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INTRODUCTION 

Optimization has become a cornerstone in numerous engineering fields such as aerospace, mechanical, civil and ocean 

engineering [1]. Scientists have been using several optimization techniques to acquire the best combination of some 

design variables for certain preferences. With the vast number of optimization algorithms available worldwide, it is not 

easy for a designer to determine an appropriate algorithm to solve certain optimization model. The present work 

investigates the effect of using different optimization models and algorithms on the optimal design of a specific 

engineeringproblem. 

The standard form of the optimization model considered in the present work is cast in the following: 

 

Find the design variable vector �⃗� = (𝑥1, 𝑥2, …… . , 𝑥𝑁)
𝑇, which: 

 

   Minimize𝑓(�⃗�) 

   Subject to 𝑔𝑗(�⃗�) ≤ 0,  𝑗 = 1,2, …… , 𝐽 

     ℎ𝑘(�⃗�) = 0,        𝑘 = 1,2, …… ,𝐾 

     𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,    𝑖 = 1,2, …… ,𝑁 

(1) 

 

where 𝑓(�⃗�) is the objective function, 𝑔𝑗(�⃗�) are the inequality constraints, and ℎ𝑘(�⃗�)are the equality constraints. 𝑥𝑖
𝐿 

and 𝑥𝑖
𝑈are the lower and upper limiting values imposed on design variables (side constraints). Eq. (1) represents a general 

constrained nonlinear optimization problem [1]. 

Several research works can be found in literature comparing various optimization methods. Venter [2] introduced a 

general review of different optimization algorithms and their classifications. He classified them as local and global; 

constrained and unconstrained; and gradient and non-gradient methods. This kind of revision gives the reader a general 

overview of the optimization methods available and their characteristics. Yeniay[3] compared the performance of three 

optimization methods for constrainednonlinear problems. He compared the sequential quadratic programming (SQP), the 

generalized reduced gradient (GRG) and the genetic algorithm (GA) using fifteen benchmark problems. The genetic 

algorithm was found to be the best algorithm among other methods. GA was also compared with the Particle Swarm 

Optimization (PSO) for trajectory optimization [4], where it was found that GA has less execution time than the PSO. 

However, in some cases, the PSO can be more accurate than the GA such as in bi-level linear programming problems 

outlined in [5]. Fan and Zahara [6] compared four optimization algorithms: the Nelder-Mead simplex algorithm (NM), 

the Particle Swarm Optimization (PSO), the Guaranteed Convergence Particle Swarm Optimization (GCPSO) and the 

hybrid Nelder-Mead Particle swarm algorithm (NM-PSO) using 20 benchmark problems. They found the (NM-PSO) is 

the best in robustness, accuracy and number of function evaluations. Such hybrid form has shown to be supperior than 
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using the (PSO) alone. Ren [7] improved the well-known simple genetic algorithm (SGA) and renamed it the improved 

genetic algorithm (IGA), which was combined with the Nelder-Mead algorithm (NM- IGA) resulting in a much better 

computational efficiency.  

In general, an optimization process is twofold; first, it improves the performance of the objective function, and second, 

it obtains the best function value subject to some constraints. These goals cannot be achieved without using the proper 

optimization technique in addition to proper optimization model. The main focus of the present work is to study the effect 

of changing the optimization algorithm as well as the optimization model on the attained optimal solutions of a specific 

design problem. Seven different optimization methods are considered, ranging from simple to complex, single to hybrid, 

and local toglobal. These methods are the (NM), (PSO), (GA), (SQP), hybrid (NM-PSO), (NM-GA), and (PSO-GA). All 

these techniques are implemented in MATLAB codes and experimented using carefully selected benchmark problems.  

Seven penalty functions for constrained optimization are examined and tested aiming at investigating the effect of 

these penalty methods on the optimization performance and determining the characteristics of each algorithm in 

comparison with others. This will help select the best algorithm among them that is expected to be the most efficient and 

robust according to the present applications.  

 

METHODS AND MATERIALS 

The most commonly applied optimization algorithms are based on random search such as NM, PSO, and GA, while 

others are gradient-based, such as the SQP. In general, they can be classified into two categories: stand-alone algorithms 

and hybrid algorithms. A brief discussion of the two types is given in the following sections.  

 

A- Standalone (Single) Algorithms  

The Nelder-Mead method (NM) [8] is one of the simplest optimization methods. It is based on comparing the values 

of the objective function at N + 1 points (N represents the number of design variables) and moving gradually towards the 

minimum point using four operations; reflection, expansion, contraction, and shrinking. It is an unconstrained 

optimization in which any constraint should be implemented as a part of the objective function. The NM is a local, non-

gradient method, as it is affected by local minima.  

The Particle Swarm Optimization (PSO) simulates the behavior of a swarm or colony of birds in which when one 

member of the swarm finds a preferred point, the other particles move with certain speed towards this point. It is a simple 

and powerful method like the (NM), and it is classified as a global optimization technique. PSO was first introduced by 

Eberhart et al. [9] in 1995 to present a relatively simple model that can solve a wide range of problems. Bai [10] presented 

some improvements to the original (PSO) which are considered in the present work.  

The GA is originally designed for the study of adaptive systems rather than optimization, then it becomes one of the 

popular methods in design optimization. It is classified as a global, non-gradient optimization method that is based on the 

process of natural selection. The GA was first proposed by Holland [11] in 1975s. From this time, many developments 

have been made to make the GA faster and more efficient. Guo and Yang [12] introduced a modified version of the simple 

or conventional genetic algorithm that is considered in this study.  

The Sequential Quadratic Programming (SQP) is based on the minimization of a quadratic model using a quadratic 

programming sub-routine. It was first developed by Wilson [13] in 1963 in his PhD. After then, many evolutions have 

been made to the method to make it more powerful and convenient. According to Venter [2], it is a gradient-local method 

that is widely used in many engineering applications, however there is a global version available in MATLAB toolbox. 

More details about SQP can be found in [14]. Seeking simplicity in the current work, the MATLAB built-in SQP function 

“fmincon” is implemented. Table 1 summarizes the main characteristics of the previous four optimization techniques. 

  

B - Hybrid Algorithms  

One way to develop a strong, robust optimization method is to combine two different optimization algorithms. 

Examples such as the (NM-PSO), (NM-GA), and (PSO-GA) were proposed by researchers in the field. Such hybrid 

methods, for most cases, combine the advantages of their individuals and overcome their disadvantages. For instance, the 

NM method is a straightforward and computationally efficient method of optimization. However, it is highly affected by 

local minima [15]. On the other hand, the Genetic Algorithm is based on global search without using local information. 

The combination of these two methods is expected to combine the advantages of both algorithms. Ren [7] and Rahami et 

al.[15] provide detailed description of the hybrid (NM-GA) algorithm that is expected to obtain more accurate results 

than any of its standalone techniques. The improved version of GA developed by Ren [7] will be applied herein. Al-Garni 

and Kassem [4] proposed a hybrid (PSO-GA) that combines the best of the PSO and GA. According to them PSO-GA 

approved superior execution time and performance. Fan and Zahara [6] developed a hybrid (NM–PSO) optimization 

algorithm and applied it successfully in finding the optimum solution of certain constrained engineering design problems. 
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Table 1. Comparison among the NM, PSO, GA, and the SQP 

Method GA PSO NM SQP 

Year of 

development 

1975 1995 1975 1963 

Approach based on: The process of 

natural 

selection 

Swarm of birds’ 

behaviour 

Four operations; reflection, 

expansion, contraction, and 

shrinking 

The minimization of a 

quadratic model 

Search technique Random Random Random Gradient 

Optimal Solution Global Global Local Local/Global 

 

C- Constraints Handling Techniques - The Penalty Function Method 

In constrained optimization, care should be taken to the representation of design constraints. There are several methods 

found in literature for constraint representation. Seven methods are investigated and compared. Six optimization 

techniques are used in the present comparison: the NM, PSO, GA, (NM-PSO), (NM-GA), and (PSO-GA) to investigate 

the effect of using each constraint handling technique on each of them.  

In non-gradient search methods, the most popular technique to handle the design constraints is the penalty method, in 

which the constraint problem is transformed into unconstraint one, in the form [16]: 

 

Minimize       𝐹(�⃗�) = 𝑓(�⃗�) + 𝑃(�⃗�) =  𝑓(�⃗�) + (𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 𝐸(�⃗�) 

where            𝐸(�⃗�) =  (∑ 𝑔𝑗
𝛽(�⃗�)𝐽

𝑗=1 + ∑ ℎ𝑘
𝛽(�⃗�)𝐾

𝑘=1 ) 
(2) 

 

𝐹(�⃗�) is the equivalent cost function, 𝑃(�⃗�) is the penalty function, and 𝛽is a penalty parameter. The efficiency of the 

penalty function P(�⃗�) depends on the proper selection of the penalty parameters such as the exponent 𝛽. 𝐸(�⃗�) in the 2nd 

equation represents the summations of the constraint functions 𝑔𝑗(�⃗�) and ℎ𝑘(�⃗�), as defined in Eq. (1), to the power of 

the exponent 𝛽 given in Table 2. 

In general, most penalty functions can be classified as static, dynamic, and adaptive penalties [17]. Static penalty 

means that the penalty parameters are assigned a constant value during the whole optimization process. Dynamic penalty 

means that the penalty parameters are assigned a value that is changed during the optimization process independent of 

the optimization variables and constraints. Adaptive penalty means that the penalty parameter is assigned a value that is 

changed during the optimization process based on the optimization performance. These penalties are listed in Table 2.  

 

Table 2. Penalty functions 

Penalty Type 𝜷 Penalty Parameter 

P1 Static 1 𝜆 

P2 Dynamic 1 𝜇 ∗ 𝜆 

P3 Dynamic 2 𝜇 ∗ 𝜆 

P4 Dynamic 2 𝜇 + 𝜆 

P5 Dynamic 1 𝜇 + 𝜆 

P6 Adaptive 1 

{

1

𝜇
𝜆 , 𝜏𝑡 > 𝜏𝑡𝑎𝑟𝑔𝑒𝑡

𝜇𝜆 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜏𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
 

P7 Adaptive 1 𝑓𝑎𝑣𝑔(�⃗�) ∗
𝐸𝑎𝑣𝑔(�⃗�)

∑𝐸(�⃗�)2
 

 

𝜏𝑡 is the proportion of feasible individuals, while 𝜏𝑡𝑎𝑟𝑔𝑒𝑡  is the targeted proportion of the feasible individuals. In the 

subsequent sections, the seven penalties will be implemented in MATLAB codes according to the six optimization 

algorithms (GA, PSO, NM, NM-GA, PSO-GA, NM-PSO) to compare between the effect of using these penalties on the 

optimization accuracy and robustness. 

Two optimization problems are considred for the comparison between the premensioned optimization methods and 

penalty functions. Our goal is to investigate the effect of using these methods and penalties on the optimization 

performance. In the first problem, a performance measure is defined to compare between the results of the optimization 

techniques and penalty methods. In the second problem, a buckling load gain and a mass saving gain are defined to 

compare between the performance of each optimization method. Details about the two problems and their results are 

available in the following sections.  
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The Minimal Cost Design of a Welded Beam Structure 

The first benchmark problem to be considered in the present investigation is the design optimization of a welded beam 

structure[18]. As seen in Figure 1, the model consists of a thin cantilevered beam with free length (L) and cross-sectional 

dimensions (𝑏 𝑥 𝑡). It is welded over a length (l) to another heavy structural member (rigid support) at its clamped edge. 

The beam is made of steel 1010 and subjected toa vertical force P at the free end.Such a structural model is used as a 

benchmark problem to test and compare between the present six optimization techniques.  

 

 
Figure 1. Welded beam design problem 

 

The aim is to find the optimal set of dimensions �⃗�= (x1, x2, x3, x4) = (h, l, t, b)T which minimizes the total fabricating 

cost while satisfying strength requirements as well as the physical bounds imposed on the design variables. According to 

Sarkar and Roy[18], the associated optimization model is stated in the following: 

 

Minimize      𝑓(�⃗�) =  1.10471 ℎ2𝑙 + 0.04811 𝑡𝑏(L + 𝑙) 
Subject to  the constraints: 

(shear stress)            
𝜏(𝑥)

𝜏𝑎𝑙𝑙𝑜𝑤
− 1 ≤ 0 

(bending stress)        
𝜎(𝑥)

𝜎𝑎𝑙𝑙𝑜𝑤
− 1 ≤ 0 

(buckling load)        1 −
𝑃𝑐𝑟(𝑥)

𝑃
≤ 0 

(tip deflection)        
𝛿(𝑥)

𝛿𝑎𝑙𝑙𝑜𝑤
− 1 ≤ 0 

(side constraints)           
ℎ

𝑏
− 1 ≤ 0 

(ℎ, 𝑙, 𝑡, 𝑏)𝐿 ≤ (ℎ, 𝑙, 𝑡, 𝑏) ≤ (ℎ, 𝑙, 𝑡, 𝑏 )𝑈 

(3) 

 

where 𝜏𝑎𝑙𝑙𝑜𝑤  denotes the allowable shear stress of weld material, 𝜎𝑎𝑙𝑙𝑜𝑤the allowable stress of the beam material and 

𝛿𝑎𝑙𝑙𝑜𝑤  the allowable value ofbeam tip deflection. Referring to Figure 2, the resultant shear stress in the weld can be 

calculated from: 

 

𝜏(�⃗�) = √𝜏1
2 + 𝜏2

2 +
2𝜏1𝜏2

√1 + ([ℎ + 𝑡]/𝑙)2
 (4) 

 

where the direct shear stress, (𝜏1 =
𝐿𝑜𝑎𝑑

𝑡ℎ𝑟𝑜𝑎𝑡 𝑎𝑟𝑒𝑎
), is given by: 

 

𝜏1 =
𝑃

√2ℎ𝑙
 (5) 
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Figure 2. Shear stress components in the weld [18] 

 

The other shear stress component  due to the applied turning moment  “P.(L+l/2)” is: 

 

𝜏2 =
𝑃(𝐿 + 0.5𝑙)√0.25(𝑙2 + (ℎ + 𝑡)2)

√2ℎ𝑙 (
𝑙2

12
+ 0.25(ℎ + 𝑡)2)

 (6) 

 

The maximum bending stress and tip deflection of the cantilevered beam are: 

 

𝜎(�⃗�) =
6𝑃𝐿

𝑡2𝑏
 ,      𝛿(�⃗�) =

4𝑃𝐿2

𝐸𝑡3𝑏
 (7) 

 

Finally, the critical buckling load, 𝑃𝑐𝑟 , is calculated from the formula [18]: 

 

𝑃𝑐𝑟(�⃗�) =
4.013√𝐸𝐼𝛼

𝐿2
(1 −

𝑡

2𝐿
√
𝐸𝐼

𝛼
),  𝐼 =

𝑡𝑏3

12
,  𝛼 =

1

3
𝐺𝑡𝑏3 (8) 

 

where E and G are the Young’s and shear moduli of the beam material, respectively. 

 

Optimal Buckling Design of a Functionally Graded Material Column 

The selection of the optimization model is important as well as the optimization algorithm. The seven optimization 

techniques mentioned before will be implemented for obtaining the optimal buckling design of a functionally graded 

material (FGM) column under axial compression. This problem has been recently considered by Alshabatat [19], who 

applied genetic algorithm along with the finite element method to obtain the optimal solutions of a column made of 

zirconium and aluminium materials. Results were restricted to columns with trigonometric distribution of the volume 

fractions, which are not easy to manufacture. A practical solutions was given in [20] considering a piecewise structural 

model of a column constructed from uniform segments, each of which has different volume fraction and length, as shown 

in Figure 3.  

 
Typical thin-walled cross sections (A-A) 

Figure 3. Piecewise structural model of axially compressed slender column [20] 
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The governing buckling equation of the kth segment has the form:  

 

𝐸𝑘𝐼𝑘
𝑑4𝓌

𝑑𝑦4
+ 𝑃

𝑑2𝓌

𝑑𝑦2
= 0;         𝑦𝑘 ≤ 𝑦 ≤ 𝑦𝑘+1 (9) 

 

where 𝐸𝑘  𝑎𝑛𝑑 𝐼𝑘 are the Young’s Modulus and second moment of area of the kth segment, respectively. The symbol 

𝓌 denotes the transverse deflection, Pis the axial load, and y is the longitudinal coordinate. Eq.  (10) can be normalized 

with respect to a known baseline design that has uniform cross section, stiffness, and mass distributions. Thus, dividing 

by the known quantity (
𝐸𝐼

𝐿3
), one gets: 

𝑑4�̂�

𝑑�̂�4
+

�̂�

�̂�𝑘𝐼𝑘

𝑑2�̂�

𝑑�̂�2
= 0 (10) 

 

where E, I, and L are the Young’s modulus, second moment of area and column length of the baseline design, 

respectively. Eq.  (11) represents a fourth order differential equation that has the general solution: 

 

�̂�(�̂�) = 𝑎1𝑠𝑖𝑛(𝑃𝑘�̂�) + 𝑎2𝑐𝑜𝑠(𝑃𝑘�̂�) + 𝑎3�̂� + 𝑎4 (11) 

 

where, 𝑃𝑘 = √P̂/�̂�𝑘𝐼𝑘 and the 𝑎𝑖 ′𝑠are constant coefficients that can be obtained by applying the necessary boundary 

conditions. Definitions of the dimensionless quantities (denoted by the hat symbol) are given in Table 3. 

The distributions of the mass density  and modulus of elasticity E of any segment (k) are determined from the 

relations:  

Mass density :              k = f Vf,k+m Vm,k (12) 

  

Modulus of elasticity :            Ek = Ef Vf,k+Em Vm,k (13) 

 

whereVf,k and Vm,k are the fibre and matrix volume fractions of segment (k), respectively. The baseline design is chosen 

to be constructed from unidirectional composite with the same type of material having equal volume fractions of its 

constituents, i.e. Vf= Vm= 50%. It has the same dimensions and wall thickness of the cross-section, i.e.𝐼𝑘 = ℎ̂𝑘 = 1. 

 

Table 3. Definition of dimensionless quantities 

Quantity Non-dimensionalization 

Axial coordinate �̂� = 𝑦/𝐿 

Length of segment (k) �̂�𝑘 = 𝐿𝑘/𝐿 

Transverse deflection �̂� = 𝓌/𝐿 

Wall thickness ℎ̂𝑘 = ℎ𝑘/ℎ 

Second moment of area 𝐼𝑘 = 𝐼𝑘/𝐼 

Modulus of elasticity �̂�𝑘 = 𝐸𝑘/𝐸 

Bending moment �̂�  = 𝑀 ∗ (𝐿/𝐸𝐼) 

Shearing force �̂�  = 𝐹 ∗ (𝐿2/𝐸𝐼) 

Axial force �̂�  = 𝑃 ∗ (𝐿2/𝐸𝐼) 

Mass density ̂
𝑘
= 

𝑘
/ 

Total structural mass �̂�𝑠 =∑ ̂
𝑘
ℎ̂𝑘�̂�𝑘

𝑁𝑠

𝑘=1

 

 

For the case of a cantilevered column, the boundary conditions are: 

At �̂� = 0 ⟹ �̂� = 0, 𝑎𝑛𝑑 �̂� = −
𝑑�̂�

𝑑�̂�
= 0, 

At �̂� = 1 ⟹ �̂�𝑠 = −�̂�𝑘𝐼𝑘
𝑑2�̂�

𝑑�̂�2
= 0, and�̂� = −�̂�𝑘𝐼𝑘

𝑑3�̂�

𝑑�̂�3
+ �̂�

𝑑�̂�

𝑑�̂�
= 0 

By applying these boundary conditions and eliminating the 𝑎𝑖′𝑠 coefficients ofEq.  (12), the relation between the state 

variables at both ends of the kth segment can be obtained in its general matrix form: 
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{
 
 

 
 �̂�𝑘+1

�̂�𝑘+1
�̂�𝑘+1

�̂�𝑘+1 }
 
 

 
 

=

[
 
 
 
 
 
 
 1 −

Sin[�̂�𝑘𝑃𝑘]

𝑃𝑘

−1 + Cos[�̂�𝑘𝑃𝑘]

�̂�

Sin[�̂�𝑘𝑃𝑘] − �̂�𝑘𝑃𝑘

�̂�𝑃𝑘

0 Cos[�̂�𝑘𝑃𝑘]
𝑃𝑘Sin[�̂�𝑘𝑃𝑘]

�̂�

1 − Cos[�̂�𝑘𝑃𝑘]

�̂�

0 −
P̂Sin[�̂�𝑘𝑃𝑘]

𝑃𝑘
Cos[�̂�𝑘𝑃𝑘]

Sin[�̂�𝑘𝑃𝑘]

𝑃𝑘
0 0 0 1 ]

 
 
 
 
 
 
 

{
 
 

 
 �̂�𝑘

�̂�𝑘
�̂�𝑘

�̂�𝑘 }
 
 

 
 

 (14) 

 

Eq.  (15) can be extended for any number of segments. For a column constructed from three segments (i.e. 𝑁𝑠 = 3), 

the nonlinear buckling equation can be shown to have the form:  

 

𝑃2(𝑃3 − 𝑃2tan[�̂�2𝑃2]tan[�̂�3𝑃3]) − 𝑃1tan[�̂�1𝑃1](𝑃2tan[�̂�3𝑃3] + 𝑃3tan[�̂�2𝑃2]) = 0 (15) 

 

Using an appropriate transcendental equation solver, the critical buckling load, �̂�𝑐𝑟 ,  can be obtained by finding the 

smallest root ofEq. (16). A MATLAB code is developed to solve this nonlinear equation.  

Such an exact buckling analysis can be coupled to a standard nonlinear mathematical programming algorithm for the 

search of columns designs satisfying the needed design objectives under specified constraints.   

 

 

Figure 4. Design variables of a 3-segment cantilevered FGM column 

 

Depending on the form of the objective function, as given in Table 4, the different optimization models to be 

investigated in the present study are defined in the following:  

Find the design variables vector  �⃗� = (𝑉𝑓 , �̂�)𝑘=1,2,3 , which,  

 

   Minimize   𝑓(�⃗�) 
 Subject to: (Structural mass)  �̂�𝑠 − 1.0 ≤ 0.0 

   (Buckling load)  1.0 − (
4

𝜋2
)�̂�𝑐𝑟 ≤ 0.0 

   (Side Constraints) (𝑉𝑓 , �̂�)
𝐿 ≤ (𝑉𝑓 , �̂�)𝑘=1,2,3 ≤ (𝑉𝑓 , �̂�)

𝑈 

∑�̂�𝑘 − 1.0 = 0.0

𝑁𝑠

𝑘=1

 

(16) 

 

It is worth noting that the constraint �̂�𝑠 − 1.0 ≤ 0.0, ensures that the column mass is always less than that of the 

baseline design. On the other hand, 1.0 − (
4

𝜋2
)�̂�𝑐𝑟 ensures that the critical buckling force of the cantilevered column is 

greater than that of the baseline design. Notice that �̂�𝑠 stands for the ratio of the structural mass to that of the baseline 

design and �̂�𝑐𝑟  the dimensionless critical buckling force (refer to Table 3). 

 

Table 4. Different forms of the objective function 𝑓(�⃗�) 

Optimization Model Description Objective function 𝒇(�⃗⃗⃗�) 

Model-I Strongest column design -�̂�𝑐𝑟  

Model-II Minimal mass design �̂�𝑠 

Model-III Linear composite objective function �̂�𝑠 − (
4

𝜋2
)�̂�𝑐𝑟  

Model-IV Nonlinear composite objective function −�̂�𝑐𝑟/�̂�𝑠 

 

Side constraints imposed on the fibre volume fraction and lengths are necessary to conform to manufacturing 

restrictions and avoid having odd-shaped unrealistic column design in the final optimum solutions. In fact, the proper 

optimization model is found to be important in an optimization process as well as the optimization method. This is totally 

based on the appropriate selection of objective functions, design variables, and constraints.  
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RESULTS AND DISCUSSION 

Case Study (A)  

The seven penalties are implemented in MATLAB codes according to the selected six optimization algorithms. In this 

case, the welded beam design optimization model, depicted in Figure 1, will be implemented to compare between the 

effect of using these penalties on the optimization accuracy and robustness.The numerical values of the various 

preassigned parameters are given in the following[18]: 

 

P = 6000 Ibs, L = 14 inches 

𝜏𝑎𝑙𝑙𝑜𝑤 = 13600 psi, 𝜎𝑎𝑙𝑙𝑜𝑤 =30000 psi, 𝛿𝑎𝑙𝑙𝑜𝑤 =0.25 inches 

E=30𝑥106 𝑝𝑠𝑖,𝐺 =12𝑥106 𝑝𝑠𝑖 
(0.125, 0.1, 0.1, 0.125) ≤ (ℎ, 𝑙, 𝑡, 𝑏) ≤ (2, 10, 10, 2)inches 

 

Ten experiments  were conducted using the present optimization and penalty methods, on Intel (R), Core (TM), i7-

8550U CPU. For each method, the optimum mean value and standard deviation are determined. Then, a performance 

measure is defined and calculated by multiplying the average error by the average standard deviation for the ten conducted 

experiments corresponding to each method.The average error is the error sum divided by the number of runs (𝑛 = 10). 

The standard deviation measures how widely the values of the equivalent objective function (𝐹(�⃗�)) are far away from the 

mean value (𝑆𝑇𝐷 = √∑(𝐹 − 𝐹𝑚𝑒𝑎𝑛)
2/(𝑛 − 1)). Thus, the error measures the accuracy of the optimization algorithm, 

and the standard deviation determines its robustness. For this reason, the multiplication of both the error and standard 

deviation can be used to measure the method general performance. This performance measure is used to weigh the 

robustness and accuracy of each penalty function as well as each optimization algorithm. As the performance measure 

goes lower and lower the method becomes more robust and stable. The performance measures for both the optimization 

algorithms and penalty functions are illustrated in Figures 5 and 6, respectively. 

 
Figure 5. Average penalties performance measure 

 

 
Figure 6. Average optimization methods performance measure 
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It is worth noting thatthe minimum value of the cost function is obtained by NM-GA with the penalty function P4 that 

is 𝑓𝑚𝑖𝑛 = 2.3813 with design variables �⃗�𝑜𝑝𝑡 = (ℎ, 𝑙, 𝑡, 𝑏) = (0.2436, 6.1398, 8.4045, 0.2436).   

Table 5 lists the best, mean, and worst values of the objective corresponding to each optimization algorithm and 

penalty function. In case of GA, the best optimum value is obtained for adaptive penalty P7, while the worst values are 

obtained for the dynamic penalty P2 and the adaptive penalty P6, in point of view of error. For the PSO, the best values 

are obtained using the dynamic penalty P3, while the worst values are obtained using the adaptive penalty P7. In case of 

the NM, the best values are obtained using the dynamic penalty P2, while the worst values are obtained using the adaptive 

penalty P6. The adaptive penalty P7 does not work well with the NM because the objective function violates the applied 

constraints. In other words, the adaptive penalty P7 does not compatible with the Nelder-Meade method in its present 

form. In case of GA-NM and GA-PSO, the results are approximately near each other for all the penalty functions. This 

can be attributes to the power of the hybrid models in which most of the results are near the optimum value. But the 

results in case of the GA-PSO are in general better than the other two hybrid models, for the present optimization problem. 

However, the best optimum solution is obtained by the PSO-GA, based on the performance measure.  

The beam welded problem is solved using the MATLAB SQP algorithm, where the obtained minimum was 2.3811 

for the cost function with the corresponding values of design variable �⃗� = (0.2444  , 6.2186,    8.2915,    0.2444) that 

is little bit smaller than the value obtained by NM-GA. 

 

Table 5. Best mean, and worst values of the objective function for each optimization algorithm and penalty function for 

the welded beam 

 

 

 

Table 6. The function error and standard deviation for each algorithm and penalty function for the welded beam 

Penalty 
GA PSO NM 

STD Error STD Error STD Error 

P1 0.561 0.909 1.267 1.9 4.4076 2.634 

P2 0.176 1.0759 1.171 1.929 7.313 2.546 

P3 0.523 1.0524 1.636 1.104 12.0117 4.044 

P4 0.531 0.965 1.59 1.58 6.566 2.168 

P5 0.537 0.9096 7.0811 1.442 6.566 2.168 

P6 0.693 1.149 7.0812 1.974 10.685 6.158 

P7 0.599 0.816 9.651 3.0529 - - 

 

 

Penalty function 
GA PSO NM 

Fbest Fmean Fworst Fbest Fmean Fworst Fbest Fmean Fworst 

P1 3.7644 4.54624 5.8471 5.0918 6.90622 9.2857 2.5354 8.65332 16.2714 

P2 4.5652 4.94317 5.2233 4.6453 6.97498 8.5058 2.4894 8.44347 24.8258 

P3 4.0816 4.88711 5.7213 3.0148 5.00947 7.9364 3.0473 12.01171 26.4884 

P4 4.1067 4.67988 5.9823 3.5437 6.14399 8.5587 2.6716 8.81796 22.0698 

P5 3.7275 4.5472 5.4629 3.7037 5.81596 6.5979 2.5024 7.54406 16.0636 

P6 3.9989 5.11727 6.6283 4.1302 7.08116 9.8176 6.3559 17.04125 27.7266 

P7 3.4952 4.3238 5.2371 6.9768 9.65051 11.8991 - - - 

Penalty function 
NM-GA PSO- GA NM-PSO 

Fbest Fmean Fworst Fbest Fmean Fworst Fbest Fmean Fworst 

P1 2.41 2.53967 2.8675 2.3834 2.41277 2.4909 2.4516 3.24378 4.4198 

P2 2.3816 2.59838 3.9491 2.3845 2.50145 2.6533 2.4716 2.98982 3.7047 

P3 2.3817 2.62236 4.0212 2.3943 2.62348 3.352 2.4837 2.9824 3.8693 

P4 2.3813 2.73492 4.4904 2.3977 2.44256 2.5585 2.5543 3.174 4.1993 

P5 2.4166 2.51803 2.717 2.4149 2.51929 2.7344 2.6705 3.3793 4.3839 

P6 2.3863 2.65843 3.5624 2.4306 2.60932 3.2403 2.6567 3.07984 4.1057 

P7 2.3861 2.70568 3.478 2.3956 2.47751 2.6534 2.7227 3.32988 4.6325 
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Case Study B  

To investigate the role of the model formulation in the whole optimization process, four different optimization 

strategies were implemented, as given in Table 4, to find the required optimal solutions of a cantilevered FGM column 

depicted in Figure 4. Two types of materials are considered: Carbon/Epoxy and E-glass/Epoxy with their properties listed 

in Table 7. 

Table 7. Material properties of selected fiber-reinforced composites [20] 

Material type 
Fibers Matrix 

𝝆𝒇[𝒈/𝒄𝒎
𝟑] 𝑬𝒇[𝑮𝑷𝒂] 𝝆𝒎[𝒈/𝒄𝒎

𝟑] 𝑬𝒎[𝑮𝑷𝒂] 

Carbon/Epoxy 1.81 235.0 1.27 4.3 

E-glass/Epoxy 2.54 73.0 1.27 4.3 

 

Firstly, the resulting solutions were compared by implementing the six optimization techniques including the NM, 

GA,SQP, NM-GA, PSO-GA, and NM-PSO. All these optimization algorithms are applied to the strongest column design 

model(Model- I) defined in Table 4. A three-segment cantilevered column is considered first, which is made of 

Carbon/Epoxy composite assuming the lower and upper limiting values of the fiber volume fraction to be 10% and 90%, 

respectively.The attained optimal solutions are listed in Table 8, wherethe corresponding optimization gain represents the 

percentage increase in the buckling load as compared with that of the baseline design value(�̂�𝑐𝑟 =
𝜋2

4
). It is seen that the 

best solutions are attained by utilizing either the SQP or the hybrid PSO-GA, where the optimization gain reaches its 

maximum value of 17.95% with the total structural mass maintained constant. Comes next, the NM-PSO with 16.9% gain 

and then the NM-GA with 16.52%. As a general observation, the hybrid algorithms have proved to be much efficient and 

robust than the stand-alone ones,based on the performance measure of the present problem. 

Considering next, solutions obtained by applying the SQP method for global optimization [21] to the different models 

defined in Table 4. The attained results are presented in Table 9, considering manufacturing constraints as expressed by 

assigning values of 25% and 75% to the lower and upper limits imposed on the fiber volume fraction. It is seen that, the 

optimization gain obtained by applying Model-I decreased by about 1.34% than that obtained without manufacturing 

constraints as indicated in Table 8.Although, Models III and IV represent two different multi-objective optimization 

models (linear and nonlinear combination of the mass and buckling load), they obtained the same results according to the 

present optimization problem. Implementation of Model-IIresults in a littlemass saving of 2.4%while preserving the 

critical buckling load at its baseline value of 2.4675. This was expected because the wall thickness is not taken as a design 

variable in the present formulation.It is to be noticed that the SQP can only deal with optimization models described by 

continuous design variables, which represents an obstacle when one is considering discrete variables for some practical 

engineering applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Penalty 
NM-GA PSO-GA NM-PSO 

STD Error STD Error STD Error 

P1 0.1457 0.0666 0.0343 0.0133 0.559 0.362 

P2 0.4519 0.0912 0.0941 0.051 0.398 0.256 

P3 0.472 0.1013 0.3 0.102 0.388 0.252 

P4 0.603 0.1486 0.0478 0.0258 0.507 0.333 

P5 0.105 0.0575 0.1 0.058 0.4786 0.419 

P6 0.347 0.116 0.228 0.0958 0.452 0.293 

P7 0.354 0.1363 0.093 0.04 0.5865 0.398 
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Table 8. Optimization results based on Model-I for different optimization algorithms (�̂�𝑠 = 1) (Case of a cantilevered 

FGM column made of carbon/epoxy composites) 

(0.1, 0.2) ≤ (𝑉𝑓 , �̂�)𝑘=1,2,3 ≤ (0.9, 0.8) 

Optimization 

Algorithm 

Optimal Design Vector 

�⃗⃗⃗�𝒐𝒑𝒕 = (𝑽𝒇, �̂�)𝒌=𝟏,𝟐,𝟑 

Buckling Load 

�̂�𝒄𝒓,𝒎𝒂𝒙 (Gain %)* 

SQP (0.6945, 0.5348)1, (0.3992, 0.2652)2, (0.1136,0.2)3 2.9104 (17.95%) 

NM (0.4789, 0.409)1, (0.3953, 0.3341)2, (0.6697,0.2569)3 2.8185 (14.23%) 

GA (0.7434, 0.2905)1, (0.536, 0.4598)2, (0.1505,0.2497)3 2.8726 (16.42%) 

NM-GA (0.667,0.4905)1, (0.4572,0.2635)2, (0.2129,0.246)3 2.875 (16.52%) 

PSO-GA (0.6945, 0.5348)1, (0.3992, 0.2652)2, (0.1136,0.2)3 2.9104 (17.95%) 

NM-PSO (0.6885,0.4161)1, (0.5159,0.3228)2, (0.1801,0.2611)3 2.8842 (16.9%) 

*𝐺𝑎𝑖𝑛 % = ((
4

𝜋2
) �̂�𝑐𝑟,𝑚𝑎𝑥 − 1.0) ∗  100   

 

Table 9. Optimal solutions based on SQP for the different optimization models (Case of a cantilevered FGM column 

made of carbon/epoxy composites) 

(0.25, 0.2) ≤ (𝑉𝑓 , �̂�)𝑘=1,2,3 ≤ (0.75, 0.8) 

Optimization 

Model 

Optimal Design Vector 

�⃗⃗⃗�𝒐𝒑𝒕 = (𝑽𝒇, �̂�)𝒌=𝟏,𝟐,𝟑 

Buckling Load 

�̂�𝒄𝒓 (Gain %) 

Structural Mass 

�̂�𝒔 (Saving %)* 

Model-I (0.6721, 0.4724)1, (0.4590, 0.2415)2, (0.25, 0.2858)3 2.8722 (16.61%) 1.0 (0.0%) 

Model-II (0.575, 0.4434)1, (0.413, 0.2296)2, (0.25, 0.327)3 2.4674 (0.0 %) 0.976 (2.4 %) 

Model-III (0.6721, 0.4724)1, (0.4590, 0.2415)2, (0.25, 0.2858)3 2.8722 (16.61%) 1.0 (0.0%) 

Model-IV (0.6721, 0.4724)1, (0.4590, 0.2415)2, (0.25, 0.2858)3 2.8722 (16.61%) 1.0 (0.0%) 

*𝑀𝑎𝑠𝑠 𝑆𝑎𝑣𝑖𝑛𝑔% =  (1.0 − �̂�𝑠,𝑚𝑖𝑛) ∗ 100 

 

For more deep understanding of what happens inside the design spaces, the effect of changing some variables on the 

maximum critical buckling load under mass constraint was investigated. Columndesigns near the calculated optimal 

solution, obtained by implementing Model-I, are presented in Figures 7 and 8, showing the developed level curves of the 

critical buckling load in the design spaces (𝑉𝑓 , �̂�)1
 and (𝑉𝑓2, 𝑉𝑓3), respectively.    

 
Figure 7. Level curves of�̂�𝑐𝑟in the design space (𝑉𝑓 , �̂�)1

 near the optimal solution attained by Model-I  

�̂�𝒔 > 1 

�̂�𝒔 < 1 
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Figure 8. Level curves of �̂�𝑐𝑟 in the design space (𝑉𝑓2, 𝑉𝑓3) near the optimal solution attained by Model-I 

 

It is seen that the buckling load, even though implicit function in the design variables, is well behaved, monotonic and 

defined everywhere in the selected design spaces. The blue line, which represents the locus of constant mass �̂�𝑠 = 1, 

divides the space into two domains: the lower domain for structural mass less than that of the baseline design (i.e.�̂�𝑠 <
1), and the upper for �̂�𝑠 > 1. As shown in Figure 7, the critical buckling load increases with increasing 𝑉𝑓1, however 

there is no significant change with increasing �̂�1. According to Figure 8, both 𝑉𝑓2 and 𝑉𝑓3 nearly have the same effect on 

�̂�𝑐𝑟, however the effect of 𝑉𝑓2 is more significant.  

More results have been obtained to see the effect of changing the material type with different physical and mechanical 

properties. The results for E-glass/epoxy are listed in Table 10, where it can be observed that Model-II results in a balanced 

improvement in both mass and buckling load. 

 

Table 10 . Optimal solutions based on SQP for the different optimization models  (Case of a cantilevered FGM column 

made of E-glass/Epoxy composites) 

Optimization 

Model 

Optimal Design Vector 

�⃗⃗⃗�𝒐𝒑𝒕 = (𝑽𝒇, �̂�)𝒌=𝟏,𝟐,𝟑 

Buckling Load 

�̂�𝒄𝒓 (Gain %) 

Structural Mass 

�̂�𝒔 (Saving %) 

Model-I (0.6836, 0.459)1, (0.4661,0.2359)2, (0.25, 0.3051)3 2.8592 (15.88%) 1.0 (0.0%) 

Model-II (0.575, 0.4434)1, (0.413, 0.2296)2, (0.25, 0.327)3 2.4813 (0.56 %) 0.9544 (4.56 %) 

Model-III (0.6836, 0.459)1, (0.4661, 0.2359)2, (0.25, 0.3051)3 2.8592 (15.88%) 1.0 (0.0%) 

Model-IV (0.6836, 0.459)1, (0.4661, 0.2359)2, (0.25, 0.3051)3 2.8592 (15.88%) 1.0 (0.0%) 

 

CONCLUSIONS 

This paper investigates different optimization algorithms and models that can be applied and implemented to optimize 

nonlinear programming design problems. Seven robust algorithms and seven penalty functions are implemented in 

MATLAB codes and experimented using carefully selected benchmark problems. For a specific design problem, the 

selection of the proper optimization algorithm along with the proper penalty function is found to be crucial in the whole 

optimization process. The penalty functions are classified as static, dynamic or adaptive penalties, which have been 

thoroughly examined for handling design constraints. Implementations of these techniques to practical optimization 

models in mechanical and structural design have revealed that the performance of the static and dynamic penalties 

outweighs the performance of the adaptive penalties. The best result has been achieved using the static penalty in reaching 

the needed optimal solutions. More results have indicated that the hybrid algorithm (NM-GA) with the dynamic penalty 

function P4 is superior in performance when compared with the stand-alone, single ones. This has been confirmed by 

�̂�𝒔 > 1 

�̂�𝒔 < 1 
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implementing the different algorithms for solving the welded beam structural model where the objective function is 

measured by minimizing the total fabricating cost of the welded structure subject to various nonlinear stress, buckling 

and deflection as well as side constraints. 

In addition of implementing a robust optimization algorithm, the model formulation is also so crucial in reaching the 

required global optimal solutions. Four different optimization strategies were compared to determine the effect of 

changing the objective function and constraints on the attained optimal design of a FGM column under axial compression. 

The volume fractions of the two constituents’ material are allowed to vary piece-wisely, making the physical and 

mechanical properties to be tailored in the axial direction. Numerical solutions and detailed results for a 3-segment 

cantilevered column, which are based on dimensionless analysis, are given and useful design charts have been developed 

and analysed. It is proved that the buckling load, even though it is an implicit function in the design variables, is well 

behaved, monotonic and defined everywhere in the selected design space. In all, the best solutions have been reached by 

applying the hybrid PSO-GA and PSO-NM and the SQP method based on global search. However, the major 

disadvantageous of the latter is that it deals only with models described by continuous design variables.    

Future studies will consider more implementation of new robust hybrid algorithms for solving similar mechanical and 

structural design models, such as the stability and dynamic optimization of sandwich constructions with either material 

or thickness grading along predetermined directions. 
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