
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

April 2023

DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND

SERVERLESS CONSTRUCT FOR COMPOSABLE OBSERVABILITY SERVERLESS CONSTRUCT FOR COMPOSABLE OBSERVABILITY

TRACING TRACING

Nagendra Kumar Nainar

Akram Sheriff

Rajesh I V

Carlos Pignataro

Dave Zacks

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Nainar, Nagendra Kumar; Sheriff, Akram; I V, Rajesh; Pignataro, Carlos; and Zacks, Dave, "DYNAMIC
RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT FOR COMPOSABLE
OBSERVABILITY TRACING", Technical Disclosure Commons, (April 19, 2023)
https://www.tdcommons.org/dpubs_series/5814

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5814?utm_source=www.tdcommons.org%2Fdpubs_series%2F5814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6857

DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS
CONSTRUCT FOR COMPOSABLE OBSERVABILITY TRACING

AUTHORS:

Nagendra Kumar Nainar
Akram Sheriff

Rajesh I V
Carlos Pignataro

Dave Zacks

ABSTRACT

As a result of recent industry attention towards full-stack observability, there are

various application performance monitoring (AMP) tools, runtime application self-

protection (RASP) tools, and distributed tracing modules (such as OpenTelemetry (OTel),

the Distributed Application Runtime (Dapr), etc.) available for different programming

languages which may be injected as instrumentation code into an actual application to

support a very detailed trace or log collection for subsequent analysis. Using a no- or low-

code construct, the observability instrumentation code and the application code may be

dynamically bundled together to create the function that is required to execute the relevant

transactions. Techniques are presented herein that support a new dynamic, traffic-aware

Composable Function that leverages an inbound traffic request (comprising metadata and

various attributes with, for example, the relevant tracing context header, custom Hypertext

Transfer Protocol Secure (HTTPS) header, or OTel header with baggage) to identify and

determine whether a function bundle should be composed with observability, APM, or

RASP tools for the efficient utilization of the resource. Such a dynamically composed

function may, in turn, be hosted as one or more containers within a pod or as a serverless

function to provide more flexibility across different application and cluster environments.

DETAILED DESCRIPTION

In order to realize the maximum benefits that may arise from virtualization and a

cloud offering, many applications are adopting the use of a cloud-native and/or a serverless

construct for functional executions. Any application may be split into microservices for

individual development and then instantiated as containers or functions that leverage

Kubernetes or a serverless construct to host and execute the function.

2

Nainar et al.: DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT

Published by Technical Disclosure Commons, 2023

 2 6857

When using a Kubernetes architecture, such microservices may be hosted as

multiple containers within one or more pods and may use the relevant container networking

and/or ingress rules for load balancing and distribution (as depicted in Figure 1, below).

Figure 1: Exemplary Arrangement

A serverless construct leverages a running function as a service (FaaS) to execute

the function without any dedicated computing resources. Instead, the functions are only

instantiated when there is an incoming trigger (such as a Hypertext Transfer Protocol

(HTTP) request, a Transmission Control Protocol (TCP) synchronize (SYN) message, an

application programming interface (API) request, etc.) which, in turn, triggers the

packaging together of the function’s code and its dependencies (e.g., binaries and libraries)

for an on-the-fly dynamic resource allocation and execution. Figure 2, below, depicts

elements of such a process.

Figure 2: Illustrative Process

With the recent attention of the industry towards full-stack observability, there are

various application performance monitoring (AMP) tools, runtime application self-

3

Defensive Publications Series, Art. 5814 [2023]

https://www.tdcommons.org/dpubs_series/5814

 3 6857

protection (RASP) tools, and distributed tracing modules (such as OpenTelemetry (OTel),

the Distributed Application Runtime (Dapr), etc.) available for different programming

languages which may be injected as instrumentation code into an actual application for a

very detailed trace or log collection for subsequent analysis. Using a no- or low-code

construct, the observability instrumentation code and the application code may be

dynamically bundled together to create the function that is required to execute the relevant

transactions.

Figure 3, below, illustrates elements of the process that was described above.

Figure 3: Exemplary Process

As shown in Figure 3, above, an application may also exist with hybrid agents such

as Dapr or OTel to tailor the customer-specific use cases. Running all of the modules (as

part of a container) or bringing all of the lambda functions together in a cloud may not be

a significant issue from a resource allocation point of view. However, such an approach

obviously involves additional cost. But while applying the same approach in other resource

constrained environments (such as edge computing, cloud edge, or an Internet of things

(IoT) environment), applying the right resource requirement is key from both an efficiency

and cost point of view.

4

Nainar et al.: DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT

Published by Technical Disclosure Commons, 2023

 4 6857

To address the types of challenges that were described above, techniques are

presented herein that support a new dynamic, context-aware Composable Function that

leverages an inbound traffic request (with the relevant tracing context header) to identify

whether a function bundle should be composed with an observability, APM, or RASP tool

for the efficient utilization of the resource. Such a composed function may, in turn, be

hosted as containers within a pod or as a serverless function.

As described above, a Composable Function according to the techniques presented

herein leverages an inbound traffic request (comprising metadata and attributes with the

relevant tracing context header, custom HTTP Secure (HTTPS) header, or OTel header

with baggage) to identify and determine whether a function bundle should be composed

with an observability, APM, or RASP tool for the efficient utilization of the resource. Such

a dynamically-composed function may, in turn, be hosted as one or more containers within

a pod or as a serverless function to provide more flexibility across different application and

cluster environments.

For clarity and simplicity of exposition, the following narrative, which presents a

detailed description of the techniques presented herein, is split into two parts. The first part

covers the presented techniques operating within a Kubernetes® environment while the

second part covers the presented techniques operating within a serverless construct.

Kubernetes® and K8S® are registered trademarks of The Linux Foundation.

Within a Kubernetes environment, the control plane component may be configured

(e.g., using a yet another markup language (YAML) file or some other dynamic approach)

to host the application alone as a container of resource profile X or by bundling it together

with additional APM or RASP components as a container with resource profile Y. Figure

4, below, presents elements of various illustrative profiles.

5

Defensive Publications Series, Art. 5814 [2023]

https://www.tdcommons.org/dpubs_series/5814

 5 6857

Figure 4: Illustrative Profiles

As shown in Figure 4, above, different combinations of modules may be associated

with different resource profiles which are used while hosting the containers (as a pod or

within a pod). Under one approach, the autoscaler component of Kubernetes may be

augmented to dynamically scale up or down using different profile-based containers to

handle different types of traffic or for distributed tracing. The above approach is applicable

when the APM or RASP modules are integrated as agents in the application or host.

Alternately, it is also possible to instantiate the APM or RASP modules as a sidecar that is

injected alongside the application container. In such a scenario, the table that was shown

in Figure 4, above, may indicate for a profile the different sidecars (i.e., modules). In either

of the two cases, a profile will identify the type of resources that are required to host an

application and the modules.

It normally takes at most a few milliseconds (msec) to host a container and the

techniques presented herein leverage that capability. Different types of triggers may be

used to initiate this dynamic multi-profile container scaling. Such triggers may include, for

example, a time-based trigger, a source user or site-based trigger, an application header or

application identifier (AppID)-based trigger, or an Internet Protocol (IP) service-level

agreement (SLA) attribute-based Trigger.

For a time-based trigger, the local time may be used as a means to launch a

container with an application and the relevant APM modules. For example, a customer may

notice that during a specific time an application is not performing well and, as a result,

would like to obtain more details (such as performance, load, etc.) for analysis. The specific

time may be used as a trigger where one or two instances are hosted with the application

6

Nainar et al.: DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT

Published by Technical Disclosure Commons, 2023

 6 6857

along with the APM or RASP modules for performance measurement. To handle the

application load and to perform the measurements, the customer may host two instances of

the application (with virtual central processing unit (vCPU)=2 and Mem=1 gigabyte (G))

and one instance of the application along with an APM of type Dapr and an APM of type

OTel (with vCPU=6 and Mem=2G) instead of three instances with six vCPU and 2G of

memory. This allows for scalability and the efficient use of the available resources.

For a source user or site-based trigger, the inbound traffic source information may

be used to identify if an instance with a different profile is required. For example, users

who are accessing an application from a corporate network may not need biometric or real-

time authentication, while the remote users who are accessing the application from an

external network may require such services. Based on the user information, the relevant

container with a RASP module may be hosted along with the application-only instances.

For an application header-based trigger, the presence of a trace context in the

application header may be used as a trigger. It is important to note that the initial request

or GET probe may carry the trace context that may need to trigger the span for tracing.

Simple caching may be used to launch the container and forward such a request.

For a serverless environment, the techniques presented herein augment the request

to a function table to be more granular by considering additional attributes and map the

same to the relevant modules that need to be combined together. Figure 5, below, presents

elements of an example that illustrates such an approach.

7

Defensive Publications Series, Art. 5814 [2023]

https://www.tdcommons.org/dpubs_series/5814

 7 6857

Figure 5: Exemplary Combinations

Depending upon the combination of the inbound request type and the additional

attributes, the selection of a module may be influenced. As shown in the example in Figure

5, above, if an inbound request includes additional cookies that identify peak-hour time

and originating users from a specific geolocation, then mod1, mod3, and mod4 may be

combined together to create the function code. The composed function may include mod1

which is the actual application in addition to different hybrid agents mod3 (e.g., Dapr) and

mod4 (e.g., OTel).

For each such combination of modules, the table may be further augmented to

encompass different types of computing resources, as depicted in Figure 6, below.

8

Nainar et al.: DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT

Published by Technical Disclosure Commons, 2023

 8 6857

Figure 6: Exemplary Augmented Table

According to the techniques presented herein, depending upon the type of inbound

request, an FaaS profile may be identified dynamically and the relevant resource profile

may be used to identify the container or compute resource that is to be used to execute the

composed function code. For example, the lambda or function router may leverage multiple

attributes that are associated to an inbound request (such as a user profile, a location, a time

and date, etc.) to identify if the application must be simply injected into a warm or cold

container or if the application must be composed with a RASP module for execution.

According to further aspects of the techniques presented herein, the inbound

synthetic probe or packet may be used as a trigger to identify that the FaaS profile that is

to be used is a cold container and has a low resource profile. It may be noted that such

synthetic probes cannot be used for performance measurement. Instead, they can be used

for other metrics, log, or event collection (such as functional validation).

It is important to note that while the above narrative was primarily positioned and

explained with the use of multiple agents, the techniques presented herein may also be

generalized to include additional components. Connecting the dots together with the

example that was presented above, elements of a Composable FaaS (cFaaS) are shown in

Figure 7, below.

9

Defensive Publications Series, Art. 5814 [2023]

https://www.tdcommons.org/dpubs_series/5814

 9 6857

OTel, etc.

Agent

Figure 7: Illustrative cFaaS

While the above approach illustrates how such a concept may be used to

dynamically create a Composable Function’s code and invoke the same using the relevant

required resources, the concept may also be extended for a daisy-chained FaaS using an

event bridge.

Under such an arrangement, each module may be considered as a standalone

function code and the event bridge rules may be used to dynamically identify the modules

that should be invoked and the order in which the modules should be daisy-chained

together. Figure 8, below, presents elements of such an approach.

Figure 8: Exemplary Daisy Chaining

Each FaaS profile (i.e., module combination) may be treated as different function

codes that are executed in a specific order. As described above, the FaaS profiles may be

mapped to event bridge rules that define which FaaS function should be executed from a

daisy-chained FaaS function and in what sequence order.

10

Nainar et al.: DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT

Published by Technical Disclosure Commons, 2023

 10 6857

Aspects of the techniques presented herein also support the use of IP SLA attributes

which may be monitored by a cFaaS tool entity to trigger the dynamic creation and

selection of different FaaS templates at runtime based on the IP SLA parameters. For

example, different cFaaS profiles may be instantiated for different kinds of traffic patterns

such as an Internet Control Message Protocol (ICMP) Echo operation (for wide area

network (WAN) round-trip time (RTT) monitoring), an ICMP Path Echo operation (for a

traceroute or hop-by-hop monitoring), a User Datagram Protocol (UDP) jitter operation

(for Voice over Internet Protocol (VoIP) monitoring), or a video operation (for video

monitors).

Figure 9, below, presents elements of the type of approach that was described above.

Figure 9: Exemplary Arrangement

In summary, techniques have been presented herein that support a new dynamic,

traffic-aware Composable Function that leverages an inbound traffic request (comprising

metadata and various attributes with, for example, the relevant tracing context header,

custom HTTPS header, or OTel header with baggage) to identify and determine whether a

function bundle should be composed with observability, APM, or RASP tools for the

efficient utilization of the resource. Such a dynamically composed function may, in turn,

be hosted as one or more containers within a pod or as a serverless function to provide

more flexibility across different application and cluster environments.

11

Defensive Publications Series, Art. 5814 [2023]

https://www.tdcommons.org/dpubs_series/5814

	DYNAMIC RESOURCE PROFILE-BASED CONTAINER AND SERVERLESS CONSTRUCT FOR COMPOSABLE OBSERVABILITY TRACING
	Recommended Citation

	Microsoft Word - Publication Document for CPOL 1039931-US.01 4855-7531-8362 v.1.docx

