
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

April 2023

Automated Techniques to Identify Most Relevant Duplicates for Automated Techniques to Identify Most Relevant Duplicates for

Bug Deduplication Bug Deduplication

Aman Singh

Vidhi Gupta

Richa Gupta

Vineet Jain

Subham Mishra

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Singh, Aman; Gupta, Vidhi; Gupta, Richa; Jain, Vineet; Mishra, Subham; and Elumalai, Babu Prasad,
"Automated Techniques to Identify Most Relevant Duplicates for Bug Deduplication", Technical Disclosure
Commons, (April 27, 2023)
https://www.tdcommons.org/dpubs_series/5851

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5851?utm_source=www.tdcommons.org%2Fdpubs_series%2F5851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Inventor(s) Inventor(s)
Aman Singh, Vidhi Gupta, Richa Gupta, Vineet Jain, Subham Mishra, and Babu Prasad Elumalai

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/5851

https://www.tdcommons.org/dpubs_series/5851

Automated Techniques to Identify Most Relevant Duplicates for Bug Deduplication

ABSTRACT

During bug deduplication, selecting top bugs based on scores from a binary classification

model does not work well if the model tends to return lower scores. Further, the selected top

candidate bugs are not ranked based on relevance, which means that there is no mechanism to

mark a bug as a duplicate without verifying each candidate. This disclosure describes automated

techniques to identify ancestor bugs for a newly reported bug, to retrieve the top candidates for

duplicate bugs, and rank the candidates based on a scoring function. The techniques are robust to

pairwise matches between a newly reported bug and its ancestor bug failing to meet threshold

scores. Rather, by relying on comparisons across the pool of bugs - open bugs as well as prior

identified duplicates - along with transitive properties, the techniques automatically identify the

ancestor bug in such situations. A scoring function is described that utilizes features such as

number of duplicates attached to a bug, number of updates, score, number of incorrect duplicate

predictions that the bug was part of, the number of affected users, etc. to rank the identified bugs.

KEYWORDS

● Machine learning

● Binary classification

● Bug deduplication

● Bug retrieval

● Bug triaging

● Software development

● Pairwise matching

2

Singh et al.: Automated Techniques to Identify Most Relevant Duplicates for Bug

Published by Technical Disclosure Commons, 2023

BACKGROUND

Bug deduplication is a well-known problem in software development. Binary

classification techniques are widely used to solve the problem of bug deduplication. Selecting

top K bugs based on classification scores that meet a threshold may not work well if the

classification model tends to return lower scores. Further, the selected top K candidates are not

ranked based on relevance, thus there is no mechanism to mark a bug as a duplicate without

verifying each candidate. Thus, current methods for identifying top candidates of duplicates are

not efficient.

DESCRIPTION

This disclosure describes automated techniques to identify ancestor bugs for a newly

reported bug, to retrieve the top candidates for duplicate bugs, and rank the candidates based on a

scoring function. The techniques eliminate the need to perform a manual search for duplicate

bugs across a pool of bugs. This allows the bug triager to only investigate real bugs rather than

iterating over duplicate bugs. The techniques are robust to pairwise matches between a newly

reported bug and its ancestor bug failing to meet threshold scores. Rather, by relying on

comparisons across the pool of bugs - open bugs as well as prior identified duplicates - along

with transitive properties, the techniques automatically identify the ancestor bug in such

situations. The techniques leverage existing binary classification models trained on historical

bugs to perform comparisons. The binary classification model M may be a logistic regression

model trained on a historical dataset of bugs to predict if a pair of source and target bugs are

duplicates. Features available in bug metadata can be used to train the model.

3

Defensive Publications Series, Art. 5851 [2023]

https://www.tdcommons.org/dpubs_series/5851

Fig. 1: Identifying most relevant duplicates for bug deduplication

Fig. 1 illustrates an example method to automatically retrieve and rank the top k

candidate of duplicate bugs. A new bug is obtained (102), e.g., from bug reports. The new bug is

compared against the currently open bugs (104). Open bugs, in this context, are all bugs that

have not been marked as duplicates. The new bug is also compared against bugs that have

already been marked as duplicates (106).

For example, consider a new bug within the system, b_new. This bug is first paired

against the other open bugs to generate a prediction of whether it is a duplicate of any of them.

For example, the system may currently have b_y open bugs, for y in [1, M]. In this case, b_new

is compared against the b_y open bugs. Further, there are additional a_x bugs, for x in [1, N].

These are bugs that have already been identified as being duplicates of other open bugs. In the

method illustrated in Fig. 1, b_new is compared on a pairwise basis with each of these a_x bugs.

4

Singh et al.: Automated Techniques to Identify Most Relevant Duplicates for Bug

Published by Technical Disclosure Commons, 2023

During each pairwise comparison, across b_y and a_x, a probability score is generated

that indicates the probability of b_new being a duplicate of the bug it is being compared to (108).

Using these scores, the top k unique ancestor bugs can be retrieved transitively.

For example, b_new may be classified as not being a duplicate of any of the currently

open bugs b_y. However, b_new may get a high probability score of being a duplicate of a bug

that is already identified as being a duplicate, say a_4. In this case, bug a_4 has already been

identified as being a duplicate of another bug, say b_4. In such a scenario, b_4 is retrieved on a

transitive basis - since b_new is classified as a duplicate of a_4, and a_4 is classified as a

duplicate of b_4, b_4 is identified as an ancestor bug for b_new. In this instance, b_new has a

low probability score of being a duplicate of b_4. However, since the probability of b_new being

a duplicate of a_4 is high, the ancestor bug b_4 is retrieved on a transitive basis (110).

Fig. 2 illustrates pseudocode for an example function to identify top K duplicate bugs.

FUNCTION getTopKBugs:

let p = [p_1, p_2, ..., p_r] ordered list of relevant bugs
based on probability

let ancestor = [(a_1, b_1), (a_2, b_1) ,, (a_N, b_M)]
denoting a map of ancestor and already duplicate predicted bug

topKBugs={}

for bug in p:
if setsize(topKBugs) == K:
 break
if bug in a:

topKBugs.add(ancestor[bug])
else:

topKBugs.add(bug)
return topKBugs

Fig. 2: Pseudocode to identify top duplicate bugs

5

Defensive Publications Series, Art. 5851 [2023]

https://www.tdcommons.org/dpubs_series/5851

While a binary classification retrieval model uses bug metadata features like bug

description, title, etc., such features are based on the initial state of a bug. The binary

classification model does not take into account features that change over time, such as the

number of duplicates attached to a canonical bug, the number of updates made on the bug as

comments, etc.

Per techniques of this disclosure, the retrieved ancestor bugs are scored using a custom

scoring function (112). For example, the scoring function can be:

𝐹(𝐷, 𝑈, 𝑠𝑐𝑜𝑟𝑒, 𝑋, 𝑢𝑝𝑣𝑜𝑡𝑒𝑠) = ((𝐷2 + 𝑈) ∗ 𝑠𝑐𝑜𝑟𝑒 ∗ 𝑚𝑎𝑥(1, 𝑢𝑝𝑣𝑜𝑡𝑒𝑠))/𝑚𝑎𝑥(1, 𝑋)2	

where:

● 𝐷 is the number of duplicates attached to the bug at any instant

● 𝑈 is the number of updates in the bug at any instant

● 𝑠𝑐𝑜𝑟𝑒 is the probability for prediction being duplicate between the source

(b_new) and the target bug

● 𝑋 is the number of incorrect predictions the bug was a part of

● 𝑢𝑝𝑣𝑜𝑡𝑒𝑠 is the number of upvotes on the bug affecting users

The scoring function can be chosen or modified as appropriate for the particular use case.

For example, in case the individual parameters are large enough, the above function can be

modified as:

F(D,	U,	score,	X,	upvotes)=	log(D^2	+	U)	+	log(score)	+	log(max(1,	upvotes))	-	2log(max(1,	X))	

The retrieved bugs are ranked in descending fashion on the basis of their score in the

custom scoring function. The process can be performed for new bugs that are to be processed.

6

Singh et al.: Automated Techniques to Identify Most Relevant Duplicates for Bug

Published by Technical Disclosure Commons, 2023

The described bug deduplication techniques can be used in a bug triager to identify the

most relevant duplicate bugs. Bug management tools can also utilize the identified duplicates to

surface relevant information on a user interface. The techniques can be used by any bug

management tool or technical infrastructure used for debugging.

CONCLUSION

This disclosure describes automated techniques to identify ancestor bugs for a newly

reported bug, to retrieve the top candidates for duplicate bugs, and rank the candidates based on a

scoring function. The techniques are robust to pairwise matches between a newly reported bug

and its ancestor bug failing to meet threshold scores. Rather, by relying on comparisons across

the pool of bugs - open bugs as well as prior identified duplicates - along with transitive

properties, the techniques automatically identify the ancestor bug in such situations. A scoring

function is described that utilizes features such as number of duplicates attached to a bug,

number of updates, score, number of incorrect duplicate predictions that the bug was part of, the

number of affected users, etc. to rank the identified bugs.

REFERENCES

1. “Binary classification - Wikipedia” available online at

https://en.wikipedia.org/wiki/Binary_classification accessed April 10, 2023.

2. Karasov, Nikolay, Aleksandr Khvorov, Roman Vasiliev, Yaroslav Golubev, and Timofey

Bryksin. "Aggregation of Stack Trace Similarities for Crash Report Deduplication."

arXiv preprint arXiv:2205.00212 (2022).

7

Defensive Publications Series, Art. 5851 [2023]

https://www.tdcommons.org/dpubs_series/5851

	Automated Techniques to Identify Most Relevant Duplicates for Bug Deduplication
	Recommended Citation
	Inventor(s)

	Untitled

