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Abstract
Objective: In microarray datasets, hundreds and thousands of genes are measured in a small number of samples, 
and sometimes due to problems that occur during the experiment, the expression value of some genes is recorded as 
missing. It is a difficult task to determine the genes that cause disease or cancer from a large number of genes. This 
study aimed to find effective genes in pancreatic cancer (PC). First, the K-nearest neighbor (KNN) imputation method 
was used to solve the problem of missing values (MVs) of gene expression. Then, the random forest algorithm was 
used to identify the genes associated with PC.   
Materials and Methods: In this retrospective study, 24 samples from the GSE14245 dataset were examined. Twelve 
samples were from patients with PC, and 12 samples were from healthy control. After preprocessing and applying the 
fold-change technique, 29482 genes were used. We used the KNN imputation method to impute when a particular 
gene had MVs. Then, the genes most strongly associated with PC were selected using the random forest algorithm. We 
classified the dataset using support vector machine (SVM) and naïve bayes (NB) classifiers, and F-score and Jaccard 
indices were reported. 
Results: Out of the 29482 genes, 1185 genes with fold-changes greater than 3 were selected. After selecting the most 
associated genes, 21 genes with the most important value were identified. S100P and GPX3 had the highest and 
lowest importance values, respectively. The F-score and Jaccard value of the SVM and NB classifiers were 95.5, 93, 
92, and 92 percent, respectively.    
Conclusion: This study is based on the application of the fold change technique, imputation method, and random 
forest algorithm and could find the most associated genes that were not identified in many studies. We therefore 
suggest researchers use the random forest algorithm to detect the related genes within the disease of interest. 

Keywords: Classification, Microarray Analysis, Neoplasms, Pancreas 

Citation: Rabiei N, Soltanian AR, Farhadian M, Bahreini F. The performance evaluation of the random forest algorithm for a gene selection in identifying 
genes associated with resectable pancreatic cancer in microarray dataset: a retrospective study. 2023; 25(5): 347-353. doi: 0.22074/CELLJ.2023.1971852.1156 
This open-access article has been published under the terms of the Creative Commons Attribution Non-Commercial 3.0 (CC BY-NC 3.0).

 

Received: 02/December/2022, Revised: 14/January/2023, Accepted: 15/
February/2023
*Corresponding Address: P.O.BOX: 6517838736, Modeling of Noncommunicable 
Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, 
Iran
Email: soltanian@umsha.ac.ir

Royan Institute
Cell Journal (Yakhteh)

347-353

Introduction
One of the deadliest diseases and malignancies is 

PC (1). According to the Global Cancer Observatory 
(GLOBOCAN) 2020 report, 495773 new patients were 
diagnosed with PC in 2020 (https://gcoiarcfr/today/
home). The results of PC trends in 48 countries showed 
an increase in PC incidence in women and men in 17 and 
14 countries, respectively (2).

According to the American Cancer Society, 60430 and 
48220 new PC patients and deaths were reported in the 
United States in 2021 (3). Some studies have shown that 
the incidence and mortality rates are higher in men in Iran 
(4). The incidence rate in females is 2.26 and 1.24 percent 
in North Khorasan and Chaharmahal and Bakhtiari 
provinces, respectively. The incidence rate in males is 

1.17 and 1.12 percent in Semnan and Markazi provinces, 
respectively (5).

Early detection or diagnosis of PC requires efficient 
molecular and screening methods. One of these methods 
is the identification of the gene set associated with this 
disease. Microarray is the most efficient technique 
to achieve this goal. Microarrays are a powerful 
technology that can monitor more than thousands 
of genes simultaneously on a single chip. They are 
usually represented in the form of a matrix, with rows 
corresponding to genes and columns corresponding to 
different conditions (6).

Since there are thousands of genes in microarray data, 
identifying and prioritizing genes significantly associated 

https://gcoiarcfr/today/home
https://gcoiarcfr/today/home


Cell J, Vol 25, No 5, May 2023 348

Random Forest Algorithm for Gene Selection in Microarray Datasets

with the disease can play an important role in the diagnosis 
process and in reducing the mortality rate. One of the 
techniques to select genes related to the disease is random 
forest, which is very popular in the field of gene/feature 
selection (7).

To improve the performance of an analysis, e.g., in 
identifying the most important genes, clustering, and 
classification analysis, the dataset must be complete 
and not contain missing values (MVs). Like many other 
datasets, gene expression data often contain MVs ranging 
from 5 to 60 percent (8, 9). Poor hybridization, insufficient 
resolution or corruption to the image, and contamination 
from dust or scratches on the slide can lead to the creation 
of MVs. However, methods such as classification and 
clustering require a complete dataset as input. So, in 
such cases, dealing with MVs is a very important step. 
The simplest way is to discard the observations with MVs 
or impute MVs with imputation methods, e.g., the KNN 
imputation method (10, 11). 

This study aimed to select the most important genes 
associated with resectable PC. For this purpose, MVs were 
imputed using the best imputation method between mean, 
median, Multiple Imputation with Denoising Autoencoders 
(MIDAS), and KNN imputation methods Then, the random 
forest algorithm was used to identify the associated genes. 
After the imputation and selection of the most strongly 
associated genes, a bi-clustering method was applied, and a 
heat map was generated based on all genes and the selected 
genes. The precision value of the support vector machine 
(SVM) classifier was also reported. To better understand the 
effects of gene selection, another strategy called the complete 
case strategy was also considered. In this strategy, all genes 
with MVs are excluded from the dataset. Then, gene selection 
is performed using the random forest algorithm. The resulting 
heatmap is examined. The strength and novelty of this research 
is the use of the most effective machine learning methods, 
random forest, to select effective genes for the disease, and it is 
not only limited to fold change values to select effective genes. 
In addition, this study paid special attention to imputation as 
one of the most important steps in data preprocessing. After 
evaluating the most common imputation methods, the best 
method is selected to ensure that the subsequent analyses have 
the least bias and error.

Materials and Methods
Dataset

In this retrospective study, we used data from Zhang 
et al. (12) with accession number GSE14245, which is 
available in the GEO database. This dataset contains 12 
PC and 12 healthy control samples.

This study was approved by the Ethics Committee of 
Hamadan University of Medical Sciences (IR.UMSHA.
REC.1400.212).

Imputation of missing values
If the dataset contains MVs, they are imputed first. The 

quality of the inference depends on the rate of missing 
genes. To compare methods for imputing missing data, 
some studies consider genes with less than 1 percent, 
between 1 - 5, or 1 - 20 percent MVs. However, there 
is no accepted threshold for the rate of missing genes to 
determine whether imputation should be performed (13, 
14). Some studies reported that less than 1% of MVs are 
considered nonsignificant, 1-5% are controllable, and 
more than 15% affect prediction or interpretation too 
much (15). In most studies, the rate of missing is high, 
and repeating the experiment is not feasible due to the 
high cost or time constraints. To perform a more accurate 
study, the authors of this study decided to consider genes 
with a missing rate of less than 25% and remove the 
others. To find the best imputation method between the 
KNN, mean, median, and MIDAS imputation methods, 
the MVs in the genes are first imputed according to the 
imputation method (KNN, mean, median, and MIDAS). 
The imputed data are classified using the logistic classifier. 
The best imputation method is the one that leads to the 
highest value of classification accuracy. Each imputation 
method has been explained in the following sections:

K-nearest neighbor imputation method
Consider the matrix  with n samples and p genes. The 

elements of G are represented by , where i=1,…,n and 
j=1,…,p.  In the KNN imputation method, to impute 
MVs, we first calculate the Euclidean distance between  
i=1,…,n , j=1,…,p, whose value is missing, and all genes 
without MVs. The K genes with the smallest distance 
are selected. The MVs in  are imputed by averaging the 
expression values of K-selected genes. The parameter K 
should be chosen experimentally. We chose the best K 
value between 5 and 500 in 5 steps.

Mean and median imputation method
In the mean imputation method, the MVs in genes are 

imputed by the average of all samples in that gene that are 
not missing. In the median imputation method, the MVs 
in genes are imputed by the median of all samples in that 
gene that are not missing. 

Multiple imputation with denoising autoencoders 
imputation method

The MIDAS method treats the MVs as a part of the 
corrupted data and attempts to impute the MVs using 
a model trained to minimize the specific error. MIDAS 
can capture the complex relationship between genes. 
To reduce overfitting during imputation, the dropout 
technique was used (16).

Fold-change calculation
After imputation, genes whose fold-change was greater 

than the specific α-value were selected for the next stage 
of analysis. Fold-change is defined as equation 1,

Fold-change = 2|log2 (average(case)-log2 (average(control)|, [Equation 1]
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where the average (case) and average (control) are the 
expression values of genes in the case and control groups, 
respectively.

Random forest algorithm
Gene selection using the random forest algorithm was 

performed while the forest was growing. First, a random 
subset of genes is taken from the dataset, and n random 
trees are created from each subset. Then, at the end of 
the process, all the created trees are combined to extract 
the corresponding results. The common index to measure 
the importance of genes is the Gini index for importance/
impurity. In each tree, the sum of the Gini index reduction 
is calculated over all nodes for the specific gene used for 
partitioning.

If the dataset of the two classes labeled 0 and 1 in node 
τ wants to be split, the Gini index at node τ, Gini (τ), is 
calculated as in equation 2,

Gini (τ)=1- p2 - p2, [Equation 2]
                     1     0

where pi i=0,1 the probability that sample  belongs to class i.
The impurity reduction for splitting the samples between  

and  (right and left node) is described in Equation 3,

∆ Gini (G) = Gini(τ) - pL Gini(τL ) - pR gini(τR), [Equation 3]

where , is the probability of  sample of node i. Equation 
2 is calculated for all available thresholds, θ’s, over all 
genes at node . The gene with threshold θ that maximizes  
is determined. After extracting the optimal  for all nodes 
and trees (T), the Gini importance, , is calculated for a 
given gene i.e., G, according to equation 4.

IGini 
(G)=∑(all nodes) ∑(all trees) ∆Giniθ (τ,T), [Equation 4]

shows the discrimination degree of G for diagnosis 
between two groups (case and control) and also indicates 
how many times a G was selected in the splitting process 
(8). Figure 1 shows the simple tree with four genes, . The  
values are the thresholds that lead to the highest values. 

In this study, imputation was performed using the impute 
package in R software version 4.2.1, and gene selection 
using the random forest algorithm was performed using 
the sklearn module in Python 3.9 software.

Classification and classification index
The naïve bayes (NB) classifier is a probabilistic 

classification mechanism for finding the best result in 
classification problems. This method assumes that variables 
are independent for a given class, and can be represented as                                          

                         n
P(X│C) = ∏  P(Xi│C)
                             (i=1) 
where X=(X1,…,Xn)  is a variable vecor and C is a class
               label. SVM is a learning method used for both classification 
and regression. The idea behind SVM is that all data are first 
plotted in an n-dimensional space. Classification is then used 
to find a hyperplane that can separate the data based on class 
membership. We used Python software version 3.9 to analyze 
the dataset. In binary classification, there are four possible 
outcomes: true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). TP, TN, FP, and FN are defined 
as a correct result, correct absence of result, unexpected result, 
and missing result, respectively. Different combinations of 
outcomes were used in each Jaccard and F score index. The 
Jaccard index or Jaccard similarity coefficient measures the 
similarity of sample groups and is defined as TP/(TP+FP+FN). 
F-score or F1-measure defined as (2×(precision×recall))/
(precision+recall). Recall and precision defined as TP/
(TP+FN) and TP/(TP+FP), respectively. These indices reach 
their best value at 1 and worst value at 0.

Fig.1: The tree with four gene, three internal node, and five leaf nodes.
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Results
In this study, the pattern of the MVs is non-monotone 

or general, and the mechanism of MVs was complete at 
random. Any gene with MVs greater than 25 percent was 
discarded and removed from the dataset. Out of the 29482 
remaining genes, the MVs were imputed by the KNN 
imputation method with K value 5. After imputation, 
the genes with fold-change greater than 3 were selected. 
Different cut points were considered in different studies. 
For example, cut points between 1.8 and 3, 1.5, 2, or 4 
were also considered. In this study, cut points 2, 3, and 4 

were considered, and the best result was obtained with 
cut-point (17, 18). Among 29482 genes, 1185 genes 
were selected. The random forest algorithm was used 
to select the genes most strongly associated with PC. 
The genes whose IGini (G) was greater than or equal to 
0.008 were selected. As mentioned earlier, the random 
forest algorithm first calculates the IGini (G) for all genes 
and then extracts the average, median, or percentile of 
these values. Genes with IGini (G) values greater than the 
average, median, or percentile are selected as important 
genes. The information on genes is provided in Table 1.

Table 1: A gene set associated with pancreatic cancer based on the random forest algorithm

Gene symbol Gene ID Gene title/Description Chromosome Cytoband Missing rate (%) Fold-change* IGini (G)**

S100P 6286 S100 calcium binding protein P 4 p16.1 4 11.169 0.033

CDC14B 8555 Cell division cycle 14B 9 q22.32-q22.33 20 8.105 0.010

CD7 924 CD7 molecule 17 q25.3 20 13.133 0.021

CDH4 1002 Cadherin 4 20 q13.33 0 8.924 0.018

ZMIZ2 83637 Zinc finger MIZ-type containing 2 7 p13 0 7.444 0.017

LRRK1 79705 Leucine rich repeat kinase 1 15 q26.3 0 19.181 0.016

PERP 64065 PERP, TP53 apoptosis effector 6 q23.3 4 8.422 0.015

LILRA2 11027 Leukocyte immunoglobulin like 
receptor A2

19 q13.42 12 9.443 0.014

ENG 2022 Endoglin 9 q34.11 0 6.198 0.013

APOH 350 Apolipoprotein H 17 q24.2 16 3.018 0.012

ITGA2B 3674 Integrin subunit alpha 2b 17 q21.31 0 3.986 0.010

ACRV1 56 Acrosomal vesicle protein 1 11 q24.2 4 5.525 0.010

GALNT6 11226 Polypeptide 
N-acetylgalactosaminyltransferase 6

12 q13.13 20 7.266 0.009

DTX3 196403 Deltex E3 ubiquitin ligase 3 12 q13.3 0 4.198 0.009

DDX3X 1654 DEAD-box helicase 3, X-linked X p11.4 0 4.497 0.009

FTH1 2495 Ferritin heavy chain 1 11 q12.3 0 24.540 0.009

EME2 197342 Essential meiotic structure-specific 
endonuclease subunit 2

16 p13.3 4 3.090 0.008

HOOK1 51361 Hook microtubule tethering protein 1 1 p32.1 12 3.128 0.008

KRAS 3845 KRAS proto-oncogene, GTPase/
Kirsten rat sarcoma viral oncogene 
homolog

12 p12.1 20 4.506 0.008

SULF2 55959 Sulfatase 2 20 q13.12 20 3.701 0.008

GPX3 2878 Glutathione peroxidase 3 5 q33.1 4 3.659 0.008

*; Fold-change calculated by equation 1 and **; Random forest algorithm.
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The heatmap of the dataset based on 1185 genes 
(genes with a fold-change greater than 3) is shown in 
Figure 2. Samples are shown on the horizontal axis 
and genes on the vertical axis. The vertical axis is the 
result of gene clustering using the Euclidean distance 
criterion and the hierarchical single linkage clustering 
algorithm. As can be seen, the separation between 
PC (case) and healthy control (control) groups was 
not perfect. A regular pattern could not be detected, 
indicating that the discriminatory power of 1185 genes 
was not satisfactory.

Fig.2: Heatmap derived from bi-clustering based on genes with the fold-
change greater than 3 (n=1185). The colors on the heatmap show the 
expression levels from yellow (lowest) to red (highest).

Figure 3 shows the heatmap of the dataset based 
on 22 genes selected by the random forest algorithm. 
As in Figure 2, samples are shown on the horizontal 
axis and genes are shown on the vertical axis. The 
vertical axis shows the result of gene clustering using 
the Euclidean distance criterion and Ward.D linkage 
hierarchical clustering algorithm. As shown, the genes 
selected by random forest were able to reveal the 
distinction between the groups.

Using the complete case strategy, 10 genes were 
selected from 8977 fully expressed genes with fold-
change greater than 3 and the  greater than or equal 
to 0.024. Figure 4 shows the heatmap of the dataset 
based on these selected genes using the random 
forest algorithm. As shown, no regular pattern was 
detected and the separation between the two groups 
of PC (case) and healthy control (control) was not 
satisfactory.

The classification results for the complete case 
dataset (dataset A), the dataset with 1185 genes 
extracted based on fold-change greater than 3 (dataset 
B), and the dataset with 21 genes extracted based 
on fold-change greater than 3 and selected using the 
random forest algorithm (dataset C) are shown in 
Table 2. As shown, dataset C led to the best result 
with Jaccard and F-score values of 83 and 93 percent 
respectively, for the NB classifier. The Jaccard and 
F-score values of the SVM classifier based on dataset 
C were 92 and 96 percent, respectively.

Fig.3: Heatmap derived from bi-clustering based on genes with fold-
change greater than 3 and selected by random forest algorithm (n=21). 
The colors on the heatmap show the expression levels from yellow 
(lowest) to red (highest).

Fig.4: Heatmap derived from bi-clustering based on genes with fold-
change greater than 3 and selected by random forest algorithm (n=10) 
from the complete case dataset. The colors on the heatmap show the 
expression levels from yellow (lowest) to red (highest).
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Table 2: JThe percent of the Jaccard and F-score values of NB and SVM 
classifiers for datasets A, B, and C

Classifier Dataset A Dataset B Dataset C
Jaccard F-score Jaccard F-score Jaccard F-score

NB 53 67 81 90 92 93

SVM 78 87 83 90 92 95.5

NB; Naïve Bayes and SVM; Support vector machine. The complete case 
dataset (dataset A), The dataset with 1185 genes (dataset B), and the 
dataset with 21 genes (dataset C).

Discussion
In this study, high dimensionality has been discussed as 

one of the major challenges in the analysis of microarray 
datasets. Microarray datasets contain hundreds and thousands 
of genes, but not all of them are associated with the disease. 
Therefore, it is very important to find the most associated 
genes, and the use of an appropriate method is essential for 
this task. We used the random forest algorithm for selecting 
the most associated genes. The random forest has several 
properties that make it ideal for the analysis of microarray 
datasets. It can be used when there are too many genes but few 
samples. On the other hand, it works well when faced with 
a high-dimensional dataset. Even in the presence of noise, 
its prediction performance was good. It provides the Gini 
importance value for each gene. Although we do not have a 
categorical variable (i.e., sample sex) in this study, it could be 
treated as both a categorical and continuous variable (19). It 
should also be noted that the microarray dataset usually had 
MVs, so before any analysis of the available dataset, the MVs 
were imputed. To determine the best imputation method, the 
KNN method was chosen among the different methods. 
Several studies have reported that the KNN performed the 
best in different situations (11, 20). As mentioned earlier, 
one strategy for MVs is to remove genes with MVs and 
analyze the dataset with the complete genes. In this study, 
after removing MVs, the random forest algorithm was used, 
and the results showed that not only were the selected genes 
unable to identify the difference between the healthy control 
group and the PC group, but also some important genes such 
as S100P, CDC14B, and CD7 were removed from the dataset 
due to missingness.

The SVM and NB classifiers were used for further 
analysis. The classification result for the complete case 
dataset (dataset A), the dataset with 1185 genes extracted 
based on fold-change greater than 3 (dataset B), and the 
dataset with 21 genes extracted based on fold-change 
greater than 3 and selected by the random forest algorithm 
(dataset C) were reported. Using the SVM classifier, the 
minimum F-score and Jaccard value belong to dataset A, 
and the maximum F-score and Jaccard value belong to 
dataset C. The results also show that the SVM classifier 
has better performance than the NB classifier.

In this study, 21 genes associated with PC were 
selected from 1185 genes with fold-change greater than 
3. Among the genes selected in this study, S100P, CD7, 

CDH4, ZMIZ2, LRRK1, LILRA2, ENG, ITGA2B, DTX3, 
FTH1, KRAS, CDC14B, ACRV1, DDX3X, and GPX3 
were also identified in the Zhang et al. (12) study. They 
used quantitative polymerase chain reaction (PCR) to 
investigate the genes associated with PC.  Some genes 
were identified in the study by Zhang et al. (12) but not in 
our study (i.e., ASH2L, CABLES1, and CDKL3). ASH2L 
had a fold-change greater than 3 (fold-change = 9.009), 
but its importance value was less than 0.008 (importance 
value=0.003). CABLES1 also had a fold-change greater 
than 3 (fold-change=6.061), but its importance value was 
less than 0.008 (importance value=0.004). CDKL3 had a 
fold-change of less than 3 (fold-change=1.500). 

S100P has been introduced as a prognostic gene in PC 
in some studies (21, 22). In the study by Bardeesy and 
DePinho’s (23) and the study by Kamisawa et al. (24), 
KRAS was introduced as a prognostic gene in PC. PERP 
was also the prognostic marker in PC (25). There is also 
some evidence of an association between PERP and 
PC on the Human Protein Atlas website (https://www.
proteinatlas.org/). Park et al. (26) mentioned in their 
study that FTH1 is associated with PC. Fujiwara et al. 
(27) also mentioned in their study that ENG is one of the 
prognostic genes in PC. Ouyang et al. (28) stated that 
DTX3 is a prognostic gene in PC. Li et al. (29) stated that 
CDH4 is associated with PC. Our results showed that 
APOH was a prognostic gene in PC. Kuwae et al. (30) 
stated in their study that APOH is one of the prognostic 
factors in human pancreatic ductal adenocarcinomas.  
Hao et al. (31) mentioned that DDX3X was associated 
with PC. Like our study, Alhasan et al. (32) also showed 
that SULF2 was associated with pancreatic ductal 
adenocarcinoma. Tarhan et al. (33) stated that GALNT6 
was associated with PC, which was in line with our 
findings. In our study, HOOK1 was identified as one of 
the genes associated with PC. Pan et al. (34) showed 
in their study that HOOK1 was associated with PC and 
decreased during cancer progression. EME2 is one of the 
genes which was identified in this study. We do not find 
any study that clearly stated that this gene is associated 
with PC, but there is some evidence of an association 
between EME2 and PC on the Human Protein Atlas 
website (https://www.proteinatlas.org/).

S100P, GPX3, CDH4, ITGA2B, DTX3, ZMIZ2, 
DDX3X, and KRAS were upregulated. As it seems, the 
expression of the ACRV1, LILRA2, CDC14B, ENG, and 
LRRK1 is higher in the pancreas group than in the healthy 
control group, but this difference was not as obvious as in 
the other upregulated genes. FTH1 and CD7 were down-
regulated. EME2, PERP, APOH, GALNT6, and SULF2 
were upregulated. Tarhan et al. (33) and Alhasan et al. 
(32) report the upregulation of GALNT6 and SULF2, 
respectively, in PC. In the study by Kuwae et al. (30) as 
well as in our study, APOH was reported as an upregulated 
gene. Dasgupta et al. (25) demonstrated that PERP had 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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significantly higher expression in PC cells. There were 
some limitations in this study. Both the up-regulated and 
the down-regulated genes are important in the microarray 
dataset, however, in this study, we only evaluate up-
regulated genes. Because we did not have access to an 
appropriate dataset, we had to use the GEO dataset. We 
also suggest that researchers evaluate different methods 
for gene selection and compare the performance of the 
different methods in selecting effective genes in disease.

Conclusion
This study identified some associated genes with PC 

that are not detected by conventional methods. Since the 
associated genes presented in this study were confidential, 
we suggest the researchers to use the random forest 
algorithm for the selection process as well as the KNN for 
imputation if there are MVs in their dataset.
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