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Abstract—Recent phylogenetic studies in historical linguistics
have focused on lexical data. However, the way that such data
are coded into characters for phylogenetic analysis has been
approached in different ways, without investigating how coding
methods may affect the results. In this paper, we compare
three different coding methods for lexical data (multistate
meaning-based characters, binary root-meaning characters, and
binary cognate characters) in a Bayesian framework, using
data from the Tupı́-Guaranı́ and Chapacuran language families
as case studies. We show that, contrary to prior expectations,
different coding methods can have a significant impact on the
topology of the resulting trees.
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I. INTRODUCTION

South America, long considered the ethnographically and
linguistically “least known continent” [1], has in recent
decades experienced a surge of descriptive and documentary
linguistic research [2], [3]. The classification of the languages
of this region, and especially those of Amazonia, has, in
contrast, advanced little in the last 50 years [4], [5]. However,
the increasing availability of lexical data on South American
languages, as well as recent successes in applying computa-
tional phylogenetic techniques to data of this type, offers us the
opportunity to push forward our understanding of genealogical
relationships in the region with new datasets and tools [6]–[8].

While it is accepted that lexical data from natural languages
carry phylogenetic signal, the study of lexical evolution per se
has largely been neglected by historical linguistics (with the
exception of lexicostatistics), as the evolution of other domains
of language, such as phonology and morphology, are consid-
ered more informative for subgrouping and less susceptible
to borrowing. In contrast, computational phylogenetic studies
in recent years have focused primarily on lexical evolution,
due to the ease with which relatively short wordlists can be
analyzed with a variety of established phylogenetic methods.

A critical aspect of these methods, and a way in which
they differ, is the manner in which phylogenetic characters
are generated from lexical data. The differing nature of these
characters ultimately reflects different understandings of the
phylogenetic notion of homology [9] in the context of lexical
evolution. However, there has been little discussion of the im-
plications of different coding methods and what the underlying
assumptions of each are regarding how the lexicon evolves. At

the same time, there has been little work to evaluate if and how
different coding methods affect resulting classifications, with
two exceptions: a parsimony-based empirical test on Indo-
European by Rexová and colleagues [10] and an analytical
investigation of Pagel and Meade based on a maximum
likelihood framework [11]. While Rexová and colleagues find
topological differences when using different coding methods,
Pagel and Meade predict no impact on topology, although
differences in branch lengths and support values are expected.

In this paper, we briefly describe and discuss three major
lexical coding methods and we compare their results in a
Bayesian Inference framework, using data from the Tupı́-
Guaranı́ and Chapacuran language families as case studies.

II. DATA

We test the different coding methods on lexical datasets
for two South American language families: a Tupı́-Guaranı́
dataset of 33 languages for a 547-meaning wordlist [7], and
a Chapacuran dataset of 11 languages for a 126-meaning
wordlist [8]. Each dataset includes data for every language
for which adequate lexical data is available.

III. METHODS

A. Coding procedures

We compare three coding procedures based on different
types of characters: 1) multistate meaning-based characters;
2) binary root-meaning characters; and 3) binary cognate
characters. The two first coding methods are based on a
comparative lexical dataset collected using a wordlist, while
the third necessitates the broader collection of lexical data
including close synonyms.

A typical comparative lexical dataset based on a wordlist
yields inherently multistate characters. Each meaning of the
wordlist is a character. All languages that exhibit cognate
forms for a given meaning are given the same character state
value. In other words, each character is equivalent to the
question “For meaning X, what root (or roots) express X?”
and the coding method essentially tracks lexical replacement.
We refer to this scheme as ‘multistate meaning-based’ coding.
Surprisingly, this coding method has been very rarely used
[10]. Among its advantages is the ease of data collection and
its applicability in instances of little available lexical data. One
potential problem of multistate meaning-based coding is that it
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can be affected by parallel semantic shift, which would make
the same state arise multiple times independently (see [12]).

Most phylogenetic studies perform an additional binary
recoding operation on the above-described multistate charac-
ters before using them as input into the analysis [13], [14].
This operation converts each character state of the multistate
characters into a binary presence-absence character, which we
refer to as a ‘binary root-meaning’ character, following Chang
et al. [12]. This conversion essentially yields a dataset that
answers the question “Does a given language have a reflex
of a particular ancestral form A that means X?” Binary root-
meaning coding shares all the advantages of applicability and
ease of data collection with multistate meaning-based coding,
in addition yielding binary characters which are easy to model
and treat computationally.

However, despite the superficial resemblance of root-
meaning characters to cognate sets, root-meaning coding poses
serious conceptual problems. First of all, root-meaning sets
often constitute only partial cognate sets, since they do not
contain cognate words that have undergone semantic shift.
More importantly, however, they subsume under the same state
(absence) the results of two very different evolutionary events:
root loss and semantic shift, both of which can ‘break’ a
root-meaning association. This can potentially lead to spurious
subgroups supported only by such ‘shared’ absences (which
in fact do not correspond to a shared evolutionary event).
Furthermore, binary root-meaning coding creates characters
that are not independent, violating a key assumption of all
phylogenetic methods [15]. This can be seen by considering
the following example. If a language family has three roots
associated with the meaning ‘head’ (i.e., HEAD-A, HEAD-
B, and HEAD-C), and a particular language exhibits a form
belonging to HEAD-A for the meaning ‘head’, we can predict
that it lacks forms belonging to HEAD-B and HEAD-C that
also mean ‘head’ (except in the rare case where there are
two exactly synonymous forms and both of them have been
collected as the most basic form). Of course, in reality the lan-
guage may very well have forms that are cognate with HEAD-
B and HEAD-C, but they may have undergone semantic
shift. Finally, binary root-meaning coding is also susceptible
to parallel semantic shift. The multistate meaning-based and
binary root-meaning coding schemes are exemplified in Table
I with the Chapacuran forms for ‘wing’ and ‘feather’.

The third coding scheme uses cognate sets as the basis
for binary presence-absence characters, defined as a set of
forms with a common ancestral form, or etymon [7], [8].
Characters of this type conform to the traditional notion of
cognacy in historical linguistics, since they include forms that
have undergone semantic shift. Although this coding method
is more difficult to apply, as it requires relatively extensive
lexical sources and etymological knowledge, it largely avoids
the non-independence problem and parallel semantic shifts are
not treated as shared evolutionary events. Cognate set coding is
exemplified in Table II, where the same Chapacuran forms for
‘wing’ and ‘feather’ are coded as cognates that have undergone
semantic shift.

TABLE I
MULTISTATE MEANING-BASED AND BINARY ROOT-MEANING CODING

ORO WIN WANYAM JARÚ MORÉ KITEMOKA

Wing napat nipat tinji nipat ?
Feather tyne nipat ? tain ipati

WING A A B A ?
FEATHER A B ? A B

WING-A 1 1 0 1 ?
WING-B 0 0 1 0 ?
FEATHER-A 1 0 ? 1 0
FEATHER-B 0 1 ? 0 1

TABLE II
BINARY COGNATE CODING

COGNATE ORO WIN WANYAM JARÚ MORÉ KITEMOKA

Wing napat nipat tinji nipat ?
Feather tyne nipat ? tain ipati

WING1 1 1 0 1 1
FEATHER1 1 0 1 1 0

B. Bayesian phylogenetic inference

We use a simple binary model for the binary characters and
the Mk model for the multistate characters [16]. The analysis
of the Tupı́-Guaranı́ data was done in MrBayes 3.2 [17],
[18] and the trees were rooted with Mawé as the outgroup,
following the current consensus in Tupian studies [19], [20].
The analysis of the Chapacuran data was done in BEAST
v.1.8.2. [21] using a constant size coalescent tree prior, a strict
clock and tip-dates. For more detailed information regarding
phylogenetic analyses, see [7], [8].

IV. RESULTS

For the results and discussion, we use a significance cutoff
value of 0.80 posterior probability. In all figures, the high-
lighted branches support clades that are unique to a particular
coding method. The rest of the branches support clades that
are either poorly supported or common among at least two
coding methods.

A. Tupı́-Guaranı́ dataset

For the Tupı́-Guaranı́ dataset, different coding methods
produce drastically different results, both in regards to topol-
ogy and posterior probabilities. The multistate meaning-based
coding (results not shown) produced results largely compatible
with the binary root-meaning coding, but the latter had much
higher posterior probabilities and therefore resolution. On the
other hand, the topological differences between the binary
root-meaning coding and the cognate coding are striking,
with a large number of unique nodes present in each tree
(see Figures 1 and 2). Overall, the cognate coding method
produced a more resolved tree than the root-meaning coding
(25 vs. 17 nodes supported above the cutoff), and recovered a
greater number of the eight traditionally recognized subgroups
[22] (five vs. four). Many of the unique nodes supported by
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Fig. 1. Tupı́-Guaranı́: Majority-rule consensus tree of binary cognate coding
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Fig. 2. Tupı́-Guaranı́: Majority-rule consensus tree of binary root-meaning
coding

both sets of results have not been previously suggested in
the literature, making an evaluation of which coding method
brings us closer to the ‘true’ tree difficult. In any case,
the coding method chosen has serious implications for the
classification.

B. Chapacuran dataset

For the Chapacuran dataset, no significant difference is
observed between the binary root-meaning coding and the
binary cognate coding of the dataset. In both resulting trees all
clades are well supported with over 0.9 posterior probability.
At the same time, both coding procedures produce results that
conform to the comparative method classification in [8], while
they add more internal structure to the tree. For the sake of
space, only the maximum clade credibility (MCC) tree of the
analysis of the binary root-meaning coding is presented here
in Figure 3.
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Fig. 3. Chapacuran: MCC tree of binary root-meaning coding
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Fig. 4. Chapacuran: MCC tree of multistate meaning-based coding

In comparison with the two previously discussed coding
procedures, the multistate meaning-based coding produces the
most divergent results. Most surprisingly, the Waric branch
becomes paraphyletic through the insertion of the Moreic
branch (Moré-Cojubim-Torá) between the Oro Win-Wari’-
Wanyam and Urupá-Jarú clades. This configuration does not
agree with the comparative method classification. Additionally,
the multistate coding method fails to recover the Moreic
branch and the Wari’-Oro Win clade (they are present in the
tree with very low posterior probabilities). Both of these clades
are well supported in the other analyses, and the Moreic branch
is well established by the comparative method as well.

V. DISCUSSION

The different coding methods produced significant differ-
ences in topology and posterior probabilities for both datasets.
However, no obvious trends have emerged at this point re-
garding convergence in results of the coding methods. For
the Tupı́-Guaranı́ dataset, the multistate meaning-based and
binary root-meaning coding produced the most similar results
topologically, while for the Chapacuran dataset the binary root-
meaning and the cognate coding results were the most similar.

According to [11], the main differences between multistate
meaning-based and binary root-meaning codings are higher
support values and shorter branch lengths for the latter. In-
deed, for Tupı́-Guaranı́ the binary root-meaning coding pro-
duced much higher posterior probabilities than the multistate
meaning-based coding, with branch lengths reduced by a
factor of 10 (data not shown). This is also largely true for
the Chapacuran dataset. However, while the multistate tree
contains clades with much lower posterior probability than
the binary root-meaning tree, there is a large number of
clades in both trees with high posterior probabilities. No direct
comparison can be made for the branch lengths, since the
Chapacuran trees are time-trees.

For both datasets, the prediction of [11] that no topolog-
ical differences are expected due to the binary recoding of



multistate characters does not hold. For the Tupı́-Guaranı́
dataset, the two trees were compatible, meaning that there
was no highly supported node in the binary root-meaning
tree that was contradicted in the multistate meaning-based
tree. However, the very low posterior probabilities almost
throughout the multistate tree mean that many nodes that
were highly supported in the binary root-meaning tree were
completely absent from the multistate tree, leading to sig-
nificant topological differences. For the Chapacuran dataset,
the topological differences were even more striking: both
trees contained highly supported incompatible clades, leading
to directly contradicting topologies. At the same time, two
highly supported clades in the binary root-meaning tree are
not supported in the multistate meaning-based tree.

Regarding the comparison with the results of the binary
cognate coding, again no clear trends can be identified. For
Chapacuran the differences between binary root-meaning cod-
ing and binary cognate coding are negligible, while for Tupı́-
Guaranı́ these two coding methods produce the most divergent
results with clearly contradicting topologies.

There are various potential reasons why the two datasets
behave differently that need to be investigated in detail in order
to be fully understood. The two datasets used vary greatly in
size (both regarding the number of languages and the number
of meanings), in the amount of identified semantic shift (much
higher in the Tupı́-Guaranı́ dataset), and in the number of
synonyms included for the same meaning (high in Tupı́-
Guaranı́, almost non-existent in Chapacuran). Furthermore,
different coding methods may be affected to various degrees
by linguistic phenomena, such as parallel semantic shifts (bi-
nary root-meaning and multistate meaning-based coding), and
methodological artifacts, such as spurious subgroups supported
by shared ‘absences’ (binary root-meaning coding).

VI. CONCLUSION

Our empirical test of three different coding methods on two
lexical datasets showed that coding method choice can have a
significant (and unpredictable) impact on the resulting topol-
ogy and posterior probabilities, contrary to prior expectations
[11]. At the same time, the exact reasons and mechanisms
underlying the observed differences in the results are not fully
understood and require further investigation.
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Indo-European classification based on lexicostatistical data,” Cladistics,
vol. 19, no. 2, pp. 120–127, Apr. 2003.

[11] M. Pagel and A. Meade, “Estimating rates of lexical replacement on
phylogenetic trees of languages,” in Phylogenetic methods and the
prehistory of languages, P. Forster and C. Renfrew, Eds. Cambridge:
McDonald Institute for Archaeological Research, 2006, pp. 173–182.

[12] W. Chang, C. Cathcart, D. Hall, and A. Garrett, “Ancestry-constrained
phylogenetic analysis supports the Indo-European steppe hypothesis,”
Language, vol. 91, no. 1, pp. 194–244, 2015.

[13] R. D. Gray and Q. D. Atkinson, “Language-tree divergence times support
the Anatolian theory of Indo-European origin,” Nature, vol. 426, pp.
435–439, 2003.

[14] C. Bowern and Q. D. Atkinson, “Computational phylogenetics and the
internal structure of Pama-Nyungan,” Language, vol. 88, no. 4, pp. 817–
845, 2012.

[15] J. Felsenstein, Inferring Phylogenies. Sunderland, MA: Sinauer Asso-
ciates, Inc, 2004.

[16] P. O. Lewis, “A likelihood approach to estimating phylogeny from
discrete morphological character data,” Systematic Biology, vol. 50,
no. 6, pp. 913–925, 2001.

[17] J. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian inference of
phylogenetic trees,” Bioinformatics, no. 8, pp. 754–755.

[18] F. Ronquist and J. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic
inference under mixed models,” Bioinformatics, 2003.

[19] A. D. Rodrigues and W. Dietrich, “On the linguistic relationship between
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