
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Masters Theses & Doctoral Dissertations

3-2023

MEASURING THE PERFORMANCE COST OF MANUAL SYSTEM MEASURING THE PERFORMANCE COST OF MANUAL SYSTEM

CALL DETECTIONS VIA PROCESS INSTRUMENTATION CALL DETECTIONS VIA PROCESS INSTRUMENTATION

CALLBACK (PIC) CALLBACK (PIC)

Jacob Williams

Follow this and additional works at: https://scholar.dsu.edu/theses

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages

MEASURING THE PERFORMANCE COST OF MANUAL

SYSTEM CALL DETECTIONS VIA PROCESS

INSTRUMENTATION CALLBACK (PIC)

A dissertation submitted to Dakota State University in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Cyber Operations

March, 2023

By

Jacob Williams

Dissertation Committee:

Dr. Cody Welu, Chair

Dr. Cherie Noteboom, Committee Member

Dr. Tyler Flaagan, Committee Member

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of
Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of
this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions
of the major department or university.

Student Name:

Dissertation Title: _______________________________________

Dissertation Chair/Co-Chair: Date: _____

Name:

Dissertation Chair/Co-Chair: Date: _____

Name:

Committee member: ______ Date: _____

Name:

Committee member: ______ Date: _____

Name:

Committee member: ______ Date: _____

Name:

Committee member: ______ Date: _____

Name:

Original to Office of Graduate Studies and Research
Acid-free copies with written reports to library

���
�	������
��	����

�
	���������
��
�����	��
����������	��	������
���	����
�
���������	�����
���
�������
��	������	��
	��������

� "+!��'((').

	,-'(���������

�+#1��$(0

�&$-'$��+/$!++)

	,-'(���������

	,-'(���������

�1($-��(% *

 iii

ACKNOWLEDGMENT

Writing an entire dissertation is nothing compared to trying to find the right words to

express how grateful I am for the support I received throughout this entire process. A good start

is to acknowledge the commitment that each of my committee members demonstrated in seeing

this through. Dr. Noteboom, thank you for your sharp eye for detail and valuable insight you

provided for not only my paper but my aspirations outside of defending my proposal. From the

first time I submitted a rough draft of my work, you provided me with a well of confidence that I

happily withdrew from any time I was lacking any of my own. Dr. Flaagan, I know you joined

my committee as a late addition but that would be impossible to tell from the amount of feedback

and support I received from you. Thank you for being a part of my journey to complete this

paper. Dr. Welu, if I had not watched you go through this same process a few years ago I would

not have had the courage to apply to the program and pursue my doctoral degree in the first

place. You inspired me to push myself and create a body of work that I can truly be proud of.

Thank you for being a fantastic dissertation chair and most of all, a lifelong friend. I only get a

single page to write acknowledgements otherwise there are a lot of people that made

cybersecurity a career for me and DSU a second home. To my DSU family that I have

accumulated over the last nine years, thank you for everything.

This list would not be complete without acknowledging my family, especially my wife

Rachel. I can’t promise you a future without having to listen to me blab about technology (that’s

a lifelong commitment) but we can finally put this process behind us. You always knew just

what I needed to keep myself motivated whether it was engaging with me about potential ideas

or subtly leaving sticky notes on my computer monitors saying that you were proud of me. To

my parents: my ability to write this section is the direct result of the encouragement and support

 iv

you have shown me throughout my life. To my dad specifically, thank you for the countless

hours that you spent reviewing my work and receiving my phone calls. You have been my best

friend throughout these last few years, and I cherish the time that we have been able to spend

together relating to each other’s academic experiences.

 v

ABSTRACT

This quasi-experimental before-and-after study measured the performance impact of

using Process Instrumentation Callback (PIC) to detect the use of manual system calls on the

Windows operating system. The Windows Application Programming Interface (WinAPI), the

impacts of system call monitoring, and the limitations of current detection mechanisms and their

downsides were reviewed in-depth. Previous literature was evaluated that identified PIC as a

unique solution to monitor system calls entirely from User-Mode, being able to rely on the

Windows Kernel to intercept a target process. Unlike previous monitoring techniques, PIC must

handle all system calls when performing analysis which requires an increase in processing. The

impact on a single process was evaluated by recording CPU time, memory utilization, and clock

time. Three different iterations that performed additional analysis were developed and tested to

determine the cost of increased fidelity in detection. Results showed a statistically significant

increase when PIC was applied in each version. However, the rate of impact was drastically

reduced by restricting dynamic lookups to process initialization and the elimination of the

Microsoft Debugging Engine. Future integration with existing detection mechanisms such as

User-Mode hooks and Event-Tracing for Windows is encouraged and discussed.

 vi

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language

of others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Jacob Williams

 vii

TABLE OF CONTENTS

MEASURING THE PERFORMANCE COST OF MANUAL SYSTEM CALL DETECTIONS VIA

PROCESS INSTRUMENTATION CALLBACK (PIC) .. I

DISSERTATION APPROVAL FORM..II

ACKNOWLEDGMENT .. III

ABSTRACT .. V

DECLARATION .. VI

TABLE OF CONTENTS .. VII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

CHAPTER 1 .. 1

INTRODUCTION ... 1

BACKGROUND OF THE PROBLEM ... 3
STATEMENT OF THE PROBLEM ... 6
RESEARCH QUESTION .. 7
NATURE OF THE STUDY ... 8
SUMMARY ... 10

CHAPTER 2 .. 11

LITERATURE REVIEW ... 11

WINDOWS ARCHITECTURE .. 11
User-Mode vs Kernel-Mode ... 12
Windows Application Programming Interface .. 14
Native API .. 15
System Calls ... 16

SURVEY OF HOOKING METHODS ... 18
SSDT Hooking ... 19
User-Mode Hooks .. 20
User-Mode Hooks Performance .. 24

BYPASSING USER-MODE HOOKS ... 27
Unhooking.. 27
Manual System Calls ... 28

 viii

DETECTION OF MANUAL SYSTEM CALLS .. 31
Event-Tracing for Windows ... 31
Process Instrumentation Callback ... 34

SUMMARY ... 39

CHAPTER 3 .. 41

RESEARCH METHODOLOGY ... 41

RESEARCH METHOD AND DESIGN APPROPRIATENESS ... 41
RESEARCH QUESTIONS, HYPOTHESIS, AND VARIABLES .. 44
POPULATION.. 45
SAMPLE COLLECTION .. 48
INSTRUMENTATION ... 49
VALIDITY AND RELIABILITY ... 50
ASSUMPTIONS ... 51
SCOPE AND LIMITATIONS .. 52
SUMMARY ... 53

CHAPTER 4 .. 54

RESULTS ... 54

DATA COLLECTION ... 55
PICE DETECTION AND ANALYSIS METHODS ... 57

Version 1 .. 57
Version 2 .. 59
Version 3 .. 62

SYSTEM PERFORMANCE .. 64
User-Mode and Kernel-Mode Performance .. 64
Clock Time CPU Performance .. 65
Memory Performance .. 67

STATISTICAL ANALYSIS .. 69
Analysis Goals ... 69
Survey of Statistical Methods ... 69
Evaluation of Statistical Results .. 71
Summary .. 73

CHAPTER 5 .. 75

CONCLUSION .. 75

REVIEW OF FINDINGS .. 75

 ix

CPU Utilization ... 76
Memory Utilization .. 78
Detection Capabilities ... 80

DISCUSSION ... 83
Using PIC to detect Manual System Calls ... 83
Integration with Existing Detection Mechanisms .. 85
Future Research ... 87

LIMITATIONS ... 88
SUMMARY ... 90

REFERENCES .. 92

APPENDIX A: AVERAGE USER-MODE AND KERNEL-MODE TIMES 103

APPENDIX B: AVERAGE MEMORY UTILIZATION... 105

APPENDIX C: AVERAGE REAL-TIME .. 107

APPENDIX D: SOURCE CODE LOCATION .. 109

APPENDIX E: GLOSSARY .. 110

 x

LIST OF TABLES

Table 1. Windows subsystem DLLs and their use cases (Catlin et al., 2017a; “Windows

API,” 2021) ... 14

Table 2. NTDLL User-Mode Callbacks (Everdox, 2013) ... 35

Table 3. Actions performed by TIP and the corresponding system calls 56

Table 4. Average User-Mode and Kernel-Mode execution time in microseconds 65

Table 5. Clock Time execution in microseconds ... 66

Table 6 . Average Virtual and Physical memory usage in bytes...................................... 67

Table 7. T-test results for User-Mode and Kernel-Mode execution time 72

Table 8. Percentage of CPU utilization increase over Windows baseline without PICE 78

 xi

LIST OF FIGURES

Figure 1. WinAPI transition to Windows Kernel .. 16

Figure 2. SCN Relation to SSDT (Allievi et al., 2021) ... 17

Figure 3. Basic User-Mode Hooks Example Diagram .. 22

Figure 4. x64 Windows Calling Convention ... 28

Figure 5. Process Instrumentation Callback Information Structure (Ionescu, 2016) 36

Figure 6. Quasi-experimental diagram showing pre-test and post-test in the study's

context ... 44

Figure 7. Diagram of PICEv1 Analysis ... 59

Figure 8. SysCallList Structure Layout.. 60

Figure 9. Diagram of PICEv2 Analysis ... 62

Figure 10. Diagram of PICEv3 Analysis ... 64

Figure 11. Comparison of CPU utilization time for each version of PICE 77

Figure 12. Average memory utilization for each version of PICE 79

Figure 13. Jumping directly to syscall instruction to avoid PICEv2 detections (Josh,

2021) ... 82

file:///C:/Users/Jacob/Dissertation/Dissertation%20Final%20Draft.docx%23_Toc132805977

1

CHAPTER 1

INTRODUCTION

Information security has been an intense cat-and-mouse game between security

professionals and malicious actors for many years. Malicious actors create new bypasses of

security systems constantly, requiring a greater investment in detecting and blocking these

techniques by security professionals. Often the first step of a detection method involves the

ability to monitor the programs running on a computer system.

 A common technique for monitoring is the interception and analysis of function calls

(Abimbola et al., 2006; Eder et al., 2013). This is referred to as ‘hooking’ and is commonly

used by antivirus companies as the primary way to determine if a program is malicious or not

(Madani P, Vlajic N 2016). These hooks operate before the requested function call is

executed, operating as an intermediary. If no malicious indicators are identified, then it is

allowed to continue execution without interference.

 These hooking techniques focus on ‘system calls’, which are functions provided by the

operating system (OS) to facilitate interaction with the Windows Kernel (Bremer, 2012;

Hand, 2020; Marhusin et al., 2008a; Tang, 2017). The Windows Kernel operates at the lowest

code level of the OS and is referred to as Kernel-Mode. It is responsible for tasks such as

allocating memory, creating a new process, or displaying information on the screen on behalf

of User-Mode processes (Allievi et al., 2021). These tasks are exposed to developers through

a series of application programming interfaces, commonly referred to as the Windows

2

Application Programming Interface (WinAPI). Performing essentially any task on a computer

system requires programs to interface with the WinAPI. This creates an ideal choke point for

monitoring suspicious behavior that occurs in User-Mode.

A technique attackers use to avoid detection is by manually invoking system calls (de

Plaa, n.d.; Gavriel, 2018; MDSec, 2020). By skipping the convenience provided by WinAPI,

attackers can operate undetected by utilizing the numerical representation of a system call

instead. This number, known as the System Call Number (SCN), is used by the native

WinAPI function to instruct the kernel what routine it would like to have called. Bypassing

the WinAPI and using the SCN to instruct the kernel results in the bypass of hooking

implementations and detection failure. Consequently, manual invocation of system calls

would only be detectable from code running in the kernel.

 Methods such as Event-Tracing for Windows (ETW) exist to receive notifications via

the kernel about certain activities, which provide a convenient mechanism for the detection of

potentially malicious activity (Alshehri et al., n.d.; Bode & Warnars, n.d.). The most helpful

logs require the user’s software to be signed by Microsoft (Microsoft, n.d.-b). Security

researchers have published techniques that limit the effectiveness of ETW’s reporting

mechanism and subvert its results (Chester, 2020; de Plaa, 2020/2020; Teodorescu et al.,

n.d.). Further restrictions of ETW are covered in depth in Chapter 2.

Process Instrumentation Callback (PIC) presents an alternative detection technique by

presenting a User-Mode (UM) capability allowing for the hooking of system calls when they

return from the kernel. (Ionescu, 2016; MDSec, 2020; nick.p.everdox, 2013; Noah,

2017/2022; Ullrich, 2021). PIC has been a part of the Windows OS since the introduction of

Windows Vista, utilized internally by Microsoft with no official documentation mentioning

3

its existence (Ionescu, 2016). Prior research has demonstrated PIC to be useful in detecting

manual system call usage, but it has significant drawbacks that question it’s viability as a

business solution (MDSec, 2020; Noah, 2017/2022; Richard, n.d.; Ullrich, 2021). At large,

the monitoring and inspection of processes across an entire OS is a laborious task that requires

a low overhead (Marhusin et al., 2008b). Before PIC can realistically be implemented in

existing detection stacks, defenders must first understand the potential impact on operational

costs and benefits.

This study measured the performance impact of using Process Instrumentation

Callback to detect the use of manual system calls on the Windows operating system. Chapter

1 will provide further background and the significance of the problem. Assumptions and

scope are clarified to contextualize the model and the research questions associated with it.

Background of the Problem

Microsoft Windows is the most popular computer OS and is used throughout the

world. Roughly 74% of home computers worldwide rely on it to be able to complete daily

tasks such as browsing the Internet, checking up on social media, and working from home

(Statista, 2021a). Similarly, 72.1% of servers across the world rely on Windows to host

services and conduct business (Statista, 2020). This ubiquitous reliance has resulted in

malware created by bad actors specifically target the Windows operating system.

Malware campaigns have increased significantly in recent years, targeting industries

such as healthcare, finance, and public infrastructure (Arghire, 2022; Bartolik, 2022;

HealthITSecurity, 2020). Once installed, this software relies on the ability to operate

undetected while making changes to the OS. These changes vary depending on the goals of

4

the attack but often include things like credential stealing, encryption of documents, and

crypto-coin mining (ChainAnalysis, 2022; HealthITSecurity, 2020).

The execution of the Windows OS is separated into two main modes: User-Mode

(UM) and Kernel-Mode (KM) (Lopez et al., 2017; Microsoft, n.d.-d). Normal applications

like internet browsers and mail clients execute within UM. KM contains lower-level system

services that provide interactions between software and physical hardware. The relationship

between UM and KM is a critical mechanism for the stability of the operating system.

Chapter 2 will further expand on the security boundaries and separation of the two

technologies.

To interact with the Windows Kernel from UM, Microsoft exposes a series of

Windows application programming interfaces (WinAPI). These WinAPI consists of a set of

functions exported through special dynamic link libraries (DLL) that are pre-installed on the

system (Microsoft, n.d.-a). These each perform a targeted action on the system, such as

creating a file on disk or initializing a page of memory. Parameters are then validated and

passed to a low-level instruction called a system call. A numeric value corresponding to a

routine in the kernel is assigned to each system call to differentiate which action should be

performed. This is the last instruction that executes prior to exiting UM (Tang, 2017). Tasks

will often involve the calling of multiple system calls in a certain order to fulfill an objective.

For example, reading a file from disk require also requires a handle to be opened and closed

to function properly. By requiring specific sets of parameters and permissions to execute,

Microsoft created a predictable way for applications to run on the operating system.

To combat the threat of malware, antivirus companies have attempted to monitor the

system calls by installing UM hooks in the API’s prologue (Lopez et al., 2017). These hooks

5

intercept the execution of the function by first performing a series of checks to determine its

legitimacy. The results of these checks determine whether execution is given back to the

calling program or if the antivirus instead chooses to terminate execution. Installation requires

the interception of the startup routine of a process and then the injection of code to search for

the memory location of desired Windows API DLLs to overwrite them. This system-wide

monitoring requires Administrator access to the system and quite often is accompanied by

companion software running in the kernel.

 Malware developers avoid detections by retreating lower in the call stack to prevent

triggering system call detection. Since the WinAPI operates as a wrapper around the x86_64

instruction syscall, this presents a weakness. By discovering the correct System Call Number

(SCN) and executing it manually, attackers can ensure that the hooked function is never called

(de Plaa, n.d., n.d.; Gavriel, 2018; Hydra, 2020; MDSec, 2020). SCNs are an undocumented

feature of Windows, subject to change between Windows releases (Allievi et al., 2021). This

requires an application to know what version of the OS it is operating on so it can utilize the

correct SCN. Numerous projects exist in the public domain that categorizes these numbers for

ease of use and provides source code to automate their retrieval (Jurczyk, 2020; T,

2021/2022)

 Process Instrumentation Callback (PIC) is a native feature of the Windows OS that

allows developers to require a process to divert execution to a specified memory address

every time it traverses from KM to UM (Bhansali et al., 2006). It is undocumented by

Microsoft and there are no official references how to make use of it. The Windows Kernel

naturally transitions from KM to UM every time it finishes the execution of a system call on

behalf of a UM application (Allievi et al., 2021; Everdox, 2013). This is incredibly useful for

6

the post-processing of the system call because it allows for analysis of the UM process that

requested it. Just like with UM hooks, a decision can be made to terminate the process if

desired. PIC has gone largely unnoticed in academia, even though it has existed in the OS

since Windows Vista (Bhansali et al., 2006). A few security researchers have spoken about

this capability and created proofs-of-concept (POCs) that showcase its usefulness for

offensive and defensive capabilities (Cocomazzi, n.d.; Ullrich, 2021). Security monitoring at

scale requires consideration of the system impact despite the benefits of increased telemetry.

Statement of the problem

 The problem is that manual system calls are used by malware to evade modern

detection mechanisms on Windows and undermine the confidentiality of its users. Operating

at the lowest level of UM, manual system calls force defensive technologies to explore

alternative solutions.

 Current implementations of UM hooks lack complete coverage of the execution stack

(MDSec, 2020). This has created a situation where malicious code can operate undetected by

purposely extracting and manually invoking system call instructions. Current detection of

manual system calls relies heavily on ETW to provide KM telemetry (de Plaa, n.d.; Hydra,

2020). KM telemetry that can assist with the detection of manual system calls is limited to a

subset of Microsoft-approved vendors that submit themselves to an in-depth verification

process and membership of the Microsoft Virus Initiative (MVI) (Microsoft, n.d.-b). Research

also shows that ETW’s reporting mechanism is unreliable and is frequently bypassed

(Chester, 2020; de Plaa, 2020/2020; Teodorescu et al., n.d.). Additionally, ETW’s telemetry

fails to provide detection for manual system call activity, rather reporting specific events that

7

are provided from the kernel. PIC fills the gap left by UM hooks while preserving the ability

to monitor entirely from UM.

Although companies could previously rely on UM hooks to monitor process activity,

it is no longer a sufficient detection mechanism for applications that utilize manual system

calls. Process Instrumentation Callback represents a solution to this problem by presenting an

alternative way for companies to be able to achieve comparable results without the

requirement of Microsoft code signature or kernel modification.

 Proper adoption of new technologies requires proper baselining to be able to gauge

their performance and therefore usefulness in the real world (GenPact, 2014). By its nature,

hooking introduces overhead complexities that must be accounted for. Previous UM hooks

have the advantage of being able to designate a subset of functions to be hooked. PIC has no

such luxury, requiring the process as a whole to be hooked, resulting in the interception of

every system call the process makes (Ionescu, 2016; Marhusin et al., 2008b).

Research Question

This study measured the performance impact of using Process Instrumentation

Callback to detect the usage of manual system calls on the Windows operating system. This

involved a comparative analysis between process execution without intervention and with PIC

interception and analysis. Measuring the performance impact of PIC is guided by the

following research question:

What are the performance impacts of monitoring execution using Process

Instrumentation Callback to detect the use of manual system call with regards to CPU time,

memory utilization, and clock time?

8

 An additional research question was created to guide the enhancements and upgrades

to PIC’s analytical capabilities:

 Can we perform additional analysis using PIC to detect manual system calls and what

is their effect on performance?

These questions together guided the model’s construction and analysis by defining the focus

of this research.

Nature of the Study

This study utilized a quantitative approach to measuring the results of the model, with

and without PIC treatment. Creswell (2018) defines experimental research as seeking to

determine if a specific treatment influences an outcome. Experimental research can vary from

true experiments where samples are chosen completely at random or the opposite where

samples are non-randomized and chosen purposefully.

Quasi-experimental before-and-after designs specialize in the evaluation of pre-post

intervention scenarios, where randomization is either not possible or irrelevant to the outcome

of the study (Harris, 2006). The study of before and after design allows a researcher to

construct a baseline measurement before treatment and then compare the measurements from

treatment to determine the impact (Kumar, 2014). This study reused the same programs and

operating system before and after treatment to measure performance impact of PIC.

Therefore, randomization was not practicable for this study. The quasi-experimental

methodology was chosen to guide this study for this reason.

 To maintain validity, researchers must maintain strict guidelines that mitigate internal

and external influences (Creswell, 2015). Internal influences may involve things like time

9

passing between experiments and unequal selection of sample groups. External influences can

include things like unbalanced treatment of the population between pre- and post-testing. To

mitigate these, this study utilized a virtualization environment that allowed identical testing

scenarios to be repeated without change. This allowed the exact instrumentation to be applied

evenly across groups and to maintain the validity of results.

 Reliability can be established when a research instrument can provide similar results

when used repeatedly under similar conditions (Kumar, 2014). This is accomplished by

repeating each testing scenario a total of 30 times and recording the results. This number was

chosen based on previous studies that also monitor the performance impact of hooks to assess

consistency (Marhusin et al., 2008). Any irregularity from the average is apparent and can be

investigated. Assuming the same experimental environment, the results should have

consistency between tests.

 With a quasi-experimental design in mind, the researcher created a model that: [1]

monitored the execution of system calls, [2] intercepted or activated upon return from KM,

[3] validated the origin of the call, and [4] recorded the runtime overhead. A sample program

was developed to simulate system call activity on Windows. Existing POCs that utilize PIC

were included in the model and further expanded upon in three different versions. Each

version explores stability and enhances the analytical capabilities for manual system call

detection.

10

Summary

 The purpose of this research is to analyze the performance impact of detecting manual

system calls utilizing PIC. This chapter presented an introduction to the topic area and the

background of the research problem. The methodology that this study used is a quasi-

experimental before-and-after study. Variables such as CPU time, memory utilization, and

clock time were recorded to determine the impact.

 Chapter 2 will present a literature review that reviews the current state of the research

and illustrate the significance of the problem area. Previous research in both PIC and system

call detection are surveyed and explained in detail. Additional topics include the progression

of WinAPI monitoring, manual system calls and how their use, existing detection methods,

and an overview of the Windows architecture separation of UM and KM.

11

CHAPTER 2

LITERATURE REVIEW

Chapter 1 introduced the topic area and a brief background of the significance of the

problem. This study measures the performance impact on a single computer system when PIC

is monitoring for manual system call usage. The chapter also defined the study’s problem

statement, research question, and research design. Chapter 2 provides additional background

and significance for the topics covered in Chapter 1. This includes a basic overview of the

Windows operating system and how programs interact with it. Discussion of the design

decisions to separate execution into UM and KM is explored, with added context from

relevant literature in the topic area. The history of hooking is presented to provide the context

of the environment and the relevance of the problem. This chapter reviews previous work that

involves both the use of manual system calls and their current detection mechanisms,

including PIC. Lastly, this section looks at how similar studies have collected and analyzed

the performance of hooks.

Windows Architecture

 Microsoft officially released the Windows 10 operating system in July 2015 and

declared it to be the last version of the operating system they would be releasing, with the

exception of releasing updates for existing Windows 10 installations (Catlin et al., 2017a).

Often these updates include security mitigations for vulnerabilities that are discovered in the

12

operating system. Windows 10 saw a rapid increase in the adoption rate compared to previous

versions, nearly doubling the number of end-users in two years (Statista, 2021b).

 Windows dominates the market by holding 74% of all personal computers (Statista,

2021a). It has undergone many changes throughout the years as technology has progressed

and better hardware has become available. The literature is described as it relates to the

Windows 10 version of the operating system. This is the version used in the development and

execution of the experiment.

User-Mode vs Kernel-Mode

 Microsoft considers stability paramount to the success of the Windows operating

system (OS) (Catlin et al., 2017a). To protect user applications from accessing or modifying

critical OS data, Windows execution is managed in two modes: User-Mode (UM) and Kernel-

Mode (KM). User applications such as an internet browser or email client run in UM. Critical

system components like device drivers and services run in KM. These critical service

components are known as the Windows Kernel.

 Running applications are separated by their location in memory. Read and writes to

memory locations occur using virtual addresses (Microsoft, n.d.-e). These virtual addresses

are a logical representation of a physical address inside the memory used by the OS. When an

address is translated from virtual to physical during a read or write operation, it is known as

mapping (Catlin et al., 2017a). Windows includes a memory manager that assists with this

operation and controls the separation of physical and virtual memory.

 When executing a UM application, the OS automatically creates an object to contain

all of the information required for it to operate (Catlin et al., 2017a; Microsoft, n.d.-d). This

13

object is called a process, and it is in a private virtual address space within memory. A process

can be executed without worrying about altering the memory of another running process.

Being private means that if something goes wrong and the process crashes, it is limited to the

individual application that ran. Memory privacy provides stability to the OS by restricting

memory access and isolating failure to the affected processes. Also, when the processor is

running in UM it cannot access virtual addresses that are reserved for the OS (Catlin et al.,

2017a). This denial of access is what creates the boundary between UM and KM.

 Unlike UM, all processes running in KM share a single virtual address space

(Microsoft, n.d.-d). This means that all the crash protection afforded to UM applications is not

present. The code must be written with care to avoid any accidental overwrites of other

processes or critical services. Due to the extremely delicate nature of this address space,

Microsoft has restricted the ability of applications to run in KM. Consequently, developers

commonly use driver code to access this capability when necessary (Catlin et al., 2017a).

Drivers are software that is allowed to execute within kernel space and usually

provides some sort of service for the OS. They are released by hardware vendors to instruct

the OS on how to interact with their products. (Catlin et al., 2017a). A simple example is a

keyboard that comes with a driver that translates the physical actions of a button press to what

Windows recognizes as input.

Windows 10 requires all drivers to be certified by Microsoft through a code review

process called the Windows Hardware Compatibility Program (WHCP) (Microsoft, n.d.-f).

WHCP is designed to maintain stability and security within the OS by conducting a thorough

examination of every submission. Once a driver passes inspection, it is digitally signed by

Microsoft. Every version of the operating system is aware of this signature and once it verifies

14

its authenticity, it is then allowed to execute in KM. Not only does this inspection ensure that

driver code does not threaten the stability of the OS, but also allows Microsoft to prevent

malicious code from executing in the kernel.

Windows Application Programming Interface

 Nearly all the programs running in UM on Windows rely on services provided by the

kernel and require a standard way to make requests to KM services (Catlin et al., 2017a;

Lopez et al., 2017). These services include things such as allocating memory, input/output

(I/O) operations, or the creating of processes. This is provided by the OS through the

Windows application programming interface (WinAPI). The WinAPI abstracts away many of

the complex details of how the OS works and provides a set of callable functions (Catlin et

al., 2017a; Reddy, 2011). These functions correspond to the specific operation that is to be

completed by the kernel before returning execution to the UM application. Common examples

are CreateProcess, VirtualAlloc, and WriteFile.

 To organize and package functions according to the different jobs that can be

performed by the OS, Microsoft exports dynamic link libraries (DLL). A DLL is a binary file

that can be included by applications that wish to use the exported functions provided by them

(Catlin et al., 2017a). DLLs can be preinstalled in applications via the compilation process or

loaded dynamically from the disk in UM. Microsoft-provided DLLs that provide interaction

between UM and KM are called ‘subsystem DLLs’. Common examples are shown in Table 1.

Table 1. Windows subsystem DLLs and their use cases (Catlin et al., 2017a; “Windows API,”
2021)

NAME PURPOSE DLL

15

Table 1 (continued).

BASE SERVICES File System, Devices, Processes, and Thread

Management

Kernel32.dll

ADVANCED

SERVICES

Registry Read/Write, Shutdown/Reboot, Service

Management

Advapi32.dll

USER

INTERFACE

Create windows, buttons, mouse/keyboard Comctl32.dll

NETWORK

SERVICES

NetBIOS, RPC, Sockets Netapi32.dll

Native API

 Another application programming interface (API) that is exposed to UM applications

is the Native API (NTAPI). NTAPI is an undocumented interface that operates on a level

below the subsystem DLLs, acting as the last layer before execution transitions to KM (Catlin

et al., 2017a). Like WinAPI, a set of functions are exposed through a DLL named NTDLL.

Over 450 functions are exposed by NTDLL that correspond directly to functions with the

same name in the Windows Kernel that provides system services for user applications (Catlin

et al., 2017a). Functions exposed to WinAPI from NTDLL are referred to as NT Functions

because they all follow a similar naming convention of prepending the letters “NT” to the

beginning of their name. This is to distinguish them from their WinAPI counterparts which

have the same. Examples include NtCreateProcess, NtAllocateVirtualMemory and

NtCreateFile. Figure 1 provides a visual representation of a WinAPI function call transition to

KM.

16

Figure 1. WinAPI transition to Windows Kernel

 Microsoft does not support the use of the NTAPI for user applications officially since

they reserve the right to make changes at any time between updates. Therefore, little to no

official documentation exists for developers that would like to use it (Allievi et al., 2021). For

most commercial software, the WinAPI provides all the necessary functionality to run their

applications. The exception to this rule is programs created by Microsoft themselves, known

as Native Images (NI). These applications often only require functionality exposed by the

NTAPI and use it to manage other processes on the system (Allievi et al., 2021).

System Calls

 On a 64-bit Windows 10 operating system, the assembly instruction syscall is the last

instruction executed before the processor changes execution from UM to KM (Allievi et al.,

2021; de Plaa, n.d.). When a UM application calls a WinAPI function, the corresponding

NTAPI function is called which executes the syscall instruction. The syscall instruction

17

switches the processor to KM. Transitioning from UM to KM to invoke a system service is

defined as a system call.

 The Windows Kernel establishes a reference to the requested calling operation via the

EAX register that is loaded with a number named the System Call Number (SCN) (Allievi et

al., 2021). Just before the execution of the syscall instruction, the EAX register is loaded with

the SCN (Allievi et al., 2021; de Plaa, n.d.). Once transitioned to KM, the SCN is used to

determine which system service is executed. Next, any arguments provided to the operation

are validated and passed along to the corresponding KM function. NTDLL is responsible for

the placement of function arguments, insertion of the SCN into EAX, and finally, the syscall

instruction is executed to inform the processor to transition to KM (Allievi et al., 2021).

 To keep track of which SCN corresponds to what function, the Windows Kernel uses

the System Service Dispatch Table (SSDT). The SSDT, pictured in Figure 2, contains the

location of the system services and their corresponding SCN (Allievi et al., 2021).

Figure 2. SCN Relation to SSDT (Allievi et al., 2021)

18

Since officially the SSDT is an undocumented feature, Microsoft reserves the right to alter or

completely remove system services and their SCNs from the SSDT at any time (Allievi et al.,

2021). Often between OS releases the SSDT is altered or even randomized to decrease

predictability and break applications that use hardcoded SCNs to avoid detection. Future

sections in this chapter provide more information regarding hardcoded SCNs and their use for

detection avoidance. The KM process in charge of this lookup is known as the System Service

Dispatcher (SSD). Not only does the SSD identify which system service should be called, but

it is also in charge of saving the UM information required to return execution to the

application and copying any function arguments into KM (Allievi et al., 2021; Lukan, 2014).

 The interaction of the application process, WinAPI, management of the system calls

via SCNs, and transitions between UM and KM are the primary concepts of the design of this

study. These foundational concepts are referenced heavily in the following sections as their

role in monitoring capabilities is described.

Survey of Hooking Methods

Hooking is the interception of specific functions or system calls to monitor and/or alter

the execution of the specified call (Lopez et al., 2017). This is often helpful to provide

information when the source code of an application is unavailable. Many debuggers make use

of this functionality to examine what could cause an application to crash, allowing the user to

quickly inspect the content being passed to these calls (Eder et al., 2013; Lopez et al., 2017;

x64dbg, n.d.-b). A popular use of hooking functions is to perform analysis for cybersecurity.

Hooking provides security products with valuable insight into what an application is

performing on a computer system. For example, if an API call is made, the parameters being

19

passed to it can be extracted and inspected for malicious content. This is a technique that has

been used by antivirus (AV) companies for years to detect malicious software running on

Windows (Catlin et al., 2017a; Lopez et al., 2017). The only thing that has changed has been

wherein the execution stack of the system calls that a process is hooked.

SSDT Hooking

As previously discussed, the SSDT is a KM lookup table responsible for holding the

locations of system services and their associated SCNs (Allievi et al., 2021). Historically, the

best place to insert a system call hook would be to modify the SSDT to point to a different

function location (Allievi et al., 2021; Lukan, 2014). This is known as SSDT Hooking. The

location to which a call is diverted is called a detour function and is responsible for the

analysis and inspection of the call. After it has finished, the detour function is free to either

stop execution and terminate the process or direct execution to the system service as

originally requested. This technique is invisible to UM applications since it all happens within

KM, resulting in a seamless monitoring capability.

 SSDT Hooking is not a technique that is unique to AV companies. Special malware

variants, known as rootkits, have been taking advantage of the ability to stop and inspect

processes on computer systems for ages (Catlin et al., 2017a; Kleymenov & Thabet, 2019;

Monnappa, 2018). Rootkits run in the Windows Kernel and have full access to all KM

components, including the SSDT. This level of access allows them to modify the SSDT just

like an AV product and divert execution flow to their own malicious detour functions.

Rootkits represent some of the most dangerous forms of malware for computer systems

(Singh et al., 2017; Win et al., 2015).

20

 All these third-party entities running code in the Windows Kernel created a stability

problem for the OS. When critical structures such as the SSDT are hooked, it is extremely

important to prevent code from crashing or containing bugs. If not, the entire system can

crash, and cause outages that are out of Microsoft’s control. With the release of the 64-bit

version of Windows XP, Microsoft introduced a new kernel protection mechanism known as

PatchGuard (PG) to help prevent this (Catlin et al., 2017a; Lukan, 2014). PG is responsible

for detecting unwanted code from running in the kernel, keeping a close eye on specific KM

components. If access is detected within KM that is not allowed, PG will crash the system

entirely with what’s known as a Blue Screen of Death (BSOD). This crash screen displays a

message informing the user what had happened and immediately disclose the crash

information to Microsoft’s threat intelligence team to begin analysis (Catlin et al., 2017a).

Microsoft discloses certain checks that it makes, such as the verification of the SSDT and the

PG code itself (Catlin et al., 2017a). However, most checks that PG makes are unknown to the

public, as are the intervals that it performs them. Frequent updates to PG are released to

constantly evolve its detections and prevent any predictability by the engine (Catlin et al.,

2017a). This is done purposefully to prevent third-party individuals from attempting to

reverse engineer the execution of PG and bypass it.

User-Mode Hooks

 PatchGuard (PG) left AV companies and malicious actors without a reliable way to

monitor process execution on Windows and created the need for a new technique. While

malicious actors continue to attempt to bypass PG to continue to use SSDT Hooking,

legitimate companies could not afford the risk. The unpredictable nature of PG and the risk of

21

crashing the OS entirely are not good for their products. Knowing this, Microsoft offered an

alternative solution to monitor system call activity by hooking the call itself within UM.

Figure 1 shows the next closest location to monitor for activities is NTDLL. This is

the last place that UM execution passes before the transitioning to KM to perform a lookup

within the SSDT. As discussed earlier in the chapter, NTDLL contains the NT functions that

are responsible for setting up and performing the syscall instruction to transition to KM

(Allievi et al., 2021). Just like with SSDT Hooking, UM hooks seek to alter the flow of

execution by temporarily diverting it to a detour function. This requires the modification of

NTDLL.

Modifying the on-disk version of NTDLL is impractical since it would invalidate

Microsoft’s digital signature of the file. Windows verifies the signature of Microsoft binaries

before execution, refusing to continue if any issues are found (Allievi et al., 2021). This is

solved by patching the DLL at runtime when it is loaded into the application’s memory space

(MDSec, 2020; Willems et al., 2007). Patching is defined in this paper as overwriting an

existing set of instructions to alter execution.

22

Figure 3. Basic User-Mode Hooks Example Diagram

As seen in Figure 3, a high-level overview of UM hooks is shown. The diagram uses

Createfile and NtCreateFile as an example of a system call. The five basic steps are:

1. Application.exe calls the CreateFile WinAPI function and passes its input.

2. CreateFile calls the NTAPI function NtCreateFile and passes the Application’s input.

3. A patched NtCreateFile diverts execution to a detour function HookedCreateFile

which inspects the parameters for potential malicious indicators.

a. An example could be a file path being written that is known to be abused by

malicious actors.

4. If no malicious indicators are found, HookedCreateFile returns execution to NTDLL

and allows it to perform a system call.

23

5. NTDLL performs executes the syscall instruction for NtCreateFile and execution

transitions to KM.

Patching the in-memory version of NTDLL is the first step and the second step is finding

an appropriate place to direct execution. The goal of UM hooking is to monitor the execution

of all running processes on the OS. This goal represents an obvious chokepoint for system

performance due to the sheer number of requests that must are inspected. It is normal for

Windows to make hundreds of thousands of system calls a second, performing even more

depending on the number of processors (Allievi et al., 2021). A single service would not be

able to handle that. Therefore, a special DLL must be loaded into each process that can assist.

Endpoint Detection and Response (EDR) applications, which are the products AV vendors

use to gather telemetry from the OS, are responsible for implementing this assistance. A

popular way is using the framework developed by Microsoft called Detours (Catlin et al.,

2017b; MDSec, 2020; Microsoft, 2002). A DLL can be written with the necessary logic to

inspect hooked functions and then wrapped with the Detours framework to assist with the

actual hooking. This DLL is then forcibly loaded into each process that starts on the OS, a

technique that is known as DLL injection. Then it patches the in-memory version of NTDLL

to direct execution to itself. When the execution flow is diverted, such as in the case in Figure

3, it calls a version of HookedCreateFile that is specific to the hooked process. This means

that every process that is targeted for hooking is responsible for the analysis and inspection of

its function calls. This solves the issue of widespread deadlock due to each process having its

own dedicated DLL for hooking.

24

User-Mode Hooks Performance

 Even though system-wide deadlock is avoided, UM hooks still provide an impact on

the performance (Lopez et al., 2017; Marhusin et al., 2008a). EDRs need to prioritize as little

increase of execution time as possible, this can often be the difference between a solution

being deployed for use or disabled for convenience. One way to cut down on the number of

system calls being tracked is by limiting APIs hooked. Certain NT functions are predisposed

to be more helpful for a malicious application than others. For example,

NtProtectVirtualMemory is a function that changes the memory permissions of a page of

memory in a process. While legitimate uses for this API exist, it is of use to an attacker

looking to exploit a system that has protected memory. Not every function can be easily

identified as useful for malware, for example, NtAllocateVirtualMemory. The ability to

allocate memory is something most applications, whether malicious or benign, might wish to

do. It’s a well-known tactic for malware to create a space in memory for itself to operate

(Klein et al., n.d.). By focusing on NT functions used by current malware variants and threat

actors EDR solutions can create a subset of functions to monitor. As tactics and techniques

change with time, these lists are subject to alteration through product updates. Variations

between vendors can be expected as well.

 Previous research into UM hooks performance compared it against alternative

implementations to gauge overhead (Lopez et al., 2017; Marhusin et al., 2008a). A non-zero

impact on the execution time of an application is expected, but recording it is still important.

Lastly, the effectiveness of a solution against current threats should be studied.

 Marhusin (2008) looked at comparing three different test scenarios: a computer with

nothing extra installed, with antivirus, and with an API hook program. The API hook program

25

only targeted a small subset of functions from KERNEL32. The researchers recorded the

performance impact on ten commonly used programs at the time the research was performed.

These programs were measured from the beginning of execution time up until the graphic

user interface was displayed. Validity concerns were eased by reproducing this process a total

of 30 times to be able to identify an average length of execution time (Marhusin et al., 2008).

The paper found that executing each test a total of 30 times provided consistent results

without requiring too much time.

 It is important to note that when this research was performed, UM hooks were a new

concept and the antivirus solution used file signature based detection. A hash of every file

written on disk was compared to a static list of known malware samples to determine

legitimacy. This means that UM hooks were being compared to scenarios in which the target

program’s API execution was not being inspected. At best, the signature based detection

introduced a time delay when the file is loaded from the disk.

 The results of the paper found that by targeting a small subset of functions rather than

all API calls, they were able to avoid a high overhead (Marhusin et al., 2008a). Additionally,

performance impacts were similar to those produced by the antivirus product.

 Another paper surveyed the current hooking approaches across multiple platforms and

operating systems (Lopez et al., 2017). Since the research included systems other than

Windows, researchers were able to observe additional hooking techniques. The operating

systems studied included Windows, Linux, macOS, iOS, and Android (Lopez et al., 2017).

For each system, a variety of open-source and closed-source solutions were chosen. Unlike

Marhusin, who used publicly available software as their target, these researchers created a

26

custom test program (Lopez et al., 2017). For each operating system, the program performed

the following tasks:

• Creates 10,000 text files

• Opens each file, writes the message “Hooking Testing,” and closes the file

• Opens each file, read the contents into a buffer and closes the file

• Deletes all 10,000 files

 Before the execution of these operations, a baseline of system performance was

recorded. These statistics were recorded once more when execution was completed, providing

two sets of results. The variables used to measure the impact were: physical memory size,

virtual memory size, CPU user time, CPU kernel time, and clock time (Lopez et al., 2017).

 Each operating system presents challenges and techniques to hook API calls (Lopez et

al., 2017). Since this study focuses on the Windows 10 architecture, only results pertinent to

the Windows OS are explored from the paper. To record the variables of interest, Lopez

(2017) utilized the built-in WinAPI functions that Microsoft provides.

• GetProcessMemoryInfo – Memory Utilization

• GetProcessTimes – CPU Time (User & Kernel)

• QueryPerformanceCounter – (clock time, start/end time)

 On the surface, using WinAPI functions to monitor the execution of UM hooks seems

like a recursive loop. This is not the case due to the proper scoping of the paper. Since the

paper was interested in specifically observing the execution of certain functions,

measurements were taken before and after file creation. Therefore the functions that recorded

the study’s variables did not interfere with the timekeeping.

27

 The results of the paper presented the hooking performance of three Windows utilities:

Rohitab, WinAPIOverride, and Frida (Lopez et al., 2017). All were shown to have an impact

on the performance of the system in multiple categories, with Frida being the most memory

intensive. While the paper tries to include Microsoft Detours in its literature review, it did not

include it in its analysis. This is disappointing since most EDR solutions utilize Detours as

their API hooking engine (Hand, 2020; Microsoft, 2002). However, the use of multiple

metrics to measure performance was an improvement over Marhusin’s research.

Bypassing User-Mode Hooks

Unhooking

As the name suggests, UM hooks run exclusively outside of KM. While this aids

Microsoft’s mission of creating a more stable KM environment, it now leaves the hooks

themselves vulnerable to attack (Apostolopoulos et al., 2021; MDSec, 2020; Tang, 2017).

Plenty of research has been done into identifying the presence of UM hooks in a process and

then dynamically removing them (Tang, 2017). This usually involves restoring the

overwritten portions of NTDLL to their original “clean” state before executing any NT

functions. This renders the UM hooks blind and unable to analyze any system calls made

thereafter by that specific process. A major downside to this technique is the identification

that hooks exist, which often rely on static signatures specific to a vendor or version of the OS

(Tang, 2017).

28

Manual System Calls

 As defined earlier, one purpose of NTDLL is to set up the necessary parameters to

perform the syscall instruction that switches the processor’s execution state to KM (Catlin et

al., 2017a). Figure 3 demonstrates how UM hooks take advantage of this chokepoint and

inject themselves before the execution of NT functions. The parameters are analyzed for

malicious indicators and if nothing is found, step 4 is followed. Execution returns to NTDLL

to perform the system call. To bypass analysis completely, attackers can execute step 5

themselves.

 This is known as a manual system call. Without the help of the WinAPI or NTAPI to

construct the necessary parameters to transition into KM, an attacker application needs to be

able to recreate this operation by hand. Fortunately, Microsoft requires that all x64 Windows

system calls follow the same general calling convention(MDSec, 2020; Microsoft, n.d.-g).

MOV R10, RCX
MOV EAX, <SCN>

SYSCALL

RETN

Figure 4. x64 Windows Calling Convention

 Figure 4 shows the exact x86_64 assembly instructions that are executed by the

processor before it crosses to KM. The predictability of this format, also known as a stub, is a

boon for attackers since it limits the number of instructions they need to supply. Windows

mandates that the EAX register contains the SCN of what system service is to be executed

(Allievi et al., 2021). As discussed in the Windows Architecture section of this chapter, these

SCNs correspond to a row in a KM structure known as the SSDT. Microsoft provides no

guarantees on the stability of the relationship between what SCN corresponds to a system

29

service, often intentionally changing them between releases (Allievi et al., 2021). This leaves

two options, knowledge of what OS is being targeted during development or the dynamic

retrieval of them at runtime.

 NTDLL provides all of the necessary information with every release of Windows

(Allievi et al., 2021; de Plaa, n.d.). Statically reverse engineering each NT function can

reliably produce the stub illustrated by Figure 4. Security researchers have created many

public resources around the retrieval of these stubs. The next section will survey different

approaches to accomplish this.

 Windows System Call Tables

Jurczyk (2020) maintains both a popular GitHub repo and a website that catalogs the SCNs

for all NT functions. This database extends from Windows NT SP3 to Windows 10 20H2. If

the target OS version can be identified before execution, Jurczyk’s research allows an attacker

to determine the appropriate SCN without having to extract the information from NTDLL.

This is a key project that is referenced quite heavily by other researchers, acting either as

inspiration or the source of their SCNs.

SysWhipsers & SysWhispers2

 The original SysWhispers project henceforth referred to as “SysWhispers1”, continued

Jurczyk’s research by automating several key parts (T, 2019/2022). By inputting the NT

Function and the OS version desired to execute a manual system call, SysWhispers1 generates

the necessary code assembly code to invoke it. As demonstrated in Figure 4, only a few

instructions are required. SysWhispers1 substitutes the correct SCN into the MOV EAX

parameter based on Jurczyk’s data that it stores locally (T, 2019/2022). Security researchers

can then import this stub directly into their code, skipping the process of performing this

30

resolution themselves. The major downside to this project is that to contain all of the

necessary stubs, the generated output can be quite large. This can lead to problems if the size

is of concern.

 SysWhispers2 improves on this process greatly by eliminating the requirement to

specify what version of Windows is being targeted (T, 2021/2022, p. 2). It can perform the

generation of the correct stub during execution time instead of during development time. This

means that during runtime the application is responsible for figuring out the version of the

OS. This decreased complexity came with a shrinkage in size. SysWhispers2 no longer relies

on Jurczyk’s pre-generated list to determine what SCN to utilize. Based on a technique first

published by MDSec (2020), the SCN can be identified by performing the following steps:

1. Parse the export address table of NTDLL for all functions names that begin with

“Zw”.

2. Replace “Zw” with “Nt” for every function and generate a hash of the name.

3. Sort them by memory address in ascending order.

4. Store the index of the table as the SCN.

 This technique is possible because Windows loads NTAPI functions into memory it

does so in ascending order based on the SCN. This method can work across Windows

versions and drastically reduces the amount of code that is required to compensate for all the

possible OS versions (MDSec, 2020; T, 2021/2022, p. 2). Additionally, it eliminates potential

indicators of compromise that can be generated by patching NTDLL to remove hooks.

31

Detection of Manual System Calls

Event-Tracing for Windows

The circumvention of UM hooks is a serious problem that requires supplemental

monitoring capabilities to detect the use of manual system calls (Gavriel, 2018). The reality is

that without the ability to execute code in KM, AV companies cannot compete. Microsoft

recognized this gap and created Event-Tracing for Windows (ETW).

ETW is a tracing mechanism that provides UM applications and KM drivers the

ability to provide, consume, and manage log and trace events (Allievi et al., 2021). This is a

powerful detection mechanism for monitoring execution across the OS. It is exposed to UM

applications running with administrative privileges through an API, which is heavily utilized

by Microsoft-developed applications to report their activities. ETW is broken down into three

distinct parts:

• Controller – Start/Stop event producing.

• Provider – Generate events.

• Consumers – Consume events.

 A good example of ETW usage is the Windows Event Log. The Windows Event Log

operates as a consumer, displaying all of the events generated by EventLog-Application and

EventLog-System providers (Palantir, 2019). The controller in this context is the Event Log

service, which is started at the boot of the OS, to ensure its execution. Applications that

consume ETW events can operate as their controller, enabling the flow of events when needed

(Allievi et al., 2021; Palantir, 2019).

32

 ETW as it relates to this study is heavily researched for the detection of malicious

activities (Ahmed et al., 2021; Alshehri et al., n.d.; Bode & Warnars, n.d.). Researchers used

ETW to detect the six most popular DLL injection techniques in strains of malware by

consuming events related to memory. (Alshehri et al., n.d.) This outperformed other open-

source memory analysis tools that scan adjacent process memory spaces. Another pair of

researchers were able to use ETW to detect fileless malicious .NET C2 agents (Bode &

Warnars, n.d.). Since .NET operates as a provider for events about usage on the system, it was

possible to consume these events and gain insight into what was happening.

 None of the previous research utilizes the execution of system calls as a detection

mechanism for malicious activity. Although ultimately not necessary for the scope of their

detections, they would be ineffective against malware using manual system calls. This is

because the ETW provider that contains the necessary events, Microsoft-Windows-Threat-

Intelligence, is restricted to normal UM applications (H, 2020). This provider is a primary

source of telemetry Windows Advanced Threat Protection (WATP) and any approved Early

Launch Antimalware (ELAM) Kernel Driver.

 An ELAM driver is a special kernel driver that has been submitted to Microsoft upon

approval and is signed using a special signature (Microsoft, n.d.-b). The in-depth verification

process requires membership in the Microsoft Virus Initiative (MVI) to ensure the legitimacy

of the company behind the submission. Afterward, the code for the driver is evaluated for

security vulnerabilities by Windows Hardware Quality Lab (WHQL). The WHQL is then

responsible for digital-signing the driver package, ultimately allowing it to run on the

Windows OS (WHQL, n.d.).

33

 This signing process limits the number of applications that can effectively monitor

malicious activity on the OS when compared to UM hooks. Any application running with

administrative-level access could utilize UM hooks to gather telemetry (Microsoft, 2002).

This requirement creates a gap where there is no effective way to detect the use of manual

system calls entirely from UM.

 Due to its wide adoption by EDR solutions, ETW has been a large focus of security

research (Chester, 2020; Palantir, 2019; Teodorescu et al., n.d.). One researcher discovered

that the reporting mechanism for ETW events about NTDLL occurred from within UM.

Additionally, the events were issued from the same process that was generating the events. By

patching over the function EtwEventWrite, Chester (2020) was able to effectively mute the

ETW events from being created. This is highly reminiscent of the unhooking bypasses for

UM hooks, which took advantage of the fact that the code performing the hooking was inside

the target binary’s memory space.

 Not only is it possible to overwrite EtwEventWrite, but it’s also possible to falsify its

contents (de Plaa, 2020/2020). A piece of malware can intercept the function’s arguments and

alter them before forwarding them to the original call. Categories such as

EVENT_DESCRIPTOR or EVENT_DATA_DESCRIPTOR can be modified to change the

name of the application being loaded completely.

 These attacks display a clear weakness when an application can have direct access to

its hooks. The ideal solution is to hook applications from within KM, as discussed however,

due to Microsoft restrictions this is no longer possible. Receiving telemetry from Microsoft-

Windows-Threat-Intelligence via ETW could help detect the actions performed. However, it

34

requires Microsoft’s signature to function. Even still it would be unable to determine the

method of invocation for a system call which is essential to determine if it is manual or not.

Process Instrumentation Callback

 Ionescu (2016) introduced the concept of Process Instrumentation Callback (PIC) in a

presentation called Hooking Nirvana: Stealthy Instrumentation Hooks. In this presentation, he

illustrated how Microsoft has internal tools that interact with Windows that are yet

undiscovered. This is far from a new concept, as covered previously in this paper, Microsoft

often leaves features undocumented to preserve its authority to alter features between updates

(Allievi et al., 2021).

 One of the technologies unveiled is the Nirvana Runtime Engine (NRE). NRE is

defined in the talk as a native monitoring framework that can be used to control the execution

of a UM process without access to its source code (Ionescu, 2016). This internal capability

was alluded to by Microsoft in a paper originally published in 2006, but it’s utilization

method remains unknown. (Bhansali et al., 2006). In Ionescu’s research, it was discovered

that Microsoft accidentally leaked one of the components involved in NRE through the

Windows 7 Software Development Kit (SDK). The leak revealed that NRE was able to

monitor running processes by using a dynamic UM callback.

 A UM callback occurs whenever the Windows Kernel must interact with UM data to

complete an operation (Mandt, 2011; Valasek, 2010). NTDLL supports a number of these

callbacks by exporting functions to be called after the Windows Kernel completes the

transition back to UM (Mandt, 2011; Ullrich, 2021). Common examples include:

35

Table 2. NTDLL User-Mode Callbacks (Everdox, 2013)

Name Purpose Location

LdrInitializeThunk Thread and initial process thread creation starting point NTDLL

KiUserExceptionDispatcher Kernel exception dispatcher will return here if a

process has no debug port or if the debugger chose not

to handle the exception

NTDLL

KiRaiseUserExceptionDispatch

er

When an exception occurs in a system service that can

be handled by a user exception chain

NTDLL

KiUserCallbackDispatcher Win32K and thread-based operations NTDLL

KiUserAPCDispatcher Queued APCs dispatched from here NTDLL

 To keep track of a process’s execution, the Windows Kernel utilizes two structures:

EPROCESS and KPROCESS (Catlin et al., 2017a; Chappel, n.d.). EPROCESS contains a list

of pointers to data structures related to its execution like Tokens and the Process Execution

Block (PEB). KPROCESS stores the information related to KM execution for a process such

as process flags and execution time. Every time the Windows Kernel returns from UM it

checks the KPROCESS of the current process for a field called InstrumentationCallback

(Everdox, 2013; Ionescu, 2016). The default value for this field is NULL, which allows

execution to continue unaffected. This is the missing piece that was revealed by the Windows

7 SDK.

 To register the callback, a special structure is required. On Windows 10 the structure

is defined as seen in Figure 5.

36

Typedef struct

_PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION

{

 ULONG Version;

 ULONG Reserved;

 PVOID Callback;

} PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION;

Figure 5. Process Instrumentation Callback Information Structure (Ionescu, 2016)

 The Version fields define what architecture OS it is being run on, 0 for x64 and 1 for

x86 (Ionescu, 2016). Reserved is always set to 0. The Callback field accepts a pointer to a

location in memory. This is where the execution flow of an instrumented application is set

when a UM callback occurs (Everdox, 2013). It is important to note that this is triggered

every time the processor returns to UM from KM, not only when the functions in Table 2 are

called. The R10 register will contain the return address that the execution originally would

have gone to if it had not been diverted (Everdox, 2013).

 The KPROCESS structure is a KM component, which makes it difficult to access

from UM. As discussed earlier, interactions with the Windows Kernel are normally performed

using NTAPI (Allievi et al., 2021). Ionescu (2016) identified it is possible to use the NT

function NtSetInformationProcess to register the callback within the KPROCESS structure of

a target process. This was the final piece to the puzzle, execution flow from a target

application could now be diverted to a predetermined memory address.

Although originally named Nirvana Hooks by Ionescu (2016), this study henceforth

refers to the technology as Process Instrumentation Callback (PIC). This helps to provide a

37

logical separation between Microsoft’s internal tool “Nirvana Engine” and the technique of

using the ProcessIntrumentationCallback structure to monitor a program’s execution

(Bhansali et al., 2006).

There is a limited amount of research on the benefits of using PIC, partially due to its

undocumented nature. Two open-source projects were surveyed: Syscall-Detect and

ScyllaHide.

Syscall-Detect.

Syscall-Detect is a proof-of-concept (POC) tool that uses PIC to detect the use of manual

system calls from UM (Ullrich, 2021). It is accompanied by a blog post of the same name that

details the steps the author took to create the project. The same basic details about the origin

of PIC and the ProcessInstrumentationCallback structure are defined. This includes the usage

of NtSetProcessInformation to register the InstrumentationCallback field within the

KPROCESS structure.

 The POC included two files: callback.cpp and Thunk.asm. The assembly (ASM)

program contains a single function, InstrumentationCallbackThunk. It is responsible for

preserving the register state between calls, preventing unintended recursion, and maintaining

proper stack alignment (Ullrich, 2021). PIC does not provide these capabilities and requires

any detour function implemented to be responsible for preserving execution flow (Ullrich,

2021). The author explained the lack of inline assembly support in the 64-bit MSVC compiler

as the primary motivation for writing this as a separate file. Once the execution state is

preserved, a local function defined in callback.cpp is called. InstrumentationCallback is

responsible for the analysis portion of PIC. The second was a C++ program that oversaw

38

defining the ProcessInstrumentationCallback structure and passing it as a parameter to the

NtSetProcessInformation function. The Callback parameter of

ProcessIntrumentationCallback is declared as a pointer to the location of

InstrumentationCallBackThunk.

 By linking these two files at compilation time, they are compiled as a single DLL file.

Similar to UM hooking, syscall-detect is intended to be loaded into a target process at runtime

(Ullrich, 2021). This prevents issues previously discussed with the enormous number of

system calls performed by the operating system. It also ensures that the execution flow never

leaves the memory space of the calling process.

 Once execution is returned from InstrumentationCallBackThunk, the registers are

immediately inspected (Ullrich, 2021). By inspecting the R10 registers for the return address

of the instrumented process, the reason for the UM callback can be determined. (Everdox,

2013). This is essential to avoid accidentally performing analysis on any of the functions

covered in Figure 2. This project highlighted this as a potential future research opportunity but

did not implement it.

Instead, the authors sought to validate that the address exists in a known module, in

this case, NTDLL (Ullrich, 2021). Validating the integrity of the address can be used to detect

the use of manual system calls since they are never legitimately executed outside of NTDLL.

The POC was tested on a public tool that utilizes manual system calls to dump the contents of

the LSASS.exe process and was successful in its detection (Ullrich, 2021).

39

ScyllaHide.

PIC was created by Microsoft to assist with debugging UM programs. Therefore, it’s

no surprise a debugger took advantage of its capabilities to enhance its analysis. ScyllaHide

defines itself as an advanced open-source anti-anti-debug library, hooking various functions

in UM to hide debugging from a program (x64dbg, n.d.-a). Some software will compile itself

with anti-debug capabilities to avoid being analyzed by debuggers. Various actions like

checking the PEB for the BeingDebugged value can help malware variants determine if it is

safe to execute as well.

ScyllaHide performs the same steps as syscall-detect to set up and instrument the

target process. The only change is rather than checking if R10 returns to NTDLL, the base

address of the process currently being debugged is checked for (x64dbg, n.d.-a). This

produces the same outcome since a system call should never originate outside of NTDLL.

Ultimately, the project uses ScyllaHide to provide additional telemetry if a debugged process

is attempting to execute manual system calls to bypass analysis.

Summary

 Chapter 2 gave a broad overview of Windows Architecture and how it operates. This

was necessary to deliver the proper understanding of how system services are utilized by UM

applications. Separate ways to monitor the execution of UM system calls were surveyed,

giving a historical perspective on the current state of research. This chapter also discussed

how UM hooks can be bypassed and demonstrated various themes when detection capabilities

rely on a sensor in UM. Manual system calls detection methods and how they can be utilized

40

by EDR solutions were also covered. Finally, two PIC projects were surveyed and provided

context for this study.

 Chapter 3 describes the methodology and why it was chosen for this study. It also

describes the guiding research questions and hypotheses that this research answers. The topics

covered in Chapter 2 are related to this study’s primary goals and help frame the foundation

for the creation of a model.

41

CHAPTER 3

RESEARCH METHODOLOGY

 Chapter 2 provided background on the literature that applies to this study. The

foundational concepts were explored to give background and provide the current state of the

research. Chapter 3 details the methodology and design plan for this research, explaining the

reasoning behind choosing the methods. Components include the population of the study,

collection methods, instrumentation of variables, and data analysis.

 Research Method and Design Appropriateness

 To best conduct research, a proper methodology must first be identified. Three

approaches are available for the analysis of a study’s results: qualitative, quantitative, and

mixed methods. These should not be viewed as rigid categories, but rather a sliding scale that

tends to lean towards one way or another (Creswell, 2015). Research that focuses on

numerical results and data tends to focus on a quantitative approach. Studies that involve

varied responses and open-ended questions from individuals favor a qualitative approach.

Both styles offer valuable tools to organize and plan things out, which is often the reason a

mixed-methods approach is taken. By integrating the two forms, insight can be gained that

otherwise may be lost by focusing on any single methodology (Creswell & Creswell, 2018).

Since this study analyzes numerical data about the performance impact of PIC, a quantitative

approach was chosen.

42

 Conducting a quantitative study requires the proper identification of variables:

independent and dependent. An independent variable is synonymous with the treatment that is

applied. Its effect on the variables around it is what provides the data that is studied to

measure results. Dependent variables represent the outcome or results of the influence of the

independent variables. Creswell (2018) recommends having multiple dependent variables to

measure in a study. The relationship between these variables and how it is measured provides

the outcome of a study. By being able to quantify the variation in a phenomenon, situation,

problem, or issue; hypotheses and research questions can then be answered (Kumar, 2014).

 After selecting a proper research methodology, the next step is to choose the correct

research design. These are types of inquiry that provide specific direction for procedures in a

research study (Creswell & Creswell, 2018). The two main types of design are survey and

experimental. A population’s feelings or attitude is best studied using a survey design. It

allows for the generalization of a large number of responses to numerically represent results.

Experimental design splits the focus of a study into a sample and a control group. The sample

group has applied treatment and the effects are compared to the control group. Since this

study examined the impact PIC has on performance, a comparison between two groups based

on numerical results was required. Therefore, an experimental design was chosen.

 There are five steps involved in a classic experimental design according to Mauldin

(2020). The steps include Sampling, Assignment, Pretest, Intervention, and Posttest. The first

step involves the collection of what you would like to study known as Sampling. There are

guidelines for choosing accurate samples that are covered later in this chapter. Assignment is

the selection of which group each sample should be placed within. This is often a crucial step

in classic experimental design, requiring randomization to maintain free of posterior

43

influences. As defined previously in the chapter, a dependent variable is a measurement of

what changes throughout a study. In the pretest, instrumented dependent variables create a

baseline measurement. Next, the intervention, otherwise known as a treatment, is applied to

the experimental group only. This can happen multiple times or just once. The last step is an

analysis of both groups to observe any changes in the dependent variables (Mauldin, 2020).

Creswell (2018) defines two subtypes of experimental research that can be used: true

experimental and quasi-experimental. A true experimental follows the basic steps illustrated

above with a key distinction. In the Assignment step, the design randomizes the population

sample between the sample and control group before a treatment is applied. This is useful

when comparing the results of the two groups because any differences between them can be

attributed to random chance (Mauldin, 2020).

Quasi-experimental designs however are the exact opposite, using no randomization at

all. These experiments are favorable when randomization is not possible or irrelevant to the

outcome of a study (Harris, 2006). The experimental group is still given the treatment while

the control group is not given the treatment. Quasi-experimental studies are often referred to

as a before-and-after since results are recorded pretest and posttest. Before and after studies

do not require the retroactive establishment of a ‘before’ observation, allowing researchers to

construct it before the application of treatment (Kumar, 2014). This allows for the collection

of results to answer research questions. To ascertain if the implementation of PIC has any

performance impact, measurements are taken before it is applied and after. For the reasons

explained above, the quasi-experimental before-and-after study was chosen for this research.

44

Figure 6. Quasi-experimental diagram showing pre-test and post-test in the study's context

Research Questions, Hypothesis, and Variables

To conduct this study properly, a guiding research question needs to be established.

The primary research question for this study was: What are the performance impacts of

monitoring execution using Process Instrumentation Callback to detect the use of manual

system calls with regards to CPU time, memory utilization, and clock time? This question was

answered by creating a model that contains a program monitored using PIC and one that does

not.

The secondary research question employed in this study was: Can we perform

additional analysis using PIC to detect manual system calls and what is their effect on

performance? The underlying assumption may be that testing the bare-bones PIC is adequate

for the primary research question, but the literature analysis demonstrated the innovation and

extension of such methods for refinement of detection. Presentation of possible such

45

extensions demonstrate that PIC remains viable, thereby showing a certain resilience to such

improvements in terms of usefulness.

 The hypothesis for this study was: Detecting the use of manual system calls utilizing

Process Instrumentation callback will affect the performance of the system. To determine the

accuracy of this question the CPU time in both UM and KM were measured, along with the

memory utilization and clock time.

Population

 Mauldin (2020) defines an experiment as a method of data collection to test

hypotheses under controlled conditions. During the normal execution of a computer, there

may be changes that the user is unaware of that cause variability in an experiment. This study

utilizes virtualization technology to prevent this from happening. Virtualization technology is

used to split a physical server into isolated execution environments known as Virtual

Machines (VM) (Zhang, 2018). Each runs independently from the other and can be used to

run their isolated operating system and programs. This requires that physical components such

as memory, disk space, and CPU time are shared between them. Modern systems can run

multiple of these VMs without noticeable performance impact, providing realistic execution

environments to simulate scenarios (Hirofuchi, 2018; Zhang, 2018). The ability to be able to

run multiple versions of the same environment allows for maximum control over the fidelity

between tests.

 The management of hardware utilized by VMs was provided via a hypervisor. A

hypervisor or Virtual Machine Manager (VMM) runs on top of hardware resources to allocate

them to the appropriate VM as needed (Zhang, 2018). This study used the enterprise-class

46

hypervisor ESXi to service in this capacity. ESXi is a bare-metal hypervisor which means it

installs directly onto a physical server, as opposed to running on top of an existing operating

system.

 This study utilized a single Windows 10 20H2 64-bit operating system for

observation. Since 2020, newer versions of Windows have been released twice a year, naming

the version after which half of the year it was released in (Hoffman, 2020). For example,

20H2 was released in October 2021. Future releases of the operating system were ignored to

provide consistency and control for the study. The VM operated using an i5 2.20GHz CPU

and 8GB Ram. These are consistent with the Microsoft recommended hardware requirements

for optimal system usage (Microsoft, n.d.-c). The installed software on the computer was

limited to what comes pre-installed and what is necessary to execute the study. Boilerplate

libraries such as VMware Tools and VC++ Libraries were installed to create the environment.

 The Process Instrumentation Callback Engine (PICE) was installed and compiled

using the 64-bit Microsoft Visual C++ Compiler that comes installed with Visual Studio

2019. PICE featured the same basic structure as Ullrich’s original proof-of-concept (Ullrich,

2021).

• NtSetInformationProcess to set the InstrumentationCallback field in KPROCESS.

• Instrumentation Hook

o InstrumentationCallbackStub written in assembly to preserve registers.

o InstrumentationCallback C++ function to perform main analysis.

As covered previously in Chapter 2, Ullrich (2021) determined the validity of a system

call by performing bounds check on the return address stored in R10. If the address resided in

the currently known location of NTDLL, it was allowed to execute. If not, it was assumed to

47

be a manual system call and was terminated. This was vulnerable to manipulation if an

attacker overwrote a benign system call in NTDLL and made the call from that location

(Ullrich, 2021).

 PICE overcomes this vulnerability by examining the instructions immediately

preceding the address stored in R10. Since R10 always points to the ret instruction that came

after instrumentation, it is possible to peek at the previous instructions by walking backward.

Windows x64 calling convention is static and provides a reliable expectation of what

instructions should be found (Hand, 2020; Microsoft, n.d.-g). By cross-referencing these

instructions with a structure that contains an expected location for every system call prologue,

it is possible to determine if a legitimate function has been patched.

 As previously discussed in Chapter 2, SysWhispers2 is an open-source project that

automatically discovers and extracts the SCNs from Windows and generates header/ASM

files that can be used to make manual system calls (T, 2021/2022, p. 2). A modified version of

SysWhispers2’s extraction technique was utilized by PICE to generate a structure of system

call locations and their SCNs. The modified technique used is as follows:

1. Parse the export address table (EAT) of NTDLL for all functions names that begin

with “Zw”.

2. Store them in a custom structure for later retrieval.

3. Sort the system call entries by memory address in ascending order.

4. The system call number (SCN) is the index of the table.

5. The memory address used for sorting is the function prologue location.

This structure served as the ground truth for what SCN should be discovered when the

address stored in the R10 register is analyzed.

48

An equally important part of this study is the target instrumentation program (TIP). TIP is

a representation of a standard program running on the Windows that is monitored by PICE. It

was compiled with 64-bit MSVC that comes with Visual Studio 2019 and installed on the

system. Once executed, TIP imported a DLL version of PICE into its memory space and

mapped it for execution. WinAPI functions were executed to trigger PIC and begin analysis.

Sample Collection

 The process of identifying a population and selecting a subset to conclude from is

known as sampling (Mauldin, 2020). A population represents what is being studied in a

research experiment. Often, it is not possible or even necessary to gather data about a

population in its entirety. Sampling frames are used to fill that gap by further clarifying what

in a population is relevant and allowing a sample to be chosen from there (Mauldin, 2020). By

studying a sample, a researcher can estimate what is likely to be the situation in the total

population (Kumar, 2019).

 The objective of this study is to observe the impact of monitoring for manual system

calls via PIC. Since manual system calls are not performed by legitimate applications, their

existence is a powerful heuristic . If manual system calls are detected, the process should be

immediately terminated. By nature, this requires the hooking of all system calls executed by a

process to perform analysis and determine the legitimacy of the call. If the process was

terminated, it would have been impossible to capture measurements in a test. Therefore, TIP

does not execute manual system calls to provide the largest number of non-manual system

calls’ to calculate overhead. This paper defines ‘non-manual system calls’ as the native chain

49

of execution as defined in Figure 1. By determining the overhead of monitoring for their

execution, the cost of implementing PIC as a solution can be measured.

 It is unreasonable to monitor the execution of every system call on the Windows 10

operating system. It is an extremely complex piece of closed-source software that contains

many undocumented features that cannot be accounted for in a model (Schulman et al., 1992).

To frame the problem appropriately, the system calls executed by TIP are based on previous

studies surveyed in Chapter 2 that examine the performance of API hooks on Windows

(Lopez et al., 2017; Marhusin et al., 2008a).

Instrumentation

 The objective of this study was to measure the performance impact of detecting

manual system calls with PIC through several different dependent variables modeled after

previous research on the topic (Lopez et al., 2017; Marhusin et al., 2008b). Memory

utilization was measured by collecting the physical and virtual memory sizes before and after

the intervention. Similarly, the amount of time the CPU spends in UM and KM was recorded.

The amount of clock time from start to finish was also collected, providing an overall

assessment of the time spent running.

 The WinAPI provides multiple functions to measure the performance of programs

running on the operating system. These native functions were used to record the variables in

this experiment by executing them within TIP both at the beginning and at the end. The

following functions were used:

• GetProcessMemoryInfo

o Records memory utilizations.

50

• GetProcesstimes

o Records UM and KM execution time.

• QueryPerformanceCounter

o Records wall-clock or real execution time.

 Many previous studies have employed these tools and they are widely utilized by

Windows developers to analyze performance (Botor & Habiballa, 2018; Jia et al., 2014;

Lopez et al., 2017).

Validity and Reliability

 The validity of an experimental study is critical to its value. Researchers need to

identify threats to their design and minimize that as soon as possible (Creswell & Creswell,

2018). There are two main threats to validity: internal and external (Creswell & Creswell,

2018). Internal threats include things like the passage of time and cross-contamination

between the control and experimental groups. External threats are more often an issue with

being able to generalize the results from a sample and apply them to a population.

 To mitigate the risk of internal threats this study employed virtualization technology.

A snapshot of a VM was taken that freezes all of the virtual hardware components such as

memory, CPU state, and hard disks (VMware, n.d.; Zhang, 2018). Creating a snapshot at the

beginning of the experiment and then reverting to that after each test eliminated any risk

posed by the passage of time. This limited the number of uncontrolled variables, providing

fidelity measurements.

 To ensure that cross-contamination between the two groups did not occur, PICE was

installed on Windows 10 after snapshot initialization. By ensuring PICE was never present on

51

the system when baseline measurements were taken, it can be assured that it had no outcome

on the results.

 Ensuring the reliability of results is extremely important in research. The quality of a

measurement is determined by its repeatability and accuracy (Kumar, 2014). This study

accomplished this by repeating the experiment 30 times under the exact same conditions for

each iteration. Like validity, virtualization technology was implemented to maintain a

controlled environment between tests. Repetition ensured that in the chance that any

anomalous results were produced, they could be mitigated by averaging the tests.

Assumptions

This study made several assumptions about the tools and environment that were

measured. The first assumption was that between experiments, the context surrounding the

measured variables was reset completely. This means that the operating system can revert to a

point in time before the introduction of treatment. This ensured that the study was conducted

in a controlled environment with limited outside influences. The second assumption was that

the use of WinAPI functions to measure the variables of interest, such as the time of

execution, remained accurate despite PIC’s implementation. Lastly, the internal mechanisms

of how Windows handles system calls and the assigned numerical values was assumed to

remain static between tests. By using the same instance of the Windows operating system and

disallowing upgrades or internet access, these assumptions were assured.

52

Scope and Limitations

 It’s important to emphasize that PIC is not the sole detection method for manual

system call use (Teodorescu et al., n.d.). Other methods like ETW can monitor their usage if

the consumer application has gone through the Microsoft verification process. Chapter 2

covered the limitations of ETW as they exist today, including their reliability on UM

functions for NTDLL telemetry (de Plaa, 2020/2020). PIC is unique because it can monitor

system calls from UM while relying on the Windows Kernel to hook the target process.

Individual system calls execution time was not measured since it is rare for them to

operate independently. To create a realistic model, multiple system calls were called in

succession to synthesize the processing workload. These system calls were purposefully

chosen not to interfere with the recording of variables and avoid situations that would cause

the OS to terminate the program.

Ideally, PIC would be configured to only inspect the execution of a subset of system

calls. However, PIC does not allow individual UM callbacks to be filtered, therefore the

detour function was executed for every callback. Normal UM hooks do not have this problem

since they can statically alter function prologues of interest located in NTDLL. PICE must

perform extra analysis to quickly determine if an intercepted UM callback should be

analyzed. This limitation is unavoidable.

 The focus of this study is the detection of the manual execution of system calls.

Therefore, which system call TIP executes is irrelevant. As long as it follows the standard

Windows calling convention the results of the experiment can be abstracted to apply to any

NTAPI function. The fact that these calls were made without following the proper NTAPI call

chain, as covered in Chapter 2, was the driving indicator for an alert.

53

Summary

 The purpose of this research is to analyze the performance impact of detecting manual

system calls utilizing PIC. This chapter described the overall methodology to be employed in

this study and why it was the most appropriate choice. The various components were

explained in detail and their relationship with the objective was established. The scope of this

research was clarified and limitations were defined. The next chapter discusses data

collection and analysis as well as the quantitative results from the experiment. Statistical

analysis is performed to highlight the significance of the results.

54

CHAPTER 4

RESULTS

This quasi-experimental before-and-after study aimed to determine the relationship

between system performance and the detection of manual system calls using PIC. This

chapter covers the methods used to capture and analyze the metrics presented in this

experiment. As stated in Chapter 3, these performance indicators included CPU and Memory

utilization by the instrumented process. CPU utilization was further broken down into time

spent in User-Mode and Kernel-Mode. Enhancements to the fidelity of PIC’s detection

capabilities were observed in three separate instances to illustrate the statistical significance of

additional time spent analyzing system calls for detecting manual invocation. PICEv1 used a

combination of bounds checking of the UM return address and public symbol files to

determine if it was located within the region of memory allocated for NTDLL. PICEv2

demonstrated the impact of removing the reliance on public symbols and performing

additional anti-tamper analysis on the loaded image of NTDLL itself. PICEv3 added the

analysis of the returned stack pointer and performed bounds checking of the WinAPI DLLs.

Chapter 4 presents the data collected to answer the following research question: What

are the performance impacts of monitoring execution using Process Instrumentation Callback

to detect the use of manual system call with regards to CPU time, memory utilization, and

clock time?

55

Data Collection

To conduct the experiment a virtualized environment hosted on a bare-metal

hypervisor was constructed as described in Chapter 3. The environment contained a single

virtual machine running a clean installation of Windows 10 20H2 Testing was conducted in

an isolated environment with zero network access or third-party applications. Process

Instrumentation Callback Engine (PICE) and Target Instrumentation Process (TIP) were

loaded onto the machine using a virtual-disk image. An updated version of Microsoft Visual

C++ 2015 Redistributable was installed for PICE to function. A virtual snapshot of the

operating system was created and was reverted to between tests. A snapshot of a VM freezes

all of the virtual hardware components such as memory, CPU state, and hard disks (VMware,

n.d.; Zhang, 2018). By implementing the aforementioned safeguards, the number of

uncontrolled variables was limited, such as the passage of time, providing fidelity when

measurements are taken.

The objective of this study is the observation of the performance of the Windows

operating system during instrumentation by PIC for the detection of manual system calls. Two

primary components described in Chapter 3 were developed: Target Instrumentation Process

(TIP.exe) and Process Instrumentation Callback Engine (PICE.dll). TIP was implemented as a

binary that imported PICE.dll and subsequently makes a large amount of legitimate system

calls using the Windows API (WinAPI). The calls made were modeled after previous research

into system call performance that suggested the following (Lopez et al., 2017):

56

Table 3. Actions performed by TIP and the corresponding system calls

Action WinAPI (NtAPI)

Create 10,000 text files CreateFile (NtCreateFile), CloseHandle

(NtClose)

Open each file, write “Hello World!” and

close the file

CreateFile (NtCreateFile), WriteFile

(NtCreateFile), CloseHandle (NtClose)

Open each file, read the contents into a

buffer, and close the file

CreateFile (NtCreateFile), ReadFile

(NtCreateFile), CloseHandle (NtClose)

Delete all 10,000 files DeleteFileW (NtCreateFile)

Before the execution of these operations, a baseline of system performance was

recorded. These statistics were also recorded when execution was completed, providing two

sets of results. The variables measured to measure impact were: CPU user time, CPU kernel-

time, physical memory size, virtual memory size, and clock time (Lopez et al., 2017).

Collectively, these measurements represent the overall performance of the system. Each

variable was collected using the corresponding WinAPI functions as described in Chapter 3.

The functions used by TIP during execution included GetProcessTime,

GetProcessMemoryInfo, and QueryPerformanceCounter. Once execution completed, the

results were outputted to screen and recorded by the researcher. The operating system was

then reverted to its snapshot to preserve any independent variables and the experiment was

repeated.

57

PICE Detection and Analysis Methods

Four different tests were run that encompassed different iterations of PICE. Four

different test category iterations were used, including the benchmark and three versions of

PICE (PICEv1, PICEv2, PICEv3). Each iteration was executed a total of 30 times to create an

ideal statistical population (Lopez et al., 2017). In every experiment, an identical version of

TIP.exe was executed that would import the corresponding PICE.dll. These different

iterations were created to properly answer the research question: Can we perform additional

analysis using PIC to detect manual system calls and what is their effect on performance?

Each contained an improvement that increased the amount of checks performed by PICE to

ensure that a system call was made legitimately. Each of these checks included the previous

iteration’s changes as well, building on top of one another. A few exceptions to this included

coding decisions made specifically for performance benefits such as the removal of the

Microsoft Debugging Engine in PICEv2 and PICEv3. See Appendix D for the source code for

each iteration of PICE and TIP.

Version 1

As reviewed in Chapter 2, previous researchers have used PIC to successfully detect

the use of manual system calls on Windows 10 (Ionescu, 2016; Noah, 2017/2022; Richard,

n.d.; Ullrich, 2021). These implementations functioned as proof of the concepts for the

technique and were not necessarily concerned with optimization or resilience. PICEv1

represented these previous works, featuring much of the author’s original codebase with

minimal alterations. It was important for the secondary research question to be able to

58

quantify the performance of previous works to properly observe the differences made in

future versions.

Manual system call usage was detected by first determining the current base address of

NTDLL in the current process and the size of the image. By cross-referencing the return

address (R10) that is instrumented by PIC, PICEv1 could determine if the location resides

within NTDLL. Since all NTAPI function calls should return to NTDLL after performing a

system call, any detraction from this was assumed to be malicious.

Microsoft Debugging Engine (MDE) was used to resolve the return address location to

the corresponding function name using publicly exported symbols. MDE is implemented in a

dynamic link library named DBGHELP.DLL that is installed by default on Windows 10. The

symbols are exported by Microsoft for every version of NTDLL and are expected to be

consistent in future versions of Windows. If PICEv1 was unable to resolve the function to a

symbol, then the call was also considered malicious. See Figure 7 for a flowchart that

illustrates the basic layout of PICEv1.

59

Figure 7. Diagram of PICEv1 Analysis

Version 2

Previous authors have theorized bypassing the bounds checking of NTDLL by

modifying a seldom-used NTAPI function’s SCN. It is not uncommon for malicious binaries

to modify NTDLL to avoid detection (Apostolopoulos et al., 2021; MDSec, 2020; T,

2021/2022) For example, NtCreateFile has an SCN of 0x55 and could replace the index in

another function and invoke it normally. When PICEv1 performed its inspection, it would

consider it legitimate due to the return address resolving within NTDLL.

PICEv2 checked for the modification of NTDLL by comparing the SCN that was

executed against a ground truth of function addresses and their corresponding SCNs. This

60

ground truth was a custom structure (SysCallList) that was populated every time a system call

was intercepted. The technique described in Chapter 3 to dynamically retrieve SCNs from

NTDLL was implemented and modified to populate SysCallList with the location of the

function prologue instead of the function name. See Figure 8 for a visualization of the

structure.

Figure 8. SysCallList Structure Layout

As an added benefit, MDE was no longer imported since SysCallList acted as a

dynamically generated replacement to resolve addresses to functions. This eliminated having

to import DBGHELP.DLL into the instrumented process which is a well-known indicator that

malware often checks for (Czeczko, 2020). At this point, the return address captured by PIC

(R10/RIP) is inspected and compared for detection purposes.

This comparison was completed in four steps:

1. Find and store the location of the instrumented NTAPI function prologue (mov

rcx, r10) by subtracting 0x14 from RIP.

2. Find and store the value moved into RAX before the syscall instruction by

subtracting 0x10 from RIP. This should be the SCN that was executed.

3. Use the address found in step 1 to iterate through SysCallList until a match is

found.

4. Retrieve the SCN that should be at that location and stop execution if they do

not match.

PICEv2 can reliably instrument each NTAPI system call due to the reliability of the

Windows calling convention (Figure 4). RIP will always point to the ret instruction which is

61

consistently 0x14 bytes away from the function prologue mov rcx, r10. The function prologue

always matches the value in the exported address table because without it programs would be

unable to locate them for use. The same storage and retrieval are possible by subtracting 0x10

from RIP to find the SCN. If it matches the SCN stored in SysCallList then PICEv2 can be

positive that it is legitimate and has not been tampered with. PICEv2 is illustrated in Figure 9

which shows a flowchart of the decision-making process.

62

Figure 9. Diagram of PICEv2 Analysis

Version 3

PICEv3 altered the execution of PICEv2 in two major ways. The first is that the

dynamic parsing of NTDLL’s export table to populate SysCallList was performed when

PICE.dll first attaches to the target process. SysCallList itself was declared as a global

variable and can be shared between multiple system calls. This was expected to have a

decrease in performance impact compared to PICEv2 which needed to repopulate the

structure for every system call. The second addition to PICEv3 was the inspection of the stack

63

pointer returned by PIC. When the instrumented call returns to UM, RSP points to the stack

frame that existed before executing the syscall instruction. This is important because after

performing a system call the next instruction is always ret. This means that execution will

jump to the memory address that is on top of the stack. Since RSP pointed to the top of the

stack, PICEv3 could perform analysis of that memory address. A legitimate system call into

NTDLL would originate from KERNELBASE.DLL, as seen in Figure 1. The same bounds

checking performed on NTDLL was performed to make sure the address occurs within

KERNELBASE.DLL. Two exceptions to this were identified which are internal calls from

within NTDLL and lateral calls from WIN32U.DLL. Bound checking was performed on these

as well to ensure compliance. A diagram illustrating the decision-making process of PICEv3

is shown in Figure 10.

64

Figure 10. Diagram of PICEv3 Analysis

System Performance

After the completion of all tests, the data was imported into Microsoft Excel to

perform additional analysis. Separate groups were created for each of the different versions of

PICE and the baseline measurement. This section will discuss the degree of impact that each

test had on both CPU and memory of the operating system.

User-Mode and Kernel-Mode Performance

CPU utilization was measured using the WinAPI function GetProcessTimes.

GetProcessTimes provides the timing information for a specified process including the

65

amount of time that it has spent executing in user-mode and kernel-mode during the call. By

executing this function before and after treatment it was possible to ascertain the accurate

execution time while eliminating contamination from process startup and teardown. The

amount of time in 100-nanosecond intervals was returned by the function and converted to

microseconds by dividing by ten. The larger amount of time spent in either mode indicates a

higher impact on the processor.

Table 4. Average User-Mode and Kernel-Mode execution time in microseconds

PICE Version User-Mode Time Kernel-Mode Time Combined

Baseline 164,583.333 4,713,541.667 4,878,125.000

1 671,875.000 4,839,062.500 5,510,937.500

2 27,476,041.670 5,315,104.167 32,791,145.830

3 408,854.167 4,824,008.333 5,232,862.5

A significant increase in User-Mode Time was expected with the introduction of PICE

since all analysis takes place outside of KM. Kernel-Mode Time experienced much smaller

increases in processing time since the Windows kernel checks for the existence of PIC

whether it is configured or not. PICEv2 had the highest analysis time, most likely due to the

parsing of NTDLL’s export address table (EAT) to populate SysCallList.

Clock Time CPU Performance

Processors often contain a 64-bit Time Stamp Counter (TSC) register that increases at

a rate equal to the processor clock (Microsoft, 2022b). This value can be read via the RDTSC

or RDTSCP machine instructions to provide a low-level access time and measurement of the

computational cost of executing a program on a processor and is known as a performance

66

counter. The performance counter, or ticks, was measured using the WinAPI function

QueryPerformanceCounter. This function provided the number of ticks that have occurred

and can be converted to microseconds by multiplying by 1,000,000 (Microsoft, 2022b). This

is referred to as wall time, otherwise known as clock time and is the amount of actual that has

passed according to the processor itself. This represents the amount of time that an end user

would see an application taking and is complex due to potential strain from concurrent

activity happening on the system. Real time data was recorded at the end of execution and is

represented in Table 5.

Table 5. Clock Time execution in microseconds

PICE Version Duration (Average) Standard Deviation

Baseline 10,288,090.400 488,989.409

1 10,528,254.900 280,275.243

2 38,195,913.870 455,914.696

3 10,439,245.800 366,688.800

Without instrumentation, TIP had an average execution time of 10,288,090.4

microseconds from beginning to end. This included the lowest clock time of 8,767,614

microseconds and the highest clock time of 12,021,302 microseconds. PICEv1 which

performed NTDLL bounds-checking via the Microsoft Debugging Engine had an execution

range from 10,052,854 at the lowest, to a high of 11,383,973 microseconds. PICEv2, which

included additional dynamic SCN retrieval and verification had the highest execution time at

38,195,913.87 microseconds and a peak of 39,764,391 microseconds. Even at its lowest

execution time of 37,424,581 microseconds, it was still triple the largest measurement from

67

any other version of PICE. Lastly, the additional verification of the return stack and global

variable usage of PICEv3 brought its average execution down to 10,439,245.8 microseconds.

Its range was 9,953,495 microseconds at the lowest and 11,761,360 microseconds at the

highest.

Overall, clock time execution times were consistent with the User-Mode Time and

Kernel-Mode Time measurements. PICEv2 had the greatest impact on performance compared

to the other versions. PICEv3 had the smallest standard deviation at 366,688.800. This

consistency can be attributed to the simplified method of analysis that it uses to resolve

function addresses.

Memory Performance

Memory utilization was split into two categories: physical and virtual. Both can be

measured using the WinAPI function GetProcessMemoryInfo. Unlike the other functions used

for data collection, it does not require multiple invocations and can be called once at the end

of execution. This is because it tracks the peak usage in bytes of both types of memory, only

incrementing it when the previous value has been surpassed (Microsoft, 2022c). As covered in

Chapter 2, virtual memory is an abstract representation of the physical memory on the system

that is not realized until accessed. Virtual memory is a poor representation of system impact

on its own . Memory performance data is averaged over the 30 tests and presented for each

version of PICE in Table 6.

Table 6 . Average Virtual and Physical memory usage in bytes

PICE Version Virtual Memory (Bytes) Physical Memory (Bytes)

Baseline 522,103.5 2,500,198.4

68

Table 6 (continued).

1 5,830,109.87 8,260,403.2

2 560,742.4 2,614,886.4

3 555,144.5 2,609,561.6

Baseline execution of TIP without PICE had an average virtual memory usage

between 516,096 bytes and 561,152. Physical memory usage ranged from 2,482,176 Bytes

(B) to 2,789,376 B. PICEv1 has the largest impact on memory usage that ranged from

5,804,032 B to 6,316,032 B for virtual memory and 8,232,960 B to 8,953,856 B for physical

memory. With the improvements in PICEv2, the average was brought back down to below

one million for virtual memory utilization. This can be partially attributed to the lack of

including the DBGHELP.DLL to resolve function names. Its memory usage ranged from

548,864 B to 610,304 B for virtual memory and 2,592,768 B to 2,891,776 B for physical

memory. Lastly, PICEv3 averaged 544,768 B to 598,016 B for virtual memory and 2,580,480

B to 2,899,968 B for physical memory.

Overall, PICEv1 had the highest memory utilization increase when PICE is used.

Though an initial increase of memory from the inclusion of PICE.DLL is to be expected, both

PICEv2 and PICEv2 have much smaller usage due to their lack of reliance on MDE.

69

Statistical Analysis

Analysis Goals

The hypothesis of this study is: “Detecting the use of manual system calls utilizing

Process Instrumentation Callback will affect the performance of the system.” A null

hypothesis is the opposite of the hypothesis in a study (Boslaugh, 2012). The null hypothesis

used in this study is: Detecting the use of manual system calls utilizing Process

Instrumentation Callback will not affect the performance of the system. To prove the validity

of a hypothesis the null hypothesis must first be proven to be false. This can be accomplished

by demonstrating the statistical significance of the data (Fralick et al., 2017). By determining

the significance, it can be assured that the results were not a matter of chance and can be

attributed to the application of the PIC treatment.

Survey of Statistical Methods

Choosing the correct statistical method is extremely important in the determination of

the significance of research data (Fralick et al., 2017). Prior research into system calls did not

report utilizing any methods other than the calculated average of test results (Lopez et al.,

2017; Marhusin et al., 2008b). These studies focused on the comparison of alternative

hooking approaches and therefore did not require intensive validation of the system impact of

intercepting system calls. On the contrary, this study considered two test types to determine

the significance of the results: Student’s t-test (t-test) and analysis of variance (ANOVA).

Both tests wish to study the relationships between variables but the question they seek

to answer are slightly different. A t-test is used to compare the means between two groups,

whereas ANOVA is used to compare the means among three or more groups (Mishra et al.,

70

2019). As previously mentioned, this study created three different versions of PICE that were

compared to a base installation of Windows 10. Initially, ANOVA would seem the most

appropriate to consider there are four groups involved. However, each of these groups is only

compared to a single group at a time, the pre-test and post-test values. This is because the goal

of this analysis is to disprove the null hypothesis that there is zero effect on the performance

of the Windows operating system. Therefore, a t-test was chosen to be the most appropriate

method instead of ANOVA.

A t-test is a statistical technique used to test the mean difference between two groups

for statistical significance (Mishra et al., 2019). It involves the use of an alternative hypothesis

and a null hypothesis to determine the significance of two samples. The null hypothesis

always states that the means are equal, whereas the alternative hypothesis states that both

means are not statistically equal. It can be further broken into different types: independent

samples, one-sample, and paired samples. The independent-sample (or two-sample) test is

used when the population means, or standard deviation is unavailable. A common use case is

to compare two independent population samples for a common dependent variable. When the

mean is available for a studied population, the one-sample can be used to compare the mean

to a static or hypothetical value of a population. This can be used to evaluate a sample against

a larger dataset that has produced an expected mean. Lastly, a paired sample is used to

compare the means of the same or related groups at different times. This is often used to

analyze the effects of treatment on dependent samples of a single population (Fralick et al.,

2017). Paired-sample was chosen as the most appropriate type of t-test since this study

observes system performance before and after PIC treatment.

71

Evaluation of Statistical Results

The next step when preparing to perform analysis with a t-test is to determine the

confidence interval (Boslaugh, 2012). This is the range of numbers that are acceptable when

calculating the difference between the means of the two groups. A minimum confidence

interval (p-value) of 95% is generally required by most publishing journals and is supported

by previous research (Boslaugh, 2012; de Winter, n.d.; Mishra et al., 2019). Ensuring a

minimum p-value of 0.05 (95% confidence interval) minimizes the risk of sample difference

being the result of chance. This is required to statistically disprove the null hypothesis and

show that the treatment influenced the population.

The t-test also calculates the degrees of freedom allowed which for this experiment

was 29. The degrees of freedom are used to calculate the acceptable values that must be

outputted from a t-test to demonstrate statistical significance (de Winter, n.d.). These output

values are known as t-values. The result of this comparison creates the p-value for the study

and determines whether the groups are statistically different or not. All comparisons used a

one-tailed directional approach when analyzing the results. This is because the study is only

intended to observe the dependent variables which showcase system impact.

Analysis was performed on the results of CPU utilization for both UM and KM a total

of three times. Each test performed a t-test between the baseline version of TIP and the

versions that were monitored using PICE. Since each group had the same number of samples

the same degrees of freedom (29) were used to calculate a minimum t-value needed of

1.699127027. This means if the resulting t-value is greater, and the p-value is lower than 0.05

it can be assured to be statistically significant. The resulting t-value and p-values can be seen

below in Table 7.

72

Table 7. T-test results for User-Mode and Kernel-Mode execution time

PICE Version UM t-value UM p-value KM t-value KM p-value

1 33.95363969 3.3391E-25 2.180466737 0.018740946

2 364.6892804 5.93804E-55 9.214008673 2.04361E-10

3 15.06430652 1.50397E-15

1.832424938 0.038587737

PICEv2 experienced the largest increase in processing time and likely can be

attributed to having to populate SysCallList each time a system call is instrumented. PICEv3

had the shortest processing time of all versions in both UM and KM. Each iteration

demonstrated a t-value well above the required minimum (1.699127027) and therefore

successfully rejects the null hypothesis. Since the null hypothesis is disproven, it is not

necessary to perform a t-test on the other dependent variables. However, to be thorough, a t-

test was performed for the other measurements: clock time and memory utilization.

Real-time (wall) analysis produced similar results as CPU utilization and

demonstrated an increase in both PICEv1 and PICEv2. PICEv2 had a t-value of 242.7146425

compared to PICEv1’s t-value of 2.392751469, proving they are statistically significant.

Alternatively, PICEv3 produced a t-value of 1.42555938 and a p-value of 0.082335591. Both

numbers produced via PICEv3 are too low to be significant.

Memory utilization for virtual and physical memory usage was compared and showed

statistically significant results. Increases in memory activity can be partially attributed to the

inclusion of PICE.DLL in all tests. PICEv1 produced the highest t-values of 343.7473227

(virtual) and 412.734209 (physical), most likely due to its inclusion of MDE. T-test analysis

73

of PICEv2 and PICEv3 resulted in t-values of 21.50751942 and 18.25574897 respectively for

virtual memory. Physical memory analysis of the duo produced t-values of 60.88478071 and

10.38907161. All t-tests ran for memory utilization produced statistically significant results.

Summary

This chapter discussed the results of the quasi-experimental before-and-after study.

The layout of the model was described in detail and included the Windows 10 operating

system and the use of virtual snapshots to preserve integrity between tests. Three different

tests were performed using various iterations of PICE and a single test that used

instrumentation to measure a baseline. The results were gathered into a Microsoft Excel

document for further analysis.

Additional scrutinization of the return address of an instrumented system call was

documented and described. PICE development resulted in three different versions, each

containing increased fidelity that improved its detection capabilities. Additional analysis and

source code are available in Appendix D.

To prove the hypothesis that there is an effect on system performance when PIC is

used to monitor for manual system calls, the null hypothesis must be disproven. As others

have shown this is most commonly done using by demonstrating the statistical significance of

the data gathered by using some like a t-test (Boslaugh, 2012). CPU utilization for both UM

and KM was analyzed using the t-test and the quantitative results were presented to prove that

there is a performance impact. Additional t-tests were performed in this chapter on clock time

and memory utilization, with their results presented.

74

Overall, each of the dependent variables measured showed a large increase when PICE

was imported and began monitoring system call usage. The next chapter will conclude this

paper and discuss the findings in additional detail. Recommendations for how PIC can

augment existing detections and potential future research topics are covered as well.

75

CHAPTER 5

CONCLUSION

This chapter presents the implications of the quantitative results covered in Chapter 4.

The limitations of this quasi-experimental study and the performance impact introduced by

using PIC to monitor manual system call usage are discussed. Each version of PICE

introduces its own detection mechanisms that can both help detection but also contain

downsides that must be considered. Therefore, PICE iterations and their performance are

compared with each other.

This discussion further includes how PIC may fit into existing defensive technology

ecosystems and augment telemetry for UM activity on Windows. Recommendations for

future research for the purpose of expanding the capabilities of PIC and optimizing analysis

are made.

Review of Findings

Executing a system call on Windows manually is a well-known technique used to

bypass defense technologies such as User-Mode Hooks (MDSec, 2020; Ullrich, 2021).

Microsoft does not officially support the use of manual system calls, instead providing the

WinAPI for programs to interface directly with the operating system (Allievi et al., 2021).

These hooks commonly run in the WinAPI, as described in Chapter 2, and temporarily divert

execution to perform an analysis of function arguments to determine if it is malicious or not.

76

The detection of these manual system calls is incredibly important since without it any

monitoring software relying on UM hooks is blind to its execution. The use of this technique

can be considered anomalous due to unlikely legitimate usage because of instability between

versions of Windows.

Process Instrumentation Callback was discovered by Alex Ionescu (2015) and

provides the ability to hook system calls natively using undocumented built-in features of the

Windows operating system. These hooks occur every time a call returns from KM and

provide the location that it had originally intended to return to. By performing analysis on this

address and it’s possible to detect manual system call usage and terminate execution (Richard,

n.d.; Ullrich, 2021).

A model was developed using PIC to monitor a process’s system call usage (PICE) to

evaluate the performance impact of the hook. The hooked process (TIP) performed a large

amount of system calls via WinAPI for the purpose of being intercepted and analyzed using

PIC. Chapter 3 describes this model in-depth and further describes the setup of the

environment. Quantitative results showing an impact on system performance were showcased

in Chapter 4, confirming the original hypothesis of this study.

CPU Utilization

CPU utilization was a primary variable measured in each test to determine the system

performance when PICE was applied. The results were individually measured as user-mode

time (UM time) and kernel-mode time (KM time). Real-time was also measured using the

number of ticks reported by the processor itself to represent how long execution lasts for the

77

end user. Collectively, these results represent the overall CPU impact that PICE had on

Windows when used to detect manual system call usage.

Approximately 40,000 system calls were made by TIP during each test. The data was

captured after each test and averaged to observe the different impact between versions.

Figure 11. Comparison of CPU utilization time for each version of PICE

The bar graph in Figure 11 shows the comparison of CPU utilization for each version

of PICE. As expected, PICEv2 had the largest impact on CPU utilization due to parsing the

EAT of NTDLL for each system call it examined. Each version of PICE showed an increase

in KM execution which can be attributed to the system calls made by PICE during analysis.

Real-time performance scaled similarly to UM time and KM time with PICEv3 being the

164583 671875

27476042

408854

4713542 4839063 5315104 4824008

10288090 10528255

38195914

10439246

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Baseline PICEv1 PICEv2 PICEv3

Ex
ec

ut
io

n
tim

e
in

 M
ic

ro
se

co
nd

s

Versions

CPU Utilization (UM vs KM vs Real-Time)

User-Mode

Kernel-Mode

Real-Time

78

exception. A different representation of the data is shown in Table 9 which examines the

percentage of change between the baseline and the PICE iterations.

Table 8. Percentage of CPU utilization increase over Windows baseline without PICE

VERSION UM-TIME KM-TIME CLOCK TIME

PICEV1 308% 3% 2%

PICEV2 16594% 13% 271%

PICEV3 148% 2% 1%

By its nature PICE performed most of its analysis in UM. Therefore, limiting

execution spent in UM time is the primary focus when further improving PICE.

Memory Utilization

Another variable used to measure system performance was the amount of virtual and

physical memory that was allocated by the process. Minimizing the memory usage of PICE

was not a primary concern during development due to a small codebase. Unless a new image

is loaded into the process space there is rarely any reason for an unexpected increase in the

amount of memory utilized.

79

 The difference in memory usage between PICEv1 and the other versions can be

attributed to its inclusion of the Microsoft Debugging Engine (MDE). As discussed in Chapter

4, MDE requires the import of DBGHELP.DLL to be loaded into the process’s memory

space. The removal of MDE was a clear success that caused memory utilization in subsequent

versions to have a small increase over the baseline by comparison. PICEv2 and PICEv3 had

an average increase of virtual memory by 7% and physical memory by 4%.

Windows 10 was configured with 8GB of RAM for the testing environment. This is

consistent with the Microsoft recommended hardware requirements for optimal system usage

(Microsoft, n.d.-c). Even at its peak in PICEV1 at 9 MB, the system had more than enough

memory to compensate. In a real-world scenario, PICE is likely to be executed within

multiple processes on a single system which would increase the system-wide amount of

memory utilized.

522103.4667

5830109.867

560742.4

555144.5333

2500198.4

8260403.2

2614886.4

2609561.6

0 2000000 4000000 6000000 8000000 10000000

Baseline

PICEv1

PICEv2

PICEv3

Size in Bytes

Ve
rs

io
n

Memory Utilization (Virtual vs Physical)

Virtual Memory Usage

Physical Memory Usage

Figure 12. Average memory utilization for each version of PICE

80

Overall, these results have were proven statistically to impact the performance of

Windows and future development should ensure that additional memory utilization is

considered carefully to maximize portability.

Detection Capabilities

The secondary research question of this study was to determine if enhancements could

be made to previous implementations of PIC to harden them from potential evasion. Both

PICEv1 and PICEv2 contain changes that improve and add greater analysis than that included

in previous research (Richard, n.d.; Ullrich, 2021). These changes are described in Chapter 4

and the logic flow can be observed in Figures 7 and 8. This section will briefly discuss the

faults that these evolutions seek to address and the likelihood of success.

PICEV2’s primary goal was to eliminate the use of MDE and verify the integrity of

NTDLL. This was achieved by the implementation of an internal routine that dynamically

parsed the EAT of NTDLL and stored the legitimate memory location of its exported

functions and their corresponding SCNs (T, 2021/2022). After, due to the static calling

convention in Windows (Figure 4) the return address was manipulated to the current function

prologue and SCN. These two values should always be equivalent unless NTDLL has been

tampered with as suggested by Ullrich (2021) by modifying the SCN.

 The removal of MDE eliminated an indicator of analysis that could inform malware

that it is being examined. DBGHELP.DLL is the implementation of MDE that is required to

be imported into any program wishing to use its functionality. A process on Windows can

easily query its own memory space for the presence of this DLL and alter its execution to stay

hidden (Apostolopoulos et al., 2021). This technique can also be used to successfully check

81

for PICE.DLL. This was an accepted fault in PICE due to the fact it would require the

introduction of uncontrolled variables such as external monitoring processes.

PICEv2 relied on the integrity of the EAT to provide a ground truth to use for analysis

dynamically. A static version of SysCallList could be used, however, this would decrease the

portability of the solution to future Windows versions that may have altered SCNs. This

reliance can be abused if the integrity of the EAT is compromised in addition to the SCN. If

the values match, PICEv2 would determine the call to not be manual. PICEv2 could instead

use a different source to verify the integrity of NTDLL to protect against this. For example,

the on-disk version of NTDLL could be loaded into memory to be compared for modification.

This would likely introduce a higher impact on system performance and shift the weakness

from the integrity of the EAT to the on-disk version of NTDLL. Alternatively, an existing

solution outside of PICE could be utilized to augment its detection and provide a much greater

level of assurance. This is discussed further in the Recommendations section.

The syscall instruction is responsible for the transfer of execution from UM to KM,

but when performing this action, it must store the UM address to be executed upon return

(Allievi et al., 2021). Malware can abuse this by ensuring that they do not execute the syscall

instruction within their program’s address space. Preparation of any arguments required for

the system call (SCN) can be safely executed before jumping to a valid syscall instruction

within NTDLL (Josh, 2021). Look to Figure 13 for the execution flow of this technique. After

returning from KM, PICEv2 would check the return address and allow execution to continue

since it exists within NTDLL. This is because the syscall instruction pushes the next

instruction (ret) onto the stack before transferring execution to KM.

82

PICEv3 instead focused on performing an analysis of the values on the stack. After

returning from KM, Windows calling convention (Figure 4) dictates that a ret instruction is

executed. This will pop the current stack pointer (RSP) into RIP and execute it. As described

in Chapter 4, bounds checking is performed on this location to determine if it belongs to

KERNELBASE.DLL. A malicious binary that jumps to the syscall instruction within the

desired NTDLL function would be detected by PICEv3, even though PICEv2 would not. A

hypothetical representation of the stack is pictured in Figure 13 to illustrate the opportunity

for analysis.

Figure 13. Jumping directly to syscall instruction to avoid PICEv2 detections (Josh, 2021)

This detection relies on the stability provided by WinAPI that legitimate applications

require to ensure that their code can work in future versions of Windows (Allievi et al., 2021).

If an attacker knew stack analysis was being performed, they could ensure the stack contains

an address located within KERNELBASE.DLL. This can be achieved by manually resolving

83

and pushing onto the stack a pointer an address of a ret instruction within

KERNELBASE.DLL. A more intensive stack analysis could be performed by PICEv3 to

potentially identify this which is discussed in the Future Research section.

Discussion

This section will cover the researcher’s recommendations regarding the use of PIC to

detect the usage of manual system calls. Chapter 2 revealed that previous hooking methods

implemented in UM are inadequate to intercept and analyze malicious programs. Previous

research found that intercepting system calls adds a performance overhead to programs that

can affect the overall performance of Windows (Lopez et al., 2017; Marhusin et al., 2008a).

PICE was created to evaluate the potential impact caused by PIC interception and various

levels of analysis.

Chapter 4 showed that all three versions of PICE had a significant impact on system

performance. Depending on the implementation development, there can be a massive increase

in both CPU and Memory utilization.

Using PIC to detect Manual System Calls

The literature review illustrated how a manual system call is a well-known bypass to

modern user-mode hooks. Previous iterations have shown that PIC can be successful in

detecting manual system calls by analyzing the location of the return address. This technique

separates itself from the other defensive technologies such as ETW, who focus on what end

action is performed by a system call. Instead, emphasis is placed on scrutinizing the

differences in how the program performed the system call. PICEv2 performed this by

84

analyzing the memory around the return address to determine the last instructions executed.

PICEv3 took a different approach and instead checked the UM stack for abnormal return

locations. These detections were purposefully developed to be simple and heuristically based

to highlight the parallels between increased analysis and performance impact.

TIP purposefully imported PICE.DLL before beginning its execution for this study.

Real-life implementations of PICE.DLL would have to monitor programs that were not

developed with PIC in mind. Like UM hooks, PICE.DLL can be injected into the memory

space of a target process during runtime. It may be beneficial to automate the process by

creating a Windows service to be responsible for monitoring process creation for targets.

Once identified, the service can inject PICE.DLL and monitor for success. Furthermore, PIC

could easily be configured to report telemetry to this service which could then ingest it into a

database.

One of the limitations described earlier in this chapter was the ability to disable PIC

using NtSetInformationProcess. This technique relies on modifying the KPROCESS structure

of a process to overwrite the InstrumentationCallback field with a NULL value. To re-enable

PIC another call must be made using NtSetInformationProcess to reset the field to Figure 5. A

Windows service could be created to monitor the KPROCESS structure of any hooked

processes to ensure that the InstrumentationCallback field has not been removed. NTDLL

provides the function NtQueryInformationProcess that can be used to retrieve the

KPROCESS structure from any process provided adequate permissions. Once it has been

detected that PIC has been tampered with, the service can decide whether to terminate the

process or reload PICE.DLL.

85

Integration with Existing Detection Mechanisms

It is important when considering the security of computer systems to utilize a defense-

in-depth strategy. This means that security should be implemented as a layered approach to

reduce the chances of a threat successfully bypassing your defenses (US-CERT, 2005).

Examples of different layers that can be used to monitor host activity include UM hooks,

kernel callbacks, Event-Tracing for Windows, and in-memory scanning. Developing these

layers to be aware of each other can provide additional heuristics that detect when a program

disables them. The act of trying to bypass a security control is itself a notable event that

should be generated and made available to defenders.

This is the recommendation for implementing PIC into an existing environment. Its

ability to detect the usage of manual system calls is only useful if an attacker is forced to

decide to use them. Monitoring NTDLL functions via UM hooks creates a scenario where an

attacker must use manual system calls to bypass it. Home field advantage is the primary

strength of defenders and by limiting the techniques attackers can use it becomes much easier

to write reliable detections. Therefore, PIC and UM hooks are complementary techniques that

must be utilized together to be the most effective.

A commonality between the bypasses to both UM hooks and PIC is the modification

of NTDLL in memory (Baranauskas, n.d.; MDSec, 2020; Tang, 2017). By default, when

NTDLL is loaded, processes do not have write permissions to modify it. A program must use

the system call NtProtectVirtualMemory to change the permissions and allow them to

overwrite the desired sections. The literature surveyed in Chapter 2 shows that it is

uncommon for this function to not be monitored by UM hooks by EDR vendors (Hamilton,

86

2021/2021). Consequently, this makes manual system calls the only option to remain

undetected until the UM hooks can be removed from NTDLL.

It follows that a manual system call is necessary to execute NtProtectVirtualMemory

without triggering detections by UM hooks. If these hooks are configured to scrutinize any

processes attempting to modify the memory protections of NTDLL then attackers are left with

two choices, even if they are aware of PIC’s existence. The first choice is to use

NtSetInformationProcess to disable PIC as described in previous sections to be able to use

manual system calls. Like NtProtectVirtualMemory, this function is commonly hooked by

EDR vendors using UM hooks and can be configured to terminate a process supplying the

InstrumentationCallback field, protecting PIC. This creates a symbiotic relationship between

both defensive technologies. The second way is to bypass the analysis that is performed when

PIC intercepts a system call. The different iterations of PICE have shown that improvements

can be made to previous work beyond just performing a bounds-check of the return address

location. These are covered in-depth in the Detection Capabilities section found earlier in this

chapter.

Potentially the most impactful way that PIC could be utilized with existing

technologies is to verify that system calls were successfully intercepted for analysis. UM

hooks perform analysis pre-system call and PIC performs analysis post-system call. If a log

fails to be generated for either of the two technologies, then it can be assumed that one of

them was bypassed and an alert should be generated. A hypothetical setup of this would

require a managing agent that is responsible for ingesting telemetry from both hooks and

providing API access to both implementation’s detour functions to perform the check. This is

87

an extremely simple method of analysis and should be coupled with additional metrics to

verify the authenticity of interception.

Future Research

There are increases in performance that can be found in the development process. The

researcher was not concerned about achieving optimal performance but instead proved that

PIC can affect the performance of a system. Future research into improving the performance

of hooks is an important next step in adoption. Different algorithm choices for analysis could

provide differences in overhead. Exclusions of boilerplate technologies such as the C runtime

(CRT) could be achieved by rewriting PICE completely in assembly code which may speed

up the processing time.

Although this study focuses on functions exported from NTDLL, there are additional

UM callbacks in Table 2 that are yet to be analyzed. This was purposeful, to scope the

research to manual system calls and provide the greatest benefit from a defensive perspective.

Although the analysis was not performed, each one of these system calls was still intercepted

by PICE to determine it belongs to NTDLL. This preliminary check becomes increasingly

important when graphical applications are monitored. A much higher number of system calls

are performed utilizing KiUserCallbackDispatcher to create and manage window drawing

operations in a graphical program. Future studies should employ different metrics to study the

visual impacts that are caused by increased processing time.

Lastly, the stack analysis performed by PICEv3 is not a foolproof method of analysis.

Keeping performance in mind, additional checks should be performed using the addresses

88

present on the stack. Additional heuristics can be derived from the Windows API calling

convention and used to prevent evasion.

Limitations

Performing a before-and-after study implies that the primary interest is the effect PIC

exerts on the environment in which it has been installed and operated (Creswell & Creswell,

2018). It is not practical to explore every edge case for the detection of manual system calls or

to include every system call in the TIP implementation. Defense security research is often a

back-and-forth between defensive technologies and bypass techniques that leaves end-users

caught in the middle. Effective security technologies should not negatively affect the stability

or the performance of the operating system. For this reason, the performance of PIC must be

studied further and appropriately considered before adoption.

The undocumented nature of PIC requires understanding that future versions of

Windows may alter the implementation or remove it completely. Considering it has been

around since at least Windows 7, it can be expected to continue to exist but caution must be

observed when considering its use (Ionescu, 2016). Therefore, the findings of this study can

only be guaranteed to be replicated using the operating system version: Windows 10 19042.

Any of the analysis functions of PICE such as the resolution of SCNs and memory addresses

were dynamically written to have the best chance at being version agnostic.

Microsoft allows for both 64-bit and 32-bit applications to be run on Windows 10

(Allievi et al., 2021). This is made possible by performing address translation of 32-bit system

calls to their 64-bit counterpart before crossing into KM. PICE does not support the

instrumentation of 32-bit system calls but existing research shows that it’s possible (Richard,

89

n.d.). A fully featured version of PICE would require 32-bit support to be able to properly

monitor all potential applications for manual system calls.

It is possible to disable PICE by modifying the KPROCESS field using

NtSetInformationProcess and providing a NULL value to the InstrumentationCallback field.

There is little difference in the process described in Chapter 2 to place the hook, however

instead of providing the structure described in Figure 5, instead, a NULL value is provided.

Any process by default has the permission to set this value and it can be used to avoid

detection. This study provides potential workarounds in the Recommendations section;

however, no effort was made to make PICE resilient to it. Since the primary interest of this

study was to observe the performance impact of PIC, this remains out of scope.

The development of PICE focused on the detection of anomalous behavior that

accompanies the execution of manual system calls to be able to identify when they are used.

Bounds checking of both the return address and the stack pointer was implemented in PICEv2

and PICEv3, but they do not represent the only way to perform detection. It is possible that

further analysis could be performed using these two values to provide a stronger heuristic.

Functions that exist outside of NTDLL that were intercepted by PICE were not subject

to the same analysis. For example, WIN32U.DLL primarily supports the graphical user

interface (GUI) on Windows and does not provide the same capabilities as NTDLL which

focuses on process management (Allievi et al., 2021). Existing research showcases the

exploitation of WIN32U.DLL primarily used as a mechanism to execute malicious code in the

kernel, which is out of the scope of this study (Kaspersky, 2021; Microsoft, 2022a).

Additional exceptions were written for the functions in Table 2 that are not related to the

detection of manual system calls.

90

Virtual snapshots limited the amount of outside influence on the model. These allowed

a replica of the environment to be available for each test and limited the number of

uncontrolled variables. By using a dedicated hypervisor to run the Windows 10 virtual

machine the researcher ensured that the system had sole access to the underlying hardware.

Even with all these precautions, there may be unknown routines taking execution time on the

processor by the hypervisor. Additionally, Windows is an extremely complex operating

system and often performs tasks unknown to the user in the background which could affect

performance.

Summary

Chapter 5 concluded the documentation of this study and provided commentary on the

results covered in the previous chapter. This quasi-experimental before-and-after study sought

to determine the performance impact of using Process Instrumentation Callback to detect the

use of manual system calls. The literature survey showed the gaps in existing detections on

Windows and how PIC can augment them to achieve defense-in-depth. Previous studies

comparing hook performance were reviewed to provide context and establish the need to

measure the impact of intercepting system calls.

Three different iterations of PICE were developed to answer the secondary research

objective to highlight the performance impacts of additional analysis. The quantitative results

proved that in each version of PIC, there was a statistically significant impact on CPU

utilization, memory utilization, and clock time. While it is still possible to evade the

detections employed in PICE, this study illustrates several ways to improve by involving

91

other techniques like UM hooks. Overall, the researcher provides these results to encourage

the addition of PIC to existing detection frameworks.

92

REFERENCES

Abimbola, A., Munoz, J. M., & Buchanan, W. (2006). NetHost-sensor: Monitoring a target

host’s application via system calls. Information Security Technical Report, 11, 166–

175. https://doi.org/10.1016/j.istr.2006.10.003

Ahmed, M. E., Kim, H., Camtepe, S., & Nepal, S. (2021). Peeler: Profiling Kernel-Level

Events to Detect Ransomware. In E. Bertino, H. Shulman, & M. Waidner (Eds.),

Computer Security – ESORICS 2021 (pp. 240–260). Springer International

Publishing. https://doi.org/10.1007/978-3-030-88418-5_12

Allievi, A., Ionescu, A., Russinovich, M. E., & Solomon, D. A. (2021). Windows internals,

part 2 (7th ed.). Microsoft Press.

Alshehri, M., Brady, C., & Albert, J. (n.d.). Windows Memory-Injected Malware Detection

Freeware Comparison. 9.

Apostolopoulos, T., Katos, V., Choo, K.-K. R., & Patsakis, C. (2021). Resurrecting anti-

virtualization and anti-debugging: Unhooking your hooks. Future Generation

Computer Systems, 116, 393–405. https://doi.org/10.1016/j.future.2020.11.004

Arghire, I. (2022). Ransomware Targeted 14 of 16 U.S. Critical Infrastructure Sectors in 2021

| SecurityWeek.Com. https://www.securityweek.com/ransomware-targeted-14-16-us-

critical-infrastructure-sectors-2021

Baranauskas, M. (n.d.). Bypassing Cylance and other AVs/EDRs by Unhooking Windows

APIs. Retrieved February 24, 2022, from https://www.ired.team/offensive-

security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-

windows-apis

93

Bartolik, P. (2022, January 20). Financial Services Malware Just Won’t Die. What to Do

About It. CSO Online. https://www.csoonline.com/article/3648031/financial-services-

malware-just-won-t-die-what-to-do-about-it.html

Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M., Mihočka, D., &

Chau, J. (2006). Framework for instruction-level tracing and analysis of program

executions. Proceedings of the 2nd International Conference on Virtual Execution

Environments - VEE ’06, 154. https://doi.org/10.1145/1134760.1220164

Bode, A., & Warnars, N. (n.d.). Detecting Fileless Malicious Behaviour of .NET C2 Agents

using ETW. 9.

Boslaugh, S. (2012). Statistics in a Nutshell: A Desktop Quick Reference. O’Reilly Media,

Inc.

Botor, T., & Habiballa, H. (2018). Comparison of time measurement methods in C++. AIP

Conference Proceedings, 1978(1), 060003. https://doi.org/10.1063/1.5043705

Bremer, J. (2012). X86 API Hooking Demystified | Development & Security. X86 API

Hooking Demystified. http://jbremer.org/x86-api-hooking-demystified/

Catlin, B., Hanrahan, J. E., Russinovich, M. E., Solomon, D. A., & Ionescu, A. (2017a).

System architecture, processes, threads, memory management, and more (Seventh

edition). Microsoft.

Catlin, B., Hanrahan, J. E., Russinovich, M. E., Solomon, D. A., & Ionescu, A. (2017b).

System architecture, processes, threads, memory management, and more (Seventh

edition). Microsoft.

94

ChainAnalysis. (2022, January 19). Meet the Malware Families Helping Hackers Steal and

Mine Millions in Cryptocurrency. Chainalysis.

https://blog.chainalysis.com/reports/2022-crypto-crime-report-preview-malware/

Chappel, G. (n.d.). KPROCESS. Retrieved February 24, 2022, from

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/ke/kprocess/ind

ex.htm

Chester, A. (2020, March 24). Hiding Your .NET – ETW. Chester.

https://www.mdsec.co.uk/2020/03/hiding-your-net-etw/

Cocomazzi, A. (n.d.). Weaponizing Mapping Injection with Instrumentation Callback for

stealthier process injection. Weaponizing Mapping Injection with Instrumentation

Callback for Stealthier Process Injection. Retrieved January 18, 2022, from

https://splintercod3.blogspot.com/p/weaponizing-mapping-injection-with.html

Creswell, J. W. (2015). Educational research: Planning, conducting and evaluating

quantitative and qualitative research.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and

mixed methods approaches (Fifth edition). SAGE.

Czeczko, P. (2020, April 5). Malware development part 2—Anti dynamic analysis &

sandboxes. https://0xpat.github.io/Malware_development_part_2/

de Plaa, C. (n.d.). Red Team Tactics: Combining Direct System Calls and sRDI to bypass

AV/EDR | Outflank Blog. Retrieved January 18, 2022, from

http://www.outflank.nl/publications

de Plaa, C. (2020). TamperETW [C]. Outflank B.V.

https://github.com/outflanknl/TamperETW (Original work published 2020)

95

de Winter, J. C. F. (n.d.). Using the Student’s t-test with extremely small sample sizes.

https://doi.org/10.7275/E4R6-DJ05

Eder, T., Rodler, M., Vymazal, D., & Zeilinger, M. (2013). ANANAS - A Framework for

Analyzing Android Applications. Proceedings of the 2013 International Conference on

Availability, Reliability and Security, 711–719. https://doi.org/10.1109/ARES.2013.93

Everdox, N. (2013, February 13). Windows x64 System Service Hooks and Advanced

Debugging. CodeProject. https://www.codeproject.com/Articles/543542/Windows-

x64-System-Service-Hooks-and-Advanced-Debu

Fralick, D., Zheng, J. Z., Wang, B., TU, X. M., & Feng, C. (2017). The Differences and

Similarities Between Two-Sample T-Test and Paired T-Test. Shanghai Archives of

Psychiatry, 29(3), 184–188. https://doi.org/10.11919/j.issn.1002-0829.217070

Gavriel, H. (2018, November 27). Malware Mitigation when Direct System Calls are Used.

Cyberbit. https://www.cyberbit.com/blog/endpoint-security/malware-mitigation-when-

direct-system-calls-are-used/

GenPact. (2014). The-impact-of-technology-on-business-process-operations.pdf.

https://www.genpact.com/downloadable-content/insight/the-impact-of-technology-on-

business-process-operations.pdf

H, P. (2020, December 16). Experimenting with Protected Processes and Threat-Intelligence.

Pat_h/to/File. https://blog.tofile.dev/2020/12/16/elam.html

Hamilton, C. (2021). EDRs [C]. https://github.com/Mr-Un1k0d3r/EDRs (Original work

published 2021)

Hand, M. (2020, December 16). Adventures in Dynamic Evasion. Medium.

https://posts.specterops.io/adventures-in-dynamic-evasion-1fe0bac57aa

96

Harris, A. D. (2006). The Use and Interpretation of Quasi-Experimental Studies in Medical

Informatics. Journal of the American Medical Informatics Association : JAMIA,

13(1), 16–23. https://doi.org/10.1197/jamia.M1749

HealthITSecurity. (2020, October 7). US Ransomware Attacks Doubled in Q3; Healthcare

Sector Most Targeted. HealthITSecurity. https://healthitsecurity.com/news/us-

ransomware-attacks-doubled-in-q3-healthcare-sector-most-targeted

Hirofuchi, T. (2018). SimGrid VM: Virtual Machine Support for a Simulation Framework of

Distributed Systems. https://www.ezproxy.dsu.edu:2063/document/7274701/

Hoffman, C. (2020). Read This to Understand Windows 10 Update Names and Numbers.

How-To Geek. https://www.howtogeek.com/697411/read-this-to-understand-

windows-10-update-names-and-numbers/

Hydra. (2020, September 18). Implementing Direct Syscalls Using Hell’s Gate. Team Hydra.

https://teamhydra.blog/2020/09/18/implementing-direct-syscalls-using-hells-gate/

Ionescu, A. (2016). Ionescu007/HookingNirvana [C].

https://github.com/ionescu007/HookingNirvana/blob/9e4e8e326b9dfd10a7410986486

e567e5980f913/Esoteric%20Hooks.pdf

Jia, H., Mao, R., & Wu, W. (2014). Methods to monitor process’s Spatial and temporal

consumption. 2014 11th International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), 892–897. https://doi.org/10.1109/FSKD.2014.6980957

Josh. (2021, June 9). Hiding Your Syscalls. PTHB.

https://passthehashbrowns.github.io/hiding-your-syscalls

Kaspersky. (2021, October 12). CVE-2021-40449: Trojan delivery vulnerability.

https://www.kaspersky.com/blog/mysterysnail-cve-2021-40449/42448/

97

Klein, A., Kotler, I., & Labs, S. (n.d.). Windows Process Injection in 2019. 34.

Kleymenov, A., & Thabet, A. (2019). Mastering Malware Analysis: The complete malware

analyst’s guide to combating malicious software, APT, cybercrime, and IoT attacks.

Kumar, R. (2014). Research Methodology: A Step-by-Step Guide for Beginners. SAGE.

https://books.google.co.uk/books?id=MKGVAgAAQBAJ&printsec=frontcover&sour

ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners.

Lopez, J., Babun, L., Aksu, H., & Uluagac, S. (2017). A Survey on Function and System Call

Hooking Approaches. Journal of Hardware and Systems Security, 1.

https://doi.org/10.1007/s41635-017-0013-2

Lukan, D. (2014). Hooking the System Service Dispatch Table (SSDT). Infosec Resources.

https://resources.infosecinstitute.com/topic/hooking-system-service-dispatch-table-

ssdt/

Mandt, T. (2011). Kernel Attacks through User-Mode Callbacks. 29.

Marhusin, M. F., Larkin, H., Lokan, C., & Cornforth, D. (2008a). An Evaluation of API Calls

Hooking Performance. 2008 International Conference on Computational Intelligence

and Security, 1, 315–319. https://doi.org/10.1109/CIS.2008.199

Marhusin, M. F., Larkin, H., Lokan, C., & Cornforth, D. (2008b). An Evaluation of API Calls

Hooking Performance. 1, 315–319. https://doi.org/10.1109/CIS.2008.199

Mauldin, R. L. (2020). Foundations of Social Research.

https://uta.pressbooks.pub/foundationsofsocialworkresearch/

98

MDSec. (2020, December 31). Bypassing User-Mode Hooks and Direct Invocation of System

Calls for Red Teams. MDSec. https://www.mdsec.co.uk/2020/12/bypassing-user-

mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/

Microsoft. (n.d.-a). Dynamic-Link Libraries (Dynamic-Link Libraries)—Win32 apps.

Retrieved February 12, 2022, from https://docs.microsoft.com/en-

us/windows/win32/dlls/dynamic-link-libraries

Microsoft. (n.d.-b). ELAM driver submission Process—Windows drivers. Retrieved February

11, 2022, from https://docs.microsoft.com/en-us/windows-

hardware/drivers/install/elam-driver-submission

Microsoft. (n.d.-c). How to Check Windows 10 Computer System Specs & Requirements—

Microsoft. Windows. Retrieved February 15, 2022, from

https://www.microsoft.com/en-us/windows/www.microsoft.com/en-

us/windows/windows-10-specifications

Microsoft. (n.d.-d). User mode and kernel mode—Windows drivers. Retrieved February 17,

2022, from https://docs.microsoft.com/en-us/windows-

hardware/drivers/gettingstarted/user-mode-and-kernel-mode

Microsoft. (n.d.-e). Virtual address spaces—Windows drivers. Retrieved February 18, 2022,

from https://docs.microsoft.com/en-us/windows-

hardware/drivers/gettingstarted/virtual-address-spaces

Microsoft. (n.d.-f). Windows Hardware Compatibility Program. Retrieved February 18, 2022,

from https://docs.microsoft.com/en-us/windows-hardware/design/compatibility/

Microsoft. (n.d.-g). X64 calling convention. Retrieved February 16, 2022, from

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention

99

Microsoft. (2002). Detours. Microsoft Research. https://www.microsoft.com/en-

us/research/project/detours/

Microsoft. (2022a). CVE-2022-21882—Security Update Guide—Microsoft—Win32k

Elevation of Privilege Vulnerability. https://msrc.microsoft.com/update-

guide/vulnerability/CVE-2022-21882

Microsoft. (2022b, January 4). Acquiring high-resolution time stamps—Win32 apps.

https://learn.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-

time-stamps

Microsoft. (2022c, February 2). GetProcessMemoryInfo function (psapi.h)—Win32 apps.

https://learn.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-

getprocessmemoryinfo

Miller, C. J., Smith, S. N., & Pugatch, M. (2020). Experimental and quasi-experimental

designs in implementation research. Psychiatry Research, 283, 112452.

https://doi.org/10.1016/j.psychres.2019.06.027

Mishra, P., Singh, U., Pandey, C., Mishra, P., & Pandey, G. (2019). Application of student’s

t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22(4), 407.

https://doi.org/10.4103/aca.ACA_94_19

Monnappa, K. A. (2018). Learning malware analysis: Explore the concepts, tools, and

techniques to analyze and investigate Windows malware. Packt Publishing.

nick.p.everdox. (2013, February 13). Windows x64 System Service Hooks and Advanced

Debugging. CodeProject. https://www.codeproject.com/Articles/543542/Windows-

x64-System-Service-Hooks-and-Advanced-Debu

100

Noah. (2022). Secrary/Hooking-via-InstrumentationCallback [C++].

https://github.com/secrary/Hooking-via-

InstrumentationCallback/blob/442607787b83a4cf8a2be77c9a1f917224e1fe90/instrum

entationcallback/instrumentationcallback.cpp (Original work published 2017)

Palantir. (2019, February 28). Tampering with Windows Event Tracing: Background,

Offense, and Defense. Medium. https://blog.palantir.com/tampering-with-windows-

event-tracing-background-offense-and-defense-4be7ac62ac63

Reddy, M. (2011). API design for C++. Morgan Kaufmann.

Richard, C. (n.d.). X86 Nirvana Hooks & Manual Syscall Detection. Retrieved February 8,

2022, from https://blog.xenoscr.net/2022/01/17/x86-Nirvana-Hooks.html

Schulman, A., Maxey, D., & Pietrek, M. (1992). Undocumented Windows. Addison-Wesley.

Singh, B., Evtyushkin, D., Elwell, J., Riley, R., & Cervesato, I. (2017). On the Detection of

Kernel-Level Rootkits Using Hardware Performance Counters. Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, 483–

493. https://doi.org/10.1145/3052973.3052999

Statista. (2020). Global server share by OS 2018-2019. Statista.

https://www.statista.com/statistics/915085/global-server-share-by-os/

Statista. (2021a). Desktop OS market share. Statista.

https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

Statista. (2021b). Windows 7/10 adoption rate 2020. Statista.

https://www.statista.com/statistics/897222/north-america-western-europe-windows-7-

10-adoption/

101

T, J. (2022). SysWhispers2 [Assembly]. https://github.com/jthuraisamy/SysWhispers2

(Original work published 2021)

T, J. (2022). SysWhispers [Assembly]. https://github.com/jthuraisamy/SysWhispers (Original

work published 2019)

Tang, J. (2017). Universal Unhooking: Blinding Security Software.

https://blogs.blackberry.com/en/2017/02/universal-unhooking-blinding-security-

software

Teodorescu, C., Korkin, I., & Golchikov, A. (n.d.). Veni, No Vidi, No Vici: Attacks on ETW

Blind EDR Sensors. 51.

Ullrich, J. (2021, February 10). Detecting Manual Syscalls from User Mode. Winternl.

https://winternl.com/detecting-manual-syscalls-from-user-mode/

US-CERT. (2005). Defense in Depth | CISA.

https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/defense-in-depth

Valasek, C. (2010). Understanding the Low Fragmentation Heap. 86.

VMware. (n.d.). Overview of virtual machine snapshots in vSphere (1015180).

https://kb.vmware.com/s/article/1015180

WHQL. (n.d.). WHQL Release Signature—Windows drivers. Retrieved February 24, 2022,

from https://docs.microsoft.com/en-us/windows-hardware/drivers/install/whql-release-

signature

Willems, C., Holz, T., & Freiling, F. (2007). Toward Automated Dynamic Malware Analysis

Using CWSandbox. IEEE Security Privacy, 5(2), 32–39.

https://doi.org/10.1109/MSP.2007.45

102

Win, T. Y., Tianfield, H., & Mair, Q. (2015). Detection of Malware and Kernel-Level

Rootkits in Cloud Computing Environments. 2015 IEEE 2nd International Conference

on Cyber Security and Cloud Computing, 295–300.

https://doi.org/10.1109/CSCloud.2015.54

Windows API. (2021). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Windows_API&oldid=1053587257

x64dbg. (n.d.-a). Add x64 instrumentation callback hook · x64dbg/ScyllaHide@66ec9ad.

GitHub. Retrieved January 25, 2022, from

https://github.com/x64dbg/ScyllaHide/commit/66ec9ad5140a4deca88cf9e0178ec5728

bba077b

x64dbg. (n.d.-b). X64dbg. Retrieved February 22, 2022, from https://x64dbg.com/

Zhang, F. (2018). A Survey on Virtual Machine Migration: Challenges, Techniques, and

Open Issues. https://www.ezproxy.dsu.edu:2063/document/8260891/

103

APPENDIX A: AVERAGE USER-MODE AND KERNEL-MODE

TIMES

The tables below are the raw values captured from each of the 30 tests conducted. The

data is represented in microseconds and was captured using the GetProcessTimes function.

User-Mode CPU Time
Baseline PICEv1 PICEv2 PICEv3

140625 578125 27375000 328125
234375 562500 26515625 281250
171875 812500 27890625 296875
125000 593750 27187500 421875
171875 718750 27578125 375000
187500 765625 27609375 500000
218750 765625 27296875 421875
171875 703125 27500000 500000
125000 656250 27203125 359375
140625 578125 27218750 562500
171875 562500 27359375 359375
109375 765625 26703125 328125
187500 609375 27859375 328125
218750 765625 27875000 406250
140625 656250 27171875 437500
156250 750000 27796875 500000
62500 609375 27265625 343750

125000 640625 28328125 515625
171875 750000 27750000 375000
125000 500000 27687500 421875
187500 750000 27421875 312500
125000 625000 27937500 390625
218750 671875 27171875 359375
156250 796875 27093750 437500
250000 687500 27718750 406250
109375 593750 27718750 484375
140625 593750 28265625 468750
203125 718750 27234375 515625
250000 656250 27375000 484375

104

140625 718750 27171875 343750

Kernel-Mode CPU Time
Baseline PICEv1 PICEv2 PICEv3

5093750 5015625 5453125 5015625
4703125 5140625 5421875 4812500
4562500 4765625 5281250 4843750
4953125 4796875 5953125 4875000
4890625 4718750 5046875 5062500
4906250 4593750 5109375 4750000
4531250 4937500 5421875 4843750
4593750 4718750 5187500 4687500
4968750 5125000 5453125 4859375
4703125 4890625 5375000 5360875
4484375 4875000 5093750 4703125
4750000 4609375 5937500 4953125
4828125 5078125 5062500 4593750
4843750 4718750 5250000 5015625
4500000 4828125 5031250 4765625
4796875 4812500 5234375 4500000
5125000 4984375 6046875 4687500
4687500 4765625 5468750 4921875
4828125 4734375 5312500 4765625
4890625 5015625 5156250 4843750
4734375 4750000 5000000 4812500
5015625 4906250 5296875 4640625
4859375 4640625 5562500 4906250
4828125 4750000 5203125 4609375
3468750 4796875 5406250 4734375
4640625 4843750 5453125 4750000
4703125 4968750 5015625 4875000
4406250 4921875 5000000 4859375
4546875 4875000 5093750 4953125
4562500 4593750 5125000 4718750

105

APPENDIX B: AVERAGE MEMORY UTILIZATION

The tables below are the raw values captured from each of the 30 tests conducted. The

data is represented in bytes and was captured using the GetProcessMemoryInfo function.

Virtual Memory Usage
Baseline PICEv1 PICEv2 PICEv3

561152 6316032 610304 598016
520192 5808128 573440 544768
520192 5820416 548864 561152
520192 5812224 585728 552960
528384 5812224 561152 561152
524288 5812224 552960 561152
524288 5820416 552960 557056
520192 5816320 552960 557056
524288 5820416 557056 557056
520192 5812224 565248 598016
520192 5812224 581632 557056
520192 5808128 561152 548864
524288 5812224 557056 557056
520192 5812224 552960 552960
516096 5816320 552960 552960
520192 5812224 561152 557056
516096 5812224 561152 548864
520192 5812224 552960 552960
516096 5820416 565248 548864
516096 5820416 561152 548864
516096 5816320 557056 548864
524288 5816320 561152 544768
528384 5812224 552960 548864
520192 5808128 557056 552960
516096 5804032 557056 548864
520192 5812224 552960 552960
524288 5812224 552960 548864
520192 5808128 548864 544768
520192 5808128 561152 544768
520192 5816320 552960 544768

106

Physical Memory Usage
Baseline PICEv1 PICEv2 PICEv3

2789376 8953856 2891776 2887680
2490368 8232960 2592768 2588672
2490368 8237056 2592768 2588672
2490368 8237056 2605056 2588672
2490368 8232960 2596864 2588672
2490368 8237056 2592768 2600960
2494464 8237056 2592768 2588672
2490368 8237056 2592768 2588672
2490368 8237056 2592768 2588672
2486272 8237056 2592768 2899968
2490368 8232960 2609152 2580480
2490368 8237056 2596864 2588672
2490368 8237056 2596864 2588672
2494464 8232960 2596864 2588672
2482176 8237056 2592768 2588672
2490368 8237056 2625536 2600960
2490368 8237056 2613248 2588672
2490368 8237056 2609152 2592768
2490368 8241152 2617344 2588672
2490368 8241152 2613248 2592768
2486272 8237056 2609152 2588672
2490368 8237056 2609152 2588672
2490368 8241152 2609152 2584576
2490368 8232960 2617344 2588672
2490368 8232960 2613248 2588672
2490368 8237056 2617344 2592768
2490368 8237056 2613248 2588672
2490368 8237056 2613248 2584576
2494464 8232960 2617344 2588672
2490368 8237056 2613248 2584576

107

APPENDIX C: AVERAGE REAL-TIME

The tables below are the raw values captured from each of the 30 tests conducted. The

data is represented in microseconds and was captured using the QueryPerformanceCounter

function.

Clock Time
Baseline PICEv1 PICEv2 PICEv3
10519194 10516491 38163455 10907528
10419200 11101732 37572856 10312567
12021302 11082052 38624968 10289657
10278332 10454859 38106474 10273096
10265414 10537890 37890323 10439761
10302468 10149571 37920606 10263001
10017148 10519282 37856422 10411751

9991042 10614789 37948388 10375473
10360497 10461239 38127109 10395371
10623391 10277930 37879692 11761360

9879046 10458340 38330299 10241341
10104805 10902021 38343515 10374293
10275809 10330534 38377821 10177954
10579521 10322293 38895060 10803485
10196625 10350880 38012634 10280770
10191335 11383973 37870057 10254071
10484699 10328307 38723373 10751630
10339862 10607507 38977411 10506098
10185629 10431411 38572109 9953495
10337557 10625102 37942730 10099592
10472450 10343153 37823920 10403795
11018685 10332585 38263732 10261309
10290149 10052854 38128014 11420178
10573324 10339869 38045491 10404926

8767614 10617098 38257522 10389716
10010813 10538771 38199036 10331564
10192124 10661789 39764391 10022715
10261880 10597782 37424581 10378666

9758485 10636352 37808187 10364948

108

9924312 10271191 38027240 10327264

109

APPENDIX D: SOURCE CODE LOCATION

The source code for both the Process Instrumentation Callback Engine (PICE) and the Target

Instrumentation Process (TIP) are located at the following link:

https://github.com/dsujacob/PICE

https://github.com/dsujacob/PICE

110

APPENDIX E: GLOSSARY

Term Definition

C Runtime C program's execution environment

Clock Time Actual elapsed time

Degrees of Freedom Independent data points

Dynamic Link Library Shared code library

Export Address Table List of exported functions

Hook Intercept system calls

Kernel Core of operating system

Kernel-Mode Execution in kernel space

KPROCESS Kernel process structure

Manual System Call System call made without NTAPI

Native API Direct OS interface

Physical memory RAM hardware

PICE Process Instrumentation Callback Engine

Process Instrumentation Callback Post-process system call hook technique

System Call Kernel service request

TIP Target Instrumentation Process

T-test Statistical hypothesis test

User-Mode Callback Function executed in user-mode

User-Mode Execution in user space

111

Virtual Memory Memory abstraction

Windows API OS service interface

	MEASURING THE PERFORMANCE COST OF MANUAL SYSTEM CALL DETECTIONS VIA PROCESS INSTRUMENTATION CALLBACK (PIC)
	MEASURING PERFORMANCE OF MANUAL SYSTEM CALL DETECTIONS UTILIZING PROCESS INSTRUMENTATION CALLBACK (PIC)

