such data, recent work has used EGD of experts making de-
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cisions on a visual task as a proxy for concrete causal relationships [1]. Such data

can be used to determine whether models are learning features that domain experts

would use in their assessment of the data - this use case has groundings from real-

world applications, with similar techniques being used pedagogically in fields such

as radiology [192]. The MIMIC-CXR-EGD dataset (Chapter 2.1.5) is a subset of

MIMIC-CXR [45], containing 1,083 CXR images from three classes (Pneumonia,

Congestive Heart Failure and Normal). Accompanying the images are aligned EGD

from a trained radiologist. Both raw eye gaze information and calculated fixation

points are available for this EGD - we refer readers interested in the EGD collection

process to [1]. Alongside the release of the dataset the authors also show that expla-

nations from traditional classification models do not significantly overlap with the

radiologist’s EGD. They propose a multi-task UNet model which uses EGD at train-

time to learn to both classify the CXR image and reproduce the ground-truth EGD

in order to improve the similarity between model explanations and EGD. However,

the results are not very convincing and the study lacked a verifiable method of com-

paring their model explanations and the EGD. Additionally, this technique requires

the use of expert EGD during training which is costly and difficult to collect, espe-

cially in the medical domain. This section compares the DEE techniques proposed

in the previous chapter against both the baseline models and the improved UNet

architecture using static EGD heatmaps proposed in [1], resulting in significantly

higher degree of similarity between model explanations and EGD across all tested

metrics.

6.1.2 Method

The purpose behind this section is to evaluate the DEE architecture introduced in

Chapter 5 against medical imaging data. Not only does this verify that the proposed

technique is able to perform well on more complex imaging data (rather than just

the tabular data originally used), but the inclusion of EGD in the MIMIC-CXR-

EGD dataset also allows the quality of the produced explanations to be evaluated;

one would hope that the higher-quality explanations produced by DEEs have more

consistent overlap with an expert’s EGD.
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To summarise the DEE architecture from the previous chapter, the intuition

behind it is to train a discriminator D which encourages each of the S sub-models

in an ensemble to learn a similar set of features. As each of the sub-models is trained

with a different hyperparameter setup, they will each learn a slightly different set

of features. As training progresses, D will learn to use the noisy features of each

sub-model to (correctly) classify which sub-model explanations originate from - and

in turn, the sub-models will learn to use different features for its classification, in

order to fool D. The final result is an ensemble model that has learned to “ignore”

a wide range of spurious features, with each of the sub-models only using features

which all mi agree are important. As multiple models must agree that any given

feature is important for it to be used, it is more likely that these are causally related

with the target, and thus is more likely to be included in an expert’s eye-gaze data.

6.1.3 Experimental Setup

All experiments are carried out on the MIMIC-CXR-EGD dataset [1]. The models

are trained on the same 3-label classification task: given a CXR image, predict its

diagnosis (Pneumonia, Congestive Heart Failure or Normal). Three architectures

are trained to compare our explanation ensemble to: 1) baseline: a standard UNet

architecture trained with a learning rate (LR) of 0.003 with Adam optimiser, batch

size 32, and pre-trained EfficientNet-b0 [193] as the encoder and bottleneck layers;

2) improved UNet: the modified UNet architecture [1] using static heatmaps

during training to both classify and reproduce the EGD given a CXR using identical

hyperparameters; and 3) standard ensemble: an ensemble architecture consisting

of 10 UNet architectures identical to 2), trained with LR=0.003 using the Adam

optimiser and batch size 4 [1]. A reduced batch was used due to memory constraints.

Each experiment allows for the comparison of the DEE’s results against a different

standard of model: 1) is a standard classification model and used as a baseline, 2)

is the SOTA for similarity between model explanations and EGD, and 3) confirms

that DEEs are not just a result of utilising an ensemble architecture (and instead are

inherent to the architecture and training procedure). UNet was used throughout to

allow for direct comparison with the current state of the art model on the MIMIC-
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CXR-EGD dataset in [1].

Deep Explanation Ensembles are trained using standard UNet with a classifi-

cation head as their sub-models. Batch sizes of 4 and a learning rate of 0.00001

using the Adam optimiser are used. We use a CNN for our discriminator, with

two convolution layers. Max pooling (with kernel size and stride of 2) and ReLU

activations are used after each convolution layer. In all experiments, β = 0.2 to

ensure the two parts of the main loss function are of the same order of magnitude.

10 sub-models per Explanation Ensemble are trained (see Appendix B for results

on different numbers of sub-models). The accuracy (across all three labels) for all

models is reported as a performance metric.

In order to allow for direct comparison with [1], the explanations for all models

are computed using Grad-CAM [90] on the final convolution layer, with images

being sampled from the test set for inspection. The similarity of these explanations

is compared to EGD heatmaps generated from the eye-gaze fixations, which gives

scalar values of importance for each pixel based on the radiologist’s eye gaze [1]. To

measure similarity to the EGD heatmaps standard practice of comparing saliency

maps [194] is followed; specifically, both the Kullback–Leibler Divergence (KLD)

as a distribution-based metric, and the Normalised Saliency Scanpath (NSS) as a

location-based metric are used. KLD is an information-theoretic measure of the

difference between one probability distribution and another; importantly, note that

it is a divergence metric, meaning smaller values indicate better similarity. NSS

is designed to be used to compare saliency maps with a ground-truth, and is the

normalised saliency at fixed locations. Note that metrics such as Intersection over

Union (IoU) are not suited to comparing EGD and saliency heatmaps [194] as one

must consider how much importance is placed on each pixel (by both the model and

the expert), rather than treating explanations/EGD as binary heatmaps.

It is known that NSS is sensitive to false positives, however that is desirable

here - I hypothesise that the (non-explanation ensemble) models are learning many

noisy features which are not necessarily causally linked to output - it is desirable to

penalise the models if this is indeed the case. Negative NSS values highlight negative

correlation, with chance at 0 and positive values indicating positive correlation.
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As higher Explanation Consistency (Equation (4.2)) is linked to explanations

more robust to spurious correlations, one would expect the Deep Explanation En-

semble model to achieve higher explanation consistency than other models tested.

For each architecture, 10 models are trained with different random seeds. The Grad-

CAM explanations are generated on the test set for these 10 models, with these

explanations also being used to calculate the explanation consistency C for each

architecture. Following the methods introduced in Chapter 4.2.2, a binary logistic

regression classifier is used to measure the separability of two sets of explanations.

Furthermore, the results on Grad-CAM are confirmed by repeating these experi-

ments with SHAP. This confirms that the results are not limited to one explanation

technique; if both explainability methods agree on the outcome, then it is reasonable

to conclude with increased certainty that the model is indeed learning “better” (i.e.

similar, causal) features.

6.1.4 Results and Discussion

Table 6.1 reports the best model performance as well as summary statistics for

both the KLD and NSS metrics used to compare the similarity between the model’s

Grad-CAM explanations and the EGD. Appendix B reports the results for each

training hyperparameter setup used. The performance of both the Baseline and

Improved UNet models are equal to the results reported in [1], confirming that these

models are behaving as expected. Furthermore, both ensembling techniques perform

better than these two models; this is to be expected given that they are ensemble

architectures [195]. Importantly, the Deep Explanation Ensemble architecture is

shown to improve upon the performance of the baseline models by 3.39% indicating

that the models are not sacrificing model performance for improved explanations.

Given that the explanations from Explanation Ensembles are shown to better align

with radiologist EGD, this also suggests that features used by radiologists are better

for disease classification than those learned by the baseline model.

Both Table 6.1 and Figure 6.1 report the Kullback-Leibler Divergence and Nor-

malised Scanpath Saliency between the Grad-CAM explanations from each model

architecture and the radiologist’s EGD heatmaps. From Figure 6.1 one can see
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Table 6.1: Table reporting the performance of the best-performing model for each
architecture, alongside the similarity between the model Grad-CAM explanations
and the EGD. Note that KLD is a divergence metric, and so smaller is better. Grad-
CAM explanation consistency was calculated across all 10 training hyperparameter
setups for each architecture.

KLD NSS
Model Accuracy Mean (± std. dev) Median (± IQR) Mean (± std. dev) Median (± IQR) Consistency

Baseline [1] 75.55% 14.4041± 7.6886 13.4535± 10.5240 −0.8579± 1.2345 −1.0391± 1.4737 0.1785
Improved UNet [1] 76.51% 9.9371± 6.4179 9.1221± 8.4260 −0.3244± 1.5237 −0.4634± 1.9781 0.1596
Normal Ensemble 79.86% 3.8839± 3.2510 2.7740± 4.0799 −0.1646± 1.5721 −0.1307± 2.0840 0.3042

Explanation Ensemble (Ours) 78.94% 0.8196± 0.1273 0.8398± 0.1658 0.6757± 1.1178 0.5410± 1.5653 0.5333

Figure 6.1: Boxplots of mean (a) NSS and (b) KLD between model Grad-CAM
explanations and radiologist EGD, across each of the 10 training random seeds
tested. Note that KLD is a divergence metric meaning smaller values are better.

that the Deep Explanation Ensemble model produces explanations that are more

similar to the EGD than all other architectures tested, when measured by both a

distribution-based measure (KLD) and a location-based metric (NSS). To confirm

that these conclusions are statistically correct, a Paired t-test at the α = 0.05 sig-

nificance level is performed between the similarity metrics from the baseline and

Explanation Ensemble models. The null and alternative hypotheses are the same

for both KLD and NSS: H0 : µd = 0, H1 : µd ̸= 0, where µd is the mean of the differ-

ences between the KLD/NSS values for the two architectures. The distributions of

the differences were confirmed to be normal via simple plotting before carrying out

the t-test. Table 6.2 reports both the test statistics and p-values for each of our hy-

pothesis tests. Given that all p-values are significantly less than α, one can conclude

that the Deep Explanation Ensemble architecture produces explanations that are

statistically more similar to radiologist EGD than both baseline and current state-
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of-the-art techniques. Significantly, all models except Deep Explanation Ensembles

achieve negative NSS scores, showing anti-correspondence against the EGD [194]

and making the Deep Explanation Ensemble architecture the only method tested

to use features that are positively correlated with those used by experts. This is

further highlighted by the large reduction in KLD from our methods when com-

pared with the baseline models tested; this underlines how significantly different

the features used by current state-of-the-art models and medical experts are (and

follows results suggesting that many networks suffer from shortcut learning [18] and

spurious correlations [100]), and shows that the proposed method is a significant

improvement. While experiments have focused on Deep Explanation Ensembles of

size 10 in this chapter, the effect of changing the number of sub-models is explored

in Figure 6.2. These experiments show that as the number of sub-models increase

so does the agreement between model explanations and the EGD - however, it is

important to note the trade-off between training cost and increased performance as

the Deep Explanation Ensemble size increases.

Figure 6.2: Boxplots of mean (a) NSS and (b) KLD between Grad-CAM explana-
tions and radiologist EGD, across a range of ensemble sizes. For each ensemble size,
10 models with different random seeds were trained. Note that KLD is a divergence
metric meaning smaller values are better.
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In addition to improved similarity with expert EGD, explanation consistency

(Table 6.1) is also significantly improved in Deep Explanation Ensemble models,

verifying the results of the experiments in Chapter 5. This can also be seen by the

significantly smaller range of NSS and KLD of the explanations from the explanation

ensembles (as reported in Figure 6.1) when compared with other architectures tested.

This inherently increases trust in the model, as it shows that our architecture is more

robust than the others tested. It also further highlights how DEE networks learn

“better” (i.e. similar to those in EGD) features than the baseline models - the models

are learning fewer noisy/spurious features and instead placing more importance on

the features that have a higher probability of being causally related to the task.

Figure 6.3: Boxplots showing the mean (a) NSS and (b) KLD between model SHAP
explanations and radiologist EGD, across each of the 10 training random seeds
tested. Note that KLD is a divergence metric meaning smaller values are better.

The similarity between SHAP values and the EGD data is also investigated;

this is shown in Figure 6.3. Similarly to the Grad-CAM results, one sees that the

proposed Deep Explanation Ensemble architecture improves the similarity upon all

other model architectures tested. Similar patterns can be seen between all 4 ar-

chitectures tested across the KLD and NSS values on the Grad-CAM and SHAP

results, with the boxplots highlighting that the level of improvement of our expla-

nation ensemble architecture is at the same scale regardless of the explainablility

technique used. As both the results of Grad-CAM and SHAP agree, one can con-

clude that our proposed model is learning to use features similarly to a radiologist.

These results can also be seen from a visual comparison of explanations: Figure 6.4
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shows example CXRs and their corresponding EGD and explanations from all mod-

els tested, showing that Deep Explanation Ensembles places much more importance

on regions similar to the expert radiologist (i.e. around the lungs and heart) than

both the baseline and current state of the art models. Notice how columns 2 (base-

line Grad-CAM) and 3 (Improved UNet Grad-CAM) in Figure 6.4 show how much

of the feature attribution is placed in spuriously correlated features (such as the

top-left corner and the image borders). On the other hand, the Deep Explanation

Ensemble architecture learns a significantly different set of features (using features

around the lungs and heart, with these areas much more closely matching the areas

shown in the EGD heatmap in the first column), further showing that this training

technique has a notable affect on the representations learned by the model. This is

desirable, as it highlights how the proposed model is learning to use features similar

to those used by experts, making it less likely that DEEs are over-reliant on spurious

features.

Figure 6.5 shows how the learned features of our explanation ensemble model

change as training progresses. Note that this figure shows only the most important

pixels of each model - when showing the importance of all pixels, the heatmaps

become difficult to analyse by eye. In particular, Figure 6.5 highlights how the DEE

training process (i.e. the discriminator and the loss function in Equation (5.1))

encourages the sub-models of Deep Explanation Ensembles to learn similar features

as training progresses, despite the sub-models starting with vastly different sets

of explanations. This verifies that the intuitive understanding of our explanation

ensemble architecture, and most importantly our understanding of why it produces

explanations closer to expert’s EGD, is correct.

Table 6.2: Test statistics t and p-values for the Paired t-test performed between
the Explanation Ensembles and Baseline (top) and the Explanation Ensembles and
Improved UNet (bottom) models.

Test Statistic p-value
KLD 18.005 6.8698× 10−34

NSS -9.9137 5.7567−17

Test Statistic p-value
KLD 14.4617 7.5950× 10−27

NSS -5.8058 3.5764× 10−8
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Figure 6.4: 3 samples from the MIMIC-CXR-EGD dataset, overlaid with the radi-
ologist’s EGD and Grad-CAM explanations from the baseline, improved UNet and
Explanation Ensemble models.

6.1.5 Do DEEs Produce Better Quality Explanations?

Through the use of two explainability techniques and both distribution- and location-

based metrics, we have shown that the Deep Explanation Ensemble technique orig-

inally proposed in Chapter 5 improves upon baseline models in both terms of per-

formance and explanation similarity to EGD on the MIMIC-CXR-EGD dataset.

Furthermore, this section has shown that the Deep Explanation Ensemble archi-

tecture also improves upon the current state-of-the-art models which share learned

features with radiologist’s EGD. In addition to improving agreement between model

explanations and expert EGD, the proposed model architecture also improves classi-

fication performance and explanation consistency when compared with current state

of the art techniques. Qualitative analysis of the results shows that our proposed

architecture is a highly significant improvement upon current models, and whilst
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I do not claim that these results are yet perfect they are a huge improvement in

what is an extremely difficult task. Furthermore, unlike the previous state of the

art [1] technique, the proposed architecture does not require EGD heatmaps during

training - due to the cost of collecting EGD (especially in fields such as medicine,

where expert knowledge is required), I believe this is a significant advantage over

previously proposed methods.

In future work, it would be interesting to perform an in depth causal analysis of

the learned features of the DEE model and compare this with a causal analysis of the

learned features of baseline models, through the use of proper, theoretically-defined

causal models. The improved performance, increased explanation consistency and

better agreement with expert EGD suggests that DEEs may be learning more causal

features than the baseline models, with the baseline models possibly relying more

on spurious features. I hypothesise this as one would only expect causal features to

be those that are learned consistently across multiple variations of a well-performing

model. Furthermore, the increased agreement with expert radiologists (whom you

would expect to use causal features in their diagnoses) further supports this con-

clusion. However, to fully verify this hypothesis, an extensive causal analysis of the

trained models, and their learned features, must be undertaken (using techniques

such as those used in [196] and [197]) and so I leave this for future work.

Due to its increased similarity with a medical professional’s decision making

process, I believe that more trust will be placed in our model by clinicians than

current state-of-the-art techniques. I hope that these results encourage the use of

our architecture in other areas of medical practice, and other sensitive fields, as well

as the release of further datasets similar to MIMIC-CXR-EGD which can facilitate

this type of research.
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Figure 6.5: Average GradCAM values (across the validation split) of each sub-
model of our Explanation Ensemble model, as training progresses. To aid with
visualisation, only the most important 50% of pixels are shown. Sub-models start
training with vastly different learned features, and as training progresses our training
procedure encourages the sub-models to learn similar features. A fully animated
version of this figure, and code to reproduce it on other models, is available at [2]
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6.2 DEEs in Federated Learning Settings

Advances in modern machine learning are largely made possible by the availability

of large volumes of suitable training data [198], with end-user’s (often private) data

being used by companies and individuals alike to create effective machine learn-

ing models [199]. As previously discussed in Chapter 2.4 this has raised concerns

around the privacy of users whose data is included in these trained models, partic-

ularly where private data such as medical and financial records are concerned [200].

The European Union’s General Data Protection Regulation (GDPR) [12] sets how

such data may be used, and how it must be kept anonymised, private and secure.

Although how exactly these regulations apply to specific ML applications is com-

plex [77].

In an effort to combat this issue, Federated Learning (FL) was proposed as an

alternative approach to the classical DL training setting (Chapter 2.4.4). In FL,

a shared global model is trained through collaboration with a federation of private

devices. Under this scenario, the training of the global model is controlled by a

central server using the data present on the (usually large number of) private devices;

crucially, this allows each device’s private data to remain on their own device. FL

has traditionally been applied to mobile applications (where each user’s phone acts

as the private devices), but it can also be used in settings such as healthcare, where

it is also imperative that user data remains private [24, 77].

However, federated learning alone is not enough to alleviate privacy concerns,

particularly in settings where extremely sensitive data is handled. Much like tra-

ditional machine learning methods [131, 201, 202] FL has been shown to be be sus-

ceptible to numerous types of attack [203], ranging from those that affect model

performance to those that can identify data used during model training. The latter,

named Membership Inference Attacks (MIA), is of particular interest from a privacy

perspective. MIAs are effective against both traditional machine learning [53, 199]

and federated learning settings [204], despite FL being specifically designed to keep

user’s data private.

Mitigating against such attacks is of importance to both the end user and ML

model owner alike. Users are unlikely to want to use ML-based products if their
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personal data is put at risk, resulting in lack of adoption for the ML model owner

(as well as the possible legal consequences of inadvertently releasing private user

data). Differential Privacy (DP) when training deep learning models was used to

alleviate these issues [143]. DP places limits on the influence a single data point can

have on a model, and has shown to theoretically protect against MIAs at sufficient

privacy levels [19, 145]. However, this theoretical work assumes that members and

non-members are drawn independently, and from the same distribution; often, this

assumption is not valid in a real-world setting [146, 205]. Indeed, in [53, 199, 206]

membership inference attacks were effective against differentially-private ML models

under more real-world settings.

Alongside data privacy, there are numerous other challenges facing ML models

that are deployed to real-world applications. Perhaps most notably is the concept of

model explainability: by their very nature, modern deep learning models are black-

boxes and hard to explain, resulting in distrust from many end-users. For example,

it is imperative that decisions made by ML models are interpretable by patients

and their doctors for ML techniques to see wide-spread adoption [188, 189] in the

healthcare domain. This has led to the development of many explainability and

interpretability techniques that aim to “open up” black-box models by explaining

which features of an input contributed most to the model’s decision [78].

This chapter explores how explainability methods can be used as both attack and

defence techniques in the membership inference domain. First, I introduce a novel

membership inference attack named ExplAttack that utilises model explanations

rather than model outputs and show that this is more effective than current state

of the art MIAs in both federated and non-federated settings. I then demonstrate

how the Deep Explanation Ensemble model architecture introduced in Chapter 5

can be used to mitigate against MIAs, showing that the efficacy (as measured by

membership advantage) of both ExplAttack and existing MIAs is reduced to 0 when

targeting trained Deep Explanation Ensembles in both traditional and federated

settings. I also compare results against models trained with differential privacy,

and highlight how the proposed DEE architecture is less susceptible to MIAs (when

compared to differentially-private models in real-world scenarios) whilst keeping
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levels of performance at least equal to (and often greater than) both DP and non-

DP models. The chapter ends by investigating why DEEs are robust to MIAs by

comparing feature attributions from traditional models with those from DEEs.

6.2.1 Problem Background

As discussed in Chapter 2.4.3, it has been shown that deep learning models are sus-

ceptible to memorising training data, even if these models still achieve high levels

of generalisations [130]. This memorisation results in models being prone to a num-

ber of different malicious attacks, including membership inference attacks [131,132].

These attacks are given an input (M,x) (where M : X → Y is a trained machine

learning model and x ∈ X ) and attempt to infer whether x was part of the training

set of M , Xtrain. Such attacks can be used to infer information about the subject of

x - for example, their relationship to the objective of the classifier M . Susceptibility

to MIAs is regarded as an inherent privacy risk of machine learning models, with

the US National Institute of Standards and Technology (NIST) specifically labelling

successful membership inference attacks as a privacy violation [133].

Federated Learning (FL) is a training technique that is designed to improve

user’s data privacy (Chapter 2.4.4). Although FL allows the training of a ML

model without clients explicitly sharing their data, it alone is not enough to provide

sufficient privacy protection and instead must be used in conjunction with additional

privacy-preserving methods [140]. For example, it has been shown that membership

inference attacks are viable in the FL setting [141] as well as other attack methods

that utilise unique properties of federated models [142].

One of the main defences against membership inference attacks (and many other

privacy-related issues) in both traditional and federating settings is the use of Differ-

ential Privacy (DP) during training (Chapter 2.4.4). If a training algorithm satisfies

DP then it is formally guaranteed that a model trained on dataset D and a model

trained on dataset D′, where D,D′ differ by exactly one sample, will produce statis-

tically similar results. This protects both content and output privacy of the model,

though often comes at the cost of model performance (and compute cost).

This section’s contributions are two-fold: 1) it introduces a novel membership
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inference attack (that is named ExplAttack) that utilises explainability rather than

model outputs that achieves state of the art attack performance, and 2) shows that,

through the utilisation of model explanations during training, it is possible to train

Deep Explanation Ensemble models that are robust to both the novel and existing

membership inference attacks presented in this section.

6.2.2 Explainability-based Membership Inference

In Chapter 4, we saw that due to the inconsistency of model explanations, one can

easily distinguish between two models based on their produced explanations (even

when these models have identical architectures, and differ only by a slight change in

training hyperparameters). A natural next question to ask is: can explanations be

used to infer membership inference? For such an attack to be effective one must first

choose a suitable explainability technique, the choice of which will determine whether

the attack is white- or black-box. For example, while GradCAM [90] requires access

to the model to calculate feature attributions (making it impossible to use in a black-

box attack scenario, where full access to the model is not guaranteed), SHAP [21]

or Feature Ablation [17] can be computed when just model outputs are available.

The proposed ExplAttack follows the same process as traditional black-box

MIAs, but uses explanations instead of model outputs: it trains a secondary classifier

(the attack model) on the set of explanations, with the aim of being able to classify

which explanations were calculated from the target model’s training set samples. In

order to train this secondary model, some subset of the training data for the target

model must be available; to achieve this, one can utilise the idea of shadow data,

and shadow models, that have been proposed as existing MIAs to generate training

data for our attack model [132]. It is important to note that, if no (or few) training

set members are known, and it is for some reason infeasible to generate shadow

models then it is also possible to train the attack model in an unsupervised manner.

When there is not enough shadow data present, an anomaly detection [207] attack

model is trained on a large set of samples; as only a small subset of this data will

originate from the training set of the target model, the attack model should learn a

boundary between training set members and non-members.
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This section focuses solely on explainability techniques that can be utilised in the

black-box attack setting. Techniques that could only be used in white-box settings,

such as GradCAM, typically all utilise model gradient’s in their explanation com-

putations. Attacks that utilise gradients have already been shown to be extremely

effective in both traditional and federated models [141] and our proposed white-box

techniques would be similar (although not identical: note that the proposed attack

models only require the final explanations as input whereas previous techniques

requires the model output and complete set of gradients for input features and in-

dividual hidden layers). Through the utilisation of existing explainability methods,

our proposed attack is unique in that it allows the use of something similar to model

gradients without the need for white-box access to the target model.

6.2.3 Deep Explanation Ensembles: A Defence Against MIAs

Deep Explanation Ensembles can be adapted to a number of scenarios. Firstly, they

are not restrained to classification tasks - by changing the first part of Equation 5.1,

DEEs can be trained on any task (e.g. regression) by choosing a suitable replacement

for CELoss(·, ·). Secondly, it is possible to train DEEs in a federated setting by

replacing classic Stochastic Gradient Descent with the FedAvg [138] algorithm.

6.2.4 Experiments & Results

This section first explains the experimental setup used to evaluate both the pro-

posed novel explainability-based MIA as well as the efficacy of Deep Explanation

Ensembles (DEE) as a defence mechanism against MIAs. A summary of the re-

sults of these experiments is then presented; full tables of results can be found in

Appendix C.

Experimental Setup

Similar experimental setups and datasets to previous studies on MIAs [53, 199] are

used, with additional experiments designed to evaluate the proposed methods on

different data modalities and the federated learning scenario. Through the use of
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similar toy datasets to previous studies it is possible to easily compare the efficacy

of ExplAttack and the robustness of DEEs to these attacks with state-of-the-art

MIAs and models. This analysis is then extended to larger, real-world computer

vision datasets to evaluate the effectiveness of the proposed techniques in real-world

applications.

Datasets. Baseline experiments are carried out on the MNIST [208], COM-

PAS [30], Adult [52] and Texas [209] datasets. The Texas data was used following

the pre-processing described in [53]. These datasets were chosen as they allow for

comparison with previous MIA studies [53, 199] and cover a range of data modali-

ties and task/data complexities. To evaluate the proposed methods on real-world

data, the MIMIC-CXR-EGD [1] dataset is used, which consists of 1,083 chest x-rays

across 3 different diseases. Similarly to the previous studies on MIMIC-CXR-EGD

in this thesis the methods in [53] are followed to split the datasets into members,

non-members and shadow data, randomly sampling from the original datasets to

garner 15000 members, 25000 members and using the remaining data as shadow

data; COMPAS uses 2000 and 1000 respectively. Table 6.3 reports a summary of

the experiment setups used.

Federated Learning. To test the applicability of the DEE architecture to

FL setups, the FEMNIST [50] and INaturalist [51] datasets are used, as well as

a Synthetic federated dataset [50]. The Synthetic dataset was generated according

to [50] using the default distribution with 77 features. Federated Learning is achieved

via the FedAvg protocol [138] using the recommended number of clients and samples

[50,51] for each dataset.

Model Architectures. Baseline models are all trained with the Adam opti-

miser with a learning rate of 0.0001 and batch size 64 for at most 50 epochs, with an

early stopping procedure in place to address overfitting. Tasks on tabular datasets

(Synthetic, COMPAS, Adult and Texas) use MLPs with an input layer followed

by two hidden layers - dropout is applied after the first two layers. MNIST and

FEMNSIT both use a CNN with two convolutional layers with kernel size 3, with

max-pooling and fully connected layers in between. All models use the LogSoftmax

activation function. For the MIMIC-CXR-EGD dataset, the current state-of-the-art
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UNet architecture from [1] is used, and for INaturalist a fine-tuned Densenet-121

model (pretrained on ImageNet). Both the ensemble and Deep Explanation En-

sembles use the same MLP/CNN architectures as their sub-models, with DEEs also

including a small MLP of one hidden layer as their discriminator. Each ensemble

consists of 10 sub-models. For DEEs, optimally α = 2, β = 0.1 after performing a

hyperparameter grid search; this prevents the discriminator of the DEE from over-

fitting and ensure the two parts of the loss function in Equation 5.1 are of the same

magnitude. For each (dataset, model) pair, 5 model variations are trained (i.e. the

architecture is the same but the random seed is changed).

Dataset Properties DP Model Accuracy (± std. dev.)
Dataset Num. Samples Num. Features Num. Classes Federated ϵ Baseline Ensemble DP DEE
MNIST 60,000 784 10 ✗ 2 98.80± 0.0462 93.00± 1.584 91.68± 1.134 98.89± 0.176

FEMNIST 805,263 784 62 ✓ 2 84.68± 2.093 85.91± 0.731 82.91± 1.442 85.12± 1.548
Synthetic 734,463 72 12 ✓ 4 69.87± 1.832 81.73± 3.121 75.04± 4.265 77.52± 1.745

INaturalist 2.7M 150528 10 ✓ 4 83.97± 1.34 83.40± 1.18 70.03± 4.58 84.14± 1.09
COMPAS 7214 466 2 ✗ 2 89.91 91.00± 1.289 75.32± 2.503 91.87± 0.693

Adult 32,561 205 2 ✗ 3 74.90± 1.632 75.28± 2.372 75.73± 0.823 76.57± 0.933
Texas 348,700 252 100 ✗ 4 83.55± 0.796 72.15± 0.686 73.55± 0.796 83.79± 1.273

MIMIC-CXR-EGD 1,083 150528 3 ✗ 4 75.57± 2.43 76.63± 2.63 68.43± 0.62 76.03± 1.09

Table 6.3: Statistics, privacy level (for models trained with Differential Privacy
(DP)) and average model performance (± standard deviation) per dataset across all
models tested. For each (dataset, model) pair, 5 models were trained.

Differential Privacy. To evaluate attack performance on differentially-private

models, versions of the baseline models are trained using the DP-SGD algorithm

[143, 210]. To allow for better interoperability between different datasets, the im-

plementation of DP used calculates privacy budget based on three different hyper-

parameters, rather than aiming for a given ϵ. Following standard practice [143,210]

to set these hyperparameters, δ = 1
N

(where N is the size of the dataset), the max-

imum grad norm is set to 1.2 and the noise multiplier to 4. The achieved level of

differential privacy, ϵ, that these hyperparameters achieve is reported in Table 6.3.

Membership Inference Attacks. Each model variation is tested against many

membership inference attacks. Standard black-box attacks using both shadow and

non-shadow datasets are used as a baseline attack, as well as a threshold attack.

The current state of the art MIA, that utilises shadow datasets [132], is also tested

against. For the proposed ExplAttack, experiments include using both Logistic

Regression (LR) and Multi Layer Perceptron (MLP) models trained on the feature

attributions calculated via SHAP [21]. This section focuses solely on the black-box
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attack scenario, assuming that the attacker only has access to the target model’s

outputs; as such, the explainability technique used in the explainability-based MIA

must not require direct access to the model. As we have already seen that SHAP is

sensitive to small changes in models and hence is suited to this task in Chapter 4;

however it is important to stress that any suitable explanation technique could be

used. Membership Advantage, defined as Adv = TPR − FPR, where TPR is the True

Positive Rate and FPR is the False Positive Rate [19], is used to measure the power

of a Membership Inference Attack, as previous studies have shown attack model

accuracy to be a poor indicator of performance [211].

Explainability-based MIA Results

Table 6.3 and Figure 6.6 both show the accuracy of all models trained, across all

tasks. All trained models match the performance of models trained in the original

studies [1,30,50–52,208,209] verifying that any susceptibility to MIAs is not due to

improper training.

Dataset
Attack

ExplAttack (MLP) ExplAttack (LR) Black-Box Rule-Based Shadow

MNIST 0.30± 0.01 0.27± 0.06 0.26 0.28± 0.01 0.18± 0.01
FEMNIST 0.46± 0.12 0.29± 0.11 0.20± 0.06 0.25± 0.19 0.19± 0.05
Synthetic 1.0 0.41± 0.13 0.30± 0.06 0.32± 0.02 0.27± 0.06

INaturalist 0.37± 0.02 0 0.29± 0.02 0.31± 0.02 0.31± 0.02
COMPAS 0.21± 0.05 0.15± 0.02 0.12± 0.07 0.27± 0.06 0.20± 0.08

Adult 0.17± 0.04 0.44± 0.10 0 0.13± 0.07 0.17± 0.08
Texas 0.48± 0.08 0.46± 0.20 0.25± 0.03 0.34± 0.06 0.21± 0.30

MIMIC-CXR-EGD 0.52± 0.02 0.50± 0.02 0.20± 0.06 0.25± 0.18 0.19± 0.04

Table 6.4: Membership Advantage (± standard deviation across 5 model variations)
of each attack tested on the baseline models on all 8 datasets.

Figure 6.7 and Table 6.4 both show the membership advantage of all attacks

tested on the baseline models trained across all datasets, including the proposed

ExplAttack method with two different attack models. Figure 6.7 shows that explainability-

based attacks are more effective than baseline and state of the art attacks, although

interestingly it is not always the case that the MLP-based attack always outperforms

our LR based-attack (or vice-versa). For example, by inspecting Table 6.4 one can

see that the MLP-based ExplAttack on the Adult dataset performs slightly worse

than the LR-based explainability attack. I hypothesise that this may be because it
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Figure 6.6: Boxplot of model accuracy on all datasets tested, across all model ar-
chitectures. Datasets denoted with * are federated datasets and were trained with
the FedAvg algorithm.

is more likely for the MLPs to begin to overfit than the LRs, even though actions

have been take to attempt to prevent this from happening (e.g. dropout and early

stopping as noted in Section 6.2.2). Similarly, the LR-based ExplAttack performs

poorly on the MIMIC-CXR-EGD dataset; this is likely due to the large amount of

features in a CXR image (a single image is 3x224x224), and the overall similarity of

each image (CXRs are collected in highly standardised environments, resulting in a

small amount of image diversity), which Logistic Regression is not very well suited

to.

Overall, however, the membership advantage of the proposed ExplAttack is sig-
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Figure 6.7: Scatterplot of membership advantage of all MIAs tested, including the
proposed ExplAttack technique, tested on all datasets across multiple MLP models.
Datasets denoted with a * are federated datasets, with the MLPs being trained with
the FedAvg algorithm.

nificantly higher than the other state of the art attacks tested. Figure 6.8 shows that

the proposed MIAs are also effective against differentially-private models trained via

the DP-SGD algorithm. This highlights how model explanations can be extremely

sensitive to changes in model settings, and that the information this can provide

must be taken into account when analysing the privacy provided by algorithms.
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Deep Explanation Ensemble Robustness

Figure 6.8, and Tables 6.4 and 6.5, highlight how DEEs provide perfect protection

against all attack types and datasets tested, with all attacks being unable to ac-

curately infer membership on DEEs. Importantly, not only are DEEs impervious

to classical MIAs, but they are also resistant to our proposed explainability-based

MIAs. This underlines the improvements that can be gained by improving the

explanation consistency of models via the use of explanations during training; by

improving the quality of explanations produced by a model, these results show that

it is also possible to improve aspects of the model that are traditionally targeted by

membership inference attacks.

Figure 6.8: Heatmaps of the membership advantage of tested attacks on all model ar-
chitectures tested across all datasets. Federated datasets are denoted by *. The val-
ues plotted are the average membership advantage across 5 trained models, rounded
to 2 decimal places for the annotations. A logarithmic scale is used for visualisation
purposes (although the actual membership advantage values are added as labels to
each cell) due to the low spread of values.

Table 6.3 and Figure 6.6 show that the DEE architecture performs comparably

to baseline models on all datasets, outperforming the baselines on most datasets.

This is an indication that DEEs are learning to use a more insightful set of fea-

tures, and are perhaps less reliant on noise, than other architectures - a repeat of
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Dataset
Attack

ExplAttack (MLP) ExplAttack (LR) Black-Box Rule-Based Shadow

MNIST 0 0 0 0 0
FEMNIST 0 0 0 0 0
Synthetic 0 0 0 0.01± 0.01 0

INaturalist 0 0.03± 0.01 0 0 0
COMPAS 0 0.03± 0.04 0 0.08± 0.02 0

Adult 0 0.02± 0.04 0 0 0
Texas 0 0.02± 0.03 0 0.01± 0.01 0

MIMIC-CXR-EGD 0 0 0 0 0

Table 6.5: Membership Advantage (± standard deviation across 5 model variations)
of each attack tested on Deep Explanation Ensemble models on all 8 datasets.

the results of Chapter 5 and Chapter 6.1. Notably, DEEs vastly outperform dif-

ferential privacy-based models, despite choosing DP hyperparameters such that the

privacy/performance trade-off is not too severe. Combined with Figure 6.9, these

results show that DEEs are able to provide better privacy than models trained

with the DP-SGD algorithm whilst also avoiding the inherent privacy-performance

trade-off that is present in differentially-private networks.

Federated Learning Results

Data privacy is a fundamental advantage of Federated Learning algorithms - a user’s

data can remain on their own device whilst still contributing to a global model.

However, Figure 6.10 shows that these models are still susceptible to membership

inference attacks which, in a lot of situations, may be considered a privacy violation.

Furthermore, the proposed ExplAttack is still highly effective on federated models,

highlighting the need for further defences against such MIAs in the federated setting.

Figure 6.8 demonstrates that DEEs address this issue in the federated setting.

Similarly to the results on baseline datasets shown in Section 6.2.4, DEEs are resis-

tant to both ExplAttack and traditional MIAs, achieving near-perfect membership

advantage scores across all datasets. Importantly, this also holds for the real-world,

complex INaturalist dataset, which shows that DEEs are also practical in real-world

scenarios and not just on toy datasets such as FEMNIST and the Synthetic dataset.
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Figure 6.9: Model accuracy plot (with KDE) against membership inference on all
(model, dataset) pairs tested. Note that models trained on the FEMNIST, Synthetic
and Nature datasets were trained with the FedAvg algorithm.

6.2.5 Discussion

These results conclusively show that DEEs are extremely robust to membership

inference attacks, under both regular (results on MNIST, COMPAS, Adult, Texas

and MIMCI-CXR-EGD) and federated training regimes (results on FEMNIST, Syn-

thetic and INaturalist). I hypothesise that this is due to Deep Explanation Ensem-

bles learning to use a “better” set of features than other techniques, with much of

the noise learned by the separate sub-models being averaged out - this leaves the

final model placing the most importance on only features which are related to the
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Figure 6.10: Boxplots of membership advantage of all MIAs tested, including our
proposed ExplAttack technique, as tested on federated datasets.

task. This can be seen by inspecting Figure 6.11 - the SHAP values from Deep

Explanation Ensembles trained on MNIST show much less emphasis on pixels that

are not related to the number in the image, and instead more importance is placed

on pixels in the numbers themselves. Hence, DEEs are less reliant on these noisy,

spurious features and hence results in higher performance on the downstream task.

Figure 6.11: Normalised SHAP values on the first 5 MNIST samples from MLPs
(top) and DEEs (bottom).

By inspecting SHAP values from ExplAttack attack model trained on MNIST

it is possible to find the features the attack places the most importance on (i.e. the

features differ the most between members and non-members). Figure 6.12 highlights
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Figure 6.12: Normalised SHAP values from the explainability-based membership
inference attack on a baseline MLP, on 5 random MNIST samples.

how the feature importance of the MIA is spread across the entire feature space,

suggesting that the MIA is successful as it is able to use differences in the noisy

features learned by the target model to discern between members and non-members.

As denoted in Figure 6.11, DEEs are less reliant on these features and so this explains

why they are so much more resilient against MIAs; noisy, spurious correlations are

no longer used by the target models and hence membership inference attacks can

no longer use them to aid classification.

6.2.6 Conclusion

This chapter has shown that model explanations can be both used to more accu-

rately infer train set membership than existing MIAs, and that they can be utilised

during training to create more robust models. Through inspection of the learned

features of Deep Explanation Ensembles on the MNIST dataset I have confirmed

that they successfully reduce the number of spurious and noisy features used during

classification, and we hypothesise that it is this that increases the robustness of

Deep Explanation Ensembles whilst keeping high levels of accuracy (in contrast to

other techniques such as Differential Privacy). Through a similar inspection of the

features used by explainability-based MIAs I have confirmed that it is this through

this improved learning of features that results in the reduced susceptibility to mem-

bership inference attacks. In future work it would be interesting to inspect this

further, perhaps from a causal perspective, by taking a deeper look at how DEE’s

learned features differ from traditional architectures and how this affects the model’s

robustness; this would be a large study, and is outside the scope of this focused work.
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CHAPTER 7

Discussion & Conclusion

Each chapter of this thesis has seen the introduction of a novel technique designed

to address one of the three main problems facing Deep Learning models deployed in

practice that were identified in Chapter 2. Here I discuss these methods from as a

whole, examining how they can be used together rather than as individual methods,

not just to improve DL applications in sensitive settings such as healthcare, but to

further the field as a whole. In order to promote their use in actual applications,

this chapter then gives concrete suggestions as to how, where and why this methods

should be applied in practice. It then discusses some of the limitations of the work,

proposes some new open questions that are direct results of the work in this thesis,

and suggests numerous avenues for future work based on this.

7.1 Model Explainability: A Holistic View

As originally identified in Chapter 1.1, whilst modern machine learning techniques

have repeatedly proven themselves to perform outstandingly well on a wide range

of tasks, there are still numerous barriers that must be overcome to be able to

successfully apply these techniques to real-world settings. As seen throughout this
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thesis, these issues are especially prevalent in high-risk domains such as healthcare

and finance, where the consequences of an incorrect decision can be severe. Many

current approaches to address these issues have been disjoint: indeed, the techniques

reviewed in Chapter 2 all aim to tackle one specific weakness such as model trans-

parency or privacy. However, I argue that a more holistic approach needs to be

taken; much like how one cannot expect to fix your health via diet alone (and in-

stead also considering fun things such as exercise and sleep), you should not expect

to improve deep learning models by solving one problem at a time. This can also

be seen intuitively - for example, it would be a reasonable assumption to think that

a model that is less susceptible to spurious correlations is also likely less prone to

bias, and more likely to produce quality explanations.

This thesis has focused on showing this through the lens of deep learning ex-

plainability. Although the all of the techniques proposed in this work are focused on

improving and utilising model explanations, their overall, overarching aim is to also

improve model privacy, transparency and robustness such that deep learning models

can begin to be used in high-risk settings. This is initially demonstrated in Chap-

ter 3, where the proposed adversarial sample detection technique shows that model

explanations have uses beyond “opening up the black-box” and instead can also be

used to improve model robustness. Perhaps most interestingly, Chapter 3 also offers

a first glimpse into the utility model explanations as a tool for understanding the

inner workings of a model beyond per-instance feature importance. Whereas previ-

ous studies simply utilise explainability techniques to understand which features of

an input are most important - the model detects a cat in an image via its whiskers

and ears, for example - the fact that these same explanations can be used to detect

adversarial samples hints that they are perhaps picking up even more details on the

inner workings of a model than is clear upon a first glance.

This idea is more fully explored in Chapter 4. These results conclusively show

that explanations are inherently linked to a model’s quality and robustness, and

due to this it is possible to use them to uncover deep-rooted problems with mod-

ern deep learning architectures. The inconsistency of model explanations shown in

Chapter 4.4 is a significant barrier, particularly to those who are already unsure
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of deep learning. The fact that all model architectures tested exhibited the same

inconsistency problem - even those which are designed to be more robust, such as

hyperensembles - highlights how important it is to take this holistic approach to

model design. I argue that these results show it is no longer possible to design

issue-specific models (such as those designed to improve, say, model robustness), as

they inevitably succumb to one of the other problems such as a lack of transparency

or susceptibility to bias.

Chapter 5 does this by looking at the bigger picture and developing techniques

which are more consistent, and hence also more robust, private and transparent.

By utilising the knowledge gleaned from the previous chapters that, by design, ex-

planations are tightly linked to the inner workings of a model, the proposed DEE

architecture is shown to be able to learn a much better set of features than classical

models across all tasks tested; this is shown by the increased accuracy and expla-

nation consistency. Indeed, one can ascertain that by focusing on improving the

quality of the explanations you also improve the quality of the learned features and,

hence, the model.

To properly consider how this affects the whole model, Chapter 6 follows this

principle of looking at a model as a whole rather than its constituent parts and

features by investigating how DEEs can improve a model’s privacy and explanation

quality. By extending the analysis of Chapter 5 to different data modalities, Chap-

ter 6 definitively shows that DEEs improve the whole model. The comparison of

the explanations from DEEs to that from domain experts highlights how, by simply

focusing on learning more consistent features, models can more closely mimic deci-

sions made by experts - something that I argue is imperative for a model to be used

and trusted by domain experts in high risk settings, and yet is something that has

largely been ignored up until quite recently. Furthermore, Chapter 6.2 supports this

idea that, by using explanations to inspect and improve the features learned by a

model, it is possible to improve a wide range of model qualities, including the level

of data privacy provided.

The original aim of this thesis was to improve explainability techniques to pro-

duce better and more consistent explanations for healthcare-based machine learning
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models. However, through the study of this problem a much more important hy-

pothesis was discovered, explored and eventually confirmed: it’s not necessarily the

explainability techniques that are wrong, its the models that are learning the wrong

features. Through the idea of using model explanations to investigate the whole

model, rather than how it behaves on specific instances, this thesis has gone on to

suggest novel ways of improving model training, and how these techniques improve

multiple facets of deep neural networks. I hope that this underlines the importance

of taking this holistic approach to model development, wherein one looks at im-

proving model training as a whole rather than attempting to solve one issue at a

time.

7.2 DEEs: Recommendations for Applications

Throughout this thesis, the experimental focus has been on highly sensitive appli-

cations such as healthcare, biology and finance in which errors produced by any

machine learning technique could have severe consequences. Such domains are of

particular interest to machine learning practitioners as they are yet to see large-scale

adoption of ML techniques despite high levels of model performance; this is likely

due to concerns around how trustworthy these models are, as well as a general lack

of understanding of how they works (see Chapter 2.1.8), and is why the majority

of experiments throughout this thesis have focused on datasets and tasks from one

of these domains. However, whilst earlier chapters have given theoretical sugges-

tions for improving the training of neural networks, little thought has thus far been

given to how and where these could be applied in practice. A general lack of such

guidance is also another reason why many modern DL models do not get used in

production, and so in this section aims to provide some ideas of when, where and

how the techniques presented in this thesis should be used.

The explainability-based adversarial attack detection technique presented in

Chapter 3 can be used as a post-processing method in any setting where the risk of

malicious inputs to the model is high; for example, in finance or insurance settings.

While the results of Chapter 6.2 suggest that DEEs may overcome the problem of
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adversarial attacks altogether, rendering this detection technique unnecessary, prac-

titioners may wish to use this detection method in applications where computational

power is at a premium and as such the training of a DEE is impractical. Addition-

ally, while Chapter 6.2 does suggest that DEEs are robust to known attacks, it may

still be possible for an adversary to develop an attack that is at least somewhat

successful against them. As such, it may still be prudent to use the adversarial sam-

ple detection technique from Chapter 3 in scenarios where security is of the utmost

importance.

I argue that the explanation consistency metric proposed in Chapter 4 should

be used in any and all machine learning applications. Although named explanation

consistency, this metric does not just measure the quality of model explanations;

Chapter 6.1 in particular shows how it measures the quality of learned features.

Thus, it would be suitable to be used as an indicator of model quality and should be

considered (alongside classical metrics such as performance and loss) when choosing

the best model architecture and (hyper)parameter setup for any task; models with

higher explanation consistency should learn a better set of features and be the better

performing model. This should be of importance to any ML practitioner, no matter

their field of application, but is especially important where the model’s reasoning is

of paramount importance (i.e. end users will be interested in why the decision was

made). In almost all applications, the original definition for explanation consistency

that uses Logistic Regression (Equation (4.2)) will be the most suitable. However,

if it is known that accurate Jensen-Shannon Divergence estimations can be quickly

and easily computer for your task then one may also consider using the definition

in Equation (5.2).

In an ideal world, the DEE architecture and training technique suggested in

Chapter 5 would be used in any setting, as Chapters 5 and 6 show they provide

superior performance, explainability, transparency and privacy to current state of

the art techniques on all of the datasets tested. However, as is explained in Chapter 5

and Chapter 7.3, DEEs in their current incarnation do have some limitations. Most

notably, they are extremely computationally expensive to train and as such may

not be worth the trade-off in applications where traditional ML models provide

137



adequate performance and explainability/transparency is not as important (there

are many such domains, but examples may include recommender systems or business

intelligence applications). Despite this limitation, DEEs have a wide scope for use in

the sensitive scenarios that have been focused on throughout this work. In domains

such as healthcare and biology, where an incorrect decision can have significant

consequences and end users are particularly interested in a model’s explanation, the

time required to train a DEE is worth it to get a state of the art model in terms of

performance, explainability, transparency and privacy. Moreover, any applications

where data privacy is important should consider using DEEs; Chapter 6.2 shows that

they are able to outperform the (already computationally and network intensive)

federated learning and differential privacy techniques when it comes to both model

performance and privacy, and so should be suitable as a drop in replacement for

settings where these techniques are already commonplace.

As DEEs introduce some new hyperparameters that can be tuned, as well as the

need to choose a suitable architecture for the discriminator, it is important to give

some guidance on how these can be set. As previously suggested in Chapter 5.1.2,

the task of the discriminator is simple and it is important to choose its architecture

appropriately, ensuring it is not able to overfit. For most data modalities, small

MLPs (or even a Logistic Regression) model should be sufficient, although for large

image datasets it may be more useful to use a small CNN. The discriminator update

rate, n, should be chosen similarly: as the discriminator’s task is relatively simple,

there is no need to update it at every epoch. Instead, setting n = 2 should be ample

for most tasks however, if the data is extremely small and/or simple, then higher

values such as n = 4, 6 may be more appropriate. The value of β should be set such

that the loss of the discriminator and the loss of the downstream ensemble are of the

same order of magnitude: this will vary by task, but can easily be chosen through

simple inspection of the losses. Of course, both n and β can be (and when DEEs

are being used in production, should) included in any hyperparameter searches that

are carried out.

All of the techniques proposed throughout this thesis have possible applications.

Hopefully, the suggestions in this section have made it easier for ML practitioners
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to understand when and where they may be applied and, most importantly, how

they should be used in order to gain the most use out of them.

7.3 Limitations & Future Work

Although all of the methods presented in this thesis show promising results on the

datasets they were evaluated on, there are still some areas they could be improved.

As each chapter ends with a brief discussion of its limitations, this section consoli-

dates these limitations and considers them as a whole, suggesting avenues for future

work that could answer some of the open questions that have been left exposed by

this work.

Firstly, throughout this work I have focused on experimenting with as many real-

world datasets from sensitive domains as possible. However, by their very nature

this data is extremely hard to come by, with not many such datasets being publicly

available (in fact, this thesis has used most, if not all, of suitable, publicly-accessible

data). It would be prudent, if the opportunity arises, to test all of the methods

in this thesis on a wider range of datasets and data modalities where possible; this

would give practitioners a better understanding of where each technique is best

applied. In particular, it would be extremely interesting to confirm that the EGD

experiments in Chapter 6.1 are reproducible on data from other settings, and of

different modalities.

Although the DEE architecture introduced in Chapter 5 is shown throughout

the rest of the thesis to have many advantageous properties, it is extremely costly

to train. During training, a large enough number of sub-models S must be used,

and feature attributions must be calculated for every training instance, for each of

the S sub-models, at each epoch. This makes it both memory- (one must choose S

large enough that there are enough sub-models to provide sufficient variety, whilst

ensuring it is small enough such that all model parameters fit into memory) and

time-inefficient (almost all suitable explainability techniques are costly to compute).

These limitations may make DEEs impossible to train on large, complex datasets,

although it should be noted that the compute cost at inference-time is the same as
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any traditional ensemble model and so this is a one-time issue. Future work may

include investigating ways to either: increase the efficiency of the explainability

techniques used during training, or remove the need for DEEs to be of an ensemble

architecture. A possible future direction for this may be to enforce some form of

statistical measure on the set of explanations (from a single model) during train-

ing: for example, reduce the amount of noise in the explanations by measuring its

divergence from a Gaussian distribution.

It would also be interesting to study the relationship between the proposed DEE

architecture and feature selection methods. In particular, one could design a set

of experiments to investigate whether the discriminator part of the network ever

encourages the sub-models to completely ignore some set of features. Of course,

these experiments should also be extended to examine the effect feature selection

methods have on the explanation consistency of a model - it may be possible to

combine both feature selection and the DEE architecture to address the performance

trade-off present (with the idea being that, as the DEE would need to work on fewer

features, it could place more of its power on the downstream task rather than on

increasing explanation consistency).

Many of the experiments in this thesis point to an issue with traditional models

learning spurious features: this would explain the explanation inconsistency results

in Chapter 4, as I hypothesise that if a model were learning truly causally-related

features, they would remain largely the same each run. It could also be argued that

the results of Chapter 6.1 suggests that DEEs are more likely to be learning causal

features, as they better align with the expert’s EGD. However, these conclusions are

very strong statements, and I have not formally proven them; this task could be the

topic of a whole other thesis, as it is not even clear if the mathematical tools needed

for such an analysis have been developed. It would be extremely interesting for

future work to analyse explanation consistency and DEEs from a causal perspective,

experimenting on datasets with known underlying causal graphs to examine whether

or not DEEs are indeed better at learning causal features. However, this work would

be need to be extremely rigorous and it may even be the case that the correct tools

to do this type of analysis have not yet been developed.
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The overarching aim of this thesis was to develop techniques that can be used

in highly critical applications, such as those in healthcare and finance. Whilst the

experiments throughout this thesis have been designed to evaluate the technique’s

usefulness in such scenarios as much as possible, it would be very valuable to also get

a domain expert’s opinion. For example, it would be interesting to ask a radiologist

if the DEE’s model explanations from Chapter 6.1 does indeed increase the trust

they would place in the model. This type of human evaluation can be extremely

difficult to collect (due to the time cost for everyone involved), but is of paramount

importance should we want to use the ideas presented in this thesis in practice.

An intriguing avenue for future work, which is not directly related to but rather

inspired by the ideas explored in this thesis, would be to investigate how explain-

ability techniques can be used in the generation of synthetic data. The results in

Chapter 3 suggest that it may be possible to detect synthetic data via feature at-

tributions - it is likely that generated features differ enough from real features that

explainability techniques will pick up on them - which would mean that models

trained on synthetic data would be less likely to generalise to real data distribu-

tions, and perhaps have even worse explanation consistency. If one could take the

ideas of Chapter 5 and Chapter 6.1 and apply them to generative models such as

Generative Adversarial Networks, it may be possible to create new data samples

which downstream classification models treat the same as real data. This would

be hugely beneficial in many of the high-risk applications that have been focused

on throughout this thesis, as it would allow for the generation of a nearly infinite

amount of high-quality data from only a small amount of actual data.

Finally, there is always the opportunity to continue using explainability to aid

our understanding of black-box deep learning models. This thesis has shown that by

focusing on creating models that learn high-quality features, it is possible to address

numerous issues with traditional deep neural networks at once. Namely, Chapter 4

shows that explainability can be used to uncover previously unknown issues with the

training of deep models, and Chapter 5 shows that explanations can be a solution

to this (and other) issues. It would be encouraging to see future work take the

general approaches proposed throughout this thesis (of using explainability to aid
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our understanding of the inner workings of machine learning, rather than relying

on instance-based explainability) to further investigate ML training. For example:

can explanations be used to understand what makes a model fail? This could be

extended further - can explanations uncover why a model fails? This thesis has

shown that explanations are somewhat of an untapped resource, and I hope this

work encourages more in-depth work with them in the future.

7.4 Conclusion

Throughout this thesis, we have seen how advances in deep learning explainability

can be used to gain insight into neural network model training, as well as how

these techniques can be used to improve the robustness and trustworthiness of deep

learning techniques. Each chapter can be seen as a step towards understanding,

and often improving, why DL models face barriers when being applied to sensitive

scenarios such as healthcare, bioinformatics and finance. In this Chapter, I review

the contributions of the thesis and summarise how each novel technique introduced

can be used to address one or more of the barriers identified in Chapter 2.1.8.

Chapter 3 uses off-the-shelf explainability techniques to create a novel detection

method for adversarial attacks that is able to out-perform current state-of-the-art

techniques. Importantly, through the use of the proposed (V)AE detection method,

one is able to create a model for any dataset that is able to protect against even un-

seen attack types. Through thorough experimentation on a wide variety of datasets,

it was shown that the proposed techniques provide extremely good attack detection

accuracy whilst also being extremely computationally-light at inference time. This

makes it a viable approach to be used as part of a deep learning pipeline in sensitive

scenarios: for example, one could imagine it being used in a financial fraud detection

system to detect malicious attacks before they are passed to the final deep learning

classification model.

The results of Chapter 3 raise an intriguing point, in that it shows that DL

model explanations are extremely sensitive to even small changes to a model’s in-

put. Chapter 4 takes this idea and extends it even further, investigating whether
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model feature attributions can be also be used to uncover changes to the model

itself. Through this novel use of explainability techniques, I show that not only can

explanations be used to differentiate between two otherwise identical architectures,

but that changing model hyperparameters that are orthogonal to the downstream

task (such as the random seed, or order of the training data) results in vastly dif-

ferent model explanations (even when the model’s final output and classification

are extremely similar). I confirm that this is the result across numerous different

data modalities, data and architecture complexities, and explainability techniques.

Through verification of the explainability method’s faithfulness to the underlying

model via the use of established metrics such as explanation sensitivity and infi-

delity, I confirm that this is indeed uncovering inherent differences in the model’s

learned parameters and not an issue with the explainability techniques themselves.

The results of these experiments lead to the development of a new quality metric

for neural networks, Explanation Consistency. Chapter 4 presents both a general

framework for Explanation Consistency, allowing it to be adapted to a wide range of

scenarios, as well as a concrete implementation for general use. Thorough experimen-

tation of both toy and real-world tasks shows that traditional deep learning models

have extremely low Explanation Consistency and that even current state-of-the-art

architectures such as Hyperparameter Ensembles, which are designed precisely to

address the issue of model robustness and generalisability, suffer from the same is-

sues. As experiments on kernel-based methods such as SVMs show that they do not

suffer from the same issues, I hypothesise that explanation inconsistency is a result

of the stochastic nature of neural network training. By exploring the similarity of

layer parameters between two trained models (of identical architectures but trained

with different random seeds) through the use of SVCCA, I corroborate the expla-

nation consistency results: the final layers of a network are similar (and hence they

produce similar outputs) whilst the middle layers are significantly different, which

is resulting in widely different feature attributions.

The low explanation consistency of modern neural networks highlights one of the

key barriers facing models when they are applied to sensitive scenarios: trustwor-

thiness. The lack of explanation consistency suggests that models may not be as
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robust as they seem, and people are less likely to trust a model if they believe that

they are converging to use significantly different features each time they are trained;

one would expect a model to use the same set of causally-related features each time.

This inspires the methods presented in Chapter 5, where I aim to address the ex-

planation inconsistency issue. Firstly, motivated by my findings in Chapter 4 that

ensemble architectures have slightly higher explanation consistency than traditional

methods, I propose a post-processing technique that can be applied to the expla-

nations of any machine learning algorithm. Extensive evaluation on tabular data

shows that this algorithm, which works by removing the least important features

from an ensemble of models, achieves significantly higher explanation consistency

than baseline models. However, as explained in Chapter 5.1.1, there are a number

of issues with this method. Most notably it does not actually change the features

learned by the underlying model, only the resulting explanations, and so one can ar-

gue that the models themselves are still extremely inconsistent, and so the problem

persists.

Chapter 5.1.2 addresses this issue by presenting an entirely new deep learning

model architecture and training algorithm that attempts to encapsulate the previous

post-processing technique inside model training. Motivated by the success of using

multiple explanations, as exhibited by the post-processing technique, the suggested

Deep Explanation Ensemble (DEE) is the first such method to use model explana-

tions during training to encourage the final model to “average out” noisy features.

Extensive testing of this new technique on tabular datasets from a wide range of

sensitive domains shows that not only do DEEs drastically improve explanation con-

sistency, but they do so without significantly affecting model performance as well.

A thorough ablation study confirmed that these improvements are due to the use of

explanations during training, and cannot be replicated through simple techniques

such as checkpoint averaging, sub-model averaging or a combination of the two.

The efficacy of DEEs make them a prime candidate for use in sensitive scenarios:

the greatly increased explanation consistency means that the models are inherently

more trustworthy, and I hypothesise that it may be a result of an increased reliance

on causal features (and consequently reduced reliance on spurious correlations).
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The properties of DEEs are further explored in Chapter 6. Firstly, in Chap-

ter 6.1, we broaden the experiments to a second data modality: images. Specifically,

I further show the usefulness of the technique in a real-world sensitive application

by evaluating model performance on chest x-ray (CXR) diagnosis. By comparing

model explanations to an expert’s Eye-Gaze Data (EGD), it is shown that DEEs

learn a set of features which are much closer to those that would be used by clini-

cal experts. This, alongside the increased performance and explanation consistency

when compared with even state-of-the-art models, suggests that DEEs are perhaps

learning to use a better set of features and that traditional architectures are over-

reliant on spurious correlations. As the DEE’s feature attributions align so closely

with the expert’s, this will likely increase a clinician’s trust in our model, addressing

one of the big issues facing DL models in healthcare (and any other sensitive appli-

cation). Importantly, DEEs even out perform models that use EGD during training

- which is extremely expensive and time-consuming to collect - further solidifying

their usefulness in practice.

Finally, inspired by the success of the success of the explainability-based adver-

sarial attack detection techniques originally presented in Chapter 3, Chapter 6.2

investigates how explainability can be applied to Membership Inference Attacks

(MIA). I present a novel black-box attack method that can be applied to any deep

learning model, without the need for access to any of its training data, that utilises

model explanations to infer membership inference. Comparison with existing black-

box MIAs shows that this proposed attack outperforms attacks that use a model’s

outputs only, a result that may be expected having seen the results of Chapter 3,

and how sensitive explanations are to a model’s inner workings in Chapter 4. Im-

portantly, I show that even differentially-private models are susceptible to this type

of attack, highlighting the importance of including the information that is contained

in model explanations when analysing the privacy provided by a deep learning al-

gorithm.

I then show that DEEs are not only robust to this type of explainability-based

MIA (which may be expected due to its utilisation of explanations during train-

ing), but also that they are robust to traditional MIAs as well. Compellingly, DEEs
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achieve this level of privacy without the same privacy-performance trade-off that is

present in differentially-private networks, making DEEs a much more viable proposi-

tion in applications where a user’s data privacy is of paramount importance. Chap-

ter 6.2 also explains how DEEs can be applied to Federated Learning (FL) settings,

and evaluates their efficacy under FL assumptions, showing that they provide better

data privacy whilst keeping model performance the same.

The result of all of this work, then, is that I have shown how explainability

techniques can be used to address the three main barriers facing DL models in

sensitive scenarios that were identified in Chapter 2.1.8: trustworthiness (Chap-

ter 5 and Chapter 6.1), robustness (Chapters 4 and 5) and user privacy (Chapter 3

and Chapter 6.2). Throughout the thesis, all of the proposed methods have pur-

posely been evaluated on datasets from sensitive domains (such as healthcare and

bioinformatics) to show how they can be applied to real-world applications. I hope

that the results contained in this thesis encourage DL practitioners and domain ex-

perts to continue to explore how models can be applied to real-world settings, and

to continue to “open up” the black-box of neural networks and make them more

approachable to end-users and non-DL experts alike.
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[188] D. S. Char, M. D. Abràmoff, and C. Feudtner, “Identifying Ethical Consider-
ations for Machine Learning Healthcare Applications,” Am J Bioeth, vol. 20,
pp. 7–17, 11 2020. 6.1, 6.2

[189] J. J. Hatherley, “Limits of trust in medical ai,” Journal of Medical Ethics,
vol. 46, no. 7, pp. 478–481, 2020. 6.1, 6.2

[190] S. Sindhwani, G. Minissale, G. Weber, C. Lutteroth, A. Lambert, N. Curtis,
and E. Broadbent, “A multidisciplinary study of eye tracking technology for
visual intelligence,” Education Sciences, vol. 10, no. 8, 2020. 6.1

[191] B. Butcher, V. S. Huang, C. Robinson, J. Reffin, S. K. Sgaier, G. Charles,
and N. Quadrianto, “Causal datasheet for datasets: An evaluation guide for
real-world data analysis and data collection design using bayesian networks,”
Frontiers in Artificial Intelligence, vol. 4, 2021. 6.1.1

[192] S. Waite, A. Grigorian, R. G. Alexander, S. L. Macknik, M. Carrasco, D. J.
Heeger, and S. Martinez-Conde, “Analysis of perceptual expertise in radiol-
ogy – current knowledge and a new perspective,” Frontiers in Human Neuro-
science, vol. 13, 2019. 6.1.1

[193] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International Conference on Machine Learning, pp. 6105–
6114, PMLR, 2019. 6.1.3

[194] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What do differ-
ent evaluation metrics tell us about saliency models?,” IEEE transactions on
pattern analysis and machine intelligence, vol. 41, no. 3, pp. 740–757, 2018.
6.1.3, 6.1.4

[195] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”
Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, 2020. 6.1.4

[196] S. Singla, S. Wallace, S. Triantafillou, and K. Batmanghelich, “Using causal
analysis for conceptual deep learning explanation,” in International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
pp. 519–528, Springer, 2021. 6.1.5

[197] Y. Goyal, A. Feder, U. Shalit, and B. Kim, “Explaining classifiers with causal
concept effect (cace),” arXiv preprint arXiv:1907.07165, 2019. 6.1.5

[198] X. Gu and A. Easwaran, “Towards safe machine learning for cps: Infer un-
certainty from training data,” in Proceedings of the 10th ACM/IEEE Inter-
national Conference on Cyber-Physical Systems, ICCPS ’19, (New York, NY,
USA), p. 249–258, Association for Computing Machinery, 2019. 6.2

164



[199] S. Truex, L. Liu, M. Gursoy, L. Yu, and W. Wei, “Demystifying membership
inference attacks in machine learning as a service,” IEEE Transactions on
Services Computing, vol. 14, pp. 2073–2089, nov 2021. 6.2, 6.2.4

[200] T. Moberly, “Should we be worried about the nhs selling patient data?,” BMJ,
vol. 368, 2020. 6.2

[201] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ad-
versarial examples,” 2014. 6.2

[202] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine learning,”
2020. 6.2

[203] P. Liu, X. Xu, and W. Wang, “Threats, attacks and defenses to federated
learning: issues, taxonomy and perspectives,” Cybersecurity, vol. 5, p. 4, Feb
2022. 6.2

[204] O. Zari, C. Xu, and G. Neglia, “Efficient passive membership inference attack
in federated learning,” 2021. 6.2

[205] S. Sagawa, A. Raghunathan, P. W. Koh, and P. Liang, “An investigation
of why overparameterization exacerbates spurious correlations,” in Proceed-
ings of the 37th International Conference on Machine Learning (H. D. III
and A. Singh, eds.), vol. 119 of Proceedings of Machine Learning Research,
pp. 8346–8356, PMLR, 13–18 Jul 2020. 6.2

[206] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and Y. Wang,
“Membership inference attack against differentially private deep learning
model.,” Trans. Data Priv., vol. 11, no. 1, pp. 61–79, 2018. 6.2

[207] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly
detection: A review,” ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–
38, 2021. 6.2.2

[208] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” Online, 2010.
6.2.4, 6.2.4

[209] T. D. of State Health Services, “Hospital discharge data public use data file,”
2015. 6.2.4, 6.2.4

[210] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek,
J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao, G. Cormode, and I. Mironov,
“Opacus: User-friendly differential privacy library in PyTorch,” arXiv preprint
arXiv:2109.12298, 2021. 6.2.4

[211] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership
inference attacks from first principles,” in 2022 IEEE Symposium on Security
and Privacy (SP), pp. 1897–1914, IEEE, 2022. 6.2.4

165



APPENDIX A

Deep Explanation Ensemble Hyperparameter Results

The experiments carried out in Chapter 5 required numerous models to be trained,

each with different training hyperparameter setups. While all of the results in the

tables below have been summarised in Chapter 5.2, for completeness and repro-

ducibility I have included in the individual results from each model trained below.
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Dataset (Task) Random Seed Shuffle Performance Metric
Diabetes ( Classification) 18829 FALSE 82.33
Diabetes (Classification) 20526 FALSE 82.93
Diabetes (Classification) 44392 FALSE 83.02
Diabetes (Classification) 7021 FALSE 82.71
Diabetes (Classification) 93864 FALSE 81.89
Diabetes (Classification) 17884 TRUE 83.08
Diabetes (Classification) 26549 TRUE 83.58
Diabetes (Classification) 42609 TRUE 83.53
Diabetes (Classification) 52732 TRUE 83.42
Diabetes (Classification) 53291 TRUE 83.33
Diabetes (Classification) 58075 TRUE 83.43
Diabetes (Classification) 65452 TRUE 83.27
Diabetes (Classification) 66701 TRUE 83.67
Diabetes (Classification) 7495 TRUE 83.33
Diabetes (Classification) 81189 TRUE 83.43
Diabetes (Classification) 9937 TRUE 83.12

Diabetes (Regression) 1 FALSE 0.578
Diabetes (Regression) 17351 FALSE 0.601
Diabetes (Regression) 35397 FALSE 0.579
Diabetes (Regression) 39419 FALSE 0.595
Diabetes (Regression) 42290 FALSE 0.601
Diabetes (Regression) 51363 FALSE 0.602
Diabetes (Regression) 54867 TRUE 0.582
Diabetes (Regression) 64500 TRUE 0.593
Diabetes (Regression) 66703 TRUE 0.569
Diabetes (Regression) 83349 TRUE 0.560
Diabetes (Regression) 95279 TRUE 0.584
Diabetes (Regression) 96047 TRUE 0.586

Table A.1: Performance and hyperparameters of the baseline MLPs trained on the
KAIMRC dataset. The performance metric for the classification task is accuracy
and adjusted R2 for the regression task.
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Dataset Seed Shuffle AUROC
BCW 22323 FALSE 93.86
BCW 25197 FALSE 93.86
BCW 29698 FALSE 93.86
BCW 30135 FALSE 89.47
BCW 30938 FALSE 93.86
BCW 39325 FALSE 92.98
BCW 41292 FALSE 90.35
BCW 53050 FALSE 92.11
BCW 61455 FALSE 89.47
BCW 78827 FALSE 92.11
BCW 81960 FALSE 92.11
BCW 19191 TRUE 88.60
BCW 23087 TRUE 91.23
BCW 24735 TRUE 89.47
BCW 43842 TRUE 95.61
BCW 47506 TRUE 86.42
BCW 57075 TRUE 92.11
BCW 62605 TRUE 90.25
BCW 63612 TRUE 93.86
BCW 67425 TRUE 90.35
BCW 92747 TRUE 93.86
BCW 97704 TRUE 94.74

Table A.2: Accuracy and hyperparameters for the baseline MLPs on the Breast
Cancer Wisconsin (BCW) dataset.
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Dataset (Task) Seed Shuffle Accuracy F1 Score
Codon Usage (DNA) 22402 FALSE 99.31 99.30
Codon Usage (DNA) 24402 FALSE 99.19 99.19
Codon Usage (DNA) 39126 FALSE 99.38 99.39
Codon Usage (DNA) 44437 FALSE 99.31 99.31
Codon Usage (DNA) 55833 FALSE 99.15 99.16
Codon Usage (DNA) 58236 TRUE 99.19 99.19
Codon Usage (DNA) 6160 TRUE 99.31 99.31
Codon Usage (DNA) 64119 TRUE 99.11 99.12
Codon Usage (DNA) 64390 TRUE 99.07 99.09
Codon Usage (DNA) 71650 TRUE 99.15 99.15

Codon Usage (Kingdom) 17094 FALSE 85.62 0.8504
Codon Usage (Kingdom) 19709 FALSE 86.65 0.8638
Codon Usage (Kingdom) 29559 FALSE 86.31 0.8616
Codon Usage (Kingdom) 3440 FALSE 85.67 0.8488
Codon Usage (Kingdom) 39406 FALSE 82.15 0.8103
Codon Usage (Kingdom) 51088 TRUE 83.30 0.8231
Codon Usage (Kingdom) 63023 TRUE 85.84 0.8506
Codon Usage (Kingdom) 74147 TRUE 85.79 0.8547
Codon Usage (Kingdom) 84013 TRUE 85.75 0.8530
Codon Usage (Kingdom) 92214 TRUE 86.22 0.8580

Table A.3: Accuracy, F1 score and hyperparameters of the baseline MLPs trained on
the Codon Usage dataset on both the kingdom and DNA multi-class classification
tasks.

Dataset Seed Shuffle AUROC
MIMIC-IV 7321 FALSE 0.7642
MIMIC-IV 1163 FALSE 0.7247
MIMIC-IV 3193 FALSE 0.7813
MIMIC-IV 7429 FALSE 0.7563
MIMIC-IV 8433 FALSE 0.7916
MIMIC-IV 22321 TRUE 0.8166
MIMIC-IV 32283 TRUE 0.7748
MIMIC-IV 69432 TRUE 0.7794
MIMIC-IV 77973 TRUE 0.8071
MIMIC-IV 82342 TRUE 0.8089

Table A.4: Model performance and hyperparameters for the LSTM-based baseline
models trained on MIMIC-IV mortality prediction.
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Dataset (Task) Seed Shuffle Accuracy
BCW 1621 FALSE 72.42
BCW 3063 FALSE 84.62
BCW 3309 FALSE 87.25
BCW 7159 FALSE 78.57
BCW 8163 FALSE 86.59
BCW 2602 TRUE 72.64
BCW 3233 TRUE 88.79
BCW 6922 TRUE 88.24
BCW 7797 TRUE 76.15
BCW 8332 TRUE 72.86

Table A.5: Model performance of normal ensemble models, of 10 sub-models each,
on the BCW dataset.

Dataset (Task) Seed Shuffle Accuracy
KAIMRC (Classification) 1621 FALSE 83.28
KAIMRC (Classification) 3063 FALSE 83.15
KAIMRC (Classification) 3309 FALSE 83.07
KAIMRC (Classification) 7159 FALSE 83.64
KAIMRC (Classification) 8163 FALSE 83.08
KAIMRC (Classification) 2602 TRUE 83.15
KAIMRC (Classification) 3233 TRUE 83.08
KAIMRC (Classification) 6922 TRUE 83.28
KAIMRC (Classification) 7797 TRUE 83.28
KAIMRC (Classification) 8332 TRUE 83.27

KAIMRC (Regression) 1621 FALSE 0.52
KAIMRC (Regression) 3063 FALSE 0.49
KAIMRC (Regression) 3309 FALSE 0.54
KAIMRC (Regression) 7159 FALSE 0.51
KAIMRC (Regression) 8163 FALSE 0.51
KAIMRC (Regression) 2602 TRUE 0.51
KAIMRC (Regression) 3233 TRUE 0.52
KAIMRC (Regression) 6922 TRUE 0.50
KAIMRC (Regression) 7797 TRUE 0.53
KAIMRC (Regression) 8332 TRUE 0.51

Table A.6: Model performance of normal ensemble models, of 10 sub-models each,
on the KAIMRC dataset for both the classification and regression tasks.
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Dataset (Task) Seed Shuffle Accuracy
Codon Usage (DNA) 1621 FALSE 99.07
Codon Usage (DNA) 3063 FALSE 99.42
Codon Usage (DNA) 3309 FALSE 99.23
Codon Usage (DNA) 7159 FALSE 98.84
Codon Usage (DNA) 8163 FALSE 99.19
Codon Usage (DNA) 2602 TRUE 99.46
Codon Usage (DNA) 3233 TRUE 99.00
Codon Usage (DNA) 6922 TRUE 99.04
Codon Usage (DNA) 7797 TRUE 98.88
Codon Usage (DNA) 8332 TRUE 99.23

Codon Usage (Kingdom) 1621 FALSE 90.39
Codon Usage (Kingdom) 3063 FALSE 87.23
Codon Usage (Kingdom) 3309 FALSE 90.82
Codon Usage (Kingdom) 7159 FALSE 91.24
Codon Usage (Kingdom) 8163 FALSE 90.99
Codon Usage (Kingdom) 2602 TRUE 91.20
Codon Usage (Kingdom) 3233 TRUE 91.29
Codon Usage (Kingdom) 6922 TRUE 88.63
Codon Usage (Kingdom) 7797 TRUE 89.96
Codon Usage (Kingdom) 8332 TRUE 91.76

Table A.7: Model performance of normal ensemble models, of 10 sub-models each,
on the Codon Usage dataset for both the DNA and kingdom multi-class classification
tasks.

Dataset (Task) Seed Shuffle Accuracy
BCW 15671 FALSE 80.59
BCW 19353 FALSE 89.47
BCW 26628 FALSE 90.53
BCW 45386 FALSE 88.90
BCW 56945 FALSE 89.63
BCW 58245 TRUE 89.24
BCW 59288 TRUE 86.84
BCW 92627 TRUE 83.33
BCW 99734 TRUE 87.72

Table A.8: Model performance of our explanation ensemble models, each of 10 sub-
models each, on the BCW dataset.
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Dataset (Task) Seed Shuffle Accuracy
KAIMRC (Classification) 3294 FALSE 81.86
KAIMRC (Classification) 32259 FALSE 81.82
KAIMRC (Classification) 45556 FALSE 82.37
KAIMRC (Classification) 56208 FALSE 82.64
KAIMRC (Classification) 61300 TRUE 81.61
KAIMRC (Classification) 78867 TRUE 83.27
KAIMRC (Classification) 80154 TRUE 82.28
KAIMRC (Classification) 83464 TRUE 82.53

KAIMRC (Regression) 1540 FALSE 0.5493
KAIMRC (Regression) 4881 FALSE 0.5152
KAIMRC (Regression) 33097 FALSE 0.5514
KAIMRC (Regression) 43716 FALSE 0.5529
KAIMRC (Regression) 45016 TRUE 0.5254
KAIMRC (Regression) 62778 TRUE 0.5572
KAIMRC (Regression) 72795 TRUE 0.5561
KAIMRC (Regression) 91774 TRUE 0.5076
KAIMRC (Regression) 97880 TRUE 0.5578

Table A.9: Model performance of our explanation ensemble models, each of 10 sub-
models each, on the KAIMRC dataset for both the classification and regression
tasks.

Dataset (Task) Seed Shuffle Accuracy
Codon Usage (DNA) 7009 FALSE 98.51
Codon Usage (DNA) 20624 FALSE 98.26
Codon Usage (DNA) 37971 FALSE 98.49
Codon Usage (DNA) 41030 FALSE 97.51
Codon Usage (DNA) 43356 FALSE 97.39
Codon Usage (DNA) 64863 TRUE 97.06
Codon Usage (DNA) 86245 TRUE 97.64
Codon Usage (DNA) 94742 TRUE 98.37
Codon Usage (DNA) 97499 TRUE 97.54

Codon Usage (Kingdom) 2107 FALSE 89.96
Codon Usage (Kingdom) 46598 FALSE 87.12
Codon Usage (Kingdom) 47329 FALSE 89.87
Codon Usage (Kingdom) 49806 FALSE 89.27
Codon Usage (Kingdom) 49951 FALSE 89.66
Codon Usage (Kingdom) 54426 TRUE 87.64
Codon Usage (Kingdom) 57058 TRUE 88.15
Codon Usage (Kingdom) 64179 TRUE 90.26
Codon Usage (Kingdom) 73122 TRUE 88.80
Codon Usage (Kingdom) 87606 TRUE 89.48

Table A.10: Model performance of our explanation ensemble models, with of 10
sub-models each, on the Codon Usage dataset on both the DNA and Kingdom
multi-class classification tasks.
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Dataset (Task) Seed Shuffle AUROC
MIMIC-IV 1163 FALSE 0.7733
MIMIC-IV 22321 FALSE 0.7734
MIMIC-IV 3193 FALSE 0.7734
MIMIC-IV 32283 FALSE 0.7735
MIMIC-IV 69432 FALSE 0.7733
MIMIC-IV 7321 TRUE 0.7730
MIMIC-IV 7429 TRUE 0.7732
MIMIC-IV 77973 TRUE 0.7733
MIMIC-IV 82342 TRUE 0.7732
MIMIC-IV 8433 TRUE 0.7733

Table A.11: Model performance (accuracy under the receiver operating characteris-
tic curve, AUROC) of our explanation ensemble models, of 10 sub-models each, on
the MIMIC-IV mortality prediction task.
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Dataset Seed Shuffle Infidelity Sensitivity
BCW 29698 FALSE 0.000391 0.581461
BCW 25197 FALSE 0.000634 0.512061
BCW 41292 FALSE 0.000527 0.421115
BCW 22323 FALSE 0.000434 0.517406
BCW 19191 TRUE 0.000445 0.513631
BCW 24735 TRUE 0.000460 0.563020
BCW 47506 TRUE 0.000774 0.716147
BCW 57075 TRUE 0.001268 0.617298

Codon Usage (DNA) 71650 TRUE 0.008231 0.678376
Codon Usage (DNA) 58236 TRUE 0.001719 1.823636
Codon Usage (DNA) 64119 TRUE 0.003357 1.089292
Codon Usage (DNA) 64390 TRUE 0.004377 1.255262
Codon Usage (DNA) 22402 FALSE 0.001696 1.610876
Codon Usage (DNA) 6160 TRUE 0.002804 1.356076
Codon Usage (DNA) 39126 FALSE 0.000410 3.270923
Codon Usage (DNA) 55833 FALSE 0.005762 0.776691
Codon Usage (DNA) 44437 FALSE 0.005224 0.997720

KAIMRC (Classification) 1621 FALSE 0.001360 0.591762
KAIMRC (Classification) 3063 FALSE 0.004201 0.453467
KAIMRC (Classification) 3309 FALSE 0.001295 0.509114
KAIMRC (Classification) 7159 FALSE 0.000000 0.000000
KAIMRC (Classification) 8163 FALSE 0.003186 0.427264
KAIMRC (Classification) 2602 TRUE 0.003995 0.397451
KAIMRC (Classification) 3233 TRUE 0.001077 0.542822
KAIMRC (Classification) 6922 TRUE 0.000547 0.000000
KAIMRC (Classification) 7797 TRUE 0.003540 0.597366
KAIMRC (Classification) 8332 TRUE 0.000997 0.527902
Codon Usage (Kingdom) 1621 FALSE 0.002073 0.700954
Codon Usage (Kingdom) 3063 FALSE 0.006445 0.968512
Codon Usage (Kingdom) 7159 FALSE 0.009926 0.754319
Codon Usage (Kingdom) 8163 FALSE 0.004835 0.688471
Codon Usage (Kingdom) 2602 TRUE 0.002424 0.673015
Codon Usage (Kingdom) 3233 TRUE 0.039926 0.573023
Codon Usage (Kingdom) 6922 TRUE 0.012041 0.718585
Codon Usage (Kingdom) 7797 TRUE 0.003896 1.015589

Table A.12: Explanation infidelity and explanation sensitivity max of the baseline
model architectures on all classification datasets.
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Dataset Seed Shuffle Infidelity Sensitivity
BCW 1621 FALSE 0.000039834 1.114579
BCW 3063 FALSE 0.000075637 0.835891
BCW 3309 FALSE 0.000071457 1.704849
BCW 7159 FALSE 0.000081874 0.633781
BCW 8163 FALSE 0.000085646 0.998697
BCW 2602 TRUE 0.000022444 0.633781
BCW 3233 TRUE 0.000422726 0.995961
BCW 6922 TRUE 0.000442698 0.738602
BCW 7797 TRUE 0.000010963 1.175704
BCW 8332 TRUE 0.001441245 0.894858

Codon Usage (DNA) 1621 FALSE 0.00062983 0.656578
Codon Usage (DNA) 3063 FALSE 0.00000066 1.467080
Codon Usage (DNA) 3309 FALSE 0.00000144 0.739519
Codon Usage (DNA) 7159 FALSE 0.00006802 1.894022
Codon Usage (DNA) 8163 FALSE 0.00000257 0.780092
Codon Usage (DNA) 2602 TRUE 0.00001721 1.000341
Codon Usage (DNA) 3233 TRUE 0.00003930 1.979980
Codon Usage (DNA) 6922 TRUE 0.00000357 1.071276
Codon Usage (DNA) 7797 TRUE 0.00001502 0.761258
Codon Usage (DNA) 8332 TRUE 0.00144648 2.045398

Codon Usage (Kingdom) 1621 FALSE 0.00002163 0.930669
Codon Usage (Kingdom) 3063 FALSE 0.00003154 1.205581
Codon Usage (Kingdom) 3309 FALSE 0.00002493 0.951259
Codon Usage (Kingdom) 7159 FALSE 0.00003060 0.981180
Codon Usage (Kingdom) 8163 FALSE 0.00001940 1.083869
Codon Usage (Kingdom) 2602 TRUE 0.00003436 0.789647
Codon Usage (Kingdom) 3233 TRUE 0.00004075 1.104336
Codon Usage (Kingdom) 6922 TRUE 0.00003798 1.003424
Codon Usage (Kingdom) 7797 TRUE 0.00003327 1.121576
Codon Usage (Kingdom) 8332 TRUE 0.00002583 0.981720
KAIMRC (Classification) 1621 FALSE 0.00045833 0.483609
KAIMRC (Classification) 3063 FALSE 0.00090531 0.464702
KAIMRC (Classification) 3309 FALSE 0.00024935 0.484267
KAIMRC (Classification) 7159 FALSE 0.00043942 0.538328
KAIMRC (Classification) 8163 FALSE 0.00220850 0.471807
KAIMRC (Classification) 2602 TRUE 0.00334645 0.474118
KAIMRC (Classification) 3233 TRUE 0.00046485 0.563551
KAIMRC (Classification) 6922 TRUE 0.00100100 0.472233
KAIMRC (Classification) 7797 TRUE 0.00141688 0.516746
KAIMRC (Classification) 8332 TRUE 0.00079866 0.581355

Table A.13: Explanation infidelity and explanation sensitivity of each individual
explanation ensemble (of size 10) tested across each classification dataset.
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APPENDIX B

Medical Imaging Applications Hyperparameter Results

As part of the extensive experimentation carried out for Chapter 6.1, the methods

were run across models with many hyperparameter setups. While these results are

summarised in Chapter 6.1.4, for completeness and reproducibility, the exact results

for each hyperparameter results are reported below.
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Figure B.1: 5 random samples from the MIMIC-CXR-EGD dataset overlaid with
the eye gaze data heatmaps and GradCAM explanations from the baseline, improved
UNet and explanation ensemble models.
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Figure B.2: Average GradCAM values (across the validation split) of each sub-model
of our Explanation Ensemble model, as training progresses over epochs 1 and 6. To
aid with visualisation, only the most important 50% of pixels are shown. Sub-models
start training with vastly different learned features, and as training progresses our
training procedure encourages the sub-models to learn similar features. Joint with
Figure B.3, this is a larger version of Figure 6.5.

178



Figure B.3: Average GradCAM values (across the validation split) of each sub-model
of our Explanation Ensemble model, as training progresses over epochs 8 and 195. To
aid with visualisation, only the most important 50% of pixels are shown. Sub-models
start training with vastly different learned features, and as training progresses our
training procedure encourages the sub-models to learn similar features. Joint with
Figure B.2, this is a larger version of Figure 6.5.
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Table B.1: Table reporting model accuracy and mean KLD/NSS similarity between
GradCAM explanations and radiologist eye-gaze data.

Model Architecture Seed Accuracy KLD NSS

Baseline

1735 72.17 10.744 -0.497
2948 74.34 6.114 0.174
4235 72.61 8.902 -0.331
4582 69.00 9.555 -0.272
4678 74.00 13.349 -0.145
5682 73.81 4.288 0.183
7624 75.55 14.404 -0.858
7626 73.69 14.064 -0.113
9374 69.85 10.289 -0.078
9576 73.09 7.197 -0.173

Improved UNet (current SOTA)

1735 75.29 5.363 0.469
2948 70.58 13.031 -0.032
4235 75.57 5.429 0.096
4582 76.51 9.937 -0.324
4678 75.77 7.266 -0.169
5682 69.25 12.195 0.336
7624 74.93 11.257 0.405
7626 75.85 4.992 0.025
9374 74.59 4.672 -0.777
9576 72.97 9.265 -0.386

Normal Ensemble

1735 74.59 1.221 -0.070
2948 78.90 2.287 0.359
4235 78.90 3.285 0.360
4582 74.11 2.378 0.324
4678 79.86 3.884 -0.165
5682 78.42 4.944 -0.653
7624 76.51 2.117 0.269
7626 75.12 1.2688 0.290
9374 73.64 1.099 -0.249
9576 76.99 1.740 1.111

Expl. Ensemble (Ours)

1735 74.11 1.340 0.640
2948 76.51 1.025 0.577
4235 76.99 0.786 1.237
4582 76.51 0.967 1.157
4678 75.60 1.808 0.758
5682 73.16 1.388 0.666
7624 73.16 1.263 1.170
7626 77.46 1.267 0.566
9374 78.94 0.820 1.176
9576 76.03 0.908 1.011
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Seed Ensemble Size KLD NSS
1467 5 1.983 -2.515
3942 5 2.785 -1.013
4635 5 1.936 0.279
8304 5 2.694 -2.151
5305 5 2.292 -2.302
5439 5 1.833 -1.489
6395 5 2.302 -1.853
7098 5 1.811 -1.586
2089 5 2.472 -2.995
3104 5 2.441 1.021
1467 7 2.193 0.298
3942 7 1.991 -0.081
4635 7 2.372 0.23
8304 7 1.975 -2.031
5305 7 2.382 0.023
5439 7 2.476 3.741
6395 7 1.313 -1.64
7098 7 2.004 2.298
2089 7 1.608 -0.069
3104 7 1.541 1.22

Seed Ensemble Size KLD NSS
1467 8 1.485 0.837
3942 8 1.701 -1.16
4635 8 2.175 -1.145
8304 8 2.321 -1.163
5305 8 1.266 -0.842
5439 8 1.471 0.831
6395 8 6.55 -1.491
7098 8 2.503 0.556
2089 8 1.25 -1.045
3104 8 1.559 -0.954
1467 10 0.786 1.237
3942 10 0.967 1.157
4635 10 1.808 0.758
8304 10 1.388 0.666
5305 10 1.263 1.170
5439 10 1.267 0.566
6395 10 0.820 1.176
7098 10 0.908 1.011
2089 10 1.340 0.640
3104 10 1.025 0.577

Table B.2: Table reporting mean KLD/NSS similarity between GradCAM explana-
tions and radiologist eye-gaze data of our Explanation Ensemble architecture with
differing numbers of sub-models (i.e. ensemble size).

181



APPENDIX C

Federated Learning Hyperparameter Results

As part of the extensive experimentation carried out for Chapter 6.2, the methods

were run across models with many hyperparameter setups. While these results are

summarised in Chapter 6.2.4, for completeness and reproducibility, the exact results

for each hyperparameter results are reported below.
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Model Seed Attack Type Advantage
dee 6 lr 0.0
dee 7 lr 0.0
dee 8 lr 0.0
dee 1 lr 0.0
dee 6 mlp 0.0
dee 7 mlp 0.0
dee 8 mlp 0.0
dee 1 mlp 0.0
dee 6 svm 0.0
dee 7 svm 0.0
dee 8 svm 0.0
dee 1 svm 0.0
mlp 1 mlp 0.1
mlp 11 mlp 0.1
mlp 12 mlp 0.1
mlp 13 mlp 0.1
mlp 14 mlp 0.1
mlp 1 lr 0.5353
mlp 11 lr 0.3895
mlp 12 lr 0.4200
mlp 13 lr 0.2109
mlp 14 lr 0.4916
mlp 1 rule 0.3062
mlp 11 rule 0.3392
mlp 12 rule 0.3006
mlp 13 rule 0.3333
mlp 14 rule 0.3176
mlp 1 bbox 0.2865
mlp 11 bbox 0.2013
mlp 12 bbox 0.3042
mlp 13 bbox 0.3523
mlp 14 bbox 0.3568
mlp 1 shadow 0.3222
mlp 11 shadow 0.3512
mlp 12 shadow 0.2216
mlp 13 shadow 0.2583
mlp 14 shadow 0.2056
dee 6 rule 0.01792
dee 8 rule 0.0117
dee 9 rule 0.0008
dee 6 bbox 0.0
dee 8 bbox 0.0
dee 9 bbox 0.0

Model Seed Attack Type Advantage
dee 6 shadow 0.0
dee 8 shadow 0.0136
dee 9 shadow 0.0
dp 6 rule 0.1276
dp 8 rule 0.1637
dp 9 rule 0.1890
dp 6 bbox 0.1496
dp 8 bbox 0.1977
dp 9 bbox 0.1457
dp 6 shadow 0.1315
dp 8 shadow 0.1243
dp 9 shadow 0.1460
dp 8 lr 0.1112
dp 9 lr 0.1810
dp 6 lr 0.1227
dp 7 lr 0.1311
dp 8 mlp 0.0965
dp 9 mlp 0.0869
dp 6 mlp 0.0991
dp 7 mlp 0.1060

ensemble 8 lr 0.1028
ensemble 9 lr 0.1134
ensemble 7 lr 0.1362
ensemble 6 lr 0.1151
ensemble 1 lr 0.1881
ensemble 8 mlp 0.1189
ensemble 9 mlp 0.1548
ensemble 7 mlp 0.1766
ensemble 6 mlp 0.2135
ensemble 1 mlp 0.1850
ensemble 1 rule 0.1175
ensemble 6 rule 0.1179
ensemble 8 rule 0.1170
ensemble 9 rule 0.0
ensemble 1 bbox 0.1334
ensemble 6 bbox 0.1633
ensemble 8 bbox 0.0
ensemble 9 bbox 0.0
ensemble 1 shadow 0.1666
ensemble 6 shadow 0.1159
ensemble 8 shadow 0.1999
ensemble 9 shadow 0.1999

Table C.1: Table of membership advantage on the Synthetic dataset across all
(model, seed, attack) combinations.
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Model Seed Attack Type Advantage
model split attack advantage
mlp 1 lr 0.4056
mlp 11 lr 0.5934
mlp 12 lr 0.4313
mlp 13 lr 0.3333
mlp 14 lr 0.4246
mlp 1 mlp 0.1485
mlp 11 mlp 0.1989
mlp 12 mlp 0.1059
mlp 13 mlp 0.2132
mlp 14 mlp 0.1621
dee 1 mlp 0.0
dee 11 mlp 0.0
dee 12 mlp 0.0
dee 13 mlp 0.0
dee 14 mlp 0.0
dee 1 lr 0.0800
dee 11 lr 0.0
dee 12 lr 0.0
dee 13 lr 0.0
dee 14 lr 0.0
dee 1 rule 0.0
dee 11 rule 0.0
dee 12 rule 0.0
dee 13 rule 0.0
dee 14 rule 0.0
dee 1 bbox 0.0
dee 11 bbox 0.0
dee 12 bbox 0.0
dee 13 bbox 0.0
dee 14 bbox 0.0
dee 1 shadow 0.0
dee 11 shadow 0.0
dee 12 shadow 0.0
dee 13 shadow 0.0
dee 14 shadow 0.0
mlp 1 rule 0.1401
mlp 11 rule 0.1545
mlp 12 rule 0.1061
mlp 13 rule 0.1376
mlp 14 rule 0.1109
mlp 1 bbox 0.0
mlp 11 bbox 0.0
mlp 12 bbox 0.0
mlp 13 bbox 0.0
mlp 14 bbox 0.0

Model Seed Attack Type Membership Advantage
mlp 1 shadow 0.0644
mlp 11 shadow 0.1354
mlp 12 shadow 0.2663
mlp 13 shadow 0.1537
mlp 14 shadow 0.2205
dp 13 mlp 0.1045
dp 14 mlp 0.1248
dp 13 rule 0.1712
dp 14 rule 0.1697
dp 13 bbox 0.0
dp 14 bbox 0.0
dp 13 shadow 0.0
dp 14 shadow 0.1233
dp 14 lr 0.1058
dp 12 lr 0.1264
dp 13 lr 0.1177
dp 11 lr 0.0914

ensemble 13 lr 0.2220
ensemble 11 lr 0.1112
ensemble 14 lr 0.1632
ensemble 1 lr 0.1524
ensemble 12 lr 0.1412
ensemble 13 mlp 0.1204
ensemble 11 mlp 0.1256
ensemble 14 mlp 0.1122
ensemble 1 mlp 0.1064
ensemble 12 mlp 0.1286
ensemble 1 rule 0.1130
ensemble 11 rule 0.1158
ensemble 12 rule 0.1542
ensemble 13 rule 0.1306
ensemble 14 rule 0.1164
ensemble 1 bbox 0
ensemble 11 bbox 0
ensemble 12 bbox 0
ensemble 13 bbox 0
ensemble 14 bbox 0
ensemble 1 shadow 0.1438
ensemble 11 shadow 0.1014
ensemble 12 shadow 0.1356
ensemble 13 shadow 0.1114
ensemble 14 shadow 0.1205

Table C.2: Table of membership advantage on the Adult dataset across all (model,
seed, attack) combinations.
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Model Seed Attack Type Advantage
mlp 1 lr 0.1179
mlp 11 lr 0.1476
mlp 12 lr 0.1705
mlp 13 lr 0.1667
mlp 14 lr 0.1574
mlp 1 mlp 0.2015
mlp 11 mlp 0.1835
mlp 12 mlp 0.2946
mlp 13 mlp 0.1493
mlp 14 mlp 0.2001
dee 1 mlp 0.0
dee 11 mlp 0.0
dee 12 mlp 0.0
dee 13 mlp 0.0
dee 14 mlp 0.0
dee 1 lr 0.0769
dee 11 lr 0.0
dee 12 lr 0.0
dee 13 lr 0.0105
dee 14 lr 0.0588
dee 1 rule 0.09491
dee 11 rule 0.0671
dee 12 rule 0.0849
dee 13 rule 0.0942
dee 14 rule 0.0436
dee 1 bbox 0.0
dee 11 bbox 0.0
dee 12 bbox 0.0
dee 13 bbox 0.0
dee 14 bbox 0.0
dee 1 shadow 0.0
dee 11 shadow 0.0
dee 12 shadow 0.0
dee 13 shadow 0.0
dee 14 shadow 0.0
mlp 1 rule 0.2425
mlp 11 rule 0.2241
mlp 12 rule 0.2227
mlp 13 rule 0.3759
mlp 14 rule 0.2888
mlp 1 bbox 0.1548
mlp 11 bbox 0.1905
mlp 12 bbox 0.1487
mlp 13 bbox 0.0
mlp 14 bbox 0.1163

Model Seed Attack Type Advantage
mlp 1 shadow 0.1110
mlp 11 shadow 0.1411
mlp 12 shadow 0.2784
mlp 13 shadow 0.2727
mlp 14 shadow 0.2205
dp 13 rule 0.07676
dp 14 rule 0.05799
dp 13 bbox 0.0
dp 14 bbox 0.0
dp 13 shadow 0.04939
dp 14 shadow 0.01044
dp 13 mlp 0.20000
dp 14 mlp 0.1314
dp 13 lr 0.0817
dp 14 lr 0.1385

ensemble 13 lr 0.3636
ensemble 11 lr 0.2154
ensemble 14 lr 0.1316
ensemble 1 lr 0.2628
ensemble 12 lr 0.1500
ensemble 13 mlp 0.1667
ensemble 11 mlp 0.6667
ensemble 14 mlp 0.2500
ensemble 1 mlp 0.2076
ensemble 12 mlp 0.3957
ensemble 1 rule 0.1440
ensemble 11 rule 0.1683
ensemble 12 rule 0.1951
ensemble 13 rule 0.1945
ensemble 14 rule 0.1845
ensemble 1 bbox 0
ensemble 11 bbox 0
ensemble 12 bbox 0
ensemble 13 bbox 0
ensemble 14 bbox 0
ensemble 1 shadow 0.1986
ensemble 11 shadow 0.1190
ensemble 12 shadow 0.1463
ensemble 13 shadow 0.1205
ensemble 14 shadow 0.1114

Table C.3: Table of membership advantage on the COMPAS dataset across all
(model, seed, attack) combinations.
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Model Seed Attack Type Advantage
mlp 1 lr 0.3333
mlp 11 lr 0.6667
mlp 12 lr 0.3143
mlp 13 lr 0.6869
mlp 14 lr 0.3056
mlp 1 mlp 0.4513
mlp 11 mlp 0.5036
mlp 12 mlp 0.4015
mlp 13 mlp 0.6095
mlp 14 mlp 0.4580
dee 1 mlp 0.0
dee 11 mlp 0.0
dee 12 mlp 0.0
dee 13 mlp 0.0
dee 14 mlp 0.0
dee 1 lr 0.0
dee 11 lr 0.0
dee 12 lr 0.0527
dee 13 lr 0.0125
dee 14 lr 0.0482
dee 1 rule 0.0
dee 11 rule 0.0
dee 12 rule 0.01177
dee 13 rule 0.0
dee 14 rule 0.0021
dee 1 bbox 0.0
dee 11 bbox 0.0
dee 12 bbox 0.0
dee 13 bbox 0.0
dee 14 bbox 0.0
dee 1 shadow 0.0
dee 11 shadow 0.0
dee 12 shadow 0.0
dee 13 shadow 0.0
dee 14 shadow 0.00197
mlp 1 rule 0.3044
mlp 11 rule 0.2790
mlp 12 rule 0.3546
mlp 13 rule 0.3032
mlp 14 rule 0.4387
mlp 1 bbox 0.2321
mlp 11 bbox 0.2530
mlp 12 bbox 0.2111
mlp 13 bbox 0.2753
mlp 14 bbox 0.2714

Model Seed Attack Type Advantage
mlp 1 shadow 0.0
mlp 11 shadow 0.6403
mlp 12 shadow 0.03899
mlp 13 shadow 0.1482
dp 13 rule 0.04592
dp 14 rule 0.04301
dp 13 bbox 0.1057
dp 14 bbox 0.1743
dp 13 shadow 0.0457
dp 14 shadow 0.09831
dp 14 mlp 0.5718
dp 14 lr 0.5131

ensemble 13 lr 0.4179
ensemble 11 lr 0.4860
ensemble 14 lr 0.4779
ensemble 1 lr 0.4522
ensemble 12 lr 0.4852
ensemble 13 mlp 0.5924
ensemble 11 mlp 0.5152
ensemble 14 mlp 0.5769
ensemble 1 mlp 0.5120
ensemble 12 mlp 0.5785
ensemble 1 rule 0.1043
ensemble 11 rule 0.1064
ensemble 12 rule 0.1084
ensemble 13 rule 0.1034
ensemble 14 rule 0.10001
ensemble 1 bbox 0.1003
ensemble 11 bbox 0.1004
ensemble 12 bbox 0.1006
ensemble 13 bbox 0.1004
ensemble 14 bbox 0.1008
ensemble 1 shadow 0.1009
ensemble 11 shadow 0.1008
ensemble 12 shadow 0.1005
ensemble 13 shadow 0.1008
ensemble 14 shadow 0.1010

Table C.4: Table of membership advantage on the Texas dataset across all (model,
seed, attack) combinations.
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Model Seed Attack Type Advantage
dee 6 lr 0.0
dee 7 lr 0.0
dee 8 lr 0.0
dee 1 lr 0.0
dee 6 mlp 0.0
dee 7 mlp 0.0
dee 8 mlp 0.0
dee 1 mlp 0.0
dee 6 svm 0.0
dee 7 svm 0.0
dee 8 svm 0.0
dee 1 svm 0.0
mlp 1 mlp 0.4839
mlp 11 mlp 0.5812
mlp 12 mlp 0.5270
mlp 13 mlp 0.4075
mlp 14 mlp 0.2780
mlp 1 lr 0.3805
mlp 11 lr 0.3330
mlp 12 lr 0.2310
mlp 13 lr 0.1310
mlp 14 lr 0.3651
mlp 1 rule 0.5258
mlp 11 rule 0.2237
mlp 12 rule 0.0
mlp 13 rule 0.2479
mlp 14 rule 0.2612
mlp 1 bbox 0.1451
mlp 11 bbox 0.2551
mlp 12 bbox 0.2119
mlp 13 bbox 0.2479
mlp 14 bbox 0.1242
mlp 1 shadow 0.19994
mlp 11 shadow 0.19902
mlp 12 shadow 0.12242
mlp 13 shadow 0.2354
dp 13 rule 0.1795
dp 14 rule 0.1779
dp 13 bbox 0.2050
dp 14 bbox 0.1854
dp 13 shadow 0.0
dp 14 shadow 0.0005

Model Seed Attack Type Advantage
dp 1 mlp 0.0496
dp 11 mlp 0.0338
dp 12 mlp 0.0245
dp 13 mlp 0.0237
dp 1 lr 0.0266
dp 11 lr 0.0158
dp 12 lr 0.0055
dp 13 lr 0.0180
dee 1 rule 0.0
dee 12 rule 0.0
dee 13 rule 0.0
dee 14 rule 0.0
dee 1 bbox 0.0
dee 12 bbox 0.0
dee 13 bbox 0.0
dee 14 bbox 0.0
dee 1 shadow 0.0
dee 12 shadow 0.0
dee 13 shadow 0.0
dee 14 shadow 0.0

ensemble 6 rule 0.0
ensemble 7 rule 0.0
ensemble 8 rule 0.0
ensemble 6 bbox 0.0
ensemble 7 bbox 0.0
ensemble 8 bbox 0.0
ensemble 6 shadow 0.0
ensemble 7 shadow 0.0
ensemble 8 shadow 0.0
ensemble 6 mlp 0.1220
ensemble 7 mlp 0.1366
ensemble 8 mlp 0.1269
ensemble 6 lr 0.1072
ensemble 7 lr 0.1025
ensemble 8 lr 0.1058

Table C.5: Table of membership advantage on the FEMNIST dataset across all
(model, seed, attack) combinations.
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Model Seed Attack Advantage
dee 6 lr 0.0
dee 7 lr 0.0
dee 8 lr 0.0
dee 9 lr 0.0
dee 6 mlp 0.0
dee 7 mlp 0.0
dee 8 mlp 0.0
dee 9 mlp 0.0
dp 6 lr 0.9872
dp 9 mlp 0.9213

mlp 6 lr 0.9862
mlp 7 lr 0.9100
mlp 8 lr 0.9200
mlp 9 lr 0.8800
mlp 6 mlp 0.9124
mlp 7 mlp 0.9105
mlp 8 mlp 0.8904
mlp 9 mlp 0.9028
mlp 1 rule 0.7798
mlp 11 rule 0.7799
mlp 12 rule 0.7680
mlp 13 rule 0.7800
mlp 14 rule 0.7682
mlp 1 bbox 0.8573
mlp 11 bbox 0.8573
mlp 12 bbox 0.8572
mlp 13 bbox 0.8571
mlp 14 bbox 0.8571
mlp 1 shadow 0.7797
mlp 11 shadow 0.7682
mlp 12 shadow 0.7799
mlp 13 shadow 0.7800
dee 6 rule 0.0
dee 7 rule 0.0
dee 8 rule 0.0
dee 9 bbox 0.0
dee 6 bbox 0.0
dee 7 bbox 0.0

Model Seed Attack Advantage
dee 8 shadow 0.0
dee 9 shadow 0.0
dee 10 shadow 0.0
dp 6 rule 0.7733
dp 7 rule 0.7739
dp 6 bbox 0.8585
dp 7 bbox 0.8504
dp 6 shadow 0.8501
dp 7 shadow 0.8711

ensemble 6 rule 0.5797
ensemble 7 rule 0.7750
ensemble 8 rule 0.5793
ensemble 6 bbox 0.6009
ensemble 7 bbox 0.9000
ensemble 8 bbox 0.6002
ensemble 6 shadow 0.7393
ensemble 7 shadow 0.7515
ensemble 8 shadow 0.7934
ensemble 6 mlp 0.6950
ensemble 7 mlp 0.6036
ensemble 8 mlp 0.6752
ensemble 6 lr 0.4022
ensemble 7 lr 0.4982
ensemble 8 lr 0.4990

Table C.6: Table of membership advantage on the MNIST dataset across all (model,
seed, attack) combinations.
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Model Seed Attack Advantage
mlp 1 mlp 0.3528
mlp 11 mlp 0.2619
mlp 12 mlp 0.3572
mlp 13 mlp 0.2630
mlp 14 mlp 0.3948
mlp 1 lr 0
mlp 11 lr 0
mlp 12 lr 0
mlp 13 lr 0
mlp 14 lr 0
mlp 1 rule 0.3861
mlp 11 rule 0.3872
mlp 12 rule 0.3095
mlp 13 rule 0.2881
mlp 14 rule 0.2955
mlp 1 bbox 0.2909
mlp 11 bbox 0.3194
mlp 12 bbox 0.2596
mlp 13 bbox 0.3006
mlp 14 bbox 0.2804
mlp 1 shadow 0.2911
mlp 11 shadow 0.3005
mlp 12 shadow 0.3495
mlp 13 shadow 0.3293
mlp 14 shadow 0.2975
ee 1 rule 0
ee 11 rule 0.023
ee 12 rule 0
ee 13 rule 0
ee 14 rule 0
ee 1 bbox 0
ee 11 bbox 0
ee 12 bbox 0
ee 13 bbox 0
ee 14 bbox 0
ee 1 shadow 0
ee 11 shadow 0
ee 12 shadow 0
ee 13 shadow 0
ee 14 shadow 0

ensemble 1 rule 0.3572
ensemble 11 rule 0.3913
ensemble 12 rule 0.3374
ensemble 13 rule 0.3649
ensemble 14 rule 0.3141
ensemble 1 bbox 0.2909
ensemble 11 bbox 0.2984
ensemble 12 bbox 0.3004
ensemble 13 bbox 0.3193
ensemble 14 bbox 0.2822

Model Seed Attack Advantage
ensemble 1 shadow 0.3246
ensemble 11 shadow 0.2991
ensemble 12 shadow 0.2886
ensemble 13 shadow 0.3014
ensemble 14 shadow 0.3215

dp 1 rule 0.1894
dp 11 rule 0.1944
dp 12 rule 0.1678
dp 13 rule 0.1236
dp 14 rule 0.1710
dp 1 bbox 0
dp 11 bbox 0
dp 12 bbox 0
dp 13 bbox 0
dp 14 bbox 0
dp 1 shadow 0.1909
dp 11 shadow 0.1988
dp 12 shadow 0.2090
dp 13 shadow 0.1873
dp 14 shadow 0.1899
ee 1 mlp 0.0245
ee 11 mlp 0.0228
ee 12 mlp 0.0495
ee 13 mlp 0.0379
ee 14 mlp 0.0383
ee 1 lr 0
ee 11 lr 0
ee 12 lr 0
ee 13 lr 0
ee 14 lr 0

ensemble 1 mlp 0.3511
ensemble 11 mlp 0.4228
ensemble 12 mlp 0.3664
ensemble 13 mlp 0.3539
ensemble 14 mlp 0.3234
ensemble 1 lr 0
ensemble 11 lr 0
ensemble 12 lr 0
ensemble 13 lr 0
ensemble 14 lr 0

dp 1 mlp 0.1689
dp 11 mlp 0.1378
dp 12 mlp 0.1441
dp 13 mlp 0.1476
dp 14 mlp 0.1434
dp 1 lr 0
dp 11 lr 0
dp 12 lr 0
dp 13 lr 0
dp 14 lr 0

Table C.7: Table of membership advantage on the INaturalist dataset across all
(model, seed, attack) combinations.
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Model Seed Attack Advantage
mlp 7 rule 0.4924
mlp 8 rule 0.6864
mlp 9 rule 0.6420
mlp 0 rule 0.6593
mlp 7 bbox 0.5364
mlp 8 bbox 0.5613
mlp 9 bbox 0.5820
mlp 0 bbox 0.5302
mlp 7 shadow 0.5819
mlp 8 shadow 0.4664
mlp 9 shadow 0.6139
mlp 0 shadow 0.5927
dp 7 rule 0.0710
dp 8 rule 0.1524
dp 9 rule 0.1695
dp 7 bbox 0
dp 8 bbox 0
dp 9 bbox 0
dp 7 shadow 0.0333
dp 8 shadow 0.1259
dp 9 shadow 0.0562

ensemble 7 rule 0.5605
ensemble 8 rule 0.4265
ensemble 9 rule 0.5275
ensemble 0 rule 0.5039
ensemble 7 bbox 0.7364
ensemble 8 bbox 0.7613
ensemble 9 bbox 0.7280
ensemble 0 bbox 0.7494
ensemble 7 shadow 0.4056
ensemble 8 shadow 0.2383
ensemble 9 shadow 0.4861
ensemble 0 shadow 0.4268

ee 7 rule 0.0059
ee 8 rule 0.0072
ee 9 rule 0
ee 0 rule 0
ee 7 bbox 0
ee 8 bbox 0
ee 9 bbox 0
ee 0 bbox 0

Model Seed Attack Advantage
ee 7 shadow 0
ee 8 shadow 0
ee 9 shadow 0.0026
ee 0 shadow 0

mlp 7 mlp 0.3025
mlp 8 mlp 0.2027
mlp 9 mlp 0.3083
mlp 0 mlp 0.3533
ee 7 mlp 0
ee 8 mlp 0
ee 9 mlp 0
ee 0 mlp 0

ensemble 7 mlp 0.1375
ensemble 8 mlp 0.1272
ensemble 9 mlp 0.1245
ensemble 0 mlp 0.1857

dp 7 mlp 0.1159
dp 8 mlp 0.0528
dp 9 mlp 0.1201
dp 0 mlp 0.0810

mlp 7 lr 0.2684
mlp 8 lr 0.2063
mlp 9 lr 0.1958
mlp 0 lr 0.2103
ee 7 lr 0
ee 8 lr 0
ee 9 lr 0
ee 0 lr 0

ensemble 7 lr 0.0073
ensemble 8 lr 0.0343
ensemble 9 lr 0.0132
ensemble 0 lr 0.0291

dp 7 lr 0.0203
dp 8 lr 0.0197
dp 9 lr 0.0149
dp 0 lr 0.0577

Table C.8: Table of membership advantage on the MIMIC-CXR-EGD dataset across
all (model, seed, attack) combinations.
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Model Dataset Seed Accuracy
mlp synthetic 1 81.55
mlp synthetic 2 77.68
mlp synthetic 3 75.83
mlp synthetic 4 79.06
mlp synthetic 5 68.08
mlp synthetic 6 79.15
mlp synthetic 7 63.78
mlp synthetic 8 87
dee synthetic 1 52.68
dee synthetic 2 86.07
dee synthetic 3 85.61
dee synthetic 4 65.04
dee synthetic 5 77.17
dee synthetic 6 84.78
dee synthetic 7 84.41
dee synthetic 8 78.04
dee synthetic 9 78.87
dee synthetic 10 82.56

ensemble synthetic 5 82.56
ensemble synthetic 6 78.87
ensemble synthetic 7 78.04
ensemble synthetic 8 84.41
ensemble synthetic 9 84.78

dp synthetic 1 78.04
dp synthetic 2 76.01
dp synthetic 3 77.68
dp synthetic 4 77.31
dp synthetic 5 74.26
dp synthetic 6 71.68
dp synthetic 7 77.58
dp synthetic 8 77.67
dp synthetic 9 65.13

mlp compas 1 87.9
mlp compas 11 91.04
mlp compas 12 89.82
mlp compas 13 89.10
mlp compas 14 91.68
mlp texas 1 82.47
mlp texas 11 83.44
mlp texas 12 84.00
mlp texas 13 84.27
mlp adult 10 74.02
mlp adult 11 73.23
mlp adult 12 77.48
mlp adult 13 74.42
mlp adult 14 75.35
cnn femnist 1 80.99
cnn femnist 6 85.07
cnn femnist 7 85.45
cnn femnist 13 85.84
cnn femnist 14 86.03
dp femnist 1 82.98
dp femnist 11 83.01
dp femnist 12 84.93
dp femnist 13 80.86
dp femnist 14 82.77
dp compas 1 73.82
dp compas 11 73.81
dp compas 12 78.73
dp compas 13 77.22
dp compas 14 73.02
dp texas 1 72.47
dp texas 11 73.44
dp texas 12 74.00
dp texas 13 74.27

model dataset split acc
dp adult 10 76.37
dee adult 10 77.38
dee adult 11 76.38
dee adult 12 75.21
dee adult 13 77.52
dee adult 14 76.38
dee texas 10 72.14
dee texas 11 71.36
dee texas 12 73.21
dee texas 13 72.52
dee texas 14 74.73

ensemble texas 1 72.16
ensemble texas 11 71.43
ensemble texas 12 72.86
ensemble texas 13 71.50
ensemble texas 14 72.81

dee compas 10 91.92
dee compas 11 90.96
dee compas 12 91.57
dee compas 13 92.02
dee compas 14 92.86

ensemble adult 1 76.38
ensemble adult 11 73.18
ensemble adult 12 77.69
ensemble adult 13 72.81
ensemble adult 14 77.58

dp adult 11 76.23
dp adult 12 75.15
dp adult 13 76.35
dp adult 14 74.57
cnn mnist 10 98.75
cnn mnist 11 98.86
cnn mnist 12 98.84
cnn mnist 13 98.77
cnn mnist 14 98.80

ensemble mnist 9 93.56
ensemble mnist 9c 95.44
ensemble mnist 6 92.36
ensemble mnist 6c 91.28
ensemble mnist 62 92.37

dee mnist 10 98.89
dee mnist 11 99.01
dee mnist 12 98.65
dee mnist 13 99.10
dee mnist 14 98.80
dp mnist 10 90.26
dp mnist 11 91.57
dp mnist 12 93.35
dp mnist 13 92.00
dp mnist 14 91.21
dee femnist 1 86.02
dee femnist 6 85.93
dee femnist 7 86.58
dee femnist 13 82.84
dee femnist 14 84.23

ensemble femnist 6 86.96
ensemble femnist 7 86.31
ensemble femnist 8 85.16
ensemble femnist 9 85.74
ensemble femnist 10 85.38
ensemble compas 1 95.75
ensemble compas 11 95.45
ensemble compas 12 93.80
ensemble compas 13 94.03
ensemble compas 14 93.99

model dataset split acc
unet cxr 0 74.27
unet cxr 9 74.52
unet cxr 8 79.21
unet cxr 7 74.28
dp cxr 0 69.30
dp cxr 9 68.01
dp cxr 8 68.44
dp cxr 7 67.97
ee cxr 0 74.11
ee cxr 9 76.51
ee cxr 8 76.99
ee cxr 7 76.51

ensemble cxr 0 74.59
ensemble cxr 9 78.90
ensemble cxr 8 78.90
ensemble cxr 7 74.11

mlp nature 1 83.74
mlp nature 11 82.86
mlp nature 12 86.26
mlp nature 13 83.21
mlp nature 14 83.79
ee nature 1 82.36
ee nature 11 84.83
ee nature 12 83.88
ee nature 13 84.57
ee nature 14 85.06
dp nature 1 62.14
dp nature 11 70.689
dp nature 12 71.05
dp nature 13 72.58
dp nature 14 73.72

ensemble nature 1 82.51
ensemble nature 11 83.07
ensemble nature 12 82.13
ensemble nature 13 84.51
ensemble nature 14 84.76

Table C.9: Model accuracy of trained models across all dataset and training hyper-
parameters used.
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