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ABSTRACT To improve the artifacts of the restoration results restored by existing blind restoration method,
an effective image blind restoration method using self-similarity as prior information is proposed for
restoring the blurry images. Firstly, the fraction-order model is achieved by extending integer-order total
variation, which is prone to reduce artifacts. Motivated by the fact that the introduction of prior information
is beneficial to improve the restoration results, we found that natural images usually exhibit some texture
features. Self-similarity is a popular texture features and well-defined in the statistics. Therefore, this texture
feature is introduced as prior information for the restoration model and further improving the restoration
results. Finally, the cost function is generated and solved by semi-quadratic regularization. Experiments
on various natural images showed that the proposed method can improve the performance relative to
other image blind restoration algorithms in terms of both subjective vision and objective evaluation. The
subjective analysis revealed that the proposed algorithm resulted in improved translation and improved
artifact appearance. The objective evaluation showed that the proposed algorithm showed the best evaluation
values, including Structural Similarity and Peak Signal-to-noise ratio. The restoration results of various
images reveal that the proposed method is practical and effective in image restoration.

INDEX TERMS Image blind restoration, texture features, fraction-order total variation, prior information.

I. INTRODUCTION
Images are usually degenerated during the process of acqui-
sition. Image degeneration is usually described as

g = f ∗ k + n (1)

where f is the sharp image, g is the blurry image, k is the blur
kernel and n is additive noise. The purpose of blind restoration
is to obtain a deblurring image from an observed image
blurred by unknown blur kernel. The restoration processing
is usually ill-posed due to the lack of prior information about
sharp image and blur kernel. Therefore, it is necessary to
add some regularization constraints or prior information on
blurry images and blur kernels. Total variation (TV) regu-
larization is a classical regularization term widely used in
image inversion. It is proposed in [1] by Rudin et al. and
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shown as

min
u,k

J (u, k) =
1
2
‖k ∗ u− g‖2L2(�) +

∫
�

|∇u| dxdy (2)

where u is the restoration image. Then, the blind restoration
model is proposed in [2], shown as

min
u,k

J (u, k) =
1
2
‖k ∗ u− g‖2L2(�)

+α1

∫
�

|∇u| dxdy+ α2

∫
�

|∇k| dxdy (3)

|∇u| =
√
(Dxu)2+

(
Dyu

)2
|∇k|=

√
(Dxk)2+

(
Dyk

)2
(4)

where |∇·| denotes TV. In recent years, TV model has been
improved by many scholars in [2]–[6]. Chen R et al. pro-
posed a high-order regularization term for aerial image blind
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restoration in [4]. Zhou L et al. proposed a fraction-order
TV image blind restoration method in [5]. However, in these
methods, there is no other prior information apart from TV
regularization terms, and thus the restoration results still need
to be improved.

In early stage, the blind restoration methods are mainly
proposed based on prior information about edge-prediction
strategies. However, the prediction seldom performs well
without strong edges in observed images [7]–[9]. To avoid the
edge prediction problem, some blind restorationmethods pro-
pose to adopt different prior information, including L0 gradi-
ents [10], [11], directional filters [12] and sparsity [13]–[15].
However, similar to edge prediction, these prior information
can be still improved. Therefore, it is of great interest to intro-
duce appropriate prior information to improve the restoration
results.

Motivated by the importance of prior information, we pro-
pose to use a texture feature of natural images as prior infor-
mation. Then we build a fraction-order total variation blind
restoration model based on this prior information. However,
it is not easy to optimize the blind restoration model with
some non-linear terms, such as fraction-order total variation
and the other prior information. So we make use of the semi-
quadratic regularization to optimize the model. Experimental
results confirm that our method can achieve excellent restora-
tion results.

This paper is organized as follows. Section II extracts an
appropriate texture feature of natural images and introduces
it as prior information. Section III describes the optimization
of model. The experimental design and results are shown in
Section IV and conclusion is displayed in Section V.

II. BLIND RESTORATION MODEL BASED ON PRIOR
INFORMATION
A. FRACTION-ORDER TOTAL VARIATION
Fraction-order TV is proposed by extending integer-order TV.
It is firstly applied in image denoising and obtains excel-
lent denosing results. Motivated by successful application in
denoising, it is applied in image blind restoration to achieve
details and suppress the artificial edges simultaneously [5],
shown as

min
u,k

J (u, k)

=
∥∥k∗u−g∥∥L1(�)+α1 ∥∥∇ru∥∥L1(�)+α2 ∥∥∇rk∥∥L1(�) (5)

where ∇r represents r-order (r is a decimal). The model has
significantly improved the restoration results. However, the
lack of prior information leads to poor robustness. Therefore,
we introduce the prior information as a new regularization
term. Then the model is updated as follows

min
u,k

J (u, k) = ‖k ∗ u− g‖L1(�x ) + α1
∥∥∇ru∥∥L1(�)

+α2 ‖lk‖2L2(�) + λρ(u) (6)

where l is Laplacian operator. In this paper, Laplacian opera-
tor is used as the regularization term for blur kernel, because

it is better for estimating smooth blur kernel. α1, α2 and λ
are the parameters for balancing all terms. ρ(u) is the prior
information term, which is described in detail next.

B. PRIOR INFORMATION FOR BLIND RESTORATION
Extraction of prior information has been studied in recent
years [16], [17]. Natural images usually exhibit heavy-tail
distributions, described as various statistical models, such as
generalized normal distribution [18], GSM model [19], self-
similarity [20]. Self-similarity is a popular feature for image
textures and is well-defined in the statistics. It is defined as

BH (at) = |a|HBH (t) (7)

where BH (at) is the H-dependent random process, H is the
Hurst parameter, a is the scale parameter. This equality shows
that the output distribution is relevant to the scale parameter
and Hurst parameter.
The Hurst parameter reflects the fractal of images. There-

fore, some scholars use the Hurst parameter to analyze natural
images [21], [22]. Fractional Brownian Motion (FBM), also
proposed in [20], is a usual random process exhibiting self-
similarity. Actually, image details are easily contaminated
by noise and blur during image acquisition and image trans-
mission. However, existing blind restoration methods usually
restore the edges excessively, because it will regard the fine
details as noise and clear them from the images. In recent
years, it is found that FBM is credible prior information
for fine details and has been applied successfully in image
denosing [22] and image super-resolution [23].
However, we find that the application of FBM in the form

of prior information encounters some difficulties. Firstly,
it has to compute inversion of a large matrix. Furthermore,
Hurst parameter may vary with the variation of coordinates.
Therefore, we use a patch-based FBM as prior informa-
tion of image. The inversion of matrix can be easily solved
because image patch size is limited. Besides, Hurst parameter
is constant in the interior of patch and varies throughout
different patches, which is accordant with practical image
features. Therefore, the prior information for blind restoration
is defined as

ρ(u) = σ 2
N

(
uT
∑−1

i,H
u
)

(8)

where u denotes the restoration image,
∑

i,H denotes a patch-
based FBM covariance matrix with Hurst parameter H and
patch i, σ 2

N denotes noise variation of the observed blurry
image. It is estimated by existing noise estimation algo-
rithms [24]. The estimation of the Hurst parameter is shown
in [22]. Considering computational complexity, the size of
patch are set as 64× 64. Then, the proposed blind restoration
model is shown as

min
u,k

J (u, k) = ‖k ∗ u− g‖L1(�x ) + α1
∥∥∇ru∥∥L1(�)

+α2 ‖lk‖2L2(�) + λσ
2
N

(
uT
∑−1

i,H
u
)

(9)
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Next, we will aim to solve the optimization of the proposed
model (9).

III. OPTIMIZATION OF THE PROPOSED MODEL
The optimization of the proposed method can been solved by
iterative minimization methods. However, existing methods
can only obtain the approximate solution [25], [26], because
of non-convex L1-norm and non-linear prior information.
To tackle them, the model (9) is transformed into model (10)
by introducing two relaxation factors.

min
w,z,u,k

J (w; z, u; k) =
(
‖z‖L1 +

β1

2
‖z− (k ∗ u− g)‖2L2

)
+α1

(
‖w‖L1 +

β2

2

∥∥w−∇ru∥∥2L2)
+α2 ‖lk‖2L2 + λσ

2
N

(
uT
∑−1

i,H
u
)

where β1, β2→∞ (10)

where β1 and β2 are the introduced coefficients, w and z
are the introduced relaxation factors. When β1, β2 → ∞,
the model (10) is equivalent to the model (9). Then we will
obtain the solution of model (10) by extreme value theory of
partial differential equations. The minimization sequence of
all variables is shown as

w→ z→ u→ k (11)

A. OPTIMIZATION OF RELAXATION FACTORS
Firstly, we solve the relaxation factor w by fixing the other
variables and optimizing

min
w
α1

(
‖w‖L1 +

β2

2

∥∥w−∇ru∥∥2L2) (12)

The solution of w is achieved by setting the partial deriva-
tive of model (12) to w as 0 and shown as

wn+1 = max
{∥∥∇run∥∥− 1/β2

} ∇run
‖∇run‖

(13)

where n denotes iteration index. Then the update for z is
obtained by repeating the same procedure,

zn+1 = max
{∥∥kn ∗ un − g∥∥− 1/β1

} kn ∗ un − g
‖kn ∗ un − g‖

(14)

B. OPTIMIZATION OF RESTORATION IMAGES
The restoration image u is solved by fixing the other variables
and optimizing

min
u

(
β1

2
‖z− (k ∗ u− g)‖2L2

)
+ α1

(
β2

2

∥∥w−∇ru∥∥2L2)
+λσ 2

N

(
uT
∑−1

i,H
u
)

(15)

The partial derivative of model (15) to u is set as 0 and
shown as
β1k̃ ∗ (k ∗ u− g− z)

+α1β2∇̃
r (
∇
ru− w

)
+ λσ 2

N

∑−1

i,H
u = 0 (16)

where k̃ = k(−x,−y) and ∇̃r = ∇r−x,−y

Due to non-linearity, the solution of (16) can be achieved
by gradient descent.
ut+1 − ut
1t

≈
∂u
∂t
= β1k̃ ∗ (k ∗ u− g− z)

+α1β2∇̃
r (∇ru− w)+ λσ 2

N

∑−1

i,H
u (17)

Then, we obtain its equivalent gradient descent flow

ut+1 = ut + β11t k̃ ∗ (k ∗ ut − g− z)

+α1β21t∇̃r (∇rut − w)+ λ1tσ 2
N

∑−1

i,H
ut (18)

The restoration image u converges slowly with time evolu-
tion and the stopping criteria is shown as

δt =
‖ut+1 − ut‖
‖ut‖

≤ δ (19)

where δ is stopping threshold. On each iteration, δt is calcu-
lated. If δt ≤ δ meets, the gradient descent flow will stop.

C. OPTIMIZATION OF BLUR KERNEL
Finally, by fixing the other variables, the optimization of k is
shown as

min
h

β1

2
‖z− (k ∗ u− g)‖2L2 + α2 ‖lk‖

2
L2 (20)

Then, the partial derivative of model (20) to k is set as 0 and
shown as

β1

2α2
ũ (k ∗ u− g− z)+ l̃ lk = 0 (21)

Equation (21) can be successfully solved by Fast Fourier
Transform, that is

β1

2α2
U# (UK − G− Z )+ L#LK = 0 (22)

where # denotes complex conjugate. Therefore, the solution
of blur kernel is achieved as

kn+1 = F−1
[
β1(Un+1)#(G+ Zn+1)

β1
∣∣Un+1

∣∣2 + 2α2 |L|2

]
(23)

where U , G, Z , L are Fourier transform of u, g, z, l;
F−1 denotes inverse Fourier transform.

The solution of the model (10) can be achieved by itera-
tively calculating w, z, u, k . The restoration results will be
presented in Section IV.

D. IMPLEMENTATION DETAILS
The initial value for u0 is chosen to be the observed image as
it is the good approximation of u. The initial value for blur
kernel k0 is chosen to be the delta function δ(x,y). The initial
size of blur kernel is critical, because the blind restoration is
ill-posed and it will take much time for convergence. Similar
to other classical blind restoration method, the initial size of
blur kernel is set as 51 × 51. We stop the iteration when
the relative variation of cost function is less than 10−4 or the
number of iterations exceeds 2000.
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FIGURE 1. Blind restoration results of synthetic blurry images.

As discussed in section III, when β1, β2→∞, model (10)
is equivalent to model (9). However, it will take shorter time
to run the method with smaller β1 and β2. So they are set as
a geometrical sequence, ranging from 1 to 107. Additionally,

the common ratio of the proposed geometrical sequence is
set as 3.

The parameters α1 and α2 in blind restoration model are
positive parameters which measure the tradeoff between a
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TABLE 1. The performance indicators of structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) in Figure 1.

FIGURE 2. Blind restoration results of Hollywood.

good fit and regularity of the solution of u and h. α1 smooth
the noise and is inversely proportional to the image noise.
On the other hand, the parameter α2 controls the spread of the
PSF and is set as 1.4. The parameter λ measures the weight
of texture features and is set as 0.25. The decimal order r
is a critical parameter in fraction-order TV model, which is
determined experimentally and set as 1.5 in this paper.

IV. EXPERIMENTAL RESULTS
To comprehensively testify the restoration performance,
we test a large number of blurry images, including synthetic
blurry images and real blurry images, which are respectively
shown in Section IV.A and Section IV.B. Then, we discuss
the running time and convergence in Section IV.C.

Moreover, to show the superiority of our proposed method,
we also present the restoration results of other restoration
methods, which are shown as follows.

1. Zhong L et al. proposed the blind restoration method
in [12] which is based on inverse radon transform and direc-
tional filters.

2. Zhou L et al. proposed the blind restorationmethod in [5]
which is based on fraction-order variation with no prior.

3. Elmi S Y et al. proposed the blind restoration method in
[11] which is based on multi-resolution ringing removal.

A. BLIND RESTORATION FOR SYNTHETIC IMAGES
In the sub-section, the grayscale image (boat), as shown
in Fig.1(a)-left, is blurred by a motion blur kernel
function. The color images (monarch and lighthouse),
as shown in Fig.1(a)-middle and Fig.1(a)-right, are down-
loaded from LIVE Public-Domain Subjective Image Quality
Database [27]. The blurry images and the restoration images
are shown in Fig.1(b)~(f) respectively. It is found that the pro-
posed algorithm is generally superior to the other algorithms

in terms of visual effect, especially in augmented details.
We also compare the proposed algorithm with three other
algorithms based on two performance indicators, including
Structural Similarity IndexMeasure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR), which are respectively shown in (24)
and (25).

SSIM =
(2µuµf + c1)(2σuf + c2)

(µ2
u + µ

2
f + c1)(σ

2
u + σ

2
f + c2)

(24)

PSNR = 10 log10

[
255× 255×M × N

||u− f ||22

]
(25)

where u and f represent the original image and restored
images µ and σ 2 represent the mean and variance of the
image, σxy represent the covariance of the image, M × N is
the size of image.

As shown in Table 1, the proposed algorithm is generally
superior to the competitive algorithms, especially for the
noise image (boat). When the noise level is low, the perfor-
mance indicators of Elmi S Y are the second-best. However,
when the noise level is high, the performance indicators of
Zhong L and Elmi S Y are poor. Anyway, our proposed
algorithm is the best among these algorithms in terms of
SSIM and PSNR.

B. BLIND RESTORATION FOR REAL IMAGES
In the sub-section, we test our algorithm on various
real images. All images are restored by using these
blind restoration algorithms, including Zhong et al. [12],
Zhou and Tang [5], Elmi et al. [11] and our proposed
algorithm.

Firstly, the image, ‘‘Hollywood’’, and its restoration results
are shown in Fig.2. In general, all restoration results exhibit
sharper image details compared with the blurry image. How-
ever, it is seen from the enlarged red rectangle that the result
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FIGURE 3. Blind restoration results of Church.

FIGURE 4. Blind restoration results of Hill.

TABLE 2. The running time of the restoration algorithms.

of Zhong L et al. (Fig.2(b)) has the largest translation (the
width of pillars) among these restoration results. In addition,
from the enlarged green rectangle, there are some ringing
artifacts around letter ‘‘S’’ in Fig.2(b) and Fig.2(d), but the
colored lights in Fig.2(b) exhibit clearer. Even in Fig.2(c),
the letter ‘‘S’’ is distorted and the colored lights are still
blurry. It is obvious that our result (Fig.2(e)) exhibits sharper
image details (e.g., the colored lights) and fewer artifacts
(e.g., the ringing artifacts around the letter ‘‘S’’).

The restoration results of the other examples are all shown
in Fig.3∼Fig.5, including Church, Hill and Lyndsey. These
images are obtained from the classical image database [28].
In particular, the images are blurred by unknown and differ-
ent blur kernels, which is challenging for blind restoration.
However, it is found that our results exhibit sharper details
and fewer ringing artifacts compared with the other methods.

Finally, two more challenging blurry images are respec-
tively displayed in Fig.6 and Fig.7. Fig.6 exhibits the restora-
tion images on a Text image. Our method achieves clearer
letters and fewer ringing artifacts than the other blind

restoration methods. What is more, the poor result of
Zhou L et al. (Fig.6(c)) shows that the algorithm does not
converge to optimal solution. Fig.7 exhibits the restoration
results on an ultrasonic logging image. It is obvious that our
method achieves more details with clearer fractures.

C. THE RUNNING TIME AND CONVERGENCE ANALYSIS
The proposed method is optimized by semi-quadratic regu-
larization and gradient descent method, and thus the method
is time-consuming. Actually improving the image quality as
well as reducing the running time is a challenge problem for
blind restoration. Table 2 shows the running time of process-
ing Fig.2∼Fig.5 by these blind restoration algorithms. These
blind restoration algorithms are implemented on MATLAB.
It is noted that we do not focus on the running time of the
algorithm. Actually, the code can be further optimized by
working with C++ instead of MATLAB or using parallel
algorithms.

In addition, the prior information is introduced into the
fraction-order total variation model for blind restoration and
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FIGURE 5. Blind restoration results of Lyndsey.

FIGURE 6. Blind restoration results of text image.

FIGURE 7. Blind restoration results of ultrasonic logging image.

FIGURE 8. Ground truth data: 4 images and 8 blur kernels, resulting in 32 test images.
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FIGURE 9. The kernel similarity for comparing convergence of the blind restoration methods.

thus the proposed method converges well. We quantitatively
evaluate convergence by the kernel similarity. The kernel
similarity S(h, k) is proposed in [29] and shown as

S(h, k) = max
γ

∑
τ h(τ ) · k(τ + γ )
||h||2 · ||k||2

(26)

where h is the known blur kernel, k is the estimated blur ker-
nel, τ is element coordinates, γ is the possible shift between
the two kernels. All images are achieved from the dataset of
Levin in [30] and [31], including 32 blurry images generated
by 4 images and 8 blur kernels. Fig.8 illustrates that the
proposed method convergences well.

V. DISCUSSION AND CONCLUSION
A new image blind restoration method has been proposed
to sharpen the edges and reduce ringing artifacts. In this
paper, we firstly propose a blind restoration model based
on fraction-order TV. Then, our algorithm introduces self-
similarity as prior information to improve the restoration
effect and convergence property. Application of the algorithm
to test images resulted in restored images with reduced arti-
facts, improved edge sharpness, and improved translation.
Our proposed method outperforms existing methods in terms
of both visual quality and objective evaluation

The limitation of this work is that the parameters are
determined experimentally by different test. Actually, these
parameters rely on the image features, including blur, noise
and so on. In addition, the blur in our paper are all spa-
tially invariant blur. Some spatially variant blurs can be
transformed into the spatially invariant blur by nonlinear

transformation. They will be discussed and studied in the
future work.
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