
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

April 2023

NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT)

DATA USING DISTRIBUTED MACHINE LEARNING DATA USING DISTRIBUTED MACHINE LEARNING

Srinivasan Srinivasan

Linda Zhou

Manikandan Mari Vera Kumara

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Srinivasan, Srinivasan; Zhou, Linda; and Vera Kumara, Manikandan Mari, "NOISE REDUCTION IN METRIC,
EVENT, LOG, AND TRACE (MELT) DATA USING DISTRIBUTED MACHINE LEARNING", Technical Disclosure
Commons, (April 10, 2023)
https://www.tdcommons.org/dpubs_series/5788

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5788?utm_source=www.tdcommons.org%2Fdpubs_series%2F5788&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6848

NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA
USING DISTRIBUTED MACHINE LEARNING

AUTHORS:

Srinivasan Arashanipalai
Linda Zhou

Manikandan Mari Vera Kumara

ABSTRACT

In the Observability domain, metric, event, log and trace (MELT) are basic data

types generated by the infrastructure and applications. These datasets are not only ingested

at high volume and high frequency but also related. Currently, available solutions are for

individual data types, i.e., metric monitoring, log analytics, trace flow analysis, etc. These

solutions do not provide a holistic view of the entire environment with MELT correlation.

To address these types of challenges, techniques are presented herein that support a

scalable, flexible, dynamic, and adaptive noise reduction system. While the system is

running as expected, data is collected at a lower frequency. When the first sign of trouble

appears, such a system may automatically increase collection frequency for change point

detection, anomaly detection, log pattern detection, and causal inference. Aspects of the

presented techniques employ a two-phase filtering mechanism comprising Edge Processors

and Global Processors to intelligently apply machine learning techniques to scale up and

down monitoring and root cause analysis capabilities.

DETAILED DESCRIPTION

To diagnose the cause of an anomaly related to business transactions or key

performance indicators (KPIs), users need to drill down into the related logs, events, and

traces. In typical cloud native applications, the volume of traces and logs that are associated

with a business transaction represents a huge overhead. The problem is further aggravated

by the fact that the logs are usually unstructured, low-level, noisy, and lack the information

about changes to the states of resources. Consequently, users need to employ both traces

and logs, as logs relate to intra-service behaviors while traces pertain to inter-service

behaviors.

2

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 2 6848

To identify and reduce noise, an integrated approach is used to decide the

relationships and the dependencies between metrics and the related logs and traces. Such

an approach should satisfy several design goals.

The first design goal encompasses scalability. In cloud native deployments it is

quite common for thousands of requests related to metric, event, log, and trace (MELT)

data types which need to be processed each second. The second design goal encompasses

low overhead. The approach should identify the incoming data as either significant or noise

without impacting the throughout. The third design goal encompasses configurability. The

approach should allow users to specify quotas and those constraints should be used to

decide whether to mark data as noisy or significant.

The fourth design goal encompasses flexibility. The approach should allow a user

to configure the solution to fit their specific requirements. For example, in addition to an

out-of-the-box (OOTB) configuration, users may tweak Relevance score thresholds to

determine whether the data is noisy. A fifth design goal encompasses automated machine

learning (ML). The ML models and algorithms should address different MELT data types

without requiring manual intervention.

Before proceeding, let us clarify several important terms that are used in this

proposal. Noise is defined as data that includes MELT data types which provide low

functional value during a root cause analysis and impose a significant overhead.

A Relevance score is defined as a measure of its usefulness for diagnostic purposes.

A low Relevance score points to noise while higher values relate to functional significance.

MELT data that is associated with normal performance is typically associated with a low

significance score while anomalous behaviors are associated with a high significance score.

Typically, a significant percentage of data is associated with normal performance while

anomalous behaviors are related with few data points. Computing a Relevance score is a

multi-step approach and is influenced by the relationships between the MELT data types

and within / across temporal time windows. A resource quota may be defined as a user-

specified constraint which influences a “whether to mark data as noise” decision.

Figure 1, below, presents various of the functional components of a system

according to the techniques presented herein and reflective of the above discussion

(including, among other things, the described design goals).

3

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 3 6848

Figure 1: Functional Components

Identifying noise is completed in two phases, Edge Processors and Global

Processors, to evaluate if not incoming data should be classified as noise. Such a distributed

filtering mechanism is employed to avoid the potential bottleneck, which may arise with a

single centralized filter e.g., when a substantial number of log requests arrive

simultaneously.

The Edge Processors are responsible for quickly classifying requests as noise. The

Global Processors consider the relationships across the MELT entities and state changes to

compute a Relevance score. Based on the Relevance score, a request may be tagged as

either noise or functional data.

It is important to note that based on user requirements, the functional components

in the Edge Processors may be included in the Global Processor (e.g., if the volume of data

is not significant).

The Edge Processors introduced above are responsible for quickly classifying a

request as noise using periodicity analysis. Periodicity analysis may detect low significance

logs by identifying log templates (i.e., a heartbeat message such as “Now listening on:

https://localhost:xxxx" or "20230125:10:00:03 ping OK"). These messages may be

characterized by a fixed periodicity.

The first step in the above-described process is log abstraction detection, which is

used to identify log templates. Such a log parsing process extracts the pattern of recurring

4

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 4 6848

logs by automatically separating the constant parts and the variable parts (i.e., tokens) of a

raw log message and applying regular expressions to each token resulting in the log

templates. An example of such an approach is illustrated in Figure 2, below, where low

significance log messages are presented in grey and high significance log messages are

presented in white.

Figure 2: Illustrative Log Messages

One periodicity checking algorithm, according to the techniques presented herein

and reflective of the above discussion, is presented in Figure 3, below.

Algorithm 1: Periodicity Checking

1. Derive the log templates using log abstraction
2. Compute the mean of the original data time series for each log template
3. Compute the difference between Original Data and Mean for all the observations
4. Square the output of (2) step
5. Compute the SUM of squared difference between Original Data and Mean for

all the observations
6. Compute the difference between Lag 1 series and Mean for (n-k) observations
7. Compute the product between the output of (2) and (5)
8. Compute the SUM of output of step (6)
9. ACF of Lag 1 = Output(6) / Output(4)
10. Apply Durbin-Watson statistic to test for autocorrelation
11. If Durbin-Watson statistic value is near 0, mark logs as “low significance”

5

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 5 6848

Figure 3: Periodicity Checking Algorithm

The proposed approach to detect periodic behavior is based on autocorrelation or serial
correlation. This type of correlation is used to understand how the time series
observations depend on with values of the same series of a previous time window. The
past observation in the series is referred to as lags. We first compute the correlation
coefficient between X and Y time series, then extend it to compute the correlation
between the same time series.

Corr ሺX, Yሻ ൌ
Cov ሺX, Yሻ
σଡ଼σଢ଼

ൌ

1
n െ 1∑  ୬

୧ୀଵ  ൫ሺx୧ െ x‾ሻሺy୧ െ y‾ሻ൯

σଡ଼σଢ଼

The correlation of the same series (Lag 0) is computed as

Corr ሺX, Xሻ ൌ
Cov ሺX, Xሻ
σଡ଼σଡ଼

ൌ

1
n െ 1∑  ୬

୧ୀଵ  ൫ሺx୧ െ x‾ሻሺx୧ െ x‾ሻ൯

σଡ଼σଡ଼

Corr ሺX, Xሻ ൌ
Cov ሺX, Xሻ
σଡ଼σଡ଼

ൌ

1
n െ 1∑  ୬

୧ୀଵ  ሺx୧ െ x‾ሻଶ

σଡ଼σଡ଼
ൌ
σଡ଼ ଶ

σଡ଼ ଶ
ൌ 1

Let L1 ൌ Lag 1 of X time series. The length of L1 series will be n െ 1
Since the summation is applied for both the series, the summation will have n െ 1 terms.

Corr ሺX, L1ሻ ൌ
Cov ሺX, L1ሻ
σଡ଼σ୐ଵ

ൌ

1
n െ 1∑  ୬ିଵ

୧ୀଵ  ൫ሺx୧ାଵ െ x‾ሻሺL1୧ െ x‾ሻ൯

σଡ଼σଡ଼
ൌ ACF ሺLag 1ሻ

We computed the ACF of Lag 1, and we can same extend the same formula to generalize
the lag terms.

ACFሺL1ሻ ൌ

1
n െ 1∑  ୬ିଵ

୧ୀଵ  ൫ሺx୧ାଵ െ x‾ሻሺL1୧ െ x‾ሻ൯

σଡ଼σଡ଼

Now we derive ACFሺL୏ሻ as below

ACF ሺL୏ሻ ൌ

1
n െ 1∑  ୬ି୩

୧ୀଵ  ൫ሺx୧ା୩ െ x‾ሻሺLk୧ െ x‾ሻ൯

σଡ଼σଡ଼

6

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 6 6848

Based on the data behavior detected in a prior time window, a near term forecasting

algorithm predicts if the data in the succeeding time window(s) are likely to be of high or

low value. The intuition is that that the data value should be higher if the performance

properties of the data in the current time window deviates from its behavior in a prior time

window(s). If the forecasted value is low, then those requests have a higher likelihood of

being low significance data. The forecasted values may be dynamically updated over each

time window.

Important considerations in an Edge Processor are low additional overhead and

scalability. To address those requirements, a distributed architecture and the inclusion of

only filters that are related to periodicity checks are suggested.

A significant percentage of requests typically relate to the normal performance of

an entity. A key intuition is that the information content in such requests is low while the

information associated with resource state changes is high.

The Global process functions are described in the following sections. Data in a

normal period are typically used to train ML model. However, after the ML models are

trained such requests are of low Relevance.

Figure 4, below, presents elements of a high-level view of a Kubernetes (K8)

lifecycle from a log perspective.

Figure 4: k8 Illustrative Lifecycle with Transient Actions and State Transitions

Logs and events represent the behavior (i.e., context) of a system while metrics

show the performance status of a system. The metrics may be related to resources (e.g.,

infrastructure) or to an application (e.g., traces and spans).

7

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 7 6848

Changes in a resource state may be identified using change point (CP) detection

algorithms and lifecycle templates. The CPs may be considered when computing a

Relevance score.

The techniques presented herein support the discovery of the relationships between

the entity types. A clustering algorithm may be used to identify affinity groups based on

their significance (i.e., a Relevance score). The Relevance score determines if a request is

tagged as noise or functional data.

As may be seen from the above, logs are generated at various points in time and

metrics are collected at potentially different points in time. Collecting monitoring data

points usually happens at fixed intervals, such as every minute or every five minutes. In

contrast, observation of system operations behavior through logs happens at non-fixed

intervals, such as the occurrences of a logs within one second and then then missing for the

next few seconds / minutes.

If a dataset is compliant with the OpenTelemetry (OTel) framework, then linking

the traces to logs may be accomplished using the Trace ID which is included on the related

logs. However, associating traces to other infrastructure logs (e.g., K8 logs) is more

involved as a Trace ID is not included in them.

To associate Traces and infrastructure logs, it is necessary to extract a set of metrics

that show the occurrences of different logs. Although the styles of logging may be different,

almost all types of logs contain time-stamped information whether they are application logs,

database logs, or operation logs as shown in Figure 2. Furthermore, a log message

represents information about an event, including logs that indicate preparation or waiting

periods.

Resource metrics contain a combination of performance metrics (e.g., memory or

CPU usage) and state-based metrics which indicate a transition in state (as depicted in

Figure 5, below).

8

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 8 6848

Figure 5: Illustrative State Transitions k8 Pod Lifecycle

Identifying state changes (such as, for example, a pod failure) is important as the

related logs are of high value in a root cause analysis (RCA), and thus have a high

Relevance score, while the lack of state changes correspond to a lower Relevance score.

The state changes relate to change points.

The techniques presented herein detect change points using a Bayesian model. The

model is agnostic regarding the type of state change and may be applied to different

resource lifecycles. Rather than retrospective segmentation, the focus is on causal

predictive filtering, generating an accurate distribution of the next unseen datum in the

sequence given only data already observed. The logs and traces that are associated with the

change points are assigned a higher Relevance score.

Figure 6, below, presents elements of an approach overview according to the

techniques presented herein and reflective of the above discussion.

Figure 6: Mapping & Metrics & Logs Approach Overview

9

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 9 6848

Under the approach that was described and illustrated above:

 Logs refer to individual log lines. Typically, each log line includes a timestamp

and a description.

 Clustering is a process that clusters fine-grained correlated logs to a set of

coarse-grained activities. This process may be referred to herein as log

abstraction or log clustering.

 Log groups refer to sets of logs that together are responsible for making a

change in a system or indicating a status of a system or application. For example,

the launching of a K8 pod instance.

 Metrics represent status and utilization of system resources within a time

window. For example, latency, average CPU or Memory utilization.

As described and illustrated in the above narrative, one of the elements of the

techniques presented herein is a Relevance score. The key steps in computing a Relevance

score are depicted in the flowchart that is presented in Figure 7, below.

Figure 7: Relevance Score Computation

10

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 10 6848

In the flowchart that was presented in Figure 7, above, the step encompassing the

identification of logs using a log abstraction was described previously in connection with

the above discussion of Edge Processors.

Under the step encompassing the mapping of an log to metrics, (e.g., a trace latency)

may be collected with, for example, a granularity of one minute. In contrast, log may be

logged with a frequency of seconds or several minutes. We interpolate the occurrence

strength of log clusters that occurred within each one-minute long time window to the

respective minute.

Typically, a similar cohort of log Groups together cause a tangible impact on the

status of resources. Thus, to find the impact of logs on related it is necessary to group

related logs. A correlation coefficient may be employed to identify the strength of

relationships across all of the related entities (i.e., logs, events, and traces). Log Groups

with high correlations may be combined to an log group (as depicted in Figure 9, below,

which presents an example of a JBoss log with the clustering of related logs to log groups).

Figure 9: Exemplary Clustering of Related Logs to Log Groups

A coefficient may be represented by the symbol 𝑟. In the instant context there is

one dataset 𝑥ଵ, … , 𝑥௡ containing 𝑛 values and another dataset 𝑦ଵ, … ,𝑦௡ containing 𝑛

values. Accordingly, a value for 𝑟 may be obtained as follows:

11

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 11 6848

𝑟 ൌ
𝑛∑ 𝑥௜𝑦௜ െ ሺ∑ 𝑥௜ሻሺ∑ 𝑦௜ሻ

ටሾ𝑛 ∑ 𝑥௜
ଶ െ ሺ∑ 𝑥௜ሻଶሿሾ𝑛 ∑ 𝑦௜

ଶ െ ሺ∑ 𝑦௜ሻଶሿ

In the case of calculating the correlation strength between two log types, in the

above equation 𝑛 is the number of monitoring observations, 𝑥௜ denotes the interpolated

occurrence strength of type 𝑥 at time 𝑖, and 𝑦௜ denotes the interpolated occurrence strength

of type 𝑦 at time 𝑖.

A value of r that is close to one (1) indicates a strong positive correlation between

the variables, which, in the instant case, indicates that event types are high highly correlated

and may be part of the same event group cluster.

The above proposed log abstraction technique using extracted interpolated

occurrence strength is a novel approach in the domain of log abstraction. The techniques

presented herein take into account the fixed time interval (which is enforced by metric

availability) and interpolation occurrences of log event types.

This approach has the advantage of being less dependent upon the quality of the

text of the logs, which is particularly relevant as the quality of the message content may

vary.

Finally, under the step encompassing log group and metric correlation, in typical

enterprise cloud native deployments there are an excessive number of metrics. Further

many metrics are of low significance & leads to cognitive overload. Changes in a log’s

activities data are typically precursors to a change with respect to related metric. For

example, it may be assumed that as services initiate new sessions recorded in logs leads to

changes in associated resource consumption metrics. Such observations may be used to

detect the normal (and changes in the) behavior of the system. Consequently, it is important

to identify the few critical metrics that are of high Relevance. To achieve this, we discover

the causal relationship between clustered log and changes in metrics may be discovered.

Based on this, a hypothesis posits that the status of metrics may be predicted from changes

in activities in the logs. The dependent variables are the metrics while the independent

variables are the activities that have been abstracted from logs. Those metrics that have a

high causality relationship are tagged as having a high significance i.e. high Relevance

score.

12

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 12 6848

Figure 9, below, presents elements of a flowchart that captures the checking of the

relevancy of a monitoring metric.

Figure 10: Illustrative Metric Relevancy Detection

Flexibility is an important design goal. According to aspects of the techniques

presented herein, a user may define a logging quota – Such a quota is a threshold that is

checked by the Edge Processors thereby complying with the logging quota. At runtime, the

logging system decides "whether to log" such that the logging overhead is constrained

under the quota while the logging effectiveness is maximized. The quota or logging

overhead is defined as logging bandwidth, which is the maximum volume of logs that are

to be allowed to be output during a specified time interval (such as, for example, one

kilobyte (KB) per second). There are two reasons for choosing logging bandwidth as the

quota. Typically, input and output (I/O) bandwidth is the most concerning overhead in

practice. Further, in general most logging overhead such as disk storage, network I/O and

CPU consumption are directly or indirectly affected by I/O bandwidth.

Aspects of the techniques presented herein employ adaptive feedback. For example,

based on current logging performance and a user-defined quota, the Edge Processors may

increase or decrease a log identification rate.

Use of the techniques presented herein offers a number of advantages. Several of

those advantages will be briefly described below.

A first advantage reflects the reality that given the high volume and high frequency

of metric, log, and trace information that is collected from different agents, it is very costly

to store every bit of information in fast storage. In production, the uptime of any system is

at a minimum 99.9% (i.e., three nines). Most of the time, 99.999% (i.e., five nines) is the

standard under service-level agreements (SLAs). Therefore, most of the time, collected

13

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

 13 6848

metric, log, and trace data are never used for observability purposes. The techniques

presented herein maintain the fidelity of the information in cold or archive storage

(according to data management policies) while enabling DevOps to use it to detect

anomalies and perform RCA.

Under a second advantage, with metric and log information both ML and user-

defined rules may be used to increase or decrease the data that is stored in the fast tier

storage. The list price for one cloud-based fast storage solution is $0.021 per gigabyte (GB)

while the price for a cloud-based archiving solution is $0.004 per GB. For example, one

large mobile operator ingests 600 terabytes (TB) of log content each day, yielding a storage

cost for cloud-based fast storage of $12,600 per day while the storage cost for a cloud-

based archiving solution would be $2,400 per day (in other words, a savings of 425%). Not

only can operational efficiency be increased by actively moving data to slow storage, but

it is also possible pass the savings along to customers and further introduce competitive

pricing. For instant access the techniques presented herein employ ML models to actively

categorize data as being important or not important. If the data is tagged as important, the

ML models may detect anomalies, build log context, and create a trace knowledge graph.

All of the ingested data may be stored for audit trail purposes in the slow tier of storage.

For example, using the above example 600TB of ingested log content would be on cold

storage and approximately 0.1% would be on the fast tier (costing only $12.60 per day)

providing a 425% savings.

A third advantage encompasses a very important aspect of the techniques presented

herein – the noise reduction system is adaptive. When the first sign of trouble arises, the

system may automatically increase data storing on the fast tier storage for metric change

point detection, anomaly detection, log pattern detection, log context detection, and

trace/span graph anomaly detection. In this way, when DevOps tries to look for the root

cause of system problems, all of the relevant information will be at their fingertips. By

significantly reducing the amount of irrelevant data that is stored for anomaly detection

and RCA, a dashboard according to the techniques presented herein will run faster while

the user can reduce their time to recovery.

In summary, techniques have been presented herein that support a scalable, flexible,

dynamic, and adaptive noise reduction system that may facilitate addressing various cloud

14

Srinivasan et al.: NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USIN

Published by Technical Disclosure Commons, 2023

 14 6848

native application problems. When the first sign of trouble appears, such a system may

automatically increase data storage on the fast tier storage for metric change point detection,

anomaly detection, log pattern detection, log context detection, and trace or span graph

anomaly detection such that MELT data can be used to reduce noise in log content

processing. Aspects of the presented techniques employ a two-phase filtering mechanism

comprising Edge Processors and Global Processors (to evaluate if an incoming request

should be classified as noise or functional data that is useful for problem diagnosis),

leverage automated ML facilities, and employ a Relevance score (that may be defined as a

measure of the functional relevance of data (i.e., its usefulness for diagnostic purposes)).

15

Defensive Publications Series, Art. 5788 [2023]

https://www.tdcommons.org/dpubs_series/5788

	NOISE REDUCTION IN METRIC, EVENT, LOG, AND TRACE (MELT) DATA USING DISTRIBUTED MACHINE LEARNING
	Recommended Citation

	Microsoft Word - Revised Publication Document for CIPOL 1039903 4865-0969-9163 v.1.docx

