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Abstract—It is a well known phenomenon in historical linguis-
tics, that the meaning of a proto form is different to the meaning
of its descendants. This phenomenon of meaning change is often
ignored in studies which use tools from statistical phylogenetic
analysis to determine language relationships. It has been shown,
that the databases currently used in linguistic phylogeny exhibit a
considerable amount of the described phenomenon. The current
study proposes a method to detect such instances of cross-concept
relationships of words. Although the evaluation can not be done
by standard means, the results indicate that semantic similarity
is a good indicator for cross-concept relationships and that tools
from computational biology offer a good framework for this kind
of approach.

I. INTRODUCTION

Large datasets of linguistic data recently have given rise to
studies investigating language relationships using tools from
statistical phylogenetic analysis ([1], [2] among others), which
exploit ideas developed in the area of computational biology
[3]. These approaches base their analysis in some way or
the other on lexical traits. As [4] point out, when working
with these traits, the difference of cognate traits and root-
meaning traits has to be taken into account. They illustrate
that these two types of traits behave differently for example
with respect to homoplasy1. Furthermore, they show that the
amount of homoplasy in modern languages is considerable.
A homoplastic event which includes a semantic drift can lead
to the situation that a proto form describes another concept
then its descendants, e.g. “reflexes of the PIE (Proto Indo-
European) *pod- ‘foot’ came to mean ‘leg’ independently in
Modern Greek and modern Indic and Iranian languages”[4],
[5]. These observations suggest that it is necessary to include
information about cross-concept relationships into statistical
phylogenetic analysis.2

The current study uses Profile Hidden Markov models to
investigate such extended clusters of related words. Profile
Hidden Markov models (ProfHMMs) were developed in the
area of computational biology [6]. They are used for sev-
eral tasks, such as simultaneously aligning multiple related
sequences or determining the membership of a new sequence
in an existing cluster of sequences. ProfHMMs have already
been successfully applied in linguistic research [7].

1“Homoplasy is an evolutionary term for independent analogous innovation
in parallel lineages.”[4]

2Although [4] show the difference between root meaning and cognacy the
term cognacy will be used throughout this paper.

II. PROFILE HIDDEN MARKOV MODELS

Profile Hidden Markov models are a tool to probabilistically
model a multiple alignment. They are a common tool in
computational biology to determine the membership of a
new sequence in a given family. There are databases such
as the PFAM [8] database which provide ProfHMMs for a
large amount of protein families. A multiple alignment of a
family of sequences is considered to represent a consensus
(sequence) of this family. The different states of the ProfHMM
give a probabilistic model of the consensus, so aligning a
new sequence against such a ProfHMM yields a probabilistic
measure of membership of the given sequence in the family.

Figure 1 shows the typical structure of a ProfHMM. There
are three types of states, a match, an insertion and a deletion
forming a column. Thus, a ProfHMM can be visualized by a
series of columns where a column represents a position in the
consensus sequence. Match states model the occurrence of a
symbol s at position j. The occurrence of s at position j is
is based on a set of emission probabilities. An insertion states
allows the insertion of a character at position j. This state is
used to describe the existence of a symbol which is not present
in the consensus. The opposing phenomenon is captured by
the deletion state. The transitions are indicated by the arrows
in Figure 1. A match state at position j has a transition to the
insertion state at the same position as well as to the deletion
or match state at position j+1. Deletion states has a transition
to a deletion state or a match state at the next position or an
insertion state at the same position. Insertion states are the
only states which allow self transition. This accounts for the
possibility of multiple insertions at a given state. The classical
algorithms from the Hidden Markov Model literature, such as
the Baum-Welch, forward or Viterbi-algorithm can be adapted
to the needs of ProfHMMs.

III. EXPERIMENTS

A. Data

Using the LingPy library ([9], [10]) word lists for 30
languages3 of the NorthEuraLex database [11] were clus-
tered into cognate sets. The NorthEuraLex database provides
translations of 1016 concepts for more than 70 languages of

3Icelandic, Norwegian, Swedish, Danish, German, Dutch, English, French,
Spanish, Portuguese, Italian, Romanian, Finnish, North Karelian, Olonets
Karelian, Veps, Standard Estonian, Livonian, Russian, Polish, Czech, Slovak,
Croatian, Bulgarian, Modern Greek, Standard Albanian, Latvian, Lithuanian,
Irish Gaelic, Welsh
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Fig. 1. Profile Hidden Markov model; Mj Match state at position j, Ij
insertion state at position j and Dj deletion state at position j. The arrows
indicate probabilistic transitions. [6], [7]
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TABLE I
DISTRIBUTION OF MEMBERS PER COGNATE CLASS

members cognate classes members cognate classes
2 3102 9 84
3 1371 10 58
4 901 11 38
5 696 12 25
6 706 13 21
7 338 14 15
8 155 ≥ 15 67

Northern Eurasia. For each of the cognate classes multiple
alignments of the phonetic forms were retrieved using the
LingPy library. There are in total 5303 cognate classes with
just one member and 7577 cognate classes with more than
one member. Using notions from set theory, cognate classes
with just one member are called singletons. Table I shows
the distribution of members per cognate class for classes with
more than one member.

Relationship beyond standard cognate classes is often
caused by semantic drift [4]. The ‘foot’ – ‘leg’ case from
above is an instance of this phenomenon; another instance
is the change from ‘bone’ to ‘leg’ in German. Polysemy
networks have been suggested as a possible model for semantic
change [12], [13]. Figure 2 shows a snapshot of a polysemy
graph presented by [14], [15]. They constructed a polysemy
network which was only generated using dictionary glosses.
The thickness of the lines indicates the amount of languages
having a word which is polsyemous between the two concepts.
As indicated by the blue nodes the above mentioned instances
of semantic drift are very closely connteced in this graph. A
current version of this network, which was kindly provided
by the author, was trimmed to the number of concepts in the
NorthEuraLex database. For the current study a node in this
network can be seen as a set of cognate classes. Where a
cognate class is a set of words which are assumed to descent
from the same common ancestor.

B. Model construction & Training

For each of the automatically determined cognate sets with
more than one entry a ProfHMM was built and trained on the
phonetic forms of the entries using the Baum-Welch algorithm.
The number of match states was equal to the number of
columns in the multiple alignment with less than 50% gap

Fig. 2. Snapshot of the polysemy network. (‘Bein::N’-leg, ‘Fuß::N’- foot,
‘Knochen::N’ - bone)

symbols [6]. The initial transition parameters of the ProfH-
MMs were derived from a Dirichlet distribution with weight
5.0 for each transition. Since each ProfHMM could only be
trained on a small set of items the sound emission parameters
were estimated on the basis of pseudo-counts (equation 1). The
count of each sound a at each position j (cja) was weighted
by the background frequency of this sound (qa).

ej(a) =
cja + qa∑

a′ cja′
(1)

The background frequency was determined for three different
positions; left boundary, right boundary and middle. Depend-
ing on the position of the match state, qa was taken from one
of the three distributions, e.g. if j = 0 qa was taken from
the distribution for the left boundary. This approach roughly
accounts for some distributional characteristics of different
sounds.

C. Experiments

Building on the work of [7] for linguistics and [16] for
computational biology, the membership of a sequence in a
cluster is tested using the forward algorithm. The forward
algorithm determines how well a given sequence fits the
model. Since the model is a representation of the consensus
of the family, the forward algorithm measures the fit of the
sequence and the consensus and thus the fit of the sequence
and the family. This makes the forward algorithm the optimal
algorithm for the given study.

For each singleton c the proportion of assignment (PRA) is
calculated, i.e. the proportion of nodes in distance n to which
this translation can be assigned. A singleton c is considered
to be a member of a given cognate class χ if the condition
in equation 2 is fulfilled. Membership in a cognate cluster
was determined in the following way. For each word in the
cluster, the log-odds scores using the forward algorithm were
calculated and then averaged (χ̄). If the score for a new
sequence c (sc(c, χ)) fell within one standard deviation, the
sequence is considered to be a member of this cluster.

fit(c, χ) =

{
True χ̄− σ ≤ sc(c, χ) ≤ χ̄+ σ

False else
(2)

If there is a cluster for which equation 2 evaluates to true,
the c is assigned to node X for which χ ∈ X holds (see 3).



TABLE II
PRA AND AVERAGE NUMBER OF NODES AT DISTANCE n

n PRA # neighbours
1 8.03 6.7
2 6.73 37.0
3 6.13 103.1
4 5.73 172.5

TABLE III
COMPARISON OF ACTUAL PRAS WITH THE MEAN PRAS CALCULATED

FROM RANDOM NETWORKS

n PRA mean(PRA) σ p-value
1 8.03 5.49 0.10 2.2e-16
2 6.73 5.48 0.05 2.2e-16
3 6.13 5.50 0.02 2.2e-16
4 5.73 5.52 0.02 2.2e-16

assign(c,X) =

{
True ∃χ : χ ∈ X ∧ fit(c, χ)

False else
(3)

The PRA at distance n is then the proportion of nodes X
for which 3 evaluates to true (see 4).

PRA =
|{X|assign(c,X) = True ∧ C ∼ X = n}|

|{X ′|C ∼ X ′ = n}|
(4)

An evaluation of the resulting cognate clusters is not as
straight forward as for standard cognate detection. Since there
is neither cognate class information for the NorthEuraLex
database, nor is there large scale data for cross-concept cog-
nacy the evaluation of this approach can not be done by
standard means. To test these results the PRA was calculated
for random network structures.

IV. RESULTS

The results of the PRA measures on the actual data set
are shown in Table II. The result show that singletons fit
into semantically related clusters. It is important to equate
the PRA with the average number of neighbours at distance
n to assess the PRA. For each of the simulated random
networks the PRA is calculated and based on these results a
probability distribution is estimated. The mean of these PRAs
(mean(PRA)) is about 5.5 for each distance. The standard
deviation (σ) for each distance is very small. This indicates
that the noise level is about 5.5 for the PRA measure in this
experiment. As the results from the random networks suggest
(Table III) the PRA for nodes at distance 4 come suspiciously
close to a level of noise.

As it can be seen by comparing the PRAs derived from the
random networks with the results from the actual data, the
observed effect of semantic proximity is supported. Although
a simple t-test indicates that the results are still significant for
higher distances, it is clearly observable that the actual PRA
approaches random as the semantic distance increases.

V. DISCUSSION

This study proposes the application of an attested framework
from computational biology, Profile Hidden Markov models, to
the task of cognate identification across concept boundaries.
Classical cognate identification is normally done just within
one concept. The evaluation of the method presented here,
has to be different than the evaluation of standard cognacy
detection tasks. Current databases for phylogenetic analyses
in linguistics do not encode cross-concept cognacy. Therefore,
the evaluation of the current study works as a proof of concept
by showing, that the obtained results are not random effects.
The results of this study are also supported by the homoplasy
observations made in [4].

The results indicate that the current method offers a way
to determine cross-concept similarities which are important
for computational historical linguistics. This method can give
suggestions for the assignment of words to cross-concept
lexical traits. As several studies suggest target cognate classes
are very often found in the close semantic neighbourhood of
a singleton [12], [15], [13].

VI. FUTURE WORK

Since the results of this approach could not be evaluated
directly, there observed tendency needs to be checked more
carefully. This can be done in different ways in future research;
including an improved training methodology which can also
deal with the small amount of training data, using other
alignment methods or the development of a probabilistic
measure of membership.
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[2] G. Jäger, “Phylogenetic inference from word lists using weighted
alignment with empirically determined weights,” Language Dynamics
and Change, vol. 3, no. 2, pp. 245–291, 2013.

[3] J. Felsenstein, Inffering Phylogenies. Sunderland: Sinauer Associates,
2004.

[4] W. Chang, C. Cathcart, D. Hall, and A. Garrett, “Ancestry-constrained
phylogenetic analysis supports the indo-european steppe hypothesis,”
Language, vol. 91, no. 1, pp. 194–244, 2015.

[5] M. Urban, Lexical semantic change and semantic reconstruction. Lon-
don: Routledge, 2015, ch. 16.

[6] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence
analysis: probabilistic models of proteins and nucleic acids, repr. ed.
Cambridge Univ. Press, 2001.

[7] A. Bhargava and G. Kondrak, “Multiple word alignment with profile hid-
den markov models,” in Proceedings of NAACL HLT Student Research
Workshop and Doctoral Consortium. Boulder, Colorardo: Association
for Computational Linguistics, 2009, pp. 43–48.



[8] R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt, S. R.
Eddy, A. Heger, K. Hetherington, L. Holm, J. Mistry, E. L. L. Sonnham-
mer, J. Tate, and M. Punta, “Pfam: the protein families database,” Nucleic
Acids Research, vol. 42, no. D1, pp. D222–D230, 2014.

[9] J.-M. List, S. Moran, P. Bouda, and J. Dellert, “LingPy. Python
Library for Automatic Tasks in Historical Linguistics,” 2013. [Online].
Available: http://www.lingpy.org

[10] J.-M. List and S. Moran, “An Open Source Toolkit for Quantitative
Historical Linguistics,” in Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: System Demonstrations.
Sofia, Bulgaria: Association for Computational Linguistics, August
2013, pp. 13–18.

[11] J. Dellert, “Evaluating cross-linguistic polysemies as a model of seman-
tic change for cognate finding,” in Workshop on semantic technologies
for research in the humanities and social sciences (STRiX), 2014.

[12] H. Youn, L. Sutton, E. Smith, C. Moore, J. F. Wilkins, I. Maddieson,
W. Croft, and T. Bhattacharya, “On the universal structure of human
lexical semantics,” vol. 113, no. 7, pp. 1766–1771, 2016.

[13] J.-M. List, A. Terhalle, and M. Urban, “Using network approaches to
enhance the analysis of cross-linguistic polysemies,” in Proceedings of
the 10th International Conference on Computational Semantics - Short
Papers, Stroudsburg, 2013, pp. 347–353.

[14] J. Dellert, “Compiling the uralic dataset for northeuralex, a lexicostatis-
tical database of northern eurasia,” in First International Workshop on
Computational Linguistics for Uralic Languages, 2015.

[15] A. Münch and J. Dellert, “Evaluating the Potential of a Large-Scale
Polysemy Network as a Model of Plausible Semantic Shifts,” in
Proceedings of the 6th Conference on Quantitative Investigations
in Theoretical Linguistics, J. Wahle, M. Köllner, H. Baayen,
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