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ABSTRACT

Cyber operations are influenced by a wide range of environmental characteristics, strate-

gic policies, organizational procedures, complex networks, and the individuals who attack

and defend these cyber battlegrounds. While no two cyber operations are identical, lever-

aging the power of computational modeling will enable decision-makers to understand and

evaluate the effect of these influences prior to their impact on mission success. Given the

complexity of these influences, this research proposes an agent-based modeling framework

that will result in an operational performance dashboard for user analysis. To account

for cyber team behavioral characteristics, this research includes the development and val-

idation of the Cyber Operations Self-Efficacy Scales (COSES). The underlying statistics,

algorithms, research instruments, and equations to support the overall framework are

provided. This research represents the most comprehensive cyber operations agent-based

performance analysis tools published to date.
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Chapter 1

Introduction

The age of cyber warfare is not a near-distant future, it is today. The impact of overlooking

cybersecurity requirements is quickly observed on the international, national, and local

levels through massive data breaches, ransomware attacks, malware infections, and partial

or complete service loss. National-level infrastructure implemented across cyber-physical

systems are both commonplace and continuously exposed to new evolving threats. There

is little doubt that maintaining an effective cybersecurity program is a critical cornerstone

to safeguarding national interests, preventing cybercrime, and ensuring organizational

continuity while protecting the privacy and interests of all internet users.

To address this growing need, individuals, organizations, and nations are dedicating

increasingly greater resources to cyber operations every year, with total estimates in the

trillions between 2017 - 2021 for the United States federal budget alone [1]. Of note, a

significant portion of this budget is dedicated to offensive security as a means to ensure

cybersecurity [2].

Cyber operations is the interdisciplinary study of cyber offense and defense and lever-

ages tools and techniques across a wide variety of domains, including computer science,

engineering, psychology, electrical engineering, and criminology. Given this breadth of

scope and applicable expense, how does an organization determine what resources to

dedicate to cyber operations and what impact strategic influences such as manpower,

training, and network security play on tactical success? With unpredictable influences,
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including new technology, software updates, malware infections, and a rapidly expanding

technological footprint, the complexity of cyber operations has long stood as an enigmatic

hurdle to developing a framework for predicting and evaluating cyber operations. The

success or failure of a cyber operation is influenced by a wide range of factors, including

strategic policies, organizational procedures, complex networks, and the individuals that

attack and defend these cyber battlegrounds. Across each of these elements is a complex

adaptive system upon which cyberspace operates. While a performance analysis of past

cyber operations can provide a baseline assessment, it is a time-late reference that ne-

glects to account for the emergent changes within cyber teams, networks, and evolving

adversarial objectives. Organizational leaders responsible for cyber operations require

actionable data for real-time effective decision-making.

1.1 Problem Statement

The lack of an effective framework to evaluate cyber operations performance based on near

real-time factors forces organizational leaders to remain reactive and impairs decisions

regarding high-level policy, logistical resource allocation, and network development. To

date, the data collected on cyber team performance is a historical snapshot, and various

complex influences such as behavioral characteristics and network status make predicting

future performance difficult to ensure when personnel and computer systems constantly

adapt and evolve.

1.2 Research Aims, Objectives, and Questions

This research aims to correct the disparity underlining the problem statement by estab-

lishing a cyber operations performance assessment framework via computational modeling

defined by the following research objectives:
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1. RO1 Develop a computational model that predicts cyber operational performance.

2. RO2 Develop a self-efficacy scale, the Self-Efficacy Cyber Operations Scale (COSES),

as an input to the computational model for behavioral characteristic influence.

3. RO3 Develop a cyber performance dashboard that provides users with a simple-to-

understand assessment of cyber performance based on user input.

These research objectives will aid in answering the research question: can we provide

real-world assessments and predictions of performance for cyber operations?

1.3 Overview of the Framework

To accurately simulate cyber operations accounting for influential factors and produce

actionable results, three fundamental elements of the framework must be developed:

1. The Self-Efficacy Cyber Operations Scales (COSES)

2. A computational, agent-based, cyber operations model

3. An operational performance dashboard

The COSES tool provides the computational model with behavioral characteristics

that, along with environmental and adversarial factors, directly influence the perfor-

mance of an individual or team within the cyber context. The agent-based model is a

python-based software program developed to accept user-defined input regarding behav-

ioral characteristics (provided by the COSES), environmental characteristics, including

the number of agents, adversarial skills, tactics, and target network security strength. The

agent-based model runs a predetermined number of simulations, resulting in performance

analytics displayed in the form of an operational performance dashboard. Figure 1.1 pro-

vides an overview of the research requirements. Chapter Three, Methodology, provides
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additional details regarding the development, validation, and overall construction and use

of the Cyber Operations Performance Framework.

Figure 1.1: Research Overview

1.4 Motivation

Fundamental to this research is the application of complexity science to improve cyber

operations. Cybersecurity remains a reactive exercise of constant responses to newly

evolving threats. While every nuance cannot be accounted for, complexity science pro-

vides a basis for simulation and modeling that will encourage a lean-forward approach

to cybersecurity. Additionally, strategic decisions can be better informed with near real-

time tactical analysis, working to prevent a disconnect between organizational leadership

and end-user performance. My pending publication, Complex Systems Science and Cy-

ber Operations: A Literature Survey [3], provided an extensive discussion on the need

for a scientific foundation for cyber operations and the broad benefits that complexity

science affords cyber research and practice. My dissertation’s research is the extension

and application of this publication.
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1.5 Major Theories

The foundation of this research is based on two major theoretical concepts: (1) complex-

ity science applied through computational modeling and (2) self-efficacy as a behavioral

characteristic. The following subsections are dedicated to providing a brief high-level

overview of both concepts, with the literature review in Chapter Two intended to bring

greater depth to each subject.

1.5.1 Complexity Science & Computational Modeling

Complexity science, or systems science, is a contemporary interdisciplinary field. Its roots

are derived from the study of general systems theory and provides the basis for under-

standing, interpreting, and analyzing complex adaptive systems. Applying complexity

science principles is critical to understanding the influence of system properties on el-

ements within a system, directly expanding our understanding of the universe as once

defined by classical science’s reductionism and linear mathematics. Since its formal es-

tablishment in the mid-twentieth century, complex science has evolved into a number of

influential fields, including game theory, nonlinear dynamics, systems theory, complex

networks, and evolution and adaptation [4]. At the heart of complexity science are com-

plex systems, distinguished by elements of a system that are dynamic, self-organizing,

and evolving in a non-linear fashion. Recognizing that complex systems are inherently

more than the sum of their parts, computational modeling provides the simulation-based

tools necessary for observing emergent phenomena that would otherwise be impossible to

analyze and understand [5]. Complexity science is particularly appropriate for analyzing

cyber operations given the adaptive nature and nonlinear influences of cyber agents and

cyberspace [6].

Agent-based modeling (ABM) is a computational modeling approach that has seen

significant use in research and practical application across a wide range of fields, including
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economics [7], biology [8], political science [9] and cyber research over the last twenty

years [3]. While powerful in its utility, agent-based modeling is conceptually simple in

design and execution, making it an ideal platform for organizational leaders to implement.

ABMs analyze the actions and influence of individuals (agents) within the system with one

another and their environment. Agents are autonomous, interactive, and self-organizing;

they can vary from a few to millions and are programmed within the model based on simple

rule sets. As often demonstrated in complex systems, these simple rules can produce

unexpected results and demonstrate exponential influence, negative returns, or tipping

points within a complex system [10]. As demonstrated by recent publications, agent-

based modeling impacts research on elements of cybersecurity, including cyber-physical

systems [11], cyberpsychology [12], and business risk assessment [13].

1.5.2 Self-Efficacy & Performance

Formally introduced as a personal behavioral construct by Albert Bandura as an ele-

ment of social cognitive theory, self-efficacy is the confidence one holds in their ability to

achieve success in a given pursuit [14]. Not to be confused with self-esteem, the overall

self-assessment of one’s worth [15]. As noted by recent research, there is a direct causal

relationship between self-efficacy, performance prediction, and end-state outcome [16],

resilience [17], and burnout [18]; all influential considerations in developing an effective

cyber workforce. While there are perhaps numerous behavioral characteristics that define

performance, a focus on self-efficacy for cyber operations is in line with current research

[19] and ensures a practical scope for application in both research and practice. To cap-

ture the self-efficacy of cyber operators, the construction and validation of the Cyber

Operations Self-Efficacy Scale (COSES) was completed as an element of this research.

While previous research evaluated a layperson’s self-efficacy with computers and cyber-

security [20] and competition participants [21], the COSES is the first of its kind: Two

Likert-based situational scales defining a cyber professional’s confidence given the tasks
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and circumstances one is likely to encounter as a cyber operator. Statistical analysis from

the scales provides direct input to the computational model as an agent characteristic.

1.5.3 Performance Management

While theoretical research is important, cyber operations is a practical field where per-

formance can determine the trajectory for nations, organizations, and citizens applicable

to nearly every facet of life. To interpret the findings of this research, the developed

computational model produces a performance dashboard based on the user-defined input.

The goal of this dashboard is to simplify user analysis, provide ROI input, and deliver

a holistic framework that is immediately practical for organizational leaders executing

cyber operations.

1.6 Research Significance

The importance and relevance of cyber operations research has never been greater or in-

fluenced more aspects of organizational or national operations and management. While

cyber research takes a variety of forms and often focuses on tool development, security per-

formance, and network or device engineering, this research aims to transform the field by

reinforcing a foundation for cyber operations with complexity science, both theoretically

and with practical application. A number of research efforts have already implemented

agent-based modeling as a tool for cyber analysis [22], [23]. However, this research is the

most comprehensive execution to date, providing a single framework that incorporates

behavioral, environmental, and logistical properties into a model that illustrates the in-

fluential impact of these characteristics in an operational performance dashboard. With

the results of this research in hand, organizational leaders can make improved decisions

across a wide range of operational efforts, and cyber research can take another step for-

ward in becoming a unified scientific field better equipped to predict and analyze the
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complexities of cyberspace.
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Chapter 2

Literature Review

At the heart of this research is an aim to produce a sophisticated computational model

with simple mechanisms resulting in clear yet profound results. Organizational leaders

with little to no technical background in programming or computational modeling can

effortlessly run a variety of scenarios and then compare results to determine logistical

influences on cyber operations. Underlying this simplicity are the research fields of two

major areas of study: complexity science and social cognitive theory. The following

chapter provides a formal introduction and review of the relevant research regarding

complexity science and self-efficacy.

The literature review strategy across both areas of study focused on developing an

understanding of each in broad terms and then focusing on their application to cyber

operations. Each of these fields is relatively young, both having approximately forty years

of development, though demonstrating incredible growth and breadth across a variety of

domains. Many of the relevant topics have entire texts and fields of study dedicated to

their understanding. The presentation here is designed to present the breadth of applicable

subject matter in a general sense highlighting significant contributions while delivering

depth focused on the available cyber operations research. As the field of cyber operations

is also relatively young, the depth of literature related to cyber operations reflects a time

period of approximately twenty years.
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2.1 Complexity Science Introduction

To defend those that use the internet, cybersecurity researchers and practitioners develop

procedures and implement patches in an effort to thwart malicious actors, but to what

end? The paradigm of cybersecurity is analogous to a dam that, despite best efforts,

continues to spring leaks. While cybersecurity professionals develop solutions for today’s

botnet, ransomware, and rootkit, attackers continue to create and exploit software features

that become tomorrow’s zero-day exploits. Given the current paradigm of playing catch

up to keep up, cybersecurity will remain a responsive approach to malicious attacks unless

a radical change occurs in the current approach to understanding network, information,

and computer security.

Although there is no silver bullet solution, an effort must be made to establish a

better foothold in combating cyber attacks. Part of the challenge lies in the incredibly

diverse and seemingly unpredictable nature of cyberspace. To better understand and, at

some level, control cyberspace, researchers have begun examining cyber operations from

a complexity science perspective.

The study of complexity science is a growing interdisciplinary field of research. While

complexity science lacks a formal or universal definition, its key concepts include emergent

phenomenon, dynamics, evolution and adaptation, collective non-deterministic behavior,

and self-organization. Researchers of complex systems often find it necessary to develop

simulations and models to understand and communicate the nature of a complex system

effectively. Such complex systems span nearly all domains, including ecology, psychology,

mathematics, economics, and computer science. Given the internet is a complex system

and the nature of cybersecurity to safeguard its use, we believe examining cyber operations

with a complexity science perspective is an important and necessary step to producing a

safe and secure internet.
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2.1.1 Early History

The formal study of complex systems as a modern scientific endeavor took root in the

twentieth century and was established as a recognizable field of study in the 1980s [24].

Prior to that, complexity science evolved from contributions across multiple disciplines.

Five areas of early study are cited as fundamental to the current state of complexity

science: (1) mathematics of complexity, (2) general systems theory, (3) complex systems

theory, (4) cybernetics, and (5) artificial intelligence [25]. Each of these areas has impacted

the understanding of complex systems both independently and interdependently, which

continues to result in definitions and applications of complexity theory that vary from one

domain to the next.

The development of general system theory (GST), founded by Austrian biologist Lud-

wig von Bertalanffy was an early contributor to generalizing system analysis [26]. In

the mid-20th century, Bertalanffy identified the increased isolation of scientific fields. He

also noted that despite little communication across these evolving boundaries, researchers

from different domains were independently tackling challenges derived from the chaotic

nature of nonlinear systems [27]. First proposed in the 1940s and then published in 1968,

Bertalanffy’s general system theory suggested that complex systems share fundamental

universal principles across all domains that can be understood and mathematically mod-

eled. His theory was rooted in examining systems characterized by autonomy, creativity,

and dynamism and has produced theoretical developments across multiple fields, including

complexity, cybernetics, systems theory, and systems engineering.

Building on similar principles at the time, cybernetics and artificial intelligence pro-

duced important contributions to studying complex systems. Norbert Wiener, using the

term cybernetics in his 1948 text on the subject [28], proposed that feedback loops are

fundamental to learning and that such dynamic systems could be leveraged in developing

machine learning. Walter Pitts, the founder of artificial intelligence, was a student of
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Wiener at MIT. Working with Wiener and Warren McCulloch, a neurophysiologist, Pitts

developed computational models forwarding the concept of neural networks [29].

Through the efforts of the Santa Fe Institute (SFI) established in 1984, complexity

science exposure grew across scientific domains and international borders. SFI founders

and early contributors, many from the Los Alamos Laboratory, represented a swath of sci-

entific fields, including economics, physics, biology, and chemistry. Hosting international

conferences for discussion and collaboration, research focused on complex systems quickly

expanded. Researchers such as Goerge Cowan, Murray Gell-Mann, and David Pines

provided the foundation from which complexity science grew to the paradigm-altering

scientific field it is today [30].

2.1.2 Terminology

Complexity science continues to be an interdisciplinary field of research, and its definitions

and applications vary from one domain to the next. Across each research field vested in

understanding complexity, different terms are used to underscore the principles of complex

science, including complexity theory, complex systems analysis, system of a system, sys-

tem dynamics, chaos theory, systems thinking, complex networks, and complex adaptive

systems. Nonetheless, the significance of complex systems analysis is so profound that

the scientific method itself has been refined to account for the insights provided through

our increased understanding of complexity science [26].

As a baseline for cyber operations research, we provide the following definitions to

clarify complex systems terms for current and future research. The field of complexity

science, or complex systems science, encompasses the entirety of complexity research and

represents the domain as a whole. A complex system is a system in which interdependent

elements interact to produce characteristics that define the system beyond the character-

istics present when analyzing the individual elements independently. This phenomenon,

known as emergence, underlines the distinction between complex systems and simple
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Figure 2.1: Complex Systems Topics

systems (elements and the system characteristics are consistent, behavior/relationship of

elements are fixed) or disparate systems (the behavior/relationship of elements within the

system are not related or truly random). Regarding cyber security, [31] asserted: “A secu-

rity property of a cybersystem exhibits emergent behavior if the property is not possessed

by the underlying lower-level components of the cybersystem” (p.1). Complex systems

analysis provides a means of understanding systems beyond classical mathematical tools,

such as differential equations and statistics, emphasizing the complexity and correlation

of elements within the system [26].

Self-organization, the rise of emergence spontaneously over time, can be observed in

13



complex adaptive systems when analyzing the element’s interdependent effects on the

system as a form of non-directed system evolution over time. These systems will typically

adapt as their interdependent elements develop new responses based on changes within

the system. Often a complex system will be referred to as dynamic, highlighting the

sometimes radical changes observed within a complex system when its nonlinear nature

becomes apparent. A simple example is that of the double pendulum, the motion of which

is bound by differential equations resulting in a dynamic and chaotic track of movement.

2.1.3 Fields of Study

Within the scope of complexity science are different areas of study that represent the

various disciplines from which they evolved. Sayama, Director of the Center for Collective

Dynamics of Complex Systems at Binghamton University, defined seven areas of focus

within complexity science as topical clusters: (1) game theory, (2) nonlinear dynamics,

(3) systems theory, (4) pattern formation, (5) evolution & adaptation, (6) networks, and

(7) collective behavior [4]. Adopted from [4], Figure 2.1 provides a visual perspective of

the various research fields related to Sayama’s topical areas. The following paragraphs

outline a concise introduction and correlation of the topical areas related to cyber research

examples.

Behavioral game theory is a multidisciplinary field based on mathematical models

representing rational or irrational decision-making across human populations. Cyber re-

searchers utilize game theory to simulate cyber operations dynamics [32], [33], [34], adapt

machine learning for cyber security [35] and as a tool for creating cybersecurity assess-

ments [36]. Findings from [32] demonstrated the utility of a complexity science perspective

in cyber research to quantify the impact of network misconfiguration across attacker types

and network setups. [36] highlighted the advantage of decision support gained through

cyber operations complexity analysis. Recent cyber-based research contributions [37], [38]

provide excellent continued reading beyond this initial introduction.
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Nonlinear dynamics, popularly known as chaos theory, focuses on systems in which a

change of input is not mathematically proportional to the output. Related research has

aimed at understanding cyber incident frequency to improve short-term incident predic-

tion [39], managing cyber-emergencies [40], and interpreting cyber warfare law [41]. As

early as 2006, researchers positioned chaos theory to predict the outcome of cyber opera-

tions through the recognition that the average of hundreds of simulations can normalize

results [40].

Systems theory research is the application of understanding and problem-solving com-

plex systems challenges. Given this is the broadest of the complex science areas, it can

be applied across all domains, though the term is commonly used in social sciences re-

search such as psychology, business management, and organizational behavior. Research

directly related to system homeostasis (a system’s steady state of equilibrium), feedback

(or cybernetics, when a system’s output influences the inputs), and system dynamics

(measurement of a system’s change over time) are based on systems theory. Fundamen-

tally, this is the foundation for research regarding solutions dedicated to cyber-physical

systems (CPS) and the internet of things (IoT).

Pattern formation is the recognition and research of complex systems based on self-

organization into naturally occurring identifiable patterns. From pattern-formation rises

cellular automata, well known for the “game of life” example [42]. A cellular automaton

is a cellular grid bound by explicit rules defining a finite set of states and how states

update over time. Cyber research has used cellular automata to calculate cybersecurity

risk based on CPS [43], smart grids [44], and cascading failures [45].

The area of complex evolution and adaptation is dedicated to understanding how

adaptation occurs in biological and technological systems. Specific areas tangent to cyber

operations include artificial intelligence, artificial life, and machine learning. Given the

current popularity of artificial intelligence and machine learning, examples of relevant

cyber research are ubiquitous throughout the literature.
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The study of networks is fundamental to cyber operations; however, not all networks

are complex networks. Specific areas of complex networks include dynamic networks,

adaptive networks, scaling, and graph theory. A great deal of research regarding complex

networks is found throughout the literature based on cyber attacks [46], [47] as well as

various areas of cybersecurity [48], [49].

The final topical cluster is collective behavior. In addition to social dynamics, collective

intelligence, and synchronization, agent-based modeling is a key research area of complex

science and underlines many cyber research articles based on complexity science. Agent-

based modeling (ABM) simulates dynamic systems through the use of interdependent

agents who influence one another and the system according to a set of predetermined

rules. Agent-based modeling provides three considerable benefits: it illustrates emergent

phenomena associated with complex systems, models are relatively simple to design and

observe, and results can be gained quickly across many runs of the simulation. Cyber-

related research includes both offensive and defensive models, discussed in further detail

below.

2.1.4 Complex Systems Tools

Given the breadth and depth of complex systems subject matter, developing a meaningful

appreciation can be aided through familiarization with the field’s tools. Shalizi [50] pre-

sented a comprehensive approach to organizing complexity science tools by categorizing

them into three areas based on purpose: building and understanding models, measuring

complexity, and analyzing data (Figure 2.2). The remainder of this section is dedicated

to reviewing complex systems tools that can be leveraged in cyber operations research

and performance.

Artificial intelligence (AI) continues to experience significant growth and development

across all domains, including cyber operations. Statistical learning theory is a framework

for developing and evaluating algorithms and models fundamental to the prediction re-
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Figure 2.2: Complex Systems Tools

quired for systematic learning. Although modeling complex systems may reveal system

phenomena not evident with statistical analysis, statistics can still provide meaningful

insight in data analysis relevant to complexity science [51].

Due to the complicated nature and number of variables in many complex systems, a

valid and reliable approach to analyzing output causality can provide significant insight

into the system’s operations. Research by Razak and Jensen [52] demonstrated the use

of transfer entropy, a time series statistical model designed to analyze complex systems,

as a means to infer causation from correlations that accurately forecast future values.

Through the use of applicable models and tools, complex systems can be visually displayed

through graphs and measured using probability models to facilitate interpreting system

characteristics. As each of these areas of analysis is a field of research unto itself, we

present recently published research applicable to cyber operations as a foundation for

discussion.

Naturally, statistical learning is inherent in cyber research based on artificial intelli-

gence. Throughout the literature, there are notable cyber research examples dedicated to

statistical learning theory, including fake website detection [53], cybersecurity and biomet-

rics [54], and cyber threat detection [55], [56]. These examples each explicitly identify the
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relevant contribution statistical learning provided to developing an effective framework

within a cyber context.

While there are variations in modeling complex systems, the most prominent are

cellular automata, complex network models, and agent-based models (ABM). Agent-based

modeling represents the most common approach of the three within the cyber literature

and has significantly increased in popularity over the last twenty years as a reliable tool for

analyzing and presenting complex phenomena. Based on agents that are autonomous and

interactive, ABMs enable observing the complexity within a system that would otherwise

be difficult to extract and understand. This approach is used in modeling phenomena

across a wide range of fields, including political science [57], sociology [58], economics

[7], epidemiology [59], [60], biology [8], and chemistry [61]. Specific to each system and

phenomenon being studied, agents may take the form of individual people, infections, fire,

flooding, or independent systems [62]. Agents within an ABM may vary from a few to

millions, and while initial programming defines basic agents with identical characteristics

and learning rules, the variations experienced due to interactions with one another and

the environment often result in a wide variety of agent actions and system adaptation.

Information theory, specifically information fluctuation, provides a quantitative mea-

sure of complexity within a given system [63]. While an in-depth analysis is beyond the

scope of this paper, a cursory introduction will help provide context to further applica-

ble measurements on a macroscopic scale. As presented in [64], complexity is a matter of

probability, and its presence can be measured based on the states of information available,

presented in Equation 2.1:

I = logN = −logP

P = 1/N

(2.1)

Where I is information, P is probability, and log is a logarithmic operation, symbolic
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of the reverse exponential function defined by the probability equation that represents

the content of information in a complex system. The negative log P produces increased

information through decreasing probability. In a complex system, order and chaos occur

in variations of alternating states producing a system that, at times, may be either pre-

dictable or unpredictable. [64] illustrated these states within a system using a diagram

similar to that presented in Figure 2.3. Arrows converge on the circles representing sta-

bility and order. When arrows diverge from the circle, it represents chaos. The numbers

within the circles represent various potential states within the system. The arrows then

have a forward conditional probability Pi →j and a reverse conditional probability Pi ←j

(not displayed), indicating the probability of the current state and future or past state

respectively [64].

Figure 2.3: Illustration of a complexity state diagram.

Once the probability of a state is defined, net gain information Γ represents transitions

from the present to the next state, and when balanced against the weighted mean or

average using standard deviation < Γ > and calculated for multiple transitions, the

complexity of a system can be measured using Equation 2.2:

Γij = logPi − logPj = Ij − I)i (2.2)

The above introduction is only a summary based on [63] [64]. Interested readers are

encouraged to review these papers for a detailed examination and illustrated examples.
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2.1.5 Cybersecurity Dynamics Framework

Across the cyber-complex literature landscape, a notable and prominent contribution

emerged: Xu’s cybersecurity dynamics framework [65]. The following subsection outlines

specifics regarding cybersecurity dynamics and its potential influence on cyber research.

Recognizing the need for a formal scientific foundation in cyber research, Xu devel-

oped cybersecurity dynamics [65], [66], [67]. While the name implies a strict focus on

cybersecurity, its principles, and applications apply to both offensive and defensive cy-

ber. Based on a macroscopic perspective, or macroscopic cybersecurity, Xu applied many

of the principles of complexity science, including a systems-level analysis, acknowledging

the emergent, adaptive, and dynamic nature of cyber systems, and leveraging applicable

models to interpret system-level characteristics.

Within Xu’s cybersecurity dynamics framework, two core principles define the scope

of cybersecurity dynamics: core research objectives and the triple research axis (Figure

2.4). The core research objectives are based on understanding, managing, and forecasting

cyber phenomena [66]. As such, cyber dynamics drives researchers to develop descriptive,

prescriptive, and predictive models. When examined holistically, each of these objectives

supports and ultimately drives forward one another, providing a means to interpret and

validate data observed across cyber systems. Descriptive modeling provides an abstrac-

tion and simplification of model characteristics to better grasp agent-level influences and

system adaptation. Often these models are preliminary simulations designed to ensure

the simplest approach to modeling system functionality. Cyber descriptive models can be

used to understand attack-defense scenarios in a variety of instances, including botnets

[68] mobile networks [69] and organizational manufacturing [36]. From descriptive models

evolve prescriptive and predictive models. Prescriptive models interpolate cyber datasets

to evaluate cyber operations and are often used in team simulations [70], and security

evaluations [32]. Predictive models extrapolate cyber datasets to forecast the impact that
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Figure 2.4: Triple Axis of Cybersecurity Dynamics Research

threats and security measures make on cyber operations. Through the use of prescriptive

and predictive modeling, researchers can evaluate policy and validate assumptions posed

through the descriptive modeling process [66].

2.1.6 Agent-Based Modeling

As early as 1999, Fred Cohen, the father of computer virus defense and pioneer of net-

work modeling [71], identified the lack of research regarding complex systems and cyber,

despite applicable advantages in modeling and simulation already determined for cyber

operations [72]. Citing challenges such as the complexity of cyberspace, lack of quality

data, inconsistency in practice and research, and the rate of evolving technology, Cohen

recognized hurdles that remain true to this day. Furthering the point, Cohen emphasized

the shortfalls of statistical analysis, the standard modeling and simulation tool of the time,

for its inability to demonstrate attacks in parallel or simulate attacks based on timing.

To improve on the few previously published models simulating cyber operations, Cohen

actively balanced accuracy in complexity with computational performance limitations.

Leveraging a cause and effect approach, Cohen et al. developed a novel model simulating

attack and defense of a cyber environment approximating the time to attack and defend

as a prominent characteristic [73]. Although the model is not explicitly agent-based, at-
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tackers and defenders (or agents) are defined by various characteristics, and the cause and

effect and timing-based nature of the model produces an emergent quality of the system/-

model in which elements of the cyber environment become more or less exposed to attack

throughout the simulation. Through analysis and multiple simulations, the researchers

identified a critical point within the system in which the defense of a system increases

radically despite minimal increase in defender ability. They also recognized that a per-

fect defender does not always succeed, allowing an organization to fall victim to attacks

when certain time and ability thresholds of attackers are set. Ultimately, they presented

the nonlinear results of attacker success, implicitly highlighting the applicability of cyber

operations to complex systems analysis and demonstrating its power through modeling

and simulation.

Building from Cohen et al.’s model, cyber research applying formal agent-based mod-

eling techniques began to grow, including influential contributions by Kotenko to include

examining various attack and defense scenarios and simulating cyber-wars across the in-

ternet [74], [75], [76], [77].

Kotenko et al. [70] followed up this research with agent-based modeling approaches to

defending against botnet attacks and analyzing cooperation versus competition of teams

[78] to determine how best to simulate their actions and an analysis of cyber attack and

defense for homeland security [77]. Additional agent-based modeling research analyzing

cyber operation teams of note include [79], and [80].

In 2011, Grunewald et al. [81] introduced NeSSi2, an agent-based network secu-

rity simulation framework designed to illustrate various attack vectors versus security

solutions. Built on a three-component architecture, the framework consists of a GUI,

agent-based simulation back-end, and results database. The framework adopted three

context models: the network, attacker, and related interdependencies and simulated at-

tacker intent, opportunity, capability, and preferences demonstrated through attacker

actions. The researchers reported successful findings when leveraging NeSSi2 to deter-
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mine effective intrusion detection strategies versus malicious worm propagation. While

recognizing the lack of real-world validation, the results provide insight beyond historical

reference and enable cybersecurity professionals to assess security strengths beyond the

ubiquitous threat assessment frameworks solely relied on by many organizations. Further

research highlighted NeSSi2’s scalability, fidelity, and extendable nature [82], in addition

to research on specific cyber threats such as large-scale DDoS attacks [83].

Following an analysis of the current state of cybersecurity illustrated through applica-

tion whitelisting, Norman et al. [84] aptly illustrated the importance of applying complex

scientific principles to cybersecurity to analyze and solve cyber challenges. Through the

use of a fictional government, the researchers used agent-based modeling to run simula-

tions of a fictional government conducting cybersecurity via whitelisting applications from

a top-down (all programs whitelisted with the exception of those approved for network

use) versus bottom-up (programs are whitelisted once a known vulnerability is identified)

perspective. Despite expecting a top-down approach to significantly bottleneck opera-

tional productivity, the agent-based model demonstrated that the two approaches had

very similar time throughput measuring organizational success via application processing

times. While an exceptionally simple model, it grounded organizational decision-making

regarding cybersecurity through empirical evidence rather than simply leaning on common

sense or existing precedent.

Across the literary landscape, a single cyber-based performance model was identified,

the Cyber-Forces Interaction Terrain (FIT) Simulation Framework [22]. The cyber-fit

model is designed specifically to support military operations, modeling military forces

and terrain (computer systems). Using NetLogo, an agent-based modeling software, the

authors simulated three terrain types (military base, tactical or industrial location) and

cross-threaded them against three terrains (analogous to computer systems) to define

three vulnerability rates (Figure 2.5).

To implement the agents, Dobson and Carly defined offensive and defensive forces.

23



Figure 2.5: Cyber-fit Vulnerability matrix

Defensive forces take action to update vulnerable terrain to secure terrain. Offensive forces

conduct one of four attack standards associated with one of the terrain types (1) Random

- attacks all types, (2) routing protocol attack - attacks Type 1 (Networking Systems),

(3) denial of service - attacks Type 2 (Server Systems) and (4) phishing - attacks Type

3 (User Systems) [22]. Through running simulations, the researchers answered a series of

questions regarding operational logistics, such as ideal force allocation for cyber defense

and impact on network security based on changes to attack scenarios.

The Cyber-FIT simulation framework represents an important significant step forward

in performance modeling for cyber operations. As noted by Dobson and Carly, it lacks

rigorous validity via empirical data (inputs don’t reflect real-world values), and while the

model demonstrates proof of concept, it’s unable to be applied to real-world applications.

The cyber operations performance framework builds on these developments by applying

input from the Cyber Operations Self-Efficacy Scale (COSES) to reflect cyber operator

behavioral characteristics while also accepting inputs regarding real-world network status

and operator skills and capabilities.

As noted by Wilensky and Rand [10], agent-based models may be employed for the fol-

lowing eight use cases: (1) description, (2) explanation, (3) experimentation, (4) providing

sources of analogy, (5) communication/education, (6) providing focal objects or center-

pieces for scientific dialogue (7) as thought experiments or (8) prediction. As seen across

the cyber literature, each of these use cases is applicable to examining and understanding

the cyber environment.
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While not the only modeling and simulation framework for demonstrating complex

systems, the ease with which researchers can develop, observe, and experiment with emer-

gence compared to alternatives can not be overstated. Researchers with little program-

ming experience can develop agent-based models with free open-source software, including

NetLogo [85], Repast Suite [86], and StarLogo Nova [87]. These and additional software

options with varying strengths and learning curves are available to examine and simulate

cyber operations across all OS platforms. With a combination of community support,

in-depth online tutorials, and resources such as https://www.comses.net, readers are en-

couraged to explore the incredible potential of computational modeling beyond the scope

of this article.

Figure 2.6: Research trends across the literature

2.1.7 Trends in Research

Despite the clear applicability, cyber operations represents only a fraction of the literature

based on agent-based modeling. We conducted a trends analysis through Dimensions.ai,

a site dedicated to providing comprehensive data on published research. To establish

context, we begin with the key phrase “complex systems” (quotes applied), where there

were approximately 38,000 articles filtering for ”complex systems” within the title and
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abstract. Fig. 2.6 presents our findings across each year of the last decade of research.

Figure 2.7: Research trends across the literature

Due to the nature of complexity science jargon across its various domains of applied

research, this surely represents a small sample of all research reflective of the subject

matter. Despite this, the number of publications and applicable citations has grown on

average over the last ten years, as depicted in the graph. During the same period, the

term “cyber” appears in the title and abstract of just over 76,000 journal articles (Fig.

2.7).

Conducting the search inclusive of both “complex systems” and “cyber”, we discov-

ered 736 publications across the decade of research with both our terms (Fig. 2.8), a

small fraction of the overall literature. As was identified by reviewing the terms inde-

pendently, the trend reflects a general increase in publications year over year. It’s also

important to note that not every article within our combined search is specific to cyber

operations applied through a complexity science perspective. Ultimately, the findings in-

dicate thousands of research articles in which either concept is central but relatively few

at the intersection of both fields. When analyzing the publication source classifications,

a majority of the research articles are related to artificial intelligence and information

systems, with only a small fraction represented by distributed computing. While we have
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demonstrated the impact of applying complex systems in cyber research, only a fraction

of the cyber literature explicitly references or examines complexity principles.

Figure 2.8: Research trends across the literature

2.2 Self-Efficacy and Performance

Self-efficacy is a personal behavioral construct developed as an element of the social learn-

ing theory proposed by Albert Bandura [14]. Bandura’s social learning theory expanded

on classical and operant conditioning by asserting that learning often occurs not only from

direct reinforcement but also via observation, as was demonstrated via the well-known

Bobo doll experiment [88]. The social cognitive theory, an expansion of the social learning

model, defines four key cognitive processes applicable to goal realization: self-observation,

self-evaluation, self-reaction, and self-efficacy. While each of these interrelated behavioral

constructs plays an important role in performance, Bandura asserted self-efficacy as hav-

ing a causal impact on performance [89]. Since then, research efforts have continued to

demonstrate the power of self-efficacy to predict performance across a wide range of areas,

including academics [90], mental health [91], [92], first responders [93], entrepreneurship

[94], [95], and physical activity [96] to name a short few. It’s important to note that self-
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efficacy is not a universal construct but rather a belief specific to a distinct domain or task

and should not be confused with self-esteem, locus of control, or outcome expectancies

[97].

While there are a number of self-efficacy assessments developed for cybersecurity,

previous research has focused almost exclusively on lay-person confidence in achieving

cybersecurity policy requirements [98], [99], [100], cyberbullying [101], [102], [103], or

student learners [104], [105]. As noted by recent research developing a needs assessment

for cyber operations performance, organizations currently lack an effective method to

evaluate cyber team performance that accounts for team behavioral characteristics [106]

such as self-efficacy. Although there are self-efficacy scales aimed at evaluating staff

confidence in effective cybersecurity practices, the behavioral dimensions (e.g. “password

security skills” and “learning security skills” [100] do not apply to cybersecurity operators

well-versed in cybersecurity requirements conducting high-level cyber operations.
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Chapter 3

Research Methodology

At the heart of every research endeavor is the methodology, defining the direction, dis-

tance, and trajectory of one’s scientific inquiry. From the methodology springs the exper-

imental design, as does the foundation of a house support the frame of a home.

3.1 Introduction

Within the Cyber Operations Performance Framework are three fundamental constructs:

(1) the Cyber Operations Self-Efficacy Scale (COSES), an independent tool providing

users a behavioral assessment of operator confidence in achieving cyber mission success,

(2) the computational model, an agent-based modeling framework designed to simulate

cyber operations, and (3) the performance dashboard, a visual representation of the com-

putational model results.

Figure 3.1: Two Research Methodologies Applied

Given the distinct nature of each of these tools, the research methodology used was
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two-fold, recognizing that each interdependent construct benefits from a methodology ap-

plicable to the specific tool being developed. In accordance with a standard psychometric

approach, the COSES was developed using a quantitative methodology, while the compu-

tational model and dashboard were developed using design science methodology (Figure

3.1). This chapter outlines applied research methodologies and experimental design and

provides additional context for the development of the Cyber Operations Performance

Framework, including construction and validation.

3.2 Cyber Performance Metrics

The Cyber Operations Performance Framework is based on three fundamental perfor-

mance factors, each of which directly influences the computational model: (1) behavioral

characteristics, (2) skills & expertise, and (3) the target’s network characteristics. Com-

monly known as KPIs (key performance indicators), determining and leveraging applicable

metrics ensures the performance model more closely replicates a given real-world scenario.

Equation 3.1 introduces this as the fundamental equation defining primary influences in

cyber operations performance.

Cp = Bc+ Sk +Ns (3.1)

Where Cp is cyber performance, Bc is behavioral characteristics, Sk is skills and expertise,

and Ns is the target network strength. While there are more specific KPIs that provide key

data points for organizations to understand, assess, and benchmark network status and

cyber capability, the Cyber Operations Performance Framework is intentionally defined

by the above basic metrics to ensure its applicability is broad. Within each of these

factors, a set of quantifiable metrics are passed to the computational model to influence

the simulation. These factors, when combined with the number of active cyber operators,

form the computational model’s algorithm. The output of the model’s algorithm results
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in the performance dashboard (Figure 3.2). The following paragraphs illustrate how each

of these metrics is defined.

Figure 3.2: Cyber Operations Performance Framework

The behavioral characteristics factor is derived from the Cyber Operations Self-Efficacy

Scales (COSES). Discussed in greater detail below, the COSES consists of separate self-

efficacy assessments for cybersecurity and cyber offensive operators. Scoring is achieved

by adding each response based on the 10-point Likert scale. The total score for each oper-

ator is then divided by the number of items on the scale (arithmetic mean) to produce a

final numerical score of one through ten. Once the total score of all operators is obtained,

one can obtain the team self-efficacy by adding the total scores of each member and divid-

ing by the number of operators (arithmetic mean of the team member’s scores). Through

successful and failed attempts and inter-agent interaction throughout the simulation, an

operator’s self-efficacy will increase or decrease incrementally. Equation 3.2 defines the

function of team self-efficacy as an element in the cyber performance equation.

Tse =
1

n

n∑
i=Se

xSe (3.2)

Where Tse is team self-efficacy, and Se is each operator’s individual score divided by the

number of answers evaluated. Adversary operators receive an initial team self-efficacy of

seven and also increase or decrease throughout the simulation.

Friendly and adversarial skills and expertise are selectable inputs based on a scale of
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one through ten. As the counterpart to self-efficacy, the skill and expertise characteristic

allows users to influence a team’s performance by applying a numerical score based on

their capabilities. This factor is distinct from the self-efficacy score as an operator may

be confident but low in real-world skill or have a great deal of real-world experience and

skill but lack confidence in completing a specific task. Contrary to public opinion, the

Dunning-Kruger Effect [107] demonstrated individuals with limited knowledge and skill

often overestimate their ability while those with greater skill and experience may downplay

their capabilities. While developing and prescribing specific criteria for rating skills and

expertise (as has been achieved for self-efficacy) might improve metric reliability, a rigid,

forced fit was not desired. Applying an organization’s existing standard for evaluating

skill and expertise will both expand and simplify the use of the framework. Estimating an

adversary’s skills and expertise allows end-users to evaluate this influence as they would

their own skills and team self-efficacy.

Network strength represents the technological environment as a measure of the net-

work’s overall security. This characteristic is user-defined and, as with the skills and

expertise element, is entrusted to organizations to leverage existing measures or develop

applicable tools to evaluate target network security.

The remaining subsections provide greater detail regarding the development and the-

ory of each of these significant elements. Chapter Four discusses the results following

development, analysis, and implementation.

3.2.1 COSES Methodology & Design

The Cyber Operations Self-Efficacy Scales (COSES) represent an important cornerstone

of the Cyber Operations Performance Framework and directly distinguish this research

from previous efforts at cyber performance modeling, as discussed in Chapter Two. The

COSES ensures the computational model accounts for the behavioral characteristics of

friendly cyber operators conducting the operation being simulated. The COSES is a
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simple, standardized survey tool able to capture sufficient and reliable data points to

inform the computational model of influential behavioral characteristics, specifically, an

operator’s cyber self-efficacy in achieving cyber operational success. The design goal is

a tool simple and short enough to quickly collect behavioral characteristics that mitigate

historical data challenges such as team churn or operator growth and changed confidence

with experience. The value of the COSES is in its simplicity and significance, able to

accurately capture the applicable behavioral characteristics critical to cyber operations.

Psychometric scales and assessments rely on a quantitative methodology to leverage

the appropriate statistical analysis to meet the high standards of scientific rigor. Albert

Bandura, responsible for developing the social cognitive theory and general self-efficacy

construct [14], published a guide specifically for developing self-efficacy scales [97]. This

publication, along with recent research within the fields of cyber operations, social sci-

ences, and psychometrics, directly guided the construction of the Cyber Operations Self-

Efficacy Scales (COSES). The following diagram is an overview of the applied steps to

complete the construction and validation of the COSES (Figure 3.3). The diagram high-

lights the three phases of scale development introduced by Boateng et al., including item

development, scale development, and scale evaluation [108]. Each of these phases is fur-

ther divided into steps that ensure rigorous scale validation and reliability. The following

subsections describe each phase in greater detail. The results achieved from developing

the COSES are outlined in Chapter Four.

3.2.1.1 Phase I: Initial Development

Initial development consisted of a literature review, item development, expert analysis,

and scale design. To begin, a thorough review of the literature determined no applicable

scale existed for the intended practical and research applications. Once confirmed, item

development began.

Given cyber operations is a multi-dimensional field, COSES development required a
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Figure 3.3: Cyber Operations Self-Efficacy Assessment Construction Overview

balance between accounting for domain elements across the entirety of applicable cyber

functions and maintaining manageable scope. To achieve this, preliminary domain ele-

ments for question development were established using a deductive approach through the

literary review, which illustrated domain areas applicable for the subject to master [108].

Three primary domains were selected to provide the appropriate breadth of context in

determining cyber operation self-efficacy:

1. Access Control

2. Server and Network Security

3. Software Security Architecture and Design

As cyber operators are typically trained primarily as defenders or attackers, scale items

were developed and characterized with this in mind. From this list, survey questions in a

Likert format were developed with a situational style orientation to direct the respondent

to answer based on a potential real-world scenario. As cyber operations generally occur

in tangible phases, the COSES is presented based on three phases of operation:

1. Preparation & Weaponization

2. Intrusion
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3. Active Breach

An overview of the COSES design outlining domains, dimensions, and phases is presented

in Figure 3.4. As a matter of logistical constraints and practicality, a cross-sectional

internet survey design was selected, using Jotform (jotform.com/surveys) as the platform

for survey delivery and data collection. Research identifying the reliability and validity

of e-survey design dates back to the late 1990s [109] with findings highlighting equivalent

reliability and validity across online and paper-based formats [110] with more recent

research reflecting a ten times cost savings using online formats with a negligible difference

in response rate [111]. Though the internet survey method is not without challenges

related to coverage, sampling, measurement, and bias [112], the advantages in cost, design,

and ease coupled with the mitigations discussed within Chapter Five drove the choice to

leverage this approach.

Figure 3.4: COSES Conceptual Model

In accordance with guidance from [97], items were also developed to reflect an increase in

difficulty across these phases of operation. Initial item generation resulted in twenty-five

questions covering each of the above domains across the three phases. Both inductive

(qualitative, informal individual interviews) and deductive (literature review and content

analysis) approaches to item generation were applied as recommended by [108]. Following

question generation, face, and content validity were confirmed via expert evaluation pro-

vided by five anonymous Ph.D. contributors (see Appendix C for the data collection tool
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used), meeting the appropriate threshold recommended by [108]. Experts were fielded

from Dakota State University faculty across the Beacom College of Computer and Cy-

ber Sciences, and their responses were received via the aforementioned collection tool at

jotform.com. Quantitative feedback was received in a five-point Likert format assessing

the applicability and clarity of each item in addition to qualitative feedback on question

quality, brevity, and applicability. Statistical analysis was conducted to ensure inter-rater

reliability across the quantitative data. Inter-rater reliability is a determination of the

consistency of grading across two or more evaluators. Krippendorff’s Alpha provides a

robust assessment of rater response correlation with a great deal of flexibility in selecting

measurement types, mitigating missing data and smaller data sets [113] [114]. To con-

duct Krippendorff’s Alpha within SPSS, a macro developed by Hayes presented in [114]

distributed on his website [115] was uploaded into SPSS. Through the analysis of expert

feedback, questions were updated, resulting in a reduction to twenty questions in total.

A detailed description of statistical analysis and results follows in Chapter Four.

3.2.1.2 Phase II: Scale Development

The second phase of survey creation consisted of data collection and analysis by exercising

the developed scale. A sample collection of approximately ten respondents per survey

question, or 200 in total, is desired for statistical analysis [108]. Survey participants

were solicited through online groups and email and filtered to ensure respondents were

experienced in cyber operations. Responses were obtained anonymously via jotform.com

(Appendix D is the final version of the COSES). A total of 227 respondents provided

sufficient answers for analysis and represented a broad swath of cyber professionals across

various age groups, education, certification, and employment fields.

Despite domain determination a priori in developing the COSES, factor analysis pro-

vided an opportunity to statistically analyze and confirm the survey questions correlate

with one another, aren’t redundant, and accurately represent the desired trait [116]. Fac-
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tor analysis allows the identification of unobservable or latent factors by examining the

correlated variance of items within the developed scale. While a variety of approaches to

conducting factor analysis exist across a wide range of research fields, path analysis fol-

lowed by oblique rotation was applied to the COSES in light of the potential correlation

between the cybersecurity and cyber offensive domains with the intent to complete an

orthogonal rotation if required [117]. Figure 3.5 provides the proposed theoretical con-

struct of the three cyber operations domains (access control, server & network security,

and software security, architecture, & design) with respect to cybersecurity separate from

cyber offense, resulting in the homogenous unidimensional latent factor of cyber operation

performance for each cyber domain.

Figure 3.5: Theoretical Cyber Performance Latent Factor

Principle component analysis (PCA) is an alternative to factor analysis in which the

goal is specifically aimed at item reduction, vice factor interpretation and overall latent

factor analysis [117]. Despite this, PCA is commonly used to interpret the number of

latent factors necessary to conduct effective factor analysis. Two approaches are applied
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to testing the theoretical constructs of cyber performance presented in figure 3.5, the

kaiser rule and evaluation of a PCA scree plot of the eigenvalues [117].

In all forms of measurement, an element of error is presumed. [117] presented mea-

surement error as either systematic (consistent error) or random error (inconsistent error).

Both types are produced beyond the development of the scale to include the time of eval-

uation, interpretation of scale items, and racial bias. To evaluate scale error, two primary

models are available, Classic Test Theory (CTT) and Item Response Theory (IRT). Classic

test theory, also known as true score theory, was developed throughout the early twentieth

century, representing the foundational statistics used to measure, validate, and interpret

scale measurements [118]. Based on the sample and item size, CTT was selected as the

preferred method of analysis [119]. Utilizing CTT techniques, inter-item and item-total

correlations were tested, the results of which are presented in Chapter Four.

3.2.1.3 Phase III: Scale Evaluation

The final phase of scale development is to confirm the dimensionality, reliability, and

validity of the assessment. Dimensionality was verified via confirmatory factor analysis.

Measurement invariance testing confirmed the factor and dimension as consistent across

different samples. Internal reliability and consistency using Cronbach’s α remained con-

sistent across phase two and phase three of development. Testing criterion validity, the

final step within phase III was achieved via multivariate regression. Results are presented

in Chapter Four.

3.2.2 Friendly and Adversary Skills and Expertise

Skills and expertise represent an important element in an operation’s success or failure

[120]. As previously mentioned, many organizations have internal tools dedicated to

evaluating skill and expertise that provide a more specific approach than can be provided

here. For context, the following items are those relevant to the agent-based model and can
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provide a baseline for organizations wishing to develop or expand current cyber assessment

tools.

Cybersecurity activities:

• Maintain threat awareness

• Install software updates

• Detect traffic anomalies

• Identify software deviations

• Identify network intrusion

• Recover impaired services

• Digital forensics

Cyber offense activities:

• Target selection

• Adversary OPSEC

• Infiltrate a network

• Defense evasion

• Identify software vulnerabilities

• Exploit software vulnerabilities undetected

• Command and control

• Lateral Movement

These skills represent the agent’s skill level throughout the course of the model’s simu-

lations. This input is provided via a ten-point slider by the user to indicate the friendly

and adversary cyber operator skill levels.
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3.2.3 Network Characteristics

There exists a diverse collection of strategies to quantify cybersecurity network charac-

teristics ranging from MITRE’s extensive cyber resiliency [121] to network-type specific

tools such as an assessment used for railway signals communications [122]. The goal

of the cyber operations performance framework is practical use alongside an applicable

strategic approach such as Lockheed Martin’s Cyber Kill Chain [123]. To leverage a

simple, comprehensive, and reliable set of metrics to meet this challenge, the standards

established within the NCCIC (National Cybersecurity and Communications Integration

Center) Cyber Security Evaluation Tool (CSET) [124] are recommended to evaluate the

target network and organization.

Alternative options for assessments include, but are not limited to:

• DHS Catalog of Control Systems Security

• NERC Critical Infrastructure Protection (CIP) Standards 002-009

• NIST Special Publication 800-82, Guide to Industrial Control Systems Security

• NIST Special Publication 800-53, Recommended Security Controls for Federal In-

formation Systems

• NIST Cybersecurity Framework

• Committee on National Security Systems Instruction (CNSSI) 1253

• NISTIR 7628 Guidelines for Smart Grid Cyber Security

For users simulating defensive performance, recent research by Zavala et al. provides

automation guidance for the CSET, simplifying data entry and analysis via PowerShell

[125]. Using this or any security assessment tool that generates a network security strength

score between 0 to 100, the user to can provide the computational model input for the
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target network strength. Each step taken across the computational model will then impact

the network’s security based on actions taken by the attacking and defending agents.

3.2.4 Alternative Cyber Performance Metrics

There are undoubtedly additional factors that influence operational success, including

preparation and execution, timeline requirements, additional intelligence and resource

availability, and various go/no-go criteria. The key to an effective agent-based model is

using the fewest factors to demonstrate reliable results even when dealing with highly

complex systems [10]. Chapter Five discusses recommendations for future research that

can expand on the computational model, including additional cyber characteristics and

measurements.

3.3 Computational Modeling Methodology & Design

While the self-efficacy assessment is a critical element to account for the behavioral charac-

teristics of cyber operators, the computational model is the defining feature for answering

the research question: can we provide real-world assessments and predictions of perfor-

mance for cyber operations? Because computational modeling is used across nearly every

field of scientific research as both a tool for experimental exploration as well as a means to

analyze complex adaptive systems, there is no silver-bullet choice for selecting a research

methodology.

In part, this research works to capture the results of behavioral data. As noted by

Wilson and Collins, the selection of qualitative or quantitative methodology for a com-

putational model of behavioral data is dependent on the researcher’s goals [126]. A wide

range of goals across research interests has resulted in both significant diversity and chal-

lenges in developing reliable computational models [127]. Alternatively, the research also

applies the technical standards characteristic of cyberspace to a tool designed to solve
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a problem. Design science is predicated on developing and evaluating an artifact within

the problem context, be it social, technical, organizational, or an applicable combination

[128]. While there are formal frameworks for mixed methods methodology, at the heart

of each is the combination of qualitative and quantitative research - for which there is a

great deal of value in analyzing cyber performance [129]. Just as there are numerous le-

gitimate approaches to complexity and cyber research, so too are the options for selecting

a research methodology for solving this research problem. While each approach may be

effectively applied in developing a computational model, design science provides an ideal

methodology as the research problem is grounded in case research applying the developed

framework and resulting tools to solve both theoretical and applied challenges.

Both design science and action research methodologies have significant use throughout

computer science research, especially in efforts combining industry and academia [130].

The single-case mechanism experiment method was applied as a means to develop an arti-

fact and test it by solving a bonafide problem in information and or organizational systems

[131]. As is the standard with agent-based modeling, the researcher is directly involved

in conducting experimentation, evaluating results, and iterating for improvements, often

within a lab setting [128]. Engineering cycles of iterations test initial assumptions, which

are developed into practical assumptions and ultimately into validated findings (Figure

3.6). With this design methodology in mind, the development of the Cyber Operations

Performance Framework computational model evolved through multiple engineering cy-

cles using an investigation, development, testing, redesign, and repeat approach [128].

As results were validated or challenges identified, the framework and associated tools

improved, as is the goal with design science methodology.

3.3.1 Agent-Based Model Introduction

Agent-based models are developed through an iterative process of conceptualization,

model development, simulation runs, and analysis of findings - often followed by revisiting
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Figure 3.6: Design Science Methodology

initial assumptions and error checking both modeling programming and execution valida-

tion. [132] emphasized four primary approaches for developing an empirical agent-based

model: (1) via statistical distribution from empirical data, (2) direct observation and

comparison, (3) laboratory testing, (4) case study analysis. Due to the common challenge

of obtaining existing or observational data for statistical analysis of cyber attacks or labo-

ratory facilities for testing, this research relied on case study data to develop the practical

and numerical elements of the agent-based model. While a variety of case studies were

reviewed and elements applied, two examples of note include the Doncaster Teslacrypt

ransomware attack in 2018 [133] and the DarkSide ransomware attack on Colonial Pipeline

in 2021 [134].

To conceptualize the model for real-world applicability, a ransomware attack use case

by a cybercriminal hacking group, DarkSide, will be applied in the development and analy-

sis of the model’s functions. DarkSide is a cybercriminal group that conducts ransomware

cyber attacks on targets throughout the world. The group, or “affiliates”, leverage an at-

tack framework that includes a ransomware as a service (RaaS) to execute exploitation.

While the exact number of attackers or specific skills and training is unknown, their op-

erations indicate the group is well organized, skilled, and effective. Once access is gained,

the group will remain on the network for only a few days before encrypting assets and

demanding ransomware. Quick action, infected asset separation, and preplanned recov-

ery of affected assets has resulted in successfully avoiding complete network loss from
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ransomware.

The primary components of an agent-based model are the agents within the model

and the environment. Agents are programmed with a set of characteristics and initial

actions. Through the result of inter-agent influence and agent-environment influence,

agents take actions throughout the simulation that change and evolve. While there are a

variety of approaches to defining human behavior within an agent-based model, the Cyber

Performance Framework adopts the PECS approach. PECS is an acronym that stands

for (1) physical conditions, (2) emotional state, (3) cognitive capabilities, and (4) social

status [135]. The physical state is defined by network strength, emotional state by self-

efficacy, and cognitive capabilities through the skills and expertise factor. Social status

can play an important role in inter-agent communication and evolution, but as offensive

and cybersecurity agents are of the same social status, implementation of a social status

characteristic was not applicable. Agents do, however, interact with one another on a

social level when requesting assistance from one another in their efforts.

3.3.2 Agent Types

There are two agent types within the Cyber Operations Performance Framework: Op-

erators and Nodes. Operators are defined as friendly or adversary forces. The choice of

friendly forces attacking or defending and the number of defender and attacker agents

is a user-defined input. Cybersecurity agents work to identify, patch, and protect orga-

nizational computers and network systems. Their ability to do so is influenced by their

confidence (self-efficacy), skills and expertise regarding cyber defense activities, and the

quality of the organization’s network (Table 3.1).

Table 3.1: Degree of Influence on Agent Performance Across Model Characteristics
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Cyber offensive agents work to identify, create, and abuse target computer and network

systems. Their ability to do so is influenced by their self-efficacy, skills, and expertise

regarding cyber-attack activities and the quality of the target’s network. Cybersecurity

agents monitor, update, repair, and recover the network and likewise are influenced by the

same metrics. Adjusting these factors for organizational implementation and real-world

fit is discussed in Chapter Five.

3.3.3 Environment Types

Visually, the computational model is presented on a 35 x 35 torus grid (edges wrap) that

represents the target network. In addition to cybersecurity and offensive agents, users

can observe network nodes that represent the attack surface for exploiting and securing

the network. These nodes are the fundamental environmental type upon which all cyber

operators interact. The number of nodes is a user-defined input that plays a significant

role in the overall results of the simulation. The nodes are defined by varying degrees of

security exposure/status, indicated in Table 3.2. A Network node’s security state can be

(1) offline, (2) zero-day secure, (3) secure, (4) exposed, (5) infiltrated, and (6) exploited.

The shifts between these states is explained in greater detail below.

Table 3.2: Network Node Status

to facilitate the implied impact (a high network strength positively impacts defenders, neg-

atively impacts attackers; likewise, a lower network strength positively impacts attackers

and negatively impacts defenders, the following equations were applied to determine the

impact of network strength (Equation 3.3)
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Defender = Nts ∗ .02

Attacker = abs(Nts− 10) ∗ .02
(3.3)

A network security value of 50 (the default) benefits neither attacker nor defender.

3.3.4 Simulation Start-up

As previously highlighted, there are a number of user-defined inputs that allow the model

to reflect real-world operations that can be modified prior to simulation start. The fol-

lowing list represents the initial user settings, minimum, maximum, and default values:

• Number of Network Access Nodes: Minimum: 1, Maximum: 100, Default: 15

• Network Initial Security Strength: Minimum: 1, Maximum: 100, Default: 50

• Friendly Forces Mission: ”Defend” or ”Attack”, Default: ”Defend”

• Number of Cyber Friendly Operators: Minimum: 1, Maximum: 100, Default: 2

• Friendly Forces Skills, Minimum: 1, Maximum: 10, Default: 7

• Friendly Forces Team-Efficacy: 1, Maximum: 10, Default: 7

• Number of Adversary Operators: Minimum: 1, Maximum: 100, Default: 4

• Adversary Skills, Minimum: 1, Maximum: 10, Default: 7

• Dollar Cost of an Outage per Day: Minimum: $1,000, Maximum: $200,000, Default:

$100,000

• Dollar Cost of a Defender per Year: Minimum: $30,000, Maximum: $120,000,

Default: $85,000
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To this point, each of these settings has been introduced, with the exception of the

dollar cost settings, used to facilitate user assessment of value regarding adding additional

operators versus a security breach that takes elements of the network offline. Additionally,

the computational model provides a graphical line chart that depicts the overall state of

the network based on the status of each node. The computational model at simulation

start-up is presented in Figure 3.7. The position of the attackers and nodes is both random

and arbitrary. The defenders are always positioned along the sides of the display; their

location is also arbitrary.

Figure 3.7: Cyber Performance Computational Model at Start-up
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3.3.5 Model Execution

Agent-based models run simulations as a matter of “steps” or “ticks”, each representing

a turn (or a day) in which all agents take an action. The user can initiate the model to

run automatically or one step at a time and can set the speed to run between 1 and 20

frames per second. The order of the agent’s turn is random for each step. The actions the

agents take in the computational model are dependent on the phase of cyber operation

they are currently in. As noted earlier in this chapter, agents within the computational

model operate in three distinct phases: preparation and weaponization, initial access, and

command and control. Figure 3.8 illustrates these phases characterized by agent type and

their simulated actions.

Figure 3.8: Computational Model Agent Phases

3.3.6 Defender’s Turn

Upon model start-up, all defenders enter into the monitor phase, simulating updating,

patching, and network traffic observation. Each defender monitors an assigned set of

nodes, evenly distributed across all defenders based on the number of defenders and the

total number of nodes to monitor. Only if there are more defenders than nodes will more

than one defender monitor the same node. Defenders monitor network nodes based on

the following function (Equation 3.4):
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Dc = Sk ∗ .65 + Tse ∗ .15 +Nst ∗ .02 (3.4)

Where Dc is the operator’s defense capability, applied as the maximum number of nodes

a defender is capable of monitoring per step based on skill (Sk), self-efficacy (Tse) and

network strength (Nst) with the degree of influence introduced in Table 3.1. The resultant

factor is a value between .82 and 10. If the defender has more nodes assigned then is able

to monitor in a single day, then the operator prioritizes nodes based on node status,

focusing first on the node with the lowest value. A patch is applied to every node the

operator is able to monitor based on Equation 3.5:

Ns = Ns+Dc/7 (3.5)

Where Ns is node status and Dc remains the defender’s overall ability. The divisor of

seven results in an overall change in node status between 1% and 14%, directly dependent

on the Dc factors of skill, self-efficacy, and network strength. If, after the update, the

defender agent observes the node in a non-secure status, the defender will add the node to

the repair list and move to repair it next turn. If the cybersecurity operator is confident

enough (self-efficacy is greater than a random integer between one and ten), they will

inform another cybersecurity agent to help assist in repairing the node.

A defender in the repair phase will focus on a single node per step, conducting a repair

based on Equation 3.6:

Ns = Ns+Dc/3 (3.6)

With a divisor of three, the node status, Ns, will improve by a rate up to 33%, reflecting

an increase from the monitor phase based on the dedicated focus of the agent. If an agent

in the repair phase observes a node that is infiltrated or exploited following the repair,
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they will notify all defenders currently in the monitor phase to assist in recovery.

Recovery is the third and final phase available to defenders. A defender in the recovery

phase will also focus on a single node. The defender will recover a node that is infiltrated

or exploited by taking it offline. The defender will attempt to identify any of the attackers

by searching the network location and identifying if an attacker is present. If found, the

attacker is placed in an offline status for ten to twenty steps, representing the disruption

of being identified by local or federal law enforcement. The defender that recovered the

node and the node are taken offline for a random number of steps between four and ten,

representing the time required to repair the attacked node.

3.3.7 Attacker’s Turn

At model start-up, all offensive agents begin in the search phase. During the search

phase, an attacker is seeking to identify a node to attack. Searching is a probability-

based function presented in Equation 3.7:

Ac = Sk ∗ .65 + Tse ∗ .15 +Nst ∗ .02

Srch = (1 +Nc/30) ∗ Ac ∗ .015
(3.7)

Ac is the attacker’s capability, an attacking agent’s attack potential based on Table 3.1.

Sk Tse and Nst are skill, team self-efficacy, and network strength, respectively. Srch is

the function of Nc, the node count, and Ac. As the node count increases, the probability

of finding a node increases as well. The function was conceived by analyzing the likelihood

that a skilled non-expert (seven of ten) attacker could find a computer access point to

exploit in a network of 15 potential access points out of 1,225 possible attack points (The

grid’s total attack surface: 35 x 35). To begin, the probability of selecting one of 15 of

1,225 possibilities is 1.22%. As the attack search is expected to be both intentional and

with (varying degrees of) skill, the resulting probability needed to scale accordingly. Based
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on the above equation, with an Attacker Sk of 7, Tse of 7, and Nst of 50, (resulting Ac

6.6), the search probability Srch is .1485 resulting in a 14.85% chance for success. Using

the same Ac of 6.6, the probability ranges from 10.23% (a single node) to 33% (100 nodes).

An expert, where Sk is ten, Se is ten, and Nst is 50) has a probability search range of

13.95% through 58.5%.

While a successful search from one agent does not directly impact the search of another,

if an agent does not detect an active network node, a confidence check is conducted (self-

efficacy greater than a random integer between one and ten) to obtain a known node

location from another random attacker (who may or may not have a known node location).

When a node is identified, it is added to an attack list, assigned a random float status

between five and seven representing the degree of degradation, and the attacker moves

into the attack phase starting on the following step.

During the attack phase, attacker agents move to the target node on the grid and

degrade computer nodes in an attempt to exploit the network based on Equation 3.8:

Ns = Ns− Ac/7 (3.8)

Here, Ns is node state, and Ac is attack capability. Similar to the above defender

patching equation, this equation represents a steady-state attempt to uncover a means

to exploit the node. As the node state Ns is reduced through multiple iterations (one

per step), it moves through states of exploitation. Revisiting the previous node status

identifiers, the following table includes numerical values to facilitate each node’s movement

from secure to exploited (Table 3.3).

Table 3.3: Network Node Status with Values
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An expert attacker with a target network strength of 50 will have a Ac of 9, resulting

in a per/step node degradation of 1.29. It’s important to bear in mind that one or two

defenders may work to repair the node, unaware of the attacker’s attempts to exploit it.

If the node’s security value falls below four, it is infiltrated, and the attacker has achieved

access to the network. At this stage, if a defender agent monitor’s the node, the defender

will move directly to the recovery phase (as noted above). From here, the attacker is

required to reduce the node to the exploited status (below 2.5) to achieve exploitation.

Once achieved, the attacker moves into the final phase, command and control.

Once in the command and control phase, the attacker agent leverages network access

to laterally move throughout the organization’s network, further degrading each network

node. Simulating the exploitation of an entire network to achieve a ransomware attack

(the entire network is compromised to prevent access until a ransom is paid). Based on

the attacker’s current foothold in the network, the search function to move laterally is

improved for the attacker agent in command and control (Equation 3.9):

Ac = Sk ∗ .65 + Tse ∗ .15 +Ns ∗ .02

Srch = (2.5 +Nc/30) ∗ Ac ∗ .015
(3.9)

Attacks are also improved while in the C2 phase (equation 3.10):

Ns = Ns− Ac/7 (3.10)

Note the 2.5 factor now used versus the previously applied factor of 1 for search and the

improved attack with a divisor of 3. This mirrors the advantage of lateral movement

through a network vice an external attack. The previously noted Srch for an expert (Ac

is 9 where Sk is ten, Se is ten, and an Ns of 50, 15 nodes)has a probability search range

of 20%. While in command and control a lateral search under the same constraints, the
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search is 40.5%.

Recognizing a nearly infinite number of variables influence the probability of the search,

attack, repair, and recovery of a network, these numbers were defined and refined through

many runs to determine simulated real-world operations. Chapter Five presents challenges

and opportunities for future work in further developing the Cyber Operations Performance

Framework and implementing it for use in an organizational environment.

3.3.8 Simulation End

When running a single simulation, the model will continue to run until all network nodes

are either offline or exploited. This can result in an indefinite run when defenders are

able to ensure, at a minimum, one node is not exploited or offline. Once all network

nodes are either offline (in an outage status being recovered by defenders) or exploited

(organizational access to the node is limited due to node corruption), the network is

considered completely compromised, and the simulation ends. In batch runs, a back-end

number of multiple simultaneous runs of the model is conducted across a fixed or range

of parameter inputs. Through testing, it’s been determined that very likely that runs

will run indefinitely if reaching 1000 steps. Computational power is another important

consideration when determining the maximum steps and number of iterations in batch

runs.

3.3.9 Model Sensitivity Analysis

With any complex system, modeling and simulation can demonstrate emergent properties

not evident or even counter-intuitive at the agent or micro level. Computational mod-

els, while perhaps a departure from standard statistical analysis, benefit from statistical

analysis of the model itself for model assessment. Due to the nature of complex system

modeling, a direct quantitative analysis within the ”black box” of the model and its for-

mulas is often misleading, but sensitivity analysis can provide model developers a means
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to confirm and analyze emergent properties while quantifying parameter variability, and

impact [136] [137]. As defined by [137], sensitivity analysis can be achieved through a

six-step process: (1) defining the output of interest, (2) goal confirmation, (3) selecting

parameters for analysis, (4) defining the sensitive method or design, (5) assigning values,

and (6) visualizing and analyzing the results. As previously defined, the outputs of in-

terest include the dependent variables: vulnerability rate and capability rate. Goals for

sensitivity analysis include model calibration, factor impact, direction of change, and an

analysis of emergent properties. Each user input serves as an independent variable for

model analysis. Two separate designs are tested against the cyber computational perfor-

mance model, the one-factor-at-a-time (OFAT) or local sensitivity and global sensitivity

analysis (GSA). The results of the OFAT demonstrated the specific parameters to be ana-

lyzed through GSA based on decomposition [136]. Inputs selected represent the available

range of user-available options while maintaining consideration of computational costs

and limitations of the virtual machine. Results are discussed within Chapter Four and

presented in Appendix E.

3.3.10 Code Development

Various agent-based modeling software platforms and frameworks have evolved over the

last two decades, including the notable off-the-shelf standalone and educational standard

Net-Logo and commercial software Anylogic. While these provide a simple interface and

a relatively small learning curve, they lack the customization necessary for advanced solu-

tions and implementations. To develop the programming for the computational model and

implement the aforementioned elements, the Cyber Operations Performance Framework

was developed leveraging the open-source software Mesa [138], an agent-based model de-

velopment software built on a Python 3 framework (https://github.com/projectmesa/).

A VMWare Ubuntu (22.04.1) distribution hosted development, and Python 3.10.6 via

the Mesa framework was used to develop the Cyber Operations Performance Framework
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computational model.

Figure 3.9: Cyber Performance Dashboard

3.3.11 Dashboard Development

In addition to the computational model display is the dashboard and text results, pre-

sented in Figure 3.9 at step twenty of a simulation. Through the dashboard, users observe

the network’s status on a step-by-step basis with feedback regarding the previously defined

sustainability and availability index, percentage of the network currently compromised,

total exploitation and outages, outage total cost (based on user input), the total daily

cost of defenders (based on user input), a total of both factors on a step by step (or day

by day) basis. The node status line chart depicts in real time the number of nodes and

their associated security exposure. The intent of the dashboard is a visual representation

of node and network status that users can evaluate to assess model implications with

financials to facilitate calculating return on investment for cybersecurity defenders (or

financial impact from cyber offensive operations).
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Chapter 4

Research Results

4.1 Introduction

As noted in Chapter Three, the Cyber Operations Performance Framework consists of

three major elements, the Cyber Operations Self-Efficacy Scales (COSES), the computa-

tional model, and the performance dashboard. This chapter outlines the results of the

development, research, and testing of each of these research efforts in applicable sections.

4.2 COSES Research Results

The results of the Cyber Operations Self-Efficacy Scales are presented here based on the

phases of development introduced in Chapter Three: Phase I: Initial Development, Phase

II: Scale Development, and Phase III: Scale Evaluation.

4.2.1 Phase I: COSES Initial Development

The first steps in scale development are to define the desired domain of study and specify

the dimensions of the domain to measure. Following an extensive literature review, initial

item development resulted in twenty-five items across three primary domains (1) access

control, (2) server and network security, and (3) software architecture and design. To

ensure practicality in conducting the COSES, the dimensions of these domains included
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both cybersecurity and cyber offensive techniques in a single scale. The scale is presented

across three phases of a cyber operation: (1) preparation & weaponization, (2) intrusion,

and (3) active breach. Limitations produced by implementing this scope are discussed

in Chapter Five. Based on the intent and basis for the Cyber Operations Performance

Framework, item domains for the COSES were developed a priori, directly driving the

dimensions of the domains within the scale [108].

Experts were fielded from Dakota State University faculty across the Beacom Col-

lege of Computer and Cyber Sciences to conduct face and content validity, focusing on

content applicability and completeness, item clarity, brevity, and structure. Five experts

provided data, completely answering each of the questions provided. Responses were col-

lected anonymously via jotform.com (see Appendix C to review the Expert Evaluation

& Content Validity Tool). Data collected via Likert responses were treated as ordinal,

quantitative data for statistical analysis. Verbal and written feedback was reviewed and

compared for consistency and treated as qualitative data. To confirm inter-rater relia-

bility, Krippendorff’s α bootstrap was selected as the most flexible appropriate measure

for two or more raters. Table 4.1 indicates the obtained results across 10,000 samples of

a .8944 Krippendorff’s α, indicating a high degree of inter-rater reliability across rater

responses.

Table 4.1: Expert Analysis Feedback Krippendorff’s α Results
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Expert feedback regarding item clarity and applicability promoted reducing the scale from

twenty-five to twenty questions (Appendix D contains the resulting twenty-item version

distributed for analysis).

4.2.2 Phase II: COSES Scale Development

Following the analysis of expert feedback, the second phase of scale development was

conducted, including survey administration and exploratory factor analysis (EFA).

4.2.2.1 Survey Administration

A sample collection of approximately ten respondents per survey question is desired for

statistical analysis [108]. Responses to survey requests were obtained directly from jot-

form.com (Appendix D is the final draft of the COSES scales). To confirm the appro-

priate sampling of the target population, a demographics survey preceded the COSES

that included questions to determine appropriate cyber familiarisation in work experi-

ence, education, and certifications. Only results indicating the respondent had work or

educational experience in cyber operations were applied. A random subsample of N=55

provided initial analysis and a basis for separating the COSES cybersecurity and cyber

offensive surveys. A total of 227 respondents provided usable data in the updated version

of the COSES. Of that, 86% of respondents were male, the mean age was 34 years old,

and the mean applicable work experience was five years.

4.2.2.2 Item Reduction & Factor Analysis

Though the Pearson correlation represents the standard in coefficient correlation, anal-

ysis of ordinal data, such as that produced by Likert scales, requires an alternative ap-

proach. As recommended by Watkins, exploratory factor analysis was conducted based

on polychoric correlations [139]. Leveraging the SPSS Heterogenous Correlation exten-

sion (ver. 2.0), a high polychoric correlation was observed across items when cyberse-
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curity items were separated from offensive items. Table 4.2 depicts the results of the

inter-item correlation with a mean correlation of .782 for cybersecurity-based questions.

Question-to-question correlation demonstrated strong unidimensional consistency across

the cybersecurity portion of the COSES.

Table 4.2: Polychoric Correlation of Cybersecurity items

When analyzing the cyber offense items, it was clear numerous respondents with signif-

icant cybersecurity experience lacked confidence in completing cyber offensive tasks. This

aligns with standard pedagogical approaches in cyber education in which students are

expected to have a foundation in cybersecurity prior to mastering cyber offensive tasks.

However, many who achieve cybersecurity mastery never learn cyber offensive techniques.

The data collected represented the disparity of responses to cyber offensive self-efficacy

and was unsuitable for coefficient correlation analysis. To address this, the final version
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of the COSES was divided into two separate surveys; one focused on cybersecurity, the

other on cyber offense. This not only shortened the time and effort required to admin-

ister the scale but also simplified analyzing results when the results are specific to the

cyber domain of interest (cybersecurity versus cyber offense). Appendix D contains the

final version of the COSES, with eleven cybersecurity items and ten cyber offense items,

with one item reflected on both scales. To complete data analysis, responses indicating

cyber offensive experience (N = 63) were isolated and examined independently. Table 4.3

depicts the results of the inter-item correlation with a mean correlation of .834 for cy-

ber offense-based questions. Following scale separation, question-to-question correlation

once again demonstrated strong unidimensional consistency, now with the cyber offense

portion of the COSES.

Table 4.3: Polychoric Correlation of Cyber Offense items
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4.2.3 Phase III: COSES Scale Evaluation

The final phase of scale development is to confirm the dimensionality, reliability, and

validity of the assessment. Dimensionality was now verified via confirmatory factor anal-

ysis, applying principle component analysis (PCA) to the cybersecurity and cyber offense

datasets via SPSS. Primary methods of identifying dimensions via PCA include confir-

mation of eigenvalues above 1.0, otherwise known as the Kaiser rule, and evaluations of a

PCA scree plot of the eigenvalues [117]. Values on the scree plot that flatten out following

a sharp drop are discounted as not significant in determining number of dimensions. Table

4.4 provides the cybersecurity total variance indications depicting eigenvalues.

Table 4.4: Cybersecurity PCA Total Variance

While the Eigenvalue above 1.0 approach suggests two dimensions, the second dimen-

sion is not significant in its distinction from the others as demonstrated when analyzing

the associated scree plot (Figure 4.1). The results indicated a single dimension of cyber-

security self-efficacy across the three primary domains: access control, server & network

security, and software security architecture & design. The same analysis was conducted

across the cyber offense dataset.
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Figure 4.1: Cybersecurity PCA Scree Plot

There are numerous standards for evaluating internal scale reliability, the most com-

mon for psychometric scales being the Cronbach’s α, a measure of the scale’s item’s

average intercorrelation. A coefficient above 70 is the acceptable standard [140]. The

COSES achieved a Cronbach’s α of .93 for cybersecurity and .94 for cyber offense when

the scales were adjusted and reduced to the final twenty items, leveraging IBM SPSS for

analysis. Expert feedback indicated the remaining items achieved satisfactory face and

content validity. Measurement invariance testing confirmed the factor and dimension as

consistent across different samples.

Testing concurrent criterion validity, the final step within phase III, was achieved via

linear multi-variable regression to determine causal effects and predictive validity across

assessment items. A weighted approach was assigned to the participant demographic data

to create a criterion for assessment. Cyber security results are presented in Table 4.5 and

cyber offensive in Table 4.6. Data sets for both cybersecurity and cyber offense were

confirmed for model fit against heteroskedasticity (inconsistent variation from variables
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across time) and normal data distribution - both applicable assumptions for this statistical

model. Both scales indicated overall statistical significance in predicting the dependent

criterion (weighted cyber experience) with strong overall predictive power.

The Cybersecurity mutli-variable regression model (Table 4.5) resulted in an overall

statistically significant result and an adjusted R square of .874 or 87%. A few of the

items within the cybersecurity scale failed to meet the statistical significance standard

of .05, and notably, P-CS-5 was exceptionally high at .4. It’s worth noting that failing

to meet statistical significance for this test doesn’t immediately suggest the question is

inappropriate for cyber self-efficacy, simply that the results don’t align with the criterion

developed based on user provided demographics. The overall positive correlation with

each item and overall statistical significance provides confirmation of the scale’s criterion

validity.

The Cyber offense mutli-variable regression model (Table 4.6) also resulted in an

overall statistically significant finding with an overall adjusted R square of .867 or 87%.

This scale had additional items outside the bounds of statistical significance, suggesting

a more rigorous criterion or further review of item analysis conducted through continued

research. Additionally, the AB-CO-4 item resulted in a very slight negative relationship

with the criterion, further calling into question the relationship between the criterion

(overall cyber experience) and cyber operations proficiency. Additional testing may reveal

interesting results given the previous observations regarding the development of cyber

offense operators and the overall pedagogy of cyber operations education. Nonetheless,

the overall scale is consistent with the criterion and results in a strong positive predictive

relationship confirming criterion validity.
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Table 4.5: Cybersecurity Multi-Variable Regression - Criterion Validity

4.3 Computational Model Research Results

The aim of this research effort was to develop a computational model able to predict

cyber operational performance and facilitate theory testing. The use case for developing

and analyzing the computational model is a cybercriminal organization leveraging ran-

somware (such as DarkSide). Based on the minimal public quantified data regarding such

cybercriminal enterprises and operations, validation of the model fit to real-world cyber

attacks is limited to a review of results and comparison to available qualitative data. The
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Table 4.6: Cyber Offense Multi-Variable Regression - Criterion Validity

remaining focus of this chapter is a discussion of statistical analysis, patterns produced,

and empirical observations, followed by many iterations of development in fit forming and

testing.

4.3.1 Model Exploration

For model assessment and exploration, a multi-factorial experimental approach is lever-

aged to analyze the computational model’s results. Independent variables are tested to

determine an ideal distribution of manpower, training, and network quality against an

anticipated adversarial attacker. The independent variables for experimentation are the

user inputs, including the number of network nodes, number of attackers and defenders,

65



quality of the network, skills and abilities of each force, and self-efficacy of the friendly

force (the adversary force is a predetermined seven of ten) (Table 4.7). The dependent

variables are availability index and sustainability index. The availability index is an in-

dication of the network security based on a summation of available, non-exploited, or

offline nodes per step over until max iterations (1000 steps) or full network compromise

(Equation 4.1).

Table 4.7: Computational Model Independent Variables

Ai =

steps∑
i=Do

n/Do (4.1)

Where Ai is availability index, n is total node count, and Do is nodes not in offline or

outage status. The availability index asks the question: if directly attacked, how much

of the network remains effective prior to full network compromise? An important metric,

but the availability index doesn’t account for a network that is compromised earlier or

later than an alternative set of parameters (a key consideration for network defenders). To

account for this, the sustainability index is the number of steps achieved during a direct

attack prior to network compromise. If the defenders maintain the network for 1000 steps,

an index of 1000 is achieved; if 100 steps are achieved prior to full network compromise,

the sustainability index is 100. Simply stated: if under cyber attack, how long can

network connectivity be maintained? Each step in the simulation can be considered a real-

world day for model-to-real-world comparison. Recognizing that robust capability and
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vulnerability rates quantify node and connectivity qualities [141], the following metrics

provide the necessary data for applicable statistical analysis. Discussion in Chapter Five

includes modification and expansion of applicable formulas for increased fidelity.

Table 4.8: Baseline Parameters for Model Analysis

Due to the nature of agent-based models demonstrating nonlinear, emergent phenom-

ena, a single simulation of the model is insufficient to interpret model results. A deter-

mination must be made regarding simulation runtime length. Using complete network

compromise as the explicit event for model completion leveraging the baseline parame-

ters defined in Table 4.8, a runtime analysis is conducted to determine the ideal runtime

length. Based on 1,000 iterations, the results indicate all runs end in full network compro-

mise prior to 225 steps. Simulations over variations on other parameters indicated that

a simulation extending beyond 1000 steps appears to run indefinitely. The remaining

baseline simulations will run to network corruption or a maximum of 1000 steps.

4.3.2 Model Sensitivity Analysis

Model sensitivity analysis is conducted to determine the parameters of greatest signifi-

cance and how each parameter impacted the model’s overall functionality. Specific goals

for sensitivity analysis include model calibration, factor impact, direction of change, and

an analysis of emergent properties. Each user input serves as an independent variable

for model analysis. Two separate designs are tested against the cyber computational
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Figure 4.2: Baseline Parameters Runtime Length Analysis. Model length (steps) on both
x and y axis

performance model, the one-factor-at-a-time (OFAT or local sensitivity) and the global

sensitivity analysis (GSA) design. The local sensitivity tests included each of the inde-

pendent variables for the full range of input, by increments of five when the range was

1-100 or increments of one when the range was 1-10. Following simulation runs of both

designs, multivariant analysis of variance (MANOVA) was conducted to determine sta-

tistical significance, mean, standard deviation (σ), correlation via regression, and overall

direction and degree of correlation to the dependent variables [142], [143]. The results

of the OFAT demonstrated which parameters and range to be analyzed through GSA

based on decomposition and tipping point [136]. The Confidence level for all tests was

set to 95% (displayed in each of the following graphs). Test inputs selected represented

a broad sample from the range of user-available options while maintaining consideration

of computational costs and limitations of the VMWARE virtual machine. A full set of

statistical results and associated graphs is presented in Appendix E, while graphs of note

are presented below for further review and discussion.

Grid sampling, or variation of parameters, determines the impact and relationships

across the agents and dependent variables. To determine the effective use of logical

resources, the independent variables are tested with the intent of assessing the distribution
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of manpower, training, and network quality against a known adversarial attacker. Baseline

fundamentals for the model were previously presented in Table 4.8. The baseline values

consisted of two friendly defenders, four adversarial attackers, and fifteen nodes, reflecting

a DarkSide affiliate group attacking a small government computer infrastructure or public

organization. This baseline defined the initial model fit for formula assessment, allowing

variations in model inputs to demonstrate emergent qualities. Upon completion of 500

batch simulations per parameter, the results were analyzed through a MANOVAmodel via

SPSS to determine statistical significance, factor impact, mean results, standard deviation

σ, and correlation.

Figure 4.3: Node Count MANOVA against Availability

Node Count is a user input that allows a network size variation between one and one

hundred access points. Based on baseline parameters varying the node count from 1 to

101 with increments of five, the model demonstrated statistical significance (p < .001), a

mean availability index of .302, SD σ .197, and mean sustainability index of 253.956, SD

σ 184.345, negative directional results with the availability index and positive directional
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Figure 4.4: Node Count MANOVA against Sustainability

results with the sustainability index. In review, the impact on availability levels off

significantly above 25 nodes (Figure 4.3) with a positive linear relationship between node

count and sustainability (Figure 4.4). Intuitively, the greater the number of network

nodes (access points), the lower the overall percentage of network connectivity (availability

index) maintained while under direct attack. However, despite a lower availability index

with increased nodes, increasing nodes results in a positive linear correlation in availability,

up to 500 steps at the base parameters.

Security strength is a user input that defines a network’s security status on a scale

of 1 to 100. Based on baseline parameters varying the security strength from 1 to 101

with increments of five, the model demonstrated statistical significance (p < .001), a

mean availability index of .396, SD σ .087, and mean sustainability index of 71.754, SD

σ 28.06. The results indicated very little directional impact across the range of inputs for

security strength. While analysis of the network security measure indicated a statistical
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significance, the relationship is not nearly as great as node count.

Friendly operator count is a user input that defines the number of friendly operators

attacking or defending on a scale of 1 to 100. Based on baseline parameters, the friendly

operator is set to defending, and the parameter is varied from 1 to 101 with increments

of five. The model demonstrated statistical significance (p < .001), a mean availability

index of .859, SD σ .148 and mean sustainability index of 935.462, SD σ 226.450. Within

the bar chart presented here is a potential emergent phenomenon with a tipping point

between 6 and 11 defenders in relation to the number of nodes and attackers (Figure 4.6).

Little surprise that twice the number of attackers and a two-to-three ratio of defenders

to nodes produced diminishing returns. Additional analysis of the defender count as an

independent variable was conducted and presented below.

Figure 4.5: Friendly Count MANOVA against Sustainability

Friendly efficacy is a user input that defines the behavioral characteristic of friendly

operators attacking or defending on a scale of 1 to 10. Derived from the COSES, this
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value can easily be obtained and applied to the model for real-world application. Based on

baseline parameters, the friendly operator is set to defending, and the parameter is varied

from 1 to 10 with increments of one. The model demonstrated statistical significance (p

< .001), a mean availability index of .407, SD σ .080, and mean sustainability index of

69.554, SD σ 26.929, with negligible correlation across the range of inputs.

Friendly skills is a user input that defines the measure of an attacker or defender’s

cyber proficiency and experience on a scale of 1 to 10. Based on baseline parameters,

the friendly operator is set to defending, and the parameter is varied from 1 to 10 with

increments of one. The model demonstrated statistical significance (p < .001), a mean

availability index of .413, SD σ .081, and a sustainability index of 66.360, SD σ 26.003,

with little directional impact across the range of inputs. An interesting phenomenon was

observed in both friendly skill and efficacy, in which the highest rate of each (set to ten)

displayed a lower mean result than a setting of nine, specifically for the sustainability

index (Figure 4.6 is friendly skills vs sustainability). While the impact of friendly skill

and efficacy is fairly small compared to the operator or node count, an error can account

for some of these unexpected results, and additional model fitting may be appropriate

through future tests and analysis of specific case studies.

Adversary operator count is a user input that defines the number of adversary op-

erators attacking or defending on a scale of 1 to 100. Based on baseline parameters,

the adversary operator is set to attacking, and the parameter is varied from 1 to 101

with increments of five. The model demonstrated statistical significance (p < .001), a

mean availability index of .431, SD σ .115, and mean sustainability index of 65.528, SD

σ 209.247. As with the previously discussed friendly operator count, the adversary count

presented a clear tipping point between 1 and 6 attackers (Table 4.7). Further testing

and results are presented below.

The last primary GSA MANOVA test conducted was on adversary skills, a user input

that defines the proficiency of an adversary’s cyber knowledge and experience while at-
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Figure 4.6: Friendly Skills MANOVA against Sustainability

tacking or defending on a scale of 1 to 10. Based on baseline parameters, the adversary

operator is set to attacking, and the parameter is varied from 1 to 10 with increments

of one. The model demonstrated statistical significance (p < .001), a mean availability

index of .480, SD σ .191, and a sustainability index of 228.595, SD σ 299.119, with a much

stronger directional impact across the range of inputs than the defender skills variable

(Figure 4.8).

Based on findings observed through OFAT model analysis, operator count (both at-

tacker and defender) produced results indicative of emergent qualities. Additionally, the

operator count and node count parameters demonstrated the greatest sensitivity across

the model. To examine more closely, the simulations were run again, focusing on the

respective tipping points. Both sets of simulations were run on a scale of 1 to 15 in in-

crements of one. The results (available in full detail in Appendix E) indicate the tipping

point between five and seven for defending units and one and two for attacking units.
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Figure 4.7: Adversary Count MANOVA against Sustainability

Here it’s worth reemphasizing the baseline parameters of four attackers and two defend-

ers. The influence between attacker and defender count is illustrated more clearly via the

GSA analysis. Based on the range of input demonstrating potential emergent qualities,

these data points were selected for GSA analysis.

While local analysis demonstrates which parameters have the most significant sen-

sitivity to model output, it does not reveal the impact across independent variables or

total model variance. For this, global sensitivity analysis is required. With GSA, each

of the selected independent variables is varied to determine overall model variance and

sensitivity. To conduct this analysis, the targeted areas of 1 to 16 in increments of one are

selected for both friendly and adversary count while also applying node count from 1 to

30 in increments of five. The results presented below are achieved via MANCOVA statis-

tical analysis with friendly and adversary (defender and attacker) count as independent

variables, availability, and sustainability indexes as dependent variables, and node count

as the covariate. To obtain a manageable data set, the number of simulation iterations

was reduced to ten and run multiple times to minimize small sample size error. Unsur-

prisingly, the results indicated statistical significance for each of the independent variables
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Figure 4.8: Adversary Skills MANOVA against Sustainability

(p < .001) and positive correlation. Examining the multivariate line chart with friendly

count versus adversary count (defender versus attacker) through the targeted variable

range of interest, the results demonstrated the impact on model simulation of a single

attacker or defender against the range of inputs (a clear tipping point) and illustrated the

bootstrapped median availability (.586, SD σ .267) and sustainability (431, SD σ 447.975)

indexes for the selected range (Figure 4.9 and 4.10).

Visually analyzing data on the compound line graphs highlighted the emergent quality

of the data as the increase in friendly and adversary operators directly alters the shape

and power of the line graph while demonstrating the influence each variable has on one

another and the model as a whole. Notice how the shape of the line, represented by

adversary count, changes as the adversary count increases. It’s also worth observing the

nonlinear growth of the curve as friendly count increases across the horizontal axis. While

this may not appear a practical observation, without modeling the system and analyzing
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Figure 4.9: Node Count MANCOVA against Availability

the results, one might assume a linear or exponential growth across the adversary, friend,

and node count variables. Doing so would lead to investing in network and cybersecurity

resources without appreciating the impact that increasing elements within the system

can have on overall functionality. As previously discussed in Chapter Two, modeling and

simulation is the definitive approach for confirming emergent qualities within a complex

system.

As one might hypothesize, increasing defender count strengthened the overall defense

of the network with two important considerations. A leveling effect, or diminishing return,

occurred directly in relation to the number of network access points and anticipated de-

fenders. This will, of course, be influenced by operator skill efficacy and network strength,

so should be calculated for the desired real-world variation of parameters. Second, when

under direct attack by multiple, proficient cyber offense operators, some degree of network

loss must be expected. Leveraging the ROI (return on investment) element of the dash-
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Figure 4.10: Node Count MANCOVA against Sustainability

board will enable organizational leaders to determine what cost/risk balance to target

when considering the number of cybersecurity operators to employ. Based on relevant

data and case study review, the model reflected the intended real-world fit and demon-

strated applicable emergent properties. As noted by [132], the challenge in developing

an effective computational model is balancing data fit versus applicability to real-world

scenarios. To this end, the Cyber Operations Performance Framework achieved this bal-

ance through the flexibility to modify agent criteria while remaining relatively simple in

design and execution. Variations of approaches in modeling cyber warfare are presented in

Chapter Two, and considerations for this framework’s strengths, areas for improvements,

and future research are discussed in Chapter Five.
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Chapter 5

Conclusions

5.1 Summary

Cyber attack operators work to identify, infiltrate and abuse target computer and network

systems. Their ability to do so is influenced by their self-efficacy, skills, and expertise

regarding cyber-attack activities and the quality of the target’s network. Cybersecurity

agents monitor, update, repair, and recover the network and likewise are influenced by

the same metrics. The purpose of this research was to develop a framework in which

real-world cyber performance could be assessed and predicted in real-time for a variety of

organizational types and sizes. To achieve this, three research objectives were defined:

1. RO1 Develop a computational model that predicts cyber operational performance.

2. RO2 Develop a self-efficacy scale, the Self-Efficacy Cyber Operations Scales (COSES),

as an input to the computational model for behavioral characteristic influence.

3. RO3 Develop a cyber performance dashboard that provides users with a simple-to-

understand assessment of cyber performance based on user input.

The Cyber Performance Framework computational model is an agent-based model that

allows users the flexibility to custom-tailor parameters to best fit the model to their real-

world circumstances. When the model is adjusted based on an organization’s cyber data
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and details, the model’s simulations provide far more accurate results and predictions for

the end user to apply than are currently available for effective cyber operations decision-

making. Through the use of construction and validation techniques, the COSES is a two-

survey scale used to provide accurate and relevant behavioral character data. Statistical

analysis demonstrated its simple, easy, yet powerful capacity to capture cyber operator

self-efficacy and deliver user-specific data to improve the model’s real-world accuracy.

The cyber performance dashboard allows users to observe in real-time the overall

network status and changes within the network at each network access point throughout

the model’s simulation. A text-based dollar costing feature allows users to establish

cost estimates for defenders and outages. This feature greatly facilitates considerations

regarding manpower, training, and network strength when determining how to obtain

maximum return on investment for cyber expenditures.

Through the use of the Cyber Operations Performance Framework, organizations can

compare real-world cyber operations with model results to determine areas for perfor-

mance improvement, predict operational success and evaluate the potential for cyber

investments. The framework consists of simple-to-use tools such as the COSES scales and

computational model that better equip organizations to manage cyber operations and

logistical investments to achieve cyber success.

5.2 Contributions

Agent-based models are designed across a spectrum of use cases, from hypothesis evalu-

ation to prediction based on the model’s reflection of real-world conditions. The greater

the detail in constructing the model, the greater accuracy, but at the expense of appli-

cable scope. The Cyber Operations Performance Framework was developed based on the

previously mentioned research objectives and moderates the challenge of prediction scope

and applicability by allowing users to apply parameters specific to their intended use
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case. The model’s general scope is applicable to a wide range of organizations, while exe-

cution is specific to user-defined circumstances. This research has produced the following

significant contributions:

1. A flexible computational model that demonstrates cyber operational performance.

2. A first of its kind, set of self-efficacy cyber scales (COSES)

3. An ROI-driven metrics dashboard for cyber operation decision-making.

4. An approach effectively leveraging both quantitative and design science methodolo-

gies,

In both research and practice, the model simulates cybersecurity and cyber offense with

parameters that influence agents at the micro level while resulting in emergent phenomena

at the macro level. The analysis of a cyber operation as it unfolds would otherwise be

difficult to achieve without the ability to observe and analyze the system’s characteristics

through the agent-based model.

The Cyber Operational Self-Efficacy Scales (COSES) are the first of their kind in

providing cyber operators and leaders insight into operator self-efficacy and performance.

While a variety of tools exist to examine the self-efficacy of cyber lay-person performance,

none until now measured the confidence of those trained in executing cyber operations.

This was a critical gap across the cyber literature research and is now available for indi-

vidual and organizational improvement and future research.

The cyber performance framework also provides considerable future research value in

hypothesis testing. The complex nature of cyber attacks and security often results in

false presumptions regarding the logistical and operational impacts of cyber operations.

Researchers can use simulation results as a baseline for theory development and testing

prior to lab development or large N research efforts.
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5.3 Limitations & Future Research

5.3.1 COSES Data Collection

Collecting accurate feedback in a survey designed to quantify performance will always be

faced with challenges. These challenges become significantly greater due to the secretive

nature of cyber data and operator performance. Effective sampling, measurement, and

bias control were impacted by the blind nature of the research’s request for survey par-

ticipation across the internet. While the number of respondents that provided feedback

to validate the overall survey was adequate for statistical analysis, a larger sample size

derived from a controlled population may improve survey accuracy and honesty. Initial

scale development relied on a population of varied respondent types to minimize bias,

but future research in leveraging the COSES may seek to analyze target populations to

confirm results are not skewed based on the nature of the blind collection of data obtained

in this research.

5.3.2 Model Data Validation

As previously noted, metrics are only as reliable as the validity and reliability of their

measurement. Without direct empirical data to compare, the computational model’s

ability to accurately predict performance under various conditions deserves continued

testing. When leveraged by organizations that have direct access to the sensitive data

that’s relevant for such testing, the user can confirm modeling results and adjust the

agent-based modeling parameters or underlying fundamentals as required. From there,

simulation of future events can be achieved with a much higher degree of confidence and

reliability.

Quantitative assumptions are a necessary requirement to develop computational mod-

els. The computational model presented here was aligned with previous type models in
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developing quantitative characteristics to define network and node degradation and sta-

tus. Over the last twenty years, relatively few improvements to network security have not

resulted in parallel developments in offensive techniques. That withstanding, the Cyber

Operations Performance computational model is developed and intended to be leveraged

as a framework, and its use should be modified to reflect the dynamic landscape of cyber

operations as it continues to evolve.

5.3.3 Attack Type & Attacker Variations

Existing cyber threat models provide varying details of motivation, techniques, and ob-

jectives that result in a wide degree of detail in types of attackers, types of attacks, and

resulting impact on network functionality. As detailed throughout this research, the chal-

lenge to creating an effective agent-based model is balancing detail and specificity versus

simplicity and broader application. This initial version of the cyber performance model

was developed based on a structure assuming all agents of a type (offensive, defensive)

have the same skills, self-efficacy, motivations, and objectives. While this facilitates a

simple model of agent interaction, it lacks the potential nuance that could be helpful in

decision-making aimed at particular types of attacks or attackers. Future development

of the framework that provides options to select from a variety of attackers or attack

types (such as DDOS, ransomware, rootkits, etc) could deliver greater fidelity and richer,

though significantly more complex, results.

5.4 Organizational Adaptation

Organizations are encouraged to leverage the Cyber Operations Performance Framework

as a feature of their cyber program. As a baseline, every organization must establish

a cyber assessment program that consists of a cycle of steps to develop and maintain

effective cyber operations (Figure 5.1):
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Figure 5.1: Cyber Program Management Cycle

As highlighted in the presented example, the Cyber Operations Performance Framework

is designed to impact the prioritize spending and monitor and adjust phases. When used

this way, the computational model can provide insight regarding potential performance

based on threats and objectives established in the previous steps. As the cycle continues,

fine-tuning objectives and solutions can further inform parameter settings. Conducting

COSES assessments should occur as often as desired, based on team turnover, cyber train-

ing, or mission-set updates. Determining the appropriate timeline for an organization’s

cyber program management cycle will depend on the specific organization, but quarterly,

biannually, or annually based on the above criteria is an appropriate starting point.

The computational model and COSES are both available through my personal GitHub

page (https://github.com/Bbecote). Organizations are encouraged to pull and clone the

computational model and leverage it with internally where sensitive data is protected.

Publication of information gained through the use of the Cyber Operations Performance

Framework or COSES should include attribution and citation to this or the applicable
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publication. See the GitHub page for detailed guidance on running and updating the

computational model.

5.5 Conclusions

The Cyber Operations Performance Framework represents an important step forward in

leveraging complexity science to improve cyber operations. As a field, cyber operations

is heavily reliant on practical application, often at the expense of the theoretical and

experimental grounding that other research domains enjoy.

Complexity science is not without areas for further research. As a scientific framework,

it is an evolutionary leap forward in understanding system adaptation and evolution,

but a variety of challenges remain, including validity and reliability testing, stakeholder

understanding of model implications, and the application of data science on large-scale

models. Each of these areas directly impacts cyber operations research and practice,

and dedicated efforts across both fields can help bridge current challenges and gaps in

knowledge.

While still relatively young as a field, complexity science has proven a revolutionary

force in understanding and interpreting the world around us. Cyber operations research

and practice can employ complexity models including time series analysis and agent-

based modeling to interpret and predict cyber operations. The very nature of cyberspace

as a dynamic and continuously evolving environment will no doubt challenge researchers

to create controlled conditions for experimentation or leverage modeling to simulate real-

world systems. The way forward will combine the power and capability of complex systems

modeling while continuing to build a foundation for effective research and policy-making

through a formal association with complexity science. Further employing complexity

science as a foundation for cyber operations will allow for scientifically robust testing,

formalized metrics, and improved tool development through simulation and modeling
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efforts.

While agent-based modeling is not the only modeling and simulation framework for

demonstrating complex systems, the ease with which researchers can develop, observe,

and experiment with emergence compared to alternatives can not be overstated. Cyber

operations researchers and practitioners can quickly develop agent-based models with

free open-source software. Software options with varying strengths and learning curves

are available to examine and simulate cyber operations across all OS platforms. With a

combination of community support, in-depth online tutorials, and free resources, cyber

operations professionals have a great deal to gain from exploring the incredible potential

of computational modeling and complexity science.
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Participant Consent Form 

Construction, Reliability, and Validation of the 
Cyber Operations Self-Efficacy Scale (COSES) 
 

The purpose of this research is to develop a measurement for the self-efficacy (confidence) 

of a cyber operations student or professional in accomplishing applicable cyber-related 

tasks.  Your feedback will help to determine which questions are best suited to accomplish 

this.  While demographic data is used to ensure comprehensive validation and reliability 

through the initial development of this research tool, your personal feedback will remain 

anonymous and confidential.   

 

 

 I voluntarily agree to participate in this research study. 

 I understand that even if I agree to participate now, I can withdraw at any time or refuse 

to answer any question without any consequences. 

 

 I understand that I can withdraw permission to use data from my interview within seven 

days after any participation, in which case the material will be deleted. 

 

 I have had the purpose and nature of the study explained to me in writing and I have had 

the opportunity to ask questions about the study. 

 

 I understand that participation involves answering questions regarding cyber operations 

tasks. 

 

 I understand that I will not be compensated for participating in this research. 

 

 I understand that all information I provide for this study will be treated confidentially. 

 

 I understand that in any report on the results of this research my identity will remain anonymous. 

 

 I understand that results from this research will be used for academic purposes and may be 

published in a research journal, presented at a research conference, and may be used to 

complete academic research requirements. 

 

 I understand that if I inform the researcher that myself or someone else is at risk of harm, they 

may have to report this to the relevant authorities, possibly without my permission. 

 

  I understand that signed consent forms will be retained digitally for a period of three years. 

 
 

  

 

Initials 
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 I understand that I am entitled to access the information I have provided at any time while it 

is in storage as specified above. 

 

 I understand that I am free to contact the researchers or the Dean of Graduate Studies for 

Dakota State University to seek further clarification or information. 
 

 

 

__________________________                   __________ 

Signature of research participant       Date 

 

 

 

Researchers 

 

Briant Becote, MS, PMP 

briant.becote@trojans.dsu.edu 

 

Bhaskar Rimal, PhD, SMIEEE 

Bhaskar.rimal@dsu.edu 

 

Dean of Graduate Studies, Dakota State University 

 

Mark Hawkes, PhD 

mark.hawkes@dsu.edu  
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Expert Analysis  

Cyber Operations Self-Efficacy Scale (COSES) 

While the COSES is a self-administered assessment, it should be conducted with the following guidance 

in mind: 

This scale is designed to measure the self-efficacy of cyber operations students and professionals; it is 

not designed for assessing the untrained layperson.  While developed as an integral part of the Cyber 

Operations Performance Framework, it’s independent use is encouraged to inform and guide strategies 

to improve cyber operations learning and training within the classroom and organizational settings.  

Cyber offensive and defensive items are presented throughout the questionnaire. Results are 

characterized by these two primary domains across three separate phases of cyber operations: 

preparation, intrusion, and active breach.   

The COSES is not a knowledge assessment, it’s a self-efficacy measure to define user confidence in 

achieving cyber operations success.  Users are encouraged to answer honestly regarding their 

confidence in their abilities as the results can provide important feedback for improving academic and 

organizational cyber success. 
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The following set of demographic questions is not part of the Cyber Operations Self-Efficacy Scale.  It is 

included to ensure comprehensive item evaluation during scale development, validity, and reliability 

testing and will be used to report findings while ensuring individual anonymity. 

 

Mark the applicable box. 

1. Your age group. 

       18-24                    25-30                   31-40                   41-50                     51-64                    65+ 

      

 

2.    Your gender. 

                     Male    Female                       Them/Theirs              

 

 

3. Your current education. 

  H. S. Degree     Some Undergrad     Undergrad Complete    MA/MS Complete       PhD Complete 

        

 

4. Indicate if are currently in a program or have a degree majoring in IT, Computer Science, 

Cybersecurity or other similar programs. Mark all applicable boxes. 

 

            Undergrad                        Masters                                PhD  

 

 

5. Your industry certifications. Mark all applicable boxes. 

             None          Cybersecurity                 Cyber Offense 

 

 

       4.    Your current cybersecurity work experience.  

                 < 3 months         4-11 months         1-2 years            3-5 years            6-10 years           11+ years  
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Expert Analysis Guidance 

The COSES is a five-point Likert scale to determine the self-efficacy of a cyber professional in conducting 

cyber operations.  To determine content validity and interrater reliability, the preliminary scale has been 

modified to provide the means to standardize and quantify expert feedback.  For context, the standard 

scale appears as such: 

1. I can identify a fake website phishing for information. 

I cannot 
do this 

     I can do 
this easily 

 

The standard format has been modified so that your responses can be evaluated statistically against 

other experts.  The scale is designed to measure one’s confidence in completing cybersecurity and cyber 

offensive tasks.  Some tasks are exclusively one or the other, some have overlap in both domains.  Your 

responses are expected to reflect that.   

A blank line has also been provided for open-ended feedback.  Please take note to identify any issues 

with item clarity, brevity, applicability, content completeness, and structure (for example, avoiding 

questions that ask one’s confidence to achieve multiple tasks or leads to a particular answer).  

The instructions (passages throughout the assessment) remain to offer you context while evaluating the 

scale’s items. 

If you find that two items ask the same question, please make note of that in the available space for 

feedback below each question. 
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You are assigned a new role at work, responsible for assessing the attack and defensive strategies of 

local organizations.  To determine your first assignment, you are asked to complete the following 

questionnaire.  You want to provide a good impression, but you recognize that accurately reporting your 

skills and capabilities will lead to accurate expectations. 

These local organizations have a wide range of cybersecurity capabilities. Some are highly sophisticated 

while others have no cybersecurity program at all. You're asked to indicate your confidence.  

Mark the box that represents on a sliding scale how confident you are in completing the presented task. 

1. I can identify a fake website phishing for information. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

2. I can update system or network patches based on vulnerabilities published to the internet. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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3. I can identify vulnerabilities with regards to safeguarding sensitive data practices on computer 

systems or networks. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

4. I can conduct a cybersecurity assessment to identify vulnerabilities on a system’s threat surface. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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5. I can conduct active scans of network traffic and identify potential threats. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

6. I can configure firewall settings to limit inbound system access while allowing appropriate 

outbound access to the internet. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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7. I can use network sniffing to identify configuration or administrative data from a target network. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

8. I can create a phishing campaign to actively collect sensitive data from a target organization.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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9. I can use tools and techniques to extract system characteristics from a target system.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

Following weeks of preparation, the offensive team has completed their initial preparation phrase.  An 

intrusion on a local organization is expected to occur next.  You're asked to indicate your confidence of 

the following: 

10. I can execute command scripts to manipulate system processes.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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11. I can evade debugger detection.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

12. I can modify directory permissions to allow access to protected files.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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13. I can use a computer's peripheral devices to capture video or audio and gain access to sensitive 

information.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

14. I can identify suspicious program execution through system process analysis. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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15. I can identify a malicious browser extension redirecting traffic.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

16. I can correct administrative privilege abuses.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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17. I can identify changes to the boot records or BIOS. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

The offensive team has breached the target network and is executing collection and exploitation 

techniques.  You're asked to indicate your confidence of the following: 

18. I can use remote access software to establish command and control of a targeted system across 

a network.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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19. I can leverage operating system software known vulnerabilities or the kernel to execute 

malicious code.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

20. I can leverage obfuscation techniques to conceal command and control traffic. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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21. I can wipe or corrupt raw disk data on a target system to interrupt availability of system 

resources.  

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

22. I can identify direct access read/write attempts. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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23. I can identify unusual driver installation activity. 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

24. I can determine the source of software exploits used against a network or system. [AB-CS-2] 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
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25. I can identify network traffic originating from unknown hardware devices. 
 

 

The item reflects a key cybersecurity capability. 
 

Absolutely 
Not 

     Absolutely 

The item reflects a key cyber offense capability. 
 

Absolutely 
Not 

     Absolutely 

The item is clear and to the point. 
 

Absolutely 
Not 

     Absolutely 
 

 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

Additional Expert Feedback: 

Please indicate if you feel this broadly represents the domains of cybersecurity and cyber offense.  While 

working to maintain a scope specific to organizational cyber operations, are there any specific tasks you 

would add? Any additional comments or feedback would be greatly appreciated.   

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 

Your time and expertise is high valued, thank you for supporting my research. 
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Appendix D

Cyber Operations Self-Efficacy

Scales
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Preliminary Cyber Operations Self-Efficacy Scale (COSES) 
While the COSES is a self-administered assessment, it should be conducted with the following guidance 
in mind: 

This scale is designed to measure the self-efficacy of cyber operations students and professionals; it is 
not designed for assessing the untrained layperson.  While developed as an integral part of the Cyber 
Operations Performance Framework, it’s independent use is encouraged to inform and guide strategies 
to improve cyber operations learning and training within the classroom and organizational settings.  
Cyber offensive and defensive items are presented in two separate surveys and participants should take 
the survey that aligns with their cyber operation goals.  Each scale is presented in a series of three cyber 
operational phases: preparation, intrusion, and active breach.   

The COSES is not a knowledge assessment, it’s a self-efficacy measure to define user confidence in 
achieving cyber operations success.  Users are encouraged to answer honestly regarding their 
confidence in their abilities as the results can provide important feedback for improving academic and 
organizational cyber success. 
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The following set of demographic questions is not part of the Cyber Operations Self-Efficacy Scale.  It is 
included to ensure comprehensive item evaluation during scale development, validity, and reliability 
testing and will be used to report findings while ensuring individual anonymity. 

 
Mark the applicable box. 

1. Your age group. 
       18-24                    25-30                   31-40                   41-50                     51-64                    65+ 

      
 
2.    Your gender. 
                     Male    Female                       Them/Theirs              

 
 

3. Your current education. 
  H. S. Degree     Some Undergrad     Undergrad Complete    MA/MS Complete       PhD Complete 

        
 

4. Indicate if are currently in a program or have a degree majoring in IT, Computer Science, 
Cybersecurity or other similar programs. Mark all applicable boxes. 
 
            Undergrad                        Masters                                PhD  

 
 

5. Your industry certifications. Mark all applicable boxes. 
             None          Cybersecurity                 Cyber Offense 

 

 
       4.    Your current cybersecurity work experience.  

                 < 3 months         4-11 months         1-2 years            3-5 years            6-10 years           11+ years  
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Cybersecurity Cyber Operations Self-Efficacy Scale  

You are assigned a new role at work, responsible for assessing the attack and defensive strategies of 
local organizations.  To determine your first assignment, you are asked to complete the following 
questionnaire.  You want to provide a good impression, but you recognize that accurately reporting your 
skills and capabilities will lead to accurate expectations. 

These local organizations have a wide range of cybersecurity capabilities. Some are highly sophisticated 
while others have no cybersecurity program at all. You're asked to indicate your confidence.  

Mark the box that represents on a sliding scale of 1 to 10 how confident you are in completing the 
presented task.   

 

 

 

 

1. I can identify a fake website phishing for information. 

 

 

2. I can update system or network patches based on vulnerabilities published to the internet. 

 

3. I can identify vulnerabilities with regards to safeguarding sensitive data practices on computer 
systems or networks. 
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4. I can conduct active scans of network traffic and identify potential threats. 

 

5. I can configure firewall settings to limit inbound system access while allowing appropriate 
outbound access to the internet. 

 

Despite ongoing efforts, indications indicate that an intrusion is likely to occur.  You're asked to indicate 
your confidence of the following: 

6. I can identify suspicious program execution through system process analysis. 

 
7. I can identify a malicious browser extension redirecting traffic.  

 

8. I can correct administrative privilege abuses.  
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9. I can identify changes to the boot records or BIOS. 

 

The offensive team has breached the target network and is executing collection and exploitation 
techniques.  You're asked to indicate your confidence of the following: 

10. I can identify unusual driver installation activity. 

 

11. I can determine the source of software exploits used against a network or system. [AB-CS-2] 
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Cyber Offense Cyber Operations Self-Efficacy Scale  

You are assigned a new role at work, responsible for conducting cyber-attacks against potential threat 
organizations.  To determine your first assignment, you are asked to complete the following 
questionnaire.  You want to provide a good impression, but you recognize that accurately reporting your 
skills and capabilities will lead to accurate expectations. 

These target organizations have a wide range of cybersecurity capabilities. Some are highly 
sophisticated while others have no cybersecurity program at all. You're asked to indicate your 
confidence.  

Mark the box that represents on a sliding scale of 1 to 7 how confident you are in completing the 
presented task.   

1. I can identify vulnerabilities with regards to safeguarding sensitive data practices on computer 
systems or networks. 

 

2. I can create a phishing campaign to actively collect sensitive data from a target organization.  

 

3. I can use tools and techniques to extract system characteristics from a target system.  

 

Following weeks of preparation, your team has completed their initial preparation phrase.  Intrusion is 
expected to begin soon.  You're asked to indicate your confidence of the following: 
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4. I can execute command scripts to manipulate system processes.  

 

5. I can evade debugger detection.  

 

6. I can modify directory permissions to allow access to protected files.  

 

7. I can use a computer's peripheral devices to capture video or audio and gain access to sensitive 
information.  

 

After multiple attempts, you have infiltrated the target computer.  As directed, you now 
are expected to manage command and control operations while executing 
exploitation.  You're asked to indicate your confidence of the following: 

8. I can leverage operating system software known vulnerabilities or the kernel to execute 
malicious code.  
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9. I can wipe or corrupt raw disk data on a target system to interrupt availability of system 
resources.  

 

10. I can identify direct access read/write attempts. 
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Appendix E

Model Sensitivity Statistical

Analysis Results
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Node Count MANOVA Test Results
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Security Strength MANOVA Test Results
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Friendly Count MANOVA Test Results
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Friendly Efficacy MANOVA Test Results
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Friendly Skills MANOVA Test Results
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Adversary Count MANOVA Test Results
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Adversary Skills MANOVA Test Results
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 Friendly Count Focused MANOVA Test R esults
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 CAdversary ount  Focused MANOVA Test  R esults
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  GSA Adversary & Friendly  MANCOVA Test  R esults
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  GSA Adversary & Friendly  MANCOVA Test  R esults
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