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Summary

This work deals with the development and evaluation of algorithms that extract sequences of
single neuron action potentials from extracellular recordings of superimposed neural activity -
a task commonly referred to as spike sorting. Large (> 103 electrodes) and dense (subcellular
spatial sampling) CMOS-based micro-electrode-arrays allow to record from hundreds of neurons
simultaneously. State of the art algorithms for up to a few hundred sensors are not directly
applicable to this type of data. Promising modern spike sorting algorithms that seek the statis-
tically optimal solution or focus on real-time capabilities need to be initialized with a preceding
sorting. Therefore, this work focused on unsupervised solutions, in order to learn the number of
neurons and their spike trains with proper resolution of both temporally and spatiotemporally
overlapping activity from the extracellular data alone.
Chapter (1) informs about the nature of the data, a model based view and how this relates to
spike sorting in order to understand the design decisions of this thesis. The main materials and
methods chapter (2) bundles the infrastructural work that is independent of but mandatory for
the development and evaluation of any spike sorting method.
The main problem was split in two parts. Chapter (3) assesses the problem of analyzing data
from thousands of densely integrated channels in a divide-and-conquer fashion. Making use of
the spatial information of dense 2D arrays, regions of interest (ROIs) with boundaries adapted to
the electrical image of single or multiple neurons were automatically constructed. All ROIs could
then be processed in parallel. Within each region of interest the maximum number of neurons
could be estimated from the local data matrix alone. An independent component analysis (ICA)
based sorting was used to identify units within ROIs. This stage can be replaced by another
suitable spike sorting algorithm to solve the local problem. Redundantly identified units across
different ROIs were automatically fused into a global solution. The framework was evaluated on
both real as well as simulated recordings with ground truth. For the latter it was shown that a
major fraction of units could be extracted without any error. The high-dimensional data can be
visualized after automatic sorting for convenient verification. Means of rapidly separating well
from poorly isolated neurons were proposed and evaluated.
Chapter (4) presents a more sophisticated algorithm that was developed to solve the local prob-
lem of densely arranged sensors. ICA assumes the data to be instantaneously mixed, thereby
reducing spatial redundancy only and ignoring the temporal structure of extracellular data. The
widely accepted generative model describes the intracellular spike trains to be convolved with
their extracellular spatiotemporal kernels. To account for the latter it was assessed thoroughly
whether convolutive ICA (cICA) could increase sorting performance over instantaneous ICA.
The high computational complexity of cICA was dealt with by automatically identifying rel-
evant subspaces that can be unmixed in parallel. Although convolutive ICA is suggested by
the data model, the sorting results were dominated by the post-processing for realistic scenarios
and did not outperform ICA based sorting. Potential alternatives are discussed thoroughly and
bounded from above by a supervised sorting.
This work provides a completely unsupervised spike sorting solution that enables the extraction
of a major fraction of neurons with high accuracy and thereby helps to overcome current lim-
itations of analyzing the high-dimensional datasets obtained from simultaneously imaging the
extracellular activity from hundreds of neurons with thousands of electrodes.
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Zusammenfassung

In dieser Arbeit wurden Algorithmen entwickelt und evaluiert, welche in der Lage sind, aus extra-
zellulären Ableitungen überlagerter, neuronaler Aktivität die Zeitpunkte von Aktionspotentialen
individuellen Nervenzellen zuzuordnen - ein Problem, welches unter dem Namen Spike Sorting
bekannt ist. Die räumlich dichte, planare Anordnung (subzelluläre Abtastrate) von sehr vielen
Sensoren (> 103) zu CMOS-basierten Mikro-Elektroden-Arrays ermöglicht die simultane Abbil-
dung der Aktivität von Hunderten von Nervenzellen. Aktuelle Algorithmen für ein paar Hundert
Sensoren können nicht direkt auf diese Art von Daten angewandt werden. Viel versprechende,
moderne Spike Sorting Algorithmen, welche die statistisch optimale Lösung approximieren oder
auf den Echtzeit Einsatz ausgelegt sind, müssen mit einem vorangehenden Sorting initialisiert
werden. Deshalb konzentriert sich diese Arbeit auf unüberwachte Lösungen, welche die Zahl der
aktiven Neurone und die zeitliche Abfolge ihrer Aktionspotentiale aus den extrazellulären Daten
lernen, wobei zeitlich und raumzeitlich überlagerte Aktivität direkt aufgelöst werden soll.
Kapitel (1) führt die Charakteristik der Daten sowie ihre Modellierung im Hinblick auf das Spike
Sorting Problem ein, um die Ausrichtung dieser Arbeit zu motivieren. Der Main Material und
Methodenteil (Kapitel 2) bündelt die infrastrukturelle Arbeit, welche unabhängig von, aber not-
wendig für die Entwicklung und Evaluierung jedweder Spike Sorting Methode ist.
Das Hauptproblem wurde zweigeteilt. Kapitel (3) ist darauf ausgerichtet, Daten von Tausenden
subzellulär angeordneten Kanälen in einer divide-and-conquer Strategie zu analysieren. Unter
Ausnützung der räumlichen Information von dichten 2D Arrays, wurden automatisch Bereiche
von Interesse (ROIs) identifiziert, deren Umrandungen im Sensorraum das elektrische Abbild
einzelner oder mehrerer Neurone widerspiegeln. Alle ROIs konnten parallel prozessiert werden.
Innerhalb jeder ROI konnte die maximal zu erwartende Zellanzahl aus der lokalen Datenmatrix
ermittelt werden. Mittels eines Unabhängigkeitsanalyse (ICA) basierten Sortierverfahrens wur-
den vermeintliche Zellen innerhalb von ROIs ermittelt. Diese Stufe kann durch andere, geeignete
Spike Sorting Algorithmen ersetzt werden, um das lokale Problem zu lösen. Über unterschiedli-
che ROIs hinweg redundant identifizierte Zellen wurden automatisch zu einem globalen Ergebnis
zusammengeführt. Der gesamte Framework wurde sowohl mit realen als auch simulierten Da-
ten - für welche die tatsächlichen Aktionspotentialsequenzen bekannt sind - evaluiert. Für das
letztere Szenario wurde gezeigt, dass ein Großteil der Zellen fehlerfrei extrahiert werden konn-
te. Die hochdimensionalen Daten können nach einer automatischen Sortierung visualisiert und
komfortabel verifiziert werden. Es wurden Mittel vorgeschlagen und evaluiert, um mit minimaler
manueller Intervention gute von weniger gut sortierten Zellen separieren zu können.
In Kapitel (4) wird ein fortgeschrittener Algorithmus präsentiert, welcher entwickelt wurde, um
das lokale Sortierproblem für dicht angeordnete Sensoren zu lösen. ICA geht davon aus, dass
die Daten instantan gemischt wurden, wodurch lediglich die räumliche Redundanz reduziert, die
zeitliche Struktur der Extrazellulär-Daten aber ignoriert wird. Das allgemein anerkannte, gene-
rative Modell beschreibt die Daten als Faltung der intrazellulären Aktionspotentialfolgen mit
ihren extrazellulären raumzeitlichen Kernen. Um letzterem Aspekt Rechnung zu tragen, wurde
gründlich untersucht, ob konvolutive ICA (cICA) die Performanz der Sortierung im Vergleich
zu dem Verfahren, das auf instantaner ICA basiert, steigern könnte. Der hohen Berechnungs-
komplexität von cICA wegen, wurden automatisch relevante Unterräume identifiziert, welche
parallel entmischt werden können. Obwohl das Datenmodell die Anwendung von konvolutiver
ICA nahelegt, wurden die Sortierergebnisse für realistische Szenarien von der unvermeidlichen
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Nachprozessierung dominiert und konnten ICA basiertes Sortieren nicht übertreffen. Mögliche
Alternativen werden gründlich diskutiert und ihre maximal erreichbare Performanz durch einen
überwachten Sortieralgorithmus vorhergesagt.
Diese Arbeit stellt eine vollständig unüberwachte Spike Sorting Lösung zur Verfügung, welche
es ermöglicht, einen Großteil der Zellen mit hoher Genauigkeit zu extrahieren und überwindet
damit derzeitige Einschränkungen bei der Analyse der hochdimensionalen Daten, welche bei der
simultanen Abbildung extrazellulärer Aktivität von Hunderten von Nervenzellen mit Tausenden
von Elektroden anfallen.
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Notation

In mathematical expressions, normal lower case is used for scalar values, bold lower case for
vectors and bold upper case for matrices.

χk(|xs|) Chi distribution over |xs| with k degrees of freedom
N number of electrodes
N (µ, σ) Normal distribution with mean µ and standard deviation σ
M number of sources / neurons / units
M̂max estimate of maximal number of units
T number of samples
Vm transmembrane potential or voltage
ϕ extracellular potential with respect to ground
xt (N x 1) data vector at time t
xi (1 x T) time series of electrode i with T samples
st (M x 1) source vector at time t
εt (N x 1) noise vector at time t
X (N x T) data matrix
S (M x T) source matrix
A instantaneous mixing matrix
Cx instantaneous data covariance matrix
Cn instantaneous noise covariance matrix
|xs| length of data vector of several space-time pixels (stixels)
|x0| threshold describing a hyperspherical noise surface
ts [ms] maximum shift of spike trains with respect to each other
tj [ms] maximum jitter between two spikes to be associated with each other
to [ms] maximum distance for two spikes to be regarded as overlapping
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Abbreviations

AP action potential
BIC Bayes information criterion
CICAAR convolutive ICA with an autoregressive inverse model
CMOS complementary metal-oxide-semiconductor
CoM center of mass
GUI graphical user interface
HD-MEA high-density micro-electrode array
HMM hidden markov model
(c)IC(A) (convolutive) independent component (analysis)
ISI interspike interval
KLD Kullback-Leibler divergence
MAD median absolute deviation
PC(A) principal component (analysis)
RGC retinal ganglion cell
ROI region of interest
(R)STD (relative) standard deviation
SNR signal-to-noise ratio
STA spike triggered average
SVM support vector machine
TCE threshold crossing event
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1. Main Introduction

1.1. Motivation

Sequences of action potentials, i.e. spike trains, from single and multiple neurons are an im-
portant substrate of information processing in neural systems (Schuetze, 1983; Bialek et al.,
1991; Bethge, 2003). Competing theories about functional aspects ultimately have to be linked
to physiological data (Macke et al., 2011). Provided that neuronal responses are stable with
respect to controllable input over time, stitching together sequential recordings of single neurons
to population activity can provide illuminating insights (e.g. Mante et al. (2013)). In contrast,
if responses are variable with respect to the input, e.g. because they are strongly modulated by
internal network dynamics (Buzsaki et al., 1992) or interactions are subject to synaptic plas-
ticity, simultaneous recordings from a statistically significant sample of neurons are mandatory
for understanding the encoding on a population level. Advances in neural recording techniques
let the number of simultaneously recordable neurons double approximately every 7.4 years since
the 1950’s, resembling Moore’s1 law (Stevenson and Kording, 2011). The technological ad-
vancement generates larger and larger datasets capturing more and more interactions between
neurons. This urges the development of more advanced data analysis methods that allow to
gather meaningful insights from this high-dimensional data documenting experiments with in-
creasing task complexity in order to advance our understanding of neural information processing
(Averbeck et al., 2006; Ganguli and Sompolinsky, 2012) which might ultimately help to build
better brain-computer interfaces such as neural prostheses (Chapin, 2004). Importantly, prior
to any spike train analysis (Grün and Rotter, 2010; Brown et al., 2004), spikes have to be sorted,
i.e. assigned to individual units. This is a challenging task with a long history (Hubel, 1957)
and a vast amount of literature is dedicated to it. Although multiple electrodes have become
a standard tool for systems neuroscience research, spike sorting is time consuming and error
prone (Pillow et al., 2013) and essentially still considered more art than science. Importantly,
the accuracy of spike sorting crucially influences scientific conclusions drawn from spike train
analyses (Bar-Gad et al., 2001; Pazienti and Grün, 2006; Ventura, 2009; Ventura and Gerkin,
2012; Shao et al., 2013) and has impact on the performance of brain-computer interfaces with
contradicting opinions about the influence of different types of errors (Goodman and Johnson,
2008; Todorova et al., 2014). Different numbers of electrodes and their spatial arrangement
require different spike sorting algorithms and especially the scaling up of algorithms to retrieve
reliable spike trains from thousands of neurons is challenging and currently constitutes a ma-
jor bottleneck in the analysis pipeline (Einevoll et al., 2011). In particular, there is a lack of
evaluated algorithms for high-density micro-electrode arrays comprising thousands of channels
that can be read-out quasi-simultaneously (Imfeld et al., 2008; Lambacher et al., 2011). The
determination of the number of sortable neurons together with their extracellular multi-channel
signatures (templates) without accumulation of prior knowledge from the data (i.e. unsuper-
vised) while accounting for near synchronous activity with minimal manual intervention is of
high priority. This would allow to use the templates as input to supervised algorithms that are
easier to scale up than complete solutions for fewer electrodes because spatial information is
already available, manual intervention is easier to avoid and real-time algorithms for thousands

1Describing the exponential growth of the number of transistors per chip in computing hardware
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1. Main Introduction

of channels finally may become conceivable.

1.2. Electrical aspects of the neural code: Spikes and LFPs

The idea that electricity plays a key role for living tissue goes back to Luigi Galvani in the 18th
century. Neurons are anatomically and functionally elementary units of nervous systems. Infor-
mation in neural systems is mediated by biochemical as well as electrical processes. Communi-
cation between neurons is possible via either biochemical or electrical synapses (gap junctions).
At the single neuron level, dendritic transmembrane currents caused by presynaptic activity
propagate to the soma, where sharp, transient signals, i.e. action potentials, are elicited which
then travel down the axon to its terminals and forward the information to postsynaptic neurons.

The action potential (AP) or spike. After the work of Galvani, it took about hundred
years until Julius Bernstein and collaborators were able to record the first time course of an
action potential (Schuetze, 1983). The quantitative mechanism that gives rise to the nonlin-
ear nature of APs was discovered by Hodgkin and Huxley (1952): protein complexes that are
embedded in the lipid bilayer that forms the cell membrane constitute channels that exhibit
a voltage and ion-type dependent permeability. Ion-pumps build up concentration gradients
across membranes, resulting in an excess of Na+ outside and K+ inside the neuron. In equilib-
rium, this results in the resting membrane potential which is below zero inside the cell, measured
with respect to the extracellular space. At resting membrane potential, ion channels are in a
metastable, closed configuration. Synaptic transmembrane currents may increase the membrane
potential (depolarize the neuron) and if above threshold, i.e. due to contributions from many
synapses, action potentials are triggered at regions of high channel density (typically close to the
axon hillock). Driven by diffusion and electrical fields, the channel kinematics and the different
metastable ion channel states - open, closed and inactivated - determine the time course of an
action potential which is mainly dominated by fast sodium influx, followed by slower potassium
outflux. Depending on the neuron type and channel composition, an action potential lasts typi-
cally for about 0.5−3ms, including the hyperpolarization phase, where the potential drops below
the resting state level before the same is recovered. The absolute voltage deflections across the
membrane span roughly 100mV . For a short time after the occurrence of an AP, the absolute
refractory period, many sodium channels remain inactivated and some potassium channels are
still open, rendering the elicitation of a second AP impossible. The absolute is followed by a
relative refractory period, during which APs can be elicited again. However, sequences of APs
with short interspike intervals (ISIs), so called bursts or complex spikes, often exhibit smaller
amplitudes or altered waveforms because the reservoir of sodium channels has not fully recovered
to the closed state and a fraction of the potassium channels might still be open. Additionally,
some neurons express long time-constant, voltage-sensitive calcium channels which may trigger
bursts (Sahani, 1999) and alter spikes with short ISIs.
Summing up, action potentials are active responses to depolarizing input and their amplitude
is independent of the stimulus strength. Only the number and timing of events fired may be
modulated. APs are therefore all-or-nothing events and in that sense considered binary. Inves-
tigations about the neural code focus therefore on the rate and/or the timing of APs and are
based on spike trains.

The local field potential (LFP) refers to the local (low frequency part of the) electrical
potential in extracellular space surrounding neurons. For a recent review on the source, nature
and composition of extracellular fields with a focus on LFPs see Buzsáki et al. (2012). LFPs
constitute a graded signal and may be considered the mean input to local cell groups (Buzsáki,
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1.3. Large-scale, high-density micro-electrode array recordings

2004). Together with action potentials which constitute the output response of a neuron to up
to thousands of other neurons it might be connected to, the combined analysis of LFPs and spike
trains constitutes a powerful framework for studying input-output relations of neuronal networks.

Extracellular recordings: signal composition. Placing electrodes into extracellular space
allows to sense the electric potential in the vicinity of the electrode. Generally, it is dominated
by local spiking activity and LFPs. Extracellular potential deflections that are caused by action
potentials, i.e. spikes, are measured with respect to ground and roughly two orders of magnitude
smaller than APs described in terms of the transmembrane potential. Compared to intracel-
lular measurements, currents have opposite polarity and extracellular voltage traces are often
dominated by a negative peak, associated with sodium influx into the neuron. Action poten-
tials are rapidly attenuated in space and thereby have little contributions to the LFP (Destexhe
and Bedard, 2013; Buzsáki, 2004). This is actually the reason why spike trains from individual
neurons (single unit activity) may be obtained from extracellular recordings at all, making it
such a powerful non-invasive technique for neuroscience. The relative contributions of LFP and
spiking activity is highly dependent on experimental conditions such as in-vitro vs. in-vivo or
the brain area recorded from. Generally, the high-frequency part that contains spiking activity
is processed separately from the LFP signal which is removed by high-pass filtering. The con-
tribution of spiking activity to an electrode depends on the electrode-neuron distance as well
as the electrical properties of the tissue-electrode complex (compare sections 1.3 and 1.7) and
influences the unit isolation quality that spike sorting algorithms (sec. 1.6) can achieve.

1.3. Large-scale, high-density micro-electrode array recordings

The recording of spikes, i.e. extracellular signatures of action potentials, has a long history
(Adrian and Moruzzi, 1939) and receives attention as an important future methodology (Einevoll
et al., 2011; Marblestone et al., 2013) for neuroscientific research. After the first extracellular
recordings with tungsten micro-electrodes (diameter in the micrometer regime) Hubel (1957),
the number of electrodes routinely used in neuroscience has increased from two (’stereotrodes’
McNaughton et al. (1983)) to four (’tetrodes’ Gray et al. (1995)) to up to hundreds of sensor
spots (Csicsvari, 2003; Buzsáki, 2004; Litke et al., 2004; Blanche et al., 2005; Marre et al.,
2012). For reviews about recent developments in electrophysiological recording technology see
e.g. Kipke et al. (2008) or Spira and Hai (2013). Nowadays, CMOS2 technology even allows
to record neurons with (sub)cellular spatial and high temporal resolution with thousands of
electrodes (Imfeld et al., 2008; Frey et al., 2009; Lambacher et al., 2011).
The data analysis methods developed in this work are applicable to recordings from large-
scale, high-density micro-electrode arrays (HD-MEAs). Micro-electrode arrays (MEAs)3 are
devices that provide multiple electrodes with diameters in the micrometer range to probe the
extracellular electrical potential in neural tissue, usually in-vitro. The notion large-scale and
high-density are not properly defined and often used in an inflationary manner. Still they seem
to be appropriate for the devices targeted in this work: large-scale refers here to thousands of
electrodes and high-density to the sensor density at least approaching but rather outweighing the
neuron density. Importantly, signals caused by the same neuron should be recorded by several
nearby electrodes.
The sensor array used exemplarily used for this work is shown in figure (1.1, A). For technical
details see section (2.2). It is suitable for in-vitro recordings from brain slices (Hutzler et al.,
2006), cultured neurons (Lambacher et al., 2011) or retinal ganglion cells (Menzler and Zeck,

2complementary metal-oxide-semiconductor
3The less precise term multi-electrode array is often used instead.
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1. Main Introduction

2011; Zeck et al., 2011). The type of tissue interfaced to the array influences the electrical
and geometrical properties of the extracellular space and thereby the spike waveforms recorded
(compare examples shown in fig. 1.1 B and C, right). Without loss of generality, this work focuses
on analyzing retinal recordings. The array implements a slightly different recording principle
compared to conventional electrode recordings: extracellular potentials above an insulating oxide
- coating the array surface - are mediated to the gate of a transistor, modulating its source-drain
current (Fromherz et al., 1991). However, as each sensor effectively measures the extracellular
potential and different tissue-recording system combinations will anyway exhibit different filter
properties, multi-transistor arrays (MTAs) provide the same effective functionality as micro-
electrode arrays (MEAs) in light of the data analysis methods developed here. To highlight the
principle applicability of this work to other recording devices with high sensor-density, HD-MEA
will be used as an umbrella term.
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1.3. Large-scale, high-density micro-electrode array recordings

(A) Large-scale, high-density micro-electrode arrays
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(B) Recordings from cultured neurons

(C) Recordings from retinal ganglion cells
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Figure 1.1.: Extracellular recordings from large-scale, high-density micro-electrode
arrays. (A) Large scale, HD-MEA from Lambacher et al. (2011). (A,
left) Sensor pixel schematic. Effectively, each 6.6µm × 6.6µm sensor acts as an
electrode with amplifier. (A, middle) Sensor array with peripheral electronics em-
bedded into a CMOS chip. The chip provides 128 × 128 (= 16384) sensor pixels
on an area of ≈ 1mm2. Multiplexing logic allows for selection and read out on
demand. The full array can be sampled at 6kHz. (A, right) Scanning electron
micrograph of the sensor array. Pixels are spaced 7.4µm apart. (B & C) Record-
ings from different neural tissue are performed with respect to the potential
of the surrounding electrolyte. (B, left) Configuration for cultured neurons. (B,
middle) Scanning electron micrograph, scale bar 33.3µm. (B, right) Typical ex-
tracellular waveforms, sampled at 24kHz. The predominant waveform is III. (C,
left) Schematics for recording configuration from retinal ganglion cells. The intact
in-vitro retinal connectivity allows for light stimulation of the photoreceptor layer.
(C, middle) Color coded extracellular voltage, recorded quasi-simultaneously. (C,
right) Nine sensor traces centered at the neuron shown in the middle panel. The
red arrow indicates the timing of the voltage map. Overlapping electrical footprints
of nearby neurons require the assignment of extracellular action potentials to neu-
rons prior to further analysis steps. Part of the material was taken from Lambacher
et al. (2011).
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1. Main Introduction

1.4. Somatic vs. axonal spikes

After initiation of an action potential at the soma close to the axon hillock, the AP is actively
propagated along the axon. Axonal signals (fig. 1.2 & 1.3) can be detected by HD-MEAs (Zeck
et al., 2011; Bakkum et al., 2013; Stutzki et al., 2014). With respect to somatic signals they
exhibit qualitative as well as quantitative differences: While the former ones are predominantly
negative (fig. 1.2, A) in extracellular space, the latter ones are predominantly biphasic (fig. 1.2,
B) or even triphasic as was shown by modeling (Leibig, 2010) the extracellular axonal signal in
ohmic tissue as sensed by a HD-MEA.
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Figure 1.2.: Qualitative and quantitative differences between raw somatic and axonal
signals from rabbit retina. (A) Somatic signal of an RGC action potential. Somatic
signals are dominated by a single negative peak and thereby roughly monophasic.
(B) Axonal signal from the same action potential as in (A), recorded by a sensor
along the axon. Axonal signals are predominantly biphasic in extracellular space.
(C) Amplitude distribution of somatic vs. axonal signals taken from Leibig (2010).
Axonal signals are approximately one order of magnitude smaller compared to so-
matic signals. Identification of raw somatic and axonal signals was performed as
described in Leibig (2010).

In principle, the geometric arrangement of an axon were a highly informative feature about the
neuron identity in the context of spike sorting (sec. 1.6). Unfortunately however, amplitudes of
axonal signals are approximately an order of magnitude smaller than those of somatic signals (1.2,
C). Therefore, e.g. in recordings from rabbit RGCs, raw axonal signals may be detected more or
less frequently (Zeck et al., 2011), whereas in recordings from rat RGCs (Stutzki et al., 2014) they
are mostly buried in the noise due to smaller axon diameters. Furthermore, their detectability
crucially depends on the tissue-sensor contact and the distribution over many sensors would
need a clever dimensionality reduction to restrain computational complexity. Taken together,
these problems render the dedicated use of axonal signals impractical for spike sorting. However,
once spike trains from individual neurons are known, the spike-triggered-average activity when
calculated for all sensor spots (i.e. the prototypical template waveforms for the neuron on
all electrodes), may reveal the propagation of the average axonal AP. The axonal conduction
velocity (fig. 1.3) constitutes a prominent “hash” about the physiological state of a neuron and
was used in a separate project to assess the regenerative potential of inflammatory stimulation
when applied to prevent neurodegenerative processes induced by optic nerve injury (Stutzki
et al., 2014).
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1.5. Temporally vs. spatiotemporally overlapping spikes

Figure 1.3.: Axonal conduction velocity constitutes a proxy about the physiological
state of a neuron and can be used for neurodegenerative as well as re-
generative studies. Axonal conduction velocities of rat retinal ganglion cells were
found to decrease in response to optic nerve injury, while being unaffected under
inflammatory stimulation following optic nerve injury. Taken from Stutzki et al.
(2014).

1.5. Temporally vs. spatiotemporally overlapping spikes

Retrieving spike trains of individual neurons from extracellular recordings (sec. 1.6), typically
employs the prototypical signals of a neuron to distinguish it from others. This is severely com-
plicated if spike waveforms do not appear in isolation, but are superimposed onto those from
other, nearby neurons. This happens whenever neurons fire near synchronously, i.e. within a
temporal distance of less than their extracellular waveform duration. Depending on extracellu-
lar signal variations of the neurons participating in such an overlap and the temporal difference
between the spike times, this may produce arbitrarily distorted waveforms that do not at all
resemble those of any single neuron. How to deal with this situation in spike sorting will be
introduced in section (1.6.2).
In space, somatic potentials are larger than the morphological extension of the soma but were
found to decay exponentially (Segev et al., 2004). Quasi-simultaneously firing neurons may
therefore exhibit non-overlapping waveforms in space if recorded by large enough electrode ar-
rays: this scenario is referred to as temporal overlaps, as opposed to spatiotemporal overlaps for
which spikes from multiple neurons overlap both in space and in time (fig. 1.4).
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Figure 1.4.: Temporal vs. spatiotemporal overlaps. Sequence of consecutive voltage frames
from a large HD-MEA recording of light stimulated retinal activity. Within frames,
synchronized but spatially separated somatic action potentials are visible. The
red rectangles in the first two frames indicate a putative spatiotemporal overlap of
nearby neurons.

As the number of possible overlaps scales exponentially with the number of recorded neurons,
overlaps become prevalent in recordings from large-scale electrode arrays. Conventional spike
sorting algorithms are often formulated for the whole set of electrodes and thereby lump together
temporal overlaps rendering them effectively to be spatiotemporal overlaps from the perspective
of the algorithm. Accounting efficiently for the two types of overlapping activity is one of the
major motivations for chapter (3). Taking into account spatial information is as well important
for evaluating the performance (sec. 2.6) of sorted spike trains with respect to true spike trains in
order not to confound neurons with each other that exhibit similar spike trains but are spatially
far apart.

1.6. Neural spike identification: Spike sorting

The identification of neural spikes, i.e. the recovery of single unit spike trains from extracel-
lular electrophysiological recordings is commonly called spike sorting. This problem has been
addressed for a long time (Abeles and Goldstein, 1977; Schmidt, 1984; Lewicki, 1998; Quiroga,
2007), but nevertheless, there is no standard solution available and the advent of large and dense
sensor arrays even poses new challenges (Einevoll et al., 2011).
Whereas sections (1.7.2) and (1.7.3) provide a mathematical formulation of the problem that
allow to select appropriate methods from the statistical signal processing and machine learning
literature, here a more domain specific view on the spike sorting task together with associated
problems is given. The problem is introduced by providing an overview of the typical process
(sec. 1.6.1) deployed for smaller electrode systems. Requirements and challenges are introduced
(sec. 1.6.2) and the state-of-the-art achieved by algorithms that target multiple electrodes is
discussed (sec. 1.6.3) in order to identify the open problems to be addressed in this work for
scaling up algorithms to thousands of electrodes (sec. 1.8).

1.6.1. Overview

Because the lipid bilayer forming the membrane of neurons constitutes a high-quality insulator,
action potentials measured intracellularly are not distorted by those from other neurons. In
contrast, extracellularly measured action potentials may be caused by any nearby neuron. Figure
(1.5) illustrates the process of spike sorting as it is commonly applied to smaller electrode systems
such as tetrodes.
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1.6. Neural spike identification: Spike sorting

Figure 1.5.: Overview of widely-used spike sorting process. (a) Electrodes record extra-
cellular potential changes caused by action potentials from three exemplary neurons.
(b) Raw data constitutes a superposition of low-frequency fluctuations (LFP) and
spiking activity. (c) High-pass (or bandpass) filtering removes low frequency contri-
butions (and noise above the frequency range of spikes). (d) Spike detection isolates
epochs around spike times. (e) Multichannel spikes get aligned on e.g. their peak in
time for feature extraction and waveform comparison. (f) High-dimensional multi-
channel spikes are represented as points in lower dimensional feature space. (g)
Clustering clouds of points in feature space assigns each spike to a putative neuron.
Often the term unit is used instead of neuron to account for uncertainties. (h)
Templates can be calculated by averaging the multichannel activity across all spikes
associated with a particular neuron. (i) Spike times of all the neurons classified in
(g) constitute sorted (reconstructed) spike trains that should correspond to the true
somatic potentials (a, bottom). In a real extracellular recording, the true somatic
potentials are unknown and the reconstruction of spike trains might be erroneous.
Evaluation of spike sorting algorithms against benchmark recordings for which the
true spike trains are known is mandatory. Taken from (Einevoll et al., 2011).

Spike sorting literature is quite extensive and has increased in complexity over time. Most of it
focuses on different approaches and technical details of the standard process highlighted in figure
(1.5). While early work discriminated spikes merely based on their amplitude (Hubel, 1957),
followed by spike width (Meister et al., 1994), projection into more abstract feature spaces such
as those obtained from principal component analysis (PCA) (Abeles and Goldstein, 1977) or
wavelet decomposition (Letelier and Weber, 2000) became popular. Similarly, many different
clustering methods (Sahani, 1999; Pouzat et al., 2002; Quiroga et al., 2004; Tolias et al., 2007)
have been proposed, while some of them perform probabilistic mixture modeling. A summary
of the main problems and approaches can be found in Lewicki (1998). For a partial overview on
algorithms proposed within the last decade see (Bestel et al., 2012).
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1.6.2. Requirements and challenges

Both for single as well as for multi-electrode recording devices, the following typical problems
have to be solved. Unfortunately, the vast amount of literature typically addresses just a subset
of the following problems. However, several of the problems are not independent from each
other, making it particularly hard to build a completely automatic and reliable spike sorter.

Spike detection and alignment

Spike detection is usually performed by thresholding the bandpass-filtered time series with a
multiple of the noise standard deviation on each channel separately (Quiroga, 2007). For HD-
MEA data with relatively high-noise levels, single channel spike detection is not appropriate
(Lambacher et al., 2011), which will be treated in more detail in section (3.3.2). Spike alignment
for waveform comparisons is not uniquely defined and may lead to spike sorting errors (Pouzat
et al., 2002). The conventions used in this work are described in (sec. 2.3).

Number of neurons

The estimated number of sortable neurons, i.e. single units, in a given dataset always has to be
and is at least implicitly determined by the number of reconstructed spike trains. Very often, the
number of neurons is assumed to be reflected by the number of clusters that optimally explain
the data. Due to overlapping and non-stationary waveforms however, the number of clusters
does not necessarily correspond to the number of neurons and more information, e.g. about
spike timing has to be taken into account. It was shown that current spike sorting algorithms
saturate at recovering approximately 50% of the present neurons (Pedreira et al., 2012). For
a proposal about how to retrieve a rough estimate for the number of neurons from the sensor
correlations of HD-MEA data see (sec. 3.3.4).

Overlapping waveforms

Spikes that are comprised of the contributions from multiple neurons may be severely distorted
from their single unit waveforms: Unknown, but nearby spike times from an unknown number
and shape of individual action potentials provide a rich repertoire of composed waveforms that
are hard to disentangle into their constituents. Importantly, inaccurate spike sorting, especially
the failure of correctly identifying overlaps causes artificial correlations and biased statistical
estimators, corrupting conclusions drawn from the analysis of sorted spike trains (Bar-Gad
et al., 2001; Pazienti and Grün, 2006; Ventura and Gerkin, 2012). Methods targeting the overlap
problem have been proposed (Atiya, 1992; Lewicki, 1994; Zhang et al., 2004; Segev et al., 2004;
Prentice et al., 2011; Marre et al., 2012; Pillow et al., 2013). However, all of them search for the
combination of spikes relying on previously identified templates. Methods differ in terms of the
technical details of the fitting procedure and whether they account for different amplitudes and
temporal offsets of sometimes a restricted number of neurons. All traditional methods (fig. 1.5)
that assign cut-out waveforms to only one neuron are by construction unable to resolve overlaps.
For an illustrative explanation see figure (1.6). This issue is highlighted especially in the work
of Pillow et al. (2013).
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Figure 1.6.: Clustering algorithms fail to resolve overlaps. (A) Standard deviations of
sensor traces from a simulated recording of two spike trains for which 20% of the
spikes occur with a temporal distance of max. 0.4ms from a spike of the respectively
other neuron. (B) Simulated time series at template center-of-mass positions. (C)
True binary spike trains. (D) Matrix of similarity values (cij =

∑
k xk,ixk,j/|xi||xj |,

k runs over space-time coordinates of aligned multichannel spikes i and j) as used
by Lambacher et al. (2011): Spikes belonging to quadratic regions with high cij
values are interpreted as single neurons. From the 200 hundred true spikes only
180 are detected because the 20 overlaps are detected as single spikes. Clustering
algorithms assign each spike to a single neuron. The overlaps (spike identities 80 to
100) would therefore either be assigned to a spurious neuron or to only one of the
actual neurons.

The algorithms developed for this thesis are able to resolve spatiotemporal overlaps which is
shown for this toy example (fig. 1.6) in figures (3.4) and (4.7).

Non-stationarities

Non-stationarity shall be defined as (recording) time dependent spatiotemporal neuron-to-sensor
paths aij,τ in eq. (1.5), i.e. aij,τ → aij,τ (t). Non-stationarity may occur on longer time scales
(minutes and beyond, mostly in-vivo) (Tolias et al., 2007; Dickey et al., 2009; Bar-Hillel et al.,
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2006; Shalchyan and Farina, 2014) due to e.g. electrode movement and on shorter time scales
(up to tens of ms) because of ISI dependent waveform changes (sec. 1.2), complicating the
decision whether differing spikes shall be attributed to a single or multiple units. Ignoring non-
stationary waveforms that may occur due to physiological changes in spike sorting may introduce
non-random errors, leading to spurious temporal relationships between putative neurons (Quirk
and Wilson, 1999).
HD-MEAs generate large scale datasets, limiting the recording time and are typically retrieved
from in-vitro configurations, reducing the influence of long-term instabilities. Hence, for this
work only waveform changes on short time scales were considered important. For work that
explicitly address ISI dependent or short-term waveform variation see e.g. (Fee et al., 1996b,a;
Pouzat et al., 2004; Delescluse and Pouzat, 2006; Calabrese and Paninski, 2011).
Whether multi-electrode algorithms account for spike timing dependent waveform variability
depends not only on the exact formulation of the assumed generative model (sec. 1.7.2) but as
well on the efforts undertaken to invert it (sec. 1.7.3). Some approaches explicitly formulate what
sort of spike to spike variability they target. Marre et al. (2012) report that most variability can
be explained by variable spike amplitudes and take that explicitly into account, whereas Pillow
et al. (2013) formulate a Taylor expansion to assess more general deviations from template
waveforms.
This thesis allows for continuous valued source activations in equation (1.6) and tries to estimate
them based on independent component analysis. Waveform variability that may be observed e.g.
within bursts on sensor traces (fig. 1.7, A) cannot be modeled with mere amplitude rescaling,
but is preserved on sources estimated by ICA (fig. 1.7, B). Because source activations will be
associated with individual neurons4, ICA based sorting is capable to deal with non-stationary
neuron-to-sensor paths as long as the variability across different spikes can be absorbed by the
common source activations.
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Figure 1.7.: Source activations retrieved from independent component analysis ab-
sorb waveform variability. Upsampled and peak-aligned waveforms of a bursting
neuron are shown as recorded by a representative sensor of a HD-MEA (A) and as
represented by a source (B) identified with ICA. Same colors in both plots indicate
corresponding waveforms.

4Remaining contributions from other neurons will be accounted for but discarded.
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1.6. Neural spike identification: Spike sorting

Evaluation

In a real world scenario the true spike trains are not known. Means to assess the reliability
of sorted spike trains in the absence of ground truth were developed and reviewed by Hill
et al. (2011). For thorough performance evaluations however, spike sorting algorithms have
to be evaluated against data with ground truth. In principle, evaluation may be based on
simultaneous intra- and extracellular recordings. Unfortunately, simultaneous recordings are
experimentally very challenging and not available for more than a few neurons (typically one
or two). For publicly available datasets from tetrodes with ground truth see for example Harris
et al. (2000). Due to the lack of datasets for large HD-MEAs, benchmark recordings have to
be simulated (Einevoll et al., 2011). The comparison of true and reconstructed spike trains
allows direct assessment of errors (compare sec. 2.6). In principle, forward models (sec. 1.7.1,
Buitenweg et al. (2003); Lindén et al. (2013)) can be used to generate simulated recordings.
However, to mimic real recordings from a specific tissue-array combination as close as possible,
hybrid simulations (described in sec. 2.4) that make use of the recorded transfer functions from
neurons to electrodes are considered easier to adapt to different experimental setups.

Automation

Manual spike sorting is not only time-consuming, but also error prone (Wood et al., 2004;
Harris et al., 2000). On the other hand, models that accurately follow real data are extremely
challenging to come up with and therefore manual intervention is common practice both for
popular open source solutions (Harris et al., 2013) as well as commercial products (Plexon
Inc, 2009). The reduction of manual intervention faces new challenges in case of thousands of
channels and will be particularly addressed in chapter (3).

Real-time

Neuroprosthetic devices or closed-loop experiments that use the information from sorted spike
trains to adapt stimuli, need algorithms that work in real-time. Open issues regarding this
challenge for HD-MEA data were discussed in (Franke et al., 2012). For accurately modeled
data, real-time spike sorting is in principle feasible after an initial sorting that provides the
templates. It remains to be shown for how many channels implementations are feasible in
practice and how algorithms such as (Franke et al., 2010) cope with unidentified templates in
terms of sorting accuracy.

1.6.3. Multi-electrode spike sorting algorithms - state of the art

This section is dedicated to overview the state-of-the-art of spike sorting algorithms for multi-
ple electrodes. For many MEAs, the spike sorting problem is essentially the same as for single
electrodes as electrode distances of 100− 200µm (Pine, 2006) do not allow one neuron to be de-
tected on more than one channel. Only algorithms that were explicitly developed to incorporate
cross-channel signal correlations are considered here. Table (1.1) lists important algorithms of
this type together with the basic idea of the approach, the capability of overlap resolution and
the number of electrodes these methods have been applied to.
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Reference approach overlaps # of sensors
Segev et al. (2004) clustering + template matching

√
30

Prentice et al. (2011) clustering + probabilistic model fitting
√

30
Kadir et al. (2014) masked clustering (KlustaKwik) × 32
Jäckel et al. (2012) instantaneous ICA

√
90

Marre et al. (2012) clustering + greedy matching pursuit
√

252
Imfeld and Maccione (2009) clustering wavelet coefficients × 256
Litke et al. (2004) clustering × 512
Pillow et al. (2013) clustering + probabilistic model fitting

√
512

Lambacher et al. (2011) clustering × 8192

Table 1.1.: Spike sorting algorithms for multiple electrodes.

It is beyond the scope of this work to discuss technical details of the proposed solutions, hence
only issues regarding the applicability to large-scale HD-MEAs will be pointed out.
Those methods that are capable to resolve all types of overlaps (temporal and spatiotemporal,
compare sec. 1.5) typically require two stages, that is, clustering, followed by a fitting procedure
that accounts for the composition of overlaps. The fitting part can be considered supervised,
because it relies on the preceding clustering stage. For this unsupervised first stage, papers either
simply refer to the standard clustering literature (Pillow et al., 2013) or suggest solutions that
are not scalable because they either work on all sensors (Marre et al., 2012) or cluster manually
(Segev et al., 2004; Prentice et al., 2011). The capability to deal with synchronous activity may
be achieved to some extent by clustering if not all channels of the array are lumped together,
but is in that case always restricted to temporal overlaps (Litke et al., 2004; Lambacher et al.,
2011; Kadir et al., 2014). The only single stage approach with overlap resolution is based on ICA
(Jäckel et al., 2012). Importantly, the only algorithm that was applied to thousands of electrodes
(Lambacher et al., 2011), does not resolve spatiotemporal overlaps, involves inconvenient manual
post-processing and scales very poorly with the number of recorded spikes.

1.7. Models for extracellular recordings

The idea of formulating an explicit model that describes the data generation process in the
context of spike sorting (sec. 1.6) goes back to the work of Lewicki (1994) and Sahani (1999). It
would be desirable to incorporate biophysical knowledge into such models that describe extra-
cellular recordings in order to simplify the inversion, i.e. the assignment of underlying spikes to
neurons. How to model extracellular electrophysiological data will briefly be explained in sec.
(1.7.1). However, full forward compartmental or equivalent circuit models do not generalize well
for different tissue-electrode configurations. Less detailed models (sec. 1.7.2) have to be used
for spike sorting. Methods from the field of machine learning and statistical signal processing
can then be used for neural spike identification by estimating the parameters (sec. 1.7.3) of such
models from data.

1.7.1. Forward models

Forward models allow to describe the potential deflections caused by action potentials in extra-
cellular space. According to Hodgkin and Huxley (1952), the current density across a membrane
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(per unit area) is described by capacitive, ionic and leakage components:

j = jcap + jion + jl = cm
∂Vm
∂t

+
∑
i

gi · (Vm − V0,i) + gl · (Vm − V0,l) (1.1)

with gi the specific conductance of ion sort i (sodium and potassium) and the leakage conductance
gl. Ions contribute to the transmembrane current if their Nernst potential V0,i, determined by
the concentration gradient across the membrane, differs from the transmembrane potential Vm
and corresponding channels are conductive (gi 6= 0). V0,l is defined as the potential at which the
leakage current flow of chloride and other ions vanishes.
How the current density j across the membrane relates to the extracellular potential in space as
sensed by an electrode depends on the geometrical and electrical properties of the extracellular
space and the electrode-tissue contact (Fromherz et al., 1993; Weis and Fromherz, 1997; Plonsey
and Barr, 2000; Gold et al., 2006; Lindén et al., 2013). Due to the high spatial resolution
of HD-MEAs, different functional parts of a neuronal membrane (eq. 1.1) can dominate the
electrode response. The coupling to the surface of a sensor array is for example fundamentally
different for cultured neurons and the retina (Zeitler, 2009), resulting in different sensor waveform
characteristics caused by action potentials (compare fig. (1.1), B vs. C, right).
In the most general case, modeling is started from the Maxwell equations, that relate electric
and magnetic fields or potentials to charge and current distributions. Due to slow movement of
charged particles in biological tissue, magnetic fields are small compared to electric fields and
can therefore be neglected here. In tissue with spatially inhomogeneous but temporally constant
conductivity σ and permittivity ε, the temporal evolution of the extracellular potential ϕ(t) in
space as caused by time-varying currents can be described in Fourier space (Bédard et al., 2004):

∇ · ((σ + iωε)∇ϕω) = 0 (1.2)

The influence of spatially inhomogeneous σ and ε will be illustrated with a simple geometry:
For a time-varying point current source with spherical symmetry, the extracellular potential at
distance r is given by (Bédard et al., 2004):

ϕω = Iω
4πσ(r)

∫ ∞
r

1
r′2
· σ(r) + iωε(r)
σ(r′) + iωε(r′)dr

′ = Iω · Zω(r) (1.3)

with Iω the current of frequency component ω and a distance dependent impedance Zω(r).
For inhomogeneous tissue, waveforms hence undergo a frequency dependent filtering from the
neuron to the electrode. For homogeneous tissue with respect to σ and ε (ohmic), such as the
e.g. the retina interfaced to a HD-MEA (Zeitler, 2009), eq. (1.2) reduces to the Laplace equation
(∇2ϕ = 0) and the potential generated by a point source becomes frequency independent:

ϕ = I

4πσ ·
1
r

(1.4)

The extracellular waveform far away from a neuron could be approximated by replacing the
currents in eq. (1.3) (or eq. (1.4) for ohmic tissue), by an integral or a sum over the distribution
of current source densities (eq. 1.1). For small electrode-neuron distances and complex geome-
tries solutions of eq. (1.2) can be obtained numerically with finite-element methods (Buitenweg
et al., 2003). Alternatively, the electrode-neuron complex is lumped into equivalent circuit mod-
els (Fromherz et al., 1993; Weis and Fromherz, 1997).
In line with the believe of other authors for smaller electrode systems (see e.g. Franke (2011)), it
is concluded that full forward models are neither general enough nor tractable for spike sorting
HD-MEA data, because too many parameters would have to be specified. It is hard to reduce
them to a few parameters that robustly describe spike waveforms obtained from different exper-
imental conditions. The alternative is to use models that do not specify the neuron-electrode

19



1. Main Introduction

transfer function explicitly, but let spike sorting algorithms figure out suitable basis functions
from the data in order to represent spike waveforms. In the following (sec. 1.7.2), the generative
model used for this thesis will be introduced. It is applicable to both homogeneous as well as
inhomogeneous extracellular spaces.

1.7.2. A generative model for spike sorting

A model used for spike sorting must be general enough to be applicable to different tissue-
electrode configurations. For HD-MEAs, different neuron-to-sensor paths may generate fairly
distinct waveforms on distinct channels (see fig. (1.1, B & C, right)). Here, the extracellular
voltage xj,t at sensor j and time t is modeled as a linear sum5 of the average waveform contri-
butions aji,τ from neurons i to sensor j, given that they spiked at time t − τ , indicated by the
binary spike trains {si,t}. Every spike of a particular neuron i may additionally be modulated
by a real-valued function ci,t−τ , which is the same for all neuron-to-sensor paths:

xj,t =
n∑
i=1

L∑
τ=0

ci,t−τ · aji,τ · si,t−τ + εt (1.5)

Equivalently, this can be written in matrix-vector notation with the spike-to-spike waveform
variation being absorbed into real-valued source signals:

xt =
L∑
τ=0

Aτst−τ + εt (1.6)

This type of model is used by many authors (Lewicki, 1994; Pouzat et al., 2002; Franke et al.,
2010; Marre et al., 2012; Ekanadham et al., 2013; Pillow et al., 2013) even though it is not
always formulated for the multi-channel case and assumptions may be the same or different with
respect to the following points:

1. The spike waveforms generated by a given neuron are often assumed to be constant (Pouzat
et al., 2002; Franke, 2011), i.e. st−τ in eq. (1.6) is binary. In that case, the additive noise
term εt has to capture all spike waveform variability. Spike amplitude variation alone is
sometimes allowed (e.g. Marre et al. (2012)). Here, the real valued sources st−τ allow
each multi-channel spike to be modulated with a time series that is common to all neuron-
sensor paths for a given neuron. This allows to capture waveform variability within bursts.
For final spike assignment, continuous valued source activations have to be binarized via
thresholding (compare sec. 3.3.5 and e.g. (Ekanadham et al., 2013)).

2. Spikes and the additive noise εt are statistically independent. To the authors knowledge
implied by all methods.

3. Assumptions about the distributions that determine the noise εt differ. Many authors,
among others (Lewicki, 1994; Pouzat et al., 2002; Franke et al., 2010; Prentice et al., 2011;
Ekanadham et al., 2013; Pillow et al., 2013) find or at least assume the additive part to be
Gaussian, while others (Fee et al., 1996a; Shoham et al., 2003) state that it is not Gaussian,
e.g. due to spiking activity further away from the electrode. For detailed studies about
noise characteristics in case of different tissues interfaced to HD-MEAs see (Zeitler, 2009;
Zeitler et al., 2011). Importantly, it has to be distinguished whether the model (eq. 1.6) is
used to generate simulated recordings (sec. 2.4) for evaluation purposes or inverted (sec.

5The extracellular space is assumed to be an agglomeration of passive, resistive (fluids) and capacitive (mem-
branes) elements.
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1.7.3) for spike sorting (sec. 1.6). In this work, Gaussian noise is simulated, but not crucial
for the developed spike sorting methods. For the latter, noise statistics should simply differ
from those of spiking activity.

1.7.3. Estimation of model parameters

According to the generative model (eq. 1.6), the spike trains of individual neurons are given
by the rows of the source matrix S = {si,t : i ∈ 1, . . . ,M ; t ∈ 1, . . . , T}. In other words, the
mixture (eq. 1.6) has to be inverted. Different strategies may and are deployed, resulting in the
tremendous literature about spike sorting. Here, the general principles are explained in order
to understand the similarities and differences between recently proposed algorithms for multiple
electrodes (sec. 1.6.3) and those that were developed in this work and how they could benefit
from each other because they target different aspects of the spike sorting problem.

The mixing matrices and sources might either be assumed to be random or deterministic, whereas
the noise term εt always captures random effects. The generative model is thereby of statistical
nature and a probabilistic formulation of the inverse problem is appropriate. The joint distri-
bution of the data, sources and mixing matrices P (X, {Aτ},S) can be solved for the posterior
distribution of spike trains, given the data and mixing matrices by making use of Bayes rule:

P (S|{Aτ},X) = P (X|{Aτ},S)P ({Aτ},S)
P ({Aτ},X) (1.7)

According to Ventura and Gerkin (2012) all spikes should in this fashion be sorted jointly and the
final assignment should be soft, i.e. in terms of probabilities. Only then, neural correlations can
be estimated correctly from imperfectly sorted spikes. However, this is not tractable for more
than very simple scenarios and severe simplifications have to be made. In particular, it is hard
to compute the denominator in eq. (1.7), including the case of deterministic mixing matrices.
Therefore, recently proposed probabilistic spike sorting methods (Prentice et al., 2011; Pillow
et al., 2013; Ekanadham et al., 2013) reduce the inverse problem to a point estimate by looking
only for the maximum of the posterior distribution, the so called MAP estimate, which allows
to avoid the calculation of the denominator:

ŜMAP = argmax
S

P (S|{Aτ},X) = argmax
S

P (X|{Aτ},S)P ({Aτ},S) (1.8)

Maximum-a-posteriori spike sorting searches for the most likely spike trains, given the data
and mixing matrices. Above mentioned methods make simplifying assumptions on the prior
distribution of mixing matrices and sources, by assuming the waveforms to be independent of
the spike times, i.e. P ({Aτ},S) = P ({Aτ}) · P (S). Most methods actually treat the mixing
matrices as deterministic and try to capture the distribution of waveforms via the noise structure.
Important differences between methods are: (i) S may either be binary or real-valued; (ii) the
entire dataset is sorted jointly or the model fitting is performed on data snippets containing
spiking activity. Thereby the technical details of resulting objective functions differ. However,
all of these methods have to be initialized by spike trains or at least the mixing matrices. This
implies that they rely on yet another spike sorter. In that sense these methods can be considered
supervised and may be used to refine sorting results from an unsupervised sorter.
In contrast, if no information about a particular dataset is used, a spike sorting method can be
considered unsupervised. Instead, more general statistical regularities have to be assumed to
estimate templates and or spike trains. The most prominent class of unsupervised algorithms
for spike sorting is clustering (compare fig. 1.5 and table 1.1). However, clustering fails in
resolving overlaps (compare figure 1.6), is computationally expensive and suffers from the curse
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of dimensionality (Kriegel et al., 2009). A recent modification (Kadir et al., 2014) has overcome
the latter two problems, but still fails in isolating spatiotemporal overlaps. This is the reason why
for this work, independent component analysis (Comon, 1994) based methods were preferred.
ICA can be formulated as a maximum-likelihood (ML) method, connecting as follows to theMAP
estimate (eq. 1.8). If one assumes the mixing matrices to be deterministic and marginalizes over
the sources, these can be estimated by maximizing the likelihood P (X|{Aτ}), i.e. by adjusting
the mixing matrices such that the data X becomes most likely. For uniform priors in regions of
nonzero likelihood, ML and MAP estimates are equivalent. See chapter (4) for a more detailed
motivation and introduction on ICA based spike sorting.

1.8. Conclusion and addressed problems

Despite the extensive work on spike sorting, no solution is available that solves all the require-
ments and challenges (sec. 1.6.2) and is applicable to thousands of electrodes (sec. 1.6.3). Re-
cent work that is claimed to be scalable and accounts for overlaps focuses on the supervised part
and underestimates the error prone and difficult initialization stage (compare sec. 1.6.3 & 1.7.3).

To overcome the bottleneck of analyzing data from large populations of simultaneously im-
aged neurons, it is considered of high priority to scale the unsupervised part of the problem
to thousands of electrodes, while immediately accounting for all types of synchronous activity.
Manual intervention has to be reduced to a level that is acceptable for neuroscience labs and
allows to rapidly separate apart well sorted spike trains from the increasing absolute number of
poorly sorted spike trains that unavoidably increases with the array size.

Chapter (3) assesses the problem of scaling up algorithms to thousands of electrodes via a
generic divide-and-conquer approach that decomposes the array into smaller channel groups of
up to hundreds of electrodes which can be processed in parallel. The framework constitutes a
full solution to the unsupervised spike sorting problem for large-scale HD-MEAs, but the spike
sorting algorithm deployed to each region of interest could be replaced by further developments.

Chapter (4) targets the dense arrangement of electrodes in HD-MEAs by utilizing the full spa-
tiotemporal structure of multichannel spikes within a region of interest: a spike sorting algorithm
based on convolutive ICA was developed and thoroughly evaluated against a simpler, instanta-
neous ICA based sorting to exploit the potential for performance improvements of the solution
presented in chapter (3).
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2.1. Overview

Figure (2.1) schematically visualizes the methodological requirements that are independent of
but mandatory for the development and evaluation of any spike sorting method. As the genera-
tive model for extracellular data (eq. 1.6) is quite flexible, real recordings from a given recording
system and neural tisse (2.2) have to be used to constrain the parameter range for simulated
recordings (sec. 2.4) such as the neuron-to-sensor transfer functions, i.e. the mixing matrices in
(eq. 1.6), and typical signal-to-noise ratios (sec. 3.4.1). The applicability of a proposed spike
sorting method can then be assessed by evaluating (sec. 2.6) the sorted spike trains against the
true spike trains from the same simulated recording. If the accuracy achieved under realistic
conditions satisfies the requirements for a subsequent analysis of sorted spike trains, the method
can be used on real recordings without ground truth to address scientific questions.
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Simulated recordings
with ground truth

Evaluation

Generative model for extracellular data: 

Real recordings

Spike sorting algorithms for large-scale HD-MEAs

 Parallel spike train analysis

Figure 2.1.: Methodological requirements for the development of spike sorting algo-
rithms. Biophysical knowledge together with real recordings influence how extra-
cellular data is modeled and recordings with ground truth are simulated. These
are mandatory for evaluating the performance of any spike sorting algorithm. Only
upon acceptable accuracy of a method, it should be used to sort spike trains from
real recordings that are used for further scientific analysis.

2.2. Recording system and data acquisition

Electrical recordings of extracellular (retinal) activity (Zeck et al., 2011; Menzler and Zeck, 2011)
were performed with a high-density CMOS based micro-electrode array (Eversmann et al., 2003;
Lambacher et al., 2011). Originally, the array was named multi-transistor-array, but as the sen-
sor spots effectively act as electrodes that sense the electrical potential above them, the more
broadly used term HD-MEA is preferred here. The array contained 128 x 128 equally spaced
(7.4 µm) sensor transistors covering an area of 0.897 mm2. Full frame readout was possible
with 6 kHz. Typically, half of the sensors were selected, resulting in a sampling frequency of
11.5kHz. Templates for simulated recordings were recorded with sampling rates between 29.8
and 62.5kHz. For each experiment, sensor transistors have to be calibrated by applying an AC
voltage (frequency, 70 Hz; amplitude, 3 mV peak-to-peak) to the bath electrode (Eversmann
et al., 2003; Lambacher et al., 2004). The calibration voltage changes the electrical potential at
the surface of the chip. The local change of electrical potential couples through the insulating
electrolyte/chip interface to the gate of the sensor transistor and proportionally modulates the
source-drain current therein. During the experiment, ion currents through excited cell mem-
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branes change the local extracellular voltage with respect to the bath electrode. The potential
at the chip surface couples through the insulating electrolyte/chip interface to the gate and
proportionally modulates the source-drain current. The response of each sensor transistor is
solely determined by the potential above the insulating TiZrO2 layer, averaged over the diam-
eter (6.3 µm) of the top contact. The chip readout pattern had been optimized to avoid cross
talk of transistor signals on the chip (Eversmann et al., 2003; Lambacher et al., 2004). During
the recording, the columns of the sensor array are sequentially connected to 128 line amplifiers.
After a settling time of 720ns, the output of these line amplifiers is multiplexed over another
640ns into 16-output channels, so that every 8th pixel of the currently selected column is read
out simultaneously. The maximal temporal shift between neighboring pixels in space is hence
across columns and evaluates to 1.36 µs (Menzler and Zeck, 2011). For the analysis performed
in this work, this temporal shift was considered negligible.

Preparation of neural tissue and extracellular in vitro recordings were performed in case of rat
retina, as reported by Stutzki et al. (2014) and for rabbit retina as reported by Leibig (2010).

2.3. Spike alignment

Spike alignment is crucial for waveform comparisons. There is no unique point in time that
references a spike, hence different definitions are possible. For multiple electrodes the problem
is even more involved and related to the problem of image registration (Theiler et al., 1997). It
is important to use a noise robust feature that takes into account the contributions from the
different sensor spots. The standard deviation across aligned spikes from the same neuron can be
used to evaluate suitable reference points (Pouzat et al., 2002) and to reduce the influence of the
fact that the clock of the recording device is not locked to spike times (sampling jitter). In this
work, spikes from multi-channel raw data (obtained from the implementation of Lambacher et al.
(2011)) used to calculate templates for simulations (compare sec. (2.4)) were aligned by their
center of mass. This is advantageous over single sample (e.g. location of the threshold crossing
or the subsequent trough) alignment strategies as the summation over several stixels reduces
the influence of the noise. Spikes detected from the same independent component activations
are already denoised and share the same filters. Upsampled (to 100kHz) IC waveforms were
therefore simply aligned to their extrema within 1ms after the (single time series) threshold
crossings.

2.4. Simulation of recordings with ground truth

Spike sorting performance can only be assessed properly with respect to true spike trains. As
intracellular recordings deliver almost certain spike trains, one interesting possibility is to si-
multaneously record intra- and extracellularly as deployed formerly for tetrodes (Harris et al.,
2000). Unfortunately however, it is extremely challenging to record intracellularly from multiple
neurons at the same time. Therefore, this type of real recordings provides only partial ground
truth and is not appropriate to test the resolution of spike collisions (sections 1.5 and 1.6.2).
The only alternative is to generate simulated recordings with ground truth that mimic actual
recordings. Here, synthetic datasets were generated from HD-MEA recordings of retinal gan-
glion cell (RGC) spiking activity (spatial sampling: 7.4µm, temporal sampling: 30 to 62.5 kHz).
The recordings were performed with the array presented by Lambacher et al. (2011) and the
algorithm introduced by the same work, was used to extract 19 different templates with maximal
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spatial extensions (along either sensor rows or columns) between 37 and 96.2µm under manual
supervision. The spatiotemporal structure of these templates is analyzed in section (4.4.1). By
aligning the spatiotemporal extrema of copies of these templates with any sensor, datasets with
many neurons could be constructed. Spikes drawn from these neurons at instances given by ex-
ponentially distributed interspike intervals with a refractory period of 5ms were superimposed
according to the generative model (eq. 1.6). Spike shape variability of RGC on MEA data was
recently reported to be dominated by amplitude variation (Marre et al., 2012; Prentice et al.,
2011) and sampling jitter (Pillow et al., 2013). Hence we modulated each spike with a random
factor drawn from a Normal distribution (µ = 1, σ = 0.1) as in the work of Jäckel et al. (2012).
To account for relative shifts of AP timings with respect to the equidistant sampling of recording
devices, each spike was obtained by sampling the continuous (cubic spline interpolated) template
at the desired rate, beginning at a random offset along the temporal dimension.

This hybrid style of simulations that allows to flexibly combine templates, noise and spike
trains, provides means to generate a variety of simulated recordings, adaptive to specific tissue-
recording-system combinations. Particular datasets used for chapters (3) and (4) are described
in situ.

2.5. Spike train alignment

For the identification of redundant units as well as for comparing ground truth with sorted
spike trains for evaluation purposes, we need to pairwisely align spike trains and then perform
a spike-to-spike correspondence. We followed the proposal in Franke (2011). Pairs of binned
spike trains were shifted against each other according to the argmax of their crosscorrelogram
(maximum lag ts = 0.5ms). This accounts for potentially different reference points between
the two spike trains (e.g. ground truth spike times vs. the timing assigned by the spike sorting
algorithm). To account for the difficulties in determining the exact timing due to noise and
sampling jitter, each spike pair was additionally allowed to have a maximum distance tj (1ms)
in order to be regarded as correspondent. For two spike trains to correspond to each other, the
spatial position of their associated template extrema was not allowed to be further apart than
37µm, corresponding to the distance of 5 electrodes.

2.6. Performance evaluation for large array sorting algorithms

A comparison of spike trains as obtained from any spike sorting algorithm against true spike
trains allows for computing error rates which are not available in actual experiments but are
fundamentally necessary to assess the applicability of a method to a specific tissue/array combi-
nation. Briefly, each ground truth unit was assigned an error rate given by the sum of all types
of errors (false positives and false negatives) of the best matching1 sorted unit, normalized by
the total number of spikes exhibited by the ground truth unit.
Specifically, by performing a spike to spike correspondence for ground truth and sorted units
whose spike trains were aligned (sec. 2.5), we could determine for each spike whether it was a
true positive TP , false positive FP (either noise N or a spike from another unit, i.e. a classi-
fication error CL), false negative FN (either found by another unit (CL) or not found at all
NF ). Additionally we labeled each spike if it was participating in an overlap O. In contrast to

1That sorted unit within a radius of 5 sensors that minimized the error rate
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previous studies and due to the array extent together with a relatively small spatial decay con-
stant of recorded action potentials, we only considered a spike to be an overlap if any other spike
occurred within a spatiotemporal neighborhood of 37µm in space and 1ms in time. Thereby we
distinguished between merely temporal overlaps, which are easier to sort because their spatial
waveforms do not overlap, and spatiotemporal overlaps, which are not resolved by clustering
and other algorithms that were not specifically designed for this purpose (Pillow et al., 2013).
Table (2.1) exemplarily shows part of the evaluation result of the two sets of spike trains dis-
cussed in more detail under section (3.4.2). There, the evaluation was applied to two different
spike sorting results in contrast to the rest of this work where spike sorting results were always
compared against true spike trains. Under section (3.4.2), one of the two alternative results was
only pretended to be the ground truth.
Usually only the error rates are reported about, but the more detailed spike-to-spike correspon-
dence is very helpful for tracking the source of errors.

GT ST GT spikes TP spikes FP spikes FN spikes Error
neuron unit (ALL,NO,O) (ALL,NO,O) (CL,CLO,N) (CL,CLO,NF,NFO) rate

1 46 15, 14, 1 15, 14, 1 0, 0, 0 0, 0, 0, 0 0.00
2 45 27, 27, 0 27, 27, 0 0, 0, 0 0, 0, 0, 0 0.00
3 4 44, 42, 2 44, 42, 2 0, 0, 0 0, 0, 0, 0 0.00
4 1 63, 60, 3 63, 60, 3 0, 0, 0 0, 0, 0, 0 0.00
5 5 110, 110, 0 110, 110, 0 0, 0, 0 0, 0, 0, 0 0.00
...

...
...

...
...

...
...

Table 2.1.: Excerpt from a spike sorting evaluation result. Spike trains underlying the
analysis are discussed in more detail under section (3.4.2).
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3. A generic divide-and-conquer approach for
unsupervised neural spike identification from
large and dense array data

3.1. Abstract

To relate the functionality of large-scale neural networks to the level of single cells, it is a key
requisite to uncover the spike trains of a large number of simultaneously recorded neurons from
extracellular recordings. Silicon-based arrays with thousands of electrodes allow to simultane-
ously image the electrical activity of hundreds to thousands of neurons at sub-cellular spatial
and high temporal resolution.

However, existing spike sorting algorithms are only practical for up to about 500 electrodes.
Probabilistic and real-time methods do not work in unsupervised manner, as they need to be
initialized with a traditional sorting. Furthermore, all algorithms are designed for a fixed number
of electrodes.

Here we propose a framework for spike sorting algorithms that deals with the unsupervised prob-
lem in the case of thousands of electrodes and makes use of the spatial information of dense 2D
arrays. Regions of interest (ROIs) with boundaries adapted to the electrical image of single or
multiple neurons are constructed automatically. All ROIs can be processed in parallel. Within
each region of interest an upper bound for the number of neurons can be estimated from the
local data matrix alone. We deploy a simple ICA based algorithm to solve the local spike sort-
ing within ROIs. Redundantly identified units across different ROIs are fused by automatically
identifying the best representative. The framework was implemented in MATLAB and includes
a graphical user interface for semi-automatic post-processing and visualization.

We evaluated the framework with recorded and surrogate data (1141 neurons/mm2, 4356 sensors,
27 % spatiotemporally overlapping spikes). 81% of the true neurons could be identified with error
rates below 2%. Different ROI size distributions did not corrupt spike trains. Different proxies
for unit isolation quality were assessed for speeding up post-processing times and separating
units with low error rates from the rest.
In conclusion, we provide the first tool to solve the unsupervised spike sorting problem for data
from thousands of densely integrated sensors.

3.2. Introduction

Research addressing neural information processing principles (Quiroga and Panzeri, 2009; Aver-
beck et al., 2006; Macke et al., 2011) or neuroprosthetic applications at the single cell level
requires the true spike times of all participating neurons, i.e. accurately “spike sorted” data.
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Although recording from different neural preparations is achieved using low-noise extracellular
electrodes, the correct assignment of the recorded signal to the generating cell is challenging,
mostly due to the relatively large spacing between adjacent electrodes. Recent advances in
the development of extracellular recording technologies enable to image the electrical activity
of many neurons at an unprecedented scale both in terms of network size and spatiotempo-
ral resolution. Sensor densities in electrodes/mm2 and the total number of recording channels
of CMOS-based micro-electrode-arrays (MEAs) have increased beyond 103 to 104 (Eversmann
et al., 2003; Imfeld et al., 2008; Frey et al., 2009; Berdondini et al., 2009; Lambacher et al., 2011).
However, new and advanced data analysis methods to handle data from large-scale, high-density
(HD) MEAs are largely missing and therefore constitute a current bottleneck for systems and
computational neuroscience (Buzsáki, 2004; Brown et al., 2004; Einevoll et al., 2011; Marble-
stone et al., 2013).

Spike sorting literature has a long history (Lewicki, 1998; Sahani, 1999), however, there is still
de facto no standard solution. Algorithms for neural recordings using 30 to 512 micro-electrode-
arrays were proposed (Meister et al., 1994; Litke et al., 2004; Segev et al., 2004; Prentice et al.,
2011; Fiscella et al., 2012; Marre et al., 2012; Kadir et al., 2014; Swindale and Spacek, 2014).
However, none of them can be directly applied to 103 to 104 channels. This limitation will be
addressed in this work and had been pointed to by Einevoll et al. (2011). The only algorithm
for that many electrodes (Lambacher et al., 2011) so far, is a cluster algorithm - hence unable
to resolve spatiotemporal overlaps as shown by Pillow et al. (2013). Furthermore, it tends to
overestimate the number of neurons and scales supralinearly with the number of spikes. Multi-
channel spike sorting was shown to improve sorting accuracy when compared to single channel
approaches (Gray et al., 1995). Nevertheless, algorithms developed for large and dense (subcel-
lular resolution) arrays need to overcome the following major challenges (Einevoll et al., 2011;
Franke et al., 2012):

1. Divide-and-conquer strategy. There is no natural way to spatially decompose arrays into
non-overlapping channel groups. That would resolve temporally overlapping but spatially
separated activity and let algorithms scale roughly linear with the number of electrodes.

2. Unsupervised solution for the local spike sorting problem in case of more sensors than
neurons. Local, dense electrode regions have to be spike sorted while accounting for
spatiotemporal overlaps without knowing the number of neurons in advance.

3. Fusion of spike sorting results. Results from separately analyzed electrode regions have to
be fused into a global solution.

4. Reduction of manual intervention. While spike sorting is routinely applied to smaller
electrode systems for decades, heavy manual intervention seizes valuable work hours from
talented researchers. For larger electrode systems, new means of reducing manual inter-
vention are to be designed.

Some recent approaches (Prentice et al., 2011; Marre et al., 2012; Swindale and Spacek, 2014)
resemble a divide-and-conquer (1) strategy. These subset selection procedures only compare pu-
tative extracellular action potentials (events) against each other if they exhibit their extremum
values on the same recording electrode. However, in case of small sensor distances, spikes from
the same neuron may be assigned to different “leader” (Litke et al., 2004) electrodes, generating
artificially many units that have to be dealt with afterwards. And in case of highly active tissue,
one may end up with as many channel groups as electrodes. This is disadvantageous in two
aspects. First, if only nearest neighbors were taken into account, this would already require a 9
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fold redundant evaluation1. Second, for a (natural) parallelization on the level of channel groups,
as many compute cores as channels would be needed. This is beyond the compute resources of
any individual experimental laboratory and data could just be analyzed by centralized compute
infrastructures. Furthermore, current approaches define channel groups either by a fixed number
of electrodes around every leader electrode or by an area based on single-channel thresholding.
This may only poorly capture the actual electrical coupling areas of neurons as will be shown
below. A recent approach spatially crops already found waveforms (Pillow et al., 2013) for sub-
sequent refinement, but this does not solve the initial problem.

To our knowledge, the unsupervised solution for the local spike sorting problem in case of more
sensors than neurons (2) has not been explicitly addressed so far. Multichannel spike detection
would be required for traditional sorting approaches (Quiroga, 2007) to be applied. However,
spike detection is difficult in case of many spatially overlapping neurons (Jäckel et al., 2012).
Therefore, algorithms that work directly on the multichannel time series data are needed. Re-
cent, promising probabilistic approaches estimate the most likely spike trains given the data,
while accounting for the overlap problem (Pillow et al., 2013; Ekanadham et al., 2013). Yet, it
remains to be tested whether these methods are computationally feasible in practice. Another
interesting alternative is Bayes optimal template matching (Franke, 2011) which is suitable for
real-time implementations (Haga et al., 2013). However, all of these mostly automated concepts,
that do work on the raw data, assume that an initial sorting was performed already in order to
determine the number of neurons as well as their average waveforms, i.e. templates. As they
need this information in order to be applied to a fixed number of channels of raw data, we regard
them as supervised.

For the fusion of spike sorting results (3) from neighboring, potentially overlapping groups
of electrodes, automatic algorithms need to be developed. That task is often solved manually
(Einevoll et al., 2011; Prentice et al., 2011; Marre et al., 2012; Swindale and Spacek, 2014) or by
iterative pairwise merging (Jäckel et al., 2012). Both approaches are time consuming and the
latter is error prone.

The reduction of manual intervention (4) is especially important when nothing is known yet
about a large array dataset. Spike sorting algorithms that are automated, typically bypass cer-
tain difficulties because they make use of a preceding sorting (Pillow et al., 2013; Ekanadham
et al., 2013; Franke, 2011; Haga et al., 2013). All current algorithms that aim to solve the initial
sorting, do rely on manual intervention at some stage. This is true for both widely used open
source (Rossant et al., 2013) as well as commercial systems (Plexon Inc, 2009). Algorithms
targeting MEA data often try to reduce manual intervention such that it scales roughly linear
with the number of neurons (see e.g. Prentice et al. (2011); Marre et al. (2012)). However, if the
expected neuron number is at the order of hundreds to thousands this becomes very tedious and
rapid means of deleting poorly isolated neurons are highly desirable for an efficient workflow. It
should be mentioned that algorithms are often claimed to be scalable to large arrays, however,
to our knowledge, this has not been achieved so far.

Hence, to overcome the current need of a spike sorting algorithm for thousands of densely
integrated sensors, a framework was developed that especially solves the unsupervised problem
by tackling issues (1) to (4) by an automatic decomposition of the data into cell-like regions
of interest, their parallel sorting and subsequent fusion of results. Together with an exemplary
ICA based algorithm targeting the local sorting problems, the deployed analysis constitutes a
complete spike sorting that is applicable to thousands of channels capable of resolving both
spatial and spatiotemporal overlaps. Manual intervention is conveniently organized and allows

1assuming quadratic channel groups of width d sensors leads to a d2 evaluation of every channel
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for rapid identification of well sorted spike trains.

3.3. Methods

3.3.1. Algorithm overview

The following sections describe the proposed divide-and-conquer approach for spike sorting data
from thousands of electrodes that sample the extracellular electrical activity of planar neural
tissues at subcellular resolution. For a schematic illustration of the proposed procedure see figure
(3.1).
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Figure 3.1.: Schematic illustration of the proposed divide-and-conquer approach for
spike sorting data from thousands of electrodes. Importantly, the framework
is independent of the sorting algorithm applied locally. Parallel vertical arrows
indicate parallel processing.
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Using the information from a low signal-to-noise sensitive detector of neural activity (sec. 3.3.2),
regions of interest are automatically determined (sec. 3.3.3). ROIs can then be processed in
parallel: an upper bound for the number of neurons M therein is estimated (sec. 3.3.4) which
can directly be used for the subsequent sorting (sec. 3.3.5) or for dimensionality reduction. The
coarse grained parallelization is independent of the particular sorting algorithm applied locally.
This is advantageous as the runtime of many spike sorting algorithms scales supralinearly with
the number of electrodes. Spike sorting results from different regions of interest are fused as
described in section (3.3.6). After the automatic sorting stage, an interactive visualization tool
(sec. 3.3.7) allows for revision of putative units and to trigger the automated removal of redun-
dant as well as poorly isolated units. A more detailed description of the individual steps is given
in the following subsections.

3.3.2. Low SNR sensitive detection of extracellular action potentials

For this and all subsequent stages, the recordings of extracellular voltages, i.e. the data, have to
be preprocessed with an acausal (Quiroga, 2009) bandpass filter in order to remove channel-wise
offsets, low frequency fluctuations and noise above the frequency range of spikes. This is in line
with any other work on spike sorting.
The input to the framework (compare fig. 3.1) is given by the data and the spatiotemporal
information of in principle any spike detector sensitive to low SNR. Here, we formalize the
heuristic approach of threshold detection in high-dimensional data as initially presented by
(Lambacher et al., 2011). To keep false positive noise detections low (10−8) while still detecting
low amplitude spikes, multidimensional thresholding on HD-MEA data has been performed.
We assume that extracellular action potentials are more strongly correlated than noise across
nearby sensors and across adjacent time steps. Extracellular voltage waveforms originating from
single or multiple action potentials, i.e. events, will be described by sets of space-time pixels
(stixels). For every scalar sample of extracellular voltage, the vector length:

|xs| =

√√√√ k∑
i=1

(
xi
σi

)2
(3.1)

is constructed from the data point itself plus its k − 1 neighbors. The neighboring data points
extend to space and time. For uncorrelated, Gaussian noise, the summands are normally dis-
tributed (σi denotes the noise standard deviation of the sensor that recorded data point i)
resulting in a Chi-distributed χk(|xs|) vector length (Evans and Hastings, 2000) with k degrees
of freedom. The center data point of the k-dimensional environment is considered part of a
neuronal signal, i.e. a threshold crossing event (TCE), if |xs| surpasses the hyperspherical noise
surface with radius |x0| determined by the size of the environment k and the accepted false
positive rate P (|xs| > |x0|):

P (|xs| > |x0|) = 1−
∫ |x0|

0
χk(|xs|)d|xs| (3.2)

Data points labeled as TCEs are then grouped into events. The association of voltage samples
with events is performed by identifying the spatiotemporally connected components of the TCEs.
This is a slight simplification of the approach of Lambacher et al. (2011), which allowed for gaps
in time. However, skipping this constraint allows to use efficient implementations of connected
component algorithms (Hopcroft and Tarjan, 1971). Events comprise extracellular waveforms
caused by single or multiple action potentials or false positive noise. Each event gets a unique
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label in terms of the center-of-mass (CoM) coordinates of associated stixels.
Figure (3.2) illustrates the advantage of taking into account a k = 45 dimensional environment
(subfigure B) over a conventional single channel thresholding (subfigure A, k = 1, same accepted
false positive rate) in order to determine the arbitrarily shaped coupling areas of potential
neurons. Figure (3.11) illustrates the influence of k upon the minimally detectable signal, guiding
appropriate choices for different tissue/array combinations. The lower SNR parts surrounding
the centers of the neurons are expected to be beneficial in terms of sorting performance when the
signal energy is effectively integrated over space in the subsequent ICA stage. For computational
reasons we do not take into account potential noise correlations (Rebrik et al., 1999) at this stage
but these will be accounted for by the spike sorting applied to each region-of-interest.

3.3.3. Regions-of-interest (ROIs)

For dense electrode arrangements, single neurons are recorded by several adjacent electrodes.
Unfortunately, there is no natural way of how to form electrode groups that pick up non-
overlapping regions of electrical footprints of single neurons or a small group thereof. The
development of algorithms that construct ROIs is hence of high priority for large and dense
arrays (Einevoll et al., 2011). Here we aim to automatically construct ROIs by using the events
detected as described in the previous section. Each center-of-mass sensor is used as a seed for
a ROI if the activity on that sensor exceeds the minimum activity. Initial ROIs are defined in
space by the set union of all sensors associated with events that share the same CoM sensor.
This first step leads to many, highly overlapping ROIs. We measure the pairwise spatial overlap
between regions Ri and Rj by the cardinality of their set intersection and normalize it to the
size of the smaller ROI:

overlapij = |Ri ∩Rj |
min(|Ri|, |Rj |)

(3.3)

By merging ROIs that exceed an overlap threshold (typically 0.1), we could in principle minimize
redundant analysis of similar regions of interest. For highly active tissue this merging strategy
leads to large ROIs, as a disjoint decomposition of the array into cell-like regions is not possible
anymore. Therefore we limit the maximum final ROI size to a couple of hundred sensors such
that each ROI captures the activity of a few but not more than up to ≈ 20 − 25 neurons
maximally. Final ROIs are obtained from initial ROIs by fusing them according to their overlap
in a bottom-up approach as follows: Starting from any initial ROI, the overlap with all others is
calculated and the one that exhibits the largest overlap gets merged with the currently growing
ROI. After updating the overlap of the growing ROI with the remaining ones, the previous
step is repeated. If a merge step would generate a ROI that exceeds the maximally desired
size (typically ≈ 100 − 400), the growing ROI is considered a final one before merging and the
most overlapping ROI serves as seed for a new growing region. We continue until all ROIs are
considered final ones. Figure (3.2, C) shows ROIs constructed from the events obtained from
the multidimensional threshold crossings (fig. 3.2, B). Alpha blended colors encode region of
interest identities.
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Figure 3.2.: Low SNR sensitive event detection and region of interest construction
from 1 sec. of light stimulated RGC activity. (A) Total number of threshold
crossings for 1-dim thresholding assuming Gaussian noise and a false positive rate
of 10−8sec.−1 (B) Total number of threshold crossings when the spatiotemporal
neighborhood of each data point (5 rows, 3 columns (only every second sensor column
was recorded from), 3 time steps) is taken into account. Noise is again assumed to
be Gaussian (with diagonal covariance across time and space) and the false positive
rate is set as for panel A. (C) 71 Regions of interest constructed from 2048 events
(spatiotemporally connected components of B) with a merge threshold of 0.1 and
maximum ROI size of 200 channels.

3.3.4. Upper bound of neuron number per ROI

Every spike sorting algorithm has to determine the number of units (putative neurons) at some
stage. This is of biological importance but generally a difficult and error prone problem: In
clustering algorithms, the number of clusters are interpreted as the number of neurons. However,
overlapping activity may create clusters that are classified as spurious neurons (compare fig. 1.6).
Furthermore, systematic waveform variability of bursting neurons may corrupt the estimation
of the number of neurons (Quirk and Wilson, 1999). Modern multichannel algorithms either
model the number of neurons but are not yet capable of resolving overlaps (Wu et al., 2014) or
they rely on knowing the number of neurons in order to account for spike superpositions (Pillow
et al., 2013; Ekanadham et al., 2013). In a nutshell, due to the current lack of algorithms that
account for overlaps without knowing the number of neurons in advance, it is desirable to get a
hint on this number to be expected independent of the particular algorithm to be applied.
Fortunately, for electrode arrays with higher sensor density compared to neuron density, one
might be able to infer the number of neurons from the sensor correlations. To motivate why
this could be possible, let’s assume for a moment that the neural signals, st as measured by a
set of electrodes xt could be modeled with a single mixing matrix: xt = A · st. If the neurons
were arranged in a planar layer, i.e. their neuron-to-sensor paths differed by more than just a
linear rescaling factor, the columns of A, are linearly independent. If furthermore, instantaneous
correlations between source signals st themselves and between source signals and the noise would
vanish (the latter is a very common assumption), the instantaneous data covariance matrix would
be given by:

Cx = 〈xtxTt 〉 = 〈(A · st + εt) · (A · st + εt)T 〉 = AAT + Cn (3.4)
The rank of the instantaneous signal covariance matrix Cs = AAT would therefore exactly equal
the number of neurons M , i.e. the diagonalization would reveal M nonzero eigenvalues and the
signal subspace would be spanned exactly by the corresponding eigenvectors.
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To demonstrate the influence of the neuronal signals vs. the noise, we simultaneously diag-
onalize the measured instantaneous data Cx and noise Cn covariance matrices, i.e. search for a
common basis P in which both matrices become diagonal:

P−1CxP = Λx, P−1CnP = Λn

by solving for the generalized eigenvector matrix P and eigenvalue matrix Λ (Fukunaga, 1990):

CxP = CnPΛ

We fix the noise eigenvalue matrix Λn to be the same as if we would only diagonalize the noise
covariance matrix via the orthogonal basis U:

Λn = UTCnU
!= P−1CnP

by normalizing P accordingly and recover Λx from the generalized eigenvalue matrix:

Λx = ΛnΛ

Figure (3.3) visualizes Λx vs. Λn for two representative examples. The left panel of figure (3.3)
shows results for a simulated recording with 20 ground truth units in a region of 638 sensors.
The right panel of figure (3.3) visualizes the spectra for a region of interest spanning 128 sensor
traces of a real recording. An independent hint on the number of neurons for the recorded data
was obtained from the sorting described in section (3.4.1) which did not make use of the infor-
mation contained in the spectra. The analysis from section (3.4.1) attributed 6 finally sorted
units to the ROI underlying the right panel in figure (3.3).
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Figure 3.3.: Diagonal entries of simultaneously diagonalized data and noise covariance
matrices. (Left) From a simulated recording containing 20 ground truth neurons.
(Right) From a real recording of RGC activity. With an independent spike sorting
(described in section 3.4.1) that did not rely on the information given by the sensor
correlations, 6 units were found in the 128-dim ROI. In both cases the data spectra
deviate from the noise spectra at indices of value slightly larger than the number of
underlying neurons.

For both the simulated and the real recording we qualitatively observe that the data spectra
deviate from the noise spectra at index locations that are way below the number of sensors

37



3. A generic divide-and-conquer approach for spike sorting large and dense array data

(we face highly overdetermined problems) but slightly higher than the number of underlying
neurons. That means that the structure of the spatial sensor correlations does indicate the
dimensionality of the linear subspace the neuronal signals are located in, but modeling the data
with a single mixing matrix constitutes an approximation. The correct model for extracellular
data incorporates several mixing matrices (compare chapter 4 for a more in depth treatment of
this issue).
Due to this issue, we can only infer an upper bound for the number of neurons and not the
exact value of M , as should become clear by the following argumentation. In case of several
mixing matrices and stationary sources, the instantaneous signal covariance matrix Cs is given
by (compare sec. 3.6):

Cs =
L∑
τ=0

AτAT
τ (3.5)

Its rank rs is bounded from above by the sum over the ranks of the individual mixing matrices,
which themselves can be at most of rank M each for the overdetermined case:

rs = rank(
L∑
τ=0

AτAT
τ ) ≤

L∑
τ=0

rank(AτAT
τ ) =

L∑
τ=0

rank(Aτ ) ≤ (L+ 1)M (3.6)

This explains why the kink may be located at an index position higher than the true number
of underlying neurons in case of white noise (left panel in fig. 3.3). Later on, overdetermined
(blind) source separation algorithms will be considered to solve the intra ROI spike sorting
problems. In other words, we seek to invert the generative model (eq. 1.6) by trying to extract
mutually exclusive source activations st for all putative neurons. Therefore, we would also like
the signal rank rs to be bounded from below by M , such that taken together the rank rs would
be in the interval:

M ≤ rs ≤ (L+ 1)M (3.7)
For the left inequality of (eq. 3.7) to be violated, the sum of instantaneous template sensor
correlations AτAT

τ over all τ in (eq. 3.6) would need to be of rank lower than M . As above, we
still assume that templates differ by more than just a linear rescaling factor. Thereby, at least
for one τ , AτAT

τ is of rank M . Due to the predominant negativity of extracellular waveforms
(Henze et al., 2000; Gold et al., 2006), it is nearly impossible to decrease the rank by summing
over time, making the left inequality of (eq. 3.7) a reasonable assumption.

The location M̂max of the kinks, which provide an estimate of rs, can be used to reduce the
dimensionality of the data to that same number of first either generalized eigenvectors of both
the data and noise covariance matrix, eigenvectors of the data covariance matrix alone (PCA)
or to extract directly M̂max independent components. The latter approach can be viewed as
projection pursuit (Hyvärinen et al. (2001), section 8.5) and will be described in the next section.

In practice we aim to automatically estimate M̂max from the eigenvalue spectrum of the data
covariance matrix Cx. This is a problem frequently encountered in the blind source separation
literature. Unfortunately no clear theoretical guidelines are available (Hyvärinen et al. (2001),
section 13.3). We tried different heuristics as well as information theoretic (Karhunen and Ci-
chocki, 1997) means to determine M̂max. For the performance of different methods see figure
(3.12). Therefrom we decided to use the following method: The median is used to estimate the
mode of the eigenvalue spectrum Λx (sorted by value in decreasing order) of the data covariance
matrix which in turn is used to estimate the kink location M̂max:

Λx(M̂max) != 2 ·median(Λx)−min(Λx) (3.8)

We conclude that we can infer a rough estimate for the number of neurons that tends to be
slightly higher than the true number of neurons from the instantaneous sensor correlations in
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the data. This information can be used for dimensionality reduction.

3.3.5. Spike sorting within ROIs

Spike sorting can be deployed in parallel to solve the region-wise local identification problems.
Due to the high spatial resolution of HD-MEAs, blind source separation techniques for overde-
termined problems (N > M) seem especially promising. These algorithms allow to implicitly
account for spatiotemporal overlaps and reorganize the traditional spike sorting steps (Quiroga,
2007) of spike detection, feature extraction and clustering as follows: First, the raw data is
transformed such that the signal energy from different neurons, noise and artifacts are separated
and pushed to ideally mutually exclusive time series, the source activations st. The spike sort-
ing problem can then be solved by attributing the spike times given by threshold crossings on
the source activations to the respective source identity. One possible approach is independent
component analysis (ICA) based spike sorting (Hyvärinen, 2013; Brown et al., 2001). Here we
adapt an algorithm inspired by Jäckel et al. (2012).
Briefly, extracellular data is modeled as a linear superposition of statistically independent sources
st:

xt = A · st (3.9)
xt is here a vector with as many dimensions as number of sensors in the ROI under consideration.
FastICA (Hyvärinen, 1999) is used to learn an estimate of the unmixing matrix W = Â−1 to
retrieve estimates ŝt of the source vectors for all data samples T.
Ideally, the time series for a single source (si,1, ..., si,t, ..., si,T ) would exclusively represent the
activity of a single neuron, for which the true spike times could be identified via thresholding.
However, some postprocessing is necessary to catch exceptions from this interpretation.

The following steps describe how to achieve the isolation of a major fraction of neurons from
HD-MEA data:

Extraction of M̂max independent components. HD-MEAs typically have more sensors than
neurons and hence the mixing matrix A is not square. For example, the array described by
Lambacher et al. (2011) has a sensor density of 18262mm−2, whereas reasonable neuron den-
sities in planar tissues such as a retinal ganglion cell layer are an order of magnitude smaller
(Kao and Sterling, 2006; Vaney, 1980). In that case, extracting as many components as mixture
dimensions is unnecessary and should even be avoided as this is prone to overlearning, i.e. it
generates spike like signals2 (Hyvarinen et al., 1999). We use the upper limit of neurons to be
expected as discussed above and hence only extract M̂max independent components. Symmetric
is preferred over deflationary orthogonalization as that avoids the accumulation of estimation
errors and privileges no source estimate over others (Hyvärinen et al., 2001).

Spike time identification. Due to the sign ambiguity of ICA, all source activations get sign-
flipped if they exhibit positive skewness values. This guarantees that all peaks that are caused
by action potentials become negative. For each source activation we estimate the noise standard
deviation with the median absolute deviation (MAD) estimator for N (0, σ) distributed data
(Donoho, 1995), which was shown to be robust for various firing rates (Quiroga et al., 2004):

σ̂ = median

( |x|
0.6745

)
(3.10)

2The extraction of too many components from overdetermined (N > M) HD-MEA data yields a certain fraction
of overlearned source activations with single large bumps that should not be confounded with spike instances
of actual neurons.
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Spike times are determined by peak positions of the upsampled source activations that exceed a
multiple of σ̂. Only the extremum within 1 ms after a threshold crossing is accepted as a spike,
which effectively introduces a refractory period. The multiplication factor should be chosen as
the minimum amplitude (in units of σ̂) of the events used for ROI construction. We argue
that we thereby capture all relevant spikes, because we use a sensitive event detector and ICA
even increases the signal-to-noise ratio. Note that in contrast to section (3.3.2), one-dimensional
threshold detection is performed for each source dimension separately.

Removal of noise sources. All source activations have to exceed user specifiable minimum skew-
ness values and a minimum number of peaks to be further considered. All other sources are
considered noise and skipped already at the automatic stage. If these values are set conserva-
tively low, source activations can still be rapidly deleted at the verification stage (sec. 3.3.7) by
providing more rigorous threshold values.

Classification of source activations. Ideally, one would like to interpret each independent com-
ponent as the activation of a putative neuron. However, as ICA does not guarantee a complete
unmixing, we check for the following two deviations:

• One source activation may exhibit the activity of more than one neuron

Sometimes, one and the same source activation contains activity from more than one
underlying neuron. By comparison with ground truth data, we found that in these cases,
upsampled and peak aligned source waveforms are best separated by their amplitudes.
Therefore, we perform a fast 1-dimensional clustering of spike amplitudes by fitting a
Gaussian mixture model with unconstrained variance and automatic determination of the
number of underlying clusters using KlustaKwik (Harris et al., 2013). If more than one
cluster is found, only the largest one in terms of the Euclidean norm of its mean source
waveform is kept. Due to the overdeterminateness of the problem, we assume that the
spikes belonging to suppressed neurons become accepted on other components.

• One neuron might still contribute to more than one source activation

In this case, we aim to identify the component that best represents the given neuron
and remove redundant components. Multiple identification of one and the same underly-
ing neuron however might also occur due to overlapping regions of interest. We address
this general issue in section (3.3.6), as it is independent of the sorting applied locally.

3.3.6. Fusion of spike sorting results from different regions of interest

The proposed framework splits up the workload of spike sorting across ROIs that may partially
overlap. Therefore, we have to deal with possibly multiple identifications of one and the same
neuron.

The basic idea is to first decide which units have to be compared with each other according
to their spatial distance. Next, for nearby neurons a combined measure of spike time coinci-
dences and template similarity is used to figure out groups of redundant units that represent
only one underlying unit. We explicitly do not want to merge redundant units, but rather only
keep the best isolated one in order not to degrade single unit isolation qualities with noisy or
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mixture units.
In more detail, the identification of redundant units is organized as follows:

1. An adjacency matrix is constructed from the pairwise Euclidean distances of all putative
neurons found across all ROIs. This is a cheap operation, because we just need the unit
positions which are referred to by the spatial positions of the minima of the STA wave-
forms. Next we threshold this matrix (see section (3.6) for parameters) and determine
the connected components in the resulting binary matrix. Finding connected components
scales linearly with the number of vertices (units) and edges (distances) of the associated
graph (Hopcroft and Tarjan, 1971). Next, the actual search for redundant units is per-
formed within each spatially connected component separately. Thereby we do not compare
unnecessarily many units against each other while guaranteeing at the same time that all
potentially redundant instances of all units are checked for.

2. Within each spatially connected component, we identify redundant units based on tem-
plate waveform similarities and fractions of spike coincidences. The similarity cij of a
pair of temporally aligned average spatiotemporal waveforms i and j is measured by their
normalized scalar product:

cij =
∑
k xi,kxj,k√∑
k x

2
i,k

∑
k x

2
j,k

(3.11)

with xi,k, xj,k denoting the voltage values of the k-th space-time pixel (k runs over the set
union of sensors of participating ROIs and the temporal intersection of the aligned average
waveforms) of the i-th and j-th average waveform respectively. This measure was found
to be a good similarity criterion for denoised extracellular multichannel waveforms (Leibig
et al., 2011, 2012).
Spike time coincidence is determined as described in section (2.5). We construct a M-by-
M similarity matrix and a M -by-M spike coincidence fraction matrix for M units in the
current spatial component. Both matrices are transformed into binary ones by respective
thresholds and logically ANDed. On the resulting combined criteria matrix we identify
again the connected components. The number of connected components is interpreted
as the number of echt underlying units. For each connected component of the combined
criteria matrix we just keep the most separable unit. Separability of any unit i is measured
using the mean absolute amplitude āi of its cluster and subtract the same quantity if there
is any other cluster q present on the same source component (in units of σ̂ as defined by
eq. 3.10):

SEPisource = āi − āq 6=i (3.12)

Note that we could evaluate the same separability criterion for any other locally applied
spike sorting algorithm that tries to invert the generative model (eq. 1.6) in order to recover
estimates of continuous valued source activations ŝt. An example of such an algorithm was
proposed by Ekanadham et al. (2013).

In conclusion, we effectively remove higher order redundancy in one step instead of conventionally
merging duplicate candidates in a sequential fashion. Figure (3.4) shows a simple example for
a synthetic recording with two correlated neurons (the same as in figures (1.6) and (4.7)) for
which in step (1) we obtain just one spatially connected component. Leftover redundancy is
here attributable to the incomplete unmixing of instantaneous ICA. Note that not all of the
six units found prior to the redundancy reduction step are perfectly sorted (some exhibit false
negative spikes), but the best sorted ones can be correctly identified. If one of the candidates
would exhibit false positive spikes, a merging would degrade the sorting quality.
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Figure 3.4.: Illustration of redundancy reduction. The example is based on surrogate data
with two neurons whose first 20% spikes occur synchronously. Prior to redundancy
reduction six putative units were found. (A) Requiring a minimum coincident spike
fraction (left) of 0.3 and a minimum similarity (middle) of 0.5 for the average wave-
forms (STAs) and logically ANDing the two thresholded matrices results in the
combined criteria matrix (right) which exhibits two connected components reflect-
ing the two underlying neurons. (B) Source activations of the units, grouped by the
connected component identity from (A, right). (Top) Unit 3 is more separable (see
legend) than 1, 2 and 4 and hence will be kept to represent one neuron. (Bottom)
The second neuron will be represented accordingly by unit 5.
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3.3.7. Visualization of automatic spike sorting results

Figure 3.5.: Visualization of automatic sorting results and user interface for semiau-
tomatic postprocessing.

Upon completion of the automatic sorting stage, an interactive visualization tool (fig. 3.5) as-
sists in verifying putative units. Automatically preset thresholds can be adjusted if necessary.
Redundantly identified as well as poorly isolated units can be removed without the need of
touching each unit individually as will be discussed further. The graphical user interface (GUI)
was designed in such a way that informative dimensions are immediately visible for the currently
selected unit: its spatial position and its spiking pattern, in which a lot of information is buried.
The visualization of at least a part of the spike history is sometimes very useful for recognizing
separable units. Additionally, the GUI allows for interactive views into the raw data and average
waveforms (STAs).

The removal of redundantly identified units could in principle already be performed during the
completely automatic stage, however this depends on the quality of the amplitude clustering.
Therefore, unit states are set to “unchecked” by default, encouraging revision of thresholds by
the user. After thresholds are revised or explicitly accepted as set by the automatic stage, the
automatic redundancy reduction stage described in section (3.3.6) can be triggered by the user.

Apart from single units (well isolated, can be associated with one single true neuron), the
result of the automatic sorting stage typically contains as well contaminated, i.e. mixture units
(may exhibit false negative or false positive spikes; The latter may either be noise peaks or spikes
from other true neurons). In a real world scenario, there will be a continuum between single
and increasingly hard to isolate mixture units, ultimately constrained by the noise level of the
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recording device. Nevertheless, users typically make a binary decision whether to include a unit
or not into subsequent analysis steps. For examples of a human observer based classification
into single and mixture units obtained from spike sorting a RGC recording, see figure (3.6).
This labeling strategy however becomes too costly for hundreds of units, prohibiting an efficient
workflow. Therefore, the aspect of unit isolation quality is dealt with as follows. Unit/source
indices can be sorted and pruned according to the following features:

• separability - as defined in equation (3.12) and motivated by Jäckel et al. (2012).

• Isolation information IsoI(P,Q) between distributions P and Q was proposed by Neymotin
et al. (2011) as a method and parameter independent, information theoretic measure with
universal interpretation. Briefly, it is a symmetrized version of the Kullback-Leibler diver-
gence (KLD) (Kullback and Leibler, 1951):

IsoI(P,Q) = KLD(P,Q) ·KLD(Q,P )
KLD(P,Q) + KLD(Q,P ) (3.13)

with
KLD(P,Q) =

∫
p(x) log p(x)

q(x)dx (3.14)

p(x) and q(x) are the distributions, or “feature cluster”. x may in general be high-
dimensional, for which Neymotin et al. (2011) use a nearest-neighbor approach to calculate
the KLDs. Here, x refers to the amplitudes of threshold crossings on the source activa-
tions and is hence 1D. Therefore, we use here kernel density estimation via diffusion (Botev
et al., 2010) to smoothly approximate p(x) and q(x). P always refers to the cluster under
consideration, i.e. all spike amplitudes accepted for a given source. Q either refers to the
nearest neighboring cluster (NN) or the background (Bg, all other TCEs). According to
this notation, we evaluate the features IsoI(C,NN) and IsoI(C,Bg). Note that for a single
threshold level, NN and Bg are equivalent.

• RSTD - The standard deviation (STD) of spike amplitudes (Pouzat et al., 2002) and the
normalized (by the mean amplitude) version RSTD (Jäckel et al., 2012) had been suggested
and used as measures to detect units that contain contributions from multiple neurons.

• Skewness (n = 3) and kurtosis (n = 4), i.e. the n-th order standardized moments of source
activations. For each source activation i, the sample moment is estimated as:

µ̂n(si) =
1
T

∑T
t=1(si,t − s̄i)n(√

1
T

∑T
t=1(si,t − s̄i)2

)n (3.15)

Source activations with neural signals tend to have both high skewness and kurtosis values.
Note that somatic APs are more asymmetric as opposed to axonal APs. Requiring source
activations to have high skewness values helps to separate somatic from potentially leftover
axonal signals.

• SNR - Extremum of the average waveform in the raw data, normalized by σ̂ of the respec-
tive sensor.

In section (3.4.3) it is assessed how these features are selective for those units that do not exceed
a maximally tolerated error rate.
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3.4. Results

3.4.1. Characterization of recorded retinal ganglion cell activity

The framework presented in section (3.3) was used to spike sort data from light stimulated
guinea pig RGC activity recorded with the array presented by Lambacher et al. (2011) (5 sec-
onds, every second column sampled with 12.2 kHz). Here, we assessed the difficulty of this type
of data by extracting as many units as possible, regardless of their quality. This will inform
about reasonable parameters for simulations resembling real recordings.
Regions of interest were therefore kept small and redundant by only merging them in case of
a pairwise overlap of at least 0.8. Instead of relying on the estimation of M̂max (eq. 3.8) in
the first place, we extracted as many independent components as possible from each ROI and
used the final sorting result to evaluate the estimation of M̂max (sec. 3.6, fig. 3.12). Remaining
parameters were set to their default values as described in the Supplementary (sec. 3.6). After
the removal of redundantly identified units, 242 were left. Their spatial arrangement is shown
in figure (3.5). The union area of all regions of interest evaluated to 0.49mm2, resulting in a
unit density of 489.9units/mm2 - averaged across ROIs (the maximal density within a single
ROI evaluated to 1014.5units/mm2).

In order to account for hard to isolate units due to low signal to noise ratios in the raw data, units
were classified into single (132) vs. mixture (110) units by eye inspection as follows. Amplitude
thresholds that had been set according to the automatic stage described above were verified
and if necessary adjusted to capture the most appropriate local minimum. If a cluster of spikes
was separable from either noise or lower amplitude spikes (see fig. 3.6, A) the corresponding
unit was considered to be of type single. Otherwise it was labeled as a mixture unit to account
for potential contaminations of spikes from other neurons or false positive noise peaks (see fig.
3.6, B for an example). Note that even though the unit from figure (3.6, B) was considered a
mixture, its (somatic) spike triggered average shown in (fig. 3.6, C), emits just one axonal trace.
Assuming equal coupling we can infer that the contribution of additional units was minor. Due
to the overlapping spike and noise amplitude distribution (fig. 3.6, B, right), false positive noise
peaks and spike misses are likely. Trivially, these are not visible in the averaged activity. Figure
(3.6, D) reveals that mixture units tend to have lower SNRs in the raw recording. We conclude
that a reasonable SNR range for simulations spans 3 to 12 for the given setup, i.e. the spike
sorting algorithm applied to the tissue/array combination. A simulated recording resembling
the dataset of this section will be used for performance evaluations in section (3.4.3).
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Figure 3.6.: Illustration of unit isolation quality in real recordings. (A) Exemplary
“single unit”. See text for further explanation. (Left) Upsampled source activation
with threshold crossings marked as either belonging to the unit (green) or not (red).
(Middle) Cutout source waveforms around threshold crossings from left. (Right)
Amplitude histogram of threshold crossings. Redlines in all three subplots indicate
automatically set, but adjustable threshold levels. (B) Same as in A, but for a
“mixture unit”. Note that the spike amplitudes overlap with the noise distribution.
(C) Spike triggered average for the valid (green) threshold crossings in B. The gray
scale is centered around zero and cropped for visualization purposes (the largest
absolute value of (-)0.69 mV belongs to the somatic AP) (D) Frequency of mixture
vs. single units over their respective average signal-to-noise ratio in the raw data.

3.4.2. Influence of region of interest sizes on spike sorting results

Here we investigated whether the spike trains of an isolated subset of units was consistent across
different choices of regions of interest. The data and sorting results from the previous section
were reanalyzed. There, spike sorting had been performed with rather small regions of interest
(mean size ± std = 35.1± 28.2 sensors). To generate larger ROIs, pairs of ROIs were merged if
they exceeded a pairwise overlap of 0.1 (compared to 0.8 in the previous section). The maximum
size constraint was relaxed from 128 to 300 sensors. The resulting ROIs had an average size
of 98.6 sensors. After deleting units based on selective features (min. separability = 5; min.
kurtosis = 3.7) all remaining units were revised in terms of their automatically set, but adjustable
amplitude thresholds. Due to the pruning of units based on selective feature scores, here only a
total of 81 single units were accepted in contrast to 132 single units under section (3.4.1) where
as many units as possible had been extracted. The single units from the larger ROI sorting were
paired and aligned with the result of the previous sorting. Unit positions (template extrema)
were allowed to be maximally 37µm apart to be paired; parameters for spike train alignment
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were set to their default values (ts = 0.5ms and tj = 1ms, see section 2.5). Error rates were
calculated in the same way as for a conventional evaluation (see section 2.6) by pretending
that the units obtained from the larger ROI distribution were the ground truth. For 80 units,
the spike trains were identical. One unit from the larger ROI distribution (the 23rd) was not
found in the data set with smaller ROIs. Interestingly, the particular ROI, that unit should be
located in, was exactly the same for the two different ROI parameter settings. A rerun of the
fastICA stage revealed the presence of the missed unit. Hence the difference was most likely
a random/numerical effect attributable to the fastICA algorithm. We conclude that the spike
trains obtained from different ROI size distributions were consistent.3
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Figure 3.7.: Spike sorting results from RGC data for larger (A) vs. smaller (B) regions
of interest. (A) Single unit positions from ROIs with mean size ± std = 98.6± 91
sensors are indicated by their indices. (B) With smaller regions of interest (mean size
± std = 35.1±28.2 sensors) 132 single units had been isolated in the sorting presented
under section 3.4.1. Here, only those unit indices that were associated (compare
section 2.5) with a unit obtained from the larger ROIs (A) are shown. Spike trains
retrieved from different ROI size distributions were found to be consistent.

3.4.3. Performance evaluation based on simulated recordings

To assess the performance of the framework described in (sec. 3.3), we simulated a record-
ing with similar characteristics as those found by applying it to the dataset of RGC activity
(compare sec. 3.4.1): 196 ground truth units obtained from 19 previously generated templates
(described in more detail under sec. 4.4.1) were arranged to a rectangular grid achieving a den-
sity of 1141 neurons mm−2. Neuron-wise mean signal-to-noise ratios were drawn from a uniform
distribution between 3 and 12. Spike amplitudes were normally distributed around mean SNRs
by multiplicative scaling factors drawn from N (1, 0.1). Firing rates were drawn for each neuron
separately from a uniform distribution between 10 and 50 spikes/second resulting in 27 % of all
spikes to participate in spatiotemporal overlaps (max. spatial distance: 37µm, max. temporal
distance: 1ms). Noise was additive and Gaussian.
We performed a purely automatic sorting on this simulated recording without adjusting any

3This conclusion is supported by sorting synthetic data with smaller ROIs (max. size 128 sensors) vs. larger
ROIs (max. size 900 sensors); data not shown.
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amplitude thresholds (compare sec. 3.3.7). The result of the sorting was used in the following
to assess the performance achieved in terms of isolating all true spike trains and its natural
degradation with decreasing ground truth SNR (in sec. 3.4.3). Thereafter, in section (3.4.3),
it was analyzed how well units below a certain error rate could be separated from units with
higher error rates without having to inspect every unit individually4.

Identification of all true neurons

We paired each true spike train with the best matching - in terms of achieving the lowest
error rate - sorted spike train as described in (sec. 2.5). Sorting performance was assessed by
calculating the error rates from the perspective of each ground truth unit as explained in (sec.
2.6). Figure (3.8, A) shows that higher ground truth SNR lead to lower error rates. Figure (3.8,
B) displays the distribution of error rates for all true neurons. 81 % of all true neurons were
resolved with an error rate of maximally 2 %. When considering all true neurons except the
lowest two mean SNR levels, 91.3 % were identified with a maximum error rate of 2 %.
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Figure 3.8.: Performance of framework on simulated recordings. (A) Error rates over
signal to noise ratios of 196 ground truth neurons. (B) Distribution of error rates
for all true neurons regardless of their SNR.

Rapid retrieval of well sorted units

Depending on the purpose of a spike train analysis that relies on sorted spike trains, different
levels of accuracy might be required. In the context of an actual experiment for which sorting
errors cannot be computed due to the absence of ground truth, it would be helpful if one could
identify a set of neurons that does not undermine the necessary sorting quality.
As a substitute for the error rates, one or several of the features defined in section (3.3.7) could
be used in principle. Here, we established quantitatively to what extent that were possible.

Figure (3.9) visualizes how individual features depended on the error rate.

4Except for final approval prior to further spike train analysis
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Figure 3.9.: Relationships between error rates and different features for sorted/true
unit pairs as obtained from the sorting described in (sec. 3.4.3). For
features definitions see section (3.3.7).

Using this data, we trained classifiers with 10-fold cross-validation in order to separate all units
up to a maximally accepted error rate from the rest, i.e. those units that exhibited inferior
sorting quality. This can only be tested in a supervised setting, i.e. by using the error rates with
respect to the true spike trains and labeling all units according to whether they exhibited an
error rate up to vs. higher than the maximally tolerated error rate. Unfortunately, no classifier,
neither trained on individual features nor a combination of them was able to perfectly separate
the two classes for any chosen maximal error rate (compare sec. 3.6). Therefore, weighting the
contribution of false positives vs. false negatives is essential to specify an appropriate decision
function for the classifier. Because the goal was to find those units that did not undermine a
desired sorting quality, we fixed the accepted false positive contribution from units with inferior
sorting quality to 0.001 at the cost of losing well sorted units. Figure (3.10) shows the maximally
accepted error rate vs. the fraction (normalized to all 196 true neurons) of sorted units -
constraint by this sorting quality - that were identified by flexible naive Bayes classifiers (John
and Langley, 1995) from the automatic sorting result (sec. 3.4.3). The classifiers were trained
on either individual or combined feature (sec. 3.3.7) scores. If, for example the desired sorting
quality should not be worse than 2% error rate (per neuron), the evaluation of the automatic
sorting stage had revealed that 81% of the neurons reached this quality. However, how to get
rid of the remaining 19% more contaminated spike trains becomes increasingly laborious with
more and more neurons. If instead any of the individual or combined feature scores were used,
between 51% and 61% of the clean spike trains could be identified immediately without the need
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to inspect every single unit with inferior sorting quality. This constitutes a substantial reduction
in manual intervention enabling the rapid retrieval of a subset of spike trains with high sorting
quality.

A B

Figure 3.10.: Fraction of neurons with up to maximally accepted sorting quality (x-
axis) that could be retrieved via rapid post-processing automatic spike
sorting results. Neuron retrieval was based on training flexible naive Bayes
classifiers (John and Langley, 1995) on either individual or combined feature (sec.
3.3.7) scores. In the absence of ground truth, rapid post-processing means to
delete sorted units based on either of their feature scores. This bypasses manual
inspection of every unit which would allow to identify as many units as obtained
from the automatic sorting stage (thick black line, described in 3.4.3). The y-axis
is normalized to the number of true neurons (196). The accepted contamination
from units that exhibit error rates larger than the maximally accepted error rate
was set to 0.001.

3.5. Discussion

We presented a framework for spike sorting data from CMOS based HD-MEAs that provide
subcellular sensor distances and thousands of electrodes. The algorithm used here achieved the
exact identification for a subset of neurons. As any algorithm is ultimately limited by the data
quality of the recording device, rapid means of isolating units up to an accepted level of contam-
ination with different proxies for error rates were developed and evaluated. In the following, we
discuss the relationship to other work and potential improvements.

Low SNR sensitive detection of extracellular action potentials. The way of performing low SNR
sensitive event detection was inspired by the work of Lambacher et al. (2011), but generalized
for arbitrary environment sizes. If noise correlations were taken into account, the hyperspherical
thresholding surface became hyperellipsoidal (Rebrik et al., 1999). However, prior to any spike
detection it is difficult to identify pure noise regions in the data. Furthermore, it is computation-
ally expensive to estimate the noise covariance for the full dataset. Therefore, we neglected noise
correlations at this stage and expected them to be filtered out by means of the later ICA stage.
The proposed spike detection may in principle be replaced by other approaches, as long as they
capture the spatial extent of action potentials. For a comparison of different methods formulated
for a fixed number of channels see Franke (2011), chapter 4. Note however, that these methods
work on a predefined set of electrodes and output a single reference point in case of a spike occur-
rence instead of an arbitrarily shaped set of data points which is needed for the ROI construction.
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Regions-of-interest. Our proposed method of constructing regions of interest is the first - to
our knowledge - that seeks a compromise between minimizing redundant evaluation of similar
data regions and disentangling temporal from spatiotemporal overlap regions. This provides a
convenient way to solve the local problems in parallel. Furthermore, its boundaries are adaptive
to arbitrarily shaped coupling areas of neurons. We have shown that different ROI size distri-
butions yielded consistent spike trains. Recently, Engel and Hanisch (2014) have proposed a
method to estimate cell-electrode adjacencies for each neuron separately. This graph theoretic
approach is in essence similar to ours but aims to estimate an ROI for each neuron separately
without knowing the number of neurons. This seems very appealing, however as effectively a
clustering is performed, overlaps are not taken into account. It therefore remains to be shown
whether a robust estimation of the number of neurons via this approach is possible under higher
spike densities and non-stationary waveforms.

Upper bound of neuron number per ROI. We have shown that it is possible to estimate an
upper bound for the number of neurons per ROI from the sensor correlations. Note that ROIs
may even contain signals from the periphery of nearby neurons. One should be aware of, that
for small ROI sizes, the fraction of neurons over sensors therefore effectively increases and the
problems become less overdetermined from a blind source separation perspective.

Local ICA based spike sorting. The exemplary ICA-based algorithm applied to each region-
of-interest was motivated by the work of Jäckel et al. (2012) which thoroughly evaluated the
applicability of ICA for spike sorting data from 90 electrodes arranged in a hexagonal grid with
a sensor spacing of 19 µm. ICA was found to improve signal-to-noise ratios and reduce redun-
dancy of the neuronal spiking signals, thereby achieving a useful preprocessing for spike sorting.
With respect to the applied post-processing, we point out the following differences:
First, we did not observe performance improvements when clustering PCA-reduced, cut-out IC
waveforms as opposed to a one-dimensional amplitude clustering in order to separate contribu-
tions from different neurons onto the same IC. This reduces the computational load. Automatic
clustering of IC waveforms sometimes failed for bursting neurons that exhibit non-Gaussian am-
plitude variability. Replacing the Gaussian mixture model with a student’s t mixture model
could (Takekawa et al., 2012; Shoham et al., 2003) potentially alleviate this problem.
Second, we did not apply the algorithm iteratively in order to extract smaller units, that were
hidden in previous iterations by units with larger SNR, because that would formally require
to know the amplitudes of individual spikes. However, we argue that with a sufficiently high
sensor resolution and small ROIs, units from within a planar layer should be sortable in a single
iteration. This again results in shorter computation times.
Finally, due to the decomposition of the array into regions of interest, redundantly identified
units have to be dealt with anyway, independent of the locally applied sorting algorithm. Hence,
there is no need to separately target the incomplete redundancy reduction of the ICA stage.

Potential improvement of local spike sorting. The framework is independent of the algorithm
used to spike sort each region of interest. Alternative approaches could either be applied to all
sensor traces of a region-of-interest or to the ICA reduced space, making use of the increase in
SNR and redundancy reduction of neuronal signals. For other work that uses ICA for prepro-
cessing see (Hermle et al., 2005; Snellings et al., 2006).
Here we used a simple blind source separation based algorithm. The mixture model for instan-
taneous ICA (eq. 3.9) is agnostic to the temporal structure of action potentials which exhibit
extracellular nonlinearities as pointed to previously (Shiraishi et al., 2009; Jäckel et al., 2012).
A single mixing matrix can only approximate the generative model of extracellular data. There-
fore, we investigated whether the relaxation of this approximation and the source estimation
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with convolutive ICA (Dyrholm, 2005), which is in line with the generative model, improved
sorting performance in a separate study (chapter 4).
As pointed to in the introduction, recent developments of spike sorting algorithms (Pillow et al.,
2013; Ekanadham et al., 2013; Franke, 2011; Haga et al., 2013) often focus on the situation where
at least the templates and thereby the number of neurons and sometimes even initial spike train
estimates are known. The framework presented here could be used as an initialization stage,
with subsequent application of supervised methods e.g. again per region of interest. Yet, it
remains to be clarified which of these algorithms succeed in terms of computational expenses,
accuracy and robustness to deviations from assumptions that the underlying models make. An-
other open question is, whether the supervised algorithms can deal with scenarios for which not
all templates were identified as this is an extremely hard task. If unidentified templates were to
be treated as noise, this might require to change the noise models.

Fusion of spike sorting results from different regions of interest. For a group of redundant com-
ponents, we just picked the most separable one. The measure used therefore is a blind version
of the separability criterion defined by Jäckel et al. (2012). Previous work usually merged dupli-
cated components. We point out that the merging of a unit contaminated by false positive spikes
with a clean unit degrades sorting performance. The proposed method is new in the sense that
it accounts quasi-simultaneously for all redundant candidates, instead of performing pairwise
merges in a sequential fashion. Redundant identification of units by overlapping ROIs could in
principle help to increase confidence about unit identities. We did not use this information so
far, as intentionally not all sensors were redundantly evaluated in the first place.

Design of user interface. Recent methods cast the spike sorting problem as one of inverting
a sparse linear model, which is either solved with greedy approaches (Pillow et al., 2013) or
via convex relaxation (Ekanadham et al., 2013). In the latter case, source (neuron) activations
are continuous-valued instead of binary and user adjustment of amplitude thresholds is encour-
aged. This is also the case for methods that explicitly address spike amplitude variability (Marre
et al., 2012). The low-dimensional visualization of the very high-dimensional data from large-
scale HD-MEAs immediately presents all relevant information of a selected neuron to the user:
their spatial location in relation to other units, as well as its spiking pattern. Accounting for the
spike train history of a neuron was shown to be important for spike sorting (Ventura and Gerkin,
2012) but current models do not (yet) capture that. Nevertheless, in certain cases, the visualized
spiking pattern seems very informative to human observers. The user interface presented here is
therefore suitable not only for blind source separation based spike sorting algorithms but should
be of general interest to the community as it allows for rapid verification and post-processing of
automatic sorting results.

Manual intervention. User intervention is still the de facto standard for the unsupervised part
of spike sorting algorithms. So far it is even questionable, whether it can actually be completely
removed. Recent work aimed to reduce manual intervention after the unsupervised clustering
stages such that it scaled roughly linearly with the number of neurons (Prentice et al., 2011;
Marre et al., 2012). Particularly, the adjustment of amplitude thresholds is required by recent ap-
proaches: This is either because the clustering does not capture the amplitude variability (Marre
et al., 2012) or due to the convex relaxation of prior spike probability distributions (Ekanadham
et al., 2013). For a scenario of several hundred neurons, that may even be identified redundantly
this already becomes very tedious and rapid means of accessing well isolated neurons become
very important. The presented approach for automatic redundancy reduction (3.3.6) together
with the identification and evaluation of selective features for rapidly retrieving well sorted units
(sec. 3.4.3) provides valuable means to accelerate manual post-processing. Once the templates
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are known, analytical thresholds can be formulated (Franke, 2011).

Unit isolation quality and error rates. In the absence of ground truth, it is not possible to
calculate the true error rate of sorted units. Nevertheless, it would be desirable to assess the
isolation quality. We quantitatively assessed for various features whether they were suitable
proxies for error rates. Such a relationship had as well been used recently to estimate the error
rate from the sensitivity to the spike rate, a free parameter in the particular model from Pil-
low et al. (2013). For the correct estimation of neuronal correlations, spike sorting errors have
dramatic and biasing effects as shown in Ventura and Gerkin (2012). As long as spike sorting
errors are unknown in practice and/or not accounted for in subsequent spike train analysis, it
is recommended to isolate the perfectly sorted units, for example with the features assessed in
this work. To facilitate the comparison with other studies, we propose to quantify the isolation
quality of sorted units with the isolation information measures proposed by (Neymotin et al.,
2011) which was adapted here for the 1D case of continuous-valued source activations.

Relation to optical recordings. Extracellular voltage recordings of action potentials cannot neces-
sarily be approximated as instantaneous mixtures (see chapter 4). However, for optical imaging
techniques that measure correlates of intracellular quantities the instantaneous mixture assump-
tion seems more appropriate. This seems to alleviate several aspects. For example, Hill (2010)
do not report about problems with nonlinearities in case of ICA based spike sorting to unmix
fast voltage-sensitive dye recordings. The work of Pnevmatikakis and Paninski (2013) states
that the exact number of neurons can be determined from denoised calcium imaging data whose
superposition in terms of source contributions is modeled with a single mixing matrix (compare
section 3.3.4). In conclusion, the presented approach should in principle be well suited to extract
spike trains from large and dense optical recordings that map the action potential time courses
with sufficiently high temporal resolution. This is the case for fast-voltage sensitive dyes (Hill,
2010) but not for calcium imaging. The long decay times of calcium signals require more efforts
to identify spike arrival times (Vogelstein et al., 2010).

We conclude, that the presented framework constitutes a fully unsupervised spike sorting that
allows to extract a major fraction of units with high accuracy. This work thus helps to overcome
the current bottleneck with respect to handling the large scale datasets produced by dense arrays
that simultaneously image the extracellular activity from hundreds of neurons.

3.6. Supplementary Materials

Multidimensional threshold detection

The multidimensional threshold detection assumes APs to be sensed across several datapoints
that are adjacent in space or time. Especially towards the periphery of extracellular APs, the
fraction of data points that exhibit signal decreases. Figure (3.11) illustrates the minimally de-
tectable signal over the degree of coupling (the number of datapoints out of k that exhibit signal)
for different environment sizes k. For simplicity, the signal energy each datapoint contributes to
the multidimensional signal is assumed to be the same. The larger the degree of coupling, the
smaller the minimally detectable signal. For any fixed degree of coupling, a larger environment
k decreases the minimally detectable signal. Because threshold crossings are grouped via con-
nected components, k may be chosen smaller than the actual extent of neural signals in order
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to increase the degree of coupling and to deal with different AP sizes.
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Figure 3.11.: Minimally detectable signals over degree of coupling for different en-
vironment sizes. The false positive rate is fixed for all combinations of the
environment size k and the degree of coupling dc to be 10−8. The coupling sce-
nario is binary: signals are either fully present at a datapoint of the environment
or not at all. The degree of coupling is defined as the number data points that
contain signal, normalized by the environment size k.

Second order statistics

The instantaneous data covariance matrix Cx of the mixing model (eq. 1.6) is given by:

Cx = 〈xtxTt 〉 = 〈

 L∑
τ1=0

Aτ1st−τ1 + εt

 ·
 L∑
τ2=0

Aτ2st−τ2 + εt

T 〉 (3.16)

Assuming the spiking activity to be uncorrelated with the noise, this simplifies to the addition
of the signal covariance Cs and the noise covariance Cn without any cross-terms:

Cx =
L∑

τ1,τ2

Aτ1〈st−τ1sTt−τ2〉A
T
τ2 + 〈εtεTt 〉 = Cs + Cn.
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For the special case of stationary sources all source auto- and cross-correlation up to a maximum
lag L as well as their scaling can be explained by the mixing matrices. The instantaneous signal
covariance matrix can therefore be written as:

Cs =
L∑
τ=0

AτAT
τ (3.17)

Methods for estimating the number of neurons from eigenvalue spectra

Different methods for thresholding the eigenvalue spectrum Λx of the data covariance matrix
(compare sec. 3.3.4) were evaluated based on the independently obtained sorting results de-
scribed in section (3.4.1). Results are shown in figure (3.12). As the number of neurons should
not be underestimated, only methods for which all estimates were below the identity line could
be accepted. From these, the median based estimator (3.8) approximated the true (here found)
number of neurons best.
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Figure 3.12.: ROI wise estimated upper bound for the number of units (M̂max) by
thresholding the eigenvalue spectra of the local data covariance matrices
with different methods. The found number of units were obtained from the
sorting described in section (3.4.1). Median: Corresponds to (eq. 3.8). Kde: As
in equation (3.8) but with the mode of the eigenvalue distribution obtained from
a kernel density estimate instead of the median. LinearFit: The noise shoulder
was approximated via linear fitting. AIC (Akaike’s information criterion) and
MDL (minimum description length): Information theoretic criteria proposed by
Karhunen and Cichocki (1997). Marker symbols were jittered for visualization
purposes.

Isolation of well sorted units

For the spike sorting under section (3.4.3), we did not have to remove all redundantly identified
or spurious5 units because the evaluation by itself took care of matching each ground truth unit
with that sorted unit that achieved the lowest error rate. Here, we used this data in order to
analyze whether the features proposed under (sec. 3.3.7) were selective for those units that
best represented true neurons in the first place. From the sorting result, 578 putative units
had been paired with the 196 ground truth units as described in (sec. 2.5). This resulted in
196 pairs with 195 unique, sorted units and 1 sorted unit that had been associated with two

5due to conservative values set for the automatic removal of noise sources
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different ground truth units. Accordingly, 383 unpaired sorted units were left. We calculated
histograms (fig. 3.13) for all sorted units (578) conditioned on their labels “paired” (195) and
in return “unpaired” (383). The performance evaluation against true spike trains (sec. 3.4.3)
might suggest to simply accept only those units with a sufficiently high SNR. However, it turned
out that the SNR as computed from sorted units was not selective for paired units (fig. 3.13,
first subplot). This is because the SNR is calculated in the original signal space, that is unaware
of a potentially bad representation in the source space. The RSTD was not selective for paired
units either. However, both very small and very large values tended to indicate sources for
which the threshold should have been adapted manually and hence RSTD helps in case of user
intervention. All other features exhibit a shift of their paired distribution with respect to the
unpaired distribution towards higher absolute values.

In conclusion, any feature except for SNR or RSTD can be used to delete a major fraction
of redundantly identified or spurious units. This can be seen as a computationally cheap backup
for the fusion of results from different regions of interest (sec. 3.3.6) which becomes increasingly
hard for poorly identified units.

Figure 3.13.: Histograms of feature values from 578 sorted units, conditioned on
whether they were paired or not (unpaired) with one of the 196 ground
truth units by the performance evaluation (sec. 3.4.3). Features are de-
fined in (sec. 3.3.7). Unpaired units may be redundantly identified single units or
poorly sorted ones. The pairing of a ground truth with the best matching sorted
unit is described in (sec. 2.6). See text in (sec. 3.4.3) for further details.
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Separability of sorting qualities assessed with SVMs

Here we show that well sorted units were not perfectly separable from the rest for any chosen
maximal error rate. For each maximum error rate between 0 and 1 in steps of 0.001, we trained
support vector machines (SVMs) Cortes and Vapnik (1995) with 10-fold cross-validation on
different features and evaluated the rate of correct classifications. The linear classifiers were
trained for each of the features separately as well as for the scores of the first 3 principal
components6 of the combined feature space7. The top row of figure 3.14 shows the cumulative
distribution of error rates, measured as the percentage of all units. The bottom row shows the
correct classification rate as achieved by the SVMs for the corresponding maximally accepted
error rate.
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Figure 3.14.: Isolation of units below maximum error rate based on individual and
combined features. (Top row). Cumulative distribution of error rates, normal-
ized by the total number of paired units. (Bottom row). Correct classification
rate over maximum error rate for SVM based separation of units with error rates
below maximally accepted level from the rest. “Combined feat.” refers to the first
3 PCs of the space spanned by combining the zscores of the features. (Left vs.
Right). Linear vs. log scale.

6These accounted for 97 % of the total variance
7Each feature was centered around its mean and scaled to unit variance
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None of the SVMs was able to completely separate “well sorted” units from the rest, no matter
whether trained on the individual features or the combined features. This was the case for
both linear kernels (underlying figure 3.14) as well as for nonlinear ones (data not shown).
Nevertheless, all of the classifiers achieved correct classification rates of at least roughly 60 %
for the perfectly sorted units. Correct rates increased with higher accepted error rates. The
combination of features did not remarkably improve the performance. Note however, that the
objective of the classifiers was to separate the two classes, i.e. to maximize the number of correct
classifications. At the cost of loosing well isolated units, it is possible to reduce the contribution
of more contaminated ones. This was analyzed in the main text (sec. 3.4.3).

Default parameters

To avoid cluttering the main text, but promote reproducibility, we list here parameters that
are usually set to their default values for the results presented in this work. Depending on
the array/tissue combination or analysis purpose, different values might be appropriate. Where
suitable, guidelines for users of the framework are given.

• Low SNR sensitive spike detection. Threshold values for hyperspherical thresholding under
the assumption of uncorrelated, Gaussian noise are given by the inverse survival function
of the Chi-distribution (compare 3.3.2) and can be evaluated with statistical software pack-
ages (e.g. with scipy.stats.chi.isf from SciPy Oliphant (2007)). For the array presented in
Lambacher et al. (2011), the accepted rate of noise events crossing the threshold is set to
10−8. In case of retinal recordings and if neighboring columns are sampled, the environ-
ment k is set to k = 3 rows · 3 columns · 3 frames = 27, resulting in |x0| = 9.5. To keep
environment sizes symmetric in physical space, if only every second column is sampled, k
is accordingly set to k = 5 rows · 3 columns · 3 frames = 45, resulting in |x0| = 10.95. In
practice, the squares of the threshold values and the signal vector lengths |xs| are used for
numerical convenience.

• Regions-of-interest. The minimum frequency for a CoM sensor to be accepted as seed
for a ROI is set to 1 events/sec. If events are formed by connected components in space
only, we raise this value to 3 events/sec. (for 12 kHz sampling rate). The minimum
overlap between two ROIs to get merged is set low (0.1) to encourage merging. Thereby
we effectively control ROI sizes by constraining the maximum number of sensors allowed
in each. Smaller regions of interest require longer postprocessing times, but at the same
time tend to increase neuron yield. Choices may vary from about to 100 - 400 sensors. See
the main text for the influence of ROI sizes on sorting results.

• Dimensionality reduction. One can either extract directly as many independent compo-
nents as estimated from the eigenvalue spectra of the covariance matrix (compare sec.
3.3.4) or reduce the dimensionality to that number of principal components prior to per-
forming ICA. The latter is recommended for larger ROIs to avoid effects of overlearning.
Compare (Hyvärinen et al., 2001), chapter 13.

• Local spike sorting. Threshold values for spike time identification on source activations
should be set conservatively low in order to avoid false negatives. False positives will be
suppressed by the automatic threshold adaptation. In order to have enough samples from
the background or the nearest neighbor cluster for the calculation of isolation information
measures, it is recommended to set the threshold to 3σ̂. During the automatic stage,
sources are classified as noise if either their absolute skewness does not exceed 0.05 or they
exhibit a firing rate of less than 1 spike/sec..

59



3. A generic divide-and-conquer approach for spike sorting large and dense array data

• Fusion of spike sorting results from different regions of interest. This task requires to
specify three parameters. First, the maximum distance depends on the spatial extent
of somatic signals and the neuron density. For the data used in this work, choices vary
between 10 and 50 µm. Larger values may require longer computation times as more
neurons have to be compared against each other. This can be alleviated by performing 2
or 3 iterations with small starting, but incrementing values for the maximum distance.
Second, the minimum coincidence should be higher than the expected pairwise correlation
that neurons might exhibit. Here, we used values between 0.3 and 0.5.
Third, the minimum similarity between average waveforms (STAs) was set to 0.5 to 0.8.
Histograms of the coincidence and similarity values for the data at hand help to choose
reasonable values.

• Editable parameters in GUI. Parameters for the redundancy reduction discussed above
and the deletion of units that have selected feature values outside a specified range are
editable. To keep track of the parameter values that determine the final results, changes
are stored to a list that bundles all parameters. Whenever a parameter is changed such
that the new value deletes more units than the previous choice, the value in the final list
is updated.

3.7. Summary of chapter 3 and outlook to chapter 4

One of the major achievements of chapter 3 was to scale up spike sorting algorithms in order
to deal with large data from devices that provide simultaneous recordings from up to 104 chan-
nels. This was realized via solving the spike sorting problem for each local region-of-interest in
parallel. As we have seen for the case of particularly dense arrays, i.e. with more sensors than
neurons, ROIs may still comprise a couple of hundreds of sensors, rendering the straightforward
application of many previously developed algorithms inappropriate. Therefore dimensionality
reduction was performed by extracting from each ROI as many independent components as the
maximum number of neurons expected therein. Due to the benefits of that preprocessing, the
next chapter assesses the applicability of convolutive ICA to the local spike sorting problem, as
this class of algorithms might overcome the incomplete unmixing of the neural cocktail party
problem.
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4. Neural spike sorting for dense arrays with
convolutive ICA

4.1. Abstract

Unsupervised identification of spike trains from extracellular high-density (HD) micro-electrode
array (MEA) recordings is an important, but challenging and unresolved problem. Independent
component analysis (ICA), a promising approach for HD-MEA data, was found to achieve rapid
spike sorting while immediately accounting for overlaps. Standard ICA however ignores the
convolutive nature of extracellular data, limiting the unmixing to a subset of neurons.

Here we account for the convolutive structure of extracellular signals, and investigate whether the
relaxation of the instantaneity assumption in ICA based spike sorting improves the performance
for HD-MEAs. We found convolutive ICA (cICA) to be favorable over ICA in terms of Bayes
optimal model selection for retinal ganglion cell data. We developed a spike sorting algorithm
for hundreds of electrodes: (i) ICs are learned using fastICA; (ii) Groups of ICs which display
crosstalk are unmixed using convolutive ICA with an autoregressive inverse model Dyrholm
et al. (2007); (iv) The distributions of final IC threshold crossings are checked for multimodal-
ity, indicating remaining crosstalk, and classified as single units after removal of redundant units.

Spike sorting performance was assessed with ground truth data generated from HD-MEA record-
ings for a wide range of sensor-to-neuron ratios (1 to 16) and signal-to-noise ratios (3 to 12).
For the highest sensor-to-neuron ratio and a realistic dataset with varying signal to noise ratios,
more than 80% of the neurons were isolated with a maximum error rate of 2%. Exemplarily,
cICA was found to have beneficial effects over ICA. Overall spike sorting performance however
was dominated by ICA and the unavoidable postprocessing stages of the algorithm.

4.2. Introduction

Action potentials are the most important building block for information processing in neural
networks. State-of-the-art micro-electrode arrays (MEAs) can map the extracellular activity
of up to several hundreds of neurons with varying spatial and temporal resolution (Buzsáki,
2004; Litke et al., 2004; Blanche et al., 2005; Imfeld et al., 2008; Frey et al., 2009; Lambacher
et al., 2011; Marre et al., 2012; Zeck et al., 2011). The assignment of action potentials to their
causative units - spike sorting - is an important analysis step for many neuroscientific questions
as well as prosthetic applications, but the development of new data analysis methods lags be-
hind (Einevoll et al., 2011). Widely-used spike sorting methods are based on clustering spikes
based on waveform similarity (Quiroga, 2007; Lewicki, 1998). However, this approach suffers
fundamentally from the problem that action potentials which overlap in space and time due to
near-synchronous activity cannot be resolved (Pillow et al., 2013).
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Recently, methods for multiple electrodes which address the overlap problem (Segev et al., 2004;
Marre et al., 2012) have been developed, considering real-time capabilities (Franke, 2011) and
probabilistic modeling (Prentice et al., 2011; Pillow et al., 2013; Ekanadham et al., 2013). These
methods tackle overlaps by fitting combinations of prototypical extracellular multichannel wave-
forms (templates), which requires an initial clustering stage to find the templates. To deal with
the superposition of spikes, manual intervention is needed to accept, reject and/or refine tem-
plates, which does not scale well for thousands of channels. The above mentioned methods were
applied to a few hundred electrodes, and automated retrieval of templates remains a challenge
(Segev et al., 2004).

For HD-MEAs where the sensor density outweighs the neuron density, spike sorting could be fa-
cilitated by overdetermined blind source separation (BSS) methods. This would allow retrieving
templates while immediately accounting for overlapping activity. A prominent way to approach
the solution is independent component analysis (ICA) (Jutten and Herault, 1991; Comon, 1994;
Hyvärinen, 2013).
Benefits of applying ICA to the analysis of biomedical signals were discussed by Brown et al.
(2001). In particular, the spike sorting problem could be alleviated due to the following prop-
erties of ICA: (1) it is unsupervised, (2) achieves redundancy reduction, (3) separates artifacts
via differing statistics from signals, (4) increases the signal to noise ratio and (5) contributions
of neurons to different sensors can easily be retrieved via the learned (un)mixing matrices. Fur-
thermore, computationally efficient ICA algorithms, such as fastICA (Hyvärinen, 1999), could
speed up the spike sorting process.

For extracellular recordings of neuronal activity, different variants of ICA based spike sorting
algorithms were developed focusing on preprocessing, real-time capabilities or dealing with the
situation of having less electrodes than neurons (Takahashi et al., 2003a,b; Madany Mamlouk
et al., 2005; Takahashi and Sakurai, 2005; Hermle et al., 2005; Snellings et al., 2006; Tiganj and
Mboup, 2012).

All of the above mentioned approaches restrict spike templates to have linearly dependent wave-
forms across different channels, i.e. they assume neurons to be instantaneously mixed, neglecting
the temporal structure of extracellular voltage changes caused by APs. However, in contrast to
optical recordings of fast voltage sensitive dye activity (Hill, 2010), both for tetrodes (Shiraishi
et al., 2009) as well as for HD-MEAs (Jäckel et al., 2012), it was found that extracellular elec-
trophysiological recordings are not instantaneous mixtures of neuronal sources.
The necessity of developing ICA based spike sorting algorithms that relax the instantaneous
mixture assumption (i.e. the data is modeled with a single mixing matrix as in eq. 4.1), was
pointed out previously (Shiraishi et al., 2009; Tiganj and Mboup, 2012). The only methods
so far that model the data with several lagged mixing matrices (eq. 4.3), i.e. account for the
convolutive aspects of extracellular data in the context of ICA based spike sorting are those of
Jäckel and Frey (2011) and Shiraishi et al. (2011). However, both methods were only applied to
small scale datasets. We conclude that the problem was not sufficiently addressed so far.
Due to the benefits of instantaneous ICA, we aim to make use of the statistical independence as-
sumption (eq. 4.2) for blindly inverting the convolutive model and therefore focus on convolutive
ICA (cICA, Dyrholm, 2005).

We briefly discuss important properties of convolutive ICA (cICA) in the Methods section,
including the identifiability of sources, the invertibility of a convolutive mixture and the differ-
ent approaches in the literature to motivate the choice of the particular approach (CICAAR,
Dyrholm et al. (2007)) used here. CICAAR allows for a flexible treatment of both instantaneous
as well as convolutive contributions which is plausible in terms of the biophysics of action poten-
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tials and prevents from overfitting as explained in section (4.3.2). In section (4.3.3) we describe
a cICA based spike sorting algorithm that we developed to work for hundreds of channels. Both
via Bayes optimal model selection Schwarz (1978) and via measuring cross-channel linearities we
demonstrate in the result section that extracellular recordings from retinal ganglion cells exhibit
convolutive structure (sec. 4.4.1). After showing the qualitative advantages of convolutive over
instantaneous unmixing in section (4.4.2), the quantitative spike sorting performance is assessed
in sec. (4.4.3) with simulated recordings for which the ground truth is available. We find that
cICA does not outperform ICA based spike sorting under realistic scenarios. As cICA spike
sorting is appealing from a theoretical point of view and might be considered by other authors
as well, limiting factors and insights are discussed thoroughly in order to avoid duplicated work.

4.3. Methods

4.3.1. Convolutive ICA

The task of identifying both the mixing matrix and the sources from a linear mixture alone (eq.
4.1) is coined blind source separation (BSS) (Comon and Jutten, 2010). A particular approach
is independent component analysis (ICA), where the sources are assumed to be statistically
independent (eq. 4.2) in order to solve the problem. Equivalently, if the mixture is of convolutive
nature (eq. 4.3), we speak of convolutive BSS and convolutive ICA (cICA) respectively. However,
there are various different terminologies around in the literature. Importantly, cICA should not
be confused with methods that exploit the time structure of the source signals {st} (Hyvärinen
et al., 2001, chapter 18), in order to solve the instantaneous mixing model (eq. 4.1), such as e.g.
the work of Tong et al. (1990) or Molgedey and Schuster (1994). Both the work of Hyvärinen
et al. (2001) and Pedersen et al. (2007) provide structured reviews about the extensive literature
on convolutive BSS methods and their connection to ICA. A detailed treatment would be beyond
the scope of this work, but the main aspects relevant to the problem at hand are highlighted
here in oder to make this work self-contained. A vast amount of algorithms were proposed but
applications seem still to be very rare or at least are not reported about, hence we carefully
argue about the choice of a suitable algorithm.

The mathematical model

ICA assumes the data xt to be a linear superposition of hidden sources st:

xt = A · st (4.1)

Without knowing the mixing matrix A nor the underlying source activations st, (t = 0, ..., T ),
both can be learned if the components st are - instantaneously (i.e. for a given time t) -
statistically independent. In other words, their joint, multivariate distribution p(s1,t, ..., sM,t)
factorizes:

p(st) = p(s1,t, ..., sM,t) =
M∏
i=1

p(si,t) (4.2)

If ICA were able to achieve a complete unmixing, one could interpret the independent compo-
nent (IC) si,t, (t = 0, ..., T ) as the activation of a single neuron i, whose spike times are then
obtained simply by thresholding that time series. This approach allows to resolve overlaps by
construction as each participating neuron should exhibit a peak in its associated IC.
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Extracellular action potential waveforms typically exhibit cross-channel nonlinearities, such as
phase shifts. Thus they should be modeled with several mixing matrices (Pouzat et al., 2002;
Franke et al., 2010; Marre et al., 2012; Pillow et al., 2013)):

xt =
L∑
τ=0

Aτst−τ (4.3)

For convenience and in contrast to the references above, additive noise is here considered as
being absorbed by one or more noise sources st.
The main difference of convolutive ICA vs. instantaneous ICA based spike sorting is to estimate
several mixing matrices instead of just one.

Source identifiability

The convolutive model with several mixing matrices can be interpreted as the superposition of
linearly filtered sources. Therefore, signal recovery is only possible up to identity permutations
and the application of an arbitrary linear filter to each source. This is called the “filtering
ambiguity” Dyrholm (2005) and unavoidable for any cICA approach, but is not a problem in the
context of spike sorting because the ambiguous filter would be the same for all spikes represented
by a given source. Hence, the relative offset of all spike times of a given neuron with respect to
the multichannel template will be consistent.

Invertibility of a convolutive mixture

The convolutive mixture (eq. 4.3) is expressed with a finite set of mixing matrices, constrained
by the duration of action potentials, and is of finite impulse response (FIR) (Hyvärinen et al.,
2001). Many convolutive BSS methods (Pedersen et al., 2007) try to approximate the inverse
by a finite, though often large, number Lu 6= L of unmixing matrices:

ŝt =
Lu∑
τ=0

Wτxt−τ (4.4)

This constitutes a FIR unmixing system, which is stable for bounded input.

However, in the overdetermined and square cases (at least as many channels N as neurons
M), the perfect inverse would be given by:

ŝt = A+
0

(
xt −

L∑
τ=1

Aτ ŝt−τ
)
, (4.5)

with A+
0 denoting the Moore-Penrose pseudo-inverse of A0. The autoregressive nature (IIR) of

this unmixing system may lead to instable source estimates, in which case the mixture cannot
be considered invertible. Hence, in previous methods IIR filters were discarded to solve the spike
sorting problem when the templates are already known (Franke, 2011). Dense multi-electrode
recordings however constitute a multiple-input-multiple-output (MIMO) system. For these the
invertibility is roughly given if “most energy [occurs] at the beginning of each filter, and less
towards the end. However, [...] not all source-to-sensor paths” have to fulfill this condition
(Dyrholm, 2005). Extracellular APs may indeed have enough signal energy at the beginning,
because they are dominated by the fast influx of sodium. Hence, an algorithm that seeks this
perfect inverse, with appropriate regularization in case of instabilities, would be feasible.
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Time vs. frequency domain

Convolutive ICA approaches can be divided into those operating in the time domain and those
operating in the frequency domain. Convolutive BSS methods working in the frequency domain
are generally more efficient because the convolutive model can be formulated as an instantaneous
one for each frequency bin. However, they suffer from the permutation ambiguity of combining
sources that are estimated for each frequency band separately. In the context of spike sorting,
the work of Vollgraf and Obermayer (2006) shows that it is preferable to formulate filters (for
known templates) in the time domain instead of in the frequency domain.

Choice of convolutive ICA algorithm

We were looking for a cICA method that estimates the perfect inverse (eq. 4.5), dealing with
instabilities where necessary and works in the time domain. CICAAR (Dyrholm, 2005) is ana-
lytically simple and constitutes a generalization of the well-known Infomax algorithm (Bell and
Sejnowski, 1995) for convolutive mixtures. The convolutive extension CICAAR was applied to
EEG data (Dyrholm et al., 2007). In Dyrholm (2005) it was reported to perform well without
parameter tuning, both for stationary as well as for non-stationary data. Being a maximum
likelihood method it allows for Bayesian model estimation to assess the temporal structure of
the data and in particular to avoid overfitting a convolutive model (eq. 4.3) to data that could
be described by an instantaneous source mixture (eq. 4.1). With respect to the statistical
dependency between underlying sources, CICAAR makes the only assumptions that they are
instantaneously independent (eq. 4.2) and identically distributed (i.i.d.). Hence, the same con-
ditions as for applying conventional ICA to spike sorting hold for CICAAR.
In conclusion, CICAAR seems to be a good choice for a first feasibility study that assesses
convolutive ICA as a method to unmix neuronal signals from recordings of densely integrated
channels.

4.3.2. Convolutive ICA with an autoregressive inverse model (CICAAR)

Here we present the main aspects of the CICAAR algorithm. For further details, see (Dyrholm
and Hansen, 2004; Dyrholm, 2005; Dyrholm et al., 2006, 2007). Note that we use a slightly
different notation.

The main idea of the method is to estimate a stable version of the autoregressive inverse (eq.
4.5) of the convolutive mixture (eq. 4.3) by maximizing the likelihood function of the parameters
of the unmixing system (A+

0 ,Aτ , τ = 1, ..., L) given T samples of N -dimensional data vectors xt.

CICAAR for square mixtures. Data recorded by HD-MEAs may constitute a highly overdeter-
mined problem. In the work of Dyrholm (2005), chapter 3.4, different approaches are outlined
and evaluated upon how to deal with overdeterminacy. In this work, CICAAR will only be
applied to instantaneous ICA subspace projections, i.e. the so called “diminished” configura-
tion. Therefore, in the following only the square case, i.e. N = M will be considered. For
non-singular A0’s, A+

0 = A−1
0 . For M instantaneously independent and identically distributed

(eq. 4.2) source signals that have undergone convolutive mixing across N channels, the likelihood
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4. Neural spike sorting for dense arrays with convolutive ICA

can be expressed as:

p({xt} | {Aτ}) =
∫
· · ·
∫ T∏

t=1
δ

(
xt −

L∑
τ=0

Aτst−τ
)
p(st)dst = · · · (4.6)

· · · = |det A0|−T
T∏
t=1

p(ŝt), N = M (4.7)

with ŝt given by equation (4.5). For mathematical convenience, instead of maximizing the
likelihood function, equivalently the negative logarithm can be minimized in order to learn the
parameters:

L({Aτ}) = − log p({xt} | {Aτ}) = T log |det A0| −
T∑
t=1

log p(ŝt) (4.8)

For L = 0 this cost function reduces to that of the standard Infomax algorithm (Bell and
Sejnowski, 1995). The gradient of the cost function with respect to the model parameters is
given by:

∂L({Aτ})
∂(A+

0 )ij
= −T (AT

0 )ij −
T∑
t=1

ΨT
t

∂ŝt
∂(A+

0 )ij
(4.9)

and
∂L({Aτ})
∂(Aτ )ij

= −
T∑
t=1

ΨT
t

∂ŝt
∂(Aτ )ij

(4.10)

where T here refers to the transpose, and the nonlinearity

(Ψt)k = p′((ŝt)k)
p((ŝt)k)

= − tanh((ŝt)k) (4.11)

is the same as for the standard Infomax algorithm (Bell and Sejnowski, 1995). Alternative
choices will be discussed in sec. (4.5.2). For a full expression of the partial derivatives of the
unmixed source estimates with respect to the parameters of the unmixing system ∂ŝt

∂(A+
0 )ij

and
∂ŝt

∂(Aτ )ij see Dyrholm (2005).

Stability. The inverse of the mixing finite impulse response (FIR) filter expressed via A+
0 and

the mixing matrices Aτ (τ = 1, ..., L) is of infinite impulse response (IIR) and may be instable.
CICAAR however provides an inherent regularization to avoid instabilities via the source dis-
tribution p(s) for which large amplitudes in the signal estimates ŝt are unlikely, which in turn
reduces the likelihood (eq. 4.7).

Accounting for source autocorrelation. CICAAR assumes sources to be i.i.d.. An action poten-
tial trace as measured intracellularly violates this assumption due to its finite autocorrelation
(compare fig. 4.5, B). Dyrholm et al. (2006) extended CICAAR to deal with autocorrelated
sources and to reduce the computational complexity. Each of the source activations is decom-
posed into the convolution of a filter h of length H with a whitened, i.i.d. version of the source
signal zi(t):

si(t) =
H∑
λ=0

hi(λ)zi(t− λ) (4.12)

The introduction of M source autocorrelation filters of order H allows to lower L, resulting in less
parameters to be estimated. Equation (4.12) can be inverted in a similar fashion as eq. (4.5).
For the appropriate cost function and gradients we point to the literature. Because sources can
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4.3. Methods

anyway only be inferred up to a filtered version (sec. 4.3.1), the source activations and mixing
matrices in this work will always refer to the effective ones:

xt =
L∑
τ=0

Aτst−τ =
L∑
τ=0

Aτ

(
H∑
λ=0

Hλz(t− τ − λ)
)

=
Leff∑
τ ′=0

Aeff τ ′seff t−τ ′ (4.13)

where Hλ are diagonal with (Hλ)ii = hi(λ), τ ′ = τ + λ and Leff = L + H. To simplify the
notation, the subscription eff will be omitted for source activations and mixing matrices.

Bayesian identification of model structure. The framework of Bayesian model selection penalizes
models that are too complex by the Occam factor and chooses them only if there is a relevant
need for their complexity. In other words, that model out of a given range (here: different
values for (L,H)) is chosen which achieves the best compromise between explaining the data and
avoiding the problem of overfitting (which may happen in case of too many parameters). The
solution is found by maximizing Bayes information criterion (BIC) (Schwarz, 1978):

log p(M|data) ≈ log p(data|θ0,M)− dimθ

2 log T (4.14)

with M being the specific choice of a model (here a fixed value pair (L,H)), dimθ the total
number of parameters in the model ( NM(L + 1) + MH ), T the total number of samples
and log p(data|θ0,M) the maximum likelihood estimated by CICAAR for the parameters θ0.
Dyrholm et al. (2007) proposed a protocol for determining the optimal choice for (L,H). First
the overall effective temporal dependency Leff is determined by monitoring the BIC (includ-
ing L = 0). The optimal component autocorrelation filter order H is then found by keeping
Leff = (L+H) fixed.

Implementation. The cost function together with the gradients and the inherent regularization
allows to use general non-linear, unconstrained optimization techniques, such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) routine from Nielsen (2000). For this work, the publicly avail-
able CICAAR implementation from http://www.machlea.com/mads/cicaar-pro.html (Dyrholm
et al., 2007) was used.
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4. Neural spike sorting for dense arrays with convolutive ICA

4.3.3. Spike sorting algorithm for HD-MEA data based on convolutive ICA

In principle, we could apply convolutive ICA directly to the data, in order to push the signals
from different neurons onto distinct components. However this would be computationally infea-
sible. Hence, we first determine regions of interest which are preprocessed with instantaneous
ICA. Only those spatially independent components that exhibit crosstalk are then additionally
processed with convolutive ICA. Spike times are identified by thresholding the estimated source
activation time series. For a schematic illustration of the entire spike sorting see figure (4.1).
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Figure 4.1.: Schematic of the proposed spike sorting algorithm based on convolutive
ICA. The convolutive ICA part is applied to each region-of-interest separately.
Briefly, the main steps of the entire sorter are, (A) Indentification of regions-of-
interest, (B) Preprocessing with instantaneous ICA, (C) Processing of those com-
ponents which exhibit crosstalk with CICAAR, (D) Classification of sources as
putative neurons. For the latter, spike time identification is performed on each
source activation separately. Potentially left-over crosstalk from other neurons is
accounted for via threshold adaptation in case of multi-modal amplitude distribu-
tions (only spikes marked by green circles are accepted). Multiple identifications
of the same neuron are resolved based on template and spike train similarity. The
postprocessing (D) is independent of CICAAR and unavoidable for any cICA based
sorting.
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4. Neural spike sorting for dense arrays with convolutive ICA

In the following, we assume the recordings of extracellular voltages, i.e. the data {xt : t ∈
1, . . . , T} to be preprocessed with an acausal (Quiroga, 2009) bandpass filter in order to remove
channel-wise offsets, low frequency fluctuations and noise above the frequency range of spikes.
This is in line with all other approaches on spike sorting. Furthermore, we do not consider the
process of determining regions of interest (ROIs), i.e., spatially confined sets of electrodes with
boundaries aligned with the spatial footprint of groups of neurons. The size of an individual
region of interest determines the length of the vector xt.

Local spike sorting

(1) Preprocessing with instantaneous ICA. Regions-of-interest may comprise several hundred
sensors. Hence, the direct application of CICAAR to ROIs is computationally prohibitive.
However, the linear transformation achieved through conventional ICA does not destroy the
convolutive structure of the data:

xt = AICA · sICAt = AICA ·
L∑
τ=0

AτscICAt−τ =
L∑
τ=0

ÃτscICAt−τ (4.15)

As fastICA achieved the separation of a large fraction of units for HD-MEA data (Jäckel et al.,
2012), it is reasonable to reduce the dimensionality of the data with instantaneous ICA prior to
the convolutive ICA stage.
(2) Identifying subspaces that exhibit crosstalk. Only instantaneous components that exhibit
crosstalk have to get unmixed with convolutive ICA. Crosstalk is measured in terms of the
temporal correlation of the sources up to Leff lags. Temporal uncorrelatedness up to the order
of the mixing system is a necessary (but not sufficient) condition for independence. Temporal
dependence of source i from source j up to Leff lags can be measured by the fraction of its
variance that can be explained by linear prediction from the history of source j (Dyrholm, 2005;
Granger, 1969):

(CLeff )ij = Var[ŝji ]
Var[ŝii]

(4.16)

with

ŝji (t) =
Leff∑
τ=0

ω̂i,jτ ŝj(t− τ) (4.17)

for which the coefficients {ω̂i,jτ } can be estimated by the Wiener (1949) filter equation, i.e. least
squares minimization between the actual source ŝii(t) and its prediction ŝji (t) from the history
of source j:

{ω̂i,jτ } = arg min
∑
t

[ŝji (t)− ŝ
i
i(t)]2 (4.18)

Due to the asymmetry of the crosstalk measure, only the maximum of
{(CLeff )ij , (CLeff )ji} is taken for each pair. 1−max {(CLeff )ij , (CLeff )ji} (normalized to 1) of
each pair is taken as a distance measure for grouping the channels with hierarchical clustering
into subspaces, each of which gets unmixed separately with convolutive ICA (figures 4.1 & 4.2).
The mere CICAAR application to different subspaces can be deployed in parallel.
Choice of minimal crosstalk. For components to get convolutively unmixed, they have to exhibit
a minimum amount of crosstalk (eq. 4.16). The absolute values depend on Leff and hence
might differ for different datasets. It should be above the noise level (measured from pairs that
are spaced further than 100µm apart), but small enough to capture crosstalk arising from neural
spikes.
(3) Iterative application of convolutive ICA. Depending on the available compute time, one can
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4.3. Methods

specify a maximum group size, allowing to unmix the data in packages of pairs, triplets or
larger groups. However, groups of size larger than four to five are computationally prohibitive
for CICAAR. Due to the possible restriction of the number of components that are treated
with cICA at once, more than one iteration might be necessary to achieve an overall crosstalk
reduction: the inter subspace crosstalk is lower than the intra subspace crosstalk, however the
latter could still be above the noise level. Iterative application of cICA can be formulated as:

xt =
L∑
τ=0

Ãτst−τ =
L∑

τ ′=0
Ãprev
τ ′

(
L∑

τ ′′=0
Ãnext
τ ′′ st−τ ′−τ ′′

)
, 0 ≤ τ ′ + τ ′′ ≤ L (4.19)

By comparing the coefficients on the left and right hand side for a fixed lag τ = τ ′+ τ ′′, we find
the update equation for the mixing matrices:

Ãτ =
τ∑
i=0

Ãprev
i · Ãnext

τ−i , τ = 0, ..., L (4.20)

In practice, however we have to keep the source estimates {ŝt} from each iteration to guarantee
stability, because the overall parameters {Ãτ} as calculated by (eq. 4.20) from separate CI-
CAAR runs do not necessarily yield jointly regularized (compare sec. 4.3.2), i.e. stable source
estimates (eq. 4.5).

After each cICA application, the crosstalk gets reestimated to determine which components
to unmix in the next iteration. In the process of iterative unmixing, noise components (exhibit-
ing both low skewness and low spiking activity) may appear, which are discarded from further
processing. This happens for example when a unit’s signal energy had been present on more than
one component and got pushed to less convolutive components, thereby both reducing redun-
dancy and increasing the signal-to-noise ratio further. Consequently, the number of components
that have to be dealt with may successively be reduced.

As a proof of principle, figure (4.2) shows the effect of iteratively applying CICAAR to subspaces
exhibiting crosstalk. Initial subspaces were obtained by extracting 30 instantaneous ICA com-
ponents from a simulated recording containing the activity of 20 true neurons on 480 channels.
After the initial removal of noise sources, 27 ICs were left as input to the cICA stage. Convolu-
tive ICA was applied until no pairwise crosstalk exceeded the minimally tolerated crosstalk (here
0.15), resulting in 21 final source activations for which 13 of them were convolutively unmixed
by at least one CICAAR iteration. The remaining 8 sources are described by pure instantaneous
filters. For examples of convolutive and instantaneous filters see figure (4.3).
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Figure 4.2.: Iterative cICA application to subspaces reduces global crosstalk and re-
dundancy. (A & B) Pairwise crosstalk of 27 instantaneous components identified
with FastICA from a region of interest containing 20 artificial neurons. CICAAR
was iteratively applied to subspaces comprised by components with high crosstalk.
Subspaces were constructed based on cutting the single linkage dendrograms (B &
D) at either the minimally desired crosstalk (here 0.15) or at an accordingly lower
height if the subspace dimensionality would exceed the practical limit of 4. Red
circles in (A & C) indicate pairs with crosstalk higher than the threshold (here
0.15). After each iteration of cICA the crosstalk is reestimated for all pairs and new
subspaces are identified until no possible combination exhibits more crosstalk than
the desired minimum (C & D). Whenever a source estimate contains only noise it
is discarded from further analysis. Note the reduction from initially 27 to 21 final
sources.
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Figure 4.3.: Examples of convolutive (A) and instantaneous (B) filters (eq. 4.20).(L =
7, H = 0) The source associated with the instantaneous filter was not processed by
cICA and hence does not have any nonzero entries in its 7 lagged mixing matrices.

In conclusion, the proposed iterative application of CICAAR to subspaces linked by crosstalk
reduces redundancy and crosstalk.

(4) Classification of source activations and spike time identification. After convergence of the
convolutive ICA stage, each row of {ŝcICAt } is interpreted as the activation of a putative neuron.
Due to the sign ambiguity of (c)IC activations, those with positive skewness get sign-flipped to
guarantee that spikes become negative deflections. Spike time identification is then performed
via threshold detection.

Even though the described algorithm accounts for the convolutive nature of the data, the inter-
pretation of each final component as the activation of a single neuron is not necessarily correct.
We deal with potential deviations from this assumption as follows:

• One source activation may exhibit the activity of more than one neuron. By compari-
son with ground truth data, we found that in these cases, upsampled and peak aligned
source waveforms were best separated by their amplitudes. Therefore, we performed a
fast 1-dimensional clustering of spike amplitudes by fitting a Gaussian mixture model with
unconstrained variance and automatic determination of the number of underlying clusters
using KlustaKwik Kadir et al. (2014). If more than one cluster was found, only the largest
one in terms of the Euclidean norm of its mean source waveform was kept. Due to the
overdeterminateness of the problem, we assumed that the spikes belonging to suppressed
neurons become absorbed by other components.

• One neuron might still be present on more than one component. This is equivalent to
the task of resolving redundant identifications of units by neighboring regions-of-interest
and will be described elsewhere. Importantly, this point is not critical for assessing the
performance of cICA with respect to ICA based spike sorting, as the evaluation (sec. 2.6)
by itself takes care of finding the best sorted units.
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4. Neural spike sorting for dense arrays with convolutive ICA

4.3.4. Simulated recordings

Simulations of recordings with ground truth were performed by summing up the contributions
from multichannel spikes of all neurons and adding Gaussian noise for each data point. A
ground truth neuron is defined by its template (described in section 4.4.1), position in space1

and spike train. Spikes were sampled with 11.49 kHz from the cubic spline interpolated templates
with random offsets around the desired spike times to mimic sampling jitter. Spike amplitudes
were modulated according to N (1, 0.1) around the desired mean SNR2. Interspike intervals
were exponentially distributed (firing rate 10 to 50 Hz) with a refractory period of 5 ms. For
evaluation, respectively we used data sets varying in neuron and sensor density, or varying in
signal-to-noise ratio (SNR).

Neuron and sensor density variation

For each possible combination of sensor density (4565, 18262 /mm2), neuron density (1141, 2029,
4565 /mm2) and mean SNR level (5,10), 20 ground truth neurons were arranged in 4 x 5 grids.
This resulted in 10 different datasets, each of which comprised 5 seconds of simulated recording
time (sampled at 11.49kHz) on 638 electrodes.

SNR variation

196 ground truth units were arranged to a rectangular grid achieving a density of 1141 neurons
mm−2. Neuron-wise mean signal-to-noise ratios were drawn from a uniform distribution between
3 and 12. 27 % of the spikes participated in spatiotemporal overlaps (max. spatial distance:
37µm, max. temporal distance: 1ms). 5 seconds recording time (sampled at 11.49kHz) were
simulated on 4356 electrodes.

4.4. Results

We quantitatively assessed the proportion of convolutive vs. instantaneous nature of extracellular
somatic RGC activity as recorded by HD-MEAs (sec. 4.4.1). Results suggested the application

1spatiotemporal extrema of multichannel templates were aligned to desired sensor position
2multichannel waveform extremum in units of noise std of respective sensor

74



4.4. Results

of cICA, whose qualitative advantages over ICA are demonstrated in subsection (4.4.2). Spike
sorting performance of cICA vs. ICA is presented in section (4.4.3).

4.4.1. Characterization of extracellular neuronal signals

Of fundamental interest is the question of whether the convolutive mixture (eq. 4.3) is actually
a better model for the data than the instantaneous one (eq. 4.1). In the following, it is shown
that both raw RGC recordings as well as extracellular somatic templates (averaged over spikes)
that will be used later on for simulations exhibit convolutive structure.

Recordings from retinal ganglion cells

Bayesian optimal model selection was used to quantitatively assess the relative contributions
of linear vs. nonlinear mixing in multichannel recordings of RGC activity (sampling rate ≈
8.5kHz). The optimal choice for (L,H) was determined as described in section (4.3.2) for a
temporal extension up to L = 30 (compare fig. 4.4, A). All CICAAR models were trained
on three instantaneous ICs (fig. 4.4, B) with mutual crosstalk originating from at least one
recorded rabbit RGC. The model that maximised Bayes Information Criterion (eq. 4.14) suggests
relevant source autocorrelation (H=1) and convolutive structure (L=3) in the submillisecond
range: L+H ≈ 0.47ms.
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Figure 4.4.: Application of convolutive ICA to recordings of RGC activity. (A) Op-
timal model parameters L and H were learned by maximizing Bayes Information
Criterion (BIC) on three instantaneous ICs (B) extracted from a real recording of
RGC activity. (C) Convolutive source activations as obtained by applying CICAAR
to the instantaneous sources with the optimal model order (L = 3, H = 1). The
effective temporal structure with Leff ≈ 0.47ms is in the range of an action po-
tential. According to the model, 75% of the temporal structure was of convolutive
nature and the rest could be explained by source autocorrelations.

Note that the components obtained from unmixing with the optimal parameters (fig. 4.4, C)
contain the spike train of the bursting neuron on less components: from three ICs, the signal
energy was pushed to two cICs, while the third cIC exhibits only noise. Redundancy got hence
reduced by 0.3. Furthermore, the average SNR of all spikes is highest for the cIC in the bottom
row of figure (4.4,C).
Taken together, this real recording suggests that cICA may achieve further redundancy reduction
and an increase in SNR when compared to ICA.

Templates used for simulated recordings

Average multichannel neuron waveforms (templates) were obtained from HD-MEA recordings
with 7.4µm sensor pitch by computing the spike triggered average3 (STA) from single unit spike
trains. Using the algorithm introduced by Lambacher et al. (2011) to retrieve sorted spike
trains, we extracted 19 different templates with maximal spatial extensions (along either sensor
directions) between 37 and 96.2µm under manual supervision. These were used for simulations
with ground truth to evaluate the performance of the proposed cICA based spike sorter in section
(4.4.3). Here, it was assessed that none of them would sufficiently be described by a single mixing
matrix (eq. 4.1) together with a common source activation st. Therefore the linear dependency
between waveforms xi and xj from different electrodes i and j of the same neuron template was

3Multichannel spikes were aligned in time by their center of mass
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measured by the normalized cross-correlation coefficient cij :

cij = 〈xi,xj〉
|xi||xj |

(4.21)

For those sensor combinations, for which cij < 1, the data has to be modeled by several lagged
mixing matrices (eq. 4.3).
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Figure 4.5.: Convolutive vs. instantaneous nature of extracellular somatic action po-
tential templates. (A) Extracellular recording of a retinal ganglion cell. 9 x 9
sensors (pitch = 7.4µm) centered on the minimum of the template. (B) Schematic
of a hypothetical corresponding AP trace with finite autocorrelation. (C) Linear
dependency (eq. 4.21) between all pairwise sensor combinations of the template
shown in (A). Sensor IDs are sorted with respect to their single channel template
amplitudes. (D) Box and whisker plot for the linear dependency of all sensor com-
binations respectively for all templates used for performance evaluations in section
(4.4.3). The box covers the lower to upper quartile values of the data with the
red line indicating the median. The whiskers extend to the most extreme outliers
within 1.5 times the data range defined by the box. Crosses mark outliers outside
the whisker range. None of the used templates constitutes a purely linear mixture,
which could be described by the intracellular time course (B) together with a single
mixing matrix alone.

Figure (4.5) shows the distribution of cross-channel linear dependencies for all templates. For the
example template depicted in (A), the cross-correlation coefficients of all pairwise combinations
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from 81 sensors are shown in (C). Both linearly scaled single channel template pairs as well as
nonlinearities (min. cij is around 0.5) are found. Fig. (4.5, D) visualizes the situation for all the
19 different templates in the form of box and whisker plots. Importantly, for all the templates,
the distribution of linear dependencies have their medians (red lines) in the range 0.65 to 1.0.
This means that each template could be described for some sensor subsets with a single mixing
matrix (cij ≈ 1), while for others (cij < 1) several lagged mixing matrices are necessary.

4.4.2. Qualitative advantages of convolutive ICA

From the last subsection one can conclude that at least for the given tissue/array combination,
extracellular data cannot be described by a single mixing matrix alone. Using simulations (sec.
4.3.4), the next aim is to test the hypotheses disposed in sec. (4.4.1) for RGC recordings without
ground truth: cICA when compared to ICA might reduce redundancy and increase SNR. Further,
it is shown that cICA is able to unmix correlated neurons.

Redundancy reduction and increase in signal-to-noise ratio

Figure (4.6) shows examples for the convolutive unmixing of subspaces spanned by ICA compo-
nents that exhibit crosstalk on the millisecond scale, which is in the same range as the duration
of action potentials.
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Figure 4.6.: Convolutive ICA applied to simulated recordings with ground truth. (A
& C) Close-ups of two IC subspaces with a few spikes in each. (B & D) Sources
as estimated with CICAAR for the two subspaces respectively. (A & B) Unmixing
of a subspace containing the activity of one neuron (spikes at approx. 2.4, 10.5
and 22.5 ms) on two distinct ICs. The SNR of the neuron increases when going
from the instantaneous representation (A, SNR on green/blue traces: 16.2/11.0)
to the convolutive one (B, SNR on green/blue traces: 19.3/no spikes). (C & D)
Application of cICA to a 3-dimensional subspace containing the activity from two
neurons. One neuron (spikes at approx. 5.4 and 14.0 ms) is visible on the green
(SNR = 28.3) and blue (SNR = 6.9) instantaneous traces (C). After cICA processing
(D) it is predominantly represented on the green trace (SNR = 11.7). The other
neuron (spikes at approx. 11.6 and 24.2 ms) is best captured by the red traces in
both (C, SNR = 19.7) and (D, SNR = 13.5). In both examples, redundancy got
reduced, whereas an increase in signal-to-noise ratio could only be observed for the
upper example (A → B).

The 2-dimensional example (A & B) shows the successful unmixing of one ground truth neuron,
visible on two instantaneous components, but only one convolutive component: After the ap-
plication of CICAAR, the one cIC (B, green trace) absorbs the energy from the one underlying
spike train, whereas the other one (B, blue trace) exhibits only noise.
In figure (4.6, C), a 3-dimensional subspace with two neurons serves as input to cICA. One in-
stantaneous IC (blue) exhibits crosstalk with the two other ICs (green and red). The application
of convolutive ICA pushes most of the signal energy of one IC (C, blue trace) to the remaining
cICs (D, green and red traces). The blue cIC trace still exhibits some small peaks, but still can
be distinguished from the other cICs due to being less skewed.

In conclusion, taking into account the temporal extension of action potentials allows to col-
lect their signal energy when going from the IC to the cIC representation. This can increase
SNRs and reduce redundancies as can be observed particularly in fig. (4.6, A & B).
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Whether these two beneficial effects are quantitatively relevant in practice, i.e. whether they
will outperform the necessary postprocessing of a spike sorter, will be assessed in section (4.4.3).

Unmixing correlated neurons

Neurons can display simultaneous activity due to synaptic connections or common input. How-
ever, even convolutive ICA only requires instantaneous (eq. 4.2) as opposed to time-delayed
independence. Nevertheless, even if neurons fire a certain fraction of their spikes precisely at the
same time, ICA should still work if the statistical dependency between neighboring recording
channels that detect the activity of a single neuron is dominant over the degree of dependency
between different spike trains (Brown et al., 2001).
Figure (4.7) shows that CICAAR is able to correctly unmix two spike trains for which 20%
of the spikes occur simultaneously, i.e. the time difference between two spikes participating in
the same overlap is drawn from a uniform distribution on the interval [0; 0.4]ms (fig. 4.7, A).
The two template center positions in the simulated recording are spaced only 7.4µm, leading to
strongly overlapping spikes in both space and time (fig. 4.7, B&C). While the signal from the
two neurons is visible on several ICs (fig. 4.7, D), CICAAR achieves a complete unmixing (fig.
4.7, E).
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Figure 4.7.: Violating the independence assumption: Unmixing correlated neurons.
Convolutive ICA is applied to a simulated recording with two ground truth neurons
which fire the first 20% of their spikes simultaneously, mimicking common input. (A)
True binary spike trains. (B) Standard deviations of sensor traces. (C) Simulated
sensor time series at template center-of-mass positions. (D) Four instantaneous ICs
with mutual crosstalk serve as input for CICAAR. (E) Source estimates obtained
with CICAAR. The two neurons are properly separated, remaining cICs show only
noise.

4.4.3. Performance of cICA based spike sorting

This section is dedicated to assess the performance of the proposed spike sorting based on convo-
lutive ICA. We quantitatively evaluate whether the additional convolutive ICA stage (compare
section 4.3.3) results in a superior performance as opposed to the same sorting without cICA.
Spike sorting performance was assessed with ground truth data generated from HD-MEA record-
ings (spatial sampling: 7.4µm) of in vitro retinal activity as described in section (4.3.4). In the
following, the 19 templates which were analyzed with respect to their nonlinearities in sec. (4.4.1)
were used to generate simulated recordings of (i) different neuron and sensor densities as well as
(ii) different signal-to-noise ratios.
Performance was evaluated as described in section (2.6). Error rates for each ground truth neu-
ron are given by the sum of all possible errors of the associated sorted unit (false positive noise
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peaks, false positive classification errors, spike misses, and false negative classification errors)
and normalized by the number of true spikes.

Neuron and sensor density variation

We determined for which tissue/array-combinations (convolutive) ICA may be suitable. Perfor-
mance was analyzed for different sensor and neuron densities while leaving the mean SNR level
for all neurons in a particular dataset constant. Different sensor-to-neuron ratios (1,4,9,16) were
analyzed. The simulated recordings are described in sec. (4.3.4).

For all datasets we performed two sortings, with and without the cICA stage, respectively.
Optimal model parameters for CICAAR had been found to be L = 7 and H = 0 by applying
the protocol described in section (4.3.2). Maximal subspace dimensionality was set to 4.
Regions of interest comprising a couple of hundred sensors were obtained from each dataset.
For the example shown in figure (4.8, A), the region of interest (left) contains 540 (marked by
circles) channels out of the 638 channels of the dataset (29 sensor rows by 22 sensor columns,
18262 sensors/mm2, 1141 neurons/mm2, SNR = 10). True (black) and identified (blue) unit
positions are denoted by the centers of the circles in the middle of subfigure (A). The instanta-
neous mixing filters Ã0 as obtained from the cICA based sorting according to equation (4.20)
are shown in fig. (4.8, A, right). Seven out of the 20 sources were analyzed by cICA and hence
had nonzero entries in their lagged mixing matrices.

Spike-sorting performance achieved for all 10 different scenarios (smaller electrode spacing: 2
SNR, 3 cell densities; larger electrode spacing: 2 SNR, 2 cell densities) are shown in figure (4.8,
B). If the number of errors outweighed the number of true spikes (error rate ≥ 1), the respective
unit was considered not sortable. Performances for respective datasets are summarized by the
median error rate of all sortable cells.
Irrespective of the application of the cICA stage, the following can be observed: (i) Increasing
the sensor density from 4565 (pitch = 14.8µm) to 18262/mm2 (pitch = 7.4µm) improved perfor-
mance for all neuron densities and the two SNRs. (ii) For any fixed combination of sensor and
neuron density, the higher SNR level results in better performance. (iii) For at least 4 sensors
per neuron and an SNR level of 10, at least 95% of the neurons could be sorted with median
error rates below 1%. For sensor-to-neuron ratios of 9 and 16 even at an SNR of 5, at least 85%
of the cells could be sorted with median error rates below 2%.
However, no clear difference between ICA and cICA based unmixing could be observed in terms
of spike sorting performance. To investigate this further, the performance for a more realistic
dataset in terms of SNRs and neuron density was assessed. At least for some of the datasets,
the classification of source activations (sec. 4.3.3) seems already good enough for instantaneous
ICA based spike sorting to resolve the majority of neurons with very low error rates. However,
it might be that cICA only has a substantial effect for lower signal-to-noise ratios.
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4.4. Results

SNR variation

We assessed whether the potential increase in SNR due to convolutive unmixing improves the
correct detection and assignment of spikes for a realistic simulated recording: cICA spike sorting
was applied to the dataset described in more detail in section (4.3.4).
The dataset had been constructed in order to resemble actual recordings of retinal ganglion cell
activity in terms of neuron density (1141/mm2) and signal-to-noise ratios: Its major character-
istic is that different neurons within the same dataset exhibit different mean SNR levels from 3
to 12.
For this dataset, the optimal model order (L,H) was estimated by monitoring the BIC (eq.
4.14) for each of 13 randomly selected subspaces of sizes 2 to 4 and all possible combinations of
L and H for 0ms ≤ Leff = L+H ≤ 1ms. Note that this constitutes a more exhaustive search
of the parameter space compared to the shortcut protocol proposed by Dyrholm (2005): Both
L and H are varied for all possible choices of Leff and not just for the optimal length Lopt as
found by varying only L with H set to zero. The mean optimal parameters for this dataset were
rounded to the closest integer, resulting in L = 5 and H = 6.

Again, spike sorting performance was compared between ICA and cICA. The achieved per-
formances for the 196 ground truth units are shown in figure (4.9). In subfigure (4.9, A) the
decreasing error rate with increasing SNR is confirmed with a higher resolution than for the
previous datasets in (sec. 4.4.3). Subplot (4.9, B) shows again very similar performance for ICA
vs. cICA when ignoring the SNR. The question is whether for the lower SNRs, cICA improves
performance. Therefore, subfigure (4.9, C) shows again the empirical distributions of error rates,
but this time conditioned on each of the lower (3 to 8) mean SNR levels separately. Again, the
difference between ICA and cICA is considered negligible.
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Figure 4.9.: Performance of Convolutive ICA vs. instantaneous ICA spike sorting
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of error rates conditioned on mean signal to noise ratios of respective ground truth
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Due to the restriction to subspaces, not necessarily all units have convolutive filters. Some
of them are already sufficiently described by instantaneous filters, i.e. the temporal structure
from different single channel waveforms can be described by a common time course (fig. 4.5,
B) together with a single mixing matrix. The minimal crosstalk for cutting the hierarchical
cluster tree constructed with the single linkage algorithm had been set conservatively low to
0.05. However, for lower true SNRs, crosstalk is lower and hence less units might be grouped
into subspaces and thereby be processed with cICA. Indeed, figure (4.10) confirms that the
contribution of cICA increased with SNR, however, even for the lowest SNR values, a non-
negligible fraction of units was processed by CICAAR.
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Figure 4.10.: Fraction of units with convolutive filters. The number of sorted neurons that
were processed by cICA is shown as a fraction of the number of true neurons at
each mean SNR level respectively.

We could therefore exclude that the restriction to subspaces prevents cICA from improving spike
sorting performance with respect to ICA based sorting.

4.5. Discussion

The spatial oversampling of HD-MEA data renders ICA methods particularly interesting for
rapid and automated spike sorting, as they make use of the redundancy, allow to determine
the number of neurons and their multichannel waveforms while implicitly accounting for spike
overlaps. Due to the incomplete unmixing achieved by instantaneous ICA when applied to HD-
MEA (Jäckel et al., 2012) as well as tetrode (Shiraishi et al., 2009) data, we assessed here whether
the relaxation of the instantaneity assumption (eq. 4.1), i.e. the incorporation of multiple mixing
matrices (eq. 4.3) via convolutive ICA facilitates spike sorting.
In summary, we found: Both ICA as well as cICA spike sorting performance increased with higher
sensor-to-neuron ratio (fig. 4.8). These results are in line with the findings of Jäckel et al. (2012)
and underline the necessity of high-spatial sensor density. For the realistic dataset with varying
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signal to noise ratios (fig. 4.9, 1141 neurons/mm2, sensor pitch 7.4µm), more than 80% of the
neurons were isolated with a maximum error rate of 2%. We showed that cICA processing on
top of ICA may further reduce redundancy and increase SNRs (fig. 4.6 & 4.7). Whether the
expected performance improvement with respect to instantaneous ICA preprocessing is actually
relevant for spike sorting was assessed thoroughly (figures 4.8 & 4.9). Interestingly, we found
the performance to be dominated by the instantaneous ICA together with the postprocessing.
Crosstalk and hence the influence of cICA becomes more dominant with increasing SNR (fig.
4.10). However, for sufficiently large SNRs, ICA based sorting already achieves very good
performance which is not improved by cICA. Hence, at least for the scenarios at hand, there is
no clear net advantage of convolutively unmixing the data, although nonlinearities were clearly
present.
To our knowledge, the only work that accounts for the convolutive aspects of extracellular data
in the context of ICA based spike sorting is from Jäckel and Frey (2011) and Shiraishi et al.
(2011). Jäckel and Frey (2011) proposed to apply fastICA to spatiotemporally embedded data,
which increased the number of parameters to estimate and resulted in many shifted copies of
the same sources. Shiraishi et al. (2011) unmixed tetrode data with complex-valued ICA in the
time-frequency domain for which the instantaneous mixture assumption (eq. 4.1) was found
to be approximately fulfilled, but the frequency permutation problem (sec. 4.3.1) was avoided
by making use of only a single wavelet coefficient. Due to these drawbacks, we used CICAAR
(4.3.1).

In the following, we considered several explanations for what might cause the lack of improve-
ment: instabilities of the unmixing system, the choice of the source distributions, and possible
failures of ICA and cICA due to the ignored non-negativity of spiking activity.

4.5.1. Instabilities of the unmixing system

If the unmixing system (4.5) were instable, a complete unmixing could not be guaranteed and
thereby, postprocessing would be unavoidable for any cICA algorithm, not only CICAAR. If we
find at least one example where perfect inversion is not possible, we cannot generally assume that
the system is stable. Indeed, figure (4.11, B), shows that using the naive autoregressive inverse
(eq. 4.5) together with the template (STA) as calculated from the spike times of the bursting
RGC from figure (4.11, A), (the same as for fig. 4.4) results in an instable source estimate.
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Figure 4.11.: Instable IIR inverse of extracellular data. (A) Three instantaneous com-
ponent activations capturing the activity of a bursting neuron. (B) The naive
autoregressive system inverse (eq. 4.5), with the mixing system obtained from the
template of the neuron in A is instable. (C) The approximate system inverse ob-
tained by optimal filtering (eq. 4.23) the IC activations, using the same template
as in B is stable. This illustrates that the instability is not attributable to a bad
template estimate.

To illustrate that the template was estimated correctly, we calculated the response of the op-
timal filter (fig. 4.11, C) that maximizes the response for the given template i and suppresses
contributions from the rest of the data (see e.g. Franke (2011)):

f i = R−1ξi

ξiTR−1ξi
(4.22)

with R the covariance matrix of spatiotemporally embedded data and ξi the spatiotemporal
template i. The filter response is obtained by the dot product of spatiotemporal filter f i with
the spatiotemporally embedded data x̄t:

ŝt = f iT · x̄t (4.23)

Because the convolutive inverse (fig. 4.11, B) of the RGC mixture (fig. 4.11, A) is instable,
the source estimates as learned with CICAAR (fig. 4.4, C) can only be approximate. Instable
solutions are characterized by huge source amplitudes which are penalized by a small likelihood
(eq. 4.7) because p(s) is small for large s. In conclusion, a complete unmixing of the neuronal
sources cannot be guaranteed by any cICA algorithm, rendering the postprocessing stage (fig.
4.1, D) unavoidable.
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4.5.2. Choice of source distributions

Apart from the parameters L and H, maximum likelihood (ML) approaches to ICA such as
CICAAR depend on the source distributions p(si). In practice, the exact source distributions
of the intracellular signals are unknown. For the instantaneous case this would not pose a
problem, as it is possible to divide the space of probability distributions. Each independent
component distribution can be approximated by a single, prototypical pdf from the half-space
the respective component is located in. It is then guaranteed that the ML estimate (for retrieving
independent components) is locally consistent (Hyvärinen et al. (2001), theorem 9.1). Typically,
a pair of sub- (excess kurtosis4 < 0) vs. supergaussian (ex. kurtosis > 0) densities is constructed.

Unfortunately, it is complicated to extend the proof of theorem 9.1 in Hyvärinen et al. (2001) to
the convolutive scenario. First of all, it would require a 2nd order Taylor expansion of the ob-
jective function (4.8), which in turn requires the computation of the Hessian with respect to the
parameters of the unmixing system. Second, the proof relies on constraining the intermediate
source estimates to be uncorrelated and of unit variance, which CICAAR does not guarantee.
If the proof could be extended, we could argue as follows: The nonlinearity (eq. 4.11) is typical
for ML ICA and corresponds to a hyperbolic secant distribution p(si) ∼ sech(si), which is super-
gaussian. As we always consider the square case and neuronal signals are clearly supergaussian,
the choice of the source distributions should be appropriate.
If on the other hand, the distinction between sub- and supergaussian pdfs were not enough,
the question is how one could come up with a better parametrization for p(s). One alternative
could be to repeatedly estimate the source densities while optimizing the objective function.
A potential solution for instantaneous ICA was suggested by Lee and Lewicki (2000). For an
application (not in the context of spike sorting), see also Kellner and Wachtler (2013). Letting
the data determine the source pdf from a family of exponential distributions allows for a wide
range of kurtotic distributions. A particularly important and related issue with respect to the
choice of source distributions is the non-negativity of spiking events, which will be discussed
next.

4.5.3. (c)ICA may decrease spike sorting performance

In few cases, CICAAR does not increase the SNR and reduce redundancy. An example is given
in figure (4.12), which reveals that ignoring the non-negativity of spiking events may actually
allow to find solutions that increase independence but are to be avoided in the context of neural
spike identification.

4excess kurtosis is the kurtosis with respect to the normal distribution which has a kurtosis of 3.
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Figure 4.12.: Source dependency reduction via increase of correlation of squared
source activations. (A) Unmixing of a 2-dim subspace with the optimal model
parameters L = 2 and H = 3. (A, top) Close-ups of two ICs containing the
activity from two neurons whose spike times are indicated by GT1 and GT2 re-
spectively. (A, bottom) Sources as obtained from CICAAR. Notably, CICAAR
did reduce the temporal correlatedness from 0.066 to 0.033, via increasing the tem-
poral correlation of the squared source activations from 0.025 to 0.222. Correct
spike sorting is possible using the ICs, while the cICs lead to a correct retrieval of
neuron 2 plus a mixture of both neurons. Adding a non-negativity constraint to
cICA could potentially alleviate this problem. (B) Bayes optimal model estimation
for the subspace in (A).

The following scenario is depicted in figure (4.12). The spike times of neuron 1 (black) could
be obtained from IC2 (A, top, green) by choosing an amplitude threshold that accepts the
spikes of neuron 1 and suppresses those of smaller amplitude which are fired by neuron 2 (red).
After application of cICA, one source (IC1, A, bottom) represents neuron 2 (GT2, A, bottom),
whereas the other source (IC2, A, bottom) represents both neurons (GT1 & GT2, A, bottom).
A discrimination via amplitudes is no longer possible, the spike sorting performance decreases.
Insight into the failure of cICA can be gained by inspecting how the temporal correlation as
computed by equation (4.16) changes when going from the IC to the cIC representation. The
temporal correlation computed up to the optimal model order L + H = 5 (fig. 4.12, B) of the
ICs which serve as input to CICAAR, evaluates to ≈ 0.066. The convolutive unmixing reduces
the same by about 50% to ≈ 0.033. In contrast, the temporal correlation of the squared source
activations increases by an order of magnitude from 0.025 to 0.222. The degree of dependency
between instantaneous sources was hence decreased by increasing the correlation of squares. This
solution should be avoided by introducing a non-negativity constraint for the source activations.
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4.5.4. Scope of alternative cICA algorithms

Having discussed potential problems in sections (4.5.1), (4.5.2) and (4.5.3) related to cICA in
general, the question is whether an alternative cICA algorithm could improve spike sorting
performance. An alternative algorithm would need to be computationally efficient enough to
learn the large number of parameters. The idea to restrict the dimensionality of the input for
convolutive ICA, was motivated by the computational complexity of CICAAR. If an alternative
convolutive ICA algorithm were able to handle more input dimensions, it could of course be
applied directly to the raw data or at least to all the instantaneous components.
As the perfect inverse of (eq. 4.3) does not exist (sec. 4.5.1), instead of finding a regularized
autoregressive inverse (eq. 4.5), one may as well consider to approximate the inverse with a set
of stable FIR filters (eq. 4.4). This would have the practical benefit of in principle being able
to work on data snippets instead of the entire time series which may become prohibitively large
to store for arrays with thousands of electrodes. Note however, that the length of the unmixing
system Lu in (eq. 4.4) is often larger than the mixing system and generally unknown. To avoid
this issue, one could go for the above mentioned optimal filters whose length is determined by
the template extensions. These get successfully deployed for supervised real-time spike sorting
(Franke et al., 2010; Dragas et al., 2014) and could in principle be learned with ICA techniques as
derived by Vollgraf (2006). However, optimal filters (eq. 4.22) alone are optimized for detection
performance instead of discrimination performance. This is reflected in remaining crosstalk, i.e.
nonzero responses of filters i to spikes from templates j 6= i. Consequently, detection failures
might be low, but classification errors may occur frequently. Potential solutions to this problem
were proposed (Franke, 2011; Vollgraf, 2006), effectively meaning that even if the unmixing
system is constructed with known templates, postprocessing is necessary.
The most interesting adaptation with respect to the choice of the source distributions (sec.
4.5.2) might be the introduction of a non-negativity constraint (sec. 4.5.3). However, this might
require a separate modeling of the noise which is clearly not non-negative.

4.5.5. Relation to other spike sorting algorithms and future work

Spike sorting based on ICA and cICA allows for the rapid and automated retrieval of sorted
spike trains for a large fraction of neurons without prior knowledge about the number of neu-
rons or their templates while providing immediate overlap resolution. Results can be taken as
they are or refined by feeding them as input to recently developed methods that estimate the
most likely (maximum-a-posteriori (MAP)) spike trains given the data and templates (usually
obtained from a previous clustering stage) under a generative model for extracellular electrode
data with Gaussian noise and a sparse prior on spiking activity. Methods targeting this sparse
linear inverse problem can be partitioned in those that iteratively take binary decisions upon
template insertions (e.g. Pillow et al. (2013), greedy binary pursuit) and those that perform a
convex relaxation of the optimization problem which results in real-valued, non-negative spike
coefficients (e.g. Ekanadham et al. (2013), continuous basis pursuit). The latter one comes
with a higher computational cost due to the augmented search space, but in principle only the
number of neurons have to be specified and the templates could be learned from the data, albeit
at an even higher computational cost. As independency can be achieved via sparsity constraints
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4.5. Discussion

(Hyvärinen, 2013), the idea of adding a non-negativity constraint to cICA (compare sec. 4.5.3)
is essentially incorporated by the work of (Ekanadham et al., 2013). Hence, it would be an im-
portant benchmark test to check whether this method outperforms the rapid ICA based sorting
on large scale datasets in terms of performance in order to estimate the scope of alternative,
potentially more efficient non-negative cICA algorithms for unknown templates.

In conclusion, convolutive compared to instantaneous unmixing is beneficial for ICA based spike
sorting. However, as perfect unmixing of extracellular data is not possible in general, the un-
avoidable postprocessing limited the net improvement of cICA over ICA. We suggest that when
scaling up sorting algorithms to real recordings using thousands of electrodes, performance of
advanced algorithms should be carefully assessed against simpler but more tractable approaches.
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5. Main Discussion

Results from this thesis help to overcome the current bottleneck of analyzing data collected si-
multaneously from hundreds of neurons with thousands of densely arranged electrodes. Chapter
(3) was targeted to extract not all but instead highly accurate spike trains, which was con-
sidered to be of practical importance for actual experiments. Chapter (4) was devoted to the
development and evaluation of a more advanced algorithm deployed to spike sort data within
regions of interest in the framework of chapter (3). Taken together, this work provides the
first methods to perform rapid stand-alone spike sorting of large-scale HD-MEA data featuring
the disentanglement of spike overlaps. In the following the achieved performance is compared
against a supervised scenario and relevant issues for future developments are pointed to.

5.1. Supervised vs. unsupervised algorithms

Two unsupervised spike sorting algorithms were proposed, based on ICA (chapter 3) and con-
volutive ICA (chapter 4), respectively. Potential improvements of cICA based sorting were
discussed thoroughly in section (4.5). Here, a more general question shall be answered: What is
the scope of any alternative unsupervised algorithm - not necessarily relying on the statistical
independency assumption (eq. 4.2)? The best possible algorithm deployed to solve the spike
sorting problem within ROIs in the framework of chapter (3) should find the true templates, i.e.
mixing matrices of the generative model (eq. 1.6). Remarkably, there is no unique supervised
solution to the spike sorting problem that could be used to estimate the maximally achiev-
able performance of any unsupervised algorithm. To stay as close as possible to the proposed
framework, the following approach was used: The true spike trains of the simulated recording
evaluated under sections (3.4.3) and (4.4.3) were used to estimate neuronal templates. These in
turn were used to obtain optimal filters (eq. 4.22) in order to invert the generative model by
calculating the source activations (eq. 4.23) for all true neurons from the simulated recording.
Embedding this exemplary supervised source estimation in place of the ICA/cICA stage in the
framework of chapter (3) allowed to account for potentially remaining crosstalk between different
filter outputs. 98.5% of the neurons could be extracted with an error rate of up to 2%. This
close to optimal performance constitutes a sanity check for the generic framework presented in
chapter (3). Comparing the performance of the optimal filter based sorter against the ICA and
cICA based sorters (fig. 5.1) for which ≈ 80% of the neurons were isolated with maximally 2%
errors, reveals the boundaries for the potential improvement of future unsupervised algorithms.
However, it is unclear of how much practical importance such efforts would be in view of large
arrays and the observation that the margin of the ICA/cICA sorters with respect to the super-
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5. Main Discussion

vised scenario is mainly attributable to mean SNR levels 3 and 4 whereas for mean SNRs > 4,
the bulk of the spike trains gets sorted with high accuracy both for ICA/cICA as well as the
optimal filter based sorting (fig. 5.1, A & C).
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Figure 5.1.: Performance of supervised (optimal filtering) vs. unsupervised (ICA and
cICA) based spike sorting algorithms for different SNR levels. (A) Error
rates vs. signal to noise ratios of ground truth units (196 in total). (B) Histogram
of all error rates. (C) Histograms of error rates conditioned on mean signal to noise
ratios of respective ground truth units.
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5.2. Future directions

It is difficult to relate these results with other work, nevertheless it is stated that e.g. the
supervised, model based approach from Pillow et al. (2013) achieved to isolate 97% of surrogate
retinal ganglion cells as sensed by a 512-electrode array with an error rate below 2%. These
numbers should by no means be taken to perform a literal comparison because they were obtained
from different datasets, but it is an indication that the achieved sorting quality might reside in
the same regime.

5.2. Future directions

For any state of the art multichannel spike sorting algorithm (table 1.1) that provides overlap
resolution, the number of neurons is assumed to be a deterministic parameter. However, with
more and more neurons recorded, the absolute number of poorly isolatable neurons increases.
In order to make use of this data, future work should account for the uncertainty involved
in determining the number of neurons. This could potentially be achieved via nonparametric
Bayesian approaches. Yet, approaches proposed so far (Wood and Black, 2008; Gasthaus et al.,
2009; Carlson et al., 2013a,b) do not account for the problem of overlapping spikes. Carlson et al.
(2013b) indeed claim to account for overlaps, but the resolution of spike collisions is inherently
limited by the sampling rate of the recording device as each data sample is associated with only
one unit. Alternatively, as focused upon in this work, each neuron could have its own feature
space, inherently providing overlap resolution.
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A. Appendix

A.1. Software

• A standalone Python tool was dedicated to flexible simulations of extracellular recordings
with ground truth information. The generation of templates from a list of spike times and
a real recording is independent from simulating a recording that contains spike instances
drawn from these templates.

• A standalone Python module was implemented that performs performance evaluation on
the result of any spike sorting algorithm against the true spike trains from a simulated
recording.

• For visualization purposes of raw data and template retrieval, a custom implementation
of the Lambacher et al. (2011) approach based on C + + and Labview was ported to the
64 bit architecture to overcome address space limitations. It was extended with further
functionality such as the import and export of files following the specification described
in (sec. A.2). It implements the low SNR sensitive, multidimensional event detection of
extracellular spikes described in section (3.3.2).

• The spike sorting framework presented in chapter (3) was implemented in MATLAB
(R2007a / R2013b). The parallelization was realized by means of an open source toolbox
(Buehren, 2013) that allows for an unlimited number of parallel processes with a single
MATLAB license on multiple cores regardless whether on a single or multiple machines
as long as they have access to a common directory. If there are not enough hardware re-
sources available, parallel tasks are automatically performed in a sequential fashion. Given
sufficient resources, the overall algorithm scales roughly linear with the recording area.

• The cICA based spike sorter presented in chapter (4) is applicable to regions-of-interests
of the framework of chapter (3) and thereby an extension of the above implementation.
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A. Appendix

A.2. HDF5 file specifications

In order to make the real and simulated recordings readable from different programming envi-
ronments such as Python or MATLAB and custom software systems, a HDF5 based format was
specified:

fileversion NH5_1.0.0

file/
Group "Metadata"

string Attribute "FileVersion" = "NH5_1.0.0"
string Attribute "DataStorageOrder" = "RowColumnFrameMajor"
double Attribute "Sampling Rate [kHz]"
string Attribute "ChipType" = "G1183" or "G1186"

unsigned int array[N_ROW] DataSet "RowList"
# in sensor coordinates

unsigned int array[N_COL] DataSet "ColumnList"
# in sensor coordinates

double array[N_FRAMES] DataSet "FrameStartTimes"
# in ms

double array[N_SENSORS = N_ROW * N_COL] DataSet "SensorDelayTimes"
# in ms, storage order: row-major

array[N_ROW, N_COL, N_FRAMES] DataSet "Data"
# raw data is stored as short int, calibrated data as float,
# both in LITTLE ENDIANESS

A.3. Accelerated sorting of similarity matrices

In order to assign action potentials to neurons, the method proposed by Lambacher et al. (2011)
uses similarity (eq. 3.11) matrices that have to be sorted for visualizing the underlying cluster
structure. Lambacher et al. (2011) proposed to sort matrices based on the similarity of matrix
rows. This approach scales with n the number of action potentials as O(n·n(n−1)/2·n) = O(n4)
(n: each row is tested as a starting point in order to identify the global optimum; n(n − 1)/2:
rows have to be compared pairwisely against each other; n: for each comparison of two rows,
the similarity has to be computed across n columns.) Importantly, these matrices get cut to
separate apart different clusters, thereby the optimal sorting is repeated over and over again,
albeit on successively smaller numbers of spikes n.

100



A.3. Accelerated sorting of similarity matrices

We found an alternative, accelerated method to sort similarity matrices that is based on a
spectral decomposition (O(n3)) of the matrix. The idea is to look for the largest eigenvalue
(O(n)) and sort (O(n logn)) the entries of the corresponding eigenvector. The identified per-
mutation is sequentially applied to the rows (O(n)) of the unsorted matrix and columns (O(n))
of the row-sorted matrix in order to retrieve a matrix that has the cluster corresponding to the
largest eigenvalue in one corner. The overall complexity amounts thereby to O(n3) (as opposed
to formerly O(n4)). For Python code (fig. A.2) applied to an example with 834 action potentials
see figure (fig. A.1). After cutting the sorted matrix to separate apart the cluster with indices
up to approx. 200 in fig. (A.1, B), the procedure can be repeated. This allows to iteratively
extract clusters with successively fewer participants.

A B

Figure A.1.: Sorting of a pairwise similarity matrix based on largest eigenvector. (A)
Unsorted matrix of pairwise similarity (eq. 3.11) values from 834 action potentials.
(B) Matrix from (A), but sorted based on its largest eigenvector with code from
fig. (A.2). This reveals the largest cluster in the upper left corner.

Figure A.2.: Python code for sorting pairwise similarity matrices based on largest
eigenvector. An exemplary application is shown in figure (A.1).

101



A. Appendix

A.4. Long recordings

The algorithms proposed in chapters (3) and (4) were applied to datasets of limited length. The
extension to long recording times is mainly an implementation issue for which different strategies
are conceivable. Restricting the evaluated sensor area trivially results in increased capacities
with respect to recording time. Therefor, the existing implementation can be used directly.
In contrast to chapter (4), the local sorting algorithm from chapter (3) works on a sample by
sample basis, allowing to restrict evaluations to temporal regions of neural activity which are
implicitly given by the ROI construction. However, it was found that if the ICA stage did
not learn enough of the noise structure by not providing enough noise samples, sorting quality
decreased. This should however be alleviated by removing noise correlations via multiplying
the data with the square root of the inverse of the covariance matrix (eq. 3.16) as learned
from noise epochs only. Another possibility would be to simply process the data in temporally
overlapping chunks and stitch the results together by making use of the redundancy reduction
scheme developed in section (3.3.6). Finally, as the methods developed in this work provide
templates and spike trains, these can be used to initialize supervised methods such as those in
(Franke, 2011). Long-term waveform changes may then have to be accounted for. For proposals
how to track templates see (Franke et al., 2010) or references in section (1.6.2). The robustness
of any supervised method when initialized with only a subset of neurons should be carefully
assessed, because it is very challenging to identify all templates and unidentified templates
might corrupt the model assumptions.
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