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1. Introduction 

1.1 Human Parvovirus B19 

Parvovirus B19 (B19V) was discovered by the Australian Virologist, Yvonne 

Cossart while screening sera from blood bank for hepatitis B virus in 1974 (1). The 

name B19 was originated from the coding of a serum sample occupying position 

19 in panel B that gave inconsistent results when it was tested for hepatitis B (1). 

B19V is a small nonenveloped virus of about 22 to 24 nm in diameter. It is 

classified as a member of the genus Erythrovirus within the family of Parvoviridae 

(2). 

1.1.1    Genomic structure and organization of B19V 

The single stranded genome includes 5,596 nucleotides (nt), composed of an 

internal coding sequence of 4,830 nt flanked by the terminal repeat sequences of 

383 nt each (3). The B19V genome has two large open reading frames, with the 

two capsid proteins VP1 and VP2 encoded by genes on the right side and the 

single nonstructural protein (NS1) encoded by genes on the left side of the 

genome. Transcription is capable for producing at least nine overlapping mRNA 

transcripts, all of them arise from the single P6 promoter at the extreme left side of 

the genome (3-5). The most important viral proteins include the major nonstructural 

protein NS1 and the two structural proteins VP1 and VP2 (5, 6).  

1.1.1.1   Nonstructural protein and capsid proteins 

The major nonstructural protein, NS1 (nt 435 to 2448) has a molecular mass of 77 

kDa (5-8). The NS1 protein may function to have site specific DNA binding, DNA 

nicking, ATPase, transcriptional, and helicase activities (9-13), transactivator of 

cellular and viral promoters (14), stimulator of apoptosis (15-17), and modulates 

inflammatory signaling by activation of the STAT3/PIAS3 pathway (18).  
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The B19V genome further encodes the structural capsid proteins VP1 and VP2 (6), 

which are decisive for the viral life cycle (19, 20). The VP2 protein is encoded by 

sequences from nt 3125 to 4786 and has a molecular mass of 58 kDa. VP1 is the 

minor capsid protein encoded by the sequence from nt 2444 to 4786 and is 

identical to VP2 with the addition of 227 amino acids (termed the VP1 unique 

region) at the amino terminus (7, 8). The VP1 has a molecular mass of 84 kDa and 

makes up 4% of the total capsid protein (7). 

The VP1 protein contains a sequence similar to secreted phospholipase A2 

(sPLA2) (21-23), which probably generates eicosanoids (23, 24). The vPLA2 

enzyme activity is disrupted by replacement of a histidine at position 153 with 

alanine (H153AVP1) (23, 24).  

 

Figure 1: Transcription map of the major genes and resulting transcripts of B19. The nonstructural protein NS1 

arises from the single unspliced transcript on the left-hand side of the genome (hatched areas). The capsid proteins 

VP1 and VP2 are encoded by genes with overlapping reading frames from the right -hand side of the genome , aa 

denotes amino acids, nt nucleotides, (1), (2), and (3) reading frames, and P6, the single viral promoter (25). 

1.1.2   Pathophysiology 

The life cycle of B19V is similar to other nonenveloped DNA viruses in binding of 

the virus to the receptors of the host cell, internalization, translocation of the 

genome to the host nucleus, DNA replication, RNA transcription, assembly of 
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capsids and packaging of the genome, and finally lysis of the cell with release of 

the mature virions (2).  

 

             Figure 2: Schematic life cycle of Parvovirus B19 (2) 

 B19V replicates in erythroid progenitor cells (26) and has been shown to cause 

agglutination of human red cells (27) and to bind to blood group P antigen in 

erythroid progenitor cells, as measured by hemagglutination (26). In tissue culture 

anti-P monoclonal antibody has blocked infection of erythroid progenitors with 

B19V. Erythrocytes lacking P antigen are not agglutinated with B19 thus 

demonstrating that P antigen is the B19V receptor (26). P antigen is present also 

on megakaryocytes, endothelial cells, placenta and fetal liver. The tissue 

distribution of P antigen is consistent with the clinical syndromes caused by 

parvovirus B19. People lacking P antigen are resistant to B19 infection (28). 

B19V may enter cells by binding to blood group P antigen (29), α5β1 integrin and 

Ku80 autoantigen (30, 31).  B19V thus preferably invades erythroid progenitor cells 

but may enter fetal myocytes, follicular dendritic cells and endothelial cells (29-32). 

In fatal inflammatory cardiomyopathy the virus is particularly abundant in 

endothelial cells (33, 34).  
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1.1.3 Prevalence and Incidence 

B19V is a worldwide infectious pathogen in humans. The estimated prevalence of 

IgG antibodies directed against B19V ranges from 2 to 15% in children at age of 1 

to 5 years old, 15 to 60% in children aged 6 to 19 years old, 30 to 60% in adults, 

and more than 85% in the geriatric population (35-38). Women of the childbearing 

age have an annual seroconversion rate of 1.5% (39).  

1.1.4 Transmission 

Transmission of B19V infection can occur through the respiratory route, blood 

derived products administered parenterally, and from mother to fetus. The virus is 

generally spread in the community by a respiratory route as B19V specific DNA 

has been detected in the respiratory secretions at the time of viremia. The case to 

case interval is 6 to 11 days irrespective of the type of B19V related disease (2). 

Transmission from the mother to the fetus occurs in one third of cases involving 

serologically confirmed primary maternal infections (40). Nosocomial transmission 

has been shown infrequently (41). The transmission can also occur among staff in 

laboratories handling native virus (42).  

1.1.5 Diseases associated with B19V  

B19V diseases primarily involves infection in the healthy host manifested as fifth 

disease (erythema infectiosum), arthralgia, hydrops, myocarditis, neurologic 

disease, hepatitis as well as hematologic symptoms in predisposed individuals (2). 

1.1.5 .1 Asymptomatic infection  

The presence of subclinical B19V infection is a common finding in both children 

and adults. In 1989, it has been shown that quarter of infected persons had no 

recollection of specific symptoms (43) and In 1991, it has been shown that fewer 

than 50% of IgM-positive women show signs of rash or arthralgia (44). 

Asymptomatic seroconversion following recent transfusion in patients with 
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hemolytic anemia suggests that symptoms can be hidden by transfusion of 

erythrocytes with a longer life span than the defective erythrocytes of the host (45). 

1.1.5.2 Fifth disease 

Fifth disease is also known as Erythema infectiosum or slapped cheek disease. It 

is the commonest manifestation of B19V infection in children (46). The association 

with B19V has been identified Following an outbreak of fifth disease by the 

discovery of specific IgM in specimens from the involved patients (2). The disease 

starts with prodromal symptoms which often unnoticed including fever, coryza, 

headache and nausea. It is characterized by a facial erythema of medium intensity 

appearing in the cheeks with relative circumoral pallor (slapped cheek appearance) 

beginning 18 days after infection. The second stage is composed of a rash 

appearing in the limbs and trunk occurs 1 to 4 days later. The rash is reticular and 

composed of pink maculae that usually undergo a central fading, which causes the 

rash to develop a festooned appearance. The rash can be transient or recurrent, 

and the difference in intensity can be linked to environmental factors such as heat 

and exposure to sunlight (47). Other symptoms include scaly dermatitis, itching, 

vesicles (43, 48).  

1.1.5.3 Arthropathy 

The association between arthropathy and B19V infection has been identified in 

1985 (49, 50). The incidence of arthralgia is approximately 10% or less in children 

with fifth disease, while 19% of children with recent arthritis have evidence of 

recent B19 infection (51).  

Arthralgia and arthritis are the most prevalent manifestations of primary B19V 

infection in adults affecting 30% of males and 60% of females, while the dermal 

affection is less frequent and not characteristic in the adult population (43, 46, 52). 

The arthropathy is likely to be immunologically mediated since the onset exists with 

the appearance of circulating antibodies. Joint symptoms present as an acute 
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moderately severe peripheral polyarthritis involving the metacarpophalangeal joints 

(75%), wrists (55%), knees (65%), and ankles (40%) without articular erosions 

(53). About 50% of patients with chronic B19V arthropathy meet the criteria of the 

American Rheumatoid Association for a diagnosis of rheumatoid arthritis (54, 55).  

1.1.5.4 Hydrops fetalis 

It has been shown that B19V cause nonimmune hydrops fetalis (56). Fetal B19V 

infection may also cause fetal or congenital anemia, abortion, or stillbirth or result 

in an asymptomatic self limiting episode (2). It has been reported that B19V cause 

congenital malformations (57, 58). The pathogenesis of fetal damage is similar to 

that of patients with aplastic crisis in which the erythrocytes have a reduced life 

span. Erythroblasts in the fetal liver exhibit signs of B19V infection (59, 60). Fetal 

infection is persistent and characterized by severe anemia, high output cardiac 

failure, and death (61). Impaired circulation caused by fetal myocarditis may 

contribute to the accumulation of fluids (62). 

The incidence rate of B19V infection during pregnancy is about 1 to 5% (63-65). 

The risk of developing hydrops following B19V infection is ranging from 0 to 24% 

(66-72), however, in pregnant women with a confirmed primary infection, the risk of 

an abnormal outcome is about 5 to 10% (40, 67, 71). The possblity of an adverse 

fetal outcome after infection is greatest between 11 and 23 weeks of gestation, 

which correlates with the hepatic period of hematopoietic activity (73, 74). 

Cordocentesis can give precise assessment of fetal anemia, which can be then 

corrected by intravenous transfusion of erythrocytes (75). 

1.1.5.5 Myocarditis 

B19V infection of cardiac endothelial cells may result in isolated left ventricular 

diastolic dysfunction (76) and is an important pathogenic agent in the etiology of 

inflammatory cardiomyopathy (iCMP) (77). B19V infection may occur during 

pregnancy leading to maternal and fetal myocarditis, congenital malformations, 
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stillbirth and abortion (78-81). The consequences of antenatal infections are 

particularly severe as B19V preferably enters proliferating cells (82). B19V thus 

preferably invades erythroid progenitor cells but may enter fetal myocytes, follicular 

dendritic cells and endothelial cells (29-32). In fatal inflammatory cardiomyopathy 

the virus was particularly abundant in endothelial cells (33, 34). B19 infection has 

been shown to cause general disease in pediatric cardiac transplant recipients (83, 

84) as well as possible myocarditis (85, 86). 

1.1.5.6 Neurologic disease 

Association of neurologic symptoms with erythema infectiosum has been identified 

(87, 88). B19V DNA have been detected in cerebrospinal fluid in fatal 

encephalopathy (89) and aseptic meningitis (90). B19V antibodies were detected in 

complex regional pain syndrome (91). Neuralgic amyotrophy has been reported 

following B19V infection (92).  

1.1.5.7 Hepatitis 

B19V was first identified in a sample sent for hepatitis testing (2). B19V might 

cause hepatitis (93), transient disturbance of consciousness, hepatic dysfunction 

(94) , fulminant liver failure before or immediately after liver transplantation in 

children (95), acute hepatitis or hepatic disorder after B19 infection in adults (96).  

1.1.5.8  Transient aplastic crisis  

Transient aplastic crisis was the first disease to be associated with B19V. It is 

characterized by a short self limited episode of pure red cell aplasia which had 

been shown in patients with hemolytic anemia, however, any person suffering from 

decreased erythrocyte production or increased destruction or loss of erythrocytes 

might  be in risk of developing aplastic crisis following B19V infection (2). 
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Moreover, conditions associated with decreased erythrocyte production predispose 

for the development of B19V induced aplastic crisis including iron deficiency(2), 

congenital dyserythropoietic anemia (97), and α- and β-thalassemias (98-101). 

B19V may also cause transient aplastic crisis in patients with increased erythrocyte 

destruction or loss diseases including hereditary spherocytosis (98, 101, 102), 

hereditary stomatocytosis (103), pyruvate kinase deficiency (104), pyrimidine-5′-

nucleotidase deficiency (105), sickle cell disease (45, 98, 106), chronic 

autoimmune hemolytic anemia (100) and paroxysmal nocturnal hemoglobinuria 

(107).  

1.1.5.9 Congenital anemia  

It was reported that three infants with hydrops have congenital anemia due to 

transplacental B19 infection (108). B19V DNA has been detected in 3 of 11 Bone 

marrow smears, and giant pronormoblasts showed low sensitivity (33%) and poor 

specificity (75%) in children diagnosed with Diamond-Blackfan anemia which is a 

congenital anemia disorder (109). In another report, an infant developed congenital 

anemia due to a possible B19V infection (110).  

1.1.5.10 Thrombocytopenia and Neutropenia 

B19V infection may cause subclinical or overt thrombocytopenia in patients (46, 

111-113). Recent B19V infection has been shown in 6 of 47 pediatric idiopathic 

thrombocytopenic purpura patients (ITP) (13%) and it has suggested that children 

with ITP and associated B19V infection are characterized by acute onset of 

thrombocytopenia. Among the B19V positive children, the duration of the illness 

was short in three children treated with immunoglobulin but chronic in the 

remaining three patients given high dose of steroids (114). 

Examination of the bone marrow has showed that Parvovirus B19V infection might 

be a common cause of immune mediated neutropenia in childhood (115).  
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1.1.5.11 Transient erythroblastopenia of childhood 

Transient erythroblastopenia of childhood (TEC) is a disorder characterized by 

anemia, reticulocytopenia, and decreased red blood cell precursors in the bone 

marrow aspiration affecting young children, age 3 to 4 years. TEC is a common 

cause of red cell aplasia in immunocompetent children. Due to its hematopoietic 

effect, B19V might be involved in this disorder (116-118).  

1.1.6   Diagnosis of B19V  

1.1.6.1  Diagnostic Cytopathology 

The presence of giant pronormoblasts in either peripheral blood or bone marrow is 

suggestive of B19V infection, however, their presence or absence should not be 

considered as the only criteria for diagnosis of B19V infection (2). 

1.1.6.2  Detection of B19 Virus 

 

B19V can be detected by isolation of viral DNA using direct hybridization or PCR 

methods. Direct hybridization as a slot blot or dot blot format, generally employs an 

almost full length viral DNA probe labeled with 32P, digoxigenin or biotin to bind to 

DNA in clinical specimens (119, 120). Direct hybridization is very sensitive to 

detect B19V levels in acute transient aplastic crisis (2).  

PCR has increased the sensitivity of DNA detection (121-123). DNA can be 

detected for extended periods of time in serum (124-126), synovial membranes 

(127) and bone marrow (128). Detection of low levels of B19V DNA alone cannot 

be used for diagnosing acute B19V infection (2).  

1.1.6.3  Detection of Antibodies 

B19V IgM has been detected in over 85% of clinical cases of fifth disease and 

aplastic crisis With the IgM ELISA method. B19V IgG antibodies prevalence is 
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increased according to age. About 2% of children less than 5 years of age and 

49% of adults greater than 20 years of age had B19V IgG antibodies. 

The B19V antibody ELISAs are specific and sensitive tests to detect B19 infections 

(35).  

1.1.7  Treatment  

In most cases, patients with fifth disease do not need any treatment while some 

patients with B19V arthralgia might need symptomatic treatment (anti-inflammatory 

drugs). The prognosis of transient aplastic crisis caused by B19V can be good by 

erythrocyte transfusion which improve the hemoglobin concentration (129). B19V 

infection in pregnant seronegative women must be monitored by weekly ultrasound 

examinations and cordocentesis. The mortality of hydrops fetalis can be lowered 

by intrauterine transfusions (75). The most Effective treatment for persistent B19V 

infection (pure red cell aplasia) is infusion of immunoglobulin (0.4 g/kg of body 

weight/day for 5 days or 1g/kg/day for 2 to 3 days). This treatment is very often 

curative leading to a marked rise in reticulocyte count and rise in hemoglobin 

concentration (130-133).  

1.2 Potassium channels 

Membrane proteins represent about 30% of the total proteome of an organism and 

the half of this number is carrier proteins and ion channels. Potassium ion channels 

are considered to be the most diverse and the predominant class of membrane 

proteins(134). The potassium channels are classified depending on the primary 

structure and the function into: voltage gated (Kv) channels, inwardly rectifying 

channels (Kir), Ca2+-activated channels (KCa) and two-pore domain (K2P). Kv 

channels are the most diverse group of the potassium channels (135). 
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1.2.1  Voltage Gated Potassium Channels Kv1.3 and Kv1.5 

Voltage gated K+ channels (Kv), a superfamily that include 12 subfamilies (Kv1-

Kv12), contribute to the maintenance of resting membrane potential and the control 

of action potentials (136).The voltage gated K+ channels Kv1.3 and Kv1.5 are 

members of the Shaker (Kv1) family of K+ channels and are involved in tissue 

differentiation and cell growth (137).  

1.2.1.1  Structure of Kv Channels 

All Kv channels share high level of similarity. Each Kv channel gene encodes one 

α-subunit (Kvα).  Each four α-subunits form a functional channel. Kv channels are 

usually homotetrameric in structure (with all Kvα being identical) (138, 139), 

however, some channels can be heterotetrameric (with two or more non-identical 

Kvα subunits) (140). 

The transmembrane domain of the Kv channel α-subunit is composed of six 

helices: S1-S6 These helices form two structurally and functionally different parts 

of the tetrameric channel: pore domain which is a potassium ion conducting 

domain formed by helices S5-S6 located in the channel center and voltage sensing 

domain, VSD which is sensible to changes in the membrane potential formed by 

helices S1-S4 located on the channel periphery (140). 

The pore part has a channel gate and a selective filter that does not allow ions 

other than K+ to pass through the channel. The channel gate is created by crossing 

C-termini of the S6 helices that block passage of ions when the channel is closed 

(141-143). The selective filter is formed by a conserved fragment (P-region) and a 

S5-S6 loop (140).  

The pore domain and voltage-sensing domain (VSD) are covalently bound by the 

S4-S5 linker which is an amphiphylic helix connected to the C-terminus of S6 helix 

(S6T) and the next subunit (140, 144-148). The highly conserved region of the S6T 

helix plays an important role in the opening and closing of the channel. It is a 

flexible region which allows the channel to open (140).  
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Kv channels have two gates: the upper gate formed by the P-loop of the selectivity 

filter on the extracellular side and the lower gate formed by crossing the S6 helices 

on the intracellular side. In the Kv channels, lower gates are the main activation 

gates which are controlled by external stimuli, such as the membrane potential 

(140). Kv channels also have a cytoplasmic part which is formed by N- and C-

termini beside the transmembrane part  (149). 

 

 

Figure 3: Structure of Kv channels. A. Scheme of a single α-subunit of the Kv channel. Transmembrane segments 

S1–S6 and pore-forming P-loop are marked. Charged Arg of the membrane voltage sensor S4 are marked with “+” 

signs. PD–pore domain. B. Crystal structure of a single α-subunit of the Kv1.2 channel. S1–6 segments, cytoplasmic 

domain T1, linker connecting the transmembrane portion with the T1 domain (T1–1), as well as N- and C-termini are 

marked. Charged Arg residues of the membrane voltage sensor S4 are indicated by blue circles. C. Crystal structure 

of the Kv1.2 channel in a complex with the β-subuni. TM –transmembrane region. D. Gate of the Kv2.1 channel. (140, 

150) 
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1.2.1.2 Expression and characteristics of Kv1.3 and Kv1.5 

Kv1.3 was first cloned from brain tissue, and its expression is widely distributed 

throughout the body (151, 152). it is highly expressed in lymphocytes and the 

olfactory bulb (153), and it is also expressed in the hippocampus (154), adipose 

tissue (155), both skeletal and smooth muscle (156-158), epithelia (159) and 

endothelium (160). 

Kv1.3 currents have both characteristic cumulative inactivation and a marked C-

type inactivation. The single channel conductance of Kv1.3 is 13 pS and the 

voltage which is required for activation of Kv1.3 channel is -35 mV (161). 

Unlike the Kv1.3 channel, the first site for isolation of Kv1.5 channel was the 

human ventricle and Kv1.5 is expressed in the atria (162). Like the Kv1.3 channel, 

Kv1.5 channel is also ubiquitously expressed (151, 152). Kv1.5 is expressed in 

skeletal and smooth muscle (156-158). Kv1.5 is abundantly expressed in 

endothelial cells (163) and  to a lesser extent in the brain (164, 165).  

Kv1.5 currents take part in  the ultra-rapid activating K+ current in the heart known 

as Ikur, which has a role in the repolarization of an action potential (166). The 

conductance of the Kv1.5 channel is 8 pS and the voltage required for its activation 

is about 24 mV. In contrast to Kv1.3, the inactivation Kv1.5 is slow and without 

cumulative inactivation (161).  

1.2.1.3 Functions of Kv1.3 and Kv1.5 K+ channels 

Kv1.3 and Kv1.5 channels play a role in many cellular processes including 

maintenance of vascular smooth muscle tone (167), cell growth (168), regulation of 

cell volume (169) apoptosis (170, 171), adhesion (172), mobility, epithelial 

transport (173), proliferation (174), insulin release (155) and homeostasis(175). 
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1.2.1.4  Pharmacology   

Kv1.3 and Kv1.5 are inhibited by the general K+ channel blockers 4-aminopyridine 

(4-AP) and tetraethylammonium (TEA) (176). Another potent inhibitor for these 

channels is Psora-4 which has lesser effect on the rest of the Kv isoforms (177). 

The highly specific toxins such as charybdotoxin and margatoxin (178, 179) and 

anemone peptide ShK and their derivatives (180) are known to be highly effective 

for Kv1.3. Kv1.5 is not sensitive to Kv1.3 blockers and has no known specific 

pharmacology but new chemicals such as S0100176 (from Sanofi-Aventis) (181) or 

diphenyl phosphine oxide-1 (DPO-1) have been discovered to be potent inhibitors 

for Kv1.5 (182). 

1.2.1.5 Abnormalities 

Impaired expression of Kv1.3 in T effector memory cells is involved in the onset of 

juvenile multiple sclerosis (183). The deficiency of Kv1.3 alters insulin sensitivity 

and glucose tolerance (184). On the other hand, Kv1.5 loss of function mutations 

might cause atrial fibrillation (185). 

1.3 Inwardly rectifying Kir2.1 Potassium channel 

Kir2.1 was the first member of classical Kir channels (Kir2.X) family to be cloned 

and it has been cloned from a mouse macrophage cell line and named 

IRK1/Kir2.1/KCNJ2 (186).  

It was thought that  Kir2.x subunits are made up of homomeric complexes(187). 

However, it has been shown that Kir2.x subunits can function as heterotetramers in 

vitro and in vivo. In vitro electrophysiological experiments have revealed that each 

of Kir2.1, Kir2.2, and Kir2.3 can assemble with any one of the other subunits, and 

the respective heteromer has different properties from that of their homomers 

(188).  
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1.3.1 Structure of Kir2.1 

The basic structure of classical Kir channels is composed of transmembrane and 

cytoplasmic regions and pore structure (189). The inward rectification is due to 

intracellular ions such as Mg2+ (190, 191) and polyamines (192, 193).  

Further site-directed mutagenesis recognized negatively charged amino acids 

(Glu) at two different positions (E224 and E229 for Kir2.1) in the COOH terminus of 

the cytoplasmic domain that are involved in both Mg2+ and polyamine sensitivity 

(194-197). It has been suggested by Mutagenesis and substituted cysteine 

accessibility experiments that these residues directly interact with Mg2+ and 

polyamines (198, 199).  

The crystal structure of the cytoplasmic domain of Kir2.1 is composed of an 

intrinsically flexible loop around the membrane face of the cytoplasmic pore (200). 

The loop narrows the cytoplasmic pore to about 3 A and forms a girdle around the 

central pore axis. The girdle consists of a loop between βH and βI strands and is 

known as the G-loop forms the narrowest portion of the ion conduction pathway in 

the cytoplasmic region. The narrowest part of the G-loop is formed by A306 and to 

a lesser extent by E299, G300, M301, and M307. A306 is located at the apex of 

the G-loop. The Charged amino acids, R228, D255, D259, and R260, face the 

cytoplasmic pore (189, 200). 
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Figure 4: The structure of the cytoplasmic pore region of Kir2.1. Side (left and bottom right) and top -down (topright; 

membrane to cytoplasm) views of the cytoplasmic region (NH2 and COOH termini) of the Kir2.1 structure, 

highlighting amino acids lining the permeation pathway. Cβ atoms (A306) of the G-loop make up the narrowest  

about 3-Å region of the pore and are shown as open circle s for clarity. Other residues near the G-loop are 

labeled.(189, 200) 

1.3.2 Factors regulating the activity of Kir2.1 

PKA activators had small effect on Kir2.1 currents (201). The current of Kir2.1 has 

increased by cAMP when the channel was coexpressed with A kinase-anchoring 

protein 79 (AKAP79) and treated with the phosphatase inhibitors okadaic acid or 

cypermethrin (202). Classical Kir channels reconstituted with injection of brain 

poly(A)+ RNA into Xenopus oocytes has been shown to be inhibited by 

isoproterenol, a β-adrenergic agonist (203). This effect is exerted by the increase 

of intracellular cAMP and also cGMP (203). 

Cytoplasmic regulatory factors such as phosphorylation and pH regulate channel 

function by affecting the channel-PtdIns(4,5)P2 interaction. Kir2.1 interacts more 

strongly with PtdIns(4,5)P2 (204).  

Activity of Kir2.1 on the cell surface can be negatively regulated by its 

internalization, which is dependent on GTPase Rho family proteins. Kir2.1 

expresses a high degree of internalization mediated by dynamin, a protein 

essential for endocytosis (205, 206).  

Other Kir2.1 regulators include arachidonic acid (207), phosphatidylinositol 4,5-

bisphosphate PI(4,5)P2 (208, 209), cholesterol(210), tyrosine kinase 

phosphorylation(211), TNF-alpha (212), Chapsyn 110 (206) and filamin-A (213),  

1.3.3   Overview of Physiological Functions of Kir2.1 in Organs 

1.3.3.1   Heart 

The classical Kir current IK is highly expressed in cardiac myocytes, including 

Purkinje fibers, ventricular and atrial tissues (214-217) but it is absent in nodal cells 
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(218). IK play critical role in determining the shape of the cardiac action potential, 

setting the resting potential, permitting the plateau phase and  inducing rapid final 

stages of repolarization (189). Kir2.1 might be the core subunit that generates the 

IK current (219). 

1.3.3.2  Blood vessels 

Endothelial and smooth muscle cells are the major components of vasculature 

(189). Electrophysiological studies have shown that classical Kir channels are 

expressed in both Endothelial and smooth muscle cells (220, 221). Classical Kir 

channels are the most prominent channels in vascular endothelial cells (221-223). 

The Functional expression of classical Kir channels provides the driving force for 

Ca2+ influx through Ca2+-permeable channels by seting the Eres of endothelial cells 

to a negative potential. Blockage of endothelial Kir channels by Ba2+ inhibits both 

flow-induced Ca2+ influx and vasodilatation caused by Ca2+-dependent production 

of Nitric Oxide (224, 225).  

Kir2.1 was identified in vascular smooth muscle cells but neither Kir2.2 nor Kir2.3 

was identified there (226). Blood vessels in Kir2.2 knockout mice dilated normally 

in response to high extracellular potassium stimulation but not blood vessels from 

Kir2.1 knockout mice (227). Therefore, Kir2.1 might be the main subunit to which 

form the classical Kir current in vascular smooth muscle (227). 

1.3.3.3  Neurons in the brain  

Kir currents were detected in hippocampal neurons (228) and neonatal rat spinal 

motor neurons (229). The currents which are generated by Kir2.x subunits play an 

important role in the maintenance of Eres and regulation of the excitability of the 

neurons. Ba2+ block of Kir channels in an isolated neuron caused depolarization 

and initiated the firing of action potential (230). 
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In situ hybridization histochemistry and immunohistochemistry had showed that 

that classical Kir channels including Kir2.1 are abundantly and differentially 

expressed in the whole brain (231). 

Kir current has been recorded in Schwann cells surrounding peripheral nerve fibers 

(232). Kir2.1 and Kir2.3 are expressed in the microvilli of Schwann cells at the 

nodes of Ranvier (233). As the villi are facing towards the axon, these Kir channels 

may contribute in maintaining extracellular potassium by absorbing excess K+ 

released from excited axons. This function is essential for maintaining proper 

function of nerve fibers (233).  

1.3.3.4  Skeletal muscle 

Classical Kir channels play a role in setting the Eres and shift it toward the direction 

of hyperpolarization. Kir2.1 is expressed in skeletal muscle (234). The importance 

of Kir2.1 in muscle function has been revealed by analysis of Andersen's 

syndrome. A decrease of the Kir2.1 conductance result in depolarization of the Eres, 

leading to inactivatation of Na+ channels and thus prevent initiation and 

propagation of action potentials (235). 

The functional expression of Kir2.1 is necessary for differentiation of myoblasts 

(236) and for the fusion of mononucleated myoblasts to form a multinucleated 

skeletal muscle fiber (237). Kir2.1 induce hyperpolarization which maintain the 

membrane potential in a range where Ca2+ can enter the myoblasts through Ca2+ 

permeable channels promoting the differentiation and fusion of myoblasts (237).  

1.3.3.5   KIDNEY 

Kir2.1 is found in juxtaglomerular cells and it is not found in epithelial cells or 

glomeruli (238). Kir2.1 plays a major role in setting the membrane potential in the 

juxtaglomerular cells (238). 
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Activation of Kir2.1 in proximal renal tubules increases the electrical driving force 

for electrogenic bicarbonate exit across the basolateral cell membrane leading to 

cytosolic acidification and subsequent stimulation of the apical Na+/H+ exchanger 

and thus increases Na+ entry And the demand for Na+ extrusion through the Na+/K+ 

ATPase (239). 

1.3.4 Abnormalities 

1.3.4.1 Andersen’s Syndrome (LQT type7)  

Andersen's syndrome is characterized by cardiac arrhythmias of long Q-T 

syndrome (LQT7), dysmorphic bone structure in the face and fingers and periodic 

paralysis (240). It is an autosomal dominant disorder due to loss of function 

mutations in the KCNJ2 gene which encodes the Kir2.1 subunit (235). These  

mutations induce dominant negative effects on the K+ current (241, 242) by 

impairing the interaction between the channels and PtdIns(4,5)P2 (243) or by 

inhibiting trafficking of Kir2.1 to cell membrane surface (241). Cardiac Arrhythmias 

in Andersen's syndrome is due to reduction of Kir2.1 function that prolongs the 

plateau phase of the action potential and depolarizes the resting membrane 

potential. Abnormal bone structure can be caused by the dysfunction of 

osteoclasts. Since the Low extracellular pH in the extracellular matrix is maintained 

by H+ secretion by a proton pump is critical for proper functioning of the osteoclasts 

and as this H+ secretion is achieved in exchange for K+ transport through Kir2.1 

channels, disruption of Kir2.1 channels can cause osteoclast dysfunction which 

can lead to severe bone deformity(189).  

1.3.4.2 Short Q-T syndrome 

The short Q-T syndrome which is associated with a high incidence of sudden 

cardiac death, syncope, and/or atrial fibrillation even among newborns and young 

patients due to gain of function mutation affecting the Kir2.1 gene (244).  
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1.4 Aim of the study 

B19V infection is common in humans (245). B19V infection is associated with 

myocarditis (246, 247). Endothelial B19V infection may lead to isolated left 

ventricular diastolic dysfunction (76) and B19V associated myocarditis thus 

causing an endothelial cell mediated disease (248). In pregnancy B19V-infection 

may be followed by maternal and fetal myocarditis, congenital malformations, 

stillbirth and abortion (78-81). B19V preferably invades into proliferating cells thus 

causing particularly severe disorders during antenatal infection (82). Endothelial 

rather than myocardial B19V genomes were detected in fatal inflammatory 

cardiomyopathy (33, 34). 

The B19V genome encodes the structural capsid proteins VP1 (6) VP1 contains a 

sequence homologous to the catalytic site and Ca2+-binding loop of secreted 

phospholipase A2 (sPLA2) (21-23). The vPLA2 enzyme activity is disrupted by 

replacement of a histidine at position 153 with alanine (H153AVP1) (23, 24). 

Expression of VP1 but not of H153AVP1 in endothelial cells upregulates Ca2+ entry 

(249), an effect mimicked by PLA2 product lysophosphatidylcholine (249). VP1 has 

further been shown to inhibit Na+/K+ ATPase activity (250), an effect abrogated by 

loss of function mutation of the PLA2 sequence and mimicked by 

lysophosphatidylcholine (250, 251).  

The aim of  present study is to explore whether expression of VP1 influences the 

activity of the Potassium channels Kv1.3 and Kv1.5, which are expressed in the 

endothelium (160, 163) and are critically important for proliferation in several cell 

types (252, 253) and whether expression of VP1 influences the activity of the 

inwardly rectifying Kir2.1 K+ channels, which have previously been shown to be 

expressed in endothelial cells (221). Moreover, to explore whether the effect of 

VP1 on Kv1.3, Kv1.5 and Kir2.1 Potassium channels is sensitive to inhibition of 

PLA2 and is mimicked by lysophosphatidylcholine.  
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2. Material  

2.1. Two electrode voltage clamp 

2.1.1.  Technical equipments 

Name                                                            manufacturer and country of origin 

Autoclave HICCAVE-50 HMC          System labor systemtechnik, Wettenberg,  

                                                         Germany. 

Digitizer digidata 1322A                   Axon Instruments, Union City, CA, USA 

DMZ universal puller                        Zeitz-instruments, Martinsried. Germany. 

Eppendorf centrifuge 5415R            Hinz gmdh. Hamburg. Germany 

Eppendorf pipettes 0.1-1000ul         Eppendorf. Hamburg. Germany. 

Gene clamp 500 amplifier                Axon Instruments, Union City, CA, USA 

Maclab D/A converter                      AD instruments, Castle Hill, Australia. 

Nanoliter injector 2000                    World precision instruments, Berlin, Germany. 

pH meter 646                                  Carl Zeiss, Oberkochen. Germany 

Safety cabinet class II(Hera safe)     Kendro laboratory products, Langenselbold, 

                                                     Germany        

 

2.1.2   Stock materials 

Name                                                            manufacturer and country of origin 

Borosilicate glass capillaries (injection)               Harvard apparatus, USA 

(External diameter: 1.14mm,  internal diameter: 0.5mm) 

Borosilicate glass capillaries (measurement)      Harvard apparatus, USA. 

(External diameter: 1.5mm,   internal diameter: 1.17mm) 

Milipore express plus high flow rate                     Milipore, Schwalbach, Germany. 

membranes (PES). 73mm/0.22um. 

Combitips plus 2.5 ml                                           Eppendorf, Hamburg, Germany 
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Eppendorf tubes                                                   Eppendorf, Hamburg, Germany 

Falcon tubes (50ml)                                             Greiner bio-one, Frickenhausen, 

                                                                            Germany     

 

 

2.1.3  Software 

Name                                                            manufacturer and country of origin 

Microsoft office 2002 SP3                      Microsoft corp. Redmond, USA. 

Microcal Origin 6.0G                              Microcal software, Northampton, MA, USA. 

GraphPad InStat v3.05                          GraphPad Software Inc., La Jolla, CA, USA 

pClamp 9.0 software package               Axon Instruments, Union City, CA, USA. 

MacPyMOL 1.3 (Open source)              DeLano Scientific, Schödinger, LLC. USA.                                                                                     

 

2.1.4  Chemicals 

Name                                           Manufacturer and country of origin 

Acetone                                         Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

CaCl2 x 2H2O                                 Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

Collagenase Type II                      Worthington Biochemical Corp., NJ, USA. 

HEPES                                          Carl Roth GmbH, Karlsruhe, Germany. 

KCl                                                Carl Roth GmbH, Karlsruhe, Germany. 

Methanol                                       Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

MgCl2 x 6H2O                                Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

NaCl                                              Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

Paraffin                                          Merck, Darmstadt, Germany. 

Sodium pyruvate                           Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

Theophylin (Euphylon ©)               Nycomed GmdH, Konstanz, Germany. 

Phenphormin hydrochloride          Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

Tetracycline                                  Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 
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Ciprofloxacin                                 Fresenius Kabi Austria GmdH, Austria. 

Gentamycinsultaf                          Merck Serono, Dramstadt, Germany.    

(Refobacin ©)   

Actinomycin D                          Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

L-α-Lysophosphatidylcholine    Sigma-Aldrich Chemie GmbH, Steinheim, Germany.  

Ouabain Octahydrate               Calbiochem, Darmstadt, Germany.     

 

2.1.5 Solutions 

 ND96 ND96-A OR2 OR2-Collagenase 

NaCl 96 88.5 82.5 82.5 

KCl 2 2 2 2 

CaCl.2H2O 1.8 1.8   

MgCl2.6H2O 1 1 1 1 

HEPES 5 5 5 5 

Sodium pyruvate  5   

Tetracyclin  0.11   

Ciprofloxacin  0.004   

Refobacin  0.222   

Theophylin  0.498   

Collagenase    2 mg/ml 

pH 7.4 7.5 7.4 7.4 

Table 1: Composition of solutions used for two-electrode voltage clamp 

experiments (in mM unless stated otherwise) 
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3. Methods 

3.1 Preparation of cRNA 

 

B19V DNA was isolated from deparaffinized myocardial tissue of a patient with 

fatal B19V-associated inflammatory cardiomyopathy after proteinase K digestion, 

phenol/chloroform extraction and ethanol precipitation (accession number: 

DQ225150). Constructs encoding wild-type VP1 (250), PLA2-negative H153AVP1 

mutant (250), mouse Kv1.5 (254), mouse Kv1.3 (255) wild-type Kir2.1 (256) were 

used for generation of cRNA 

 

 The cRNA synthesis protocol consists of two steps: 

1. Linearization of the plasmid DNA containing the sequence of interest. 

2. Generation of cRNA itself. 

 

3.1.1 Plasmid DNA linearization 

Endonucleases were used to obtain a cut at the 3' end of the insert. Specific 

restriction enzymes as shown in table 2 were used to linearize specific plasmids. 

 

Table 2: Plasmids containing the desired genes encoding for specific 

proteins and restriction endonuclease enzymes used to linearize each 

plasmid. 

 
Protein 

 
Plasmid 

 
Restriction 

Endonuclease 

 
Kv1.3 

 
pSP64T 

 
EcoR I 

 
Kv1.5 

 
pBluescript SK 

 
BamH I 

 

Kir2.1 

 

pGHJ 

 

Mlu I 
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VP1 

 

pGHJ 

 

Xba I 

 
H153AVP1 

 
pGHJ 

 
Xba I 

 

The reaction mixture as presented in the table below was prepared and incubated 

overnight at 37°C. Afterwards DNA was purified by NucleoSpin® Gel and PCR 

clean-up: a 250 μl NTI Buffer was added to the reaction mixture and loaded in a 

NucleoSpin® Gel and PCR clean-up column that was centrifuged at 11000 rpm for 

30 seconds. The column was washed twice with a 700 μl NT3 Buffer and 

centrifuged at 11000 rpm for 1 minute. After centrifugation DNA was eluted with a 

20 μl NE Buffer. Then cRNA concentration was measured by taking 1 μl of cRNA in 

69μl water using an Eppendorf Biophotometer (Hamburg, Germany). Finally, to 

confirm quality of generated cRNA its quality was checked by gel electrophoresis. 

 

           Table 3: Reaction mixture used to linearize DNA plasmid 
 

Reaction mixture Quantity 

10 X Buffer 5 µl 

Plasmid DNA (10 µg) Depends on DNA concentration 

Restriction enzyme (20 U) 2 µl 

Water Fill till reach a total volume of 25 µl 

 
 
 

3.1.2  cRNA  synthesis 

The linearized DNA produced by the method mentioned above was used as a 

template to generate cRNA. The reaction mixture listed below was put in a sterile 

eppendorf tube. 
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Table 4: Reaction mixture used to synthesize RNA from the linearized DNA. 

 

Reaction mixture Quantity 

10 X Buffer 2.5 µl 

rNTPs 1 µl 

Cap analog 2.5 µl 

RNAse inhibitor 1 µl 

Water Fill till reach a total volume of 25 µl 

 
 

The reaction mixture was gently spun and the appropriate RNA polymerase was 

added and spun again. RNA polymerases T7 or T3 or Sp6 were used, and the 

mixture was then incubated at 37°C for 2 hours, 5 μl of DNAse was added in the 

reaction mixture afterwards to remove the possible DNA contamination. Finally the 

reaction mixture was incubated at 37°C for 15 minutes under continuous shaking. 

 

Table 5: RNA polymerases used to prepare cRNA and amount of cRNA 

injected into oocytes. 

 

 
Protein 

 
RNA polymerase 

 
cRNA 

(ng/oocytes) 

 
Exp. time (days) 

 

Kv1.3 

 

Sp6 

 

2.5 ng 

 

3 

 
Kv1.5 

 
T3 

 
2.5 ng 

 
3 

 

Kir2.1 

 

T7 

 

10 ng 

 

3 

 

VP1 

 

T7 

 

10 ng 

 

3 
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H153AVP1 

 

T7 

 

10 ng 

 

3 

 

To purify the generated RNA, 129 μl of phenol chloroform mixture was mixed with 

100μl of DEPC water and was added in an eppendorf and centrifuged at 11000 

rpm for 5 minutes. After that, the upper inorganic phase was carefully taken into a 

new eppendorf tube, 12.5 μl of 3 M sodium acetate (pH 5.2) was added, as well as 

375 μl of 100% ethanol and then mixed and further incubated at -70°C for at least 

30 minutes. 

After incubation, the mixture was centrifuged at 20000 rpm for 15 minutes at 4°C. 

The supernatant was removed and the pellet was washed with 500 μl of 70% 

ethanol. Finally the pellet was left to dry in a dryer machine for 5 minutes and 

reconstituted in 40 μl of DEPC water and mixed again. Then cRNA concentration 

was measured by taking 1 μl of cRNA in 69 μl water using an Eppendorf 

Biophotometer (Hamburg, Germany). Finally, to confirm the quality of generated 

cRNA its quality was checked by gel electrophoresis. All the cRNA was provided 

by the department of Molecular Biology. 

 

3.2  Xenopus Laevis oocyte preperation 

The Xenopus Laevis female frog was anesthetized by immersion in a solution 

containing 0.1% ethyl 3-aminobenzoate methanesulfonate salt (Tricain) before the 

operation and the frogs was laid during operation on an absorbent paper coated 

with the solution in order to increase the duration of the effect of the Tricain.   

A small longitudinal incision (around 1-2 cm) was made in the lower abdomen for 

careful cutting of several pieces of the ovarian lobes and then the oocyte bags 

were extracted into small portions to avoid contamination through the Xenopus 

skin. Surgical blanket was placed at the operation incision and all the surgical 

instruments were properly sterilized as a protective measure. 
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The oocyte bags were put in a Petri dish containing the calcium free solution (OR2) 

for further separation, cleaning and preparation. The incision was cleaned properly 

and closed with reabsorbant stitches. The internal tissues mainly muscles and the 

external tissues (skin) were closed separately to aid the healing process.  

The Xenopus laevis frog was taken back to a provisional cage and was washed 

several times to be cleaned from possible traces of residual anaesthesia. After 30 

minutes of continuous washing when the frog recovered its reflexes and 

movement, it was washed two additional times. The frog was returned to the 

aquarium after the total recovery of its reflexes. 

The oocyte bags were extracted manually and divided into smaller groups to 

facilitate their digestion by the collagenase. The collagenase solution was prepared 

at a concentration of 2 mg/ml in OR2 and the oocytes were placed in a 50 ml 

Falcon tube containg collagenase recoated by aluminium foil to avoid external light 

interference. The duration of the digestion process was about 2-3 hours, 

depending of the digestion procedure, the frog, or the times that this frog was 

already operated. After the second hour of digestion, the oocytes were periodically 

visualized under the microscope every 30 minutes to check the status of the 

oocytes and to avoid excessive digestion by the collagenase. When the oocytes 

were determined to be ready for selection and injection, they were washed twice 

with OR2 and then with the ND-96 with antibiotics solution (ND96-A).The oocytes 

were then stored in a petri dish containing 3-3.5 ml of ND96-A. These stored 

oocytes can survive till 5-6 days if the petri dish containing the oocytes is kept in an 

incubator at a temperature of 17° C and the dead cells are removed and the media 

is changed periodically. The oocytes in growing stage V-VI, with a clear 

differentiation between poles, were selected for further experiments. All the cRNA 

injections were done at the same day of the operation. 
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The cRNA injections were done with a Nanoinjector 2000, previously configured for 

the suitable volume. A manually prepared borosilicate capillary was used for cRNA 

injection. After cutting the capillary edge and allowing a diameter of about 10-20 

µm at the end, the capillary was manually filled with paraffin oil and afterwards 

inserted into the microinjector. Careful attention was made all the time to avoid 

accidental contamination by cleaning the working place, using sterile pipettes, 

gloves, and DEPC water to dilute stock cRNA preparations. Oocytes injected with 

cRNA were stored in Petri dishes containing 3 -3.5 ml of sterilized ND96-A solution 

in an incubator at a temperature of 17° C for 3 days until having considerable 

expression of the injected cRNA.  

 

3.3 Potassium channels current recording in Xenopus laevis 

oocytes with Two electrode voltage clamp (TEVC) 

Two electrode voltage clamp (TEVC) is an important electrophysiological technique 

which depends on clamping the membrane potential of Xenopus Laevis oocytes to 

several voltage steps or fixing it to one holding potential in order to measure and 

record the charged particles movement across the membrane through ion 

channels, electrogenic transporters or pumps which were heterologously 

expressed in the plasma membrane of Xenopus oocytes.  
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Figure 5: An illustrative scheme for steps needed to measure with the two electrode 

voltage clamp technique (TEVC) in Xenopus oocytes. 

 

The two electrode voltage clamp measurement is achieved by introducing two 

glass microelectrodes inside the oocyte to reach the intracellular compartment. The 

first electrode records the membrane potential and the second electrode is the 

current injecting electrode. The signal recorded by the recording electrode reaches 

a feedback amplifier to compare it to the voltage clamp command set by a 

generator. The difference between these two signals is injected forward through 

the current injecting electrode to the intracellular leaflet of the Xenopus Laevis 

oocytes and back through the cell membrane to the reference electrode to 

complete the circuit. The deflection from the baseline is quantified and visualized 

as an electrogenic activity of the ion channels, transporters or pumps. The 



 

31 

 

reference electrodes are made of silver and coated with a silver chloride (AgCl) 

coating, whereas the microelectrodes are filled with KCl (3M) and connected to the 

feedback amplifier. The setup is covered by Grounded Faraday cage to prevent 

against possible external noise currents. Vibration and mechanical noise are 

reduced by using Pneumatic anti-vibration stage. The electrode potential was set 

to 0 mV after immersion in the bath solution and just before introducing the 

electrodes inside the oocytes. Under low magnification stereomicroscope (5-20X), 

oocytes were impaled with glass capillaries at opposite poles using 

micromanipulators. 

For Kv1.3 and Kv1.5 experiments, Xenopus oocytes were prepared as previously 

described (257), cRNA encoding Kv1.3 (2.5ng) or Kv1.5 (2.5ng), VP1 (10 ng) and 

H153AVP1(10ng) was injected on the same day of preparation of the Xenopus 

oocytes. All experiments were performed at room temperature (about 22° C) 3 days 

after the injection (258, 259). Two-electrode voltage clamp recordings were 

performed at a holding potential of -100 mV. The currents were recorded following 2 

second depolarizing pulses ranging from −80 to +50 mV in 10-mV and 15-s or 20-s 

increments from a holding potential of −100 mV. The data were filtered at 1 kHz and 

recorded with a Digidata 1322A A/D-D/A converter and ClampexV .9.2 software for 

data acquisition (Axon Instruments). The analysis of the data was performed with 

Clampfit 9.2 (Axon Instruments) software (260, 261). The oocytes were maintained 

at 17°C in ND96-A solution. The control superfusate (ND96) contained 96 mM 

NaCl, 2 mM KCl, 1.8 mM CaCl2,1 mM MgCl2 and 5 mM HEPES, pH was adjusted 

to 7.4 by addition of NaOH (262). The flow rate of the superfusion was 20 ml/min, 

and a complete exchange of the bath solution was reached within about 10 s (263, 

264). 

 

To investigate whether the effect of VP1 on Kv1.3 or Kv1.5 is modified by 

actinomycin, Kv1.3 or Kv1.5 was expressed in Xenopus oocytes with additional 
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expression of VP1 in the presence of actinomycin (10 µM, added 36 hours prior to 

the experiment). 

To investigate whether Lysophosphatidylcholine affect the activity of Kv1.3 and Kv1.5 

K channels, Xenopus oocytes expressing Kv1.3 or Kv1.5 were treated with 

lysophosphatidylcholine (1µg/ml)  for 10 minutes.  

 

For Kir2.1 experiments, Xenopus oocytes were prepared as previously described 

(257, 265). cRNA encoding Kir2.1(10ng), VP1 (10 ng) and H153AVP1(10ng) was 

injected on the same day of preparation of the Xenopus oocytes (266, 267). All 

experiments were performed at room temperature (about 22° C) 3 days after the 

injection (268). In two-electrode voltage clamp experiments Kir2.1 currents were 

elicited every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding 

potential of -60 mV. The data were filtered at 1 kHz and recorded with a Digidata 

1322A A/D-D/A converter and ClampexV.9.2 software for data acquisition (Axon 

Instruments) (269, 270). The analysis of the data was performed with Clampfit 9.2 

(Axon Instruments) software (271, 272). The oocytes were maintained at 17°C in 

ND96-A solution. The control superfusate (ND96) contained 96 mM NaCl, 5 mM 

KCl, 1.8 mM CaCl2,1 mM MgCl2 and 5 mM HEPES, pH was adjusted to 7.4 by 

addition of NaOH (256). The flow rate of the superfusion was 20 ml/min, and a 

complete exchange of the bath solution was reached within about 10 s (273, 274). 

To test whether Lysophosphatidylcholine affect the activity of Kir2.1 K+ channels, 

Xenopus oocytes expressing Kir2.1 were treated with lysophosphatidylcholine 

(1µg/ml) for 10 minutes. 

To test whether the effect of VP1 expression or lysophosphatidylcholine treatment 

could be mimicked by inhibition of the Na+/K+ ATPase with Ouabain. Kir2.1 

expressing oocytes were treated with Ouabain (0.1 mM) for 10 minutes. 

To test whether the inhibition of Na+/K+ ATPase was required for the inhibitory 

effect of lysophosphatidylcholine on Kir2.1. The Kir2.1 expressing oocytes were 

treated either with lysophosphatidylcholine (1µg/ml) alone or with both 

lysophosphatidylcholine (1µg/ml) and Ouabain (0.1 mM) for 10 minutes. 
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3.4 Statistical analysis 

Data are provided as means ± SEM, n represents the number of oocytes 

investigated. All experiments were repeated with at least 3 batches of oocytes; in all 

repetitions qualitatively similar data were obtained. Data were tested for significance 

using analysis of variance (ANOVA) or t-test, as appropriate. Results with p < 0.05 

were considered statistically significant. 
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4. Results 

4.1  Regulation of Kv1.3 by VP1 

4.1.1 Inhibition of Kv1.3 currents in Kv1.3 expressing Xenopus oocytes by 

coexpression of VP1 but not of H153AVP1  

 

The present study explored the impact of parvovirus B19 capsid protein VP1 on 

Kv1.3 K+-channel activity. In order to test whether VP1 regulate the Kv1.3 K+ 

current, Kv1.3 was expressed in Xenopus oocytes with or without additional 

expression of VP1 or the H153AVP1 mutant lacking functional PLA2 activity. K+ peak 

currents taken as a measure of K+ channel activity.  
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Figure 6: normalized I/V curve of Kv1.3 K+ current with and without Coexpression of 

VP1 or the PLA2-negative H153AVP1 mutant 

Arithmetic means ± SEM (n =9-24) of the normalized depolarization-induced Kv1.3 peak 

current as a function of voltage in Xenopus oocytes injected with water (black squares), or 

with cRNA encoding Kv1.3 alone (white circles) or with cRNA encoding both, Kv1.3 and 

VP1 (black circles) or with cRNA encoding Kv1.3 and PLA2-negative VP1 mutant (grey 

circles). Peak currents were normalized to the mean peak current at +50 mV in Xenopus 

oocytes injected with cRNA encoding Kv1.3. *** (p<0.001) indicates statistically significant 

difference from Xenopus oocytes injected with cRNA encoding Kv1.3 (separated unpaired 

student t test). 
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Figure 7: effect of VP1 co-expression on K+ currect in Kv1.3 expressing 

Xenopus oocytes 

A.Original tracings recorded in Xenopus oocytes injected with  water (i), with cRNA encoding 

Kv1.3 alone (ii) with cRNAs encoding both, Kv1.3 and VP1 (iii) and with cRNA encoding both, 

Kv1.3 and the PLA2-negative H153AVP1 mutant (iv). The currents were recorded following 2 

second depolarizing pulses ranging from −80 to +50 mV in 10 mV and 15 second 

increments from a holding potential of −100 mV.B.Arithmetic means ± SEM (n = 9-24) of the 

normalized Kv1.3 peak current at +50 mV in Xenopus oocytes injected with water (dotted 

bar), with cRNA encoding Kv1.3 alone (white bar) with cRNA encoding both, Kv1.3 and VP1 

(black bar) or with cRNA encoding Kv1.3 and PLA2-negative VP1 mutant (grey bar). *** 

indicates statistically significant (p<0.001) difference from Xenopus oocytes injected with 

cRNA encoding Kv1.3 (ANOVA-one way).  

 

As shown in Figure 7, K+ current was low in Xenopus oocytes injected with water. 

Expression of Kv1.3 resulted in a strong current, which was significantly decreased 

by coexpression of VP1. In contrast, coexpression of the H153AVP1 mutant lacking 

PLA2 activity did not significantly modify Kv1.3 currents. As a result, in Kv1.3 

expressing Xenopus oocytes the K+ current was significantly higher following 

coexpression of H153AVP1 than following coexpression of VP1  

 

4.1.2  Inhibition of K+-current in Kv1.3 expressing Xenopus oocytes by VP1 Co- 

expression in presence of D-actinomycin 

 

In order to test, whether the effect of VP1 required transcription, additional 

experiment was performed in the presence of actinomycin (10 µM, added 36 hours 

prior to the experiment), Kv1.3 was expressed in Xenopus oocytes with additional 

expression of VP1 in the presence of actinomycin 
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Figure 8: effect of VP1 co-expression on currect in Kv1.3 expressing Xenopus 

oocytes in the presence of D-Actinomycin 

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.3 alone (i) or with 

cRNA encoding both, VP1 and Kv1.3 (ii), each with prior 36 hours treatment with 10 µM D-

actinomycin. The currents were recorded following 2s depolarizing pulses ranging from −80 

to +50 mV in 10 mV and 15 s increments from a holding potential of −100 mV. 

B. Arithmetic means ± SEM (n = 19-20) of the normalized K+-peak current following a 

depolarization from −80 to +50 mV  in oocytes injected with cRNA encoding Kv1.3 alone with 

prior 36 hours treatment with 10 µM D-actinomycin (white bar) or with cRNA encoding both, 

VP1and Kv1.3 (black bar), each with prior 36 hours treatment with 10 µM D-actinomycin. ** 

indicates statistically significant (p<0.01) difference from absence of VP1 (unpaired student t- 

test).  

 

As shown in Figure 8, even in the presence of actinomycin (10 µM, added 36 hours 

prior to the experiment) the coexpression of VP1 with Kv1.3 decreased the K+ 

current in Kv1.3 expressing oocytes. Thus, the effect of VP1 on Kv1.3 did not 

require transcription.  
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4.1.3 Inhibition of K+-channel activity in Kv1.3 expressing Xenopus oocytes by 

lysophosphatidylcholine 

 

Phospholipase A2 (PLA2) of VP1 is known to generate lysophosphatidylcholine. Thus, 

additional experiment was performed to explore whether lysophosphatidylcholine influences 

K+ currents in Kv1.3 expressing Xenopus oocytes, Kv1.3 expressing oocytes were treated 

with lysophosphatidylcholine(1µg/ml)  for 10 minutes  

 

Figure 9: effect of Lysophosphatidylcholine on K+ currect in Kv1.3 expressing 

Xenopus oocytes 

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.3 alone in the 

absence (i) or presence (ii) of lysophosphatidylcholine (1 μg/ml). The currents were recorded 

following 2s depolarizing pulses ranging from −80 to +50 mV in 10mV and 15 s increments 

from a holding potential of −100 mV. 

B. Arithmetic means ± SEM (n = 16) of the normalized K+-peak current following a 

depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.3 alone in 

the absence (white bar) and presence (black bar) of lysophosphatidylcholine (1 μg/ml). * 

indicates statistically significant (p<0.05) difference from absence of lysophosphatidylcholine 

(unpaired student t test).  
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As shown in Figure 9, treatment of Kv1.3 expressing Xenopus oocytes with 

lysophosphatidylcholine (1µg/ml) for 10 minutes was indeed followed by a decrease 

of K+ currents. 

 

4.2  Regulation of Kv1.5 by VP1 

 

4.2.1 Inhibition of Kv1.5 K+ currents in Kv1.5 expressing Xenopus oocytes by 

coexpression of VP1 but not of H153AVP1  

 

The second part of study explored the impact of the parvovirus B19 capsid protein 

VP1 on Kv1.5 K+ channel activity. In order to test whether VP1 regulate the Kv1.5 

K+ current, Kv1.5 was expressed in Xenopus oocytes with or without additional 

expression of VP1 or the H153AVP1 mutant lacking functional PLA2 activity. K+-peak 

currents taken as a measure of K+ channel activity 
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Figure 10: normalized I/V curve of KV1.5 K+ current with and without Coexpression 

of VP1 or the PLA2-negative H153AVP1 mutant 

Arithmetic means ± SEM (n =3-26) of the normalized depolarization induced Kv1.5 peak 

current as a function of voltage in Xenopus oocytes injected with water (black squares), or 

with cRNA encoding Kv1.5 alone (white circles) or with cRNA encoding both, Kv1.5 and 

VP1 (black circles) or with cRNA encoding Kv1.5 and PLA2-negative VP1 mutant (grey 

circles). Peak currents were normalized to the mean peak current at +50 mV in Xenopus 

oocytes injected with cRNA encoding Kv1.5. *** (p<0.001) indicates statistically significant 

difference from Xenopus oocytes injected with cRNA encoding Kv1.5 (separated unpaired 

student t tests). 
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Figure 11: effect of VP1 co-expression on K+ currect in Kv1.5 expressing 

Xenopus oocytes 

A.Original tracings recorded in oocytes injected with  water (i), with cRNA encoding Kv1.5 

alone (ii) with cRNAs encoding both, Kv1.5 and VP1 (iii) and with cRNA encoding both, Kv1.5 

and the PLA2-negative H153AVP1 mutant (iv). The currents were recorded following 2 second 

depolarizing pulses ranging from −80 to +50 mV in 10 mV and 20 second increments from 

a holding potential of −100 mV.B.Arithmetic means ± SEM (n =3-26) of the normalized Kv1.5 

-peak current at +50 mV in Xenopus oocytes injected with  water (dotted bar), with cRNA 

encoding Kv1.5 alone (white bar) with cRNA encoding both, Kv1.5 and VP1 (black bar) and 

with cRNA encoding both, Kv1.5 and PLA2-negative VP1 mutant (grey bar). ** indicates 

statistically significant (p<0.01) difference from Xenopus oocytes injected with cRNA 

encoding Kv1.5 (ANOVA-one way).  

 

As shown in Figure 11, The K+ current in Xenopus oocytes expressing Kv1.5 was 

significantly decreased by coexpression of VP1. Coexpression of the H153AVP1 

mutant lacking PLA2 activity did not significantly modify Kv1.5 currents. The K+ 

current in Kv1.5 expressing Xenopus oocytes was thus significantly higher 

following coexpression of H153AVP1 than following coexpression of VP1. 

 

4.2.2 Inhibition of K+ current in Kv1.5 expressing Xenopus oocytes by VP1 

coexpression in presence of D-actinomycin 

 

In order to test, whether the effect of VP1 required transcription, additional 

experiments were performed in the presence of actinomycin (10 µM, added 36 

hours prior to the experiment). Kv1.5 was expressed in xenopus oocytes with 

additional expression of VP1 in the presence of actinomycin.  
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Figure 12: effect of VP1 co-expression on currect in Kv1.5 expressing Xenopus 

oocytes in the presence of D-Actinomycin 

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.5 alone (i) or with 

cRNA encoding both, VP1 and Kv1.5 (ii), each with prior 36 hours treatment with 10 µM D-

actinomycin. The currents were recorded following 2s depolarizing pulses ranging from −80 

to +50 mV in 10mV and 20 s increments from a holding potential of −100 mV. 

B. Arithmetic means ± SEM (n = 18) of the normalized K+-peak current following a 

depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.5 alone 

(white bar) or with cRNA encoding both,Kv1.5 and VP1 (black bar), each with prior 36 hours 

treatment with 10 µM D-actinomycin. *** indicates statistically significant (p<0.001) difference 

from absence of VP1 (unpaired student t- test).  

 

As shown in Figure 12, even in the presence of actinomycin (10 µM, added 36 

hours prior to the experiment), the coexpression of VP1 decreased the K+ current 

in Kv1.5 expressing oocytes. Thus, the effect of VP1 on Kv1.5 did not require 

transcription.  
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4.2.3 Inhibition of K+channel activity in Kv1.5 expressing Xenopus oocytes by 

lysophosphatidylcholine 

 

PLA2 of VP1 is known to generate lysophosphatidylcholine. Thus, additional 

experiments were performed to test whether lysophosphatidylcholine influences K+ 

currents in Kv1.5 expressing Xenopus oocytes. Kv1.5 expressing oocytes were 

treated with lysophosphatidylcholine (1µg/ml) for 10 minutes.  

 

 

 

 

Figure 13: effect of Lysophosphatidylcholine on K+ currect in Kv1.5 expressing 

Xenopus oocytes 

A. Original tracings recorded in oocytes injected with cRNA encoding Kv1.5 alone in the 

absence (i) or presence (ii) of lysophosphatidylcholine (1 μg/ml). The currents were recorded 

following 2s depolarizing pulses ranging from −80 to +50 mV in 10mV and 20 s increments 

from a holding potential of −100 mV. 
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B. Arithmetic means ± SEM (n = 14-16) of the normalized K+-peak current following a 

depolarization from -80 mV to +50 mV in oocytes injected with cRNA encoding Kv1.5 alone in 

the absence (white bar) and presence (black bar) of lysophosphatidylcholine (1 μg/ml). ** 

indicates statistically significant (p<0.01) difference from absence of lysophosphatidylcholine 

(unpaired student t test).  

 

As shown in Figure 13, treatment of Kv1.5 expressing Xenopus oocytes with 

lysophosphatidylcholine (1µg/ml) for 10 minutes was indeed followed by a decrease 

of K+ currents.  

 

4.3  Regulation of Kir2.1 by VP1 

 

4.3.1 Inhibition of K+ currents in Kir2.1 expressing Xenopus oocytes by 

coexpression of VP1 but not of H153AVP1 

 

The third part of study explored, whether coexpression of parvovirus B19 capsid 

protein VP1 influences the activity of Kir2.1 K+-channels. In order to test whether 

VP1 regulate the Kir2.1 K+ current, Kir2.1 was expressed in Xenopus oocytes with 

or without additional expression of VP1 or the H153AVP1 mutant lacking functional 

PLA2 activity. Inwardly rectifying K+ peak currents was taken as a measure of K+-

channel activity 
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Figure 14: normalized I/V curve of KV1.5 K+ current with and without Coexpression 

of VP1 or the PLA2-negative H153AVP1 mutant 

Arithmetic means ± SEM (n = 6-22) of the normalized Kir2.1 current as a function of 

voltage in Xenopus oocytes injected with water (black squares), or with cRNA encoding 

Kir2.1 alone (white circles) or with cRNA encoding both, Kir2.1 and VP1 (black circles) or 

with cRNA encoding Kir2.1 and PLA2-negative VP1 mutant (grey circles). Peak currents 

were normalized to the mean peak current at -150 mV in Xenopus oocytes injected with 

cRNA encoding Kir2.1. *** (p<0.001) indicates statistically significant difference from 

Xenopus oocytes injected with cRNA encoding Kir2.1 (separated unpaired student t test). 
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Figure 15: Effect of VP1 co-expression on K+ currect in Kir2.1 expressing 

Xenopus oocytes 

A.Original tracings recorded in Xenopus oocytes injected with  water (i), with cRNA encoding 

Kir2.1 alone (ii) with cRNAs encoding both, Kir2.1 and VP1 (iii) and with cRNA encoding both, 

Kir2.1 and the PLA2-negative H153AVP1 mutant (iv). The currents were elicited every 20 s 

with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV. 

B.Arithmetic means ± SEM (n = 6-22) of the normalized Kir2.1 peak current at -150 mV in 

Xenopus oocytes injected with  water (dotted bar), with cRNA encoding Kir2.1 alone (white 

bar) with cRNA encoding both, Kir2.1 and VP1 (black bar) or with cRNA encoding Kir2.1 and 
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H153AVP1 mutant (grey bar). *** (p< 0.001) indicates statistically significant difference from 

Xenopus oocytes injected with cRNA encoding Kir2.1 alone, # (p< 0.05) indicates 

statistically significant difference from Xenopus oocytes injected with cRNA encoding wild 

type VP1 (ANOVA-one way).  

As shown in Figure 15, Inwardly rectifying currents were low in Xenopus oocytes 

injected with water. Expression of Kir2.1 resulted in a strong inwardly rectifying 

current (IK). Coexpression of wild type VP1 was followed by a marked decline of IK. 

In contrast coexpression of the H153AVP1 mutant lacking functional PLA2 activity, 

did not significantly modify Kir2.1 currents. Accordingly, the K+ current was 

significantly higher following coexpression of Kir2.1 with H153AVP1 than following 

coexpression of Kir2.1 with VP1.  

 

4.3.2  Inhibition of K+-channel activity in Kir2.1 expressing Xenopus oocytes by 

lysophosphatidylcholine 

 

As PLA2 of VP1 is known to generate lysophosphatidylcholine, additional 

experiments were performed to test whether lysophosphatidylcholine influences K+ 

currents in Kir2.1 expressing Xenopus oocytes. Kir2.1 expressing oocytes were 

treated with lysophosphatidylcholine (1µg/ml) for 10 minutes. 
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Figure 16: effect of lysophosphatidylcholine on K+ current in Kir2.1 expressing 

Xenopus oocytes  

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone in the 

absence (i) or presence (ii) of lysophosphatidylcholine (1 μg/ml). The currents were elicited 

every 20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 

mV.B. Arithmetic means ± SEM (n = 18) of the normalized K+-peak current in oocytes 

injected with cRNA encoding Kir2.1 alone in the absence (white bar) and presence (black 

bar) of lysophosphatidylcholine (1 μg/ml). * indicates statistically significant (p<0.05) 

difference from absence of lysophosphatidylcholine (unpaired student t test).  

 

As shown in Figure 16, the treatment of Kir2.1 expressing Xenopus oocytes with 

lysophosphatidylcholine (1µg/ml) within 10 minutes significantly decreased the K+ 

currents.  
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4.3.3  Inhibition of K+-channel activity in Kir2.1 expressing Xenopus oocytes by 

Ouabain 

Additional experiments were performed to test whether the effect of VP1 

expression or lysophosphatidylcholine treatment could be mimicked by inhibition of 

the Na+/K+ ATPase with Ouabain. In order to test whether effect of VP1 expression or 

lysophosphatidylcholine treatment could be mimicked by inhibition of the Na+/K+ 

ATPase with ouabain, Kir2.1 expressing oocytes were treated with Ouabain (0.1 mM) 

for 10 minutes 
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Figure 17: Effect of Ouabain on K+ current in Kir2.1 expressing Xenopus 

oocytes 

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone in the 

absence (i) or presence (ii) of ouabain (0.1 mM). The currents were elicited every 20 s with 

1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV. 

B. Arithmetic means ± SEM (n = 18) of the normalized K+-peak current in oocytes injected 

with cRNA encoding Kir2.1 alone in the absence (white bar) and presence (black bar) of 

ouabain (0.1 mM). * indicates statistically significant (p<0.05) difference from absence of 

ouabain (unpaired student t test). 

As shown in Figure 17, the treatment of Kir2.1 expressing Xenopus oocytes with 

ouabain within 10 minutes significantly decreased the K+ currents 

 

4.3.4 Nonadditivity of lysophosphatidylcholine and ouabain on Kir2.1 K+ 

channel activity 

 

Further experiments tested, whether the inhibition of Na+/K+ ATPase was required 

for the inhibitory effect of lysophosphatidylcholine on Kir2.1. To this end, the Kir2.1 

expressing Xenopus oocytes were treated either with lysophosphatidylcholine 

(1µg/ml) alone or with both lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM) 

for 10 minutes. 
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Figure 18: Nonadditivity of lysophosphatidylcholine and ouabain on Kir2.1 K+ 

channel activity   

A. Original tracings recorded in oocytes injected with cRNA encoding Kir2.1 alone and 

treated for 10 minutes with lysophosphatidylcholine (1 μg/ml) (i) or with both, 

lysophosphatidylcholine (1µg/ml) and ouabain (0.1 mM)(ii). The currents were elicited every 

20 s with 1 s pulses from -150 mV to +30 mV applied from a holding potential of -60 mV. 

B. Arithmetic means ± SEM (n = 19) of the normalized K+-peak current in oocytes injected 

with cRNA encoding Kir2.1 alone in the presence of lysophosphatidylcholine  (1 μg/ml) (white 

bar) and presence (black bar) of both lysophosphatidylcholine (1µg/ml) and ouabain (0.1 

mM). 

As illustrated in Figure 18, the decline of IK in Kir2.1 expressing oocytes was similar 

following combined treatment with lysophosphatidylcholine (1µg/ml) and ouabain 

(0.1 mM) and following treatment with lysophosphatidylcholine alone. 
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5.  Discussion and Conclusion 

5.1 Regulation of Kv1.3 and Kv1.5 by parvovirus B19 capsid protein VP1 

Although the association between B19V infection and acute and chronic 

myocarditis has been revealed with the identification of myocardial endothelial cells 

as target cells (30, 33, 247, 275, 276) and the role of B19 as causative agent  in 

the development of endothelial and isolated left ventricle diastolic dysfunction has 

been discussed (76), little is known about the pathophysiological mechanisms 

involved (249). Endothelial rather than myocardial B19V was detected in fatal 

inflammatory cardiomyopathy (33, 34). 

 

It has been shown that parvovirus B19 capsid protein VP1 increase Ca2+ entry in 

the endothelial cells through activation of the store operated or capacitative Ca2+ 

channel (ICRAC), an effect which is mimicked by the PLA2 product 

lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-

encoding region of the VP1 protein (249). Similarly, VP1 has been shown to 

downregulate Na+/K+ ATPase, an effect is mimicked by the PLA2 product 

lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-

encoding region of the VP1 protein (250). 

 

The Xenopus oocytes expression system has played an important role in the study 

of cellular proteins because it is used for expression of transporters and ion 

channels and for functional screening for ion channels modulators (277). 

Xenopus oocytes expression system was first used for expression of cellular 

proteins in 1971, where it was revealed that Xenopus oocytes are able to 

synthesize haemoglobin following intracellular injection of the corresponding 

mRNA (278).  

 

In comparison to mammalian cell lines, Xenopus oocytes have a number of 

advantages as an expression system for cellular proteins. The cost of the frogs is 



 

53 

 

relatively low and frogs are easily maintained and reproduced in aquariums. 

Oocytes can be obtained many times from the same frog by partial ovarectomy 

and can survive outside the body of the frog for up to a month if conserved at 4 °C. 

The handling of the Xenopus oocytes is easy because they are big in size. 

Xenopus oocytes contain the necessary enzymes for the expression of a wide 

range of mammalian proteins (277). Following injection of cRNA into the oocyte, 

proteins are expressed after 1–2 days and functional studies of ion channels and 

receptors are easily performed using two-electrode voltage clamp technique. An 

important advantage is that most cRNAs are readily expressed without the need to 

develop a cell line, whereas there is often a delay from the cloning of a new 

receptor until it can be expressed in a mammalian cell line (277). 

 

Despite the advantages of the Xenopus oocytes expression system, this 

expression system has several disadvantages. The most important of these is 

whether ion channels expressed in Xenopus oocytes are assembled and behave in 

an identical fashion to those expressed in mammalian cells. The size of the 

Xenopus oocyte is large, which gives a relatively slow fluid exchange time around 

the oocyte compared to a mammalian cell, which can be a problem for recording 

fast desensitizing ligand gated channels in the oocytes. Another disadvantage is 

that each oocyte must be injected with cRNAs, which is slower than the 

simultaneous transfection of large numbers of mammalian cells (277), However, 

some studies showed similar results in Xenopus oocytes expression system and 

mammalian cells (250, 279-282). 

 

The present study was done to investigate whether parvovirus B19 capsid protein 

VP1 modifies the activity of Kv1.3 and Kv1.5 Potassium channels and to test 

whether the effect is is sensitive to inhibition of PLA2 and is mimicked by 

lysophosphatidylcholine using Xenopus oocytes expression system. Kv1.3 or 

Kv1.5 was expressed in the Xenopus oocytes with or without additional expression 

of VP1 and VP1 dead mutant (H153AVP1) lacking functional PLA2 activity. Two 
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electrode voltage clamp technique was used to measure the potassium current. 

The measurements showed inhibition of both Kv1.3 and Kv1.5 K+ current by VP1 

but not by VP1 dead mutant (H153AVP1) lacking functional PLA2 activity. 

Further experiments were done to test whether the effect of VP1 on Kv1.3 and 

Kv1.5 potassium current is mimicked by lysophosphatidylcholine, Kv1.3 or Kv1.5 

was expressed in Xenopus oocytes and treated by lysophosphatidylcholine 

(1µg/ml) for 10 minutes. Two electrode voltage clamp technique was used to 

measure the potassium current. The experiments showed inhibition of Kv1.3 and 

Kv1.5 K+ current by lysophosphosphatidylcholine which is generated by 

phospholipase A2 like motif of VP1 protein. 

 

The present observations reveal a novel action of the B19V capsid protein VP1, i.e. 

the downregulation of the voltage gated K+ channels Kv1.3 and Kv1.5. The effect 

requires an intact phospholipase A2-like motif (283, 284) in the VP1 protein. 

Mutation of the motif virtually abrogates the effect of VP1 on Kv1.3 and Kv1.5. The 

effect of VP1 on Ca2+ entry  (249) and Na+/K+ ATPase activity (250) similarly 

depended on phospholipase A2 activity and was similarly abolished following site 

directed mutation of the PLA2 motif, i.e. replacement of the histidine by alanine in 

the putative catalytic site (H153AVP1). Similar to what has been observed previously 

on the regulation of Ca2+ entry  (249) and Na+/K+ ATPase activity (250), the effect 

of VP1 expression on Kv1.3 and Kv1.5 channel activity was mimicked by 

lysophosphatidylcholine, a product of phospholipase A2.  

 

B19V enters myocardial endothelial cells (33, 34) and may thus trigger acute 

myocarditis resulting in a clinical course similar to myocardial infarction (33, 34). 

Inhibition of K+ channels could lead to cell swelling (285, 286) and could thus 

contribute to endothelial dysfunction. The effect is expected to be compounded by 

inhibition of Na+/K+-ATPase (250), which would dissipate the ion gradients across 

the cell membrane thus further compromizing the ability of the cell to maintain cell 

volume constancy (250). K+ exit through K+ channels generates a cell negative 
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potential difference across the cell membrane driving Cl- exit. Inhibition of K+ 

channels is expected to depolarize the cell membrane thus dissipating the electrical 

driving force for Cl- exit. As a result, downregulation of K+ channels is expected to 

trigger cellular accumulation of KCl with the respective osmotically obliged water and 

thus to swell the cells (285, 286). Cell swelling is further fostered by cellular NaCl 

accumulation, if Na+/K+ATPase activity is inhibited (250). 

 

Inhibition of Kv1.3 K+ channels may further affect cell proliferation, which, at least 

in some cell types, requires Kv1.3 channel activity (252, 253). Whether or not 

impaired endothelial cell proliferation may contribute to the pathophysiology of 

B19V infection remains to be shown. 

 

In conclusion, VP1 down-regulates the Kv1.3 and Kv1.5 K+ channel, an effect 

involving phospholipase A2 activity of the parvoviral B19 protein and genetration of 

lysophosphatidylcholine. The inhibition of endothelial K+ channels may lead to cell 

swelling and thus participate in the pathophysiology of endothelial dysfunction 

during parvovirus B19 infection. 
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Figure 19: Summary of regulation of Kv1.3 and Kv1.5 by VP1 
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5.2  Regulation of Kir2.1 by parvovirus B19 capsid protein VP1 

 

B19V is a worldwide infectious pathogen in humans as the estimated prevalence of 

IgG antibodies directed against B19V ranges from 2 to 15% in children at age of 1 

to 5 years old, 15 to 60% in children aged 6 to 19 years old, 30 to 60% in adults, 

and more than 85% in the geriatric population(35-38). 

 

B19V causes common infections (245) leading to diverse clinical entities, such as 

fifth disease (erythema infectiosum), hydrops fetalis and transient aplastic anaemia 

(25, 287). More importantly B19V infection is associated with myocarditis (246, 

247). 

 

It is known that the myocardial endothelium is as a target for parvovirus B19 in 

acute and chronic myocarditis (30, 33, 247, 275, 276) And it has been shown that   

B19V is a causative agent in  endothelial and left ventricle diastolic dysfunction 

(76), but the pathophysiological mechanisms involved are still not known(249). 

Parvovirus B19 genomes were detected in the endothelium of myocardial tissue 

predominantly of small intramyocardial arteries and venoles, but not in cardiac 

myocytes or epicardial coronaries in fatal inflammatory cardiomyopathy. The 

presence of B19V genomes is accompanied with expression of the adhesion 

molecule E-selectin, margination, adherence, penetration, and perivascular 

infiltration of the heart by T-lymphocytes and macrophages function (33, 34)  

 

It has been shown that parvovirus B19 capsid protein VP1 increase Ca2+ entry in 

the endothelial cells through activation of the store operated or capacitative Ca2+ 

channel (ICRAC), an effect which was mimicked by the PLA2 product 

lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-

encoding region of the VP1 protein (249). Similarly, VP1 has been shown to 

downregulate Na+/K+ ATPase, an effect was mimicked by the PLA2 product 
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lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-

encoding region of the VP1 protein (250).  

This study was done to investigate whether parvovirus B19 capsid protein VP1 

modifies the activity of inwardly rectifying Kir2.1 Potassium channels and to test 

whether the effect is is sensitive to inhibition of PLA2 and is mimicked by 

lysophosphatidylcholine using Xenopus oocytes expression system. Kir2.1 was 

expressed in the Xenopus oocytes with or without additional expression of VP1 

and VP1 dead mutant (H153AVP1) lacking functional PLA2 activity. Two electrode 

voltage clamp technique was used to measure the potassium current. The 

experiments have shown inhibition of Kir2.1 K+ current by VP1 but not by VP1 

dead mutant (H153AVP1) lacking functional PLA2 activity. 

Another set of experiments were done to test whether the effect of VP1 on Kir2.1 

K+ current is mimicked by lysophosphatidylcholine, Kir2.1 was expressed in 

Xenopus oocytes and was treated by lysophosphatidylcholine (1µg/ml) for 10 

minutes. Two electrode voltage clamp technique was used to measure the 

potassium current. These experiments have shown inhibition of Kir2.1 Potassium 

current by Lysophosphosphatidylcholine which is generated by phospholipase A2 

like motif of VP1 protein. 

 

The present observations disclose a novel effect of the B19V capsid protein VP1, 

i.e. the downregulation of the inwardly rectifying K+ channel Kir2.1. As shown 

previously for Kv1.3 and Kv1.5 channels (288), Ca2+ entry(249) and Na+/K+ 

ATPase activity (250), the effect of VP1 requires its phospholipase A2-like motif 

(21, 24). Loss of function mutation of the motif disrupts the effect of VP1 on Kir2.1. 

Again, similar to what has been observed previously on the regulation of voltage 

gated K+ channels (288), Ca2+ entry (249) and Na+/K+ ATPase activity (250), the 

effect of VP1 expression on Kir2.1 channel activity was mimicked by the vPLA2 

product lysophosphatidylcholine. 
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The effect of B19V on K+ channels could contribute to the triggering of endothelial 

dysfunction, as B19V enters myocardial endothelial cells (33, 34). Inhibition of K+ 

channels is expected to foster cell swelling (285, 286), as reduced K+ channel 

activity leads to impaired K+ exit, depolarization, Cl- entry and thus cellular 

accumulation of KCl with the respective osmotically obliged water swelling (285, 

286). The depolarization is further fostered by inhibition of Na+/K+-ATPase activity 

(250) with the resulting dissipation of the ion gradients across the cell membrane. 

 

The inhibition of Kir2.1 channels could at least partially result from the inhibitory 

effect of lysophosphatidylcholine on the Na+/K+-ATPase (250), as the channels are 

similarly downregulated by the Na+/K+-ATPase inhibitor ouabain. Inwardly rectifying 

K+ channels have previously been shown to be highly sensitive to Na+/K+-ATPase 

activity and to be rapidly down regulated following pump inhibition (239).  

 

Since functional expression of classical Kir channels provides the driving force for 

Ca2+ influx through Ca2+-permeable channels by seting the Eres of endothelial cells 

to a negative potential, inhibition of endothelial Kir channels is expected to inhibit 

both flow induced Ca2+ influx and vasodilatation caused by Ca2+ dependent 

production of Nitric Oxide (224, 225).  

 

In conclusion, VP1 down-regulates the inwardly rectifying K+ channel Kir2.1, an 

effect involving phospholipase A2 activity of the parvoviral B19 protein, 

lysophosphatidylcholine formation, and inhibition of Na+/K+-ATPase activity. The 

inhibition of endothelial K+ channels may lead to cell swelling and thus participate 

in the pathophysiology of endothelial dysfunction during parvovirus B19 infection. 
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                          Figure 20: Summary of regulation of Kir2.1 by VP1 
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6. Summary 

 

Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial 

dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine 

producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most 

recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na+/K+ 

ATPase. The present study explored whether VP1 modifies the activity of Kv1.3, 

Kv1.5 and Kir2.1 K+ channels. 

The first part of study explored, whether expression of VP1 modifies the activity of 

Kv1.3 and Kv1.5 K+ channels. cRNA encoding Kv1.3 or Kv1.5 was injected into 

Xenopus oocytes without or with cRNA encoding VP1,which was isolated from a 

patient suffering from fatal B19V induced myocarditis or the VP1 mutant H153AVP1 

lacking a functional PLA2 activity. K+ channel activity was determined by dual 

electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus 

oocytes was followed by appearance of Kv K+ channel activity, which was 

significantly decreased by additional injection of cRNA encoding VP1, but not by 

additional injection of cRNA encoding PLA2-negative VP1 mutant H153AVP1. The 

effect of VP1 on Kv current was not significantly modified by transcription inhibitor 

actinomycin (10 µM for 36 hours) but was mimicked by lysophosphatidylcholine (1 

μg/ml). 

The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least 

partially due to phospholipase A2 (PLA2) dependent formation of 

lysophosphatidylcholine.  

The second part of study explored, whether expression of VP1 influences the 

activity of the inwardly rectifying Kir2.1 K+ channels. cRNA encoding Kir2.1 was 

injected into Xenopus oocytes without or with cRNA encoding VP1 or the VP1 

mutant H153AVP1. K+ channel activity was determined by dual electrode voltage 

clamp. Injection of cRNA encoding Kir2.1 into Xenopus oocytes was followed by 

appearance of inwardly rectifying K+ channel activity (IK), which was significantly 

decreased by additional injection of cRNA encoding VP1, but not by additional 
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injection of cRNA encoding H153AVP1. The effect of VP1 on IK was mimicked by 

lysophosphatidylcholine (1 μg/ml) and by inhibition of Na+/K+-ATPase with 0.1 mM 

ouabain. In the presence of lysophosphatidylcholine, IK was not further decreased 

by additional treatment with ouabain.  

The B19V capsid protein VP1 inhibits Kir2.1 channels, an effect at least partially 

due to phospholipase A2 (PLA2) dependent formation of lysophosphatidylcholine 

with subsequent inhibition of Na+/K+-ATPase activity. 
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7. Zusammenfassung 

Der Parvovirus B19 (B19V) kann entzündliche Kardiomyopathie und endotheliale 

Dysfunktion verursachen. Die beteiligten pathophysiologischen Mechanismen 

beinhalten die Lysophosphatidylcholin produzierende Phospholipase A2 (PLA2) 

Aktivität des B19V Capsidprotein VP1. So ist bereits gezeigt worden, dass VP1 

und Lysophosphatidylcholin die Na+ / K+ -ATPase hemmen. In der vorliegenden 

Arbeit wurde untersucht, ob VP1 die Aktivität der Kv1.3, Kv1.5 und Kir2.1 K+ 

Kanäle ändert. 

Im ersten Teil der Arbeit wurde untersucht, ob die Expression des VP1 die Aktivität 

von Kv1.3 und Kv1.5 K+ Kanäle verändert. Die cRNA des Kv1.3 oder Kv1.5 wurde 

in Xenopus-Oozyten sowohl mit als auch ohne cRNA des VP1 injiziert, welches 

von einem an B19V verstorbenen Myokarditispatienten stammte, und einer VP1-

Mutante H153AVP1 mit fehlenden funktionellen PLA2-Aktivität. Die K + -Kanal-

Aktivität wurde mittels der 2-Elektroden-Voltage-Clamp-Methode ermittelt. Die 

Injektion der Kv1.3 oder Kv1.5 cRNA in Xenopus Oozyten führte zum Auftreten der 

Aktivität des Kv-K+ -Kanals, durch zusätzliche Injektion der VP1-cRNA  signifikant 

welche verringert wurde. Dies konnte nicht nach der Injektion der PLA2-negative 

Mutante VP1 H153AVP1 beobachtet werden. Der Effekt von VP1 auf den Kv Strom 

wurde nicht signifikant durch den Transkriptionsinhibitor Actinomycin (36 Stunden 

10 & mgr; M) modifiziert und war ähnlich wie nach der Zugabe von 

Lysophosphatidylcholin (1 ug / ml) 

Das B19V Capsidprotein VP1 hemmt in der Wirtszelle die Kv-Kanäle, welche 

teilweise einen Effekt der Phospholipase A2 (PLA2) abhängigen Bildung auf 

Lysophosphatidylcholin hat. 

Im zweiten Teil der Arbeit wurde untersucht, ob die Expression des VP1 die 

Aktivität der einwärtsgerichteten Kir2.1 K + -Kanälen beeinflusst. Die Kir2.1 cRNA 

wurde sowohl mit als auch ohne VP1-cRNA oder mit der VP1-Mutante H153AVP1 in 

Xenopus-Oozyten injiziert. Die K+ -Kanal-Aktivität wurde mit der 2-Elektroden-

Voltage-Clamp-Methode ermittelt. Die Injektion der Kir2.1-cRNA in Xenopus-
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Oozyten führte zum Auftreten einer nach innen gleichgerichtenten K + -Kanal-

Aktivität (IK), die durch zusätzliche Injektion von codierter VP1-cRNA signifikant 

verringert war, jedoch nicht durch zusätzliche Injektion von H153AVP1-cRNA. Der 

Effekt von VP1 auf die IK war ähnlich wie nach der Zugabe von 

Lysophosphatidylcholin (1 ug / ml) und Hemmung der Na+/K+-ATPase mit 0,1 mM 

Ouabain. Der Ik Strom wurde unter Lysophosphatidylcholin nicht weiter durch 

Zugabe von Ouabain verringert. 

Das B19V Capsidprotein VP1 hemmt Kir2.1-Kanäle, ein Effekt der zumindest 

teilweise auf der Phospholipase A2 (PLA2) abhängigen Bildung von 

Lysophosphatidylcholin mit anschließender Hemmung der Na+ / K+ -ATPase-

Aktivität zurückzuführen ist. 
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