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1  |  INTRODUC TION

Ketone bodies (KBs) represent an important glucose-sparing en-
ergy source during fasting in mammals (Cahill et al., 1970; Reichard 
et al.,  1974), and they have been suggested to be involved in the 
prolongation of life span induced by calorie restriction and low-
carbohydrate ketogenic diet (LCKD)-feeding (Newman et al., 2017; 
Roberts et al., 2017; Stekovic et al., 2019). However, their precise 
role in mammalian longevity has long been debated because such 
dietary interventions cause many metabolic changes in addition to 
ketogenesis.

In the present study, the survival of Hmgcs2−/− mice that we 
generated previously (Tomita et al.,  2020), which are incapable of 
endogenous ketogenesis, was assessed to evaluate the role of KBs 
in mammalian life span (Figure 1a). Hmgcs2 deficiency increased the 
mortality rate in old age, and this was accompanied by lower blood 
beta-hydroxybutyrate (β-OHB) concentration, but no differences in 
body weight or blood glucose concentration (Figure 1b−e, Table S1). 
The reduction in life span of the Hmgcs2−/− mice was prevented by 
the dietary administration of 1,3-butanediol (1,3-BD), a chemical 
precursor of β-OHB (Figure  1a,e). Higher mortality of Hmgcs2−/− 
mice during the weaning period has previously been reported7. 
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Abstract
Accumulating evidence suggests health benefits of ketone bodies, and especially for 
longevity. However, the precise role of endogenous ketogenesis in mammalian life 
span, and the safety and efficacy of the long-term exogenous supplementation of 
ketone bodies remain unclear. In the present study, we show that a deficiency in en-
dogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span 
in mice, and that this is prevented by daily ketone body supplementation using a diet 
containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding 
the 1,3-butanediol-containing diet from early in life increases midlife mortality in 
normal mice, but in aged mice it extends life span and prevents the high mortality 
associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-
carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous 
ketogenesis affects mammalian survival, and ketone body supplementation may rep-
resent a double-edged sword with respect to survival, depending on the method of 
administration and health status.
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Therefore, the present findings emphasize the importance of KBs 
for mammalian survival and imply that they have significant effects 
on life span during two time windows: just after birth and in old age.

The health benefits of KBs have recently been gaining atten-
tion (Cheng et al.,  2019; Cotter et al.,  2014; Cox et al.,  2016; Fan 
et al., 2021; Mujica-Parodi et al., 2020; Nielsen et al., 2019; Tomita 
et al.,  2020; Torres et al.,  2019). Therefore, there is an urgent 
need to determine whether long-term KB supplementation is safe 

and extends life span. To answer this question, the effects on the 
life span of control Hmgcs2+/+ mice of an LCKD, which contained 
4.5% carbohydrate, 80.8% fat, and 14.7% protein (calorie %), and 
a 1,3-BD-containing diet from 24 weeks of age were examined 
(Figure  1f). LCKD-fed mice exhibited higher mortality in old age, 
which was accompanied by rapid decreases in body weight and 
blood glucose concentration after midlife (Figure 1g−j, Table S2). The 
survival rate of the 1,3-BD diet–fed mice was also lower, but there 

F I G U R E  1 Effects of endogenous ketogenesis and dietary KB supplementation on mouse survival rate. (a) Study protocol for determining 
the life span of Hmgcs2+/+ mice fed a normal diet (ND; n = 20) and Hmgcs2−/− mice fed either an ND (n = 15) or a 1,3-butanediol (1,3-BD)-
containing diet (n = 15). (b) β-OHB concentration during the study period. (c) Change in body weight. (d) Blood glucose concentration. (e) 
Cumulative survival rate. (f) Study protocol for determining the life span of Hmgcs2+/+ mice fed an ND (n = 20), a 1,3-BD diet (n = 20), or 
a low-carbohydrate ketogenic diet (LCKD), which contained 4.5% carbohydrate, 80.8% fat, and 14.7% protein (calorie %) (n = 15), from 
24 weeks of age. (g) β-OHB concentration. (h) Change in body weight. (i) Blood glucose concentration. (j) Cumulative survival rate. *p < 0.01, 
†p < 0.05; ns, not significant.
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were differences in mortality from the LCKD-fed mice at various 
time points (Figure 1j). The 1,3-BD diet was associated with higher 
midlife mortality, but this difference disappeared when the normal 
diet (ND)-fed mice began to die (between 90 and 110 weeks of age), 
such that their mortality in old age was similar to that of ND-fed mice 
(Figure 1j).

This finding led us to hypothesize that KB supplementation com-
mencing just prior to old age might extend life span. To evaluate this 

possibility, the 1,3-BD diet or LCKD was fed to C57BL/6J mice from 
72 weeks of age (Figure 2a). Both interventions increased the blood 
β-OHB concentration similarly, and had no marked effects on body 
weight or blood glucose levels (Figure 2b−d, Table S3). However, the 
1,3-BD diet extended the life span, whereas the LCKD shortened it 
(Figure 2e).

These findings led us to further hypothesize that the 1,3-BD 
diet might extend life span, even in young mice, if they have organ 

F I G U R E  2 Effects of KB supplementation on the survival rate of aged mice and young ApoE−/− mice. (a) Study protocol for determining 
the life span of aged wild-type (WT) C57BL/6J mice fed a normal diet (ND; n = 15), a 1,3-butanediol (1,3-BD)-containing diet (n = 15), or a 
low-carbohydrate ketogenic diet (LCKD), which contained 4.5% carbohydrate, 80.8% fat, and 14.7% protein (calorie %) (n = 15). (b) β-OHB 
concentration during the study period. (c) Change in body weight. (d) Blood glucose concentration. (e) Cumulative survival rate. (f) Study 
protocol for determining the life span of ApoE−/− mice fed either an ND (n = 20), a 1,3-BD diet, (n = 20) or an LCKD (n = 15). (g) β-OHB 
concentration. (h) Change in body weight. (i) Blood glucose concentration. (j) Cumulative survival rate. *p < 0.01, †p < 0.05; ns, not significant; 
na, not available.
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damage. Therefore, we next determined the effects of KB adminis-
tration on the life span of high-fat diet (HFD)-fed ApoE−/− mice with 
atherosclerosis-related organ damage (Figure  2f). The 1,3-BD diet 
and LCKD induced similar metabolic changes to those identified in 
the aged mice (Figure 2g−i, Table S4). The high mortality of the HFD-
fed ApoE−/− mice was reduced by the 1,3-BD diet but worsened by 
the LCKD (Figure 2j).

The present results suggest that the timing and method of KB 
supplementation and health status have significant influences on the 
effects of KBs on mammalian life span. Given that Hmgcs2−/− mice 
had a lower survival rate in old age and that 1,3-BD extended the 
life span of aged and ApoE−/− mice, KBs may have an important role 
in tissue repair, as suggested by recent studies (Cheng et al., 2019; 
Tomita et al., 2020). By contrast, 1,3-BD diet from early life was as-
sociated with higher mortality, although the reason for this remains 
unclear. Thus, the potential for KBs to be used to promote human 
health (Chen et al.,  2021) and their safety, particularly in younger 
individuals, requires further investigation. Also, further analysis re-
garding the cause of death is needed to elucidate the mechanisms by 
which KBs affect the life span.

The health benefits of LCKD remain the subject of debate. Time-
restricted or energy-controlled LCKD feeding was reported to ex-
tend life span in mice (Newman et al., 2017; Roberts et al., 2017), 
whereas ad libitum LCKD feeding leading to much calorie intake 
shortened their life span in our study. Thus, the unrestricted LCKD 
seems to cancel out the health benefits of KBs and to be harmful. 
Because LCKDs are often used for weight management (Foster 
et al.,  2003), the effects of long-term LCKD consumption require 
careful monitoring.

In conclusion, it is possible that endogenous ketogenesis plays 
an important role in mammalian survival, although there may be sex 
differences in the effects. Furthermore, KB supplementation rep-
resents a double-edged sword, with their effects depending on the 
method of administration and health status. The present findings 
provide a further ray of hope, but also a new challenge, for the use 
of KBs to prolong healthy life span.

2  |  METHODS

2.1  |  Ethics

The experimental protocols were approved by the Gene 
Recombination Experiment Safety Committee and Research Center 
for Animal Life Science of Shiga University of Medical Science.

2.2  |  Animal studies

Details on the creation of each transgenic mouse, the dietary inter-
vention, and the measurement of each parameter are provided in the 
Supplemental Information.

2.3  |  Statistical analysis

Two-way ANOVA followed by Tukey's post hoc test was used to 
determine the effects of genotype and treatment among multiple 
groups, and the unpaired Student's t test was used to compare two 
groups. Survival rates were determined using the Kaplan–Meier 
method and compared among the groups using the log-rank test, 
with the Bonferroni correction. R statistical software version 1.55 
(Vienna, Austria) was used for the analysis. p < 0.05 was considered 
to represent statistical significance. Each experiment was conducted 
twice, and the combined data were statistically analyzed.
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