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We probe the contraction from 2d relativistic CFTs to theories with Bondi-Metzner-Sachs (BMS)
symmetries, or equivalently conformal Carroll symmetries, using diagnostics of quantum chaos. Starting
from an ultrarelativistic limit on a relativistic scalar field theory and following through at the quantum level
using an oscillator representation of states, one can show the CFT2 vacuum evolves smoothly into a BMS3
vacuum in the form of a squeezed state. Computing circuit complexity of this transmutation using the
covariance matrix approach shows clear divergences when the BMS point is hit or equivalently when the
target state becomes a boundary state. We also find similar behavior of the circuit complexity calculated
from methods of information geometry. Furthermore, we discuss the Hamiltonian evolution of the system
and investigate out-of-time-ordered correlators and operator growth complexity, both of which turn out to
scale polynomially with time at the BMS point.
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I. INTRODUCTION

The holy grail of quantum gravity is one of the most
sought after treasures in modern theoretical physics, and
many avenues to achieve that exist, with string theory being
arguably the most successful one. A very fruitful effort
towards the same has taken shape over the past two
decades, famously known as the holographic duality,
whose most well-known avatar is the AdS=CFT corre-
spondence [1]. The AdS=CFT correspondence states that
gravity in asymptotically anti–de Sitter (AdS) spacetime is
equivalent to a quantum field theory with conformal
invariance living on the boundary of the AdS space and
observables calculated from either theory can be matched
up using this equivalence. The advent of AdS=CFT has
given rise to various multidisciplinary research fields
involving many seemingly disconnected branches of phys-
ics, including string theory, black hole physics, condensed
matter physics, and, more recently, quantum information
theory.

However, our visible Universe seems to have nothing to
do with AdS, as experimental signatures argue against a
negative value of the cosmological constant. An extension
of this duality to de Sitter space (dS) has not been
satisfactorily formulated yet. Hence, the prospect of
extending the duality to asymptotically flat spacetime
seems exciting enough to pursue. We recall that a central
idea in the so-called holographic dictionary is the asymp-
totic symmetry of the bulk (dþ 1) dimensional gravity
theory agreeing precisely with the global symmetry of the
dual field theory living in one lower dimension, and both
are the conformal symmetry in d dimensions. The asymp-
totic symmetry for four-dimensional flat Minkowski space-
time containing Einstein gravity, first studied by Bondi-van
der Burg-Metzner-Sachs (BMS) [2,3], is the so-called BMS
symmetry. Hence the putative dual theory living on the
boundary of flat spacetime, via this “flat holography,”
should also be invariant under the same BMS symmetries,
which is the main message of the whole program.
Consequently, many investigations on BMS invariant field
theories (BMSFTs) in various dimensions have appeared in
the literature over the last few years [4–20].
In another development related to flat holography,

known as “celestial holography,” the idea of holography
for asymptotically flat spacetimes has been formulated as a
correspondence between gravity on 4d flat space and a 2d
CFT living on the celestial sphere. This way of thinking has
attracted a lot of attention in the last few years in terms of
linking asymptotic symmetries and scattering amplitudes
and one can have a look at the excellent reviews [21–23]
for a detailed understanding of these exciting structures.
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What is more intriguing, there seems to be a very recently
discovered reconciliation between these two seemingly
different avenues put forward in [24]. This nicely packages
ideas from celestial holography in the language of corre-
lation functions of Carrollian CFT (equivalently, BMSFTs)
and links them naturally to 4d scattering amplitudes. For
further intriguing ideas linking the two approaches, see
also [25].
In lower dimensions, especially in the case of three, the

BMS group has a particularly simple structure and is
isomorphic to the Galilean conformal algebra in two
dimensions (GCA2) [26]. While the GCA2 can be obtained
from the nonrelativistic (NR) contraction of the two-
dimensional conformal algebra, which is two copies of
the Virasoro algebra, the BMS3 algebra is the ultrarelativ-
istic (UR) contraction of the same, and can be shown to be
isomorphic to a conformal Carrollian algebra in two
dimensions (CCA2) [27–29]. All of this turns out to be
a part of the general equivalence between BMS algebra in
(dþ 1) dimensions and conformal Carrollian algebra in d
dimensions. Carrollian symmetries occur whenever we
encounter a null surface and Riemannian structures degen-
erate [30–32] due to the closure of light cones. Two-
dimensional field theories with these symmetries are a very
active research area, and various results have been obtained
[33–35]. Despite the thorough investigations into entangle-
ment entropy of such theories [9–11,36], many other
information-theoretic structures of this theory remain in
the shadows. However, recently some more investigations
into the quantum chaotic structure in BMSFTs have been
detailed in [37]. In this work, we will be trying to shed light
on some unexplored issues, especially how certain infor-
mation-theoretic markers change as a physical system goes
through the contraction of conformal symmetries into BMS
symmetries. Our focus will be on a free scalar field theory,
which has appeared in the literature in various guises,
including in the study of null string theories [38–41], as a
BMSFT action [42], and as deformations of 2d CFT
actions [43,44].
In quantum information theory, quantum circuit com-

plexity is a very useful tool to probe into the structure of an
inherently quantum theory. The idea of complexity in
quantum information theory is simple. Given a suitable
basis, it is a quantity that determines the minimum number
of operations needed to perform the desired task.
Specifically for a quantum system, the notion of complex-
ity is associated with an efficient quantum circuit that takes
a reference state (usually a state that can be prepared
relatively easily in the “lab”) into the desired target state
given a set of quantum gates. In recent times, the notion of
complexity has appeared extensively in the context of
holography. In the context of AdS=CFT, certain geomet-
rical objects have been interpreted as gravity dual of the
circuit complexity of the dual field theory state. These
proposals go by the names of complexity ¼ volume [45]

(maximal volume of codimension one bulk slice) and
complexity ¼ action [46] (gravitational action defined
on a certain Wheeler-De Witt patch inside the bulk space-
time). This has spurred lots of studies of circuit complexity
in the context of quantum field theory [47–77].1 However,
the ramifications of such constructions are far from well
explored. Several methods of quantifying complexity in a
QFT exist, and they all have their own advantages, see [50]
for a detailed discussion.
It has recently been proposed [51,59], that the circuit

complexity can be used as a useful probe of flows between
different quantum field theories (more specifically, as a
probe of renormalization group flow) and quantum phase
transitions. Motivated by this, in this paper, we will use
circuit complexity to probe the purported “flow” from CFT
to BMS invariant theories [44]. Besides exploring circuit
complexity, we will also discuss the Hamiltonian dynamics
of the system. Intriguing new research has unearthed that
quantum chaos in quantum many-body systems plays an
important role in understanding some of the important open
questions, e.g., thermalization, transport in quantum many-
body systems, black hole information loss etc. [85,86]. In
this paper, we will also compute out-of-time-ordered
correlators (OTOCs) for our system. It has been shown
[87–89]2 that OTOC gives pertinent information about the
Lyapunov exponent and the scrambling time.3 We will also
study the nature of operator evolution in the Heisenberg
picture for such a flow from CFT to BMS. The complexity
associated to this process has been termed Krylov complex-
ity in the literature, and has been examined thoroughly
[91–99]4 in recent times.
The organization of the paper is as follows. In Sec. II,

we discuss the underlying model based on the massless
scalar field and the limiting procedure to obtain the BMS
vacuum from the CFT vacuum. In Sec. III, we explore
circuit complexity as a function of the contraction param-
eter from CFT to BMS. We observe that the complexity
becomes divergent when the system hits the BMS point.
To get further intuition about this diverging complexity,
we study the associated information geometry in Sec. IV.
Specifically, we study the Fubini-Study metric and the
geodesic that connects the CFT and BMS vacuum on the
state manifold. We also comment on the Berry curvature for
this process. Lastly, in Sec. V, we study the Hamiltonian of

1This list is by no means exhaustive. Readers are referred to the
reviews [78–80], and references therein for more details. Also,
there are several other proposals for holographic complexity
e.g., the ones discussed in [81–84]. Again this list is also not
exhaustive at all.

2For computation of OTOC in quantum mechanical systems
interested readers are referred to [90].

3For a detailed review one can look at [86] and the references
therein.

4This list again does not do justice to the literature that has
discussed related topics in recent times. Interested readers are
referred to the references and citations of these papers.
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the system and the behavior of the OTOCs. We find that the
OTOC is a polynomial function of time in the BMS limit.
A close study of the Krylov complexity finds a similar
polynomial scaling associated with operator evolution in
this limit. We conclude in Sec. VI by summarizing our
results and proposing future directions.

II. REVISITING BMS3 INVARIANT SCALAR
FIELD

A. The intrinsic model

As discussed in the Introduction, our core model con-
cerns an Inn-Wigner contraction from 2d relativistic
conformal field theories to theories with BMS3 as their
symmetry algebra. A very well-studied example of this
appears in the study of null or tensionless string theories
[38–41]. In this limit, the worldsheet of the string becomes
null, endowed with a degenerate metric and acquires a
Carrollian structure, where the residual symmetry algebra
coincides with that of BMS3. From a CFT point of view,
BMSFTs generically occur as a limit of the 2d conformal
algebra, which is isomorphic to two copies of the Virasoro
algebra. For completeness, these Virasoro generators on a
cylinder parametrized by ðσ ∼ σ þ 2π; τÞ are given by the
following vector fields:

Lk ¼
i
2
eikðτþσÞð∂τ þ ∂σÞ; L̄k ¼

i
2
eikðτ−σÞð∂τ − ∂σÞ: ð1Þ

At the level of mode expansions, these correspond to two
independent sets of oscillators corresponding to holo-
morphic and antiholomorphic sectors in the CFT. These
generators satisfy the classical part of the Virasoro algebra

½Lk;Lk0 � ¼ ðk−k0ÞLkþk0 ; ½L̄k;L̄k0 � ¼ ðk−k0ÞL̄kþk0 ; ð2Þ

where one can add Virasoro central charges c; c̄ to the
algebra when quantized. Given the two Virasoro generators
Lk and L̄k, the contraction of the algebra is given by

Lk ¼ L̄k − L̄−k; Mk ¼ ϵðL̄k þ L̄−kÞ; ϵ → 0: ð3Þ

This is often known as an ultrarelativistic contraction since
the effective speed of light goes to zero in this construction.
The resulting algebra is that of BMS3, which is isomorphic
to the Galilean conformal algebra (GCA) in two dimen-
sions,

½Lk; Lk0 � ¼ ðk − k0ÞLkþk0 þ cLδkþk0;0ðk3 − kÞ;
½Lk;Mk0 � ¼ ðk − k0ÞMkþk0 þ cMδkþk0;0ðk3 − kÞ;
½Mk;Mk0 � ¼ 0; ð4Þ

where cL;M are central charges to be determined. At the
level of coordinates and coupling constants, these corre-
spond to singular scalings, viz.

σ → σ; τ → ϵτ; ϵ → 0: ð5Þ

If one wants to relate the central charges, they also scale
accordingly:

cL ¼ c − c̄; cM ¼ ϵðcþ c̄Þ: ð6Þ

Starting from a CFT2 action on flat spacetime and perform-
ing the above contraction leads one to the action

S ¼ 1

4π

Z
dτdσð∂τΦÞ2: ð7Þ

We note that only the temporal derivative of the field
Φðσ; τÞ survives under the contraction procedure. But there
still survives the notion of space and time in the ðσ; τÞ
coordinates; however, they are not on equal footing as is the
case of relativistic theories. One could explicitly check that
this action is invariant under the BMS transformations,

σ → fðσÞ; τ → f0ðσÞτ þ gðσÞ: ð8Þ

Here f, g are arbitrary functions and prime denotes a
derivative with respect to σ. It is easy to see that these
transformations are generated by the symmetry generators,

LðfÞ ¼ f0ðσÞτ∂τ þ fðσÞ∂σ
¼

X
k

ckeikσð∂σ þ ikτ∂τÞ ¼ −i
X
k

ckLk; ð9Þ

MðgÞ ¼ gðσÞ∂τ ¼
X
k

dkeikσ∂τ ¼ −i
X
k

dkMk; ð10Þ

where f ¼ P
ckeikσ , g ¼

P
dkeikσ have been expanded in

Fourier modes. The modes Ln and Mn generate the
classical part of the BMS3 algebra. The equations of
motion for the scalar takes the form

Φ̈ ¼ 0: ð11Þ

Subject to periodic boundary conditions on a cylinder
Φðτ; σÞ ¼ Φðτ; σ þ 2πÞ, the above equation of motion is
solved by the following mode expansion:

Φðσ; τÞ ¼ A0 þ B0τ þ
X
k

i
k
ðAk − ikτBkÞe−ikσ: ð12Þ

Here A, B are purely Hermitian operators, and the con-
jugate momentum is given by

Π ¼ ∂S

∂ _Φ
¼ 1

2π
_Φ; ð13Þ

and the canonical Poisson bracket which reads
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fΠðσ0; τÞ;Φðσ; τÞg ¼ δðσ − σ0Þ ð14Þ

implies the following algebra for the oscillators:

fAk; Ak0gP:B: ¼ fBk; Bk0 gP:B: ¼ 0;

fAk; Bk0gP:B: ¼ −2ikδkþk0;0: ð15Þ

These are clearly not usual CFT oscillators as is evident
from the brackets, and they more look like quantum
mechanical oscillators fX;Pg. However we can always
go to a basis where these oscillators act as decoupled set of
(anti)holomorphic oscillators [41],

Ck ¼
1

2
ðAk þ BkÞ; C̃k ¼

1

2
ð−A−k þ B−kÞ: ð16Þ

Now, the Poisson brackets take the canonical form

fCk; Ck0g ¼ −ikδkþk0;0; fC̃k; C̃k0 g ¼ −ikδkþk0;0;

fCk; C̃k0g ¼ 0: ð17Þ

Starting from the generators

Lk ¼
1

2

X
k0
A−k0Bk0þk and Mk ¼

1

2

X
k0
B−k0Bk0þk; ð18Þ

we can now write them in terms of the C oscillators,

Lk ¼
1

2

X
k0
½C−k0Ck0þk − C̃−k0C̃k0−k�; ð19Þ

Mk ¼
1

2

X
k0
½C−k0Ck0þk þ C̃−k0C̃k0−k þ 2C−k0C̃−k0−k�: ð20Þ

These generators again span the BMS3 algebra. However,
one can spot that these generators are the same as
the null string ones mentioned in [41] but with the
spacetime indices stripped off. Many of our physical
intuitions in subsequent sections will be borrowed from
that of null strings, and we will mention that in particular
places.

B. Canonical quantization

Let us try to understand the Hilbert space of the BMS
invariant scalar theory. As usual in quantized theory, all
Poisson brackets go to Dirac brackets, and we can have the
canonical commutation relations,

½Ck; Ck0 � ¼ ½C̃k; C̃k0 � ¼ kδkþk0;0: ð21Þ

And a CFT-like oscillator vacuum j0ic can be defined by
the following:

Ckj0ic ¼ C̃kj0ic ¼ 0 ∀ k > 0: ð22Þ

Here, one can clearly notice that j0ic is not a pure state
anymore but an entangled state of these new left and right
oscillator sectors:

j0ic ¼ j0iR ⊗ j0iL: ð23Þ

In this case, in terms of the C oscillators, we can write down
the relevant zero modes of the BMS generators:

L0 ¼
1

2

X
k

½C−kCk − C̃−kC̃k�; ð24Þ

M0 ¼
1

2

X
k

½C−kCk þ C̃−kC̃k þ 2C−kC̃−k�: ð25Þ

These can be thought of as analogues of angular momen-
tum operator and Hamiltonian for usual relativistic CFT.
However, note that M0 here is seemingly not diagonaliz-
able. This structure is central to defining the quantum
nature of a BMS invariant theory. For details related to
quantum structures and vacuum classifications of this
theory, the reader is directed to [42,100].

C. Limiting perspective

As we have emphasized earlier, BMS invariant theories
can be discussed either from an intrinsic point of view,
or equivalently by taking limits on their relativistic
counterparts. To start along the second avenue, consider
the relativistic free conformal scalar model on the
cylinder,

S¼ 1

4π

Z
dσdtðð∂tΦÞ2−ð∂σΦÞ2Þ; ðσ;tÞ∼ðσþ2π;tÞ: ð26Þ

Under the UR limit (5) together with the corresponding
rescaling of the field,

t ¼ ϵτ; Φ ¼ ffiffiffi
ϵ

p
ϕ; ϵ → 0; ð27Þ

the action (26) becomes the BMS scalar action (7) on the
cylinder ðσ; τÞ ∼ ðσ þ 2π; τÞ, which we reproduce here,

S ¼ 1

4π

Z
dσdτð∂τϕÞ2: ð28Þ

The equation of motion of the relativistic scalar field
[coming from (26)] can be solved in terms of the mode
expansion

Φðσ; tÞ ¼ ϕ0 þ π0t

þ iffiffiffi
2

p
X
k≠0

1

k
ðake−ikðσþtÞ − ā−ke−ikðσ−tÞÞ; ð29Þ

BANERJEE, BHATTACHARYYA, DRASHNI, and PAWAR PHYS. REV. D 106, 126022 (2022)

126022-4



where a†k ¼ a−k etc., with the canonical commutation
relations

½ak; ak0 � ¼ ½āk; āk0 � ¼ kδkþk0;0;

½ak; āk0 � ¼ 0; ½ϕ0; π0� ¼ i: ð30Þ

The CFT vacuum is defined by these oscillators

akj0ia ¼ ākj0ia ¼ 0 ∀ k > 0: ð31Þ

Comparing with the mode expansion of the BMS free
scalar on the cylinder (12) we obtain the relation between
modes before and after the UR limit

Ak ¼ lim
ϵ→0

1ffiffiffi
ϵ

p ðak − ā−kÞ;

Bk ¼ lim
ϵ→0

ffiffiffi
ϵ

p ðak þ ā−kÞ; k ≠ 0; ð32Þ

A0 ¼
ϕ0ffiffiffi
ϵ

p ; B0 ¼ −i
ffiffiffi
ϵ

p
π0: ð33Þ

Following these limits and from (16), we can now see the
relation between C oscillators and the CFToscillators in the
limit read:

Ck ¼
1

2

� ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
�
ak þ

1

2

� ffiffiffi
ϵ

p
−

1ffiffiffi
ϵ

p
�
ā−k;

C̃k ¼
1

2

� ffiffiffi
ϵ

p
−

1ffiffiffi
ϵ

p
�
a−k þ

1

2

� ffiffiffi
ϵ

p þ 1ffiffiffi
ϵ

p
�
āk: ð34Þ

The general transformation between C and a oscillators
turns out to be a Bogoliubov transformation since the
canonical structure remains intact under the generic trans-
formation5:

CkðϵÞ ¼ cosh θak − sinh θā−k;

C̃kðϵÞ ¼ − sinh θa−k þ cosh θāk: ð36Þ

And quantum mechanically, the parameter changing from
ϵ ¼ 1 to ϵ ¼ 0 describes the contraction from a scalar CFT
to a BMS scalar theory. At ϵ ¼ 0 the oscillators explicitly
belong to that of the BMS algebra; however, the above
relations hold even for ϵ ¼ 1 where it goes back to the CFT
oscillators [41]. Hence we can extrapolate these definitions

for the whole range of validity for the parameter ϵ. It goes
without saying, this is an approximation, but this helps us to
understand the underlying structures better. The associated
transformation can be generated using

Ck ¼ e−iGakeiG; C̃k ¼ e−iGākeiG; ð37Þ

where the unitary transformation operator is a two-mode
squeezing operator that can be written as

GðθðϵÞÞ ¼ i
X∞
k¼1

θ

k
½a†kā†k − akāk�; ð38Þ

Remember that the new vacuum is defined by
Ckj0ic ¼ C̃kj0ic ¼ 0 ∀ k > 0, and this condition, using
(35) translates into

ðak − tanh θā−kÞj0ic ¼ 0; k > 0;

ðāk − tanh θa−kÞj0ic ¼ 0: ð39Þ

Now we are in a position to write down the mapping
between the two vacua j0ia and j0ic. This is given by the
following two mode squeezed state:

j0ic ¼ e−iGðθðϵÞÞj0ia
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh θ

p Y∞
k¼1

exp

�
tanh θ
k

a†kā
†
k

�
j0ia: ð40Þ

Similarly, the inverse transformation to relate the two vacua
reads

akj0ia ¼ ðCk − tanh θ C̃−kÞj0ia ¼ 0; k > 0;

ākj0ia ¼ ðC̃k − tanh θ C−kÞj0ia ¼ 0; ð41Þ

which can be thought to be generated by the inverse
displacement operator:

ḠðθðϵÞÞ ¼ −i
X∞
k¼1

θ

k
½C†

kC̃
†
k − CkC̃k� ð42Þ

with C†
k ¼ C−k etc. Here we have tanh θ ¼ ϵ−1

ϵþ1
, which

makes sure that (40) is valid at ϵ ¼ 1. The solution in this
case is given as

j0ia ¼
1

N

Y∞
k¼1

exp

�
−
tanh θ
k

C†
k · C̃

†
k

�
j0ic: ð43Þ

Note that at the BMS (or the tensionless) point ϵ ¼ 0, the
CFT vacuum turns out to be a special state with respect to
the BMS oscillators:

5Note that we could also have had

CkðϵÞ ¼ cosh θe−iχak þ sinh θeiχ ā−k;

C̃kðϵÞ ¼ sinh θe−iχa−k þ cosh θeiχ āk
ð35Þ

which still would respect the canonical commutations as χ is just
a pure phase. The squeezing operator in this case has to be
changed accordingly. Since our ϵ is considered purely real, we
omit this extra phase factor.
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j0ia ¼
1

N 0
Y∞
k¼1

exp

�
−
1

k
C†
kC̃

†
k

�
j0ic: ð44Þ

At the level of wave functions, the question is which way
we want to evolve in ϵ. In a sense, this is a “thermal”
evolution and may be thought of as a Euclidean time
evolution. More details on this can be found in [101].

D. “Position space” representation of the vacuum

In the present section, we will be computing circuit
complexity for the state (40). We start by solving for the
“position-space” wave function. To do that, first let us
define the following “position” and “momentum” operators
out of the C oscillators,

qk ¼
1ffiffiffiffiffi
2k

p ðC†
k þCkÞ; pk ¼

iffiffiffiffiffi
2k

p ðC†
k −CkÞ;

q̃k ¼
iffiffiffiffiffi
2k

p ðC̃†
k − C̃kÞ; p̃k ¼ −

1ffiffiffiffiffi
2k

p ðC̃†
k þ C̃kÞ; k > 0:

ð45Þ
It is easy to check that they satisfy the canonical commu-
tation relations i.e.,

½qk; pk0 � ¼ iδk;k0 ¼ ½q̃k; p̃k0 �: ð46Þ
To do that, we first write (41) in terms of these position and
momentum operators and then they give us the following
first-order differential equations in position-space, which
we can easily solve6

ðqk þ i tanh θkq̃kÞψcðqk; q̃kÞ
þ ð∂qk − i tanh θk∂q̃kÞψcðqk; q̃kÞ ¼ 0;

ðiq̃k − tanh θkqkÞψcðqk; q̃kÞ
þ ði∂q̃k þ tanh θk∂qkÞψcðqk; q̃kÞ ¼ 0: ð47Þ

Note that, in the position space representation,

pk ¼ −i
∂

∂qk
; p̃k ¼ −i

∂

∂q̃k
:

Solving (47) we get the wave function,

Ψcðqk; q̃kÞ ¼ hqk; q̃kj0ci ¼
Y∞
k¼1

e−Aðq
2
kþq̃2kÞ−iBqkq̃kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π cosh 2θk

p ; ð48Þ

where the constants are

A ¼ 1

2 cosh 2θk
; B ¼ tanh 2θk: ð49Þ

Using the definition of θk i.e., tanh θk ¼ ϵ−1
ϵþ1

we can rewrite
these in the following manner,

A ¼ ϵ

1þ ϵ2
; B ¼ ϵ2 − 1

ϵ2 þ 1
: ð50Þ

Further, we can introduce a new set of canonical variables
to decouple the system into two sectors,

qþk ¼ qk þ q̃kffiffiffi
2

p ; q−k ¼ qk − q̃kffiffiffi
2

p ;

pþ
k ¼ pk þ p̃kffiffiffi

2
p ; p−

k ¼ pk − p̃kffiffiffi
2

p : ð51Þ

Then the wave function mentioned in (48) becomes

ψcðqþk ; q−k Þ ¼
Y∞
k¼1

e−
1
2
ð2AþiBÞðqþk Þ2−1

2
ð2A−iBÞðq−k Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π cosh 2θk
p

¼
Y∞
k¼1

ψþ
k;cðqþk Þψ−

k;cðq−k Þ: ð52Þ

In the next section, we will be using (52) for the
computation of circuit complexity.

III. CIRCUIT COMPLEXITY: FROM CFT TO BMS

A. Circuit complexity: A brief introduction

As mentioned before, our goal is to probe the transition
from CFT to BMS using tools of quantum information.
Particularly, we will focus on circuit complexity. We have
already introduced this quantity in the Introduction, but
here let us give a brief technical review. We will mainly
follow the approach pioneered by Nielsen, and his collab-
orators [102–104]. For more details, interested readers are
referred to [47]. Operationally, given a set of elementary
gates, it quantifies the minimal number of operations
needed to build a circuit which will take a suitable reference
state jψRi as input and generate the desired target state jψTi
as an output. Formally, given a reference state and set of
gates, a quantum circuit starts at the reference state (at
s ¼ 0) and terminates at a target state (s ¼ 1)

jψTðs ¼ 1Þi ¼ Uðs ¼ 1ÞjψTðs ¼ 0Þi: ð53Þ

Here U is the unitary operator that takes the reference state
to the target state. It takes the following form:

UðsÞ ¼ P⃖ exp

�
−i

Z
s

0

ds0Hðs0Þ
�
: ð54Þ

The s parametrizes a path in the space of the unitaries and
given a set of elementary gatesMI , the controlHamiltonian
[HðsÞ] can be written as

6We add a generic k subscript to θ. However, our Bogoliubov
coefficients are not directly mode dependent, so all θk’s are the
same.
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HðsÞ ¼ YIðsÞMI: ð55Þ

The coefficients YIðsÞ counts the number of times that a
particular gate acts at a given value of s. It can be easily
shown that [47]

dUðsÞ
ds

¼ −iYIðsÞMIUðsÞ: ð56Þ

Then we define a cost functional F ðU; _UÞ as follows:

CðUÞ ¼
Z

1

0

F ðU; _UÞds: ð57Þ

The dot defines the derivative with respect to s. Minimizing
this cost functional gives the optimal YI’s and hence it gives
us the optimal circuit. There are different choices for the
cost functional [47,104,105]. In this paper we will consider
the following:

F 2ðU; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

ðYIÞ2
r

: ð58Þ

Here F 2ðU; YÞ corresponds to standard distance measure
over a Riemannian geometry, here the one associated to the
state space, on which (57) defines the length functional.7

For our case, a natural choice of the reference state jΨRi
is the CFT ground state which is a Gaussian state. So the
reference wave function in ðqk; q̃kÞ basis takes the follow-
ing form:

hqk; q̃kjψiR ¼ ψcðqk; q̃kÞjϵ¼1 ¼
Y∞
k¼1

e−
1
2
ðq2kþq̃2kÞffiffiffi
π

p : ð59Þ

ψcðqk; q̃kÞ is defined in (52) and ϵ ¼ 1 corresponds to the
CFT ground state. Then for the target state we choose the
state mentioned in (52) but for ϵ ≠ 1. In this way the circuit
complexity will be the function of the flow parameter ϵ and
thereby will help us to probe the CFT to BMS flow.

B. Behavior of circuit complexity as a function of ϵ

Given the target and reference state we follow
[50,69,106] to compute circuit complexity. Note that, both
the target and reference state in our cases are Gaussian
states. The Gaussian states are equivalently described by
their corresponding covariance matrix. The covariance
matrix for each mode k is defined in the following way:

GkðϵÞ ¼ hψcðqþk ; q−k ÞjΨkΨ
†
kjψcðqþk ; q−k Þi; ð60Þ

where

ΨT ¼ fqþk ; pþ
k ; q

−
k ; p

−
k g:

For our case we will have the following two covariance
matrices for reference (ϵ ¼ 1) and target state (ϵ ≠ 1) wave
functions:

Gs¼0
k ðϵ ¼ 1Þ ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCA;

Gs¼1
k ðϵÞ ¼

0
BBBBB@

1
2A − B

2A 0 0

− B
2A

4A2þB2

2A 0 0

0 0 1
2A

B
2A

0 0 B
2A

4A2þB2

2A

1
CCCCCA
: ð61Þ

We note that, from (49) 4A2 þ B2 ¼ 1. We can compute the
circuit complexity in terms of these covariance matrices
[50,106]. We want to construct the optimal circuit such that

Gs¼1
k ¼ Uðs ¼ 1Þ · Gs¼0

k · Uðs ¼ 1ÞT: ð62Þ

Note that, these covariance matrices are of block diagonal
form. Each of the blocks are an element of the SUð1; 1Þ
group. So we can take the generators MI’s as generators
SUð1; 1Þ × SUð1; 1Þ. For details interested readers are
referred to [50]. Finally the complexity per mode k takes
the following form due to the structure of the covariance
matrix [50]8:

Ck ¼
1ffiffiffi
2

p
����arccosh

�
1þ 4A2 þ B2

4A

�����
¼ 1ffiffiffi

2
p

����arccosh 1

2A

���� ¼ 1ffiffiffi
2

p
����arccosh 1þ ϵ2

2ϵ

����: ð63Þ

It is evident that Ck is a monotonically increasing
function of the parameter ϵ. It starts from zero at ϵ ¼ 1,
i.e., at the CFT ground state and diverges at ϵ ¼ 0 i.e., at the
BMS vacuum. This is illustrated in the Fig. 1.
Some comments are in order after this result. The

divergence in circuit complexity indicates that the target
state may not be reachable from the reference state via a
combination of unitary operations. But this can also be
interpreted as nonanalyticity corresponding to some critical

7This is a natural choice for our study as we will compare it
with the Fubini-Study distance in a subsequent section.

8Note that, the total complexity will be C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
k¼1ðarccoshð 1

2AÞÞ2
q

. As the argument of arccosh is indepen-

dent of k, we will get C ¼ 1ffiffi
2

p jarccosh 1
2A j

ffiffiffiffi
V

p
, where V is the

momentum space volume i.e., V ¼ P
N
k¼1. This overall factor of

V does not affect our conclusions, hence we focus on the
complexity per volume to avoid unnecessary clutter.
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points [107] and signals the presence of a quantum phase
transition. Looking at the system at hand, it makes perfect
sense to assume there is a phase transition in going from
CFT to BMS at the very extreme point, where a notion of
ultralocality sets in. For the tensionless string case, this
phase transition was interpreted as a Bose-Einstein like
condensation that gives rise to open strings degrees of
freedom from closed strings [108], as the target state is
essentially a boundary state along with all spacetime
directions. We can safely assume a related interpretation
for our case as well. However, the actual physical per-
spective may be different here.

IV. INFORMATION GEOMETRY

A. Fubini-Study metric

To get further insight into the diverging complexity at
ϵ ¼ 0, as we have uncovered in the last section, we will first
try to associate a Riemannian structure to the space of wave
functions (40). We identify the coherent state we have been
working with a point on a group manifold, and the
complexity for the target state is defined as the geodesic
distance between the state and the reference one on the
group manifold. As noted before the state mentioned in
(40) is a SUð1; 1Þ coherent state. So we start with a generic
state of the form

jψi ¼ N
YN
k¼1

ezkKþj0; 0i: ð64Þ

Here Kþ is a SUð1; 1Þ generator, with the set of generators
given by combination of oscillators (without the k
subscripts):

Kþ ¼ β†β̃†; K− ¼ ββ̃; Kz ¼
1

2
ðβ†β þ β̃β̃†Þ; ð65Þ

which generates the familiar algebra:

½Kþ; K−� ¼ −2Kz; ½Kz; K�� ¼ �K�: ð66Þ

Then the state associated to (64) can be given a Riemannian
structure [109]. The infinitesimal distance in this state space,
also know as “Fubini-Study” metric, can be written as

ds2 ¼ gijdxidxj; ð67Þ

where the metric tensor is given by

gij ¼ h∂iψ j∂jψi − h∂iψ jψihψ j∂jψi: ð68Þ

Finally we get [48,56]

ds2 ¼
X
k

jdzkj2
ð1 − jzkj2Þ2

: ð69Þ

Further we can parametrize the complex function zk in (64)
as

z ¼ jzkjeiϕk ;

where we take jzkj ¼ tanhðθ̄k=2Þ. Then we get

ds2 ¼
XN
k¼1

1

4
ðdθ̄2k þ sinhðθ̄kÞ2dϕ2

kÞ: ð70Þ

Then the geodesic distance between two point ðθ̄1;k;ϕ1;kÞ
and ðθ̄2;k;ϕ2;kÞ is given by

dFS ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

ðarccosh½coshðθ̄1;kÞ coshðθ̄2;kÞ − sinhðθ̄1;kÞ sinhðθ̄2;kÞ cosðϕ1;k − ϕ2;kÞ�Þ2
vuut : ð71Þ

From (40) it is evident that zk ¼ ðϵ−1Þ
ðϵþ1Þ. Also, we can clearly see that for CFT (ϵ ¼ 1) zk ¼ 0 as θ̄k ¼ 0 and for BMS (ϵ ¼ 0)

zk ¼ −1. Hence the length of the geodesic connecting the following two points9

00.20.40.60.8

1

2

3

4

Ck

FIG. 1. Complexity as function of flow parameter ϵ:ϵ ¼ 1 and
ϵ ¼ 0 corresponds to the CFT and BMS point respectively. It
clearly diverges at the point ϵ ¼ 0. We have rescaled the
complexity by a factor of

ffiffiffi
2

p
.

9Note that, although the phases ϕk are zero for the in initial and final state, the shortest geodesic connecting them could pass through
states with nonvanishing phase. So for computations pertaining to an intermediate state, we should keep track of the phase factor.
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ðθ̄1;k ¼ 0;ϕ1;k ¼ 0Þ;�
θ̄2;k ¼ 2 arc tanh

�ðϵ − 1Þ
ðϵþ 1Þ

�
;ϕ2;k ¼ 0

�
½ϵ < 1�;

turns out to be

dFS ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

θ̄22;k

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

arctanh

�ðϵ − 1Þ
ðϵþ 1Þ

�
2

vuut

¼ arctanh

�ðϵ − 1Þ
ðϵþ 1Þ

� ffiffiffiffi
V

p
: ð72Þ

Here V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiP
N
k¼1

p
denotes the phase-space volume. It is

easy to check that it is a monotonically increasing quantity
and diverges at ϵ ¼ 0. This is shown in Fig. 2. Also, note
that, for ϵ ¼ 0, zk ¼ 1 and from (70) it is evident that the
information metric becomes degenerate as we approach the
BMS point, i.e., the geodesic never reaches the BMS point
staying on the same coordinate chart.
So we could again see that the complexity diverges at the

special point of ϵ ¼ 0 as before, showing similar qualitative
behavior. Although the geometric notion associated with
this intriguing observation is still unclear, one could recall
that jzkj ¼ 1 corresponds to a degenerate point on the
projective space hyperbola on the Fubini-Study metric.
This also corresponds to the phase transition point in the
physical space, especially with the ones associated with
ground state degeneracies. As seen in the literature [108]
this particular point with ϵ ¼ 0 has been interpreted as an
infinitely degenerate vacuum with all excitations in the
tensile string condensing into just one state. This could be
the real reason behind this diverging geodesic distance.

However, a true CFT notion is beyond the scope of
this work.

B. Berry curvature

Furthermore, we can compute the Berry curvature [110]
associated with these kinds of SUð1; 1Þ coherent states (64),
transforming finally into a boundary state in this process.
The Berry curvature is a measure to quantify a path in a
group representation that connects our initial and final
points. The components of Berry connections are defined by

Ai ¼ hψ j∂ijψi: ð73Þ

For our case, we get the following components for each k
mode [111]:

Azk ¼
z̄k

2ð1 − jzkj2Þ
; Az̄k ¼ −

zk
2ð1 − jzkj2Þ

: ð74Þ

The bar on zk denotes the complex conjugate for generic
parametrizations. Then we can define a two-form, the Berry
curvature, for each mode k as follows:

F ¼ dA ð75Þ

where d is the exterior derivative and the one-form A is
Berry connection components which are defined in (73).
For our case, we will have

F ¼ i
2
sinhðθ̄kÞdθk ∧ dϕk: ð76Þ

Here we have used the fact that z ¼ tanhðθ̄k=2Þeiϕk . For the
state (40), using θ̄k ¼ 2arctanhððϵ−1Þðϵþ1ÞÞ as before we get

Fθϕ ¼ i
2
sinh

�
2 arc tanh

�ðϵ − 1Þ
ðϵþ 1Þ

��
¼ i

4

�
ϵ2 − 1

ϵ

�
: ð77Þ

It is easy to see that the Berry curvature diverges at ϵ ¼ 0,
i.e., at the BMS point. So the behavior of both the
complexity and the Berry curvature is the same at the
critical point ϵ ¼ 0.

V. HAMILTONIAN EVOLUTION

For the last couple of sections, we have been focusing on
the evolution of our system only in ϵ, presumably at an
initial time slice. Our discussion clearly shows that the
quantities we are interested in could be ill defined at the
pure BMS point ϵ ¼ 0. In this sense, ϵ acts as a cutoff in
the system. However, the story could be different at a finite
time slice, which we will deliberate on in this section.

A. Diagonalization

Let us now consider the temporal dynamics associated
with our system’s Hamiltonian that also changes with the

00.20.40.60.8

0.5

1.0

1.5

2.0

dFS

V

FIG. 2. Fubini-Study distance as function of flow parameter
ϵ:ϵ ¼ 1 and ϵ ¼ 0 correspond to the CFT and BMS points
respectively.
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parameter ϵ. One can remember that for relativistic 2d CFT,
the Hamiltonian and angular momentum operators were
tentatively given by combinations of Virasoro zero modes,

HM ¼ L0 þ L̄0; JM ¼ L0 − L̄0: ð78Þ

Upon quantization, the operators L0, L̄0 are given in terms
of CFT oscillators (31) by

L0 ¼
1

2

X
k

a−kak; L̄0 ¼
1

2

X
k

ā−kāk: ð79Þ

Now remember that under contraction, the oscillators
change with a Bogoliubov transformation, which are the
inverse transforms of (34),

ak ¼ ΩþCk − Ω−C̃−k;

āk ¼ ΩþC̃k − Ω−C−k: ð80Þ

Using the above, we can see that action of the operator
ðLðϵÞ

0 − L̄ðϵÞ
0 Þ on a state remains invariant throughout the ϵ

evolution since Ω2þ −Ω2
− ¼ 1 by definition of Bogoliubov

transformations. But the other combination reads

LðϵÞ
0 þ L̄ðϵÞ

0 ¼
X
k

½ðΩ2þ þ Ω2
−ÞðC†

kCk þ C̃†
kC̃kÞ

− 4ΩþΩ−CkC̃k�: ð81Þ

Note that this is the Hamiltonian that appeared in [101] in
the null string theory context. So the action of L̄ðeÞ

0 þ L̄ðeÞ
0

combination does not remain invariant as we move to more
and more in ϵ, and an extra “perturbation” term generates a
deformation.10 This is the extra seemingly nondiagonal
term in the above equation.
A possible way out of the problem is to consider the

Hamiltonian arbitrary near the null surface, where the
BMS symmetry arises. Here, we can write an appropriately
scaled and finite perturbative normal ordered Hamiltonian
near ϵ → 0 (but not exactly) with next to leading correction
in ϵ,11

Hϵ ¼
X∞
k¼0

½ð1þ ϵ2ÞðC−kCk þ C̃−kC̃kÞ

þ ð1 − ϵ2ÞðC−kC̃−k þ CkC̃kÞ�: ð82Þ

We can see that this Hamiltonian consists of two normal
ordered number operators and two nondiagonal parts. As
we go to ϵ ¼ 0, we get back the exact BMS answer for M0

in (24). However, as we saw for the bogoliubov trans-
formations, this definition can also be extrapolated to the
CFT point ϵ ¼ 1, where only the two number operators
remain (with the identification a ¼ C etc.). Note that, with
the definitions of the basis we use in (45), the perturbation
term in the Hamiltonian can be written as

C†
kC̃

†
k þ CkC̃k ¼ −kðqkp̃k þ pkq̃kÞ: ð83Þ

We can further notice that these commutation relations (46)
are invariant up to a discrete transformation,

p̃k → −q̃k; q̃k → p̃k; ð84Þ

or similarly for nontilde variables, which basically gives
another set of basis oscillators for our wave function, where
the tilde and nontilde set of ðq; pÞs in (45) are treated on the
same footing. These transformations can also be achieved
by a “flipping” map of C̃ oscillators C̃k → C̃0

k ¼ iC̃−k.
Evidently, the perturbation term in the Hamiltonian also
changes under this map:

kðqkq̃k − pkp̃kÞ ¼ iðC†
kC̃

†
k − CkC̃kÞ; ð85Þ

which is just the displacement operator, and usually appears
in the Hamiltonian for a thermofield double (TFD).
Next we time-evolve (48) with the Hamiltonian (82)

written in the position-momentum basis. After neglecting a
constant additive term (82) becomes

Hϵ ¼
X∞
k¼0

�
k
2
ð1þ ϵ2Þðq2k þ p2

k þ q̃2k þ p̃2
kÞ

− kð1 − ϵ2Þðqkp̃k þ pkq̃kÞ
�
: ð86Þ

Furthermore we can diagonalize (86) by using the trans-
formations as below:

qþk ¼ q̃k − pkffiffiffi
2

p ; q−k ¼ q̃k þ pkffiffiffi
2

p ;

pþ
k ¼ qk þ p̃kffiffiffi

2
p ; p−

k ¼ −
qk − p̃kffiffiffi

2
p ; ð87Þ

which are related to our earlier expression in (51) via the
identifications in (84). Then in terms of these new (�)
variables the Hamiltonian becomes

Hϵ ¼
X∞
k¼0

k½ϵ2ðpþ2

k þ q−
2

k Þ þ p−2

k þ qþ
2

k �: ð88Þ

One can also see here that imposing (84) into the
Hamiltonian and diagonalizing it gives rise to the same
structure as above. As one can see from (88), in the strict
ϵ ¼ 0 limit, both oscillators “freeze out,” i.e., there are no

10See [44] for some physical insight into the nature of this term
as a current-current deformation to the CFT.

11There is an implicit ϵ multiplying the whole Hamiltonian to
make it finite, i.e., H → ϵH.
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dynamics at all. One may be tempted to call this a true
Carrollian situation, where light cones close down, and
there is no movement in space at all. We should moreover
note from (88) that there are two different sets of eigen-
values of this Hamiltonian. One set scales as ϵ2 and
vanishes in the limit ϵ ¼ 0, i.e., at the BMS point, and
the other set scales as 1

ϵ2
which survives at the BMS point,

effectively leading to one remaining set of oscillators.

B. Out-of-time-ordered correlators

Let us now actually focus on a particular observable
diagnostic of quantum chaos, namely out-of-time-ordered
correlators for this system, armed with our diagonal
Hamiltonian. This will also require us to talk about how
operators time evolve in this system as ϵ changes. In
general OTOCs in a quantum system are defined as
CTðtÞ ¼ −h½WðtÞ; Vð0Þ�2i, where WðtÞ and Vð0Þ are some
generic operators in Heisenberg representation at time “t”
and some initial time. Let us then start with the diagonlized
Hamiltonian mentioned in (88). Time evolution with this at
ϵ ¼ 0 is tricky as there is no apparent dynamics, hence we
need to calculate our OTOCs at finite (but small) ϵ, at finite
time, and take a suitable limit.
We choose the position and momentum operators in the

� basis (51) as of interest. Under time evolution, the
operators change as follows [90]:

q�k ðtÞ ¼ cosð2kϵtÞq�k ð0Þ þ ϵ�1 sinð2kϵtÞp�
k ð0Þ; ð89Þ

p�
k ðtÞ ¼ cosð2kϵtÞp�

k ð0Þ − ϵ∓1 sinð2kϵtÞq�k ð0Þ: ð90Þ

The OTOCs in this case is then given by

½q�k ðtÞ; q�k ð0Þ� ¼ iϵ�1 sinð2kϵtÞ;
½p�

k ðtÞ; p�
k ð0Þ� ¼ iϵ∓1 sinð2kϵtÞ;

½q�k ðtÞ; p�
k ð0Þ� ¼ i cosð2kϵtÞ: ð91Þ

One can observe that while at finite values of ϵ the OTOCs
scale sinusoidally, in the strict limit of ϵ → 0 they either go
to zero or scale polynomially with time (k2t2 to be exact),
signaling the freeze-out we just discussed.12 Note also that
while the bracket ½qðtÞ; pð0Þ� gives the canonical commu-
tation relation at t ¼ 0, the same behavior comes back at
ϵ ¼ 0 too. This is an intriguing dynamical behavior, as the

Lyapunovian exponential behavior gives way to this poly-
nomial growth. However, this phenomenon and its conse-
quences need to be understood in a better physical way
which we leave for future work.

C. Krylov complexity

In this section, to get further insight into the dynamics
of the system, we sketch the idea of the complexity of
Hamiltonian evolution. In this context, a natural notion
of complexity which has been investigated in recent times
in various contexts is Krylov complexity [91]. In recent
times, operator growth has played an important role in the
context many-body system [114–117]. An operator grows
under the Liouvillian superoperator, and Krylov complex-
ity captures the notion of the spread of the operators.
To proceed, let us think of our coherent state in the

context of operator evolution under SUð1; 1Þ ≈ SLð2; RÞ,
where the states are written as

jψi ¼ DðξÞj0i; DðξÞ ¼
Y
k

eξkL−1−ξ̄kL1 : ð92Þ

For our case, ξ ¼ ξ̄ is a constant real parameter, and the
two-mode squeezed state representation of L operators are
analogous to (65) i.e., we can identify L∓1 ¼ K�; L0 ¼ Kz.
In the case where ξ ¼ ξ̄ is complex and proportional to
time, this signifies unitary evolution with the Hamiltonian.
However, in this case, our total Hamiltonian (82) is
given by

H ¼ γ1ðL1 þ L−1Þ þ γ2L0; ð93Þ

where the coefficients are real, γ2 ¼ 2ð1þ ϵ2Þ and
γ1 ¼ ð1 − ϵ2Þ. This is a generic SLð2; RÞ Hamiltonian,
albeit we do not have a unity component as it would just
contribute an overall phase. It can always be restored by
suitably normal ordering the Hamiltonian. Time evolution
under this can be thought of as producing generalized time-
dependent coherent states. Notice again that at ϵ ¼ 1, i.e., at
the CFT point, γ1 ¼ 0, and there is no generic displacement
operator at work.
This being said, we can consider this evolution as the

time-dependent evolution of the thermofield double state.
Here two copies of the Virasoro CFT were disjoint at first,
but they start talking to each other once ϵ < 1 and produce
a maximally entangled (boundary) state at ϵ ¼ 0. It has
been argued [41] that the interpolating vacuum during
ϵ evolution, i.e., j0ic (40) signifies a thermal phase of
the CFT. This was further corroborated in recent works
[101,118] concerning null strings where this vacuum was
interpreted as the vacuum for an analog of the worldsheet
Unruh effect, driven by the Bogoliubov transformations
(34) near the extreme. Here the parameter ϵ sets the scale
for inverse acceleration and hence the same for inverse
temperature.

12Following [112,113], one can also calculate the entire
Lyapunov spectrum. One first constructs the matrix L ¼ M†M,
where Mij ¼ i½ziðtÞ; zjð0Þ� with i, j ¼ 1, 2, 3, 4 and z ¼
fqþ; q−; pþ; p−g for each value of the mode k. Then the
eigenvalues of L give the information about the entire Lyapunov
spectrum. For a chaotic system, these eigenvalues typically
behave as the exponential of t, and the exponents give the
quantum Lyapunov spectrum. For our case, we can easily check
that for ϵ ¼ 0, the eigenvalues of L are polynomials of t,
indicating the absence of chaotic behavior.
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If this interpretation withstands, the generic thermal
evolving state at an initial time can be written as

j0ic ¼ N
X
k

e−βωk=2jki ⊗ jk̃i; ωk ¼ kþ 1

2
: ð94Þ

Here β is as usual the inverse temperature. It can then be
shown using the Lanczos algorithm [96] by assuming a
particular representation of the state space that unitary time
evolution of the above state under (93) requires the strength
parameters to have a form

γ1 ¼
ω

2 sinh βω
2

; γ2 ¼
ω

tanh βω
2

: ð95Þ

Note here, since the frequencies are generally k dependent,
the γs should also be k dependent. However, the explicit
one-parameter form of the coefficients prohibits that, and
we take ωk ¼ ω, i.e., we concentrate on a single mode,
without any k dependence. Now the time evolved TFD state
is analogous to eiHtj0ic, which we can compute using the
Baker-Campbell-Hausdorff formula, and that is the target
state we are looking for. The characteristic oscillation
frequency for our case is then set as

ω2

4
¼ −γ21 þ

γ22
4
¼ 4ϵ2: ð96Þ

Now one can see that there are clearly three dynamical
regimes for our system. For γ2 > 2γ1, the frequency is real,
while for γ2 < 2γ1, the frequency is imaginary. One can
think of these two regimes respectively corresponding to
the standard and inverted harmonic oscillators. The tran-
sition point between these two regimes γ2 ¼ 2γ1 is in-
triguing for us as ϵ ¼ 0 at this point. This makes sense as
the frequency becomes zero at this point, reinforcing our
comments on the freeze-out of dynamics at the onset of
Carrollian physics.
Following the discussion in [96], we can find that the

Krylov basis is the standard two-oscillator Fock space and
Krylov complexity is proportional to the average particle
number in the time evolved state

CðtÞ∝ 1

ð1− γ2
2

4γ2
1

Þ
sinh2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21−

γ22
4

r
t

�
¼ γ21

�
sinð2ϵtÞ

2ϵ

�
2

ð97Þ

which grows exponentially when γ2 < 2γ1 and has the
usual sinusoidal behavior when γ2 > 2γ1. For our system,
notice that when 0 < ϵ ≤ 1 this quantity will always vary as
a sinusoid. Explicitly at the BMS point ϵ ¼ 0, we have a
vanishing frequency and hence the complexity varies
quadratically with time, i.e.,

lim
γ1→2γ2

CðtÞ ∼ γ21t
2; ð98Þ

which has a similar scaling as our OTOCs in (91) for the
system at the BMS point. This result remains finite even at
ϵ ¼ 0 when we take the limit carefully.
Before ending this discussion, let us also notice an

intriguing fact about the physical significance of the
parameter space region γ2 < 2γ1 for our system. This
explicitly points to the situation where ϵ → iϵ, i.e., a
complex contraction of the conformal algebra.13 In this
regime, one could have an exponentially growing behavior
of the complexity, commensurate with an unstable phase of
the oscillator, and consequently, a Lyapunov exponent can
be read off [79,97,113,119].14

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we discussed information-theoretic probes
for the transition from a CFT2 to a BMS3 invariant scalar
field theory. It is well known that these two theories are
related via an Innu-Wigner contraction, which we explicitly
used to construct quantum states that flow from one theory
to another. It is also well documented that the endpoint in
this path, the BMS invariant theory, presents singularities
and degeneracies associated with the Carrollian manifold
it inherently lives on. We took our reference state as the
Gaussian ground state of the CFT and the target state as the
entangled ground state of BMS, which turned out to be
related to each other via a squeezing operation. Since at the
exact BMS point, the state evolves into a boundary state,
the underlying physics is expected to change drastically,
and our computations bear witness to this fact. We
explicitly showed that the complexity diverges at this
critical point, signaling a quantum phase transition into a
unitarily inequivalent theory. We proceeded to show that
these two states are connected via an infinite length
geodesic on the state manifold, which proves what was
said before. The same behavior was reproduced when we
extracted the Berry curvature associated with this process,
effectively indicating the cutoff nature of the contraction
parameter.
To understand this transition better, we then quantified

the time evolution under the total Hamiltonian of the
system, which continuously varies with the contraction
parameter. Time-dependent markers of quantum chaos turn
out to be much better controlled when a careful ϵ → 0 limit
is taken on them. It turns out that dialing the contraction
parameter from CFT to BMS changes the OTOCs of the
system from oscillatory to polynomial behaviors. We also
looked at the operator complexity associated with this

13One may also be tempted to interpret the scaling t → iϵτ as
equivalent to contracting a Euclidean theory.

14Several other works have investigated whether complexity
can detect the scrambling time and Lyapunov exponent, e.g.,
[120–125]. This list is by no means exhaustive, and a thorough
look at the reference and citations of these papers is recom-
mended.
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transition and found it to scale polynomially with time as
well. It was very important to note that when 0 < ϵ ≤ 1 the
complexity varies sinusoidally, while at the transition point
ϵ ¼ 0 it reduces to scale with t2, signifying two completely
different phase structures associated with these realms. All
of these results point to the apparent absence of chaotic
behavior in this transition.
It would be nice to understand the origin of the

polynomial behavior for the time-dependent quantities
we talked about in this work. It is intriguing to see that
such systems have been discussed in the literature (see, e.g.,
[126]), and point out a regime where fast scrambling may
not be present for the system. However, a connection is
merely speculation at this point, and a concrete mathemati-
cal link has to be established rigorously.
One could also go ahead and ask whether similar physics

appears in the study of higher dimensional BMS invariant
field theories. The study of BMSFTs is a very nascent
activity as of now, and a lot of corners has not really been
explored yet. Although works have appeared studying
classical symmetries of higher dimensional BMS scalar
fields [24,34], the systematic quantization and related
vacuum structure of such theories are still mysterious.
Since the transformation between ground states of 2d free
scalar CFT and a BMS3 invariant free scalar field offers
such a unique connection, one could hope that similar
structures also work out in higher dimensions, but concrete
proposals are yet to materialize. One related state inde-
pendent approach in this regard would be to use field
theoretic techniques centered around symmetry algebras

for BMS invariant theories, after modifying the approach
for CFTs widely discussed in recent times [58,75].
Another interesting thing to note is the authors of [37]

found clear Lyapunovian behavior in studying chaos for
Carrollian conformal field theories in two dimensions. The
situation there does not pertain to a transition from a
relativistic CFT, but, intriguingly, actual intrinsic Carrollian
dynamics does produce a chaotic spectrum. One may want
to investigate the contradiction between these two
approaches and learn more about such theories. We can
also conjecture that something exciting is happening if one
can make the parameter ϵ purely imaginary in a particular
setting and perhaps compute the Lyapunov index, but
we would come back to these questions in a separate
work.
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