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Abstract: This thesis presents three distinct aspects of scattering amplitudes research

along with background material on the concepts underpinning them. The first of these is

the study of on-shell diagrams for N = 7 supergravity and an associated recursion relation

automatically encorporating the bonus relations. This is used to produce momentum

twistor expressions which in the case of six-point NMHV use different ‘coordinate patches’

with different ordering of external legs to get compact results and see the cancellation of

spurious poles through momentum twistors. The second is the study of colour/kinematics

duality of Yang-Mills amplitudes in four-dimensional Anti-de Sitter (AdS) space. By

applying a generalised gauge transformation the kinematic numerators can be made to

obey a Jacobi relation and these shifted numerators also obey a deformed AdS version of

the Bern-Carrasco-Johansson relations. Finally we study wavefunction coefficients of scalar

effective field theories (EFTs) in de Sitter space using a representation involving boundary

conformal generators acting on contact diagrams and the cosmological scattering equations.

Through this representation, we show that four-point wavefunction coefficients of EFTs

exhibit double copy relations analogous to those in flat space with additional curvature

corrections with unfixed coefficients. Imposing enhanced soft limits analogous to the EFTs

in flat space allows these to be unambiguously fixed and also recovers Lagrangians with

hidden shift symmetries. This is explored at four- and six-point.

This thesis is based on work previously published in [1–4].
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Chapter 1

Introduction

Scattering amplitudes have long been considered a nice set of objects to study in

the context of quantum field theory. They arise when calculating the probability for

interactions of fundamental particles and are one method for obtaining observables

from quantum field theory. They are gauge-invariant, instead depending only on

physical parameters (momentum, spin, flavour) and seem to exhibit a simplicity that

is often obscured by the methods used to construct them. This is often exemplified

by the famous Parke-Taylor amplitude for gluons, with the original six-point formula

requiring hundreds of Feynman diagrams to compute but yielding a result that can

be written in a single line for any number of particles [5, 6]. Furthermore, the

formula perfectly encapsulates the symmetries and other properties required of it –

factorisation channels, helicity assignments, colour structure. In the years since, this

and other results have inspired the further study of amplitudes in their own right.

On one side using known physical properties to find new methods of construction

and increasingly compact and elegant way to express them. On the other, finding

deeper mathematical insights contained within scattering amplitudes and forging

connections into other areas of physics as well as pure mathematics. This thesis

takes established mathematical and physical techniques that have been successfully

applied to amplitudes in various theories and looks to see what they can teach us

about other theories that are perhaps less well-understood. This often necessitates
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developing new ideas to understand the results. It not only looks at frontiers in

flat space, where the vast majority of amplitudes work has been carried out but

also looks to appropriate generalisations in curved spacetimes – specifically de Sitter

and Anti-de Sitter. These will be considered as fixed backgrounds on which particle

interactions can occur, but where the Einstein equations for general relativity have

a constant negative (AdS) or positive (dS) cosmological constant in constrast to flat

space where the cosmological constant is zero. Particularly in curved spacetimes, the

behavior of physics means that new insights are needed to manipulate expressions

and deal with the increase in complexity. In the case of each chapter the funda-

mental aim is the same – to explore the suitability of taking amplitudes techniques

and pushing them to an area where they may not apply in quite the same way,

enabling us to study both amplitudes and potential generalisations of the techniques

themselves.

This starts with work inspired by the geometry program for superamplitudes. Since

the original discovery of the Parke-Taylor amplitude, much progress has been made

using advances in notation and variable choices to find increasingly elegant ways

of expressing Yang-Mills amplitudes. Much of this has used the maximally super-

symmetric N = 4 super Yang-Mills theory as a starting point. The high degree of

supersymmetry and associated other symmetries mean that this can be used as an

idealised toy theory where many calculations become analytically more tractable.

There are now a variety of results for arbitrary numbers of particles being scattering

(n-point) and including quantum corrections in the form of loops of unspecified

degree (l-loop). These have been developed along with connections to algebraic

geometry constructs such as cluster algebras and tropical Grassmannians [7, 8]. The

state of the art now includes scattering amplitudes in other theories and many differ-

ent combinatoric and geometric ways of understanding them [9–11]. The underlying

philosophy has been summarised by Nima Arkani-Hamed as “What question can we

ask to which scattering amplitudes are the answer?”. The idea being that there may
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be a way of constructing amplitudes directly from considerations on the external

kinematics, with properties we expect from physical theories (locality, unitarity)

appearing as emergent phenomena. This has already been partially realised with

the amplituhedron, a geometrical way of producing planar N = 4 Super Yang-Mills

amplitudes from positive geometries [12, 13]. While work is still ongoing to under-

stand all the aspects of the construction, the amplituhedron has nevertheless made

it possible to find new results for planar N = 4 amplitudes and loop integrands and

lead to alternative formulations of known results [14]. One particularly nice aspect is

the link between geometries and amplitude factorisation, an idea associated with the

use of recursion relations. Recursion relations allow the construction of higher point

amplitudes from lower point ones. Since three-point interactions can sometimes be

constructed from symmetry arguments, this allows for amplitudes with any number

of external legs to be obtained without reference to Feynman diagrams. For links

to geometry, the focus is often on BCFW (Britto-Cachazo-Feng-Witten) recursion

which uses complex momenta and residue theorems to calculate amplitudes [15–17].

Different ways of applying BCFW (different recursion schemes) can be understood

as choices of triangulation in a geometric description. Similarly, poles from factorisa-

tion when an internal propagator goes on-shell can be associated with logarithmic

singularities in differential forms which appear on specific boundaries of the geometry.

That some of these cancel between regions with shared boundaries is the geometric

avatar of spurious poles appearing in an expression for the amplitude – which must

cancel in the final physical object. Indeed properties like this provided some of the

original inspiration for attempts to find a geometric construction for amplitudes [18,

19]. Another important perspective came from on-shell diagrams [7], which provide

a diagrammatic representation of BCFW recursion and give rise to Grassmannian

integral formulas. Unlike Feynman diagrams, these do not make use of unphysical

states (intermediate virtual particles) in the calculation of amplitudes. A crucial

feature of this representation is that all tree-level amplitudes and loop integrands in

planar N = 4 SYM have a so-called dlog form, which was simultaneously discovered
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using Wilson loops in momentum twistor space [20, 21]. On-shell diagrams for N < 4

SYM and non-planar N = 4 SYM were subsequently studied in [22, 23] and [24–26],

respectively.

With this in mind, another natural frontier to consider is the other 4d maximally

supersymmetric theory – that of N = 8 supergravity. Here some progress has already

been made in understanding how it might be approachable from a similar viewpoint.

Progress has already been made in obtaining nice expressions for some tree-level

amplitudes in terms of momentum twistors, a key stepping stone in the N = 4 SYM

story [27]. The use of BCFW for tree-level supergravity has been established [28, 29]

and connected to a gravitational formulation of on-shell diagrams [30]. Nevertheless

gravitational theories are more complex than gauge theories and the presence of full

permutation symmetry as well as a more complicated pole structure means efforts to

come up with a fully geometrical formulation of N = 8 have so far not made much

headway despite the discovery of elegant spinor formulae for the tree-level MHV

amplitudes [31] and worldsheet expressions for general MHV degree [32, 33]. In the

context of this thesis, a much narrower problem is considered although the ultimate

goal is still that eventually it may be possible to construct a “gravituhedron” [34].

We start from the work done to recast supergravity in terms of on-shell diagrams [30,

35]. This is combined with a recursion for N = 7 which uses the “bonus relations”

to produce more compact formulae than can be found from the full N = 8 theory

allowing for established MHV results in terms of spinors and momentum twistors to

be recovered diagrammatically [1]. This process involves work with a less-studied

feature of on-shell diagrams, that of closed cycles encoding sums of geometric series

and a new technique to avoid carrying explicit sums is introduced. The analysis then

continues to the six-point NMHV case with the application of momentum twistors

living on different coordinate patches, each defined for a different ordering of external

legs. This clearly exposes the structure and cancellation of the spurious poles of the

amplitude analogous to those seen in N = 4 as well as producing expressions which

generalise the N = 4 notion of R-invariants. This suggests that there may be a
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geometrical realisation of these properties and of supergravity amplitudes although

more work is needed to fully realise these links. The N = 7 recursion can also be

applied to calculate leading singularities, quantities used for efficient computation

of loop results and some demonstrations of this are included as an appendix. The

work on this topic was first published in [1].

This is followed by a departure from flat space scattering amplitudes although the

theme of using different notations to explore properties of scattering amplitudes

and develop new formulations to describe them continues. It is natural to wonder

which of the various techniques and relations established in flat space might apply

to analogues of amplitudes on other fixed backgrounds. One spacetime of interest is

Anti-de Sitter (AdS). This is perhaps a good place to start probing generalisations

of amplitudes techniques as the quantities computed here can be related to those

in flat space by taking a particular limit [36, 37]. So long as this limit does not

conflict with the relations under study, then the original relation should hold up

to some ‘curvature corrections’ that will need to be determined and understood.

This spacetime also has the benefit of being very well studied due to interest in

the AdS/CFT correspondence [38]. The correspondence is a series of maps between

observables of a gravitational theory living in AdS and those of a conformal field

theory (CFT) living at the boundary of the spacetime. It can be used to probe

non-perturbative CFT properties via bulk AdS computations as well as using CFT

constraints to explore the quantum theory of gravity living in AdS. This means that

previous CFT results can be leveraged to aid in the study of amplitudes in AdS as

well as raising the hope that any insights gained could potentially be extended to

apply to conformal field theories.

The specific physics of interest here is the duality between colour and kinematics.

This is the idea that gauge theory amplitudes can be written as a sum of terms whose

numerators factorise into a colour piece (which comes from the gauge group) and a

kinematic piece which contains all the momentum dependence. The colour factors
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obey Jacobi relations from the Lie algebra of the gauge group and there exist ways

of arranging the amplitude such that the kinematic numerators obey completely ana-

logous Jacobi relations [39]. Furthermore, gravitational amplitudes can be obtained

by replacing the colour factors with a second set of kinematic factors (which may be

the same or different to the first) so long as those factors also obey Jacobi relations.

This procedure is also related to the double copy, a general term for many different

relations between gauge and gravity amplitudes. These include the KLT relations

from string theory [40], relations between integrands for the scattering equations

formalism [41] (which will be discussed in more detail below) and some extensions

beyond tree level to loop integrands [42–44]. Colour-kinematics duality also implies

relations among gauge theory amplitudes known as Bern-Carrasco-Johansson (BCJ)

relations [45]. It is this that will be looked at in the context of AdS.

An AdS generalisation of amplitudes can be found using momentum space Witten

diagrams, a natural extension of Feynman diagrams [37, 46–51]. An AdS object

that can be studied with amplitudes techniques is thus given by the perturbative

expansion of Witten diagrams with external states ending on the boundary. These

encode the transverse parts of boundary conformal correlators and encode flat space

amplitudes as a particular limit. A double copy between three-point correlators of

currents and stress tensors has already been established [52, 53] but it is not clear

how it should be extended to four points. The three-point correlators are all fixed by

conformal Ward identities but this it not true for four points and beyond. Instead,

the focus is on how BCJ can be modified for AdS and the new features that we

see beyond flat space – a generalised gauge symmetry and richer space of kinematic

variables. A spinor helicity formalism for AdS is used to calculate explicit results

for four-point Yang-Mills amplitudes, including those with all-plus and single-minus

configurations (which vanish in flat space). The relationship between these (which

encode the transverse pieces of the boundary correlators) and the full correlators

are also explored by recovering the missing longitudinal pieces using Ward identities.

These new results first appeared in [2].
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Finally we turn our attention to de Sitter. At tree-level, the quantities calculated

here are closely related to those in AdS but have a different physical significance.

We will be looking at wavefunction coefficients which can be computed by analytic-

ally continuing Witten diagrams from AdS, these represent correlators in the future

boundary of dS. Objects living in the future boundary of dS are closely related to

observables from the effective field theory describing the period of inflation in early

cosmology [47, 54, 55]. Specifically the quantities of interest for experimental com-

parison are in-in correlators, which can be obtained from the squares of wavefunction

coefficients integrated over boundary conditions [56, 57]. A study here of amplitude

analogues therefore links closely to quantities of interest in experimental cosmology,

connecting physics of fundamental particles on the smallest scales with that of the

large-scale structure of our Universe. This interest has lead to lots of amplitudes-

inspired calculations of correlators and their contributions to density fluctuations

in the cosmic microwave background. For example, the ideas behind the geometry

program in flat space have lead to the study of wavefunction coefficients through

cosmological polytopes [58]. There is also work on bootstrapping wavefunction

coefficients from consistency conditions, unitarity, and factorisation properties [58,

59]. In particular this allows for the construction of spinning correlators from those

involving scalars using weight-shifting operators. A related puzzle is to determine

what is the most suitable representation for studying properties of wavefunction coef-

ficients. The increased complexity also means that dealing with expressions directly

in momentum space is not always practical and can obscure interesting features.

Alternatives such as working with momentum space differential operators [60] or

the use of the Mellin-Barnes representation [61] each provide benefits over explicitly

constructing and evaluating Witten diagrams. Another avenue being studied is the

adaptation of the scattering equations and CHY formalism to calculate cosmological

wavefunction coefficients in de Sitter – referred to as the cosmological scattering

equations (CSE) [62, 63]. This opens new directions to explore amplitudes properties
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beyond flat space.

The CHY (Cachazo, He & Yuan) formalism and the associated scattering equations

[64, 65] provide a universal description of amplitudes in terms of worldsheet integrals

[41, 66, 67]. The scattering equations are a set of equations linking particle momenta

with a set of punctures on a Riemann sphere. Their solutions can be used to obtain

a wide variety of amplitudes via an integral over the corresponding worldsheet, with

the integrand containing a theory independent part (which includes enforcing the

scattering equation solutions) and a theory-dependent integrand. The CHY form-

alism also leads to connections between a web of theories via relations applied to

the integrands. These include a double copy between Yang-Mills and gravity but

also generalised dimensional reductions leading to effective field theories of scalars

with derivative interactions. These scalar field theories also have a double copy

relation, here linking the non-linear sigma model (NLSM) with Dirac-Born-Infeld

(DBI) theory and with the special galileon (sGal) [68–70]. The CSE allow for a

straightforward uplift from flat space amplitudes to wavefunction coefficients and

motivate expressions written as differential operator written in terms of boundary

conformal generators acting on contact diagrams. This approach builds off of pre-

vious work on bi-adjoint scalar scalar theory in AdS position space [71, 72] as well

as on wider uses of boundary conformal generators to express amplitudes [73–75].

The CSE provide a framework for encoding the double copy of scalar effective field

theories (EFTs) in dS analogous to the one in flat space. The framework has the

additional feature that one is free to add curvature corrections (which vanish in flat

space) to obtain wavefunction coefficients for sGal, DBI and ϕ4 theories as special

cases of the same generalised double copy of the NLSM integrand [3].

A closely related phenomena is the study of soft theorems and hidden symmetries.

Soft theorems describe the behavior of scattering amplitudes when one or more legs

are taken soft and usually take the form of some universal factor independent of the

starting number of legs. Hidden symmetries are those present in the Lagrangian and

equations of motion for a theory but not present in its vacuum states. The study of
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soft theorems for gravitons (and gluons) is well-established, with known factorisation

properties motivated by the study of the cancellation of infrared divergences [76–78].

Graviton soft limits have been more recently linked to the study of asymptotic sym-

metries [79–81]. Of interest in this thesis are scalar EFTs such as the non-linear sigma

model (NLSM), originally developed as a low-energy theory of nuclear interactions

mediated by pions [82–84] and known to have an enhanced soft limit, one where the

degree of soft behavior is greater than predicted by naive power-counting arguments

[85]. The NLSM also encodes a spontaneously broken symmetry, a phenomena also

observed in N = 8 supergravity [86]. The soft behavior of the NLSM has now been

extended to a whole family of theories with a classification of scalar amplitudes which

can be constructed purely from consistency conditions (such as factorisation) along

with a study of their soft behavior [87, 88]. This analysis leads to NLSM, DBI and

sGal as the only three ‘exceptional’ scalar field theories with an enhanced behavior

in the soft limit. Via S-matrix manipulations it can be shown that this is related

to the shift symmetries displayed by the Lagrangians for these theories. Inspired by

the CSE, writing wavefunction coefficients in terms of differential operators acting

on contact diagrams provides a convenient way to study the constraints imposed

by enhanced soft limits. Imposing enhanced soft behavior leads to the construction

of wavefunction coefficients belonging to a series of Lagrangians which have shift

symmetries in dS, despite there not being a clear S-matrix analogue to link these two

properties [4, 89]. This can be applied to the CSE generalised double copy, implying

a natural fixing of the coefficients which appear there.

This thesis starts with a review of some important basic concepts for scattering

amplitudes in chapter 2: spinor helicity notation, the conformal group and super-

symmetry generalisations as well as the analogues of amplitudes in AdS and dS. This

introduction then looks in more detail at the amplitudes properties that we explore

and generalise throughout the rest of the thesis – recursion relations, momentum

twistors and on-shell diagrams then colour-kinematics and finally soft theorems and
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EFTs. Chapter 3 then describes the construction of an on-shell diagrammatic recur-

sion for N = 7 supergravity, including MHV and NMHV examples up to six-points

before analysing in detail the story of spurious poles for NMHV at six points. This re-

quires the introduction of momentum twistors living on different coordinate patches

and an appendix is provided on the transition functions to map between the different

orderings of external legs. Other appendices explore how the N = 7 formalism can

be used to calculate leading singularities at one and two loops and to recover N = 8

amplitudes from the N = 7 case.

In chapter 4 we then turn to curved spacetime starting with Witten diagrams for

Yang-Mills in AdS4. An AdS generalisation of colour-kinematics duality via the

BCJ relations is explored at four points followed by explicit calculations of the four

different independent helicity amplitudes in spinor notation. The full boundary

correlator (of which the Witten diagrams only compute the transverse piece) is then

recovered via the use of Ward identities. There is also an appendix exploring the

spinor helicity formalism in greater detail with a particular focus on the rich variety

of identities which can be found.

This is followed by chapter 5 in dS4, first introducing the flat space CHY formalism

before uplifting to obtain cosmological scattering equations. This also covers the

basics of working with dS wavefunction coefficients and the relevant aspects of the

boundary conformal generators which will appear throughout. Four-point calcu-

lations of conformally and minimally coupled scalars are included for interactions

with different numbers of derivatives, producing explicit results in momentum space.

Finally in chapter 6, these calculations are generalised to arbitrary dimension and

conformal weight via the use of boundary generators acting on contact diagrams.

This enables for a detailed study of their soft limits and the cases under which the

wavefunction coefficients will have enhanced soft behavior. At four points this is

done for NLSM, DBI and sGal whilst at six points only NLSM and DBI are analysed.

In each case, the soft limits uniquely fix the masses and couplings including all the

curvature coefficients. Appendices present the cases of sGal at four-points and DBI
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at six-points in greater detail. This is followed by some brief comments on the thesis

as a whole and some future directions of particular interest to the author in chapter

7.



Chapter 2

Basics of Scattering Amplitudes

As highlighted in the previous chapter, there are many different aspects to the study

of scattering amplitudes and so there are also a variety of tools that can be used to

manipulate and understand them. As the rest of this thesis covers a broad range

of topics, this background chapter will introduce many different concepts. This will

start with a review of scattering amplitude basics: definitions (2.1), spinor helicity

notation (2.1.1) and the role of both the conformal group (2.1.2) and supersymmetry

(2.1.3), particularly in relation to super Yang-Mills (SYM) and supergravity. It then

introduces momentum twistor notation and supermomentum twistors in section 2.1.4.

This is followed by more topics of relevence to the geometry program in amplitudes

with a recap of BCFW recursion (2.2) and how it is linked to ideas about polytopes

and spurious poles (2.2.1) as well as introducing on-shell diagrams (2.2.2). It then

introduces analogues of scattering amplitudes in both Anti-de Sitter (2.3.1) and

de Sitter (2.3.2), how these may be linked to flat space amplitudes and some of

the basic features of each. Finally there is an introduction on some of the physics

that will be explored in curved space times. This is divided into two areas: firstly

colour-kinematics and the double copy linking gauge and gravitational theories (2.4);

secondly the story of soft limits and hidden symmetries in ‘exceptional’ scalar field

theories (2.5).

Further details on much of the background can be found in [90–92] as well as in the
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other references.

2.1 Amplitude Definitions

Scattering amplitudes in flat space will generally be denoted as An with the number

of spacetime dimensions given by d. These will be functions of n conserved momenta

kµ
a which are taken to all be incoming such that

n∑
a=1

kµ
a = 0, (2.1.1)

with µ = 0, 1, . . . , d − 1. Metrics will use the mostly positive convention such

that the (flat space) dot product of two momenta is given by contracting with

ηµν = diag(−1, 1, . . . , 1)

ηµνkµ
a kν

b = −k0
ak0

b +
d−1∑
i=1

ki
aki

b. (2.1.2)

Massive on-shell particles therefore satisfy k2
a = ηµνkµ

a kν
a = −m2

a although much of

what follows will use null momenta satisfying k2
a = 0. For spinning particles, the An

will also depend on some polarisation data associated to the external states. For spin-

1 (gluons) these will be vectors ϵµ
a whilst for spin-2 (gravitons) they will be symmetric

tensors ϵµν
a . The exact form of these polarisations depends on the theory and will

differ when deviating from flat space – more details are included in sections 2.1.1 and

2.3.1 where polarisations are introduced in the contexts of spinor helicity notation

in 4d Minkowski and AdS4 respectively. In the case of theories with supersymmetry,

it is often convenient instead to work at the level of ‘superamplitudes’, where all the

polarisation information is encoded within an on-shell superspace formalism. This

will be elaborated on in section 2.1.3.

These scattering amplitudes characterise the interactions of fundamental particles.

Physically the probability of a given interaction can be obtained from the differential

cross-section dσ/dΩ ∼ |An|2. This assumes that the initial and final states are

independent (well-separated and non-interacting). They can be obtained via an LSZ
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amputation procedure from Green’s functions although the details of this will not be

important for this thesis (except to note that the approach will need to be modified

in curved spacetimes). Scattering amplitudes are perturbative objects computed as

an expansion in some small coupling parameter (often denoted λ for scalar theories

or g for Yang-Mills) corresponding to the strength of the interaction. The body of

the thesis only considers tree-level quantities and so the coupling will often be set

to 1 for simplicity.

One final key feature of amplitudes is the level of permutation symmetry they enjoy.

This is related to both the spin of the particles and the gauge symmetry of the theory.

As all the amplitudes in this thesis are bosonic, they should have full permutation

symmetry. However for theories with colour (most notably Yang-Mills although this

will also be relevent for the non-linear sigma model) dealing with the full colour

structure is often unecessary and so the focus is instead on colour-ordered amplitudes

which are only invariant under cyclic permutations. This is especially useful since for

most of this thesis is primarily interested in the kinematic dependence of amplitudes.

Colour factors are stripped off when defining the Feynman rules and such that colour

assignments can be ignored throughout most of the calculation. Recovering the full

amplitude at the end (if needed), can be done by summing over non-cyclic orderings

An =
∑

σ∈Sn/Zn

Tr(T aσ1 T aσ2 . . . T aσn )An(kσ1 , kσ2 , . . . , kσn). (2.1.3)

2.1.1 Spinor Helicity

When writing amplitudes involving massless particles with spin in 4 dimensions, it

is often useful to use spinor helicity notation. They naturally encode information

about the polarisations of the particles and in many cases can lead to dramatic

simplifications in expressions (such as the famous Parke-Taylor result for gluons [6]).

The formalism can also be modified to include supersymmetry data (required in

chapter 3) or momenta in curved spacetimes (chapter 4).

The starting point can be given by contracting a massless 4-momentum k ∈ C1,3
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with the Pauli matrices (I, σi) to get

kαα̇ = kµσµ
αα̇ =

−k0 + k3 k1 − ik2

k1 + ik2 −k0 − k3

 , (2.1.4)

where α, α̇ = {1, 2} are SL(2,C) indices. Observing that det(kα α̇) = kµkµ = 0, the

matrix has rank 1 and can be written as an outer product of a pair of spinors

kαα̇ = λαλ̃α̇. (2.1.5)

Since a massless 4-momentum only has 3 independent components (with the 4th

given by the on-shell constraint), the spinors must have some redundancy. This is

given by the “little group” transformation which simultaneously scales both the λ

and λ̃ spinors

λ → tλ, λ̃ → 1
t
λ̃, (2.1.6)

for some t ∈ C. This little group scaling can be used to constrain three-point

amplitudes.

The indices can be raised or lowered using the 2-index Levi-Civita symbol, allowing

for the contraction of various spinors and the construction of kinematic invariants

in the form of angle and square brackets.

⟨ab⟩ = ϵαβλaαλbβ = λaαλα
b ,

[ab] = −ϵα̇β̇λ̃aα̇λ̃bβ̇ = λ̃α̇
a λ̃bα̇,

(2.1.7)

where ϵ12 = ϵ1̇2̇ = −ϵ12 = −ϵ1̇2̇ = 1. In the case of real momenta, these spinor

brackets are complex conjugates of each other such that their product is real. This

is required since the usual dot product between two 4-momenta is given by

ηµνkaµkbν = 1
2⟨ab⟩[ab]. (2.1.8)

They can also be used to express gluon polarisation vectors. These contain un-

fixed degrees of freedom as a consequence of the gauge-symmetry of Yang-Mills

theory, manifesting in the presence of arbitrary ‘reference spinors’ appearing in the
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polarisations. Since these are unphysical, the final scattering amplitudes must be

independent of any particular choice of reference spinor. This can sometimes be used

to simplify calculations by choosing reference spinors which cause many spinor brack-

ets to vanish. Using a refence spinor denoted µ, the polarisations can be expressed

as

ϵ+
αα̇ = − λ̃α̇µα

⟨λµ⟩
, ϵ−

αα̇ = −λα̇µ̃α

[λµ] . (2.1.9)

Polarisation vectors will be revisited in section 2.3.1 for AdS.

Spinors satisfy a number of useful relations that can be used to manipulate and

simplify expressions. The most straightforward of these is the Schouten identity,

which is a consequence of the antisymmetry of the spinor brackets for a 2 component

object. The Schouten identity for undotted spinors is given by

⟨ab⟩ λc + cyc(abc) = 0, (2.1.10)

where the α index has been suppressed; the case for dotted spinors is analogous.

Outer products of spinors also inherit momentum conservation from the original

4-vectors
n∑

a=1
λα

a λ̃α̇
a = 0. (2.1.11)

Schouten identities and momentum conservation can be contracted with additional

spinors to produce a variety of specific relations. These are especially powerful for

small n, for example at four point this implies

⟨12⟩[24] = −⟨13⟩[34]. (2.1.12)

These relations will be used in flat space to work with N = 7 supergravity whilst

their AdS equivalents will be used for Yang-Mills.

2.1.2 The Conformal Group for Amplitudes

Symmetries underpin a lot of the study of scattering amplitudes. In most cases,

amplitudes in flat space are invariant under translations and Lorentz transformations
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(although there are some interesting physical systems where one or both of these

is explicitly broken). This corresponds to the set of transformations that leaves

a proper length (ie a difference of vectors contracted with the Minkowski metric)

invariant. As such they will be functions only of the kinematic invariants given by

the inner products of momenta and polarisations. This section looks at the extension

of this group to include conformal symmetry since there are interesting amplitudes

which exhibit this larger class of symmetries. One notable example is N = 4 super

Yang-Mills which also has additional symmetries including under dual conformal

transformations and the larger class of Yangian symmetries [93]. The conformal

group will also be important to work in AdS and dS, where the group is closely

linked to the isometries of the spacetime.

The generators which make up the conformal group include the d
2(d − 1) rotations

Lµν and d translations P µ from the Poincaré group. To these we add the dilatation

(rescaling) operator xµ → Dxµ = αxµ and the inversion xµ → Ixµ = xµ

x2 . The

inversion is typically treated using the special conformal transformation

Kµ = IP µI, (2.1.13)

since it is easier to work with continuous transformations. Together these make up

the 1
2(d + 1)(d + 2) generators of SO(d, 2), the d-dimensional conformal group. The

generators most commonly appear in position space where they take the form

Pµ = i∂µ,

Mµν = i (xµ∂ν − xν∂µ) ,

D = ixµ∂µ,

Kµ = i(2xµ(xν∂ν) − x2∂µ),

(2.1.14)

There also exist ways of encapsulating all the generators into a single set of objects

with a universal commutator [94]. In the same way as momenta are conserved,

the other generators also have corresponding conservation laws often referred to as

conformal Ward identities. These will be discussed in more detail in section 2.3.2
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where they will be applied to quantities in de Sitter.

The conformal generators can be rewritten in momentum space using the spinor

helicity notation introduced in 2.1.1. These generators will not need to be expli-

citly used here, however their general form will help motivate the introduction of

supersymmetry generators so they are included for completeness. They are given by

[91]

P µ → P αα̇ = λαλ̃α̇,

Kµ → Kαα̇ = ∂α∂α̇,

Mµν → Mαβ = λ(α∂β),

→ M̄α̇β̇ = λ̃(α̇∂β̇),

D → 1
2λα∂α + 1

2 λ̃α̇∂α̇ + 1.

(2.1.15)

In spinor notation, the action of the Lorentz group splits into the independent

SU(2)L and SU(2)R actions. This is the reason that the λ and λ̃ spinors carry

different indices - they transform under different representations of the Lorentz

group. These operators all commute with the helicity generator

h = −1
2λα∂α + 1

2 λ̃α̇∂α̇, (2.1.16)

this will be relevant in section 2.2 when constructing amplitudes [91].

2.1.3 Superamplitudes

For the material in chapter 3 the above set of generators need to be extended to

include supersymmetry. This extension will result in the 4d superconformal group.

We start by introducing fermionic generators QαA and Q̄α̇
I , where I is an R-symmetry

index running from 1 to N for a SUSY with N supersymmetric generators. These

obey anticommutation relations

{QαI , Q̄α̇
J} = δI

JP αα̇. (2.1.17)
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The R-symmetry comes from the set of SU(N ) transformations which map the Qs

into each other. These operators generate the particle content of the theory. For

example, one can start from the negative helicity gluon and N = 4 and successively

apply QαI to obtain the 4 anti-fermions, 6 scalars, 4 fermions and the positive helicity

gluon that make up the rest of the content of N = 4 SYM. Closure of the group

also requires the addition of the superconformal generators SαI and S̄I
α̇ but these

will not be needed here (a full breakdown of the generators, their commutators and

other properties may be found in [91] and [90]).

Analogous to the bispinor form of the momentum k, the supermomentum of a given

particle can be represented using a fermionic variable ηA,

qαI
a = λα

a ηI
a, q̄α̇

aI = λ̃α̇
a

∂

∂ηI
a

. (2.1.18)

It is these fermionic ηs that will enable us to work at the level of ‘superamplitudes’

rather than dealing with individual component amplitudes. This is especially useful

in the case of maximally supersymmetric theories (N = 4 for Yang-Mills and N = 8

for gravity) since here the particle content of the theory can be collected into a single

‘superfield’. For example in N = 4 SYM, the superfield can be expanded as

Φ(p, η) = g+(k) + ηI g̃I(k) + · · · + η4g−(k), (2.1.19)

where we use the shorthand η4 = 1
4!η

IηJηKηLϵIJKL. Superamplitudes are then con-

structed by considering scattering of superfields Φ(ki, ηi) and the fermionic variables

provide a natural bookkeeping mechanism to keep track of the component subamp-

litudes. For each superamplitude, momenta and supermomenta are conserved. This

contributes a set of delta functions which form an overall factor and the rest can be

expanded as a power series in η

An(p, η) = δ(4)(P )δ(2N )(Q)
(
A(0)

n + A(N )
n + · · · + A(N (n−4))

n

)
, (2.1.20)

where in the case of gluons and N = 4 SYM we have that the A each have an

η-scaling that is a multiple of 4. R-symmetry considerations ensure that all terms
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in the series with fermionic powers other than aN for a ∈ N must vanish [91].

This leads us to recover the MHV classification of amplitudes from supersymmetry

considerations – amplitudes with different numbers of positive and negative helicity

gluons will appear in different An. Supersymmetry also provides an argument as

to why all-plus and single-minus vanish. The η8 dependence of the leading term

requires that it come from scattering 2 negative helicity gluons with n−2 positive

helicity. A hypothetical N−1MHV amplitude would therefore not be invariant under

SUSY transformations and so must vanish. The MHV superamplitude contains

all the MHV gluon amplitudes along with other component amplitudes involving

fermions and scalars.

Equation (2.1.19) and the superamplitude expansion also extend to higher N and

supergravity in the obvious way. For maximal (N = 8) supergravity we start with

the positive helicity graviton and can generate the other 31 states in the theory

using QαA with A running from 1 to 8. In each case, component amplitudes can be

obtained by integrating out the fermionic degrees of freedom, taking advantage of

the Grassman-odd nature of the ηs. For example in N = 8, a graviton amplitude

can be extracted by integrating

Mn =
∫

d8×nη
∏
a∈+

η8
aMn(k, η), (2.1.21)

where the product is over the legs associated to positive helicity gravitons. Equival-

ently, the same result can be obtained by integrating out only the ηi associated to

the negative gravitons and setting the rest to zero.

This classification is discussed further in section 2.2 where symmetries are used to

construct the three-point amplitudes and superamplitudes, required as an input to

use recursion relations for generating higher point amplitudes.

2.1.4 Momentum Twistors

In our analysis of gravitational amplitudes in chapter 3, we will be interested in the

pole structure and how it arises from recursion. This has been studied extensively for
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gauge theory, often using momentum twistor variables [18] and so similar techniques

shall be applied to supergravity.

Momentum twistors can be constructed as a variation on spinor helicity, motivated

by looking for a set of variables under which all the generators of the conformal

group are linear [90]. We start by defining new region momenta x based on a specific

ordering of the external legs

(xa − xa+1)αα̇ = pαα̇
a . (2.1.22)

These can be visualised as the vertices of a polygon with edges corresponding to the

null momenta pi as illustrated in figure 2.1. A new dotted spinor is then defined via

the incidence relation

µα̇ = xαα̇λα. (2.1.23)

Unlike the λ̃ spinors, this µ has the same little group scaling as λ so the pair (λ, µ)

represents a point in projective spacetime CP3, known as twistor space. Momentum

twistors are then defined as

ZA
a =

(
λα

a , µα̇
a

)
, (2.1.24)

where A ∈ {1, .., 4} are indices in the fundamental representation of the dual con-

formal group SU(4). These can mapped back into region momenta using

xαα̇
a = λα

a µα̇
a−1 − λα

a−1µ
α̇
a

⟨a−1 a⟩
, (2.1.25)

implying that a point xa corresponds to a line in momentum twistor space associated

to a pair of twistors Za−1 and Za. Using this correspondence, a null polygon in

momentum space can be mapped into a polygon in momentum twistor space, as

depicted in Figure 2.1. This mapping essentially swaps edges and vertices. From a

practical standpoint, momentum twistors are very useful because they automatically

encode momentum conservation, but they also have a number of other important

properties. In the context of Yang-Mills amplitudes, they make the cancellation

of spurious poles manifest and give rise to a geometric interpretation of NMHV
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Figure 2.1: Diagrams indicating the relation between momenta pi,
dual variables xi and momentum twistors Zi.

amplitudes in terms of the volumes of polytopes [18, 19]. This will be discussed

further in section 2.2.1 and chapter 3.

Using momentum twistors, one can define the following invariants of the dual

conformal group:

⟨abcd⟩ = ϵABCDZA
a ZB

b ZA
C ZA

D, (2.1.26)

where ϵ is the 4d Levi-Cevita symbol. We can express the linear dependence of any

5 momentum twistors using this 4-bracket,

Za ⟨bcde⟩ + cyc(abcde) = 0. (2.1.27)

This can be thought of as a higher-dimensional analogue of the Schouten identity

in equation (2.1.10). The angle-brackets in equation (2.1.7) can be obtained from

momentum twistors using

⟨ab⟩ = IABZA
a ZB

a , IAB =

 ϵαβ 0

0 0

 , (2.1.28)

where IAB is called the infinity twistor and breaks dual conformal symmetry. It is

also convenient to define the following 6-brackets [95]

⟨abc|I|ijk⟩ = ⟨ab⟩ ⟨cijk⟩ + cyclic(a, b, c),

= ⟨abci⟩ ⟨jk⟩ + cyclic(i, j, k), (2.1.29)

⟨a|I|bc|ijk⟩ = ⟨ab⟩ ⟨cijk⟩ − ⟨ac⟩ ⟨bijk⟩ ,
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= − (⟨ai⟩ ⟨jkbc⟩ + cyclic(i, j, k)) , (2.1.30)

where the second lines can be obtained using (2.1.27). These brackets have an elegant

geometrical interpretation in terms of intersections of lines and planes in momentum

twistor space (for more details see [95]). They can also be used to express the square

brackets in (2.1.7) in terms of momentum twistors

[ab] = ⟨a−1 a a+1|I|b−1 b b+1⟩
⟨a−1 a⟩ ⟨a a+1⟩ ⟨b−b b⟩ ⟨b b+1⟩

. (2.1.31)

In general, the numerator in (2.1.31) has three terms but there are two cases when

it simplifies:

[a a+1] = ⟨a−1 a a+1 a+2⟩
⟨a−1 a⟩ ⟨a a+1⟩ ⟨a+1 a+2⟩

, (2.1.32)

[a a+2] = ⟨a−1 a a+1 a+2⟩ ⟨a+3 a+1⟩ + ⟨a−1 a a+1 a+3⟩ ⟨a+1 a+2⟩
⟨a−1 a⟩ ⟨a a+1⟩ ⟨a+1 a+2⟩ ⟨a+2 a+3⟩

. (2.1.33)

Other kinematic invariants such as multi-particle factorisation poles sa1...ak
and

spurious poles can also be written in terms of momentum twistor 4-brackets. They

likewise take simpler forms when the momentum labels are adjacent.

2.1.5 Super Momentum Twistors

Now we will briefly review the extension to supersymmetric theories. By analogy to

(2.1.22), we may define fermionic region momenta

(θa − θa+1)αI = qαI
a = λα

a ηI
a, (2.1.34)

where the supermomentum qa is defined in (3.1.2). Momentum supertwistors are

then defined as
(
ZA

a , χI
a

)
, where χa = θa · λa. The supersymmetric extension of

(2.1.25) is then given by

θαI
a = λα

a χI
a−1 − λα

a−1χ
I
a

⟨a−1 a⟩
. (2.1.35)
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Combining equations 2.1.34 and 2.1.35 to eliminate the region variables θ allows us

to convert directly between the η and χ fermionic variables with

ηa = ⟨a a+1⟩χa−1 + ⟨a+1 a−1⟩χi + ⟨a−1 a⟩χa+1

⟨a−1 a⟩⟨a a+1⟩
. (2.1.36)

Fermionic delta functions can then be converted from the usual representation in

terms of η into twistor notation via

δ(0|N ) ([a a+1] ηa+2 + cyc) = δ(0|N ) (⟨a−1 a a+1 a+2⟩ χa+3 + cyc)
(⟨a−1 a⟩ ⟨a a+1⟩ ⟨a+1 a+2⟩ ⟨a+2 a+3⟩)N , (2.1.37)

where N denotes the amount of supersymmetry. This formula is proved explicitly

in [1].

2.2 BCFW Recursion

There are many different recursion relations that can be used to construct amplitudes

but the one of interest to our analysis of supergravity is the on-shell BCFW recursion

[15]. The original form of this will not be used to calculate amplitudes in this thesis,

but the steps involved are nevertheless useful for understanding the construction of

on-shell diagrams and how they are generalised to supergravity.

The starting point for this is an n-point amplitude with momenta taken to be

complex. Obviously any physical process can only depend on real momenta but

it is useful to consider the amplitude as a complex function in the intermediate

stages. Two momenta are deformed such that they remain on-shell (massless) and

that momentum conservation still holds. This can be done using the spinors defined

in 2.1.1. For example, we can define shifted momenta k̂1 and k̂n via

|1̂⟩ = |1⟩ + z|n⟩, |1] = |1],

|n̂] = |n] − z|1], |n⟩ = |n⟩,
(2.2.1)

where z ∈ C then we still have that k̂2
1 = k̂2

n = 0 and k̂1 + k̂n = k1 + kn but now we

can consider the amplitude as a function of the complex parameter z. The original
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amplitude that we would like to calculate is given by An(z = 0). We then consider

the poles of A(z). At tree-level, it is a rational function of z and the kinematics.

Any poles can thus only occur when some internal propagator goes on shell

P̂ 2 = P 2 + ⟨n|P |1] = 0, (2.2.2)

where ⟨n|P |1] = λnαP αα̇λ̃1α̇. These are the points where the amplitude factorises

and we can write

lim
z→zP

An(z) = 1
z − zP

1
⟨n|P |1]

∑
s

ÂL(zP )ÂR(zP ), (2.2.3)

where zP is the value where propagator 1/P 2 is on-shell, AL and AR are the two

subamplitudes and the sum is over the possible states which can be exchanged.

Typically these will be gluons or gravitons and the sum is over the two helicity

assignments. We can then use a contour integral to extract An(0)

An(0) =
∮

z=0

dz

2πi

An(z)
z

, (2.2.4)

where the integral is around a closed contour containing z = 0. If we have that

limz→∞ Az(z) → 0 then the full amplitude can be recovered by a global residue

theorem, wrapping the contour around all the other zP poles. An(0) can then be

fully reconstructed from summing over the possible factorisation channels

An =
∑
P

∑
s

ÂL(zP ) 1
P 2 ÂR(zP ). (2.2.5)

Note that the propagators which appear in this final formula are unshifted, the

BCFW shifts only enter via the two sub-amplitudes. Different choices of shift are

possible, in particular with helicity amplitudes one can choose whether to shift legs

of the same or differing helicities as well as which should have the λ or λ̃ spinors

shifted. The choices can lead to different z-scaling of the amplitude in the limit

z → ∞ as well as different terms contributing in the sum over residues [90]. The

shift in equation (2.2.1) is the one that will be used in chapter 3 since it has nice

features when it is used for N = 7 sugra. There also exist other variants on BCFW,
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for example some schemes choose to shift multiple legs in order to ensure the residue

at infinity vanishes [96].

All that is needed to complete the recursion are the seed amplitudes that can appear

as AL and AR. In the case of Yang-Mills and gravity these come from three-point

and can be assembled entirely from symmetry considerations.

Kinematics for three massless particles is special since if we have three conserved

momenta ka with a ∈ {1, 2, 3} then clearly

k1 · k2 = k2
3 = 0 (2.2.6)

by momentum conservation. Applying this three times implies that all ka · kb = 0

and the amplitude must be trivial. However, in the case of complex momenta this

condition becomes

⟨12⟩[12] = 0, (2.2.7)

where now each bracket is independent. We are now free to choose either bracket to

be zero to satisfy the required constraint. Applying this three times and combining

with the Schouten identity in equation (2.1.10) then implies that either all three

⟨ab⟩ = 0 or all [ab] = 0. Choosing [ab] = 0 implies that all the λ̃c spinors are

proportional and vice versa for ⟨ab⟩ = 0 and the λc spinors.

If we choose [ab] = 0 we can construct three-point amplitudes from the angle brackets.

This is done by requiring that they transform correctly under the helicity operator

in equation(2.1.16). Consistency conditions mean that for gluons (spin-1), the only

valid amplitude is the MHV case whilst for non-zero square brackets we obtain the

MHV amplitude. This gives the two three-point amplitudes

A3,2(− − +) = ⟨12⟩4

⟨12⟩⟨23⟩⟨31⟩
,

A3,1(+ + −) = [12]4
[12][23][31] ,

(2.2.8)

where we have used the subscript An,k for an amplitude with n points and MHV

degree k (this counts the number of negative helicity gluons). The three-point MHV

is unique in having MHV degree 1. Combining these with the recursion in equation
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MHV MHV

1̂−
2+

n−2+

n−1+

n̂−

P̂
An =

Figure 2.2: Diagram illustrating the single term BCFW recursion
for MHV amplitudes with shifts on negative helicity
gluons.

2.2.5 is sufficient to obtain all the tree-level amplitudes. The special three-point

kinematics can lead to some useful simplifications when recursing MHV amplitudes.

Since the only non-zero amplitude with a single negative gluon is the three-point

one, if one chooses a BCFW shift on two negative helicty legs then an n-point MHV

amplitude will only be consist of a single non-zero term in the recursion – the one

containing the propagator P 2 = (kn−1 + kn)2. This is illustrated diagrammatically

in figure 2.2.

Extending BCFW recursion to gravity requires no modifications to equation 2.2.5

although the sum will include all permutations of the unshifted legs rather than

simply cyclic orderings, so that each term will generically be a sum of (n − 2)! terms.

The seed amplitudes for gravity can be obtained analogously and are given by

M3,2(− − +) = ⟨12⟩8

⟨12⟩2⟨23⟩2⟨31⟩2 ,

M3,1(+ + −) = [12]8
[12]2[23]2[31]2 .

(2.2.9)

These are squares of the Yang-Mills cases, an example of double copy relations

between Yang-Mills and gravity (discussed further in section 2.4). Including super-

symmetry requires an additional shift to the supermomenta. This can be motivated

in exactly the same way as the momentum shifts - defining a shifted λ̂1 will shift

Q̂1 = λ̂1η1 and so a corresponding shift is needed to preserve supermomentum
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conservation. The obvious choice here is to shift

η̂n = ηn − zη1, (2.2.10)

such that Q̂1+Q̂n = Q1+Qn. This leaves the poles of the superamplitude unchanged,

the only significant modification is that the sum over states present in each term is

lifted to an integral over the η exchanged by the propagator. This uplift is important

when constructing on-shell diagrams since it is more straightforward to implement

than the non-SUSY sum over states.

The three-point amplitudes for super Yang-Mills and sugra are similarly constrained.

In the case of N = 4 and N = 8 they take a very elegant form

A3,2 = δ(4|8)(P |Q)
⟨12⟩⟨23⟩⟨31⟩

,

A3,1 = δ(4|4)(P |[23]η1 + [31]η2 + [12]η3)
[12][23][31] ,

M3,2 = δ(4|16)(P |Q)
⟨12⟩2⟨23⟩2⟨31⟩2 ,

M3,1 = δ(4|8)(P |[23]η1 + [31]η2 + [12]η3)
[12]2[23]2[31]2 .

(2.2.11)

where we have included the bosonic as well as fermionic delta functions. The non-

supersymmetric three-point amplitudes can be recovered by integrating out/ setting

to zero the ηs as described in section 2.1.3.

One further detail of interest in chapter 3 are the so-called “bonus relations”. This

refers to a set of relations in supergravity that can be used to simplify the results from

BCFW recursion [97, 98]. In supergravity, the scaling of limz→∞ Mn(z) ∼ 1/z2. This

means that a residue theorem involving the object zMn(z) also has no contribution

from infinity. This can be used to generate relations between BCFW terms and these

bonus relations reduce the number of terms which appear from (n − 2)! to (n − 3)!.

In chapter 3 a recursion for N = 7 is introduced which automatically encodes these

relations.
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2.2.1 Geometry and Spurious Poles

BCFW gives us a method for calculating amplitudes by recursing three-point quantit-

ies to generate amplitudes with any number of points. One important and interesting

feature of the recursion is the appearance of spurious poles, and their relation to

geometrical descriptions of the scattering amplitude. Amplitudes can only contain

poles allowed by locality, these come either from when propagators go on-shell or

when external momenta become soft or collinear. In the case of Yang-Mills, these

can only be of the form [a a+1] = 0, ⟨a a+1⟩ = 0, or (k1 + k2 + · · · + kb)2 = 0;

ie. the all involve adjacent or sequential momenta. In gravity, there is no external

ordering so any poles of those types are allowed but there are other objects that

can be constructed of spinor brackets that are excluded, the most simple of which is

[a|b+ c|d⟩ (for other kinematic invariants to appear in spurious poles requires n ≥ 8).

If one of these appears in a term in BCFW, it must be cancelled by another corres-

ponding pole from another term. This is one way of seeing a geometrical picture

of amplitudes emerge. Applying BCFW in different schemes (eg. choosing to shift

different external legs) leads to expressions with different spurious poles appearing

yet they always cancel in the full amplitude. This can be seen as analogous to

the different ways of triangulating a polytope [18]. In this picture, the association

between amplitudes and geometry is such that poles an amplitude correspond to

boundaries in corresponding geometry. Spurious poles are thus “spurious boundaries”

ie. internal ones which do not appear as part of the full object.

For poles in super Yang-Mills amplitudes, the story is even more elegant. The NMHV

amplitudes can be written as a sum of “R-invariants”, given by

R
(N )
abc = δ(0|N ) (⟨a b − 1 b c − 1⟩ χc + cyc)

⟨a b − 1 b c − 1⟩ ⟨b − 1 b c − 1 c⟩ ⟨b c − 1 c a⟩ ⟨c − 1 c a b − 1⟩ ⟨c a b − 1 b⟩
,

(2.2.12)

where we have used the twistor notation introduced in section 2.1.4. These are

invariant under the dual superconformal group and are useful for exploring the

properties of super Yang-Mills. Each R-invariant has 5 poles, those not of the form
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⟨a a+1 b b+1⟩ are spurious. The use of R-invariants in supergravity and with N = 7 is

explored in chapter 3. In the case N = 4, they are also projectively invariant and can

be related to the volume of a polytope in CP4 [19]. The geometrical interpretation

is less clear for N ̸= 4 however.

2.2.2 On Shell Diagrams

We conclude this discussion on recursion relations with a brief introduction to on-

shell diagrams. These can be motivated as an elegant, graphical representation of

super-BCFW recursion but the diagrams also encode many additional and surprising

properties of SYM amplitudes with links to algebraic geometry and combinatorics [7].

They can also be used for loop level recursion. Here we will restrict to some of the

more basic properties of on-shell diagrams including equivalence relations that can

be used to map between them and how to use them to calculate the corresponding

on-shell expressions in momentum space. This will be extended in chapter 3 with

an extension to supergravity amplitudes.

The diagrams can be thought of as being similar to Feynman diagrams, each line

carries a momentum and momentum conservation applies at each vertex. As the

name implies, the momenta carried by all the internal lines obey an on-shell condition.

Since we are dealing with superamplitudes, the internal lines carry all the states of

the N = 4 supermultiplet which will be integrated over. The vertices can all be

thought of as being either an MHV or MHV amplitude represented by black and

white dots

1

2

3 ≡ A3,2, (2.2.13)

1

2

3 ≡ A3,1. (2.2.14)
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(2.2.15)

The special three-point kinematics mean that edges which meet at the vertices will

either have all λ̃ proportional (MHV) or all λ proportional (MHV). The key insight

for constructing and working with these on-shell diagrams is the use of Grassmanni-

ans, the space of k-planes in n-dimensions Gr(k, n), to describe kinematics. Gr(k, n)

can also be thought of as the set of k × n matrices modulo GL(k) transformations.

The function associated to each on-shell diagram will then be given by an integral

over an auxiliary Grassmannian Gr(k, n) for an Nk−2MHV amplitude, with the in-

tegrand constructed from elements invariant under these transformations, namely

products of minors with the appropriate weight. The use of Grassmannians gives

a geometric picture of the on-shell constraints as well as linearising how they are

enforced on the λ and λ̃.

The simplest example of these is how the three-point amplitudes are expressed as

Grassmannian integrals. Each of these is given by a single vertex. The three-point

MHV kinematics are described by a 2-plane in the form

A3,2 =
∫ d2×3C

vol(GL(2))
δ2×4(C · η)

(12)(23)(31)δ2×2(C · λ̃)δ2×1(λ · C⊥), (2.2.16)

with C ∈ Gr(2, 3) and C⊥ is the orthogonal complement of C such that C⊥ · C = 0

as defined in [7]. (ab) are the minors of C obtained by taking the determinant of

the 2 × 2 matrix formed from columns a and b. The dot products in this expression

all represent sums over particle number. ie. δ2×2 ≡ ∏
α=1,2
a=1,2

(∑3
b=1 ca

bλα
b

)
with ca

b the

elements of C. The delta function constraints can be trivially satisfied by setting

C =
(

λ1
a

λ2
a

)
. This sets (ab) → ⟨ab⟩. The 2 degrees of freedom in the integration

measure cancel with the final delta function and the expression reduces to the MHV

amplitude in 2.2.11. All the on-shell diagrams considered in this thesis can be

evaluated in similar ways – there will exist a clever choice of C-matrix that trivially

satisfies the constraints and gives a momentum-space expression. In general this is

only possible for MHV, MHV and the six-point NMHV amplitudes. The equivalent
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Figure 2.3: Example of a BCFW bridge deforming momenta for an
n-point amplitude

expression for the MHV amplitude uses a 1-plane in Gr(1, 3).

A particularly nice feature of on-shell diagrams is how they naturally encode BCFW

recursion. Adding a black and a white vertex to the external legs of a diagram as

shown in figure 2.3 adds a single extra degree of freedom acting to shift the incoming

momenta in precisely the BCFW shift discussed in section 2.2. Combining two

amplitudes and joining them with this “BCFW bridge” thus allows for a pictorial

representation of on-shell recursion. Each diagram can be directly evaluated using

on-shell techniques rather than needing to be built up out of the composite sub-

amplitudes. The process involves using the degrees of freedom attached to the edges

in the diagram (a generalisation of the z shifts in BCFW) to construct an integrand

which can be mapped into an integral over the associated auxiliary Grassmannian.

The exact details of how this is carried out in the case of N = 4 SYM are not needed

for this thesis. The application of this recursion as specifically applied to N = 7

supergravity is discussed in chapter 3 along with the modifications needed to the

diagrams for supergravity.

Finally there are a number of equivalence relations between on-shell diagrams that

do not affect the corresponding on-shell function. In the case of N = 4 SYM these

are linked to a classification of the diagrams as encoding a specific element of the

permutation group [7]. There are two equivalence relations associated to merging

and expanding vertices of the same colour, shown in figure 2.4. There is also the

“square move”, exchanging the colours of the vertices of a square as shown in figure
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= = ; = =

Figure 2.4: Merge and expand equivalence moves form on-shell dia-
grams

=

Figure 2.5: Square move equivalence for on-shell diagrams

2.5. There exist analogous moves in supergravity although the mergers require some

modification whilst the square moves are modified for any OSD with non-maximal

SUSY.

2.3 Amplitudes in Curved Space

2.3.1 Anti-de Sitter

In chapter 4 we will be exploring properties of objects analogous to scattering

amplitudes that live in Anti-de Sitter space. We will be working in the Poincaré

patch of AdS4 with the metric given by

ds2 = 1
z2 (−dt2 + dx2 + dy2 + dz2), (2.3.1)

where we have set the AdS radius to 1. We will be working with quantities which live

on the flat 3d boundary of this space at z → 0, calculated from momentum space

Witten diagrams (the AdS analogue of Feynman diagrams). These have previously

been used to study a variety of theories including Yang Mills and gravity as well as

different types of scalar theories [50, 51, 99]. The quantities obtained from summing

over Witten diagrams for a bulk Yang-Mills theory describe transitions between

states on the past and future boundaries of the Poincaré patch and obeying Dirichlet
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boundary conditions [46, 100]. They encode correlators of conserved currents in

a 3d CFT living in the boundary. These will be referred to as AdS amplitudes

and will be denoted by ⟨jjjj⟩. Specifically, they encode the transverse part of 3d

conformal correlators, from which the full correlators can be reconstructed using

Ward identities; the details of this are covered in section 4.3. As we will be working

in momentum space, we will be writing the correlators as functions of the 3-momenta

on the boundary k = (k0, k1, k2). Boundary translational symmetry implies these

are conserved. To take advantage of the spinor helicity formalism and relate to flat

space helicity amplitudes it will be convenient to define a null 4-momentum

kµ = (k0, k1, k2, ik),

where k = |k| =
√

−(k0)2 + (k1)2 + (k2)2,

(2.3.2)

such that ik is the radial component of the momentum. If k is time-like, then k is

imaginary but if k is space-like then k is real. We will work with space-like boundary

momenta. The sum over radial momenta will not vanish in general and we define it

as

E =
4∑

a=1
ka, (2.3.3)

where i is an external particle label. In the limit E → 0, 3d correlators develop a

pole whose residue is a 4d scattering amplitude in flat space [37]

lim
E→0

⟨jjjj⟩ = A4

E
. (2.3.4)

This property will also appear in dS although we will see in the case of theories other

than Yang Mills that the flat space limit is sometimes encoded as the residue of a

higher order pole.

To make the relation to amplitudes more explicit, it is convenient to dress the

correlators with polarisations of the form

ϵµ = (ϵ, 0) , (2.3.5)
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which satisfy

ϵa · ka = 0, ϵa · ϵa = 0. (2.3.6)

These polarisations also arise when computing Witten diagrams in axial gauge. Since

the polarisations are transverse to the momenta, they project out the longitudinal

parts of correlators, giving AdS amplitudes.

AdS Spinor Helicity

As we will be interested in the properties of Yang-Mills amplitudes with specific

helicity assignments, it will be useful to work with an AdS version of the spinor

helicity formalism. To adapt the definitions in section 2.1.1 we start from the massless

4-momentum defined in equation (2.3.2)

kµ = (k0, k1, k2, ik). (2.3.7)

The AdS boundary breaks translations in the z-direction (leaving only the 3d Lorentz

group in the boundary) so the dotted and undotted indices no longer live in different

spaces. Instead, we can use the Pauli matrix associated with the broken symmetry

to transform between them. Using the 4-vector T µ = (0, 0, 0, 1) lets us define

T αα̇ = T µσαα̇
µ which can be used to map between the two types of indices

λ
α

a = T αα̇λ̃aα̇. (2.3.8)

We can then convert any λ̃ spinors into λ and work exclusively with objects in

the undotted representation, with indices raised and lowered using ϵαβ. Under this

mapping, [ab] brackets are replaced with ⟨āb̄⟩. We can additionally obtain a new type

of bracket by contracting together dotted and undotted indices ⟨ab̄⟩. This mixed

bracket can be used to extract the magnitude of the 3-momenta

⟨aā⟩ = −⟨āa⟩ = −2ika, (2.3.9)
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illustrating its association with the broken symmetry. This corresponds to a decom-

position of the form

kαβ = λαλ
β = λ(αλ

β) + ikϵαβ. (2.3.10)

In general, for any vector with two undotted spinor indices, projecting out the sym-

metric components will leave only the data associated with the boundary direction.

The dot product between 3-vectors is then given by

ka · kb = ηµνkaµkbν + |ka||kb| = 1
2⟨ab⟩⟨āb̄⟩ − 1

4⟨aā⟩⟨bb̄⟩, (2.3.11)

where ηµν is a 3d Minkowski metric.

The barred spinors inherit the same Schouten identities as the original λ̃ however

any relations involving momentum conservation are modified. We instead have

n∑
a=1

λα
a λ

β

a = iϵαβE, (2.3.12)

where E is defined in equation (2.3.3). For the similar case of spinor formalism in

dS, this has an interpretation as the total energy of the system. Here it instead

represents an unconserved transverse momentum. We will again need polarisation

vectors expressed in terms of spinors. As with the momenta, they now each have 2

undotted indices

ϵ+
αβ = λαλβ

ik
, ϵ−

αβ = λαλβ

ik
. (2.3.13)

Since these are symmetric under α ↔ β, we can see that the radial component of the

corresponding 4-vector vanishes. It will be straightforward to take these expressions

and substitute them into the results of Witten diagram computations, converting

dot products between momenta and polarisations into spinor brackets. There are

however a rich variety of identities that can be applied to simplify the expressions

this gives and this is covered in more detail in appendix D.



2.3. Amplitudes in Curved Space 37

2.3.2 de Sitter Wavefunction Coefficients

This section reviews the computation of field theory observables in de Sitter. Many

of the mathematical steps here have parallels in AdS but the physics interpretation

differs in places.

For convenience, we use the Poincaré patch in dSd+1 with radius set to one,

ds2 = 1
η2 (−dη2 + dx2), (2.3.14)

where −∞ < η < 0 is the conformal time, and x denotes the spatial coordinates

on the boundary, with individual components xi, i = 1, .., d. In chapter 5 we will

usually take d = 3 whereas in chapter 6 it will be left general. Since the boundary

is Euclidean, momenta here will be space-like (whereas in Anti-de Sitter they could

also be time-like).

Unlike in flat space and AdS, there is no notion of time ordering as free states can

only be defined for η → −∞. The quantities of interest are therefore in-in correlators

[56], which can be computed from a cosmological wavefunction via a path integral

formalism as

⟨ϕ(k1) . . . ϕ(kn)⟩ =
∫

Dϕ ϕ(k1)...ϕ(kn) |Ψ[ϕ]|2∫
Dϕ |Ψ[ϕ]|2

. (2.3.15)

The scalars ϕ are taken to be in the future boundary (Fourier transformed to mo-

mentum space) and the functional Ψ[ϕ] is the cosmological wavefunction. The

integral is over field configurations which reduce to the Bunch-Davies vacuum

ϕ ∼ (1 − ikη)e+ikη in the limit η → −∞ and which reduce to momentum modes in

the η → 0 limit [57, 58]. The Bunch-Davies vacuum is the choice which recovers

correlators of operators in the boundary CFT, however there are other choices which

can still give valid physics in the bulk [101]. Ψ[ϕ] can be perturbatively expanded as

ln Ψ[ϕ] = −
∞∑

n=2

1
n!

∫ n∏
a=1

ddka

(2π)d
Ψn(k1, . . . , kn)ϕ(k1) . . . ϕ(kn). (2.3.16)

The wavefunction coefficients Ψn can be treated as n-point CFT wavefunction coef-

ficients in the future boundary and can also be computed by analytic continuation
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of AdS Witten diagrams (this is a consequence of the choice of vacuum) [47, 48, 57,

102, 103]. In momentum space, they can be expressed as

Ψn = δ(d)(kT )⟨⟨O(k1)...O(kn)⟩⟩, (2.3.17)

where kT = k1 + . . . + kn, and the double brackets denote a CFT correlator on the

boundary. The scalar operators O have scaling dimension ∆, and are dual to scalar

fields ϕ in the bulk with mass

m2 = ∆(d − ∆). (2.3.18)

∆ = d describes minimally coupled scalars while ∆ = (d+1)/2 describes conformally

coupled scalars.

The wavefunction coefficients Ψn satisfy conformal Ward identities (CWIs), which are

a consequence of the de Sitter isometries. The conformal generators in position space

were introduced in section 2.1.2. Here, their action on the wavefunction coefficients

can be written as

n∑
a=1

P i
aΨn =

n∑
a=1

DaΨn =
n∑

a=1
Ki

aΨn =
n∑

a=1
M ij

a Ψn = 0, (2.3.19)

where a, b, ... are particle labels and the momentum space generators are given by

P i = ki,

D = ki∂i + (d − ∆),

Ki = ki∂
j∂j − 2kj∂j∂i − 2(d − ∆)∂i,

Mij = (ki∂j − kj∂i) ,

(2.3.20)

with ∂i = ∂
∂ki . In this representation, the conformal dimension of the scalars appear

explicitly in generators. Boundary vector indices will be freely raised and lowered

here using a flat metric.
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2.4 Colour-Kinematics and the Double Copy

This subsection will present a review of colour-kinematics (CK) duality for tree-level

4-point scattering amplitudes [39, 104]. A 4-point colour-dressed gluon amplitude

can be written as

A4 = nscs

s
+ ntct

t
+ nucu

u
, (2.4.1)

where s, t, u are Mandelstam variables, ci are colour factors, ni are kinematic numer-

ators, and we have set the YM coupling to one. The ci can be written in terms of

colour group structure constants

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa3a1bf ba2a4 , (2.4.2)

which satisfy the Jacobi relation

cs + cu + ct = 0. (2.4.3)

Using this to express ct in terms of cs and cu lets us rewrite the colour dressed

amplitude (2.4.1) as

A4 = csA1234 − cuA1342, (2.4.4)

where the colour-ordered amplitudes are given by

A1234 = ns

s
− nt

t
,

A1324 = nt

t
− nu

u
.

(2.4.5)

The kinematic numerators can be represented using the cubic diagrams in Figure

2.6. These are not Feynman diagrams, but are derived by splitting the contact

Feynman diagram into three pieces multiplied by s/s, t/t, and u/u, respectively,

and combining them with exchange Feynman diagrams. When written in terms

of polarisation vectors, the numerators are related by cyclic permutations on three

particles:

nt = ns

∣∣∣∣
(234)→(423)

, nu = ns

∣∣∣∣
(234)→(342)

, (2.4.6)
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ns =

1

2 3

4

nt =

1

4 2

3

nu =

1

3 4

2

Figure 2.6: The three numerator structures for the colour-dressed
amplitude. Two of these appear in each colour-ordered
amplitude.

or equivalently using exchanges:

nt = −ns

∣∣∣
2↔4

, nu = −ns

∣∣∣
2↔3

. (2.4.7)

These operations can be seen by permuting the labels on the diagrams in Figure

2.6. When we express the numerators using spinors, these relations continue to

hold except when these mappings act on particles of different helicities. Note that

exchanging the legs at a vertex gives rise to a minus sign, which can be seen from

the antisymmetric structure of the three point vertex. This explains the minus signs

in (2.4.6) and the relative signs in (2.4.5); we get a minus sign when we flip the legs

at a vertex so that the ordering of the diagram matches the ordering of the partial

amplitude.

The kinematic Jacobi relation states that

ns + nt + nu = 0, (2.4.8)

which is analogous to the colour Jacobi relation in (2.4.3) and encodes a remarkable

duality between colour and kinematics. Given a set of numerators satisfying (2.4.8),

one can then construct gravitational amplitudes from colour-dressed YM amplitudes

by replacing the colour factors with kinematic numerators:

M4 = n2
s

s
+ n2

t

t
+ n2

u

u
, (2.4.9)

where we have set the gravitational coupling constant to 1. This relation is referred

to as the double copy. The kinematic Jacobi relation can also be used to prove a
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relation among colour-ordered amplitudes known as the BCJ relation:

uA1324 = sA1234. (2.4.10)

Substituting the colour ordered amplitudes (2.4.5) and the BCJ relation (2.4.10)

into (2.4.9) then implies the famous KLT relation

M4 = −sA1234A1243, (2.4.11)

first discovered in the context of string theory [40]. Chapter 4 will extend CK

duality to AdS amplitudes and chapter 5 will review the same physics from the CHY

formalism as well as studying dS double copies between scalar field theories.

2.5 Soft Theorems and Effective Field Theories

Chapters 5 and 6 focus on certain scalar effective field theories (EFTs), namely the

non-linear sigma model (NLSM), scalar Dirac-Born-Infeld theory (DBI), and special

Galileon theory (sGal). In flat space these are all uniquely determined by their soft

behavior and the corresponding shift symmetries of their Lagrangians [87, 88]. They

are also theories which take on a simple form in the CHY approach [68].

These EFTs all have derivative interactions and so vanishing soft limits, when the

momentum associated to a particular leg is taken soft we have

lim
p→0

A(p) = O
(
pk+1

)
, (2.5.1)

where k is a parameter characterising the degree of the soft limit. Beyond four points,

this property is either trivial (if the degree of soft behavior is equal or less than

the number of derivatives per field) or requires non-trivial cancellations between

Feynman diagrams at all orders. This in turn constrains the interactions that can

appear such that cancellations are allowed by dimensional considerations. This

latter case is referred to as an ‘enhanced’ soft limit and there are only three cases for

theories with a single scalar, they are the NLSM, DBI, and sGal theories which have
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k = 0, 1, 2, respectively. These are also the theories with an order k shift symmetry

in the Lagrangian (where k refers to the degree of dependence on spatial coordinates).

In the case of the NLSM this is given by

ϕ → ϕ + a, (2.5.2)

for some constant a. The shift symmetries for DBI and sGal are more complex and

have a spatial dependence [88]. The remainder of this section will briefly review

the Lagrangians and some of the four- and sixpoint amplitudes for each EFT in

preparation for exploring the corresponding behavior in dS.

2.5.1 EFT Lagrangians and Amplitudes

The NLSM Lagrangian is given by

LNLSM = 1
8λ2 Tr(∂µU †∂µU),

= −Tr
[1
2(∂Φ)2 + λ2Φ2(∂Φ)2 + λ4

(
Φ4(∂Φ)2 + 1

2Φ2∂µΦΦ2∂µΦ
)

+ . . .
]

,

(2.5.3)

where U = (I+λΦ)(I−λΦ)−1 and (∂Φ)2 = ∂µΦ∂µΦ, Φ is in the adjoint representation

of SU(N), and the ellipsis denotes higher-point interactions. This is the only one of

the exceptional EFTs with a gauge symmetry and so we will work with colour-ordered

amplitudes. The four-point amplitude is simply given by

ANLSM
4 = −2s13, (2.5.4)

using the shorthand sab = ka · kb and setting the coupling to one. Since the theory is

massless it is clear that this scales as O(ki) when any leg is taken soft. The six-point

amplitude is more involved, consisting of an exchange diagram with two four-point

vertices as well as a six-point contact diagram. These are shown in figure 2.7. The

colour-ordered amplitude can be written as

ANLSM
6 = 4s13s46

s123
− 4s13 + cyc(a → a+2), (2.5.5)
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Figure 2.7: Feynman Diagrams for six-point NLSM and DBI amp-
litudes

where the pole is given by sabc = ka · kb + kb · kc + kc · ka. This is equivalent to the

form found in [105]. Taking (for example) k1 → 0, four of the six terms scale as

O(k1) leaving

lim
k1→0

ANLSM
6 = 4s35s62

s612
− 4s35 + O(k1). (2.5.6)

Since limk1→0 s612 = s62 the pole cancels and the whole amplitude has the expected

soft behavior. Alternatively, one could bootstrap the six-point amplitude by requiring

that the soft limit vanish at this order, uniquely fixing the six-point coupling in terms

of the four-point one. This process could then be repeated to reconstruct the entire

shift-symmetric Lagrangian by imposing the enhanced soft behavior.

For the DBI theory we have

LDBI = 1
λ

(√
1 − λ (∂ϕ)2 − 1

)
,

= −1
2(∂ϕ)2 − λ

8 (∂ϕ)4 − λ2

16(∂ϕ)6 + . . . ,

(2.5.7)

where (∂ϕ)2n = (∂µϕ∂µϕ)n. The four-point amplitude is given by

ADBI
4 = s2

12 + s2
13 + s2

14, (2.5.8)

where the coupling has again been set to one. As in the NLSM case this trivially has

the expected soft limit, in this case O(k2
a). The six-point amplitude is more involved

and is given by

ADBI
6 = 2(s12s23 + s23s31 + s31s12) (s45s56 + s56s64 + s64s45)

s123
+ Perms

+ 3s12s34s56 + Perms,
(2.5.9)
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where the exchange diagram is summed over the 10 possible factorisation channels

and the contact term is summed over the 15 inequivalent permutations. Finding

the soft limit of this expression by hand is tedious but if momentum conservation

is used to eliminate one leg and the on-shell condition used to remove one extra sab

(up to order k2) then it can be shown that this indeed behaves as O(k2
a) in the soft

limit. Again this procedure could be bootstrapped to recover the expansion of the

square root given in equation 2.5.7.

Finally, in d = 4 the special Galileon theory is given by [106]

LsGal = −1
2 (∂ϕ)2 − λ

8 (∂µ∂νϕ)2 (∂ϕ)2 + . . . , (2.5.10)

where the dots indicate higher order terms. This theory is special in that it can be

reformulated such that it contains only a four-point interaction term and no higher

valence interactions (this form has a more complicated four-point interaction term

but this only affects exchange diagrams) [88]. The four-point amplitude is given by

AsGal
4 = s3

12 + s3
13 + s3

14, (2.5.11)

which clearly scales as O(k3
a) in the soft limit. Higher point interactions contain only

exchange diagrams but since these turn out to be very complex in dS they are not

studied in detail in this thesis.

Note that the four-point interactions in the DBI and sGal theories contain four

derivative and six-derivatives, respectively. They are unique up to integration by

parts and equations of motion. Their lift to curved backgrounds, however, is not

unique because covariant derivatives no longer commute and there are curvature

corrections, as described in chapters 5 and 6.



Chapter 3

On-Shell Diagrams and

Momentum Twistors for N = 7

Supergravity

This chapter starts with a recap of on-shell diagrams for supergravity in section 3.1

and an introduction to N = 7 supergravity. Section 3.1.2 then covers the details

of the recursion with a focus on the new features which appear in contrast to the

case of maximal supersymmetry. This is then applied to a number of examples

starting with MHV up to six-point (3.2.1) then five-point MHV (3.2.2) and six-point

NMHV (3.2.3). This is followed by a detailed look at how to rewrite the six-point

NMHV amplitude in terms of momentum twistors using local coordinate patches in

section 3.2.4. These expressions are then used to analyse the spurious poles and their

cancellations in detail in section 3.2.5 before we conclude with some final remarks

(3.3).
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3.1 Supergravity On-shell diagrams

The work in the chapter will build off the use of OSDs to calculate N = 8 tree-level

amplitudes in [30] and [35] 1. The first modification needed to describe supergravity

with on-shell diagrams is apparent from considering how BCFW recursion differs

between SYM and supergravity: supergravity on shell diagrams will need to in-

corporate permutation sums. At each stage in the recursion, diagrams will need

to be summed over the (n − 2)! permutations of legs not attached to the BCFW

bridge. In order to for the recursion via BCFW bridges to work it is also necessary

to add ‘decorations’ to the bridge, modifying how it contributes to the corresponding

Grassmannian integrand. These decorations affect some of the original properties

of the diagrams; for example a decorated OSD can no longer be uniquely identified

with an element of the permutation group. However the bridges do fit neatly with

the properties of gravitational BCFW recursion, clearly denoting how the required

permutation sums must be applied. i.e. We can write the recursion as

Mn

1 n

=
∑
L,R

ML MR

1 n

, (3.1.1)

where the sum is over all partitions of particles {2, . . . , n−1} into sets L and R.

The recursion can also be applied in such a way that that it will generate non-planar

diagrams. In N = 8 this can be avoided with a careful choice of recursion scheme

but when considering N = 7 they turn out to be an essential feature [1].

1There exist other applications of OSDs to gravity, most notably [107] but their connection to
direct amplitude calculations is less clear
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3.1.1 N = 7 Supergravity

As in equation 2.1.18, supermomentum is defined as

qαA
a = λα

a ηA
a , (3.1.2)

where now A runs from 1 to N = 7. For all superamplitudes (except three-point

MHV), supermomentum conservation is imposed by the delta function δ(4|2N )(P |Q),

where P = ∑
a pa and Q = ∑

a qa. It will be convenient to factor out the supermo-

mentum delta function from scattering amplitudes, and we will denote the resulting

quantity with a bar

M = δ(4|14)(P |Q)M. (3.1.3)

We will be scattering N = 7 superfields. These have the same particle content as

the N = 8 superfield which is given by

Φ = h+ + ... + h−η8, (3.1.4)

where h± are the two helicity states of the graviton, and the ellipsis denote the

on-shell states of lower spin bosonic and fermionic fields. Analogous to the N = 4

SYM superfield in equation 2.1.19 this is an expansion in the Grassmann variable

η and so truncates at eighth order. For N = 7, the particle content is split into

two supermultiplets which contain the positive and negative helicity states of the

graviton respectively

Φ+ = Φ|η8=0 , Φ− =
∫

dη8Φ. (3.1.5)

N = 7 supergravity has the same field content as N = 8 and they are perturbatively

equivalent. From this, we also see that an Nk−2MHV amplitude (whose graviton

component has k negative helicity gravitons) has fermionic degree 7k. Using the

relation between superfields, it is straightforward to extract N = 7 superamplitudes
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from N = 8. For example, at three points we have

MN =7
3 (− − +) =

∫
dη8

1dη8
2 MN =8

3,2

∣∣∣
η8

3=0
,

MN =7
3 (+ + −) =

∫
dη8

3 MN =8
3,1

∣∣∣
η8

1=η8
2=0

(3.1.6)

where M3,2 and M3,1 are the 3-point MHV and MHV amplitudes of N = 8 super-

gravity, respectively. An n-point MHV amplitude describes the scattering of two

positive helicity gravitons and n − 2 negative helicity gravitons.

3.1.2 N = 7 Recursion and Bonus Relations

When working with N = 7 supergravity on-shell diagrams we have to account for the

two supermultiplets encoding the two graviton helicities. The edges will therefore

be labelled with arrows to indicate helicity flow (which should not be confused with

momentum flow). In particular, incoming arrows denote the negative helicity super-

multiplet, and outgoing arrows denote the positive helicity supermultiplet. Hence,

three-point MHV amplitudes will have two incoming arrows and one outgoing arrow,

while three-point MHV amplitudes have two outgoing arrows and one incoming

arrow. Three-point superamplitudes and edges are given by:

1

2

3 ≡ ⟨12⟩δ14(λ1η1 + λ2η2 + λ3η3)
⟨12⟩2⟨23⟩2⟨31⟩2 , (3.1.7)

1

2

3 ≡ [12]δ
7([12]η3 + [23]η1 + [31]η2)

[12]2[23]2[31]2 , (3.1.8)

≡
∫ d2λ d2λ̃

GL(1) d7η. (3.1.9)

Momentum conservation implies that λ̃1 ∝ λ̃2 ∝ λ̃3 for an MHV vertex and λ1 ∝

λ2 ∝ λ3 for an MHV vertex.



3.1. Supergravity On-shell diagrams 49

The recursion in 3.1.1 therefore becomes

Mn

1− n+

=
∑
L,R

ML MR

1− n+

, (3.1.10)

where

1− n+

= 1
p1 ·pn

1− n+

. (3.1.11)

The object connecting the lower-point amplitudes on the right-hand-side of (3.1.10

implements a BCFW shift of legs 1 and n and is known as a BCFW bridge. The

external arrows of the bridge imply a ⟨1−, n+] shift and the internal arrows are fixed

by helicity flow. Choosing this BCFW bridge at every step of the recursion always

produces on-shell diagrams with closed cycles and the choice also fixes their orient-

ation. The sum in equation (3.1.10) is over all partitions of particles {2, . . . , n−1}

into sets L and R. The recursion is carried out such that we always feed the fixed

legs of the subamplitudes into the recursion. Using the BCFW bridge in (3.1.11),

the N = 7 recursion leads to fewer diagrams than the N = 8 recursion[30]. For

example, at MHV there are (n − 3)! instead of (n − 2)! terms so it appears that

the N = 7 recursion encodes bonus relations [86], as was previously observed in

[108]. In [98], the bonus relations were used to write non-MHV amplitudes in N = 8

supergravity as a sum over (n − 3)! terms. It would be interesting to investigate how

this compares to the N = 7 recursion.

Whereas N = 7 supergravity amplitudes are well-behaved when the BCFW deforma-

tion is taken to infinity, this is not the case for N < 4 SYM amplitudes [109, 110], so

a different choice of BCFW bridge should be used in those theories. A ⟨1−, n+] shift

was considered in N = 3 SYM using on-shell diagrams in [7], where it was shown

that the correct result could be obtained at 4-points by summing over orientations

of closed cycles, but we find that this prescription does not work at higher points.
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= = ; = =

Figure 3.1: Merging rules for N = 7 on-shell diagrams. The decor-
ated edges must appear opposite.

=

Figure 3.2: Square move for N = 7 on-shell diagrams.

N = 7 on-shell diagrams enjoy a number of equivalence relations similar to those

of N = 8 supergravity. In particular mergers appear with an orientation encoding

helicity flow, as shown in Figure 3.1, and square moves are only valid for diagrams

where the incoming arrows are adjacent, shown in Figure 3.2. We are also free to

move decorations to the opposite edge of a box, which can be seen from the definition

in (3.1.11).

N = 7 OSD Algorithm

On-shell diagrams for n-point Nk−2MHV amplitudes naturally give rise to integrals

over the space of k planes in n dimensions, also known as the Grassmannian Gr(k, n).

These integrals are represented as an integral over a k × n matrix C modulo a left

action of GL(k). The rows of C are associated with the external legs with a Φ−

multiplet, or equivalently legs with incoming arrows, while the columns are associated

will all external legs. As we describe below, the C matrix for a given on-shell diagram

can be computed by assigning edge variables and summing over paths through the

diagram taking the product of the edge variables encountered along each path. One

then lifts the integral over edge variables to a covariant contour integral in the

Grassmannian. A detailed algorithm for evaluating on-shell diagrams in N = 8

supergravity can be found in [30] and Appendix A of [35]. The algorithm for N = 7

is very similar, so it is described below more schematically
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1. Label every half edge (including external edges) with an edge variable α. Set

one of the two edge variables on each internal edge to unity and set one of the

remaining edge variables associated with each vertex to unity, leaving 2n − 4

edge variables.

2. Include dα/α2 for each edge entering a black vertex or leaving a white vertex

and dα/α3 for each edge leaving a black vertex or entering a white vertex.

3. Multiply by ⟨ab⟩ for each black vertex and [ab] for each white vertex, where

a, b are the two incoming or outgoing legs, respectively.

4. Include a kinematic factor to each decorated edge as shown in (3.1.11).

5. To relate internal and external spinors, sum over paths according to

λ̃a =
∑

paths a→b

 ∏
edges in path

αe

 λ̃b, (3.1.12)

λa =
∑

paths b→a

 ∏
edges in path

αe

λb. (3.1.13)

The matrix element Cab can then be computed by summing over all paths from

leg a to leg b, taking the product of all the edge variables encountered along

each path as in (3.1.12).

6. If there is a closed cycle, one will need to sum an infinite series when computing

the C-matrix in the previous step. Moreover, one will need to include the factor

J N −4
C = J 3

C , where JC comes from a sum over products of disjoint cycles [107]:

JC = 1 +
∑

i

fi +
∑

disjoint i,j

fifj +
∑

disjoint i,j,k

fifjfk + ..., (3.1.14)

where fi is minus the product of edge variables around the ith cycle. In section

3.1.2 we will describe an alternative method which avoids summing over closed

cycles when computing the C-matrix, and automatically computes JC .

7. Include δk(2|7)(C ·λ̃)δ2×(n−k)(λ·C⊥) where C⊥ is an n×(n−k) matrix satisfying

C · C⊥ = 0, whose matrix elements can be computed by summing over the
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reverse paths in (3.1.13). The dot products appearing in the delta functions

are with respect to particle number, so for example C · λ̃ can be written

more explicitly as ∑n
a=1 CIbλ̃

α
b , where I labels the k rows. After taking into

account momentum conservation, there are 2n − 4 bosonic delta functions,

which precisely matches the number of edge variables. The argument of the

fermionic delta functions is C · η, which we suppress for brevity. The resulting

integral over edge variables can be thought of as a gauge-fixed Grassmannian

integral formula, where the gauge symmetry is GL(k).

8. Covariantise the integral over edge variables to an integral over Gr(k, n) by

writing the edge variables in terms of minors of the C and C⊥ matrices. Since

Gr(k, n) has dimension k(n − k) but there are only 2n − 4 edge variables, this

will imply a contour in the Grassmannian of dimension k(n−k) − (2n−4) =

(k−2)(n−k−2).

Alternatively, to deal with the bridge decorations one may replace steps 3 and 4 with

3. For each BCFW bridge, look at the sub-diagram formed only by this bridge,

its two vertices, and the four legs attached to it.

• If there is only one path through the sub diagram which includes the

bridge, assign a factor of the edge variable on the bridge, divided by the

two edge variables on the legs which are not on that path.

• If there are four possible paths through the sub diagram, divide through

by a factor of each of the edge variables on the external legs, and the edge

variable on the bridge squared. If there is no edge variable in any of the

locations described above, then this edge variable was set to unity in step

2.

4. For each remaining black vertex not attached to a bridge, add a factor of ⟨ab⟩

where a, b are the two edges with ingoing arrows. For each remaining white
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vertex not associated to a bridge, add a factor of [ab] where a, b are the two

edges with outgoing arrows.

This modification (first introduced in [35]) is used in appendix C to make evaluating

the bridge decorations more straightforward. It is unaffected by the presence of

closed cycles in the diagram.

Closed Cycles

The N = 7 recursion has fewer diagrams compared to N = 8, but the price to pay is

that they generally contain more closed cycles, which can become very cumbersome to

evaluate following step 5 of the algorithm in the previous subsection. This technical

difficulty can be overcome as follows. Instead of expanding incoming λ̃a in terms of

only outgoing λ̃b, it is instead expanded in terms of all external λ̃b. In particular,

when summing over paths originating from each incoming leg as described in step

5, the path can be truncated upon reaching another incoming leg and then writing

the last internal spinor along the path in terms of the external spinor using the fact

that all λ̃ spinors are proportional at a black vertex. For example, in Figure 3.3

suppose that A and B are internal edges while 2 is an external edge. Computing the

C-matrix according to step 5 of the algorithm would give λ̃A = αAλ̃B and before

continuing to expand λ̃B. Instead the path is truncated by writing λ̃A = αAλ̃2. The

resulting C matrix will have non-zero elements between incoming legs, but a GL(k)

transformation can be found to set the columns of the incoming legs to a unit matrix.

The C-matrix before this gauge-fixing will be referred to as C̃. This will yield the

same result as step 5 of the algorithm without having to sum over closed cycles.

Moreover the Jacobian in step 6 is given by the inverse of the determinant of the

GL(k) transformation. This method can also be applied to on-shell diagrams in

other theories.
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A

2

BαBαA

Figure 3.3: Vertex showing example of how to truncate geometric
series. Here we take leg 2 to be external (with the
corresponding edge variable set to 1) and legs A and B
to be internal.

3.2 Applications of N = 7 Recursion

In this section, we will use the on-shell diagram recursion in (3.1.10) to compute

MHV amplitudes in N = 7 supergravity up to six points, obtaining Grassmannian

integral formulas and expressions in momentum twistor space in agreement with [27].

We will see that only (n − 3)! diagrams contribute, in contrast to (n − 2)! in the

N = 8 recursion, indicating that the N = 7 recursion automatically incorporates

the bonus relations. The same steps will then be carried out for the five-point MHV

and six-point NMHV amplitudes and analyse the expressions obtained by writing

them in terms of momentum twistors.

3.2.1 MHV Examples

Four-point

At four points, only a single on-shell diagram is needed, with no sum over permuta-

tions. For M4,2(1−, 2+, 3−, 4+), this diagram is shown in Figure 3.4. If one requires

a different helicity arrangement, this can be obtained simply by permuting the ex-

ternal legs. For example, the amplitude M4,2(1−, 2−, 3+, 4+) can be obtained from

the on-shell diagram in Figure 3.5. We shall denote individual on-shell diagrams

contributing to an amplitude using the symbol D. Following the algorithm in section
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Figure 3.4: On-shell diagram for 4-point amplitude with alternating
helicities.

3.1.2, this can be evaluated in terms of edge variables as

D4,2 = 1
⟨41⟩[14]

∫ 8∏
i=5

(
dαi

α2
i

)
1

α8α6
⟨71⟩[25]⟨53⟩[47] J 3

C δ(4|14)(C · λ̃)δ4(λ · C⊥), (3.2.1)

where

C =

1 −∆α8 0 −∆α8α5α6

0 −∆α6 1 −∆α6α7α8

 ,

JC = (1 − α5α6α7α8) = ∆−1,

(3.2.2)

and the factor of ∆ comes from a geometric series associated with the closed cycle.

The rows of the C-matrix are associated with legs 1 and 3.

When uplifting to a Grassmannian integral there is a Jacobian to transform from an

integral over edge variables into one over the entries of the C-matrix:

d2×4C

GL(2) = ∆4α2
6α2

8

8∏
i=5

dαi. (3.2.3)

The expression in (3.2.1) can then be written as follows:

D4,2 =
∫ d2×4C

GL(2)
[23]⟨32⟩

∆7α5α5
6α7α5

8
δ(4|14)(C · λ̃)δ4(λ · C⊥),

=
∫ d2×4C

GL(2)
[23]⟨32⟩

(12)(23)(34)(41)(24)2(31)
(24)(31)
(23)(41)δ(4|14)(C · λ̃)δ4(λ · C⊥).

(3.2.4)

This can be simplified by noting that ⟨ab⟩/(ab) and [ab]/(ab)⊥ are independent of a

and b, where (ab)⊥ = εabcd(cd) is a minor of C⊥. The amplitude then simplifies to

M4,2 = D4,2 = ⟨13⟩
∫ d2×4C

GL(2)
[cd]

(cd)⊥

∏
a<b

1
(ab)δ(4|14)(C · λ̃)δ4(λ · C⊥). (3.2.5)
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41

Figure 3.5: On-shell diagram for 4-point amplitude with a split heli-
city arrangement.

The Grassmannian integral can be evaluated by choosing

C =
(

λ1 λ2 λ3 λ4

)
. (3.2.6)

This sets (ab) → ⟨ab⟩ and we obtain

M4,2(1−, 2+, 3−, 4+) = ⟨13⟩ [23]
⟨41⟩

1∏
a<b⟨ab⟩

, (3.2.7)

where we have factored out the supermomentum delta function to give the quantity

M, as defined in (3.1.3). This can be converted into a momentum twistor expression

by substituting for the spinor bracket [23] in terms of a twistor 4-bracket according

to (2.1.32):

M4,2(1−, 2+, 3−, 4+) = ⟨13⟩ ⟨1234⟩∏
a⟨a a + 1⟩∏b<c⟨bc⟩

. (3.2.8)

Five-Point

The 5-point MHV amplitude M5,2(1−, 2+, 3+, 4−, 5+) can be obtained from the on-

shell diagram in Figure 3.6 after summing over 2 ↔ 3. As we explained in the

previous subsection, other helicity arrangements can be obtained by relabelling the

diagrams. Because the diagram has two closed cycles, it is slightly tedious to evaluate

the C-matrix following the algorithm in section 3.1.2, so we instead use the technique

described in section 3.1.2. First we sum over paths originating from each incoming
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Figure 3.6: On-shell diagram for a 5-point MHV amplitude. To
obtain the amplitude, sum over the exchange 2 ↔ 3.

leg, truncating the path upon reaching another incoming leg

λ̃1 = α11λ̃2 + α11α9(λ̃3 + λ̃6),

λ̃4 = α7α8α9(λ̃3 + λ̃6) + α7λ̃5 + α7λ̃10,

(3.2.9)

where λ̃6 and λ̃10 are internal spinors adjacent to an incoming leg, which are associ-

ated with α6 and α10 in Figure 3.6, respectively. We then we use the fact that all

λ̃ spinors are proportional at a black vertex to write λ̃6 = α6λ̃4 and λ̃10 = α10λ̃1.

Combining these with equation (3.2.9) leads to the C-matrix

C̃ =

 1 −α11 −α11α9 −α11α9α6 0

−α7α10 0 −α7α8α9 1 − α7α8α9α6 −α7

 , (3.2.10)

where the rows are associated with legs 1 and 4. To bring the matrix to a canon-

ical form, we apply a GL(2) transformation given by the inverse the submatrix

constructed from columns 1 and 4. This gives

Gfix = ∆1∆2

1 − α6α7α8α9 α6α9α11

α10α7 1

 , (3.2.11)
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C = GfixC̃

=

1 −∆2α11 −∆1∆2α9α11 0 −∆1∆2α9α11α6α7

0 −∆1∆2α7α10α11 −∆1∆2α7α9(α8+α10α11) 1 −∆1∆2α7

 ,

(3.2.12)

where ∆1 = (1 − α6α7α8α9)−1 and ∆2 = (1 − ∆1α9α10α11α6α7)−1. The Jacobian

associated with the closed cycles is then given by

JC = det (Gfix)−1 = 1
∆1∆2

. (3.2.13)

The diagram can be written as the following integral over edge variables:

D5,2 =
∫ 11∏

i=6

(
dαi

α2
i

)
1

α7α9α11

α6α8α10⟨34⟩[34][21]
α11

J 3
C δ(4|14)(C · λ̃)δ6(λ · C⊥),

=
∫ d2×5C

GL(2)
⟨34⟩[34][21]

∆8
1∆8

2α6α6
7α8α5

9α10α7
11

δ(4|14)(C · λ̃)δ6(λ · C⊥),

where the spinor brackets from the decorations have been used to cancel those from

the adjacent vertices, and we noted that

d2×5C

GL(2) = (∆1∆2)5α3
7α2

9α3
11

11∏
i=6

dαi. (3.2.14)

To uplift this to a covariant expression, note that

(12) = −∆1∆2α7α10α11, (14) = 1,

(23) = ∆1∆2α7α8α9α11, (25) = ∆1∆2α7α11,

(34) = −∆1∆2α9α11, (35) = ∆1∆2α7α9α11,

(45) = ∆1∆2α6α7α9α11, (51) = ∆1∆2α7.

(3.2.15)

Some products of these are especially useful:

(∆1∆2)5α6α
4
7α8α

3
9α10α

4
11 =

5∏
i=1

(i i + 1),

∆1∆2 = (15)(34)
(35)(14) ,

α11 = (25)
(51) ,

(∆1∆2α7α9α11)2 = (35)2

(14) .

(3.2.16)
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Recalling that ⟨ab⟩/(ab) is independent of a and b, we finally get

D5,2 = ⟨14⟩
∫ d2×5C

GL(2)[12][34](24)(13)
∏
a<b

1
(ab)δ(4|14)(C · λ̃)δ6(λ · C⊥). (3.2.17)

The 5-point amplitude can then be recovered by summing the above formula over

the permutation 2 ↔ 3:

M5,2(1−, 2+, 3+, 4−, 5+) = ⟨14⟩
∫ d2×5C

GL(2)([12][34](24)(13) − [13][24](34)(12))

× δ(4|14)(C · λ̃)δ6(λ · C⊥)∏
a<b(ab) .

(3.2.18)

The Grassmannian integral formula in (3.2.18) can be evaluated by setting the

columns of C to λi giving

M5,2(1−, 2+, 3+, 4−, 5+) = ⟨14⟩ [12][34]⟨24⟩⟨13⟩ − [13][24]⟨12⟩⟨34⟩∏
a<b⟨ab⟩

. (3.2.19)

Note that [12][34]⟨24⟩⟨13⟩ − [13][24]⟨12⟩⟨34⟩ = 4iϵµνρσpµ
1pν

2pρ
3pσ

4 is permutation-

invariant on support of momentum conservation. Hence, we can equivalently write

it as [23][45]⟨35⟩⟨24⟩ − [24][35]⟨23⟩⟨45⟩. To convert the numerator to momentum

twistor notation, let us consider the following quantity, first defined in [27]:

N5 =
(
[23][45]⟨35⟩⟨24⟩ − [24][35]⟨23⟩⟨45⟩

)
⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨51⟩,

= ⟨1234⟩⟨2345⟩⟨51⟩ − ⟨1234⟩⟨3451⟩⟨25⟩ − ⟨5123⟩⟨2345⟩⟨14⟩.
(3.2.20)

This quantity will also play a role for non-MHV amplitudes. The second equality

can be proved using (2.1.32), (2.1.33), and (2.1.27)

N5 = ⟨1234⟩⟨3451⟩⟨35⟩⟨24⟩
⟨34⟩

− (⟨1234⟩⟨53⟩ + ⟨5123⟩⟨43⟩)(⟨4512⟩⟨43⟩ + ⟨3451⟩⟨42⟩)
⟨34⟩

,

= −(⟨1234⟩⟨4512⟩⟨35⟩ + ⟨5123⟩⟨4512⟩⟨34⟩ + ⟨5123⟩⟨3451⟩⟨24⟩).

(3.2.21)

Equation (3.2.20) then follows from noting that N5 is invariant under cyclic permuta-

tions. Hence, the five-point MHV amplitude has the following form in momentum
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Figure 3.7: On-shell diagram for a six-point MHV amplitude. This
diagram needs to be summed over all permutations of
{2, 3, 4}.

twistor space:

M5,2(1−, 2+, 3+, 4−, 5+) = ⟨14⟩∏
a⟨a a+1⟩∏b<c⟨bc⟩

× (⟨1234⟩⟨2345⟩⟨51⟩−⟨1234⟩⟨3451⟩⟨25⟩−⟨2345⟩⟨5123⟩⟨14⟩) .

(3.2.22)

Six-point

The six-point MHV amplitude M6,2(1−, 2+, 3+, 4+, 5−, 6+) can be obtained by sum-

ming the diagram shown in Figure 3.7 over permutations of legs {2, 3, 4}. As before,

other helicity arrangements can be obtained by relabelling. Using the technique

described in section 3.1.2, we obtain the C-matrix

C̃ =
 1 −α14 −α11α14 −α10α11α14

−α8α13 0 −α8α11α12 −α8α10(α9 + α11α12)

−α7α10α11α14 0

1 − α7α8α10(α9 + α11α12) −α8

.

(3.2.23)

We then gauge-fix using

Gfix = ∆

1 − α7α8α10(α9 + α11α12) α7α10α11α14

α8α13 1

 , (3.2.24)
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and the Jacobian associated with closed cycles is

JC = ∆−1 = (1 − α10α7α8 (α9 + α11(α12 + α13α14))) . (3.2.25)

This leads to the C-matrix

C = GfixC̃ =
1 −∆α14 (1 − α7α8α10(α9 + α11α12)) −∆α11α14(1 − α7α8α9α10)

0 −∆α8α13α14 −∆α8α11(α12 + α13α14)

−∆α10α11α14 0 −∆α7α8α10α11α14

−∆α8α10 (α9 + α11(α12 + α13α14)) 1 −∆α8

.

(3.2.26)

The bracket factors from the vertices are

[47] = α7[45],

⟨75⟩ = ⟨45⟩,

[2 15] = 1
α14

[21],

[3 16] = 1
α11α14

([31] − α14[32]) ,

= − 1
(36) ([31](16) + [32](26)) .

(3.2.27)

To obtain a Grassmannian integral formula, some useful combinations of edge vari-

ables are given in terms of various minors as

d2×6C

GL(2) = ∆6α4
8α2

10α
3
11α

4
14

14∏
i=7

dαi,

6∏
i=1

(i i + 1) = ∆6α7α
5
8α9α

3
10α

4
11α12α13α

5
14,

(16) = −∆α8,

(26) = ∆α8α14,

(36) = ∆α8α11α14,

(45) = −∆α10α11α14,

(46) = ∆α8α10α11α14.

(3.2.28)
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After collecting all the terms, the on-shell diagram in Figure 3.7 evaluates to

D6,2 =
∫ 14∏

i=7

(
dαi

α2
i

)
α9α12α13α7

α8α10α11α2
14

[45]⟨45⟩[12] ([31](16) + [32](26))
(36)

× J 3
Cδ(4|14)(C · λ̃)δ8(λ · C⊥),

=
∫ d2×6C

GL(2)
δ(4|14)(C · λ̃)δ8(λ · C⊥)

∆9α7α7
8α9α5

10α
6
11α12α13α8

14

[45]⟨45⟩[12] ([31](16) + [32](26))
(36) ,

=
∫ d2×6C

GL(2)
δ(4|14)(C · λ̃)δ8(λ · C⊥)∏6

i=1(i i + 1)
[45]⟨45⟩[12] ([31](16) + [32](26))

(36)(45)(64)(26) .

(3.2.29)

The Grassmannian integral can then be evaluated to give the spinorial expression

D6,2 = ⟨15⟩
∏
a<b

1
⟨ab⟩

[45][12][3|1 + 2|6⟩⟨25⟩⟨35⟩⟨24⟩⟨13⟩⟨14⟩. (3.2.30)

Finally, the six-point amplitude can be recovered by summing over the six permuta-

tions of legs 2, 3 and 4:

M6,2(1−, 2+, 3+, 4+, 5−, 6+) =
∑

P(2,3,4)
D6,2, (3.2.31)

which is the BGK form of the MHV gravity amplitude [111].

Equation (3.2.31) can be simplified by using momentum conservation to eliminate

the square brackets {[23] , [34] , [42] , [56] , [61] , [15]}, and then using the Schouten

identity to eliminate the corresponding angle brackets. These are the brackets that

transform into each other (or not at all) when we carry out the permutation sum.

We are left with the following sum:

M6,2(1−, 2+, 3+, 4+, 5−, 6+) = ⟨15⟩
∑

P(2,3,4)

[12][53][64]⟨13⟩⟨14⟩⟨52⟩⟨54⟩⟨62⟩⟨63⟩∏
a<b⟨ab⟩

.

(3.2.32)

Each of the six terms can be translated into a product of 6-brackets using (2.1.31).

However, if we first exchange 3 ↔ 6 (using the permutation symmetry of the

amplitude), this removes all square brackets of the form [a a+2] and also ensures

maximum cancellation of angle 2-brackets between numerator and denominator. This

leads to the same compact twistor expression found in [27], which can be expressed
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as

M6,2(1−, 2+, 3+, 4+, 5−, 6+) = ⟨15⟩ N6∏
a⟨a a+1⟩∏b<c⟨bc⟩

, (3.2.33)

with

N6 = ⟨123|I|456⟩⟨234|I|561⟩⟨345|I|612⟩

+ ⟨123|I|456⟩⟨5612⟩⟨2345⟩⟨14⟩⟨36⟩

+ ⟨234|I|561⟩⟨6123⟩⟨3456⟩⟨25⟩⟨41⟩

+ ⟨345|I|612⟩⟨1234⟩⟨4561⟩⟨36⟩⟨52⟩

+ ⟨1234⟩⟨3456⟩⟨5612⟩⟨14⟩⟨25⟩⟨36⟩

+ ⟨2345⟩⟨4561⟩⟨6123⟩⟨25⟩⟨36⟩⟨41⟩.

In [27], Hodges conjectured that the structure of (3.2.33) can be extended to all

gravitational MHV amplitudes.

3.2.2 NMHV

In this section, we will use the on-shell diagram recursion to compute NMHV amp-

litudes in N = 7 supergravity. As a warm-up, we first consider the 5-point NMHV

amplitude. Although this is just the parity conjugate of an MHV amplitude, con-

verting it to momentum twistor space reveals interesting structure which extends to

higher points, notably R-invariants analogous to the building blocks for non-MHV

amplitudes in N = 4 SYM. We then go on to compute the 6-point NMHV amplitude.

Unlike MHV amplitudes, the on-shell diagrams for non-MHV amplitudes correspond

to residues of top-forms in the Grassmannian (this was previously observed in N = 4

SYM in [112–114] and N = 8 supergravity in [35]).

Another difference compared to MHV amplitudes is that we do not use globally

defined momentum twistors to describe non-MHV amplitudes above 5-points. In

particular, for the 6-point NMHV amplitude we split the on-shell diagrams into three

sets and define momentum twistors with respect to a different ordering of external

momenta in each set, analogous to defining local coordinates on different patches of
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Figure 3.8: On-shell diagram for a 5-point NMHV amplitude. The
full amplitude is recovered by summing over 3 ↔ 4.

a manifold. Although this approach is unconventional, it has two important pay-offs.

Firstly, the amplitudes can be expressed in terms of R-invariants similar to those

found a 5-points. Secondly, the cancellation of spurious poles becomes completely

transparent.

5pt MHV

We will begin by computing the 5-point NMHV amplitude M5,3(1−, 2+, 3−, 4−, 5+),

which can be obtained from the on-shell diagram in Figure 3.8 by summing over

3 ↔ 4. Using the technique in section 3.1.2 we obtain the C-matrix

C̃ =


1 −α6 −α6α7 0 0

0 −α6α8α9 1 − α6α7α8α9 −α8 0

−α10α11 0 0 1 −α10

 . (3.2.34)

This can be put in canonical form using the GL(3) transformation

Gfix = ∆


1 − α6α7α8α9 α6α7 α6α7α8

α8α10α11 1 α8

α10α11(1 − α6α7α8α9) α6α7α10α11 1 − α6α7α8α9

 , (3.2.35)

where the Jacobian associated with closed cycles is

JC = ∆−1 =
(
1 − α6α7α8(α9 + α10α11)

)
. (3.2.36)
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The gauge-fixed C-matrix is then given by

C =


1 −∆α6 0 0 −∆α6α7α8α10

0 −∆α6α8(α9 + α10α11) 1 0 −∆α8α10

0 −∆α6α10α11 0 1 −∆α10(1 − α6α7α8α9)

 . (3.2.37)

The bracket factors from the vertices are

⟨13 4⟩ = 1
α10

⟨54⟩

[27] = α7[23]

⟨73⟩ = ⟨23⟩.

(3.2.38)

To derive a Grassmannian integral formula the following relations are useful:

d3×5C

GL(3) = ∆5α3
6α2

8α3
10

11∏
i=7

αi,

5∏
i=1

(i i+1 i+2) = ∆5α6α7α
2
8α3

10,

(145)(234)
(245) = −∆,

(235)
(234) = −α10,

(245) = −∆α6α8α10.

(3.2.39)

Using these relations, the diagram in Figure 3.8 evaluates to

D5,3 =
∫ ( 11∏

i=6

dαi

α2
i

)
δ(6|21)(C ·λ̃)δ4(λ·C⊥)

α6α8α10

α7α9α11

α10
⟨54⟩[23]⟨23⟩J 3

C ,

=
∫ d3×5C

GL(3)
⟨54⟩[23]⟨23⟩

∆8α6
6α2

7α5
8α9α7

10α11
δ(6|21)(C ·λ̃)δ4(λ·C⊥),

=
∫ d3×5C

GL(3)δ(6|21)(C ·λ̃)δ4(λ·C⊥) ⟨54⟩[23]⟨23⟩∏5
i=1(i i + 1 i + 2)(235)(145)(245) ,

= [25]
∫ d3×5C

GL(3)δ(6|21)(C ·λ̃|η)δ4(λ·C⊥)⟨54⟩⟨23⟩(124)(135)∏
a<b<c(abc) ,

(3.2.40)

where we have used that [23]/[25] = (145)/(134). This relation can be derived by
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noting that for the canonical choice

C =


1 c12 0 0 c15

0 c32 1 0 c35

0 c42 0 1 c45

 , (3.2.41)

the bosonic delta functions δ6
(
C · λ̃

)
imply that ca2 = [5a] / [25] and ca5 = [a2] / [25],

so (abc) = ϵabcmn[mn]/[25]. Plugging this into (3.2.40) and summing over 3 ↔ 4

finally gives

M5,3 = [25]∏
i<j[ij] ([35][24]⟨23⟩⟨54⟩ − [45][23]⟨24⟩⟨53⟩) δ(0|7)

(
[51]η2 + cyclic

⟨34⟩

)
.

(3.2.42)

If we pull out a helicity-dependent prefactor, (3.2.42) can alternatively be written as

M5,3(1−, 2+, 3−, 4−, 5+) = [25] 1
⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨51⟩

M̂5, (3.2.43)

where M̂5 is little-group invariant which has the following form in momentum twistor

space:

M̂5 = N5R
(7)
135

D5
, (3.2.44)

where R(7) is an N = 7 R-invariant defined in (2.2.12), N5 is defined in (3.2.20), and

D5 =
5∏

a=1
⟨a−2 a−1 a|I|a a+1 a+2⟩. (3.2.45)

Note that D5 is proportional to the product of five spinor brackets [a a+2] using

(2.1.31) and (2.1.33). Neither R(7) nor D5 are individually permutation invariant but

their ratio should nevertheless have the S5 symmetry since we pulled out the helicity-

dependent part of the amplitude in (3.2.43). In N = 4 SYM, R-invariants form the

building blocks for all tree-level non-MHV amplitudes, so it is interesting to see them

appear in supergravity amplitudes. In [115], N = 8 supergravity amplitudes were

constructed by squaring N = 4 R-invariants, but in this paper we define R-invariants

which are more intrinsic to supergravity. Note that both R(4) and R(7) are invariant

under the dual conformal group SU(4), but R(4) have additional GL(1) symmetry
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which makes them projective and leads to an elegant geometric interpretation of

NMHV amplitudes in N = 4 SYM as volumes of polytopes in CP4 [19]. Note that

M̂5 in (3.2.44) is also GL(4) invariant, so it would be interesting explore its geometric

interpretation.

Writing the remaining spinor bracket in (3.2.43) in terms of a twistor bracket using

(2.1.31), we get

M5,3(1−, 2+, 3−, 4−, 5+) = R
(7)
135

[PT(5)]2
⟨123|I|451⟩⟨34⟩N5

D5
, (3.2.46)

where

[PT(n)] = Πn
a=1 ⟨a a+1⟩ (3.2.47)

and n + 1 is identified with particle 1. We will find similar structure for 6-point

NMHV amplitudes.

3.2.3 6pt NMHV

In this subsection, we will consider the amplitude with alternating helicities

M6,3(1−, 2+, 3−, 4+, 5−, 6+). Any other can then be obtained by a relabelling. Using

the recursion in (3.1.10), this amplitude can be obtained from four on-shell diagrams

summed over permutations to give a total of 13 terms. It is then natural to combine

them into 9 terms, each with a common pole of the form sabc = (pa + pb + pc)2 2.

In this way we obtain a superamplitude whose graviton component is equivalent to

the spinorial expression obtained in [27] up to a relabelling. In the next subsection

we obtain a new formula for the 6-point NMHV amplitude in terms of momentum

twistors defined with respect to different orderings of the external momenta, which

reveals surprising mathematical structure and provides a systematic understanding

of spurious pole cancellation.

Since N = 7 on-shell diagrams are labelled with arrows encoding the helicities of the

superfields, we will sometimes have to use non-cyclic labels for the external legs even

2This definition differs by a factor of 2 from that used in the other chapters of this thesis to
follow previous conventions for spinor expressions for SYM and supergravity.
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2

61

5

34

D3+5
6,3 =

Figure 3.9: On-shell diagram combining a 3-point MHV amplitude
with a 5-point MHV amplitude. This diagram needs to
be summed over the permutations 2 ↔ 4 and 3 ↔ 5.

5

1 6

2

4 3

D5+3
6,3 =

Figure 3.10: On-shell diagram combining a 5-point MHV amplitude
with a 3-point MHV amplitude. This diagram needs to
be summed over the permutations 2 ↔ 4 and 3 ↔ 5.

before we sum over permutations. Our description of how to evaluate the on-shell

diagrams will be more schematic in this section. For more details, see Appendix A.

3+5 and 5+3 Diagrams

We begin with the diagrams in Figures 3.9 and 3.10, which encode factorisations

into 3-point and 5-point subamplitudes. Using the methods described in section

3.1.2, they can be written compactly as

D3+5
6,3 = Res

(612)=0

∫
d3×6Ω7

⟨34⟩[34]⟨56⟩[12]
(346)(256)(356)

(123)
(124) ,

D5+3
6,3 = Res

(234)=0

∫
d3×6Ω7

⟨34⟩[34]⟨56⟩[12]
(346)(256)(356)

(123)
(124) ,

(3.2.48)
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where

d3×6Ω7 = d3×6C

GL(3)
δ(6|21)(C · λ̃|η)δ(6)(λ · C⊥)∏6

a=1(a a + 1 a + 2) . (3.2.49)

These diagrams need to be summed over the permutations 2 ↔ 4 and 3 ↔ 5. In

each case it can be seen that one of these permutations only affects the integrand

whilst the other also changes which residue we take.

The Grassmannian integrals in (3.2.48) can be evaluated using a clever choice of

gauge [7]. For example, to evaluate D3+5
6,3 we multiply by (612) and choose

C =

λ1 λ2 λ3 λ4 λ5 λ6

0 0 [45] [53] [34] 0

 . (3.2.50)

Calculating the required minors and substituting into the first line of (3.2.48) then

gives

D3+5
6,3 = ⟨34⟩⟨56⟩[12] δ(0|7) ([45]η3 + [53]η4 + [34]η5)

s345⟨12⟩[35][34]⟨61⟩⟨26⟩[3|4 + 5|6⟩[4|5 + 3|6⟩[5|3 + 4|6⟩[5|3 + 4|2⟩
, (3.2.51)

where [a|b + c|d⟩ = [ab]⟨bf⟩ + [ac]⟨cd⟩. Terms of this form correspond to spurious

poles which must cancel out in the amplitude. The full expression containing an s345

pole is obtained by summing over the exchange 3 ↔ 5:

D(345)
6,3 = [12] δ(0|7) ([45]η3 + [53]η4 + [34]η5)

s345⟨12⟩⟨26⟩⟨61⟩[35][3|4 + 5|6⟩[4|5 + 3|6⟩[5|3 + 4|6⟩

×
(

⟨34⟩⟨56⟩
[34][5|3 + 4|2⟩

− ⟨54⟩⟨36⟩
[54][3|5 + 4|2⟩

)
,

(3.2.52)

where the sign which comes from exchanging of 3 ↔ 5 in the fermionic delta function

is cancelled by the sign which comes from anticommuting the corresponding Φ−

superfields. The term with an s235 pole can be obtained by applying the permutation

2 ↔ 4 to (3.2.52).

Similarly, for D5+3
6,3 , we choose

C =

 λ1 λ2 λ3 λ4 λ5 λ6

[56] 0 0 0 [61] [15]

 , (3.2.53)
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1 6

2

3 4

5D4+4
6,3 =

Figure 3.11: On-shell diagram combining two 4-point amplitudes
with alternating helicities. This diagram needs to be
summed over the permutations 2 ↔ 4 and 3 ↔ 5.

which gives

D(5+3)
6,3 = [34]⟨56⟩[12] δ(0|7) ([56]η1 + [61]η5 + [15]η6)

s561[61][15][56]⟨43⟩⟨24⟩[1|5 + 6|2⟩[1|5 + 6|3⟩[1|5 + 6|4⟩[5|6 + 1|2⟩
.

(3.2.54)

The full expression with an s561 pole is then obtained by summing over the permuta-

tion 2 ↔ 4 and is given by

D(561)
6,3 = ⟨56⟩ δ(0|7) ([56]η1 + [61]η5 + [15]η6)

s561[61][15][56]⟨24⟩[1|5 + 6|2⟩[1|5 + 6|3⟩[1|5 + 6|4⟩

×
(

[12][34]
⟨43⟩[5|6 + 1|2⟩

− [14][32]
⟨23⟩[5|6 + 1|4⟩

)
.

(3.2.55)

The term with a pole in s361 is then obtained by applying the permutation 3 ↔ 5.

4+4 Diagrams

These diagrams encode factorisations into 4-point subamplitudes. In the N = 7

formalism, there are two inequivalent types in which the 4-point amplitudes either

have negative helicities opposite or adjacent to each other, as depicted in Figures 3.11

and 3.12, respectively. Using the methods described in section 3.1.2, the diagram in

Figure 3.11 evaluates to

D(4+4)
6,3 = Res

(456)=0

∫
d3×6Ω7

[13][45]⟨23⟩⟨46⟩
(236)(246)2 . (3.2.56)
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1 6

2

4 3

5D4̃+4̃
6,3 =

Figure 3.12: On-shell diagram combining two 4-point amplitudes
with split helicities. This diagram does not require
any permutation sums since it is invariant under 2 ↔ 4
and 3 ↔ 5.

To find a spinor expression for this diagram, we choose

C =

 λ1 λ2 λ3 λ4 λ5 λ6

[23] [31] [12] 0 0 0

 , (3.2.57)

which gives

D(4+4)
6,3 ≡ D(123)

6,3 ,

= − [13][45]⟨23⟩⟨46⟩ δ(0|7) ([23]η1 + [31]η2 + [12]η3)
s123[1|2 + 3|4⟩[12][45]⟨56⟩[23][3|1 + 2|6⟩[31]2⟨46⟩2[1|2 + 3|6⟩

,

= ⟨23⟩[45] δ(0|7) ([23]η1 + [31]η2 + [12]η3)
s123[12][23][31]⟨46⟩⟨45⟩⟨56⟩[1|2 + 3|4⟩[1|2 + 3|6⟩[3|1 + 2|6⟩

.

(3.2.58)

The final diagram in Figure 3.12 is non-planar. This is a consequence of using the

BCFW bridge in (3.1.11) with its fixed helicity assignments . The diagram is invariant

under the permutations 2 ↔ 4 and 3 ↔ 5. Although this is not obvious from the

Grassmannian integral formula, it will be manifest in the spinorial expression. The

Grassmannian integral formula for this diagram is

D(4̃+4̃)
6,3 = Res

(356)=0

∫
d3×6Ω7

[24]⟨24⟩[35]⟨35⟩(123)(456)
(146)(245)(236)(124)(356) . (3.2.59)

To evaluate the Grassmannian integral, choose

C =

 λ1 λ2 λ3 λ4 λ5 λ6

[24] [41] 0 [12] 0 0

 , (3.2.60)
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which gives

D(4̃+4̃)
6,3 ≡ D(124)

6,3 ,

= [35]⟨24⟩ δ(0|7) ([24]η1 + [41]η2 + [12]η4)
s124[12][14]⟨56⟩⟨36⟩[1|2 + 4|3⟩[1|2 + 4|5⟩[4|1 + 2|6⟩[2|1 + 4|6⟩

.
(3.2.61)

From this spinor expression, it is clear that this term is invariant under the

permutations 2 ↔ 4 and 3 ↔ 5.

The full amplitude is given by

M6,3(1−, 2+, 3−, 4+, 5−, 6+) =
∑
2↔4
3↔5

(
D3+5

6,3 + D4+4
6,3 + D5+3

6,3

)
+ D4̃+4̃

6,3 . (3.2.62)

Combining terms with common sabc poles gives a sum over nine terms, where we

denote the term with a pole in sabc as D(abc)
6,3 .

∑
2↔4
3↔5

D3+5
6,3 = D(345)

6,3 + D(325)
6,3 ,

∑
2↔4
3↔5

D4+4
6,3 = D(123)

6,3 + D(143)
6,3 + D(125)

6,3 + D(145)
6,3 ,

∑
2↔4
3↔5

D5+3
6,3 = D(561)

6,3 + D(361)
6,3 ,

D4̃+4̃
6,3 = D(124)

6,3 .

(3.2.63)

3.2.4 Local Coordinates & Momentum Twistors

We will now rewrite the expressions obtained in the previous subsection in terms of

momentum twistors. For concreteness, let us first consider the formula for the twisted

on-shell diagram in (3.2.61). Using (2.1.31), (2.1.36), and (2.1.27), the fermionic

delta function can be written as follows:

δ(0|7) ([12]η4+[41]η2+[24]η1) =
δ(0|7)

(
⟨34⟩ (⟨6123⟩χ5+cyc) + ⟨53⟩ (⟨6123⟩χ4+cyc)

)
(⟨61⟩⟨12⟩⟨23⟩⟨34⟩⟨45⟩)7 .

(3.2.64)

Compared to the R-invariants which appear in non-MHV amplitudes of N = 4

SYM, this expression is complicated and difficult to interpret geometrically. A more
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illuminating form can be obtained by defining momentum twistors with respect

to permuted momenta. Note that we are not actually permuting momenta of the

amplitude, so this should be thought of as a passive transformation as we will spell

out below. In general, this transformation acts like a permutation of momentum

labels, a linear transformation of region momenta, and a non-linear transformation

of twistors

pa|P = pP(a),

(xa − xa+1)|P = pa|P = pP(a),

Za|P = (λa, xa · λa)|P =
(
λP(a), xa|P · λP(a)

)
, (3.2.65)

where the first line is used to express the right hand side of the other two lines. For

concreteness, let P act on momentum labels as follows:

P =

 1 2 3 4 5 6

1 2 5 6 3 4

 . (3.2.66)

Using (3.2.65), the fermionic delta function in (3.2.64) takes a much simpler form

δ(0|7) ([12]η4 + [41]η2 + [24]η1) = δ(0|7) ([61]η2 + [12]η6 + [26]η1)
∣∣∣
P

,

= δ(0|7)(⟨5612⟩χ3 + cyc.)
(⟨56⟩⟨61⟩⟨12⟩⟨23⟩)7

∣∣∣∣∣
P

,
(3.2.67)

which can be written in terms of an R-invariant defined in (2.2.12).

Now let’s consider a spurious pole in appearing in (3.2.61):

[1|2 + 4|5⟩ = −⟨53⟩(⟨24⟩⟨6123⟩ + ⟨32⟩⟨6124⟩) + ⟨23⟩⟨34⟩⟨5612⟩
⟨61⟩⟨12⟩⟨23⟩⟨34⟩

. (3.2.68)

In terms of the momentum twistors defined with respect to the permutation P above,

this also takes a much more compact and geometrical form:

[1|2 + 4|5⟩ = [1|2 + 6|3⟩
∣∣∣
P

= ⟨36⟩⟨5612⟩ + ⟨56⟩⟨6123⟩
⟨56⟩⟨61⟩⟨12⟩

∣∣∣
P

= ⟨612|I|356⟩
⟨56⟩⟨61⟩⟨12⟩

∣∣∣
P

, (3.2.69)

Remarkably, this type of simplification occurs for all of the spurious poles we en-

counter in the six-point NMHV amplitude, which makes their cancellation much
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more transparent, as we show in the next subsection. In Yang-Mills theory, such

cancellations were explained by interpreting the amplitude as the volume of a poly-

tope in momentum twistor space. We therefore expect a similar geometric picture

for gravity, although it will be more complicated for reasons we will now explain.

The main complication is that we cannot simultaneously simplify all on-shell dia-

grams using a global choice of coordinates in momentum twistor space. In order

to make progress, we will use different momentum twistor coordinates for different

on-shell diagrams, analogous to assigning local coordinates on a manifold. In the

present context, local coordinates refer to momentum twistors defined with respect

to a certain permutation of external momenta which we will refer to as a chart,

and the set of on-shell diagrams described by a given chart will be referred to as

a patch 3. The transition functions between different patches are complicated in

general, but can deduced by decomposing the respective permutations into adjacent

transpositions, as we explain in Appendix B. Finally, will refer to the set of all charts

we use to describe a scattering amplitude as an atlas.

The set of all possible charts at n = 6 is the permutation group S6, but we can

quotient by cyclic permutations and the Z2 transformation ( 1 2 3 4 5 6
6 5 4 3 2 1 ), since these

permute momentum twistors in a trivial way, leaving a total of 60 charts. Using a

Python script, we found that at least three charts are needed to describe the 6-point

NMHV amplitude in such a way that all fermionic delta functions can be described

by R-invariants. This boils down to looking for the smallest atlases whose charts

contain all nine 3-tuples (a, b, c) corresponding to the sabc poles in the amplitude4.

There are 32 such atlases. Further insisting that one chart corresponds to the

identity permutation reduces this to four. We will choose one of these four atlases to

demonstrate the relative compactness of the amplitude (the other three atlases lead

to similar results). The charts it contains and the on-shell diagrams in each patch

3To make the analogy to a manifold more precise, we should distinguish between the amplitude
and the underlying geometric object that it describes. Hence, a patch should really be thought of
as a region of the underlying geometric object on which a set of on-shell diagrams is defined.

4Strictly speaking, the chart itself is the inverse of the permutation we need to apply.
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Patch Chart Patch Content Equations
1 123456 561, 345, 123 (3.2.55), (3.2.52), (3.2.58)
2 145236 361, 325, 145 (3.2.55), (3.2.52), (3.2.58)
3 125634 124, 134, 125 (3.2.61), (3.2.58), (3.2.58)

Table 3.1: An atlas for the 6-point NMHV amplitude in momentum
twistor space. The permutation associated with each
chart is listed in the second column. The on-shell dia-
grams in each patch are listed in the third column, and
are labelled by three momenta appearing the correspond-
ing factorisation channel. The final column lists where
the expressions in the third column can be found (some
after applying either 3 ↔ 5 or 2 ↔ 4 or both).

x1|P1
x2|P1

x3|P1

x4|P1
x5|P1

x6|P1

p1

p2

p3

p4

p5

p6

x1|P2
x2|P2

x3|P2

x4|P2
x5|P2

x6|P2

p1

p4

p5

p2

p3

p6

x1|P3
x2|P3

x3|P3

x4|P3
x5|P3

x6|P3

p1

p2

p5

p6

p3

p4

Figure 3.13: Three sets of region momentum variables for the atlas
in Table 3.1.

are summarised in Table 3.1. We will denote the three charts by the permutations

Pi, i ∈ {1, 2, 3}. The region momentum coordinates in each patch are depicted in

Figure 3.13, and the momentum twistors in a generic patch are depicted in Figure

3.14.

To start, let us look at the expressions obtained for the first patch in Table 3.1. In

this case, the momentum twistors are defined with respect to unpermuted momenta

and the three contributions from this patch are given by

D(561)
6,3 = R

(7)
251

[PT(6)]2
⟨456|I|124⟩⟨6123⟩⟨2345⟩ + ⟨612|I|345⟩⟨1234⟩⟨4562⟩
⟨24⟩⟨612|I|456⟩⟨456|I|124⟩⟨245|I|612⟩⟨612|45|I|3⟩

, (3.2.70)

D(345)
6,3 = R

(7)
246

[PT(6)]2
⟨6123⟩ (⟨234|I|256⟩⟨3456⟩ + ⟨36⟩⟨2345⟩⟨2456⟩)

⟨26⟩⟨234|I|456⟩⟨345|I|236⟩⟨456|I|236⟩⟨234|I|256⟩
, (3.2.71)

D(123)
6,3 = R

(7)
214

[PT(6)]2
⟨3456⟩

⟨34⟩⟨46⟩⟨234|I|612⟩⟨346|I|612⟩
. (3.2.72)

We can see that each term contains an R-invariant along with a squared Park-Taylor

factor in the denominator, just as we found for the 5-point NMHV amplitude in
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Pi
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Pi
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Pi
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∣∣
Pi
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∣∣
Pi
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∣∣
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∣∣
Pi
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∣∣
Pi

Z6

∣∣
Pi

Figure 3.14: Definition of momentum twistors from dual variables
on a given patch Pi.

(3.2.46). Furthermore, the remaining terms are written in terms of 4-brackets and

6-brackets defined in (2.1.26), (2.1.29) and (2.1.30). Note that 4-bracket spurious

poles are of the form ⟨a b−1 b b+1⟩ for a+1 ̸= b−1 and a−1 ̸= b+1, while 6-bracket

spurious poles are of the form ⟨a|I|bc|def⟩ or ⟨abc|I|def⟩ where (a, b, c) or (d, e, f)

are non-adjacent. In the next subsection we will see that the structure of the terms

dressing the R-invariants is required by spurious pole cancellation. It would be

interesting to have a more systematic understanding of their structure in terms of

some underlying geometric object.

The second patch in Table 3.1 does not require any additional work. The twistor

expressions are identical to those in the first patch using twistors defined with respect

to a different ordering:

D(361)
6,3 = D(561)

6,3

∣∣∣
P2

, (3.2.73)

D(325)
6,3 = D(345)

6,3

∣∣∣
P2

, (3.2.74)

D(145)
6,3 = D(123)

6,3

∣∣∣
P2

. (3.2.75)



3.2. Applications of N = 7 Recursion 77

Finally, the third patch in Table 3.1 has the following momentum twistor expressions:

D(124)
6,3 = R

(7)
163

[PT(6)]2
⟨26⟩⟨456|I|234⟩⟨5123⟩⟨5613⟩

⟨23⟩⟨56⟩⟨612|I|325⟩⟨612|I|356⟩⟨4|I|23|561⟩⟨4|I|65|123⟩
∣∣∣
P3

,

(3.2.76)

D(134)
6,3 = R

(7)
251

[PT(6)]2
⟨1234⟩⟨4562⟩

⟨24⟩⟨612|I|456⟩⟨612|I|452⟩⟨456|I|214⟩
∣∣∣
P3

, (3.2.77)

D(125)
6,3 = R

(7)
214

[PT(6)]2
⟨4561⟩⟨6234⟩

⟨46⟩⟨234|I|612⟩⟨234|I|614⟩⟨612|I|436⟩
∣∣∣
P3

. (3.2.78)

In summary, it seems natural to describe supergravity amplitudes using momentum

twistor coordinates which are defined with respect to different permutations of

external momenta. This leads to compact expressions in terms of R-invariants

dressed with rational functions of 4-brackets and 6-brackets which have geometric

interpretations in terms of intersections of lines and planes in momentum twistor

space. As we will demonstrate in the next subsection, this point of view will also

make the cancellation of spurious poles in the 6-point NMHV amplitude much

more transparent, suggesting a geometric interpretation analogous to the polytope

picture discovered for Yang-Mills in [18]. Given that each pole of the 6-point NMHV

amplitude can be written as either a 4-bracket or a 6-bracket, one may ask if this

property holds for all possible poles one can write down at six points. In [1] an

algorithm was developed to answer this question, finding the simplest possible form

for all poles at six points. It was found that some poles must be written as a sum

of terms, and cannot be written as a single 4-bracket or 6-bracket. Hence it is

non-trivial that the pole structure of the 6-point NMHV amplitude can be written

in a simple geometrical way, and we take this as further evidence that there is an

underlying geometric object which encodes gravity amplitudes.

3.2.5 Spurious Pole Analysis & Cancellation

As first noted in [27], there are 18 different spurious poles in the 6-point NMHV

amplitude. Each spurious pole appears twice, giving a total of 36 occurrences. Each
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of the four diagram topologies has a different set of spurious poles associated with it.

These cancel in pairs as shown in Figure 3.15. In principle, there are 18 cancellations

to check, however the permutations used to simplify the twistor expressions can

also be used to relate all the cancellations which appear on the same edge in

Figure 3.15, leaving only six cases to check. We label a given cancellation using the

notation (j|j′), where the cancellation takes place between two bubbles in Figure

3.15 labelled by i × j and i′ × j′. The integers i and i′ indicate the number of times

the j-type and j′-type poles occur, respectively. Note that j and j′ are in 1-to-1

correspondence with the on-shell diagram topologies denoted X + Y in Figure 3.15,

so these two types of labels can be used interchageably when referring to spurious

poles. The six cancellations can therefore be labelled (5|5̄), (5|3), (5|4), (3|3), (5̄|3)

and (5̄|4). The (5̄|3) and (5̄|4) cancellations can additionally be related to (5|3) and

(5|4) by parity, so there are actually only four cases to check.

We have checked the four cases (5|5̄), (5|3), (5|4), (3|3) analytically using the local

coordinates defined in the previous subsection, and in each case the calculation is

manifestly supersymmetric and reduces to an application of the Schouten identity,

as we illustrate for (5|5̄) below. This represents major progress, since in previous

work the cancellation of spurious poles was only checked numerically for the graviton

component of the superamplitude due to the complexity of the spinorial expressions

[27]. The cancellations we observe are also very reminiscent of those observed for

Yang-Mills amplitudes in [18], which ultimately lead to a new geometric interpret-

ation for NMHV amplitudes as volumes of polytopes. This suggests that a similar

interpretation may hold for gravitational amplitudes. We will now demonstrate the

(5|5̄) spurious cancellation in Figure 3.15 using momentum twistors. To start with,

consider the [5|3+4|2⟩ pole shared by D(561) and D(345) given in (3.2.70) and (3.2.71),

or equivalently (3.2.55) and (3.2.52). Recall that these expressions arise from 5 + 3

and 3 + 5 on-shell diagrams, so are associated with the corresponding bubbles in
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X + Y
i× j

k

5 + 3 3 + 5

4 + 4

4̃ + 4̃

2× 5 2× 5̄

4× 3

1× 4

4 4

4 4

44

2
2

2
2

2 2

Figure 3.15: Spurious pole structure of the N = 7 6-point NMHV
amplitude. The legend on the lower left represents
an X + Y diagram topology containing i terms in the
permutation sum, each with j spurious poles. The
edge represents k pairs of spurious poles which cancel
against spurious poles appearing on the other end of
the edge.

Figure 3.15. Using momentum twistors we can rewrite

[5|3 + 4|2⟩ = − ⟨4562⟩
⟨45⟩⟨56⟩

, (3.2.79)

so it is clear that we are interested in the behaviour as ⟨4562⟩ → 0. This can be

viewed as the limit where Z2 approaches the plane defined by {Z4, Z5, Z6}, denoted

(456). In this limit, the remaining twistors Z1 and Z3 become proportional. To see

this, consider expanding in the basis {Z4, Z5, Z6, Z∗}, where Z∗ is an independent

reference twistor:

Z1 = a1Z4 + b1Z5 + c1Z6 + d1Z∗,

Z2 = a2Z4 + b2Z5 + c2Z6 + d2Z∗,

Z3 = a3Z4 + b3Z5 + c3Z6 + d3Z∗.

(3.2.80)

The limit ⟨4562⟩ → 0 corresponds to taking d2 → 0. In this limit, we can always write

d3⟨ijk1⟩ = d1⟨ijk3⟩ where {1, 3} /∈ {i, j, k}, since we can neglect any contribution

from the (456) plane. Computing the residue of D(561) and D(345) of the pole ⟨4562⟩
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then gives

P ≡ Res
⟨4562⟩→0

(
D(561)

6,3 + D(345)
6,3

)
,

= ⟨6123⟩
[PT(6)]2 ⟨24⟩⟨26⟩2

(
δ(0|7) (⟨4561⟩χ2 + ⟨5612⟩χ4 + ⟨6124⟩χ5 + ⟨1245⟩χ6) ⟨2345⟩

⟨5612⟩⟨4612⟩⟨4512⟩2⟨4561⟩2 (⟨4612⟩⟨35⟩ + ⟨5612⟩⟨43⟩)

+ δ(0|7) (⟨3456⟩χ2 + ⟨5623⟩χ4 + ⟨6234⟩χ5 + ⟨2345⟩χ6)
⟨2345⟩⟨2346⟩⟨2356⟩⟨3456⟩2 (⟨2345⟩⟨63⟩ + ⟨3456⟩⟨23⟩)

)
,

= ⟨6123⟩
[PT(6)]2 ⟨24⟩⟨26⟩2

(
δ(0|7) (⟨4563⟩χ2 + ⟨5632⟩χ4 + ⟨6324⟩χ5 + ⟨3245⟩χ6) ⟨2345⟩

⟨5632⟩⟨4632⟩⟨4532⟩2⟨4563⟩2 (⟨4632⟩⟨35⟩ + ⟨5632⟩⟨43⟩)

+ δ(0|7) (⟨3456⟩χ2 + ⟨5623⟩χ4 + ⟨6234⟩χ5 + ⟨2345⟩χ6)
⟨2345⟩⟨2346⟩⟨2356⟩⟨3456⟩2 (⟨2345⟩⟨63⟩ + ⟨3456⟩⟨23⟩)

)
,

= −⟨6123⟩δ(0|7) (⟨3456⟩χ2 + ⟨5623⟩χ4 + ⟨6234⟩χ5 + ⟨2345⟩χ6)
[PT(6)]2 ⟨24⟩⟨26⟩2⟨2345⟩⟨2346⟩⟨2356⟩⟨3456⟩2

×
(

1
(⟨4632⟩⟨35⟩ + ⟨5632⟩⟨43⟩) − 1

(⟨2345⟩⟨63⟩ + ⟨3456⟩⟨23⟩)

)
,

(3.2.81)

. Hence we see that

P ∼ ⟨2345⟩⟨63⟩ + ⟨3456⟩⟨23⟩ + ⟨6234⟩⟨53⟩ + ⟨5623⟩⟨43⟩ = 0, (3.2.82)

where we used (2.1.27) in the last line. Conveniently, all factors of d1 and d3 cancel

in the fraction. We can therefore see that there is no singularity as ⟨4562⟩ → 0. The

rest of the spurious poles cancel in a similar way. In summary, we find that using

momentum twistors defined with respect to different orderings of external momenta

provides a very simple and systematic way to prove spurious poles cancelleation in

the 6-point NMHV amplitude of N = 7 supergravity.

3.3 Remarks

Motivated by the beautiful geometric description of scattering amplitudes in planar

N = 4 SYM, we have tried to follow similar steps for supergravity amplitudes. In

particular, we first developed an on-shell diagram recursion for N = 7 supergravity

which gives rise to formulas for scattering amplitudes in terms of Grassmannian

integrals. This is similar to the on-shell diagram formalism for N = 8 supergravity
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developed in [30], but in N = 7 there are two supermultiplets so the diagrams

have arrows to indicate helicity flow. The N = 7 recursion also appears to have

fewer terms than N = 8 and automatically incorporates bonus relations for MHV

amplitudes. The price to pay for having fewer diagrams is that they contain more

closed cycles which can become cumbersome to evaluate at high multiplicity, but we

develop a technique to evaluate the diagrams without summing over closed cycles

by using a non-canonical gauge-fixing of the Grassmannian integrals.

Next, we translated our results to momentum twistor space, reproducing Hodges’

results for MHV amplitudes [27] and obtaining new momentum twistor formulas for

non-MHV amplitudes. These formulas are manifestly supersymmetric and written

in terms of N = 7 R-invariants, analogous to the building blocks for non-MHV

amplitudes in N = 4 SYM. For the six-point NMHV superamplitude, this required

defining momentum twistors with respect to three different permutations of the

external momenta, which can be thought of local coordinates in three different

patches. This way of defining momentum twistors was designed to give R-invariants

in each patch, but an unexpected consequence of this definition is that the spurious

poles greatly simplify and their cancellation becomes very simple to demonstrate.

This strongly suggests a geometric interpretation for the cancellation of spurious

poles analogous to N = 4 SYM and is the main result of this chapter.

There are a number of future directions:

• Perhaps the most urgent task is to identify the underlying geometry responsible

for cancellation of spurious poles in supergravity amplitudes. In the context

of gluonic amplitudes, this cancellation was made manifest by interpreting

6-point NMHV amplitudes as polytopes in momentum twistor space [18]. For

supergravity amplitudes, identifying the underlying geometry is more challen-

ging because we are only able to describe it using local momentum twistor

coordinates, which hide the permutation symmetry of the amplitude. Moreover,

the Grassmannian integral formulae for supergravity amplitudes have a more
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complicated form than planar N = 4 SYM. It would be interesting to adapt

recent work on the geometry of differential forms with non-logarithmic singu-

larities [116] to supergravity. It would also be interesting to look for geometric

structure in higher-point NMHV amplitudes. New n-point formulas recently

obtained in [34] may be useful for this purpose.

• In N = 4 SYM, planar amplitudes are dual to null polygonal Wilson loops [117–

119]. In particular, R-invariants correspond to propagators connecting edges

of the Wilson loop [120, 121]. Since R-invariants also appear to play a role

in supergravity amplitudes, it would be interesting to look for some analogue

of the amplitude/Wilson loop duality in supergravity. This was previously

found to hold at four points in [122]. Our results suggest this should extend

to five points, but at higher points one may need to consider multiple Wilson

loops for non-MHV amplitudes, one associated with each momentum twistor

coordinate patch (see Figure 3.13).

• Another interesting direction would be to extend the methods developed in

this paper to loop amplitudes. When loop amplitudes of planar N = 4 SYM

are represented in momentum twistor space, they can be expressed in terms

of chiral pentagon integrals [95], which were recently proposed to be building

blocks for a dual Amplituhedron [123]. It would be interesting to see if such

integrals can be used to describe supergravity amplitudes. While it is not

yet clear how to compute loop-level supergravity amplitudes using on-shell

diagrams, they can be used to compute leading singularities, such as those

which were recently studied at 2-loops [124]. This is briefly explored in appendix

C.

• The closed cycles in the N = 7 on-shell diagrams may also have interesting

properties in their own right, meriting further study. Recent work looking

at the UV pole structure of N < 4 SYM found that they were encoded

within the closed cycle structure of on-shell diagrams for the associated leading
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singularities [125]. It may be that a similar study of supergravity can offer

insights into its own pole structure.

• Finally, it would be interesting to apply the approach we have developed to su-

pergravity and conformal supergravity with N = 4 supersymmetry. Although

these theories have less supersymmetry and the latter is not unitary, their

scattering amplitudes have interesting properties and have been studied from

various points of view such as twistor string theory [126–130] and the double

copy [131–133]. The amount of supersymmetry in these theories should make

it possible to write their amplitudes in terms of the same R-invariants that

appear in N = 4 SYM.

In summary, the study of gravitational amplitudes has revealed many surprises and

it seems likely that a more fundamental understanding of their structure remains to

be found.



Chapter 4

Colour-Kinematics in AdS

This chapter focuses on Yang-Mills theory in AdS, exploring how colour-kinematics

generalises away from flat space. We start with section 4.1 reviewing some basic

properties of the AdS amplitudes we are calculating that will be relevent when

adapting flat space colour-kinematics duality. We then explore how this changes the

kinematic Jacobi relations and BCJ relations in section 4.1.1. We then provide an

introduction to the use of Witten diagrams to calculate amplitudes, summarising the

various building blocks and using them to build the 3 and 4pt Yang-Mills amplitudes

4.2. In section 4.2.3 these are specialised to helicity amplitudes using the spinors

introduced in section 2.3.1. Finally we use Ward identities to reconstruct the full

correlation functions from their transverse parts in 4.3 before concluding with an

outlook in section 4.4.

4.1 Review of AdS Amplitudes

We start by defining the following AdS analogue of Mandelstam variables [59]

S = (k12 + ks) (k34 + ks) ,

T = (k14 + kt) (k23 + kt) ,

U = (k13 + ku) (k24 + ku) ,

(4.1.1)
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where ks = |k1 + k2|, kt = |k1 + k4|, ku = |k1 + k3| and kab = ka +kb with ka = |ka|.

Unlike in flat space, these variables do not add to zero for massless external states.

Their sum is instead given by

S + T + U = ξ,

where ξ = E
(
E + ks + kt + ku

)
,

(4.1.2)

with E = k1 + k2 + k3 + k4. In the flat space limit discussed in section 2.3.1, ξ → 0

and the Mandelstam variables reduce to their standard definitions after using 4-

momentum conservation. Note that our treatment of the double copy in AdS will

have some similarities to the double copy of massive amplitudes in flat space, where

one also has S + T + U ̸= 0 [134, 135].

4.1.1 Colour-Kinematics in AdS

The starting point for AdS colour-kinematics is analogous to the flat space case

discussed in section 2.4. Using Witten diagrams, one finds that colour-ordered

YM amplitudes in AdS4 can be written in the form (2.4.5) using the generalised

Mandelstam invariants in (4.1.1)

⟨j1j2j3j4⟩ = ns

S
− nt

T
,

⟨j1j3j2j4⟩ = nt

T
− nu

U
,

(4.1.3)

where the kinematic numerators are again linked by the permutation operations

in (2.4.6) and (2.4.7). Using these relations among kinematic numerators we can

also show that colour-ordered AdS amplitudes obey a photon decoupling relation

analogous to that of flat space amplitudes:

⟨j1j2j3j4⟩ + ⟨j1j3j4j2⟩ + ⟨j1j4j2j3⟩ = 0. (4.1.4)

Unlike in flat space however, in AdS momentum space the kinematic numerators do

not generically add to zero. Instead their sum will be denoted as

Q = ns + nt + nu. (4.1.5)
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Using this equation, we can eliminate nt in (4.1.3) to obtain the following relation

between the colour-ordered AdS amplitudes and kinematic numerators ⟨j1j2j3j4⟩ + Q/T

⟨j1j3j2j4⟩ − Q/T

 =

 1/S + 1/T 1/T

−1/T −1/U − 1/T


 ns

nu

 . (4.1.6)

In flat space, the matrix on the right is not invertible, which is expected since

amplitudes on the left are gauge invariant while numerators on the right are not. In

AdS however, we can invert the matrix to obtain ns

nu

 = 1
ξ

 S(T + U) SU

−SU −U(S + T )


 ⟨j1j2j3j4⟩ + Q/T

⟨j1j3j2j4⟩ − Q/T

 . (4.1.7)

Note that the inverse becomes singular in the flat space limit as ξ → 0. The solution

for nu implies

U ⟨j1j3j2j4⟩ − S ⟨j1j2j3j4⟩ = ξ
(

⟨j1j3j2j4⟩ + nu

U

)
− Q. (4.1.8)

Plugging (4.1.3) into the right hand side finally gives the deformed BCJ relation:

U ⟨j1j3j2j4⟩ − S ⟨j1j2j3j4⟩ = ξ
nt

T
− Q. (4.1.9)

In the flat space limit, which is defined by multiplying by E and taking E → 0, it is

not difficult to see that this reduces to the standard BCJ relation in (2.4.10).

The AdS amplitudes in (2.4.5) are invariant under the following generalised gauge

transformation of the kinematic numerators:

ns → ns + S∆, nt → nt + T∆, nu → nu + U∆, (4.1.10)

where ∆ is an arbitrary function. Under this transformation, the parameter Q in

(4.1.5) transforms as

Q → Q + ξ∆. (4.1.11)
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Hence, by choosing ∆ = −Q/ξ, we can set Q to zero. We shall denote the kinematic

numerators in this generalised gauge as ñs, ñt, ñu :

ñs = ns − SQ/ξ, ñt = nt − TQ/ξ, ñu = nu − UQ/ξ. (4.1.12)

In this generalised gauge, the numerators satisfy the kinematic Jacobi relation away

from the flat space limit:

ñs + ñt + ñu = 0. (4.1.13)

Hence, these numerators can also be obtained from (4.1.7) by setting Q = 0 on the

right hand side. Moreover, the deformed BCJ relation in (4.1.9) reduces to

U ⟨j1j3j2j4⟩ − S ⟨j1j2j3j4⟩ = ξ
ñt

T
. (4.1.14)

In flat space the generalised gauge transformations in (4.1.10) do not affect the sum

of kinematic numerators and correspond to ordinary gauge transformations for a

particular choice of ∆. In the next section, we will derive explicit formulas for 4-point

AdS amplitudes and their kinematic numerators using Witten diagrams.

4.2 Yang-Mills in AdS4

4.2.1 Witten Diagram Recap

In this section we will review four-point colour-ordered Witten diagrams for YM in

AdS4. We follow the approach developed in [48, 50, 136], and will review some basic

formulas to make the discussion self-contained.

As introduced in section 2.3.1, we work with the AdS metric in equation 2.3.1 using

the mostly positive metric convention. Additionally we will use axial gauge, where

polarisation vectors do not have radial components. This means that gauge properties

will be analogous to flat space, with the spacetime only affecting kinematics in the

radial direction. We work in momentum space for the boundary directions whilst the

radial components still depend on a position coordinate which will be integrated over
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when calculating amplitudes. For space-like momenta along the boundary, the z-

dependence of the bulk-to-boundary propagator is given by solving the Klein-Gordon

equation in AdS

Ai(z, k) = ϵi

√
2k

π
z

1
2 K1/2(kz), (4.2.1)

where since the polarisation ϵm does not have a radial component m is a 3d Lorentz

index, and Kν is a modified Bessel function of the second kind. These will play

the role of external wavefunctions in the Witten diagrams, propagating between the

interaction itself and the boundary where the states are taken to live.

In axial gauge, the bulk-to-bulk propagator in momentum space is given by

Gij(z, z′, k) = −i
∫ ∞

0
ωdω

z
1
2 J1/2(ωz)J1/2(ωz′)(z′) 1

2

k2 + ω2 − iε

(
ηij + kikj

ω2

)
, (4.2.2)

where k is the momentum flowing through the propagator along the boundary

directions, ε > 0 gives the pole prescription, and Jν is a Bessel function of the first

kind. This is a Green’s function of the AdS Klein-Gordon operator.

The vertices have the same structure as those in flat space but the indices only run

over the boundary directions since we are in axial gauge

Vjkl(k1, k2, k3) = i√
2

(ηjk(k1 − k2)l + ηkl(k2 − k3)j + ηlj(k3 − k1)k) ,

V jklm = iηjlηkm − i

2
(
ηjkηlm + ηjmηkl

)
,

(4.2.3)

where we have set the YM coupling g = 1. When computing Witten diagrams, we

must integrate over the radial coordinates z of each interaction vertex. In doing so,

a factor of z−4 coming from √
−g will be cancelled by z4 coming from two inverse

metrics used to contract the Lorentz indices in each interaction vertex.
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Figure 4.1: Witten diagrams for the colour-ordered 4-point AdS
amplitude.

4.2.2 AdS4 Amplitudes with General Polarizations

Using the rules given above, the three-point AdS4 amplitude can be calculated as

⟨jjj⟩ = V123(k1, k2, k3)
∫ ∞

0
dz

3∏
i=1

√2ki

π
z

1
2 K1/2(kiz)

 ,

= 1√
2E

(ϵ1 ·ϵ2 (k1 − k2)·ϵ3 + Cyc[123]) .

(4.2.4)

where V123 = ϵi
1ϵ

i
2ϵ

i
3Vijk.

The colour-ordered four-point AdS amplitude comes from three Witten diagrams,

as shown in Figure 4.1. In particular, there are s- and t-channel exchanges, and a

contact diagram:

⟨jjjj⟩ = Ws + Wt + Wc. (4.2.5)

The quantity given by multiplying vertices and propagators together and summing

diagrams is usually denoted as iA. Since our final expressions will contain overall

factors of i, these are dropped on both sides. The s-channel diagram is then given

by

Ws =
∫

ωdω dzdz′ KKJ(k1, k2, ω, z)M1234(k1, k2, k3, k4)
(k2

s + ω2) KKJ(k3, k4, ω, z′), (4.2.6)

where

M ijkl(k1, k2, k3, k4) = −V ijm(k1, k2, −k12)
(

ηmn + kmkn

ω2

)
V kln(k3, k4, k12),

(4.2.7)
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and

KKJ(p, r, s, z) =
√

4pr

π2 z3/2K1/2(pz)K1/2(rz)J1/2(sz). (4.2.8)

The integrals in (4.2.6) were performed in [50] with the final result

Ws = −V 12m(k1, k2, −k12)V 34n(k3, k4, k12)
ES

(
ηmn + (E + ks)(k12)m(k12)n

k12k34ks

)
,

(4.2.9)

where V 12m = ϵi
1ϵ

j
2Vijm and E = k1 +k2 +k3 +k4. In the flat-space limit, this reduces

to the usual Feynman diagram expression in axial gauge:

lim
E→0

EWs = V 12mV34m
1

(k1µ + k2µ)2

(
−ηmn + k12mk12n

k2
12

)
. (4.2.10)

We can simplify (4.2.9) by applying momentum conservation and other identities at

each vertex:

V 12m · (k12)m = i√
2

(ϵ1 ·ϵ2 (k2
1 − k2

2) + 2k2 ·ϵ1 ϵ2 ·k12 − 2k1 ·ϵ2 ϵ1 ·k12)

= i√
2

ϵ1 ·ϵ2 (k2
1 − k2

2), (4.2.11)

since ki·ϵi = 0. Using momentum conservation the contraction of two V s is given by

V 12m · V 34
m = − 1

2(ϵ1 · ϵ2ϵ3 · ϵ4)(k1 − k2)·(k3 − k4)

− ϵ1 ·ϵ2 k4 ·ϵ3(k1 − k2)·ϵ4 + ϵ1 ·ϵ2 k3 ·ϵ4(k1 − k2)·ϵ3

− ϵ3 ·ϵ4 k2 ·ϵ1(k3 − k4)·ϵ2 + ϵ3 ·ϵ4 k1 ·ϵ2(k3 − k4)·ϵ1

− 2ϵ2 ·ϵ4 k2 ·ϵ1 k4 ·ϵ3 + 2ϵ2 ·ϵ3 k2 ·ϵ1 k3 ·ϵ4

+ 2ϵ1 ·ϵ4 k1 ·ϵ2 k4 ·ϵ3 − 2ϵ1 ·ϵ3 k1 ·ϵ2 k3 ·ϵ4. (4.2.12)

The terms containing ki·ϵj will be collected into a single term W B
s , which is given in

(4.2.14). In section D.1, we will show how this term can be greatly simplified after

converting to spinor notation. The s-channel diagram is then given by

Ws = 1
2

ϵ1 ·ϵ2 ϵ3 ·ϵ4

ES
[(k1µ − k2µ)(kµ

3 − kµ
4 ) − E

k12
(k1 − k2)(k3 − k4)] + W B

s , (4.2.13)
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with

W B
s = 1

E

1
S

[
ϵ1 · ϵ2k4 · ϵ3(k1 − k2) · ϵ4 − ϵ1 · ϵ2k3 · ϵ4(k1 − k2) · ϵ3

+ ϵ3 · ϵ4k2 · ϵ1(k3 − k4) · ϵ2 − ϵ3 · ϵ4k1 · ϵ2(k3 − k4) · ϵ1

+ 2ϵ2 · ϵ4k2 · ϵ1k4 · ϵ3 − 2ϵ2 · ϵ3k2 · ϵ1k3 · ϵ4

− 2ϵ1 · ϵ4k1 · ϵ2k4 · ϵ3 + 2ϵ1 · ϵ3k1 · ϵ2k3 · ϵ4
]
. (4.2.14)

The t-channel diagram can be obtained by taking the s-channel diagram and swap-

ping 2 ↔ 4:

Wt = Ws|2↔4 . (4.2.15)

Finally, the contact diagram is given by

Wc = −iV 1234
∫ ∞

0
dz KKKK(k1, k2, k3, k4, z), (4.2.16)

where V 1234 = ϵi
1ϵ

j
2ϵ

k
3ϵl

4Vijkl and

KKKK(p, r, s, t, z) =
√

16prst

π4 z2K1/2(pz)K1/2(rz)K1/2(sz)K1/2(tz). (4.2.17)

After integrating over z, one gets

Wc = 1
E

(
ϵ1 ·ϵ3 ϵ2 ·ϵ4 − 1

2(ϵ1 ·ϵ2 ϵ3 ·ϵ4 + ϵ1 ·ϵ4 ϵ2 ·ϵ3)
)

. (4.2.18)

Summing the three diagrams gives the full colour-ordered AdS4 amplitude

⟨j1j2j3j4⟩ = 1
2E

ϵ1 ·ϵ2 ϵ3 ·ϵ4

S
[(k1µ − k2µ)(kµ

3 − kµ
4 ) − E

ks

(k1 − k2)(k3 − k4)] + W B
s

+ 1
2E

ϵ1 ·ϵ4 ϵ2 ·ϵ3

T
[(k1µ − k4µ)(kµ

3 − kµ
2 ) − E

kt

(k1 − k4)(k3 − k2)] + W B
t

+ 1
E

(ϵ1 ·ϵ3 ϵ2 ·ϵ4 − 1
2(ϵ1 ·ϵ2 ϵ3 ·ϵ4 + ϵ1 ·ϵ4 ϵ2 ·ϵ3)). (4.2.19)

Let us now derive kinematic numerators by writing (4.2.19) in the form (2.4.5). In

doing so, we must split the contact term into two pieces multiplied by S/S and T/T ,

respectively, such that the resulting numerators obey (2.4.6) or equivalently (2.4.7).
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A natural choice for the s-channel numerator is

ns = 1
2

ϵ1 ·ϵ2 ϵ3 ·ϵ4

E

[
(k1µ − k2µ)(kµ

3 − kµ
4 ) − E

ks

(k1 − k2)(k3 − k4)
]

+ SW B
s + S

1
2E

[ϵ1 ·ϵ3 ϵ2 ·ϵ4 − ϵ1 ·ϵ4 ϵ2 ·ϵ3] . (4.2.20)

In the flat space limit, this expression reduces to the one obtained in [104]. The

kinematic numerators nt and nu can be deduced from (4.2.20) using the relations in

(2.4.6) or (2.4.7). After some algebra, the sum of kinematic numerators is given by

Q = ϵ1 ·ϵ2 ϵ3 ·ϵ4

2 [(kt − ku) − 1
ks

(k1 − k2)(k3 − k4)] + Cyc[234]. (4.2.21)

We therefore see that for this choice of numerators, the kinematic Jacobi relation is

only satisfied in the flat space limit (recall that taking the flat space limit involves

multiplying by E and taking E → 0). However in AdS4 we can use the generalised

gauge symmetry in (4.1.10) to obtain numerators that obey the kinematic Jacobi

relation even away from the flat space limit. The preferred numerators {ñs, ñt, ñu}

are obtained by plugging (4.2.20) and (4.2.21) into (4.1.12) and using (2.4.7).

We can prove (4.2.21) by summing the kinematic numerators and first considering

the terms containing four polarisation vectors contracted together. For example, we

get the following terms proportional to ϵ1 ·ϵ2 ϵ3 ·ϵ4:

ϵ1 ·ϵ2 ϵ3 ·ϵ4[(k1µ − k2µ)(k3µ − k4µ) + t − u] = ϵ1 ·ϵ2 ϵ3 ·ϵ4[E(kt − ku)], (4.2.22)

where we have dropped for now the terms with a pole in kij. From the W B terms

appearing in the kinematic numerators, let us consider the term proportional to

ϵ2 · ϵ3:

2ϵ2 ·ϵ3 k2 ·ϵ1 k3 ·ϵ4 + 2ϵ2 ·ϵ3 (k1 ·ϵ4 k2 ·ϵ1 − k4 ·ϵ1 k2 · ϵ4) − 2ϵ2 ·ϵ3 k3 ·ϵ1 k2 · ϵ4 = 0,

(4.2.23)

where the first term comes from ns, the second term from nt, and the third term

from nu. All the contributions from WB drop out in an analogous manner. We are

therefore only left with the terms in equation (4.2.22) and the |ka + kb| poles, which
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sum to (4.2.21).

4.2.3 AdS4 Helicity Amplitudes

In this section, we will specialise the results obtained in the previous section to

particular helicities of the external gluons and write them in terms of spinors adapted

to AdS4. The AdS4 amplitudes will then be labelled by the helicities of the external

gluons ⟨h1h2h3h4⟩, where hi = ±. An amplitude with k negative helicity gluons is

referred to as an Nk−2MHV amplitude. In the flat space limit, only the k = 2 (or

MHV) amplitude is non-zero at tree-level but in AdS4, the amplitude is non-zero

for k = 0, 1 as well. Amplitudes with k = 3, 4 are related to k = 1, 0 via parity. A

spinorial expression for the MHV amplitude was previously obtained in [49] using

a recursive approach. Using numerous identities derived in Appendix D, we obtain

a new expression which appears to be much simpler. We also obtain compact new

expressions for non-MHV amplitudes, first computed in [2].

N−2MHV

We will start with the case + + ++. Writing the kinematic numerator in (4.2.20) in

terms of the AdS spinors introduced in section 2.3.1 and using the Schouten identity

to rewrite the contact diagram as

1
2E

[ϵ1 ·ϵ3 ϵ2 ·ϵ4 − ϵ1 ·ϵ4 ϵ2 ·ϵ3] = 1
8Ek1k2k3k4

(
⟨1̄3̄⟩2⟨2̄4̄⟩2 − ⟨1̄4̄⟩2⟨2̄3̄⟩2

)
= 1

8Ek1k2k3k4

(
2⟨1̄3̄⟩⟨2̄4̄⟩⟨1̄2̄⟩⟨3̄4̄⟩ − ⟨1̄2̄⟩2⟨3̄4̄⟩2

)
,

(4.2.24)

we obtain

n++++
s = ⟨1̄2̄⟩⟨3̄4̄⟩

8k1k2k3k4

1
E

[
⟨1̄2̄⟩⟨3̄4̄⟩

(
⟨13⟩⟨1̄3̄⟩ + ⟨24⟩⟨2̄4̄⟩ − E

ks

(k1 − k2)(k3 − k4) − Eks

)
+ 2S⟨1̄3̄⟩⟨2̄4̄⟩

]
+ sW B,++++

s .

(4.2.25)
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where W B,++++
s has a very compact form given by

W B,++++
s = i

8k1k2k3k4

2
S

⟨1̄2̄⟩⟨3̄4̄⟩(⟨12̄⟩⟨4̄1̄⟩⟨1̄3̄⟩ + ⟨21̄⟩⟨3̄2̄⟩⟨2̄4̄⟩). (4.2.26)

We explain how (4.2.26) was derived in Appendix D.1 using the − + ++ case as an

example.

To achieve further cancellations, it is convenient to keep the maximum amount

of symmetry in our expressions. We therefore write the generalised Mandelstam

variable S as

S = 1
2(⟨12⟩⟨1̄2̄⟩ + ⟨34⟩⟨3̄4̄⟩ + E(E + ks)). (4.2.27)

We then apply various spinor identities in Appendix D to terms with a (spurious)

1/E pole to get

n++++
s = 1

8k1k2k3k4

⟨1̄2̄⟩⟨3̄4̄⟩
E

[
iE(⟨14̄⟩⟨1̄2̄⟩⟨1̄3̄⟩ + ⟨41̄⟩⟨3̄4̄⟩⟨2̄4̄⟩)

+ ⟨1̄2̄⟩⟨3̄4̄⟩
(

− E

ks

(k1 − k2)(k3 − k4) − Eks

)
+ (E2 + 2Eks)⟨1̄3̄⟩⟨2̄4̄⟩

]
+ SW B,++++

s ,

(4.2.28)

and then use (D.0.9) to combine the first line with W B,++++
s to obtain the final form

n++++
s = 1

8k1k2k3k4
⟨1̄2̄⟩⟨3̄4̄⟩

[
i
(
⟨12̄⟩⟨4̄1̄⟩⟨1̄3̄⟩ + ⟨21̄⟩⟨3̄2̄⟩⟨2̄4̄⟩

)
− ks

(
⟨2̄3̄⟩⟨4̄1̄⟩ − ⟨1̄3̄⟩⟨2̄4̄⟩

)
− 1

ks

⟨1̄2̄⟩⟨3̄4̄⟩(k1 − k2)(k3 − k4)
]
.

(4.2.29)

The other kinematic numerators can then be obtained using (2.4.7). Summing the

three numerators and applying the Schouten identity gives

Q++++ = 1
8k1k2k3k4

(
ks

(
⟨1̄3̄⟩2⟨2̄4̄⟩2 − ⟨2̄3̄⟩2⟨4̄1̄⟩2

)
− 1

ks

⟨1̄2̄⟩2⟨3̄4̄⟩2(k1 − k2)(k3 − k4)
)

+ cyc(234),
(4.2.30)

matching the general structure in equation (4.2.21). The numerators satisfying

kinematic Jacobi relations are then obtained by plugging (4.2.29) (and the analogous

formulas for nt and nu) and (4.2.30) into (4.1.12).
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Finally, plugging the kinematic numerators into the first line of (4.1.3) gives a very

compact formula for the all-plus AdS4 amplitude:

⟨+ + ++⟩ = 1
8k1k2k3k4

1
S

⟨1̄2̄⟩⟨3̄4̄⟩
[
i(⟨12̄⟩⟨4̄1̄⟩⟨1̄3̄⟩ + ⟨21̄⟩⟨3̄2̄⟩⟨2̄4̄⟩)

− ks

(
⟨2̄3̄⟩⟨4̄1̄⟩ − ⟨1̄3̄⟩⟨2̄4̄⟩

)
− 1

ks

⟨1̄2̄⟩⟨3̄4̄⟩(k1 − k2)(k3 − k4)
]

+ 2 ↔ 4.

(4.2.31)

Using (2.3.4), we see that it manifestly vanishes in the flat space limit, as expected.

N−1MHV

Next, let us consider the − + + + case. Converting equation (4.2.20) to spinor

notation for the case where particle 1 has negative helicity and the rest positive gives

n−+++
s = ⟨12̄⟩⟨3̄4̄⟩

8k1k2k3k4

1
E

[
⟨12̄⟩⟨3̄4̄⟩

(
⟨13⟩⟨1̄3̄⟩ + ⟨24⟩⟨2̄4̄⟩ − E

ks

(k1 − k2)(k3 − k4) − Eks

)
+ 2S⟨13̄⟩⟨2̄4̄⟩

]
+ sW B,−+++

s ,

(4.2.32)

where

W B,−+++
s = i

8k1k2k3k4E

2(E − 2k1)
S

⟨12̄⟩⟨3̄4̄⟩
(
⟨12⟩⟨2̄3̄⟩⟨2̄4̄⟩ + ⟨2̄1̄⟩⟨14̄⟩⟨13̄⟩

)
,

(4.2.33)

as shown in Appendix D.1. As in the all-plus case, we use 4-point spinor and

Schouten identities to combine the terms with a 1/E pole. In the end, the kinematic

numerator can be written as

n−+++
s = = 1

8k1k2k3k4
⟨12̄⟩⟨3̄4̄⟩

[4ik1

E
⟨1̄2̄⟩⟨14̄⟩⟨13̄⟩ + i

(
⟨12⟩⟨2̄3̄⟩⟨2̄4̄⟩ + ⟨2̄1̄⟩⟨14̄⟩⟨13̄⟩

)
+ (ks + 2k1)

(
⟨14̄⟩⟨2̄3̄⟩ − ⟨13̄⟩⟨4̄2̄⟩

)
− 1

ks

⟨12̄⟩⟨3̄4̄⟩(k1 − k2)(k3 − k4)
]
.

(4.2.34)
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Using this result and (2.4.7), we find that the sum over kinematic numerators is

Q−+++ = 1
8k1k2k3k4

(
ks

(
⟨13̄⟩2⟨2̄4̄⟩2 − ⟨14̄⟩2⟨2̄3̄⟩2

)
− 1

ks

⟨12̄⟩2⟨3̄4̄⟩2(k1 − k2)(k3 − k4)
)

+ cyc(234).
(4.2.35)

Plugging the above equation along with (4.2.34) (and the analogous numerators in

the the t- and u-channels) into (4.1.12) then gives numerators satisfying kinematic

Jacobi relations.

Unlike the all-plus case, the kinematic numerators do not vanish in the flat-space

limit, although this will hold for the full AdS4 amplitude. The flat space numerators

in this case can be derived from the self-dual sector of Yang-Mills theory [137].

Plugging the kinematic numerators into the first line of (4.1.3), the amplitude can

be reduced to the following concise expression:

⟨− + + +⟩ = 1
8k1k2k3k4

1
ES

⟨12̄⟩⟨3̄4̄⟩
[
4ik1⟨1̄2̄⟩⟨14̄⟩⟨13̄⟩

+ iE
(
⟨12⟩⟨2̄3̄⟩⟨2̄4̄⟩ + ⟨2̄1̄⟩⟨14̄⟩⟨13̄⟩

)
+ E(ks + 2k1)

(
⟨14̄⟩⟨2̄3̄⟩ − ⟨13̄⟩⟨4̄2̄⟩

)
− 1

ks

E⟨12̄⟩⟨3̄4̄⟩(k1 − k2)(k3 − k4)
]

+ 2 ↔ 4.

(4.2.36)

To see that the pole in E is in fact spurious, we combine the two terms over a single

denominator. Collecting the terms that go as k1/E, we get a numerator proportional

to

−4k1⟨12̄⟩⟨13̄⟩⟨14̄⟩
(
⟨1̄2̄⟩⟨3̄4̄⟩T + ⟨2̄3̄⟩⟨4̄1̄⟩S

)
= −2k1⟨12̄⟩⟨13̄⟩⟨14̄⟩E

(
E
(
⟨1̄2̄⟩⟨3̄4̄⟩ + ⟨2̄3̄⟩⟨4̄1̄⟩

)
+ 2kt⟨1̄2̄⟩⟨3̄4̄⟩

+ 2ks⟨2̄3̄⟩⟨4̄1̄⟩ + i(⟨31̄⟩⟨2̄3̄⟩⟨3̄4̄⟩ + ⟨13̄⟩⟨4̄1̄⟩⟨1̄2̄⟩)
)

,

(4.2.37)
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so there is no pole in E and the flat space limit vanishes. We can write the amplitude

in a way that manifestly has the correct flat space limit as follows:

⟨− + + +⟩ = 1
8k1k2k3k4

1
S

⟨12̄⟩⟨3̄4̄⟩
[
i(⟨12⟩⟨2̄4̄⟩⟨2̄3̄⟩ + ⟨2̄1̄⟩⟨13̄⟩⟨14̄⟩)

+ (ks + 2k1)(⟨14̄⟩⟨2̄3̄⟩ − ⟨13̄⟩⟨4̄2̄⟩)

− 1
ks

⟨12̄⟩⟨3̄4̄⟩(k1 − k2)(k3 − k4)

+ 2ik1⟨13̄⟩⟨14̄⟩
T

(
⟨1̄2̄⟩(E + 2kt) + i⟨42̄⟩⟨4̄1̄⟩

) ]
+ 2 ↔ 4,

(4.2.38)

where we have used Schouten identities and collected the terms proportional to

⟨12̄⟩⟨3̄4̄⟩ to identify a symmetry under 2 ↔ 4.

MHV

Let us now consider the −+− + case. By substituting spinors into equation (4.2.20),

we get (after some manipulations and identities)

n−+−+
s = 1

8k1k2k3k4

[ 4
E

(k1k4 + k2k3)⟨12̄⟩⟨34̄⟩⟨13⟩⟨2̄4̄⟩

+ i
(E − 2k1 − 2k3)

E
⟨12̄⟩⟨34̄⟩(⟨21⟩⟨2̄4̄⟩⟨32̄⟩ + ⟨1̄2̄⟩⟨31⟩⟨14̄⟩)

+ ks

(
⟨13⟩2⟨4̄2̄⟩2 − ⟨14̄⟩2⟨32̄⟩2

)
− 1

ks

⟨12̄⟩2⟨34̄⟩2(k1 − k2)(k3 − k4)
]
,

n−+−+
t = −n−+−+

s

∣∣∣
2↔4

.

(4.2.39)

The final two lines of this can be seen directly from equation (4.2.20) after sub-

stituting for polarisation vectors and using equation (4.2.27) to combine over a

common denominator. The second line comes from the W B
s term, specialised to the

− + −+ case. This is covered in more detail in Appendix D.1. This just leaves the

first line, which is analogous to the all-plus and single minus cases, but with a few

extra Schouten identities needed to rewrite the pole in E. The ‘extra’ pieces we

see compared to equation (4.2.29) are what will give the non-zero MHV flat space

amplitude.

The u-channel numerator cannot simply be obtained by applying (2.4.7) to (4.2.39)
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as this would involve exchanging particles of different helicity. Instead, we must first

apply (2.4.7) to (4.2.20) in terms of general polarisation vectors, and then convert

the resulting expression for nu to spinor notation using methods similar to those

used to obtain (4.2.39). In the end, we find

n−+−+
u = 1

8k1k2k3k4
⟨13⟩⟨4̄2̄⟩

[ 4
E

(
(k1k2 + k3k4)⟨14̄⟩⟨32̄⟩ + (k1k4 + k2k3)⟨34̄⟩⟨12̄⟩

)
+ i

(E − 2k1 − 2k3)
E

(
⟨13̄⟩⟨32̄⟩⟨34̄⟩ + ⟨31̄⟩⟨14̄⟩⟨12̄⟩

)
+ ku

(
⟨14̄⟩⟨32̄⟩ + ⟨12̄⟩⟨34̄⟩

)
− 1

ku

⟨13⟩⟨4̄2̄⟩(k1 − k3)(k4 − k2)
]
.

(4.2.40)

Adding up the kinematic numerators or directly converting (4.2.21) to spinor nota-

tion, we find that

Q−+−+ = 1
8k1k2k3k4

(
ks

(
⟨13⟩2⟨4̄2̄⟩2 − ⟨14̄⟩2⟨32̄⟩2

)
− 1

ks

⟨12̄⟩2⟨34̄⟩2(k1 − k2)(k3 − k4)
)

+ cyc(234),
(4.2.41)

where the permutations act on the bars as well as the particle labels. Plugging

(4.2.39)-(4.2.41) into (4.1.12) then gives the numerators which satisfy the kinematic

Jacobi relation.

Moreover, plugging the above kinematic numerators into the first line of (2.4.5), we

obtain the following remarkably compact formula for the MHV amplitude in AdS4:

⟨− + −+⟩ = n−+−+
s

S
− n−+−+

t

T

= 1
8k1k2k3k4

1
ES

⟨12̄⟩⟨34̄⟩
[
4(k1k4 + k2k3)⟨13⟩⟨2̄4̄⟩

+ i(E − 2k2 − 2k4)(⟨12⟩⟨2̄4̄⟩⟨32̄⟩ + ⟨2̄1̄⟩⟨31⟩⟨14̄⟩)

+ Eks(⟨13⟩⟨2̄4̄⟩ − ⟨14̄⟩⟨32̄⟩)

− 1
ks

E⟨12̄⟩⟨34̄⟩(k1 − k2)(k3 − k4)
]

+ 2 ↔ 4.

(4.2.42)

This formula represents substantial progress beyond the formula first obtained in

the pioneering work [49] which contained many more terms and several functions of
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spinor brackets in the denominators, whereas the denominators of (4.2.42) contain

only ka and |ka + kb|. The key to obtaining such a simple expression was to focus

on simplifying the kinematic numerators and make use of numerous spinor identities

derived in Appendix D. It would be interesting to see if this simplicity extends to

higher-point amplitudes, and in particular if there is some analogue of the Parke-

Taylor formula [6] for MHV amplitudes in AdS4.

As in the single-minus case, this does not have the flat space limit manifest until we

combine parts from the two numerators. If consider only the terms with a pole in

E, we get

lim
E→0

⟨− + −+⟩ = lim
E→0

1
8k1k2k3k4

1
EST

[
4⟨13⟩⟨2̄4̄⟩

(
T ⟨12̄⟩⟨34̄⟩(k1k4 + k2k3)

− S⟨14̄⟩⟨32̄⟩(k1k2 + k3k4)
)

+ 2(k2 + k4)
(
T ⟨12̄⟩⟨34̄⟩(⟨1̄2̄⟩⟨13⟩⟨14̄⟩ + ⟨12⟩⟨32̄⟩⟨2̄4̄⟩)

+ S⟨14̄⟩⟨32̄⟩(⟨1̄4̄⟩⟨13⟩⟨12̄⟩ + ⟨14⟩⟨34̄⟩⟨4̄2̄⟩)
)]

,

= − 2
E

⟨13⟩2⟨2̄4̄⟩2

⟨12⟩⟨1̄2̄⟩⟨23⟩⟨2̄3̄⟩
,

(4.2.43)

where we recognise the final line as the familiar four point flat space amplitude. The

intermediate steps involve many spinor and Schouten identities but the general idea

is to start with the lowest order terms in ki and apply identities that generate higher

powers (avoiding any k2
i ) along with corrections of order E, which are discarded.

Eventually the only remaining contribution is a numerator proportional to k1k2k3k4

(which cancels the factors from the polarisation vectors) and corrections subleading

in E, which we have omitted here.

Amplitudes with a u-channel contribution are less compact. For example the ⟨− −

++⟩ amplitude can be obtained from

⟨− − ++⟩ = n−−++
s

S
− n−−++

t

T
, (4.2.44)

where n−−++
s = −n−+−+

u

∣∣∣∣
2↔3

, n−−++
t = −n−+−+

t

∣∣∣∣
2↔3

, (4.2.45)
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where we exchange particle label but not helicity labels (i.e. bars on spinors), and the

numerators are as defined in (4.2.39) and (4.2.40). This operation should be thought

of as a relabelling (rather than a permutation) and can easily be seen by taking the

diagrams in Figure 2.6, dressing with helicities and applying the relabellings. For

completeness, we also note that

n−−++
u = −n−+−+

s

∣∣∣∣
2↔3

. (4.2.46)

We can then see that the sum over kinematic numerators for − − ++ is given by

Q−−++ = −Q−+−+
∣∣∣∣
2↔3

. (4.2.47)

4.3 Relation to 3d Conformal Correlators

The AdS amplitudes we computed in previous sections are closely related to 3d CFT

correlators in momentum space. In particular, they encode the transverse parts

of the correlators from which the full correlators can be reconstructed using Ward

identities, as we will explain in this section. The transverse part of a correlator can

be recovered from an AdS amplitude by stripping off the polarisation vectors and

replacing them with projection tensors:

⟨j1 . . . jn⟩π = ⟨j1 . . . jn⟩
∣∣∣
ϵi→πi

,

where, πjk
i = ηjk − kj

i kk
i

k2
i

.

(4.3.1)

In the above formula for transverse projection tensors, upper indices are 3d Lorentz

indices while lower indices are particle labels.

The full correlator, which will be denoted as ⟨J1 . . . Jn⟩, can then be reconstructed

using the transverse Ward identity. For spin-1 currents with colour indices, this is
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well known 1:

k1i1⟨Ja1i1(k1)Ja2i2(k2) . . . Janin(kn)⟩ = −ifa1a2b⟨J bi2(k2 + k1) . . . Janin(kn)⟩

· · · − ifa1anb⟨Ja2i2(k2) . . . J bin(kn + k1)⟩,

(4.3.2)

where we have defined the structure constants such that [T a, T b] = −ifabcT c and

tr
(
T aT b

)
= δab. The right hand side of this equation corresponds to the standard

sum over contact terms in position space. In the flat space limit, the contact

terms don’t contribute because they are constructed from lower-point correlators

and therefore do not contain a pole in E = ∑n
a=1 ka. Hence, the Ward identity for

conformal correlators reduces to a Ward identity for flat space scattering amplitudes

in one higher dimension. For colour-ordered correlators, there are only two contact

terms

k1i1⟨J i1(k1)J i2(k2) . . . J in(kn)⟩ = (−1)n
(〈

J i2(k2) . . . J in(kn + k1)
〉

−
〈
J i2(k2 + k1) . . . J in(kn)

〉)
.

(4.3.3)

The full correlator can then be obtained from the transverse part by adding terms

proportional to lower-point correlators which give the required contact terms when

contracted with the momentum ki
1.

The reconstruction of 3-point correlators was spelled out in [138], and we will review

it here for completeness. We will then present a new formula for 4-point correlators,

which is the main focus of this paper. At three points the Ward identity can be

written as

k1i⟨J i(k1)J j(k2)Jk(k3)⟩ = ⟨J j(−k3)Jk(k3)⟩ − ⟨J j(k2)Jk(−k2)⟩, (4.3.4)

where the 2-point function is fixed by conformal Ward identities to be [138]:

⟨J i(k)J j(−k)⟩ = cJk πij, (4.3.5)

1This Ward identity can be found in many text books. For a discussion in the context of
cosmology see [47, 59].
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where cJ is a normalisation. The full correlator can be recovered by adding terms

to the transverse piece such that (4.3.4) is satisfied, symmetrising (recalling that

colour-ordered correlators are cyclically symmetric), and adding further terms to

cancel the new terms which arise after symmetrising and contracting with k1. In the

end this gives

⟨J i(k1)J j(k2)Jk(k3)⟩ = ⟨ji(k1)jj(k2)jk(k3)⟩π

+
[

ki
1

k2
1

(
⟨J j(−k3)Jk(k3)⟩ − ⟨J j(k2)Jk(−k2)⟩

)
+ ki

1k
j
2

k2
1k2

2
k1a⟨Ja(k3)Jk(−k3)⟩

]

+ Cyc[123],

(4.3.6)

where ⟨jjj⟩π is obtained from the 3-point AdS amplitude in (4.2.4). The cyclic sum

includes permutations of i, j, k along with the particle labels.

At higher points, the procedure for reconstructing the full correlator from the trans-

verse piece by adding terms to solve the Ward identity, symmetrising, and adding

new terms to cancel unwanted contributions must be iterated. At four-points, this

will involve adding numerous terms with both 2-point and 3-point correlators. Using
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(4.3.4) to tidy up, we are left with

⟨J i
1J

j
2Jk

3 J l
4⟩ = ⟨ji

1j
j
2jk

3 jl
4⟩π

+
[

ki
1

k2
1

(
⟨J j(k2)Jk(k3)J l(k4 + k1)⟩ − ⟨J j(k1 + k2)Jk(k3)J l(k4)⟩

)

+ ki
1k

j
2

k2
1k2

2

(
⟨Jk(k3)J l(−k3)⟩ − ⟨Jk(k2 + k3)J l(−k2 − k3)⟩

+ k2a⟨Ja(k1 + k2)Jk(k3)J l(k4)⟩
)

+ ki
1k

k
3

2k2
1k2

3

(
⟨J j(k2 + k3)J l(−k2 − k3)⟩ + ⟨J j(k3 + k4)J l(−k3 − k4)⟩

− ⟨J j(k2)J l(−k2)⟩ − ⟨J j(k4)J l(−k4)⟩
)

+ kj
2kk

3kl
4

k2
2k3

3k4
4
k3a

(
⟨Ja(k1)J i(−k1)⟩ − ⟨Ja(k2 + k3)J i(−k2 − k3)⟩

− ⟨Ja(k3 + k4)J i(−k3 − k4)⟩
)

+ ki
1k

j
2jk

3 kl
4

4k2
1k2

2k2
3k2

4
k1ak3b

(
⟨Ja(k2 + k3)J b(−k2 − k3)⟩

+ ⟨Ja(k3 + k4)J b(−k3 − k4)⟩
)]

+ cyc(1234),

(4.3.7)

where the first term is obtained from the 4-point AdS amplitudes computed in the

previous sections.

4.4 Remarks

In this chapter we explored how CK duality is realised for tree-level 4-point YM

amplitudes in AdS4. In particular, we found a decomposition of these amplitudes

into kinematic numerators analogous to those of flat space amplitudes. In contrast

to flat space, we find that numerators in AdS4 do not generically satisfy kinematic

Jacobi identities. We also find that colour-ordered amplitudes obey a deformed BCJ

relation which reduces to the usual one in the flat space limit (see (4.1.9)). On

the other hand, the numerators can be shifted in such a way that the amplitudes
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are preserved. Using this generalised gauge symmetry, there is a unique choice of

numerators which do obey the kinematic Jacobi identity, given in (4.1.12). We

then recast these results in spinor notation to obtain concise new formulae for all

helicity configurations using numerous spinor identities derived in Appendix D, and

explain how to reconstruct 3d conformal correlators of conserved currents from AdS4

amplitudes using Ward identities.

The numerators which obey kinematic Jacobi relations may play a role in obtaining

gravitational amplitudes in AdS4 via a double copy procedure. In more detail, we

can construct an object analogous to the flat space gravitational amplitude in (2.4.9)

by squaring these numerators

⟨t1t2t3t4⟩ = k1k2k3k4

E

(
ñ2

s

S
+ ñ2

t

T
+ ñ2

u

U

)
,

= k1k2k3k4

E

(
n2

s

S
+ n2

t

T
+ n2

u

U
− 1

ξ
Q2
)

,

(4.4.1)

where S, T and U are generalised Mandelstam variables as given in (4.1.1). We

label this object ⟨t1t2t3t4⟩ to denote the transverse traceless part of a stress tensor

correlator, dual to a gravitational amplitude in the bulk. We have also included a

prefactor with an additional pole in E since in the flat space limit, 3d stress tensor

correlators behave as follows [37]:

lim
E→0

⟨t1t2t3t4⟩ = k1k2k3k4

E3 M4, (4.4.2)

where M4 is the 4d graviton amplitude in flat space. This result can be compared

more conveniently by dimensionally reducing to obtain 4 minimally coupled scalars

exchanging a graviton, which may be compared more readily to Witten diagram

calculations and cross-checked with other results such as [59, 139]. Preliminary

finding suggest that a double copy at the level of integrated Witten diagrams misses

some important physics. Instead, an integrand-level double copy may be more

appropriate although this alone is still incapable of capturing the entire graviton

amplitude in AdS [140]. It is also not yet clear in this approach how to define a set

of shifted numerators that obey the kinematic Jacobi identity.



4.4. Remarks 105

In addition to comparing (4.4.1) and variations to explicit Witten diagram calcula-

tions, there are several other directions for future work. Perhaps the most obvious

is to see if CK duality in AdS4 can be extended to higher points. At first sight,

the five-point expressions obtained in [50] look somewhat formidable, but it may

be possible to simplify them by converting to spinor notation and generalising the

spinor identities in Appendix D to higher points. As was noted in section 4.1, the CK

duality in AdS has some similarities to that of massive amplitudes in flat space. On

the other hand, it has recently been shown that the massive double copy generally

introduces unphysical singularities above 4-points [135], so it would also be interest-

ing to see if this can be avoided in AdS. In flat space, many aspects of the double

copy become manifest by expressing amplitudes in terms of scattering equations [41,

67]. Chapter 5 explores a dS version of this for scalars but such a description of

Yang-Mills and gravity beyond flat space is still elusive.

It would also be interesting to explore to what extent CK duality and double copy

hold for generic theories in AdS4, or equivalently correlators in generic 3d CFTs.

Perhaps the best way to approach this question would be to find general solutions to

the conformal Ward identities in momentum space for n-point correlators of currents

and stress tensors analogous to the general solution for scalar correlators recently

obtained in terms of Feynman integrals in [141]. It may then be possible to look for

double copy structure by studying their leading singularities, as was shown at three

points in [53]. There are also alternative formulations of AdS amplitudes such as

the Mellin representation used to construct kinematic numerators in [142]. Finally,

it would be very interesting to adapt this story to dS4 with the goal of seeing new

mathematical structure in cosmological observables. Some work on the double copy

in dS4 has been carried out in [143, 144].



Chapter 5

Generalised Double Copy in de

Sitter

The aim of this chapter is to introduce the CHY formalism and how it can be applied

to de Sitter wavefunction coefficients in the form of the Cosmological Scattering

Equations (CSE). By uplifting CHY integrands from flat space we can compute

wavefunction coefficients from a worldsheet integral and also construct a double copy

between scalar EFTs analogous to the flat space one introduced in [68]. The CSE will

also let us motivate the construction of wavefunction coefficients directly from the

action of Casimir operators acting on a contact diagram, rather than using Witten

diagrams as an intermediate step. This not only provides compact expressions (since

the Casimir operators appear analogous to flat space Mandelstam variables) but it

will also allow us to study properties for arbitrary dimension d and conformal weight

∆. In this chapter we will provide some concrete examples for EFT wavefunction

coefficients in d = 3 for the minimal (∆ = 3) and conformal (∆ = 2) scalars and

comment on their properties and soft limits. The operator approach will then be

taken further in chapter 6 where we analyse the soft behavior of general scalar EFTs

and use it to reconstruct theories with ‘exceptional’ soft behavior.

We start with an introduction to the boundary conformal generators which underpin

the CSE and later treatment of soft limits (section 5.1). This is followed by a review
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of the CHY formalism in flat space (5.2) and its uplift to dS (5.2.1). In section

5.2.1 we look at the computation of scalar EFTs in dS using Witten diagrams and

these are then compared to the corresponding CSE calculations in 5.3.1. This is

used to motivate the generalised double copy in section 5.3.2. Finally section 5.3.3

deals with explicit results for minimal and conformally coupled scalars before some

remarks in section 5.4.

5.1 Boundary Conformal Generators

The mathematics describing the calculation of dS wavefunction coefficients is very

similar to the AdS Witten diagrams in the last chapter. From the perspective of the

physics at the boundary, the main difference is that the space is Euclidean rather

than Lorentzian. The role of the radial coordinate in AdS is now played by the

conformal time η and at tree-level, many of the same quantities can be reused after

a Wick rotation to account for the time-like transverse direction

The solutions to the classical equations of motion in this background are formed

from products of plane waves eik·x multiplied by an η-dependent piece described by

the free equations of motion (D2
k + m2)ϕν = 0, where

D2
k = η2∂2

η + (1 − d)η∂η + η2k2, (5.1.1)

with k = |k|. The solutions are given by

ϕν(k, η) = (−1)ν− 1
2

√
π

2 kνηd/2Hν(−kη), (5.1.2)

where ν = ∆−d/2, Hν is a Hankel function of the second kind, and the normalisation

is chosen for convenience. These ϕν will be used as bulk-to-boundary propagators.

We then define an n-point contact diagram as follows:

C∆
n =

∫ dη

ηd+1 U1,n(η), Um,n(η) =
n∏

a=m

ϕa, (5.1.3)
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where a labels an external leg, ka is the magnitude of the boundary momentum of

that leg, and ϕa = ϕν(ka, η). When acting on these ϕν , the conformal generators

introduced in section 2.3.20 take a simple form which can be expressed in terms of

boundary momenta and conformal time derivatives

Dϕν = η ∂
∂η

ϕν , P iϕν = kiϕν ,

Kiϕ
ν = η2kiϕ

ν , Mijϕ
ν = 0.

(5.1.4)

We will collectively denote the generators by DA ∈ {P i, Mij, D, Ki}, where A is an

adjoint index. In this notation, the conformal Ward identities in (2.3.19) are all

encapsulated in a single expression

n∑
a=1

DA
a Ψn = 0. (5.1.5)

The inner product of these gives a Casimir operator that will play an important role

throughout our analysis of de Sitter wavefunction coefficients here and in chapter 6

Da · Db = 1
2
(
P i

aKbi + KaiP
i
b − Ma,ijM

ij
b

)
+ DaDb, (5.1.6)

where Da is a boundary conformal generator defined in terms of the boundary

momentum associated with leg a. Acting on a pair of bulk-to-boundary propagators

associated with legs a and b, the operator in (5.1.6) satisfies

(Da · Db) (ϕaϕb) = η2[∂ηϕa∂ηϕb + (ka · kb)ϕaϕb]., (5.1.7)

and it will be shown below that this is equivalent to the vertex given by a scalar

interaction with 2 derivatives. It will therefore be useful to use the shorthand

Da · Db = ŝab. A useful identity that these satisfy is

[(Da · Db), (Db · Dc)]C∆
n =

(
2(Ka · Pc − Pa · Kc)Db + cyc(abc)

)
C∆

n ,

= 0. (5.1.8)

The commutator is not zero but vanishes when acting on a contact diagram. This

was first derived in the embedding space formalism [73], and its generalization to
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momentum space is straightforward. Using (5.1.4) we can easily show that the right

hand side vanishes.

We will also need bulk-to-bulk propagators, Gν(k, η, η̃) to consider interactions that

exchange particles in the bulk. For our purposes, we will only need to use the

following property:

[(D1 + . . . + Dp)2 + m2]−1C∆
n =

∫ dη

ηd+1
dη̃

η̃d+1 Up+1,n(η)Gν(k1...p, η, η̃)U1,p(η̃). (5.1.9)

This follows from the equation of motion

(D2
k + m2)Gν = ηd+1δ(η − η̃), (5.1.10)

and the following identity:

(D2
1...pU1,p)Up+1,n = (D1 + . . . + Dp)2U1,n, (5.1.11)

where in the left-hand side D2
1...p is defined in (5.1.1) with k = |k1+. . .+kp| and p < n.

For more details, see for example section 2.2 of [63]. This will let us express tree-level

exchange diagrams in terms of differential operators which will be useful in chapter 6.

5.2 CHY Formalism

Here we briefly review flat space CHY and how it may be used to calculate EFT

amplitudes in preparation for introducing the dS cosmological scattering equations.

The CHY formalism (sometimes referred to as ‘the scattering equations’) is a method

for calculating scattering amplitudes from an integral over the moduli space of

punctures on a Riemann sphere [41]. The original proposal was for pure Yang-Mills

and pure gravity amplitudes at tree level and this has since been extended to a variety

of other particle theories and to loops [68, 145, 146]. The key is that the kinematics

are described in a theory-independent way, as the solution to the scattering equations
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given by

Sa =
∑
a̸=b

2 ka · kb

σab

= 0, σab ≡ σa − σb, (5.2.1)

where σa is the holomorphic coordinate of the a-th puncture on a Riemann sphere. A

sphere with n punctures thus corresponds to an n-point scattering amplitude. These

are invariant under SL(2,C) transformations acting on the σa (provided the vectors

satisfy momentum conservation). This means that only n − 3 of the n equations

are independent and so the position of up to three punctures can be fixed much like

choosing a gauge.

The theory information is then contained within the ‘CHY-integrand’, which may be

assembled from various building blocks. These contain dependence on the momenta

and punctures as well as polarisation data (if present in the theory). For example,

the Yang-Mills integrand can be constructed from the antisymmetric block matrix

Υ(k, ϵ, σ) =

A −CT

C B

 , (5.2.2)

where

Aab =


ka · kb

σa − σb

a ̸= b,

0 a = b,

Bab =


ϵa · ϵb

σa − σb

a ̸= b,

0 a = b,

Cab =


ϵa · kb

σa − σb

a ̸= b,

−
∑
c ̸=a

ϵa · kc

σa − σc

a = b,

(5.2.3)

along with the Parke-Taylor factor

PT = 1
σ12σ23 · · · σn1

. (5.2.4)

The colour-ordered tree-level amplitudes are then given by

An =
∫ dnσ

vol SL(2,C)
∏
a

′
δ(Sa) PT Pf ′Υ(k, ϵ, σ), (5.2.5)
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where the ∏a
′ and vol SL(2,C) redundancy in the scattering equations and Pf ′Υ =

(−1)a+b

σab
Pf|Υ|ab

ab is the reduced Pfaffian where rows and columns a and b have been

removed [41]. This reduction is necessary as the rows/ columns are not all inde-

pendent and the Pfaffian will otherwise give zero. The Pfaffian can be computed

as

PfΥab
ab =

ϵr1s1...rp−1sp−1(Υab
ab)r1s1 · · · (Υab

ab)rp−1sp−1

2p−1(p − 1)! , (5.2.6)

or alternatively as the square root of the determinant of Υab
ab. There also exist

recursive definitions to compute the Pfaffian just as with determinants.

This formula is of particular interest as gravitational amplitudes can be obtained by

replacing the Parke-Taylor factor with a second copy of Υ (possibly with different

polarisation vectors) to get

Mn =
∫ dnσ

vol SL(2,C)
∏
a

′
δ(Sa) PT Pf ′Υ(k, ϵ, σ) Pf ′Υ(k, ϵ̃, σ). (5.2.7)

This is another example of a double copy relation like those discussed in 2.4. In each

case, the integral can be evaluated by gauge-fixing, solving the remaining scattering

equations and then summing over the solutions using the delta function.

In this chapter, we will not be calculating gauge or gravity integrands but instead

those of the scalar EFTs from 2.5. The integrands for these theories can all be

obtained from the Υ matrix from various dimensional reduction procedures. For

example, if we start in d + d dimensions and set ϵa = (0|ka) whilst constraining the

momenta to only have d non-zero entries, the Pfaffian reduces to

Pf ′Υ → Pf ′APf ′A. (5.2.8)

Similarly if we start from d + 1 and set ϵa = (0|1), we get

Pf ′Υ → PfXPf ′A, (5.2.9)

where

Xrs =


1

σrs

, r ̸= s,

0, r = s.

(5.2.10)
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Theory Integrand
NLSM PT(Pf ′A)2

DBI PfX(Pf ′A)3

sGal (Pf ′A)4

Table 5.1: A summary of CHY integrands for a selection of scalar
EFTs.

From these building blocks we can assemble the three EFTs of interest as summarised

in table 5.1. As in the Yang-Mills case, the corresponding NLSM amplitudes will be

colour-ordered. The full amplitude can be recovered by dressing with colour factors

and summing over permutations of legs in the PT factor. These integrands show

that there are also double copy relations between the EFTs, for example replacing

the colour PT piece in the NLSM integrand with either PfXPf ′A or (Pf ′A)2 will

yield the DBI or sGal cases. The EFT double copy can thus be summarised as

PT → PfX(Pf ′A), (5.2.11)

PT → (Pf ′A)2
, (5.2.12)

for DBI and sGal respectively. Roughly speaking, sGal = NLSM2 and DBI =

NLSM × YM, where YM corresponds to the dimensional reduction of Yang-Mills

theory as discussed prior to equation (5.2.10).

Finally it should also be noted that the amplitudes from CHY can also be computed

using residue theorems to map them to a sum over Feynman diagrams [147]. This will

become useful in de Sitter where the operatorial nature of the scattering equations

means that solving the system is not a well-understood problem. We therefore recast

a general amplitude in the form of a contour integral

An =
∫

γ

n∏
a=1

a̸=b,c,d

dσa
1
Sa

(σbcσcdσdb)2In, (5.2.13)

where In is a generic n point integrand and γ is contour enclosing the solutions

of n − 3 scattering equations. This is defined as the intersection γ = ⋂
a̸=b,c,d γSa ,

where γSa encircles the poles of Sa [3]. The other factors in the integrand come from

the gauge fixing process. To evaluate, we choose a specific theory integrand and n
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and use a global residue theorem to wrap the contour around the other poles in the

integrand and compute the integral as a sum of those residues. We will demonstrate

this below for some simple (four-point) examples. More detailed calculations can be

found in [3, 71, 147].

5.2.1 Cosmological Scattering Equations

The cosmological scattering equations were introduced in [62] and used to compute

wavefunction coefficients for ϕ4 in de Sitter. Here we will present the uplift from

flat space and how it can be extended to the EFT integrands discussed above. The

key point is that kinematic invariants appearing in the scattering equations and

integrand will be replaced with the Casimir operators introduced in section 5.1.

These will then act on a contact diagram made from a product of bulk-to-boundary

propagators. Since these operators do not commute in general, there is an ordering

ambiguity. We will always place the integrand to the right, acting directly on the

contact diagram and then arrange expressions such that the final results are free

from such ambiguities as was done in [3].

We first uplift the scattering equations, replacing ka ·kb in (5.2.1) with mass-deformed

differential operators acting in the future boundary

Sa =
n∑

b=1
b̸=a

2 (Da · Db) + µab

σab

≡
n∑

b=1
b ̸=a

αab

σab

, (5.2.14)

where µa a±1 = −m2 modulo n and zero otherwise. This mass deformation is ana-

logous to the flat space one in [147] and assumes canonical ordering of the external

legs In = (1, 2, . . . , n). These are referred to as cosmological scattering equations

(CSE). The conformal Ward identities (CWIs) can be expressed in terms of these

mass-deformed operators as ∑
b ̸=a

αabΨn = 0, (5.2.15)

where a is any external leg and we sum over b. This implies an underlying SL(2,C)

symmetry in the scattering equations, just like in flat space and again this symmetry
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can be used to fix the location of three punctures. More details on this can be found

it [63].

The worldsheet formula in (5.2.13) can then be lifted to de Sitter space such that a

generic tree-level wavefunction coefficient is given by

Ψn = δ(d)(kT )
∫

γ

n∏
a̸=b,c,d

dσa S−1
a (σbcσcdσdb)2 InC∆

n , (5.2.16)

where both the CSE and integrand can contain boundary conformal generators. For

theories with ϕn interactions, we are free to shuffle the CSE with other terms in

the integrand In [63]. This may not be the case in general (eg for a theory with

derivative interactions) and so we will keep the ordering fixed. So far it is only

understood how to use this formula to calculate scalar wavefunction coefficients but

it is hoped that in the future it can be extended to include propagators with spin.

Of the matrices discussed in flat space, only the A-matrix in equation (5.2.3) needs

uplifting (the B and C matrices are not needed for EFTs while the X matrix requires

no adjustments). The obvious uplift to de Sitter is by making the same replacement

as was used to obtain the CSE. We therefore now define the elements of the matrix

A as

Ars =


αrs

σrs

, r ̸= s,

0, r = s,

(5.2.17)

with the operator αab as defined in (5.2.14). As discussed previously, theories with

higher-derivative interactions can have curvature corrections that are absent in flat

space. Therefore, we cannot simply lift the flat space integrands in section 2.5.1 to

dS by replacing kinematic invariants with differential operators. This procedure has

to be supplemented by curvature corrections and mass deformations, which we will

describe in the following subsections.
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5.3 EFTs in de Sitter

Our strategy in this section will be to lift the effective actions in section 2.5.1 to

de Sitter space for four-point interactions, use them to compute the four-point

wavefunction coefficients using Witten diagrams, and express the result in terms

of boundary conformal generators acting on a contact term. We will see that the

conformal generators ŝab introduced below equation (5.1.7) will play the role of

Mandelstam variables. For example they satisfy

ŝ12 + ŝ14 + ŝ13 = m2, (5.3.1)

when acting on contact diagrams. This can be seen using the CWIs in (2.3.19).

In de Sitter space, the expansion of the NLSM Lagrangian up to four points can be

written as

LNLSM
4√

|g|
= −Tr{1

2(∇Φ)2 + 1
2m2Φ2 + λ2Φ2(∇Φ)2 + 1

4CΦ4}, (5.3.2)

where we have included a mass term and a possible quartic interaction coming

from a curvature correction (recall we have set the dS radius to one). We use

(∇Φ)2n = (∇µΦ∇µΦ)n analogous to the shorthand in section 2.5.1. The mass is also

proportional to the curvature and vanishes in the flat space limit. Using the identity

(5.1.7), it is straightforward to show that the four-point wavefunction coefficient

obtained from Witten diagrams is given by

ΨNLSM
4 =

[
2λ2 (ŝ12 + ŝ14) − C

]
C∆

4 = −
(
2λ2ŝ13 + C − m2

)
C∆

4 , (5.3.3)

where we have suppressed the delta function conserving boundary momentum δ3(kT ).

The DBI and sGal 4pt wavefunction coefficients can both be obtained as special

cases of the same Lagrangian. Up to quartic vertices and six-derivative interactions,

the most general effective action for a scalar field in (A)dS is given by [148]

S
(6)
4 = −

∫
d4x

√
|g|
{1

2(∇ϕ)2 + 1
2m2ϕ2

+ 1
8A(∇µ∇νϕ)2(∇ϕ)2 + 1

8B(∇ϕ)4 + 1
4!Cϕ4

}
,

(5.3.4)
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where A, B, and C are undetermined numerical coefficients. Other possible interac-

tions are related by integration by parts or the free equation of motion ∇2ϕ = −m2ϕ.

For the sGal theory, the 6-derivative interaction is the naive uplift of the one in

(2.5.10) while the lower-derivative interactions correspond to curvature corrections

and a mass term. In the flat space limit, these are subleading and the action reduces

to (2.5.10) for A = λ. Hence, (5.3.4) represents the uplift of the special Galileon

theory to a curved background, with unfixed coefficients corresponding to curvature

corrections. Additional data must be specified in order to fix them, such as soft

limits, and we will explore this chapter 6. For the DBI theory, we set A = 0, B = λ,

and there is a single curvature correction with unfixed coefficient C. In the flat space

limit, the action reduces to (2.5.7) up to quartic interactions.

The four-point wavefunction coefficient obtained from (5.3.4) is

Ψ(6)
4 = [A(ŝ3

12 + ŝ3
14 + ŝ3

13) + (dA − B)(ŝ2
12 + ŝ2

14 + ŝ2
13) − C]C∆

4 . (5.3.5)

The four-derivative interaction can be evaluated using partial derivatives so its

Witten diagram can be evaluated analogously to the NLSM. The six-derivative term

is more complicated as it has covariant derivatives acting on ∂µϕ. We therefore need

to expand in terms of the de Sitter Christoffel symbols. This gives

(∇ϕ)2 (∇µ∇νϕ)2 = η6ηµνηρσηκλ(∇µϕ)(∇νϕ)(∇ρ∇κϕ)(∇σ∇λϕ),

= η6(∂µϕ∂µϕ)ηρσηκλ(∂ρ∂κ − Γα
ρκ∂αϕ)(∂σ∂λϕ − Γβ

σλ∂βϕ).
(5.3.6)

This produces the Witten diagram expression
∫ 0

−∞

dη

η4 η6
[
(k1 · k2)2ϕ1ϕ2 + 2k1 · k2ϕ̇1ϕ̇2 + ϕ̈1ϕ̈2

+ 1
η

(
2k1 · k2(ϕ1ϕ̇2 + ϕ̇1ϕ2) − k2

1ϕ1ϕ̇2 − k2
2ϕ̇1ϕ2 + ϕ̇1ϕ̈2 + ϕ̈1ϕ̇2

)
+ 2

η2

(
k1 · k2ϕ1ϕ2 + 2ϕ̇1ϕ̇2

) ] [
k3 · k4ϕ3ϕ4 + ϕ̇3ϕ̇4

]
+ Perms,

(5.3.7)
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where we have used the shorthand ∂ηϕ = ϕ̇. This is to be compared to the cubic

action of operators

ŝ2
12ŝ34ϕ1ϕ2 = η4

[
(k1 · k2)2ϕ1ϕ2 + 2k1 · k2ϕ̇1ϕ̇2 + ϕ̈1ϕ̈2,

+ 1
η

(
2k1 · k2

(
ϕ1ϕ̇2 + ϕ̇1ϕ2

)
− k2

1ϕ1ϕ̇2 − k2
2ϕ̇1ϕ2 + ϕ̇1ϕ̈2 + ϕ̈1ϕ̇2

)
+ 1

η2

(
(2 − d)k1 · k2ϕ1ϕ2 + ϕ̇1ϕ̇2

) ] [
k3 · k4ϕ3ϕ4 + ϕ̇3ϕ̇4

]
,

(5.3.8)

which makes it apparent that the only difference is in the 3rd line. In general

dimensions, these are related by

−1
8 (∇µ∇νϕ)2 (∇ϕ)2 →

[
ŝ3

12 + ŝ3
13 + ŝ3

14 + d
(
ŝ2

12 + ŝ2
13 + ŝ2

14

)]
C∆

4 , (5.3.9)

where we restored the symmetry factor on the left-hand side and used the 4pt

conformal Ward identity ŝ12 = ŝ34. This recovers the full wavefunction coefficient in

equation 5.3.5.

5.3.1 Four-point CSE Examples

To explore the four-point EFT wavefunction coefficients we will focus on the four basic

building blocks for the four-point integrands as summarised in table 5.1. Here we

will describe each of them, explaining how to evaluate the corresponding worldsheet

integrals.

The simplest building block is

Iϕ4 = PT PfX|conn Pf ′A, (5.3.10)

where the matrix X is defined in (5.2.10) and

Pf X = 1
σ12σ34

− 1
σ13σ24

+ 1
σ23σ14

, (5.3.11)

Pf X|conn = − 1
σ13σ24

. (5.3.12)
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4

1 2

3

Figure 5.1: Graphic representation of PT PfX|conn. The circle refers
to the PT factor while the intersecting lines correspond
to PfX|conn.

The integrand (5.3.10) describes a contact diagram for a ϕ4 interaction [62, 68]. Note

that at four-points, Pf X can be written as a sum of three terms which correspond to

perfect matchings and PfX|conn refers to the connected perfect matching with respect

to the ordering of the Parke-Taylor factor (see Figure 5.1). Fixing legs {1, 2, 4}
and deleting legs {2, 4} from the A-matrix in the Pfaffian leads to the wavefunction

coefficient

Ψϕ4

4 = −
∫

γ3
dσ3 (σ41σ12σ24)2

[
1

σ12σ23σ34σ41

σ13σ23σ43

Ŝ3

α13

(σ13σ24)2

]
C∆

4 , (5.3.13)

where the contour γ3 encircles the pole arising from S3. The first term in the

integrand is the standard Jacobian associated with the SL(2,C) fixing, and we have

rescaled the third scattering equation to

Ŝ3 = α13σ23σ43 + α23σ13σ43 + α43σ13σ23. (5.3.14)

After some cancellations we see there is only a simple pole at σ13 = 0 so we wrap

the contour around this pole to obtain

Ψϕ4

4 =
∫

γ3
dσ3

[
σ41σ12

σ13

1
Ŝ3

α13

]
C4 = −

∫
σ13

dσ3

[
σ41σ12

σ13

1
Ŝ3

α13

]
C∆

4 . (5.3.15)

Computing the residue then gives

Ψϕ4

4 = −
[

σ12σ41

Ŝ3

∣∣∣∣∣
σ13=0

α13

]
C∆

4 = C∆
4 . (5.3.16)

Next we consider the naive uplifts of the flat space integrands of section 2.5.1. Note
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that these uplifts will not describe the full four-point wavefunction coefficients in dS

because they will be missing mass deformations and curvature corrections. We will

explain how to encode these additional terms in the worldsheet integrands in the

next chapter. The naive uplift of the NLSM integrand in 5.1 is given by

INLSM = PT
(
Pf ′A

)2
. (5.3.17)

As before, we will fix legs {1, 2, 4} and delete legs {2, 4} from the A-matrix to obtain

ΨNLSM
4 =

∫
γ3

dσ3 (σ41σ12σ24)2
[

1
σ12σ23σ34σ41

σ13σ23σ43

Ŝ3

(
α13

σ13σ24

)2
]

C∆
4 . (5.3.18)

After simplifying the integrand there is once again a simple pole at σ13 = 0, so we

wrap the contour around this pole:

ΨNLSM
4 = −

∫
γ3

dσ3

[
σ12σ41

σ13

1
Ŝ3

α2
13

]
C∆

4 =
∫

σ13=0
dσ3

[
σ12σ41

σ13

1
Ŝ3

α2
13

]
C∆

4 . (5.3.19)

Evaluating the residue of this pole finally gives

ΨNLSM
4 =

[
σ12σ41

Ŝ3

∣∣∣∣∣
σ13=0

α2
13

]
C∆

4 = −α13 C∆
4 . (5.3.20)

Extending this calculation to six points involves dealing with a number of subtleties

that can arise for worldsheet descriptions of theories with derivative interactions,

such as the presence of higher-order poles and potential ordering ambiguities. These

are considered in detail in [3]. In chapter 6 these will be side-stepped by instead

lifting the flat space calculation directly to an operator form before checking it

behaves as expected in the soft limit.

Now we analyse the naive uplift of the DBI integrand,

IDBI = PfX
(
Pf ′A

)3
. (5.3.21)

Fixing legs {1, 2, 4} as above, we find

ΨDBI
4 =

∫
γ3

dσ3(σ14σ12σ24)2
[
PfX 1

S3

(
Pf ′A

)3
]

C∆
4 . (5.3.22)
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Recall from (5.3.11) that PfX has three terms. To evaluate the worldsheet integral

containing the first term, it is convenient to choose (Pf ′A)3 = (PfA23
23)2(PfA24

24) such

that

Ψ12,34
4 =

∫
γ3

dσ3
(σ14σ12σ24)2

σ12σ34

[
σ13σ23σ43

Ŝ3

(
α14

σ14σ23

)2 α13

σ13σ24

]
C∆

4 , (5.3.23)

where the superscript on Ψ4 denotes the contribution from the first term in (5.3.11).

The contour integral can be evaluated as above to obtain

Ψ12,34
4 =

[
σ12σ24

Ŝ3

∣∣∣∣∣
σ23=0

α2
14α13

]
C∆

4 = −α14α13C∆
4 , (5.3.24)

where we wrapped the contour around the pole σ23 = 0, evaluated the residue, and

used the CWI to cancel α23 in the denominator with α14 in the numerator. Note

that the ordering of α14 and α13 in the final result is not important since the two

operators commute when acting on a contact diagram as demonstrated in (5.1.8).

For the remaining two terms in (5.3.22) we choose (Pf ′A)3 to be (PfA14
14)2(PfA12

12)

and (PfA13
13)2(PfA12

12), respectively. Using similar manipulations, we finally obtain

ΨDBI
4 = − (α12α14 + α14α13 + α13α12) C∆

4 . (5.3.25)

This choice of Pfaffians avoids higher-order poles in the worldsheet coordinates which

are more subtle to evaluate. Examples with such poles are discussed in more detail

in [3].

In the next subsection it will also be useful to consider the following integrand, whose

corresponding wavefunction coefficient follows trivially from the above calculation:

(Pf ′A)3 PfX|conn → −α12α14C∆
4 . (5.3.26)

Finally, let us consider the naive uplift of the special Galileon integrand

IsGal =
(
Pf ′A

)4
. (5.3.27)
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In this case, the four-point wavefunction coefficient is given by

ΨsGal
4 =

∫
γ3

dσ3 (σ14σ12σ24)2
[ 1
S3

(
Pf ′A

)4
]

C∆
4 . (5.3.28)

As in the DBI case, there are Pfaffian choices exclusively leading to simple poles.

The following choice leads to a permutation invariant result:

(Pf ′A)4 = 1
3

{
1

σ2
34

(PfA34
34)2 (−1)

σ23
(PfA23

23)
1

σ24
(PfA24

24) + cyclic(2, 3, 4)
}

. (5.3.29)

Note that other choices can give different results due to non-trivial commutators

which only vanish in the flat space limit. Hence we must specify a choice of Pfaffian.

Following closely the computations above, we obtain

ΨsGal
4 = 1

3 (α12α14α13 + α14α13α12 + α13α14α12) C∆
4 . (5.3.30)

Using the commutation properties in (5.1.8) it is not difficult to see that the above

expression is permutation invariant.

5.3.2 Generalised Double Copy

Using the building blocks in the previous subsection (in particular (5.3.16) and

(5.3.20)), we see that the four-point NLSM wavefunction coefficient (including a

curvature correction) in (5.3.3) follows from the following integrand:

INLSM
4 = λ2PT

(
Pf ′A

)2
+ cPT PfX|conn Pf ′A, (5.3.31)

if we identify the unfixed parameter c with −C. Now consider the following shift of

the first term in (5.3.31):

λ2PT → aPf ′A
(
Pf ′A + m2 PfX|conn

)
+ b

(
Pf ′APfX + m2PT

)
, (5.3.32)

where a and b are also free coefficients. We then obtain the following integrand:

I(6)
4 = a(Pf ′A)3(Pf ′A + m2 PfX|conn)

+ b(Pf ′A)2(Pf ′APfX + m2PT) + cPT PfX|conn Pf ′A.

(5.3.33)
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Using the prescription for evaluating worldsheet integrals described the previous

subsection (in particular (5.3.16), (5.3.20), (5.3.25), (5.3.26), and (5.3.30)), we see

that the corresponding wavefunction coefficient is

Ψ(6)
4 =

[8
3a(s̃12s̃14s̃13 + s̃14s̃13s̃12 + s̃13s̃12s̃14) − 4b(s̃12s̃14 + s̃14s̃13 + s̃13s̃12) + c

]
C∆

4 ,

(5.3.34)

where s̃ab is related to ŝab (5.1.6) by

s̃ab = ŝab − 1
2m2. (5.3.35)

It is then straightforward to match (5.3.34) with (5.3.5) via the following identifica-

tion of unfixed coefficients:

A = 8
3a, B = 2a

(
m2 + 4

3d
)

− 2b, C = −1
3am6 + bm4 − c. (5.3.36)

Hence, the worldsheet integrand (5.3.33) encodes the effective action in (5.3.4).

Moreover, (5.3.32) can be thought of as a double copy procedure encoding mass

deformations and curvature corrections. In particular, it reduces to (5.2.12) and

(5.2.11) in the flat space limit for a ̸= 0 and a = 0, respectively (recalling that the

mass is measured in units of the inverse dS radius). We therefore refer to this as a

generalised double copy. Note that this prescription leaves the curvature corrections

and mass deformations unfixed. To fix these coefficients, we must specify additional

data beyond the flat space limit, this is explored in chapter 6.

5.3.3 Explicit Results for Conformal & Minimal Scalars

In the previous section, we found the building blocks of four-point wavefunction

coefficients of scalar EFTs in dS to be

C∆
4 , ŝ13C∆

4 ,
(
ŝ2

12 + ŝ2
14 + ŝ2

13

)
C∆

4 ,
(
ŝ3

12 + ŝ3
14 + ŝ3

13

)
C∆

4 , (5.3.37)

for notational simplicity, we will continue to leave out the delta function imposing

momentum conservation along the boundary. The first one is a ϕ4 contact diagram,
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while the remaining building blocks arise from the action on this contact diagram

with the differential operators defined in (5.1.6). The first two terms contribute when

lifting NLSM to dS, while the last two arise when lifting the DBI and sGal theories.

In this section, we will compute these objects explicitly in the cases ∆ = 2, 3 and

analyse their soft limits. In practice, all the integrals we encounter will be of the form∫ 0
−∞ ηαe−iEηdη. To evaluate them, we rotate the contour clockwise onto the complex

plane so that the integrand is exponentially damped as η → −∞ [47]. To simplify

our expressions we will set the normalisation of the bulk-to-boundary propagators

in (5.1.2) to be N = (−1)ν− 1
2
√

2/π.

We will show that the soft limits of the building blocks in (5.3.37) are given in terms

of boundary conformal generators acting on certain three-point contact diagrams.

Soft limits play an important role in cosmology where they appear in constraints

relating higher-point functions to symmetry transformations of lower-point functions

[57, 149–151] and allow one to deduce 3-point inflationary correlators from four-point

dS correlators [55, 152–155]. Soft limits of DBI and sGal wavefunction coefficients

in flat space were recently analysed in [156]. Note that the soft limit of the four-

point wavefunction coefficients in (5.3.3) and (5.3.5) can be obtained from linear

combinations of soft limits we derive in this section. This analysis will be generalised

in chapter 6 to arbitrary d and ∆ and it will be demonstrated that soft limits of

wavefunction coefficients are in fact linked to symmetries of the Lagrangian allowing

us to fix the mass and curvature corrections in the naive uplifts in section 5.3.2.

Contact diagram

Let us first consider the four-point contact diagram. For conformally coupled scalars,

we find

C∆=2
4 =

∫ dη

η4

( 4∏
a=1

ϕ1/2
a

)
= 1

E
. (5.3.38)
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It is trivial to see that the soft limit of this quantity corresponds to a three-point

contact diagram for conformally coupled scalars with a time-dependent interaction

lim
k1→0

C∆=2
4 = C∆=2

3,η , (5.3.39)

where

C∆=2
3,η =

∫ dη

η4

(
η

4∏
a=2

ϕ1/2
a

)
= 1

E
. (5.3.40)

This three-point contact diagram will also arise in the soft limit of more complicated

four-point wavefunction coefficients of conformally coupled scalars. In particular, we

will obtain conformal generators acting on (5.3.40).

For minimally coupled scalars, the integrals need to be regulated. We will use the

prescription d → d+2ϵ, ∆ → ∆+ϵ, which leaves the spectral parameter ν = ∆−d/2

unchanged [157–160], such that

C∆=3+ϵ
4 =

∫ dη

η4+2ϵ

4∏
a=1

ϕ3/2
a ,

= 1
E2ϵ

{
E3[Γ(−2 + 2ϵ) + Γ(−3 + 2ϵ)] + Γ(2ϵ)(k1k2k3 + . . .)

+ Γ(−1 + 2ϵ)E (k1k2 + . . .) + k1k2k3k4

E
Γ(1 + 2ϵ)

}
,

(5.3.41)

where the ellipsis inside each parenthesis denotes a sum over permutations of all four

legs. We then find the following soft limit:

lim
k1→0

C∆=3+ϵ
4 = 1

E2ϵ
{E3[Γ(−2 + 2ϵ) + Γ(−3 + 2ϵ)] + Γ(2ϵ)k2k3k4

+ Γ(−1 + 2ϵ)E(k2k3 + k2k4 + k3k4)}.

(5.3.42)

We can now compare this with the three-point contact diagram of minimally coupled

scalars:

C∆=3+ϵ
3 =

∫ dη

η4+2ϵ

4∏
a=2

ϕ3/2
a . (5.3.43)

Unlike the contact diagram in (5.3.40), this contact diagram does not contain a

time-dependent interaction. After performing the integral in (5.3.43) and changing
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ϵ → 2ϵ, we finally obtain (5.3.42):

lim
k1→0

C∆=3+ϵ
4 = C∆=3+2ϵ

3 , (5.3.44)

which, for clarity, can be easily expanded in ϵ:

C∆=3+ϵ
3 = k3

2 + k3
3 + k3

4
3

(1
ϵ

− γE − ln E + 1
)

+ 1
9E3 − k2k3k4 + O(ϵ), (5.3.45)

where γE is the Euler-Mascheroni constant. As we will see, (5.3.43) will continue to

play a role in the soft limit of more complicated four-point wavefunction coefficients

of minimally coupled scalars.

Two Derivatives

Next, we will analyse the soft limit of ŝ13C∆
4 . In the conformally coupled case, the

conformal time integral can be evaluated to get

ŝ13C∆=2
4 = − 2

E3 [k1 · k3 − k1k3 − E

2 (k2 + k4)], (5.3.46)

with soft limit

lim
k1→0

ŝ13C∆=2
4 = 1

E
− k3

E2 . (5.3.47)

We recognise this expression as the dilatation operation:

D3

( 1
E

)
= 1

E
− k3

E2 . (5.3.48)

Hence, we find that the soft limit of (5.3.46) can be obtained by acting with a

dilatation on the three-point contact diagram of (5.3.40):

lim
k1→0

ŝ13C∆=2
4 = D3 C∆=2

3,η . (5.3.49)
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In the minimally coupled case, we find

ŝ13C∆=3
4 = k1 · k3

E

−E2 +
∑
a<b

kakb + k1k2k3k4

E

( 1
k1

+ 1
k2

+ 1
k3

+ 1
k4

+ 2
E

)
− k2

1k2
3

E

(
1 + k2 + k4

E
+ 2k2k4

E2

)
,

(5.3.50)

which requires dimensional regularisation in intermediate steps but has a finite

output. Taking the soft limit then gives

lim
k1→0

ŝ13C∆=3
4 = k1 · k3

E

(
k2

2 + k2
3 + k2

4 + k2k3 + k3k4 + k4k2 − k2k3k4

E

)
, (5.3.51)

which can be obtained by acting with a conformal boost on the three-point contact

diagram in (5.3.43):

lim
k1→0

ŝ13C∆=3
4 = (k1 · K3) C∆=3

3 . (5.3.52)

Note that the divergences in (5.3.45) are removed by the action of conformal gener-

ators so we set ϵ = 0. This will continue to hold for higher-derivative wavefunction

coefficients so we will set ϵ = 0 in those cases as well.

Four Derivatives

We now consider the term (ŝ2
12 + ŝ2

14 + ŝ2
13)C∆

4 . For conformally coupled scalars, we

obtain

(ŝ2
12+ŝ2

14+ŝ2
13)C∆=2

4 = 24
E5 [(k1 ·k2−k1k2)(k3 ·k4−k3k4)+cyc(234)]− 8

E3

∑
a<b

kakb+ 4
E

.

(5.3.53)

In this case the soft limit is simply

lim
k1→0

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=2

4 = 4
E3 (k2

2 + k2
3 + k2

4), (5.3.54)

which can be recast as a second order combination of dilatation operators acting on

the three-point contact diagram of (5.3.40):

lim
k1→0

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=2

4 = 2(D2
2 + D2

3 + D2
4)C∆=2

3,η . (5.3.55)
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In the minimally coupled case, we obtain

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=3

4 = 24k1k2k3k4

E5 (k1 · k2 − k1k2)(k3 · k4 − k3k4)

+ 2
E3 (k1 · k2)(k3 · k4)

(
E2 + E

∑
a<b

kakb +
∑

a<b<c

kakbkc

)
− 2

E4 [(k1 · k2)k2
3k2

4(E + 2(k1 + k2) + (k3 · k4)k2
1k2

2(E + 2(k3 + k4)) + cyc(234)].

(5.3.56)

We then find that the soft limit is given by

lim
k1→0

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=3

4 = k1 · k2

E3

[
4k2

2k3k4 + k2E(k3k4 + 2k2(k3 + k4))

+ E2(2k2
2 + k2k3 + k3k4 + k4k2) − E4)

]
+ cyc(234),

(5.3.57)

which corresponds to applying the following quadratic combination of conformal

generators to a three-point contact diagram:

lim
k1→0

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=3

4 = −2
[
D2(k1 · K2) + cyc(234)

]
C∆=3

3 . (5.3.58)

In practice, the soft limits in (5.3.55) and (5.3.58) are most easily derived at the level

of the integrand. In particular, this requires taking the soft limit of bulk-to-boundary

propagators and their derivatives, and then using equations of motion to remove

derivatives acting on the bulk-to-boundary propagator for the soft leg as well as

factors of k2
a. For example, in the conformally coupled case we have

lim
k1→0

(ŝ2
12 + ŝ2

14 + ŝ2
13)C∆=2

4 =
∫

dη

(
1
η

(−k2
2ϕ̇1ϕ2 + ϕ̇1ϕ̈2) − 1

η2 ϕ̇1ϕ̇2

)
ϕ3ϕ4 + cyc(234),

=
∫ dη

η3 [2η2ϕ̈2 − ηϕ̇2 − 2ϕ2]ϕ3ϕ4 + cyc(234),

= 2
(
D2

2 + D2
3 + D2

4

) ∫ dη

η3 ϕ2ϕ3ϕ4.

(5.3.59)
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The analogous construction in the minimally coupled case is given by

lim
k1→0

(
ŝ2

12 + ŝ2
14 + ŝ2

13

)
C∆=3

4 = (k1 · k2)
∫

dη

(
2
η

ϕ1ϕ̇2 + 1
η2 ϕ1ϕ2

)
ϕ3ϕ4 + cyc(234),

= −2[D2(k1 · K2) + cyc(234)]
∫ dη

η4 ϕ2ϕ3ϕ4.

(5.3.60)

Using this method, one can also derive the soft limits in (5.3.49) and (5.3.52).

Six Derivatives

Finally we consider the six derivative interaction (ŝ3
12 + ŝ3

14 + ŝ3
13)C∆

4 . In the conform-

ally coupled case we obtain

(ŝ3
12 + ŝ3

14 + ŝ3
13)C∆=2

4 =
( 90

E7 [k1 · k2 + k3 · k4 − k1k2 − k3k4]3

+ 156
E5 [k1 · k2 − k1k2][k3 · k4 − k3k4]

− 54
E5 (k1k2 + k3k4)[k1 · k2 + k3 · k4 − k1k2 − k3k4]

− 79
E3 (k1k2 + k3k4) + cyc(234)

)
+ 93

4E
,

(5.3.61)

with soft limit

lim
k1→0

(ŝ3
12 + ŝ3

14 + ŝ3
13)C∆=2

4 = −108
E4 k2k3k4 + 52

E3 (k2k3 + k3k4 + k4k2) − 12
E

. (5.3.62)

Using the methods described above, we can obtain this by acting with the following

combination of conformal generators on a three-point contact diagram:

lim
k1→0

(ŝ3
12 + ŝ3

14 + ŝ3
13)C∆=2

4 =
(
6(D3

2 + D3
3 + D3

4) − 22(D2
2 + D2

3 + D2
4) + 20

)
C∆=2

3,η .

(5.3.63)

In the minimally coupled case, the expression for the integrated wavefunction coeffi-

cient can be found in appendix E.1. The soft limit is given by

lim
k1→0

(ŝ3
12 + ŝ3

14 + ŝ3
13)C∆=3

4 = (k1 · k2)
E4

[
3k5

2 + 12k4
2(k3 + k4) + k3

2(k2
3 + 36k3k4 + k2

4)

− k2
2(k3 + k4)(11k2

3 + 21k3k4 + 11k2
4) − 4k2(k3 + k4)2(k2

3 + k3k4 + k2
4)
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− (k3 + k4)3(k2
3 + k3k4 + k2

4)
]

+ cyc(234). (5.3.64)

This expression can also be recast in terms of conformal generators acting on a

three-point contact diagram. For example, we can write

lim
k1→0

(ŝ3
12 + ŝ3

14 + ŝ3
13)C∆=3

4 = [2(3D2
2 − 11D2)(k1 · K2) + cyc(234)]C∆=3

3 . (5.3.65)

Observe that these expressions are not unique. For example, the operators K2 and

D2 do not commute and so we could choose to order them differently and pick up

different coefficients. Note also that unlike (5.3.63), the term in brackets in (5.3.65)

contains no constant term. This comes from the different behavior of the soft limits

for different values of ∆. The constant term in (5.3.63) arises from D2 + D3 + D4

and the equivalent term in the case of massless scalars would be a sum over k1 · Ki.

We can rewrite this using CWI to get a contribution of order k2
1 which we then drop

as it is subleading.

That all these soft limits can be written in terms of the action of conformal generators

is an interesting feature. Considering d = 3 with ∆ = 2, 3 are special cases however.

The soft limits for the minimal scalar are all of order O(k) (except the ϕ4 contact)

whilst the conformal scalar limits are all non-vanishing. Intuitively this suggests

that the mass term is important – this is indeed the case and is explored for general

d in chapter 6 which also links these soft limits to Lagrangian symmetries. There

is perhaps still interesting physics to be explored in the case of small ∆ such as

the conformal scalar. The four-point soft limits here can be written in terms of

three-point wavefunction coefficients with a time-dependent interaction. It may be

that a more general study of the soft limits of conformally coupled scalars could

link them to the wavefunction coefficients of another theory. These are the types of

interactions explored through cosmological polytopes and it would be interesting to

see if some connection could be made between the two approaches [58, 161].
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5.4 Remarks

The study of correlation functions in (Anti) de Sitter space using curved-space

analogues of the scattering equations is still an ongoing endeavour. Prior to [3], they

had only been formulated for scalar theories with polynomial interactions, notably

ϕ3 [71, 72] and ϕ4 [62, 63]. Now, this has been extended to scalar theories with

derivative interactions. In particular, we study the wave function coefficients of the

NLSM, DBI, and sGal theories in dS using the cosmological scattering equations.

These effective scalar theories are of particular interest in flat space since their

scattering amplitudes have a very elegant description and are related to each other

in a simple way in terms of CHY formulae [68].

In this chapter we have proposed new formulae for four-point wavefunction

coefficients of different scalar EFTs in the form of worldsheet integrals which

encode both curvature corrections and mass deformations. We showed that the

DBI and sGal integrands can be obtained from the NLSM integrand by replacing a

Parke-Taylor factor with a linear combination of simple building blocks involving

Pfaffians of certain operatorial matrices. Because the integrands are constructed

from differential operators which do not generally commute, this leads to potential

ordering ambiguities that are absent in theories with polynomial interactions. Such

ambiguities can occur in the DBI and sGal theories at four points and the NLSM

at six points. At four points we introduced a simple prescription for defining the

worldsheet integrals such that the final results are permutation-invariant. We have

also studied the soft limits of the resulting four-point wavefunction coefficients and

derived formulae in the form of differential operators acting on three-point contact

diagrams. For conformally coupled scalars, the three-point contact diagrams involve

a time-dependent interaction, while for minimally coupled scalars the contact

diagram is divergent and needs to be regulated. However, all divergences cancel out

after acting with the appropriate combinations of boundary conformal generators.

There are a number of directions for future investigation. For example, it would
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be of interest to generalise our formulae to any number of points. In order to do

so, there are several technical questions that need to be addressed. First of all, we

need to develop a systematic classification of higher-derivative corrections to scalar

EFTs analogous to the one in [148] beyond four-points, which to our knowledge

has not been carried out yet. It would then be interesting to see if there is a

simple generalisation of the double copy prescription in (5.3.32) which encodes

such corrections at higher points. Secondly, we need a systematic understanding of

ordering ambiguities that could arise in the corresponding worldsheet integrals and

a prescription for removing them. A natural starting point along these lines would

be to analyse potential ordering ambiguities in the six-point NLSM calculation dealt

with in [3].



Chapter 6

Soft Limits of Cosmological

Wavefunctions

We now move to analysing the soft limits of scalar wavefunction coefficients for

general d and ∆. The method presented lets us consider their behavior without

needing to explicitly carry out the conformal time integrals. We start by presenting

dS Lagrangians with shift symmetries. We will then demonstrate that by demand-

ing wavefunction coefficients display enhanced soft behavior analogous to what is

observed in flat space (see section 2.5) we can reconstruct these Lagrangians directly.

This can be done for all three ‘exceptional’ scalar field theories and in the case

of NLSM and DBI we also demonstrate how it can be bootstrapped beyond 4pt

via cancellations between contact and exchange diagrams. Finally we revisit the

generalised double copy introduced in chapter 5 and show that this enhanced soft

behavior can be used as a physical input to fix the coefficients in 5.3.33.

6.1 Lagrangians with Enhanced Shift Symmetry

Here we introduce the Lagrangians of interest in de Sitter. Unlike the previous

chapter, we are interested in fixing specific values for the masses and coefficients of

curvature corrections as well as considering interaction terms beyond four points.
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These Lagragians are therefore specifically constructed to exhibit shift symmetries

analogous to those in flat space (as discussed in section 2.5). We will then demon-

strate in section 6.2 that these Lagrangians correspond to wavefunction coefficients

with enhanced soft limits just as in flat space.

The Lagrangian for NLSM in dSd+1 is given by

LNLSM√
|g|

= Tr
(
∂µU †∂µU

)
, U = exp (iϕ) , (6.1.1)

where ϕ is in the adjoint of an SU(N) flavour symmetry, the same as in flat space.

No masses or curvature corrections are allowed because they would spoil the ϕ →

ϕ + c shift symmetry. This can also be deduced from enhanced soft limits of the

wavefunction coefficients as will be demonstrated below. In practice, it is also

convenient to use the parametrisation U = (I+ Φ)(I− Φ)−1 (where the coupling has

been set to one). Expanding the Lagrangian in Φ then gives

LNLSM√
|g|

= −Tr
[1
2(∂Φ)2 + Φ2(∂Φ)2 +

(
Φ4(∂Φ)2 + 1

2Φ2∂µΦΦ2∂µΦ
)

+ O(Φ8)
]

,

(6.1.2)

using the shorthand (∂Φ)2 = ∂µΦ∂µΦ. Note that we do not need covariant derivatives

here since ∇ ∼ ∂ when acting on a scalar.

The Lagrangians for the DBI and sGal theory do not trivially lift to dS and were

recently derived from the following shift symmetry [89]

δϕ = θA1...Ak
XA1 ...XAk + ..., (6.1.3)

where XA are embedding coordinates satisfying − (X1)2 + ∑d+2
A=2

(
XA

)2
= 1 and

the ellipsis denotes field-dependent terms. This symmetry fixes the mass to be

m2 = −k(k + d). In the DBI case (k = 1), the resulting action is quite simple and

given by

LDBI√
|g|

= 1
(1 − ϕ2) d+1

2

√
1 − (∂ϕ)2

1 − ϕ2 , (6.1.4)
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where (∂ϕ)2 = ∂µϕ∂µϕ. In the sGal case (k = 2) the Lagrangian is very nontrivial

LsGal√
|g|

=
d∑

j=0

(1 + ϕ)d+1−j + (−1)j(1 − ϕ)d+1−j

2j+1(1 − ϕ2) d+4
2 Γ(j + 3)

× ((j + 1)fj+1(ϕ) − (j + 2)fj(ϕ)) ∂µϕ∂νϕX(j)
µν (ϕ)

− 2
d + 2

(
1 − (1 + ϕ)d+2 + (1 − ϕ)d+2

2(1 − ϕ2) d+2
2

)
,

(6.1.5)

where X(j)
µν is defined recursively as X(n)

µν = −n∇µ∇αϕX(n−1)
αν + gµν∇α∇βϕX

(n−1)
αβ

with X0
µν = gµν , and

fj(ϕ) = 2F1

(
d + 4

2 ,
j + 1

2 ; j + 3
2 ; (∂ϕ)2

4(1 − ϕ2)

)
. (6.1.6)

In the remainder of this chapter, we will demonstrate that the masses and couplings

of these theories can be treated as unknown coefficients and fixed by demanding

that the wavefunction coefficients have vanishing soft limits analogous to (2.5.1).

It is worth noting that the conformal weight of the fields ∆ (or equivalently the

symmetry parameter k) will play an important role in what follows. In flat space,

the cancellations required to obtain the expected enhanced limits are non-trivial.

For example with DBI, requiring that the soft limit scales as O(k2) is an additional

constraint that is needed to fully fix the form of the interactions beyond 4pt. In

dS however, once ∆ has been fixed using the 4pt soft behavior we will see that the

subleading soft limits are no longer necessary to fix the curvature corrections. Unlike

in flat space, they provide no additional constraints beyond those already imposed

by the leading order soft behavior. To phrase this another way, once ∆ has been

specified, requiring that a wavefunction coefficient exhibit enhanced soft behavior is

equivalent to demanding it vanish at all in the soft limit.

6.2 Soft limits for arbitrary d and ∆

In this section we will develop the methods necessary to take soft limits for general

d and ∆. The starting point for this is the wavefunction coefficients expressed
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as differential operators acting on a contact diagram. We use the action of these

operators to express the wavefunction coefficient as an η integrand for general d and

∆ and then take the soft limit of one of the momenta. This will then be used to fix

the masses and 4-point couplings of the NLSM, DBI, and sGal theories in de Sitter

space from enhanced soft limits of their wavefunction coefficients. We then use these

results to fix the unknown coefficients in the generalised double copy introduced in

section 5.3.2. In the next section we will then use the same procedures at six points

for the NLSM and DBI theories, bootstrapping the 6pt interaction Lagrangian from

the four-point case and enhanced soft limits.

When expanding the conformal time integrands in terms of the soft momentum we

need the soft limit of the corresponding bulk-to-boundary propagator in the contact

diagram. This soft limit can be read off from the series expansion of (5.1.2) which

is schematically given by

ϕν(k, η) ∼
∞∑

m=0

(
a2m + b2mk2∆−d

)
k2m. (6.2.1)

We can see that the second series has k2(ν+m) terms which are subleading for positive

ν (in the case of negative ν, the series diverges as k goes soft). In each case of

interest, the enhanced soft limits will fix ∆ = d + k where k is the order of the shift

symmetry in the Lagrangian. This sets ν = d/2 + k and ensures that the second

series does not contribute to the soft limit. We therefore take the soft limit of the

wavefunction to be

ϕν(k, η) = N
η∆−d

(
1 + η2k2

2(2∆ − d − 2)

)
+ O(k4),

where N = Γ (∆ − d/2) 2∆−d/2−1/2
√

π
,

(6.2.2)

this can be used to study the soft limit of wavefunction coefficients 1.

1The apparent divergence where ∆ = d
2 + 1 only appears when the k2∆−d terms should not be

neglected but this will not occur in any of the cases studied here.
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6.2.1 Four-point Soft Limits

NLSM

At four points, the tree-level flavour-ordered 4-point wavefunction coefficient can be

obtained from two Witten diagrams. This was given in section 5.3 as

ΨNLSM
4 = −

(
2ŝ13 + C − m2

)
C∆

4 ,

= (−1)d
∫ dη

ηd+1

[
2η2

(
k1 · k3ϕ1ϕ3 + ϕ̇1ϕ̇3

)
ϕ2ϕ4 + (C + ∆(∆ − d))ϕ1ϕ2ϕ3ϕ4

]
,

(6.2.3)

where C is a curvature correction from a Φ4 interaction and have set the coupling λ

to 1. The (−1)d sign comes from the |η|−(d+1) factor in the volume element. If we

take a soft limit on k1, we find

lim
k1→0

ΨNLSM
4 = Ñ

∫ dη

ηd+1

[
η2 2(∆ − d)

η∆−d+1 ϕ2ϕ̇3ϕ4 + C + ∆(∆ − d)
η∆−d

ϕ2ϕ3ϕ4

]
+ O(k1),

= Ñ
∫ dη

η∆+1

[
2(∆ − d)ηϕ2ϕ̇3ϕ4 + (C + ∆(∆ − d)) ϕ2ϕ3ϕ4

]
+ O(k1),

(6.2.4)

where we have used Ñ = (−1)dN . We see from (6.2.4) that the soft limit will vanish

to O(k1) if ∆ = d and C = 0, i.e. if we have a massless scalar and no curvature

corrections in agreement with (6.1.2). We can also see from (5.3.3) that it is not

possible to for the soft limit to vanish at higher order since there is no way to cancel

the k1 · k3 term as the bulk-to-boundary propagators only depend on magnitudes of

momenta. Hence, the wavefunction coefficient with enhanced soft behavior is simply

ΨNLSM
4 = −2ŝ13C∆=d

4 . (6.2.5)
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DBI

At four points, DBI theory can be described by the following general effective

Lagrangian (modulo integration by parts and free equations of motion)

LDBI
4√
|g|

= −
(1

2(∂ϕ)2 + 1
2m2ϕ2 + 1

8(∂ϕ)4 + 1
4!Cϕ4

)
, (6.2.6)

where the 4-derivative interaction (whose coupling we have normalised to one) arises

from the naive uplift from flat space and we leave the mass and curvature correction

C unfixed. This is a special case of the Lagrangian in equation (5.3.4). The tree-level

4-point wavefunction coefficient can be computed from Witten diagrams and is given

by

ΨDBI
4 = −

(
ŝ2

12 + ŝ2
13 + ŝ2

14 + C
)

C∆
4 . (6.2.7)

To obtain the conformal time integrand, we use the action of ŝ2
12 on bulk-to-boundary

propagators which appeared in section 5.3 and is given by

ŝ2
12ϕ1ϕ2 = η4

[
(k1 · k2)2ϕ1ϕ2 + 2k1 · k2ϕ̇1ϕ̇2 + ϕ̈1ϕ̈2,

+ 1
η

(
2k1 · k2

(
ϕ1ϕ̇2 + ϕ̇1ϕ2

)
− k2

1ϕ1ϕ̇2 − k2
2ϕ̇1ϕ2 + ϕ̇1ϕ̈2 + ϕ̈1ϕ̇2

)
+ 1

η2

(
(2 − d)k1 · k2ϕ1ϕ2 + ϕ̇1ϕ̇2

) ]
.

(6.2.8)

Here we use ŝ2
12 rather than ŝ12ŝ34 as it makes the soft limit on k1 more transparent.

We then insert the soft limit for ϕ1 from equation (6.2.2) and expand to O (k2
1) in

order to fix ∆ and C. Since this is more complex than the NLSM case, we need to use

the equations of motion and integration by parts to eliminate terms which are not

independent. One option is to use the equations of motion of the bulk-to-boundary

propagators to remove any explicit dependence on k2
2 in (5.3.8) (k2 will still enter in

the arguments of ϕ2). Alternatively, we can apply the equations of motion to leave

only terms containing ϕ2 and ϕ̇2 along with factors of k2
2

2. Removing the explicit

2This second approach is equivalent to using the identity Hν−1(x) = −Hν+1(x) + 2ν
x Hν(x) on

the Hankel functions which appear in the derivatives of propagators to leave only two independent
functions.
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dependence on k2
2 in the first term of (6.2.7) and summing over cyclic permutations

then gives

lim
k1→0

ΨDBI
4 = Ñ

∫ dη

η∆+1

[
(∆ − d − 1)

(
(∆ − d)η2ϕ̈2 − 2η3k1 · k2ϕ̇2

)
ϕ3ϕ4

+ Cyc.[234] + (∆(∆ − d)(4∆ − 3d − 1) + C) ϕ2ϕ3ϕ4 + O(k2
1)
]
,

(6.2.9)

where we used the following identity to remove the ϕ̇a terms (a ∈ {2, 3, 4}) at O(k0
1):

∫ dη

η∆+1 η∂η

(
n∏

i=2
ϕi

)
∼ ∆

∫ dη

η∆+1

(
n∏

i=2
ϕi

)
. (6.2.10)

In deriving the above formula, we discarded a total derivative term. This term

actually gives divergent contributions at η = 0 and therefore needs to be regulated,

however these contributions are analytic in at least two momenta and therefore corres-

pond to contact terms which have delta function support when Fourier transformed

to position space [47].

From (6.2.9), we see that the soft limit vanishes to O(k2
1) if ∆ = d + 1 and

C = −(d + 1)(d + 3). Plugging these values into (6.2.7) gives

ΨDBI
4 = −δ(d) (kT )

(
ŝ2

12 + ŝ2
13 + ŝ2

14 − (d + 1)(d + 3)
)

C∆=d+1
4 . (6.2.11)

Moreover, (6.2.6) becomes

LDBI
4√
|g|

= −
(

1
2(∂ϕ)2 − d + 1

2 ϕ2 + 1
8(∂ϕ)4 − (d + 1)(d + 3)

4! ϕ4
)

. (6.2.12)

From (5.3.8) we can see that it is not possible for the soft limit to vanish beyond

O(k2
1) since this term contains a piece proportional to (k1 · k2)2 but the soft limit of

Witten diagrams coming from the ϕ4 interaction will only depend on the magnitude

k1. We also note that while the O(k1) contribution to the wavefunction coefficient

is needed to fix ∆, once this is fixed only the leading soft limit is needed to fix C.

This is appears to be a general feature in de Sitter space, in contrast to flat space

where all the subleading data is needed to fix coefficients.
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Let us now compare to the Lagrangian in (6.1.4) which was derived from shift

symmetries. Expanding it to quartic order gives

LDBI√
|g|

= 1
(1 − ϕ2)(d+1)/2

√
1 − (∂ϕ)2

1 − ϕ2 ,

= −
(

1
2(∂ϕ)2 − d + 1

2 ϕ2 + 1
8(∂ϕ)4 − (d + 1)(d + 3)

4! ϕ4 + O(ϕ6)
)

,

(6.2.13)

where we have used integration by parts and the free equation of motion ∇2ϕ = m2ϕ

to remove a (∇ϕ)2ϕ2 = (∂ϕ)2ϕ2 term. This precisely matches (6.2.12), which was

derived from enhanced soft limits.

sGal

At 4-points, the sGal wavefunction coefficient can also be obtained from the Lag-

rangian in equation (5.3.4). The corresponding wavefunction coefficient is given

by

ΨsGal
4 = [(ŝ3

12 + ŝ3
13 + ŝ3

14) + (d − B)(ŝ2
12 + ŝ2

13 + ŝ2
14) − C]C∆

4 , (6.2.14)

where we have taken equation (5.3.5) and set the unknown A to 1, corresponding

to a rescaling of the fields. The ŝ3
ab terms are quite lengthy and can be found in

Appendix E.2. The ŝ2
ab terms were already considered in the previous subsection

(and in section 5.3).

We will now expand the integrand up to O(k2
1) and present the soft limit in parts.

After substituting (6.2.2) we apply equations of motion to eliminate any explicit

dependence on k2
2 in the ŝ3

12 term and sum over permutations to obtain

lim
k1→0

ΨsGal
4 = Ñ (∆ − d − 2)

∫ dη

η∆+1

[
η

(
(∆ − d − 1)(∆ − d)η2

+ k2
1

2∆ − d − 2(∆ − d − 3)(∆ − d − 4)
) ...

ϕ 2

− 3k1 · k2η
4ϕ̈2 + 3(k1 · k2)2η5ϕ̇2

]
ϕ3ϕ4 + Cyc.[234] + O(k3

1) + . . . ,

(6.2.15)
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where the ellipsis represent terms that can also arise from 4-derivative and ϕ4 inter-

actions. Equation (6.2.15) therefore represents terms which must scale as O(k3
1) in

the soft limit since they cannot cancel against any other terms in the wavefunction

coefficient. We must therefore set ∆ = d + 2. When this is substituted into the

remaining terms they simplify significantly and we obtain

lim
k1→0

ΨsGal
4 = Ñ (B + 2d + 2)

∫ dη

η∆+1 η2
(
2ϕ̈2 − 2η(k1 · k2)ϕ̇2 + η2(k1 · k2)2ϕ2

)
ϕ3ϕ4

+ Cyc.[234] + O(k3
1) + . . . ,

(6.2.16)

where the ellipsis denote terms that can also arise from ϕ4 interactions. After setting

B = −2(d + 1) the above terms vanish and the soft limit of the wavefunction

coefficient reduces to

lim
k1→0

ΨsGal
4 = −Ñ (4(d + 2)2 − C)

∫ dη

η∆+1
4 + 2d + η2k2

1
2(d + 2) ϕ2ϕ3ϕ4 + O(k3

1), (6.2.17)

which fixes C = 4(d + 2)3. The wavefunction coefficient with O(k3
1) soft behavior is

therefore

ΨsGal
4 =

(
ŝ3

12 + ŝ3
13 + ŝ3

14 + (3d + 2)
(
ŝ2

12 + ŝ2
13 + ŝ2

14

)
− 4(d + 2)3

)
C∆=d+2

4 . (6.2.18)

We can see from equations (6.2.16) and (6.2.17) that once ∆ is fixed, we can fix B

and C using only the leading order soft limit.

Moreover, we find that the Lagrangian in (5.3.4) is given by

LsGal
4√
|g|

= −{1
2∇ϕ · ∇ϕ − (d + 2)ϕ2 + 1

8(∇µ∇νϕ)2(∇ϕ)2 − d + 1
4 (∇ϕ)4 + (d + 2)3

6 ϕ4}.

(6.2.19)
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Let us compare the above Lagrangian to the one derived from hidden symmetry.

Expanding (6.1.5) to quartic order gives

LsGal√
|g|

= −
(

1
2(∇ϕ)2 − (d + 2)ϕ2 − 1

4!2(d + 2)(d(d + 4) + 12)ϕ4

+ 1
4!(d(3d + 8) + 28)ϕ2(∇ϕ)2 + d + 4

96 (∇ϕ)4

+ 2 − d

24 ϕ∇µϕ∇νϕ∇µ∇νϕ − 1
96(∇ϕ)2 (∇µ∇νϕ)2

+ 1
48∇µϕ∇νϕ∇σ∇µϕ∇σ∇νϕ

)
+ O(ϕ6),

(6.2.20)

where we have used the free equation of motion ∇2ϕ = m2ϕ = −2(d + 2)ϕ. We can

then use integration by parts and free equations of motion to bring this to the form

in (5.3.4). The final term in (6.2.20) can be written as

∂µϕ∂νϕ∇σ∇µϕ∇σ∇νϕ ∼ −1
2
(
(∇ϕ)2∇σ∇µϕ∇σ∇µϕ + (∇ϕ)2∂νϕ∇2∇νϕ

)
, (6.2.21)

by applying integration by parts on ∇σ. The second term on the right-hand side can

then be reduced to lower-derivative terms via a commutator of covariant derivatives

∇σ∇σ∂νσϕ = ∇σ∇ν∂σϕ,

= ∇ν∇2ϕ + [∇ν∇σ]∂σϕ,

= m2∂νϕ + Rµν∂µϕ,

= −(d + 4)∂νϕ.

(6.2.22)

Similarly, using integration by parts and free equations of motion, the two-derivative

term in the first line of (6.2.20) can be reduced to a ϕ4 term, and the second four-

derivative term in the second line of (6.2.20) can be written in the form (∇ϕ · ∇ϕ)2

plus a ϕ4 term. In the end, we are left with three interaction terms:

LsGal
int√
|g|

= − 1
48(∇ϕ)2∇α∇βϕ∇α∇βϕ + d + 1

24 (∇ϕ)4 − 1
36(d + 2)3ϕ4 + O(ϕ6). (6.2.23)

After multiplying by 6 (equivalent to rescaling the six-derivative coupling) this indeed

matches the interaction terms in (6.2.19), which were deduced from enhanced soft

limits.
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6.2.2 Fixing Double Copy coefficients

We can now apply these enhanced soft limits to fix the general curvature coefficients

in the CSE integrands introduced in section 5.3.2. For the NLSM at 4-points, the

general integrand was given in equation (5.3.31) by

INLSM
4 = λ2PT

(
Pf ′A

)2
+ cPT PfX|conn Pf ′A, (6.2.24)

Evaluating the contour integral as discussed in section 5.3.1 then gives

ΨNLSM
4 = −δ3(kT )

(
2λ2ŝ13 − c − m2

)
C∆

4 . (6.2.25)

Comparing this to the wavefunction coefficient with enhanced soft limits in (6.2.5)

then fixes the mass and coefficients as follows:

λ = 1, c = m = 0. (6.2.26)

For the DBI and sGal theories at four-points the generalised double copy integrand

in equation (5.3.33) was given as

I(6)
4 = a(Pf ′A)3(Pf ′A + m2 PfX|conn)

+ b(Pf ′A)2(Pf ′APfX + m2PT) + cPT PfX|conn Pf ′A,

(6.2.27)

As in section 5.3.2 this gives the wavefunction coefficient

Ψ(6)
4 =

[8a

3 (ŝ3
12 + ŝ3

13 + ŝ3
14) + 2(b − am2)(ŝ2

12 + ŝ2
13 + ŝ2

14) + 1
3am6 − bm4 + c

]
C∆

4 ,

(6.2.28)

where we have expanded all the s̃ij in terms of ŝij and the mass. Comparing this to

the wavefunction coefficient for the DBI theory derived from enhanced soft limits in

(6.2.11) then fixes the parameters as follows:

a = 0, b = −1
2 , c = 1

2
(
d2 + 6d + 5

)
, m2 = −(d + 1). (6.2.29)
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Furthermore, comparing (6.2.28) to the wavefunction coefficient for the sGal theory

in (6.2.18) implies that

a = 3
8 , b = 1

4 (3d − 2) , c = −8(d + 2)2, m2 = −2(d + 2). (6.2.30)

In summary, the parameters of the generalised double copy for four-point wavefunc-

tion coefficients can be fully fixed by enhanced soft limits. In the next section we

will show that enhanced soft limits also fix higher-point wavefunction coefficients,

so it would be interesting to see if the double copy prescription can be extended to

higher points as well.

6.3 Soft limits with Exchange Diagrams

In this section, we will show that all 6-point couplings of the NLSM and DBI theory

in dS can also be fixed from enhanced soft limits of wavefunction coefficients. The

method we develop can also be applied to the sGal theory, but at six points its

Lagrangian has 13 interaction terms going up to ten derivatives so Witten diagram

calculations become very tedious. We will therefore leave that case for future work.

6.3.1 NLSM

We start with the NLSM, which is very simple but nicely illustrates the procedure

for fixing higher-point couplings. At six points, the most general Lagrangian is given

by

LNLSM
6√

|g|
= Tr

[
−1

2(∂Φ)2 − 1
2m2Φ2 − Φ2(∂Φ)2 − 1

4CΦ4

−A
(

Φ4(∂Φ)2 + 1
2Φ2∂µΦΦ2∂µΦ

)
− 1

6FΦ6
]

,

(6.3.1)

where the Φ4 and Φ6 terms are curvature corrections. We have already fixed m = 0

and C = 0 from the enhanced soft limit at four points. The coefficient A can be

fixed by the flat space limit but we will deduce it along with F from enhanced soft
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limits at six points.

The wavefunction coefficient is given by a sum of exchange and contact diagrams

shown in Figure 6.1. To obtain the desired form, we must write the four-point

vertices in the exchange diagrams in such a way that derivatives only act on bulk-

to-boundary propagators. Let us consider the four-point vertex appearing on the

left-hand-side of an exchange diagram, illustrated in Figure 6.2. Using the Feynman

rules derived from (6.3.1) and the identity in (5.1.7) we find

AL = −(−1)d
∫ dη

ηd+1 η2
{
ϕ1ϕ2ϕ3ϕL[(k1 · k2) + (k2 · k3) + (k3 · kL) + (kL · k1)]

+ ϕ̇1ϕ̇2ϕ3ϕL + ϕ1ϕ̇2ϕ̇3ϕL + ϕ1ϕ2ϕ̇3ϕ̇L + ϕ̇1ϕ2ϕ3ϕ̇L

}
,

(6.3.2)

where ϕL is associated to the bulk-to-bulk propagator and ϕ̇ = ∂ηϕ. Using integration

by parts to remove the derivatives acting on ϕL gives

AL = −(−1)d
∫ dη

ηd−1 ϕL

[
(−2k1 · k3ϕ1ϕ2ϕ3 − 2ϕ̇1ϕ2ϕ̇3 − k2

1ϕ1ϕ2ϕ3 − k2
3ϕ1ϕ2ϕ3

− ϕ1ϕ2ϕ̈3 − ϕ̈1ϕ2ϕ3 + 1 − d

η

(
ϕ̇1ϕ2ϕ3 + ϕ1ϕ2ϕ̇3

) ]
,

(6.3.3)

where we have also used momentum conservation at the vertex, such that kL =

−(k1 + k2 + k3). Using the equations of motion for ϕ1 and ϕ3, we are left with

AL = −2
∫ dη

|η|d+1

[
ϕ2ϕLη2

(
k1 · k3ϕ1ϕ2ϕ3 + ϕ̇1ϕ2ϕ̇3

)]
, (6.3.4)

1

2

3 4

5

6

ΨNLSM
6 = +

1

2

3 4

5

6

+ Perms

Figure 6.1: Witten diagrams for the six-point NLSM and DBI wave-
function coefficients. The exchange diagram is summed
over the three inequivalent cyclic permutations (NLSM)
or over the 10 inequivalent factorisation channels (DBI).
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which is equivalent to the action of ŝ13. Performing the same steps at the other 4pt

vertex and adding in the other diagrams gives

ΨNLSM
6 =

[(
ŝ13ŝ46

ŝ123
+ A ŝ13 + Cyc.[i → i+2]

)
+ F

]
C∆=d

6 , (6.3.5)

where we’ve used the shorthand and ŝabc = Da · Db + Db · Dc + Dc · Da. Note that

the first term comes from the exchange diagrams and the second term is from the

contact diagram. These can be seen from the Witten diagrams in Figure 6.1. In this

form, the expression is free of ordering ambiguities since [ŝabc, ŝab]C∆ = 0. It can also

be obtained by uplifting flat space Feynman diagrams simp,y by replacing ka · kb

with ŝab. A similar formula was also previously derived in [73] using AdS embedding

coordinates.

If we take k1 soft, all operators of the form D1 · Da will vanish up to O(k1) when

acting on the contact diagram C∆
6 as in (6.2.4) since ∆ = d. Hence two of the

channels in (6.3.5) drop out immediately and it reduces to

lim
k1→0

ΨNLSM
6 =

[(
ŝ35ŝ62

ŝ612
+ A ŝ35

)
+ F

]
C∆=d

6 . (6.3.6)

Noting that limk1→0 ŝ612 ∼ ŝ62 when ∆ = d, we then can see the soft limit vanishes

if A = −1 and F = 0, in agreement with (6.1.2). The flat space limit is then also

equivalent to the result given in [105].

In summary, we see that the enhanced soft limit arises via cancellations between

exchange and contact diagrams, fixing higher-point couplings in terms of lower-point

couplings. In this way, we can in principle bootstrap all tree-level wavefunction

1

2

3

LΨL =

Figure 6.2: Four-point vertex appearing on the left-hand-side of a
6-point NLSM exchange diagram.
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coefficients and reconstruct the Lagrangian.

6.3.2 DBI

We now consider the following 6-point effective Lagrangian:

LDBI
6√
|g|

= LDBI
4√
|g|

+ A

48(∂ϕ)6 + B

16(∂ϕ)4ϕ2 + C

6!ϕ
6, (6.3.7)

where the 4-point Lagrangian was fixed by enhanced soft limits in (6.2.12). The

coefficient A can be determined by the flat space limit but we will fix it along

with the other coefficients from enhanced soft limits. First we compute the 6-point

wavefunction coefficient from Witten diagrams, which are depicted in Figure 6.1. To

compute the exchange diagrams, first consider the 4-point vertex on the left of the

exchange diagram in Figure 6.1 which is illustrated in Figure 6.2:

ΨL = (ŝ12ŝ3L + ŝ23ŝ1L + ŝ31ŝ2L − (d + 1)(d + 3)) , (6.3.8)

which is understood to act on a 6-point contact diagram in combination with a

bulk-to-bulk propagator and another 4-point vertex.

We can then use the conformal Ward identities at the vertex D1 + D2 + D3 = −DL

to get

ΨL =
(

− 2 (ŝ12ŝ23 + ŝ23ŝ31 + ŝ31ŝ12) + m2(ŝ12 + ŝ23 + ŝ31) − (d + 1)(d + 3)
)
, (6.3.9)

where −m2 = ∆(∆−d) = d+1. Combining this with the rest of the Witten diagram

and summing over permutations then gives

ΨDBI
6, exch = 1

(D1 + D2 + D3)2 + m2

(
2 (ŝ12ŝ23 + ŝ23ŝ31 + ŝ31ŝ12)

+ (d + 1)(ŝ12 + ŝ23 + ŝ31 + (d + 3))
)

× (123) → (456))C∆=d+1
6

+ perms,

(6.3.10)
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where the permutation sum is over 10 inequivalent factorisation channels. Note that

this expression is free of ordering ambiguities. Moreover, it is straightforward to

read off the contact Witten diagrams from (6.3.7):

ΨDBI
6, cont = δ3(kT ) [A (ŝ12ŝ34ŝ56 + perms) + B (ŝ12ŝ34 + perms) + C] C∆=d+1

6 , (6.3.11)

where we sum over inequivalent permutations giving 61 terms.

Let us now expand the wavefunction coefficient to O(k2
1). To this order, the 4-point

vertex in (6.3.9) is given by

ΨL = −((D1 + D2 + D3)2 + m2)
(

ŝ12 + ŝ31 + 1
2(d − 1)

)
+ O(k2

1), (6.3.12)

As a result, the numerator of the exchange diagram in Figure 6.1 can be written as(
2 (ŝ12ŝ23 + ŝ23ŝ31 + ŝ31ŝ12) + (d + 1)(ŝ12 + ŝ23 + ŝ31 + (d + 3))

)
= ((D1 + D2 + D3)2 + m2)

(
ŝ12 + ŝ31 + 1

2(d − 1)
)

+ O(k2
1).

(6.3.13)

Hence, in the soft limit we can cancel all the propagators and are left with a cubic

polynomial in ŝij. We then we apply conformal Ward identities to cancel exchange

and contact contributions, mimicking the analogous cancellation of terms that arises

in the flat space limit using momentum conservation.

We then use integration by parts and equations of motion to write the conformal

time integrand in terms of linearly independent terms, as before. In the present

case, the procedure is somewhat complicated so further details can be found in in

Appendix F. In the end, we find that the soft limit of the 6-point wavefunction

coefficient vanishes to O(k2
1) if and only if A = 3, B = d + 1, C = 2(d + 1)(9 − d2).

Since ∆ was already fixed from the 4-point soft limit, these values can be deduced

by considering only the leading order soft limit at six points. We therefore find that

the 6-point effective Lagrangian can be written as

LDBI
6√
|g|

= −1
2(∂ϕ)2 + d + 1

2 ϕ2 − 1
8(∂ϕ)4 + (d + 1)(d + 3)

4! ϕ4 − 1
16(∂ϕ)3

+ d + 1
16 (∂ϕ)4ϕ2 + 2(d + 1)(9 − d2)

6! ϕ6.

(6.3.14)
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On the other hand, expanding the Lagrangian in (6.1.5) to sixth order (without

applying equations of motion) gives

LDBI
6√
|g|

= −1
2(∂ϕ)2 + d + 1

2 ϕ2 − 1
8(∂ϕ)4 − 1

4(d + 3)(∂ϕ)2ϕ2

+ 3(d + 1)(d + 3)
4! ϕ4 − 1

16(∂ϕ)6 − 3(d + 5)
16 (∂ϕ)4ϕ2

− 3(d + 3)(d + 5)
48 (∂ϕ)2ϕ4 + 15(d + 1)(d + 3)(d + 5)

6! ϕ6.

(6.3.15)

Matching the two Lagrangians using integration by parts and equations of motion

is very tedious, so we instead verify that they give the same 6-point wavefunction

coefficient in Appendix F.1.

6.4 Remarks

In this paper, we have found evidence that the link between hidden symmetries and

enhanced soft limits for scattering amplitudes in flat space extends to wavefunc-

tion coefficients in de Sitter space. In more detail, we have shown that enhanced

soft limits fix the masses and couplings (including curvature corrections) of scalar

effective field theories in agreement with the Lagrangians recently derived for the

DBI and sGal theories from hidden symmetries in [89]. Moreover, we have shown

that enhanced soft limits imply that the NLSM in dS must be massless and cannot

receive curvature corrections, which would spoil its shift symmetry. We have carried

out these calculations up to six points in the NLSM and DBI theory and four points

in the sGal theory. At six points, the enhanced soft limits arise from cancellations

between exchange and contact Witten diagrams, allowing us to fix all 6-point coup-

lings in terms 4-point couplings. In principle, this procedure can be extended to

any number of points allowing us to reconstruct the entire tree-level wavefunction

coefficient, or equivalently the entire Lagrangian.

There are a number of future directions. First of all, it would be interesting to

extend these calculations to any number of points. This would involve writing
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down the most general effective action that reduces to the known one in the flat

space limit, computing the tree-level wavefunction coefficients up to a given number

of points using Witten diagrams, fixing the couplings from enhanced soft limits,

and showing that the result agrees with the Lagrangians recently derived from

hidden shift symmetries. If this were possible, it would be very significant because

it would allow us to prove the relation between enhanced soft limits and hidden

symmetries in dS. The difficulty with this approach is that the number of Witten

diagrams quickly becomes very large at higher points. A more efficient method

for fixing higher-point couplings from enhanced soft limits would therefore be very

welcome. In flat space, enhanced soft limits allow one to define recursion relations

for scattering amplitudes [96, 162]. It seems likely that similar progress can be made

for wavefunction coefficients in dS by combining enhanced soft limits with knowledge

of their singularity structure. This direction was recently explored in the context of

flat space wavefunction coefficients, which do not exhibit enhanced soft limits but do

obey soft theorems [156]. The Mellin-Barnes representation also allows for the study

of soft limits for arbitrary d and ∆ as well as for spinning particles and potentially

offers an easier path to higher-point wavefunction coefficients [163].

This leads us to the next question: how do we prove that higher shift symmetries

in dS imply enhanced soft limits of the wavefunction coefficients without using Lag-

rangians? The analogous proof in flat space, which was sketched in [4], relied heavily

on the definition of the S-matrix, and does not immediately lift to wavefunction

coefficients or CFT correlators. A useful strategy for addressing this question may be

the one developed in [164, 165] which studied soft limits of cosmological correlators

from a boundary perspective. On the other hand, the shift symmetries underlying

the NLSM, DBI, and sGal theories in dS are generated by diffeomorphisms which

change the asymptotic behaviour of bulk fields so it is not immediately clear how to

interpret them from the CFT perspective. We hope to gain a deeper understanding

of this issue in the future.

Finally, it would be interesting to adapt these methods to other models. In flat space,
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[70, 166] showed that soft limits of the NLSM, DBI, and sGal theories are actually

controlled by larger theories which become visible when one expands beyond the

order at which the soft limits vanish. It would therefore be interesting to extend

our calculations to higher orders in the soft limit and investigate the emergence of

extended theories in dS. Moreover the flat space Lagrangian for Born-Infeld theory

(which is a vector effective field theory) can be uniquely fixed by the vanishing of

multiple chiral soft limits [167], so it would natural to look for an analogue of this in

dS. It would also be interesting to consider soft limits of more realistic inflationary

models where Lorentz boosts are spontaneously broken [168–170]. In the flat space

limit, the scattering amplitudes of such effective field theories do not generally

exhibit enhanced soft limits, except in the case of the spontaneously broken DBI

theory which exhibits an emergent Lorentz invariance with respect to the speed of

sound [171, 172]. It would be fascinating if this phenomenon also occurs in de Sitter

background.



Chapter 7

Conclusion

This thesis has explored several different frontiers of scattering amplitudes. In each

chapter it has seemed as though there are tantalising hints of deeper structures

to be uncovered, needing further study and perhaps clever insights about how to

re-express current results in a novel way.

In chapter 3 the idea of defining momentum twistors on different ‘coordinate patches’

was introduced, each with a different ordering of external legs. It was then shown

how that these patches exposed the cancellation of spurious poles in supergravity

amplitudes. Serendipitously the representation that lead to the simplest form of the

fermionic delta functions in the 6pt NMHV amplitude also gave simple expressions

for all the spurious poles as well. As was discussed in section 3.3, this is a hint that

there may exist a geometrical realisation of supergravity amplitudes like the N = 4

SYM amplituhedron. Work on higher point amplitudes such as those in [34] is per-

haps a natural place to start as MHV amplitudes may be too trivial to understand

from a geometrical point of view. It may also be that N = 4 conformal super-

gravity would be a better starting point since the presence of conformal symmetry

means it would be more straightforward to adapt results from the amplituhedron,

despite having less supersymmetry. It would also be interesting to explore in detail

the on-shell diagrams associated with leading singularities constructed in appendix

C. While these were constructed to specifically avoid the presence of closed cycles



Chapter 7. Conclusion 152

running through the loops, it may be that introducing such closed cycles produces

on-shell diagrams encoding some intersting new physics as was studied for N < 4

SYM in [125].

The rest of the material in this thesis dealt with scattering in curved space times.

Recent advances mean that physics in (A)dS is of phenomenological interest as

well as theoretical and so this seems a good place to push our understanding of

amplitudes and amplitude-like objects. The Yang-Mills and gravitational functions

discussed in chapter 4 are perhaps the closest topic to having some new advances

in understanding. Already the gravitational 4pt function is far better understood

than it was a few years ago [139] making it more straightforward to manipulate

and understand double-copy conjectures from Yang-Mills and to deduce how they

should be modified compared to the flat space double copy. Alternatively, the spinor

expressions in chapter 4 may a good place to look for new physics. It seems plausible

that there may exist n-point expressions for Yang-Mills amplitudes in AdS just as in

flat space although whether they should be expected for MHV or the simpler all-plus

amplitudes remains to be seen. As well as the spinor techniques used in this thesis

there are also operatorial approaches being developed for spinning particles and it

may be that this is a better analogue of momentum-space amplitudes in flat space

[173]. The soft behavior of gluons and gravitons in AdS has also not yet been studied

closely and it would be interesting to see if there is a curved space analogue of the

Weinberg soft theorems and perhaps even the associated asymptotic symmetries.

This idea was explored throughout chapters 5 and 6, using both the cosmological scat-

tering equations and Witten diagrams to produce wavefunction coefficients expressed

in terms of boundary conformal generators acting on contact diagrams. This appears

to be a natural way of generalising expressions from flat space which are independ-

ent of dimension since the conformal time integrals needed to get momentum-space

results in dS depend explicitly on d. This approach leads to interesting technical

problems such as the ordering of operators (both in CSE integrands and the operator

polynomials obtained after integration). Once these are better understood, it would
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be interesting to push the double copy calculation to six-point (at least for NLSM

and DBI), seeing if there is a natural extension to the integrand building blocks

examined in this thesis. The soft limits of these theories were already studied in

chapter 6 and these could be used to determine unfixed coefficients in the worldsheet

integrand for a hypothetical six-point double copy. This would also require a more

systematic study of higher derivative curvature corrections like the 4pt analysis in

[148]. It should also be possible to calculate the 6pt sGal wavefunction coefficient

from Witten diagrams. The larger polynomials which will appear here may be tedi-

ous to manipulate but shouldn’t pose any specific obstruction and so can be dealt

with analagously to the 6pt DBI case. The complexity of the curvature corrections

and larger number of integration-by-parts identities in the Lagrangian will be harder

to deal with though. The hope is that success may lead to a much simplified form

of the Lagrangian (in comparison to those found in [89]) since in flat space the sGal

Lagrangian can be written such that it only has a 4pt interaction term. While it

seems unlikely that this will also hold in dS, it would still be interesting to find a

Lagrangian that manifestly has this feature in the flat space limit. There may also be

interesting physics encoded within the non-vanishing soft limits of conformal scalar

wavefunction coefficients that appeared in chapter 5. These bear some similarities

to the types of interactions explored through the use of cosmological polytopes in

[58, 161] and it would be interesting to see if they could be used to further explore

EFTs or soft limits.

It may also be the case that the use of momentum space to work with wavefunction

coefficients leads to intractably complex expressions at higher points or in attempts

to find n-point results. Finding ways to explore physics of interest in alternative

formulations may lead to new insights. For example, the integrals appearing in sec-

tion can also be expressed compactly using the differential representation explored

in [60] and this may offer a better avenue to manipulate wavefunction coefficients (ie

one which scales better with increasing numbers of external particles). Similarly the

Mellin-Barnes representation also offers a way to study more general cosmological
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and inflationary correlators without needing to deal with the complexity associated

with the conformal time integrals which appear in Witten diagrams [163]. Recent

work in linking this to celestial correlators [174, 175] also points to potential connec-

tions with techniques used to study the links between soft theorems and symmetries

in flat space [81].



Appendix A

Details of 6pt NMHV

In this Appendix, we provide additional details about the 6-point NMHV calculation

in section 3.2.3. We continue to denote ∆ = J −1
C and δ = δ(6|21)

(
C · λ̃

)
δ6
(
λ · C⊥

)
,

where JC is the Jacobian associated with closed cycles defined in section 3.1.2.

3+5

First we consider the 3 + 5 diagram in Figure A.1. This diagram gives the C-matrix

and Jacobian

C =


1 −α14 −α7α10α14 −α10α14 0 0

0 α̃ 1 − α7α8α9α10 −α8α9α10 −α8 0

−α11α13 0 −α7α10α11α12 α10α11α12 1 −α11

 ,

JC = (1 − α7α8α9α10 − α7α8α10α11α12 − α7α8α10α11α_13α14),

(A.0.1)

where we have inserted an extra α̃ to ensure that (612) ̸= 0. The brackets from the

vertex factors are

[2 15] = 1
α14

[21],

[47] = α7[43],

⟨73⟩ = ⟨43⟩,

⟨16 5⟩ = 1
α11

⟨65⟩.

(A.0.2)
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34
α7

α8

α9

α10

α11

α12

α13

α14

15
16

D3+5
6,3 =

Figure A.1: ‘3+5’ on-shell diagram to be summed over 2 ↔ 4 and
3 ↔ 5. Edge variables are indicated.

As an integral over edge variables, the diagram is then

D3+5
6,3 = Res

(612)=0

∫ 14∏
i=7

dαi

α2
i

dα̃

α̃

δ

α8α10α11α14

J 3
CJ
J

α7α9α12α13

α11α14
⟨34⟩[34]⟨56⟩[12],

= Res
(612)=0

∫ d3×6C

GL(3)
δ ⟨34⟩[34]⟨56⟩[12]

∆9α7α5
8α9α6

10α
8
11α12α13α7

14α̃
,

= Res
(612)=0

∫ d3×6C

GL(3)
δ ⟨34⟩[34]⟨56⟩[12]

(124)(234)(345)(356)(561)(612)(456)(346)(256) ,

= Res
(612)=0

∫
dΩ3×6

7
⟨34⟩[34]⟨56⟩[12]
(256)(346)(356)

(123)
(124) .

(A.0.3)

5+3

We can obtain the result from (A.0.3) using the fact that the 3+5 and 5+3 diagrams

are parity conjugates. In particular, we need to exchange square and angle brackets,

substitute (ijk) → ϵijklmn(lmn) and apply the permutation P =

1 2 4 3 5 6

6 5 3 4 2 1

.

This gives

D5+3
6,3 = Res

(345)→0

∫ d3×6C

GL(3)
δ [34]⟨34⟩[56]⟨12⟩

(356)(561)(612)(124)(234)(345)(123)(125)(134)

∣∣∣∣∣
P

,

= Res
(432)→0

∫ d3×6C

GL(3)(−1) δ ⟨34⟩[34]⟨56⟩[12]
(421)(216)(165)(653)(543)(432)(654)(652)(643) ,

= Res
(432)→0

∫
dΩ3×6

7
⟨34⟩[34]⟨56⟩[12]
(256)(346)(356)

(123)
(124) .

(A.0.4)
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17
D4+4

6,3 =

Figure A.2: ‘4+4’ on-shell diagram to be summed over 2 ↔ 4 and
3 ↔ 5. Edge variables are indicated.

4+4

Next, we consider the 4 + 4 diagram in Figure A.2. This gives the C-matrix and

Jacobian

C =


1 −α8 −α8α9 0 0 α̃

−α10 0 1 −α11α12 −α11α12α13 0

−α7α14 0 0 −α12α14 1 − α12α13α14 α14

 ,

JC = (1 − α8α9α10 − α12α13α14 − α7α8α9α11α12α13α14 + α8α9α10α12α13α14).

(A.0.5)

This diagram corresponds to a residue around the pole (456) = 0. The bracket

factors for the diagram are

⟨10 16⟩ = 1
α8

⟨10 2⟩ = 1
α8

⟨32⟩,

[11 10] = α10[31],

⟨17 11⟩ = ⟨6 11⟩ = 1
α11α12

⟨64⟩,

[15 17] = 1
α14

[5 17] = α12

α14
[54].

(A.0.6)
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α9
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α12α13
α14

1516

D4̃+4̃
6,3 =

Figure A.3: ‘4̃+4̃’ on-shell diagram with edge variables indicated.

The diagram then evaluates to

D(4+4)
6,3 = Res

(456)=0

∫ 14∏
i=7

dαi

α2
i

dα̃

α̃

δ

α8α12α14

J 3
CJ
J

α7α9α10α13

α8α11α14
[13][45]⟨23⟩⟨46⟩,

= Res
(456)=0

∫ d3×6C

GL(3)
δ [13][45]⟨23⟩⟨46⟩

∆9α7α7
8α9α10α5

11α
6
12α13α7

14α̃
,

=
∫

d3×6Ω7
[13][45]⟨23⟩⟨46⟩

(236)(246)2 .

(A.0.7)

4̃ + 4̃

Finally, we compute the non-planar 4̃ + 4̃ diagram in Figure A.3. The C-matrix and

Jacobian are given by

C =


1 − α8α9α10 −α8 0 −α8α9 α̃

−α10α13 0 1 − α13 −α13α14 0

−α7α11 0 −α11α12 0 1 −α11

 ,

JC = (∆1∆2)−1 ≡ (1 − α8α9α10)(1 − α11α12α13α14).

(A.0.8)

Moreover, the bracket factors are

⟨10 16⟩ = 1
α8

⟨2 16⟩ = 1
α8

⟨24⟩,

[10 4] = ∆1α8α10[24],

⟨3 12⟩ = ∆2α11⟨35⟩,

[15 12] = α12[15 3] = α12

α11
[53].

(A.0.9)
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Putting it all together, we obtain

D(4̃+4̃)
6,3 = Res

(356)=0

∫ 14∏
i=7

dαi

α2
i

dα̃

α̃

J 3
CJ
J

δ

α8α11α13
∆1∆2α7α9α10α12α14⟨24⟩[24]⟨35⟩[53],

= Res
(356)=0

∫ d3×6C

GL(3)
δ ⟨24⟩[24]⟨35⟩[53]

∆8
1∆7

2α7α6
8α9α10α6

11α12α6
13α14α̃

,

= Res
(356)=0

∫ d3×6C

GL(3)
δ ⟨24⟩[24]⟨35⟩[35]

(124)(234)(345)(356)(561)(612)(146)(236)(245) ,

= D(4̃+4̃)
6,3 = Res

(356)=0

∫
d3×6Ω7

[24]⟨24⟩[35]⟨35⟩(123)(456)
(146)(245)(236)(124)(356) .

(A.0.10)



Appendix B

Momentum Twistor Transition

Functions

In this Appendix, we will explain how to relate momentum twistors which are defined

with respect to different permutations of momenta, which arise in section 3.2.4. First

note that cyclic permutations (a → a+1) and reflections (a → n−a) simply permute

the momentum twistors in a trivial way. The first non-trivial case is a permutation

which exchanges two legs. For concreteness, let us consider the case

P =

1 2 . . . n−1 n

1 2 . . . n n−1

 , (B.0.1)

where we have swapped the final two momenta. We will denote the transformed

momenta as pn

∣∣∣
P

= pn−1 and vice versa. We can then consider new region mo-

mentum and momentum twistor coordinates defined via (3.2.65). In particular, this

permutation only changes a single xa so we can write

xa

∣∣∣
P

=


xa , a ̸= n,

xn−1 − pn , a = n.
(B.0.2)
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This means only two twistor variables transform:

Za

∣∣∣
P

= Za, a < n−1

Zn−1

∣∣∣
P

=

 λn

λnxn−1

 ,

Zn

∣∣∣
P

=

 λn−1

λn−1(xn−1 − pn)

 ,

(B.0.3)

which we can rewrite to put both new twistors on an equal footing:

Zn−1

∣∣∣
P

= Zn − ⟨n−1 n⟩

 0

λ̃n−1

 = Zn − ⟨n−1 n⟩IZn−1

Zn

∣∣∣
P

= Zn−1 − ⟨n−1 n⟩

 0

λ̃n

 = Zn−1 − ⟨n−1 n⟩IZn,

(B.0.4)

where IZi is the infinity twistor contracted with Zi.

Now let’s consider how twistor brackets transform. Using the rules derived above,

we find that

⟨a b c n−1⟩
∣∣∣
P

= ϵABCDZA
a ZB

b ZC
c ZD

n−1

∣∣∣
P

,

= ⟨abcn⟩ + ⟨n−1 n⟩

−ϵABCDZA
a ZB

b ZC
c

 0

λ̃n−1


D ,

= ⟨abcn⟩ + ⟨n−1 n⟩
(

−ϵABCDZA
a ZB

b ZC
c IDE ZF

n−2Z
G
n−1Z

H
n ϵEF GH

⟨n−2 n−1⟩⟨n−1 n⟩

)
,

= ⟨abcn⟩ − 1
⟨n−2 n−1⟩

⟨abc|I|n−2 n−1 n⟩.

(B.0.5)

Using analogous methods, we also find that

⟨a b c n⟩
∣∣∣
P

= ⟨a b c n−1⟩ − 1
⟨n1⟩

⟨abc|I|n−1 n 1⟩, (B.0.6)
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and

⟨a b n−1 n⟩
∣∣∣
P

= −
(

⟨a b n−1 n⟩ + ⟨abn|I|n−2 n−1 n⟩
⟨n−2 n−1⟩

− ⟨ab n−1|I|n−1 n 1⟩
⟨n1⟩

+ ⟨ab⟩⟨n−1 n⟩⟨n−2 n−1 n 1⟩
⟨n−2 n−1⟩⟨n1⟩

)
.

(B.0.7)

The transformation rules for 6-brackets can then be deduced from the above rules

using (2.1.29) and (2.1.30). Transition functions for more general permutations can

be deduced from repeated composition of the above rules.

The extension to supertwistors is straightforward. Note that the fermionic compon-

ents

χa = ⟨a θa⟩ = ⟨a θa+1⟩, (B.0.8)

transform analogously to the µ̃ components of the momentum twistors since the

fermionic dual variables θa transform analogously to the xa in (B.0.2). We therefore

obtain

θa

∣∣∣
P

=


θa , a ̸= n,

θn−1 − qn , a = n.
(B.0.9)

so that

χa

∣∣∣
P

=


χa , a < n − 1,

χn − ⟨n−1 n⟩ ηn−1 , a = n−1,

χn−1 − ⟨n−1 n⟩ ηn , a = n.

(B.0.10)



Appendix C

Supergravity Leading Singularities

from On-Shell Diagrams

On-shell diagrams for N = 4 SYM have been used to obtain a number of loop-level

results. While using the construction to get results for arbitrary loop order and

MHV degree is not well-understood, there nevertheless exists a good understanding

of 1-loop MHV along with a number of 2-loop results. It is therefore natural to

ask if any of this can be carried over to supergravity? At the moment there exists

only one loop integrand that can be obtained from an on-shell diagram, that of

the 1-loop, four-point, MHV integrand for N = 8. It is not clear how to extend

this to higher points without introducing spurious poles into the loop integrand

(poles that do not cancel). Instead we will consider here the calculation of leading

singularities, rational functions of the external kinematics that are used to obtain

loop amplitudes via generalised unitarity. This appendix will present a few 1- and

2-loop examples of six-point MHV leading singularities that may be calculated with

on-shell diagrams, and where the N = 7 formalism can be exploited to reduce the

number of permutation sums required.

A detailed study of 1-loop supergravity leading singularities was carried out in [176]

with n-point results for both MHV and NMHV, on-shell diagrams can be used

to recover their results. 2-loop six-point supergravity leading singularities were
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presented in [124] using diagrams suggestive of OSDs however the authors state that

they did not use an OSD formalism to calculate their results. This appendix will

demonstrate how OSDs may be used to obtain the same expressions.

Leading singularities come from putting the maximum possible number if propagators

in loop diagrams on-shell without constraining the external kinematics. This leaves

a set of tree-level amplitudes connected by on-shell propagators. To calculate the

LS, the amplitudes are combined as a product and the states exchanged along the

cuts are summed over (as with BCFW, this becomes a fermionic integral in the

SUSY case). Since OSDs can already be used to calculate tree-amplitudes and

automatically sum over the exchanged states it is natural to use them to calculate

leading singularities. In the case of supergravity, we must be careful to ensure that

any sums over permutations of external legs are included – ideally as permutations

of external legs for the LS, so that sums over different diagram topologies are not

needed. Since we will be working in N = 7, we also need to be careful about

the presence of closed cycles. Those appearing as part of the sub-amplitudes are

necessary but care must be taked when assigning orientations to the full LS diagram

to avoid introducing further cycles (thus reducing the number of permutations of

external legs required). In each case, we shall proceed as follows:

1. Draw diagram for leading singularity as sub-amplitudes connected by on-shell

propagators.

2. Decorate diagram with arrows indicating helicity flow so as to avoid closed

cycles in the diagram.

3. Replace any sub-amplitudes with n ≥ 4 with their corresponding on-shell

diagrams as introduced in chapter 3.

4. Calculate corresponding spinor expression using algorithm in 3.

For all 1-loop and MHV diagrams these steps should always be possible.
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MHV

MHV

Figure C.1: Diagram for 1-loop n-pt MHV leading singularity

C.1 1 Loop Leading Singularities

We start at 1-loop. For MHV leading singularities there is one non-vanishing type

known as the two-mass easy diagram, shown in figure C.1. This consists of two

three-point MHV amplitudes positioned alternately with two MHV amplitudes with

arbitrary points (the one mass LS is a special case where one MHV amplitude has

three legs). In both cases, a helicity assignment avoiding a closed cycle around the

cut propagators can be found by taking the legs attached to the MHV vertices to

be the negative helicity ones (arrows incoming in the correspondbeing permutated

will not attach to the internal propagators). All that remains is to attach the MHV

amplitudes explored in chapter 3. For the six-point case, there are two ways to do

this, shown in figure C.2. For illustrative purposes we will explicitly show how to

evaluate the 2-mass easy case. This is the example where the use of N = 7 removes

the need for any permutation sums. Using the algorithm in section 3.1.2 we find

C2me
6 =

∫ 14∏
i=7

(
dαi

α2
i

)
1

α8α10α12α14
∆2

1∆2
2α7α8α9α10α11α12α13α14⟨26⟩⟨53⟩[12][45]

× ([32] + α9α10[31]) ([65] + α13α14[64]) J 3
Cδ(4|14)(C · λ̃)δ(8)(λ · C⊥)

(C.1.1)
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Figure C.2: On-shell diagrams for both six-point 1-loop MHV lead-
ing singularities, decorated with a possible helicity as-
signment

with

C =

−∆1α8α9α10 ∆1α8 1 ∆2α14 −∆2α11α12α14 0

−∆1α10 −∆1α7α8α10 0 −∆2α12α13α14 −∆2α12 1

 ,

(C.1.2)

where we have used JC = (∆1∆2)−1, ∆1 = (1 − α7α8α9α10)−1, and ∆2 = (1 −

α11α11α12α13α14)−1. The bridge decorations are simplest to work out using the

algorithm originally worked out in [35]. The layout of the helicity flows means it is

more straightforward to manually sum over the closed cycles rather than fixing them

using a GL(2) transformation. To convert to a Grassmannian integral, we need the

Jacobian
d2×6C

GL(2) = ∆4
1∆4

2α8α
2
10α

2
12α

2
14. (C.1.3)

It is also useful to use

α9α10 = (16)
(26) ,

α13α14 = (34)
(35) .

(C.1.4)
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We therefore find ⟨26⟩([32] + α9α10[31]) → [3|1 + 2|6⟩ and ⟨53⟩(65] + α13α14[64]) →

[6|5 + 4|3⟩. The remaining αi in the integrand can be rewritten using

∆5
1∆5

2α7α
4
8α9α

4
10α11α

4
12α13α

4
14 = PT(6)(13)(35)(46)(62)

(36) . (C.1.5)

Making these substitutions and evaluation the Grassmannian integral gives

C2me
6 = δ(4|14)(P |Q)⟨36⟩ [3|1 + 2|6⟩[6|5 + 4|3⟩[12][45]

PT(6)⟨13⟩⟨35⟩⟨46⟩⟨62⟩
. (C.1.6)

C.2 2 Loop Leading Singularities

For the two-loop case, the analysis here is more cursory. We take one of the

examples from [124], present the helicity assignment necessary to uplift to N = 7

on-shell diagrams and then show that this produces the same results. When working

with these 2-loop quantities we find a richer variety of on-shell diagram topologies

including many non-planar diagrams. These give a greater variety of spinor bracket

combinations than are seen in the amplitudes.

The calculations are intended as a proof of concept. There seems no obvious

obstruction to extending to NMHV (although then translating between N = 7 and

N = 8 becomes non-trivial) or to higher point cases (especially for one-loop). There

also exist other on-shell diagram formulations for supergravity and it would be

interesting to see if there is a systematic way to recover leading singularities without

the use of bridge decorations. It would also be interesting to undertake a more

detailed analysis of what happens if additional closed cycles are incorporated and if

it is possible to associate any physical interpretation to (for example) a closed cycle

running around one of the loops.

The example presented is that of the f1 leading singularity. The diagram for this is

shown in figure C.3. This has an integrand and C-matrix given by
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Figure C.3: Diagram for 2-loop f71 MHV leading singularity

f71 =
∫ 14∏

i=7

dαi

α2
i

1
α7α9

∆α7α10α11α12α13α14

α11α14
⟨23⟩[23]⟨56⟩[56]⟨36⟩[12][45]

× ([84] + α13[85]) J 3
Cδ(4|14)(C · λ̃)δ(8)(λ · C⊥),

C =
−∆α7α8α9 −α12 − ∆α7α8α9α11 1

−∆α9 −∆α9α11 0

−∆α7 −∆α7α13 0

−∆α7α9α10 −α14 − ∆α7α9α10α13 1

,

(C.2.1)

with JC = ∆−1 = (1 − α7α8α9α10). The square brackets involving λ̃8 are expanded

using λ̃8 = λ̃6 − α14λ̃5 along with

α13 = (56)
(46) ,

α14 = (45)
(46) ,

(C.2.2)

such that after performing all the integrals we will be left with the invariant (k4 +

k5 + k6)2. The Jacobian for conversion to a Grassmannian integral is given by

d2×6C

GL(2) = ∆6α3
7α3

9. (C.2.3)

We can use

∆9α6
7α8α

6
9α10α

2
11α12α13α

2
14 = PT(6)⟨23⟩⟨56⟩⟨14⟩ (C.2.4)

to convert the remainder of the integrand into a GL(2) invariant form and after
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integration we find

f71 = δ(4|14)⟨36⟩ [12][23][45][56](k4 + k5 + k6)2

PT(6)⟨14⟩⟨36⟩
. (C.2.5)



Appendix D

AdS Spinor Helicity Identities

This appendix will review a number of useful formulae for working with AdS spinor

helicity and identities that may be derived from those given in section 2.3.1. In

section D.1 we then show how to specifically apply these identities to simplify the

W B
s term in equation (4.2.14).

We start with the spinor expressions for dot products of polarisation vectors with

each other and with momenta. Using the polarisations in equation (2.3.13) and

the bispinor form of the boundary momentum in equation (2.3.10), we obtain the

following useful formulas for inner products

2ka · ϵ+
b = ⟨ab̄⟩⟨b̄ā⟩

ikb

, 2ka · ϵ−
b = ⟨ab⟩⟨āb⟩

ikb

,

2ϵ+
a · ϵ+

b = −⟨āb̄⟩2

kakb

, 2ϵ−
a · ϵ−

b = −⟨ab⟩2

kakb

,

2ϵ−
a · ϵ+

b = −⟨ab̄⟩2

kakb

.

(D.0.1)

These are used as the starting point for converting all the helicity amplitudes in

section 4.2.3 into spinor form.

To derive spinor identies, we start from momentum conservation in equation (2.3.12)
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and contract with various other spinors. At three points, this reduces to

λα
1 λ̄β

1 + λα
2 λ̄β

2 + λα
3 λ̄β

3 = iEϵαβ,

k1 + k2 + k3 = E,

k1 + k2 + k3 = 0.

(D.0.2)

To start, one identity can be derived from the 4-momentum dot product by expand-

ing it in terms of 3-momenta and the radial components, then using momentum

conservation

⟨bc⟩⟨b̄c̄⟩ = 2kµ
b kcµ = (kb + kc)2 + (ikb + ikc)2,

= k2
a − (kb + kc)2 = E(ka − kb − kc).

(D.0.3)

Other identities can be obtained by contracting the top line of equation (D.0.2) with

various spinors:

⟨bc⟩⟨b̄c̄⟩ = E(ka − kb − kc),

⟨ab⟩⟨b̄c̄⟩ = iE⟨ac̄⟩,

⟨ab⟩⟨b̄c⟩ = i⟨ac⟩(ka + kb − kc),

⟨āb̄⟩⟨bc̄⟩ = i⟨āc̄⟩(kc − ka − kb),

⟨ab̄⟩⟨bc̄⟩ = i⟨ac̄⟩(ka + kc − kb),

(D.0.4)

for distinct particle labels a, b, c.

We can carry out the same process at four points where there are a few extra

possibilities as we have more freedom to contract with different momenta:

⟨ab⟩⟨āb̄⟩ − ⟨cd⟩⟨c̄d̄⟩ = E(kc + kd − ka − kb),

⟨ab⟩⟨b̄d̄⟩ + ⟨ac⟩⟨c̄d̄⟩ = iE⟨ad̄⟩,

⟨ab⟩⟨b̄d⟩ + ⟨ac⟩⟨c̄d⟩ = i⟨ad⟩(ka + kb + kc − kd),

⟨āb̄⟩⟨bd̄⟩ + ⟨āc̄⟩⟨cd̄⟩ = i⟨ād̄⟩(kd − ka − kb − kc),

⟨ab̄⟩⟨bd̄⟩ + ⟨ac̄⟩⟨cd̄⟩ = i⟨ad̄⟩(ka + kd − kb − kc),

⟨ab⟩⟨āb̄⟩ + ⟨ac⟩⟨āc̄⟩ + ⟨ad⟩⟨ād̄⟩ = −2Eka,

(D.0.5)
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where a, b, c, d are distinct particle labels.

Some of these identities imply additional useful relations. For example, consider the

following structures:

A = ⟨12̄⟩⟨1̄3̄⟩⟨4̄1̄⟩ + ⟨21̄⟩⟨2̄4̄⟩⟨3̄2̄⟩,

B = ⟨34̄⟩⟨1̄3̄⟩⟨3̄2̄⟩ + ⟨43̄⟩⟨2̄4̄⟩⟨4̄1̄⟩.
(D.0.6)

Using momentum conservation to expand the mixed brackets we then find

A = 1
iE

(
⟨13⟩⟨3̄2̄⟩⟨1̄3̄⟩⟨4̄1̄⟩ + ⟨14⟩⟨4̄2̄⟩⟨1̄3̄⟩⟨4̄1̄⟩

+ ⟨23⟩⟨3̄1̄⟩⟨2̄4̄⟩⟨3̄2̄⟩ + ⟨24⟩⟨4̄1̄⟩⟨2̄4̄⟩⟨3̄2̄⟩
)

= B,

(D.0.7)

where the second equality is obtained by rearranging the terms and applying

momentum conservation again. In fact, these types of identities appear natur-

ally when evaluating Witten diagrams, as we demonstrate in the next subsection.

Noting that a 4-momentum λλ̄ is invariant under the little group transformation(
λ, λ̄

)
→
(
αλ, α−1λ̄

)
, we see that that the above structures transform in the same

way as an all-plus amplitude and will therefore be useful for simplifying that amp-

litude. It turns out that there are analogous identities for all helicities. The four

cases are given by

⟨bā⟩⟨b̄d̄⟩⟨b̄c̄⟩ + ⟨ab̄⟩⟨āc̄⟩⟨ād̄⟩ = ⟨cd̄⟩⟨āc̄⟩⟨b̄c̄⟩ + ⟨dc̄⟩⟨b̄d̄⟩⟨ād̄⟩,

⟨ba⟩⟨b̄d̄⟩⟨b̄c̄⟩ + ⟨āb̄⟩⟨ac̄⟩⟨ad̄⟩ = ⟨cd̄⟩⟨ac̄⟩⟨b̄c̄⟩ + ⟨dc̄⟩⟨b̄d̄⟩⟨ad̄⟩,

⟨ba⟩⟨b̄d̄⟩⟨b̄c⟩ + ⟨āb̄⟩⟨ac⟩⟨ad̄⟩ = ⟨c̄d̄⟩⟨ac⟩⟨b̄c⟩ + ⟨dc⟩⟨b̄d̄⟩⟨ad̄⟩,

⟨b̄a⟩⟨bd̄⟩⟨bc̄⟩ + ⟨āb⟩⟨ac̄⟩⟨ad̄⟩ = ⟨cd̄⟩⟨ac̄⟩⟨bc̄⟩ + ⟨dc̄⟩⟨bd̄⟩⟨ad̄⟩,

(D.0.8)

where the four lines are all-plus, single-minus, alternating MHV and split MHV,

respectively. The other cases can be obtained by conjugation. These identities are

all consequences of momentum conservation and the Schouten identity, but proving

them is slightly different for each helicity configuration. The identities in (D.0.8)

can also be related to each other in different factorisation channels. For example, in
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the all-plus case we have

⟨41̄⟩⟨2̄4̄⟩⟨3̄4̄⟩ + ⟨14̄⟩⟨1̄3̄⟩⟨1̄2̄⟩ = ⟨12̄⟩⟨1̄3̄⟩⟨1̄4̄⟩ + ⟨21̄⟩⟨2̄4̄⟩⟨2̄3̄⟩ − E2⟨1̄3̄⟩⟨2̄4̄⟩⟨1̄2̄⟩⟨3̄4̄⟩,

(D.0.9)

which relates the s- and t-channel.

D.1 Simplifying Witten Diagrams

In this subsection, we will explain how to simplify the term W B
s in equation (4.2.14)

when written in terms of spinors, which is crucial for obtaining concise formulae for

AdS4 amplitudes. For concreteness, we will focus on the case −+++, since a similar

strategy can be applied to other helicity configurations. Writing (4.2.14) in spinor

notation gives

W B,−+++
s = 1

8k1k2k3k4

1
Es

(
⟨12̄⟩2

(
⟨43̄⟩⟨3̄4̄⟩(⟨14̄⟩⟨1̄4̄⟩ − ⟨24̄⟩⟨2̄4̄⟩)

+ ⟨34̄⟩⟨3̄4̄⟩(⟨13̄⟩⟨1̄3̄⟩ − ⟨23̄⟩⟨2̄3̄⟩)
)

+ ⟨3̄4̄⟩2
(
⟨21⟩⟨12̄⟩(⟨32̄⟩⟨3̄2̄⟩ + ⟨42̄⟩⟨2̄4̄⟩)

+ ⟨12̄⟩⟨1̄2̄⟩(⟨13⟩⟨13̄⟩ + ⟨41⟩⟨14̄⟩)
)

+ 2⟨2̄4̄⟩2⟨12⟩⟨12̄⟩⟨43̄⟩⟨3̄4̄⟩ + 2⟨2̄3̄⟩2⟨12⟩⟨12̄⟩⟨34̄⟩⟨3̄4̄⟩

− 2⟨13̄⟩2⟨12̄⟩⟨1̄2̄⟩⟨34̄⟩⟨3̄4̄⟩ − 2⟨14̄⟩2⟨12̄⟩⟨1̄2̄⟩⟨43̄⟩⟨3̄4̄⟩
)

.

(D.1.1)

Note that there are 4 terms with a factor of 2, and 8 terms without. These pair up

in such a way that we can apply the Schouten a total of 8 times. Each of these gives

a factor of ki. For example, from the first line we have

⟨12̄⟩⟨3̄4̄⟩⟨14̄⟩⟨43̄⟩
(
⟨14̄⟩⟨2̄1̄⟩ + ⟨12̄⟩⟨1̄4̄⟩

)
= −2ik1⟨12̄⟩⟨3̄4̄⟩⟨14̄⟩⟨43̄⟩⟨2̄4̄⟩,

⟨12̄⟩⟨3̄4̄⟩⟨2̄4̄⟩⟨43̄⟩
(
⟨21⟩⟨4̄2̄⟩ + ⟨24̄⟩⟨2̄1⟩

)
= 2ik2⟨12̄⟩⟨3̄4̄⟩⟨2̄4̄⟩⟨43̄⟩⟨14̄⟩,

(D.1.2)

where we have added pieces from the last four terms and used the Schouten identity.

We note that there is a factor of ⟨12̄⟩⟨3̄4̄⟩ common to all terms. In addition, while
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there still seem to be a lot of unpromising terms, factoring out the ki gives

W B,−+++
s = 2i

8k1k2k3k4

1
Es

(
(k3 + k4)

(
⟨1̄2̄⟩⟨13̄⟩⟨14̄⟩ + ⟨12⟩⟨2̄4̄⟩⟨3̄2̄⟩

)
,

+ (k2 − k1)
(
⟨43̄⟩⟨14̄⟩⟨2̄4̄⟩ + ⟨34̄⟩⟨2̄3̄⟩⟨13̄⟩

))
.

(D.1.3)

We can then use the second line from (D.0.8) to get

W B,−+++
s = i⟨12̄⟩⟨3̄4̄⟩

4k1k2k3k4

E − 2k1

Es

(
⟨1̄2̄⟩⟨13̄⟩⟨14̄⟩ + ⟨12⟩⟨2̄4̄⟩⟨3̄2̄⟩

)
. (D.1.4)

Similar steps can be applied for any helicity configuration, and the final result will

be proportional to E − 2∑i∈− ki. For completeness, we list the all-plus and MHV

cases. Others can be obtained by relabelling or conjugation:

W B,++++
s = i⟨1̄2̄⟩⟨3̄4̄⟩

4k1k2k3k4

1
s

(
⟨21̄⟩⟨2̄4̄⟩⟨3̄2̄⟩ + ⟨12̄⟩⟨1̄3̄⟩⟨4̄1̄⟩

)
,

W B,−+−+
s = i⟨12̄⟩⟨34̄⟩

4k1k2k3k4

E − 2k1 − 2k3

Es

(
⟨21⟩⟨2̄4̄⟩⟨32̄⟩ + ⟨1̄2̄⟩⟨31⟩⟨14̄⟩

)
,

W B,−−++
s = i⟨12⟩⟨3̄4̄⟩

4k1k2k3k4

E − 2k1 − 2k2

Es

(
⟨12̄⟩⟨24̄⟩⟨23̄⟩ + ⟨21̄⟩⟨13̄⟩⟨14̄⟩

)
.

(D.1.5)



Appendix E

4pt Special Galileon Wavefunction

Coefficient

In this appendix we include some more details about the 4pt wavefunction coefficient

for the special Galileon that appears in chapters 5 and 6. We start with the explicit

expression in d = 3 that was used to obtain the soft limit for a minimally coupled

scalar (∆ = 3) in (5.3.64). We then look at the wavefunction coefficient for general d

and include some useful identities for obtaining the integrands in section 6.2.1 along

with the integrands resulting from the ŝ3
ab operator.

E.1 Wavefunction Coefficient for minimally

coupled scalars

The simplest way to get an expression for the special Galileon is from the cubic

product of operators ŝ2
12ŝ34 summed over cyclic permutations of (234). The action

of these operators was given in equation (5.3.7). A more symmetric expression can

be found by first summing over the exchange (12) ↔ (34) or equivalently summing

(ŝ12 + ŝ34) ŝ12ŝ34 over the three cyclic permutations. These expressions are obviously

equivalent via the conformal Ward identities but at the level of integrands they are
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only equal up to integration-by-parts identities (and the dropping of corresponding

surface terms). The final integrated expressions will be related by boundary mo-

mentum conservation. We therefore schematically use ŝ ≡ ŝ12 ≡ ŝ34, t̂ ≡ ŝ14 ≡ ŝ23

and ŝ ≡ ŝ13 ≡ ŝ24 to represent this combination of operators in a compact way.
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For minimally coupled scalars we find that

(ŝ3+t̂3+û3)C∆=3
4 = 360

E7 k1k2k3k4k
µ
1 k2,µkν

3k4,ν (kσ
1 k2,σ + kσ

3 k4,σ)

×

1 + E

6

4∑
a=1

1
ka

+ E2

30k1k2k3k4

∑
a<b

kakb


+ 60

E6 k1k2k3k4
(
(k3 + k4)(kµ

1 k2,µ)2 + (k1 + k2)(kµ
3 k4,µ)2

)
+ 24

E5

(
10k1k2k3k4k

µ
1 k2,µkν

3k4,ν

+ 1
2
∑
a<b

kakb

(
2k1k2k3k4 (kµ

1 k2,µ + kµ
3 k4,µ − k1k2 − k3k4)

− 2k2
3k2

4kµ
1 k2,µ − 2k2

1k2
2kµ

3 k4,µ

+ 2(k1k2 + k3k4)kµ
1 k2,µkν

3k4,ν

+ k3k4(kµ
1 k2,µ)2 + k1k2(kµ

3 k4,µ)2
)

+
1 +

∑
a̸=b

ka

kb

 k1k2k3k4k1 ·k2k3 ·k4

− (k2
1k2

2 + k2
3k2

4)k1 ·k2k3 ·k4

+ k2
3k2

4k1 ·k2
(
−k2

1 − k2
2 + 2(k1k2 + k3k4)

)
+ k2

1k2
2k3 ·k4

(
−k2

3 − k2
4 + 2(k1k2 + k3k4)

)
− 1

2
(
4k2

1k2
2k2

3k2
4 + k2

1k2
2 + (k3 ·k4)2 + (k1 ·k2)2

))

+ 6
E4

k1k2k3k4

4∑
a=1

1
ka

+
∑
a̸=b

kak2
b

k1 ·k2k3 ·k4

− 2k2
3k2

4(k3 + k4)k1 ·k2 − 2k2
1k2

2(k1 + k2)k3 ·k4


+ 2

E3

(
2k1 ·k2k3 ·k4(k1 ·k2 + k3 ·k4) −

∑
a<b

kakbk1 ·k2k3 ·k4

+ 2k2
3k2

4k1 ·k2 + 2k2
1k2

2k3 ·k4

)
+ 4

E
k1 ·k2k3 ·k4 + cyc(234),

(E.1.1)

where kµ
a kb,µ = ka · kb − kakb. This expression mixes different types of dot products

in order to obtain a more compact form. This appears to be a generic feature of
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minimally coupled scalar wavefunction coefficients.

E.2 4-point sGal Soft Limit

We now look at how to instead obtain an expression for an integrand with general d

and ∆. For the purposes of taking soft limits it is better to use the conformal Ward

identities to write the wavefunction coefficient as a sum of cubes of operators as in

equation (6.2.14). The downside is that the action of the conformal generators is

more complicated to work out.

To evaluate the ŝ3
ab terms in (6.2.14) we use the definitions in (2.1.15) along with

their action on bulk-to-boundary propagators from equation 5.1.4

DKν = η ∂
∂η

Kν , P iKν = kiKν ,

KiKν = η2kiKν , MijKν = 0.
(E.2.1)

To evaluate the action of ŝ3
ab we also need

Ki(kaϕ) = η2kikaϕ − 2ηδaiϕ̇,

Kiϕ̇ = ki(η2ϕ̇ + 2ηϕ),

Ki(kakbϕ) = η2kikakbϕ − 2(δiakb + δibka)(ϕ + ηϕ̇) + 2kiδabϕ,

Kiϕ̈ = ki(η2ϕ̈ + 4ηϕ̇ + 2ϕ),

Dϕ̇ = ηϕ̈ + ϕ̇,

Mab (ka · kbf(ka, kb)) = 2(d − 1)ka · kbf(ka, kb),

Mab

(
(ka · kb)2f(ka, kb)

)
= 4

(
d(ka · kb)2 − k2

ak2
b

)
f(ka, kb),

(E.2.2)

where f(ka, kb) is some function depending only on the magnitudes of the momenta.

These operations were implemented in Mathematica in the form of replacement rules

(this enables the integrands to be evaluated much faster than if it were evaluating

them as derivatives) in [4].
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The action of the cubic operator is then given by

ŝ3
12ϕ1ϕ2 = η6

[
(k1 · k2)3ϕ1ϕ2 + 3(k1 · k2)2ϕ̇1ϕ̇2 + 3(k1 · k2)ϕ̈1ϕ̈2 +

...
ϕ 1

...
ϕ 2

+ 3
η

(
2(k1 · k2)2(ϕ̇1ϕ2 + ϕ1ϕ̇2)

+ (k1 · k2)
(
−k2

1ϕ1ϕ̇2 − k2
2ϕ̇1ϕ2 + 3(ϕ̈1ϕ̇2 + ϕ̇1ϕ̈2)

)
− k2

1ϕ̇1ϕ̈2 − k2
2ϕ̈1ϕ̇2 +

...
ϕ 1ϕ̈2 + ϕ̈1

...
ϕ 2

)
+ 1

η2

(
(10 − 3d)(k1 · k2)2ϕ1ϕ2

+ 2(k1 · k2)
(

2(ϕ̈1ϕ2 + ϕ1ϕ̈2) + (29 − 3d)ϕ̇1ϕ̇2 − (k2
1 + k2

2)ϕ1ϕ2

)
+ 2k2

1k2
2ϕ1ϕ2

− k2
1(5ϕ̇1ϕ̇2 + 4ϕ1ϕ̈2) − k2

2(5ϕ̇1ϕ̇2 + 4ϕ̈1ϕ2) +
...
ϕ 1ϕ̇2 + ϕ̇1

...
ϕ 2

)

+ 1
η3

(
4(3 − d)k1 · k2(ϕ̇1ϕ2 + ϕ1ϕ̇2) + (d − 6)k2

1ϕ1ϕ̇2

+ (d − 6)k2
2ϕ̇1ϕ2 + 3(ϕ̈1ϕ̇2 + ϕ̇1ϕ̈2)

)
+ 1

η4

(
(d − 2)2k1 · k2ϕ1ϕ2 + ϕ̇1ϕ̇2

) ]
.

(E.2.3)

We can then compute the soft limit

lim
k1→0

ŝ3
12ϕ1ϕ2 =η6

( ...
ϕ 1

...
ϕ 2 + 3

η

(
−k2

2ϕ̈1ϕ̇2 +
...
ϕ 1ϕ̈2 + ϕ̈1

...
ϕ 2

)
,

+ 1
η2

(
−k2

2(5ϕ̇1ϕ̇2 + 4ϕ̈1ϕ1) +
...
ϕ 1ϕ̇2 + 9ϕ̈1ϕ̈2 + ϕ̇1

...
ϕ 2)

)
,

+ 1
η3

(
(d − 6)k2

2ϕ̇1ϕ̇2 + 3(ϕ̈1ϕ̇2 + ϕ̇1ϕ̈2)
)

+ 1
η4 ϕ̇1ϕ̇2

)
+ O(k1).

(E.2.4)

To unambiguously fix all the curvature corrections as was done in section 6.2.1 also

requires the subleading soft limit. This is omitted here as the full expansion is quite

lengthy.



Appendix F

Soft limit of 6pt DBI in dS

This Appendix, provides more details about the calculation in section 6.3.2. In

particular, it presents an algorithm for systematically applying equivalence relations

to express the 6-point tree-level wavefunction coefficient in terms of linearly inde-

pendent terms. This allows all the couplings to be fixed from enhanced soft limits,

implemented in Mathematica in order to obtain the results in chapter 6.

The equivalence relations that can be applied to the wavefunction coefficients are

• conformal Ward identities in terms of the ŝab operators,

• boundary momentum conservation,

• equations of motion for the bulk-to-boundary wavefunctions,

• integration by parts identities/ addition of a total derivative to the integrand.

Note that any boundary contributions that may come from integration by parts

are neglected since they have delta function support when Fourier transformed to

position space. Although the relations implied by conformal Ward identities can also

be obtained from a combination of the other three equivalence relations, in practice

use all four are used in such a way as to remove the need for guesswork. In particular,

momentum conservation, equations of motion, and integration by parts relations are

applied in a particular order such that the latter can be constructed systematically.
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After fixing ∆ from the enhanced soft limit at four points, it is sufficient to work

to leading order in the soft momentum in order to fix the 6-point couplings. The

procedure for fixing these couplings is as follows:

1. Write the soft limit of an exchange diagram as a contact diagram by cancelling

numerator and denominator in this limit (see (6.3.12)).

2. Sum all diagrams over permutations to obtain the wavefunction coefficient. The

wavefunction coefficient is now of the form f(ŝab)C6, where f is a polynomial

up to cubic order in the ŝab.

3. Apply the conformal Ward identities to eliminate one leg and one ŝab, mimicking

the use of momentum conservation needed to demonstrate enhanced limits of

amplitudes in flat space. We choose to eliminate leg n and ŝn−2 n−1 using

ŝan = −∑n−1
b=1 sab and

(∑n−1
a=1 Da

)2
= ŝnn. At each stage we can also apply

ŝaa ∼ −m2. Note that this will remove any derivatives acting on the field ϕn.

It will not however remove all occurrences of kn−2 · kn−1 in the integrand since

they can also appear from the successive action of ŝa n−2ŝa n−1, for example.

This means that we can still apply boundary momentum conservation to

eliminate quantities that are not independent.

4. Use (6.2.2) to finish taking the soft limit and use the propagator equation of

motion to remove factors of k2
a.

5. Use boundary momentum conservation to remove kn−2 · kn−1. This will re-

introduce the magnitudes k2
a (including kn) so we again apply equations of

motion such that the integrand contains only functions not linked by equations

of motion.

6. The equations of motion will introduce derivatives of ϕn so use integration

by parts to remove ϕ̈n and then ϕ̇n. This step can be done systematically

by identifying terms of the form
∫

dη g(η, ka, ∂l
ηϕb ̸=n)∂m

η ϕn for some function g

and deriving the appropriate total derivative which contains it.
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7. The wavefunction coefficient can now be seen to vanish for specific choices of

the coefficients A, B, C in (6.3.7).

Finally, it is interesting to note that operators which are quadratic or cubic in leg 1

can be written as combinations of operators that are at most linear in leg 1, up to

O(k1). It is this property for example that leads to equation (6.3.12). It can also be

used to write

ŝ3
12C∆=d+1

6 =
(
(d2 + d + 1)ŝ12 + d(d + 1)

)
C∆=d+1

6 + O(k2
1),

ŝ12ŝ13ŝ23C∆=d+1
6 =

(
ŝ2

23 + ŝ13ŝ23 − (d + 1)ŝ12 + dŝ23
)

C∆=d+1
6 + O(k2

1).
(F.0.1)

This is a non-exhaustive list. In principal, these properties could be used to solve

for the unknown coefficients without needing to consider the full integrand.

F.1 Matching 6-point Wavefunctions

This section shows that the wavefunction coefficient obtained from the Lagrangian in

(6.3.15) gives the same wavefunction coefficient as the one obtained from enhanced

soft limits. Applying the free equation of motion to rewrite the (∇ϕ)2ϕ4 as a ϕ6

interaction gives

LDBI
6√
|g|

= −1
2(∇ϕ)2 + d + 1

2 ϕ2 − 1
8(∇ϕ)4

− 1
4(d + 3)(∇ϕ)2ϕ2 + 3(d + 1)(d + 3)

4! ϕ4 − 3
48(∇ϕ)6

− 3(d + 5)
16 (∇ϕ)4ϕ2 + 6(d + 1)(d + 3)(d + 5)

6! ϕ6.

(F.1.1)

This gives the following contribution from 6-point contact Witten diagrams:

ΨDBI
6, cont =

[
3 (ŝ12ŝ34ŝ56 + perms) − (5 + d) (ŝ12ŝ34 + perms)

+ 6(1 + d)(3 + d)(5 + d)
]
C∆=d+1

6 ,

(F.1.2)
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where the terms are summed over all inequivalent permutations. The contribution

from exchange diagrams is given by

ΨDBI
6, exch = 1

(D1 + D2 + D3)2 + m2

[(
ŝ12ŝ3L + Cyc.[123] − 3(1 + d)(3 + d)

− (d + 3) (ŝ12 + ŝ23 + ŝ31 + DL · (D1 + D2 + D3))
)

× (123) ↔ (456)
]
C∆=d+1

6 + perms.

(F.1.3)

Next the conformal Ward identity −DL = D1 + D2 + D3 can be used at the vertex to

express the terms quadratic in boundary conformal generators terms as an inverse

propagator plus a constant

ΨDBI
6, exch = 1

(D1 + D2 + D3)2 + m2

[(
ŝ12ŝ3L + Cyc.[123] − 3(1 + d)(3 + d)

− (d + 3)
(1

2
(
(D1 + D2 + D3)2 + m2

)
+ 2(d + 1)

))
× (123) ↔ (456)

]
C∆=d+1

6 + perms,

(F.1.4)

where D2
a ∼ −m2 has been used to simplify the constant. This can be identified as

the exchange diagram from (6.3.10) plus a new contact contribution

ΨDBI
6, exch = ΨLΨR

(D1 + D2 + D3) + m2 C∆=d+1
6 + Ψ̃DBI

6, cont, (F.1.5)

where

Ψ̃DBI
6, cont =

[1
2(d + 3)(ΨL + ΨR) + 1

4(d + 3)2
(
(D1 + D2 + D3)2 + m2

)]
C∆=d+1

6

+ perms.

(F.1.6)

The new contact contribution is now considered in detail, summing over the 10

factorisation channels and comparing to the form in (F.1.2). To do this, the quadratic

term needs to be expressed as a sum of terms each with 4 distinct labels. This can

be accomplished using the conformal Ward identities to write DL = D4 + D5 + D6

to get

ΨL = ŝ12(ŝ34 + ŝ35 + ŝ36) + Cyc.[123] − (1 + d)(3 + d), (F.1.7)
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and analogously for ΨR. The quadratic term from ΨL + ΨR will contain 18 terms so

the sum over 10 channels will give a permutation-invariant sum of 180 terms. Since

there are 45 unique ŝabŝcd, this gives us a symmetry factor of 4. A similar analysis

of the linear terms from (D1 + D2 + D3)2 gives a symmetry factor of 4 as well. The

new contact contribution can therefore be expressed as

Ψ̃DBI
6, cont =

[
2(d + 3)(ŝ12ŝ34 + perms) + (d + 3)2(ŝ12 + perms)

− 5(d + 1)(d + 3)2
]
C∆=d+1

6 .

(F.1.8)

Noting that (ŝ12 + perms) = 3m2 = −3(d + 1), this becomes

Ψ̃DBI
6, cont =

[
2(d + 3)(ŝ12ŝ34 + perms) − 8(d + 1)(d + 3)2

]
C∆=d+1

6 . (F.1.9)

This can be combined with equation (F.1.2) to give

ΨDBI
6, cont =

[
(d + 1)(ŝ12ŝ34 + perms) + 2(d + 1)(9 − d2)

]
C∆=d+1

6 , (F.1.10)

matching the result obtained from the enhanced soft limit. This wavefunction

coefficient therefore also corresponds to the one obtained from (6.3.14).
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