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Automated Techniques to Identify Most Relevant Duplicates for Bug Deduplication 

ABSTRACT 

During bug deduplication, selecting top bugs based on scores from a binary classification 

model does not work well if the model tends to return lower scores. Further, the selected top 

candidate bugs are not ranked based on relevance, which means that there is no mechanism to 

mark a bug as a duplicate without verifying each candidate. This disclosure describes automated 

techniques to identify ancestor bugs for a newly reported bug, to retrieve the top candidates for 

duplicate bugs, and rank the candidates based on a scoring function. The techniques are robust to 

pairwise matches between a newly reported bug and its ancestor bug failing to meet threshold 

scores. Rather, by relying on comparisons across the pool of bugs - open bugs as well as prior 

identified duplicates - along with transitive properties, the techniques automatically identify the 

ancestor bug in such situations. A scoring function is described that utilizes features such as 

number of duplicates attached to a bug, number of updates, score, number of incorrect duplicate 

predictions that the bug was part of, the number of affected users, etc. to rank the identified bugs.  
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BACKGROUND 

Bug deduplication is a well-known problem in software development. Binary 

classification techniques are widely used to solve the problem of bug deduplication. Selecting 

top K bugs based on classification scores that meet a threshold may not work well if the 

classification model tends to return lower scores. Further, the selected top K candidates are not 

ranked based on relevance, thus there is no mechanism to mark a bug as a duplicate without 

verifying each candidate. Thus, current methods for identifying top candidates of duplicates are 

not efficient. 

DESCRIPTION 

This disclosure describes automated techniques to identify ancestor bugs for a newly 

reported bug, to retrieve the top candidates for duplicate bugs, and rank the candidates based on a 

scoring function. The techniques eliminate the need to perform a manual search for duplicate 

bugs across a pool of bugs. This allows the bug triager to only investigate real bugs rather than 

iterating over duplicate bugs. The techniques are robust to pairwise matches between a newly 

reported bug and its ancestor bug failing to meet threshold scores. Rather, by relying on 

comparisons across the pool of bugs - open bugs as well as prior identified duplicates - along 

with transitive properties, the techniques automatically identify the ancestor bug in such 

situations. The techniques leverage existing binary classification models trained on historical 

bugs to perform comparisons. The binary classification model M may be a logistic regression 

model trained on a historical dataset of bugs to predict if a pair of source and target bugs are 

duplicates. Features available in bug metadata can be used to train the model. 
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Fig. 1: Identifying most relevant duplicates for bug deduplication 

Fig. 1 illustrates an example method to automatically retrieve and rank the top k 

candidate of duplicate bugs. A new bug is obtained (102), e.g., from bug reports. The new bug is 

compared against the currently open bugs (104). Open bugs, in this context, are all bugs that 

have not been marked as duplicates. The new bug is also compared against bugs that have 

already been marked as duplicates (106). 

For example, consider a new bug within the system, b_new. This bug is first paired 

against the other open bugs to generate a prediction of whether it is a duplicate of any of them. 

For example, the system may currently have b_y open bugs, for y in [1, M]. In this case, b_new 

is compared against the b_y open bugs. Further, there are additional a_x bugs, for x in [1, N]. 

These are bugs that have already been identified as being duplicates of other open bugs. In the 

method illustrated in Fig. 1, b_new is compared on a pairwise basis with each of these a_x bugs.  
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During each pairwise comparison, across b_y and a_x, a probability score is generated 

that indicates the probability of b_new being a duplicate of the bug it is being compared to (108). 

Using these scores, the top k unique ancestor bugs can be retrieved transitively. 

For example, b_new may be classified as not being a duplicate of any of the currently 

open bugs b_y. However, b_new may get a high probability score of being a duplicate of a bug 

that is already identified as being a duplicate, say a_4. In this case, bug a_4 has already been 

identified as being a duplicate of another bug, say b_4. In such a scenario, b_4 is retrieved on a 

transitive basis - since b_new is classified as a duplicate of a_4, and a_4 is classified as a 

duplicate of b_4, b_4 is identified as an ancestor bug for b_new. In this instance, b_new has a 

low probability score of being a duplicate of b_4. However, since the probability of b_new being 

a duplicate of a_4 is high, the ancestor bug b_4 is retrieved on a transitive basis (110). 

Fig. 2 illustrates pseudocode for an example function to identify top K duplicate bugs. 

FUNCTION getTopKBugs: 

let p = [p_1, p_2, ..., p_r] ordered list of relevant bugs 
based on probability 

let ancestor = [(a_1, b_1), (a_2, b_1) , ...., (a_N, b_M)] 
denoting a map of ancestor and already duplicate predicted bug 

topKBugs={} 

for bug in p: 
if setsize(topKBugs) == K: 
     break 
if bug in a: 

topKBugs.add(ancestor[bug]) 
else: 

topKBugs.add(bug) 
return topKBugs 

Fig. 2: Pseudocode to identify top duplicate bugs 
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While a binary classification retrieval model uses bug metadata features like bug 

description, title, etc., such features are based on the initial state of a bug. The binary 

classification model does not take into account features that change over time, such as the 

number of duplicates attached to a canonical bug, the number of updates made on the bug as 

comments, etc. 

Per techniques of this disclosure, the retrieved ancestor bugs are scored using a custom 

scoring function (112). For example, the scoring function can be: 

𝐹(𝐷, 𝑈, 𝑠𝑐𝑜𝑟𝑒, 𝑋, 𝑢𝑝𝑣𝑜𝑡𝑒𝑠) = ((𝐷2 + 𝑈) ∗ 𝑠𝑐𝑜𝑟𝑒 ∗ 𝑚𝑎𝑥(1, 𝑢𝑝𝑣𝑜𝑡𝑒𝑠))/𝑚𝑎𝑥(1, 𝑋)2	

where: 

● 𝐷 is the number of duplicates attached to the bug at any instant 

● 𝑈 is the number of updates in the bug at any instant 

● 𝑠𝑐𝑜𝑟𝑒 is the probability for prediction being duplicate between the source 

(b_new) and the target bug 

● 𝑋 is the number of incorrect predictions the bug was a part of 

● 𝑢𝑝𝑣𝑜𝑡𝑒𝑠 is the number of upvotes on the bug affecting users 

The scoring function can be chosen or modified as appropriate for the particular use case. 

For example, in case the individual parameters are large enough, the above function can be 

modified as: 

F(D,	U,	score,	X,	upvotes)=	log(D^2	+	U)	+	log(score)	+	log(max(1,	upvotes))	-	2log(max(1,	X))	

The retrieved bugs are ranked in descending fashion on the basis of their score in the 

custom scoring function. The process can be performed for new bugs that are to be processed.  
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The described bug deduplication techniques can be used in a bug triager to identify the 

most relevant duplicate bugs. Bug management tools can also utilize the identified duplicates to 

surface relevant information on a user interface. The techniques can be used by any bug 

management tool or technical infrastructure used for debugging.  

CONCLUSION 

This disclosure describes automated techniques to identify ancestor bugs for a newly 

reported bug, to retrieve the top candidates for duplicate bugs, and rank the candidates based on a 

scoring function. The techniques are robust to pairwise matches between a newly reported bug 

and its ancestor bug failing to meet threshold scores. Rather, by relying on comparisons across 

the pool of bugs - open bugs as well as prior identified duplicates - along with transitive 

properties, the techniques automatically identify the ancestor bug in such situations. A scoring 

function is described that utilizes features such as number of duplicates attached to a bug, 

number of updates, score, number of incorrect duplicate predictions that the bug was part of, the 

number of affected users, etc. to rank the identified bugs.  
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