
A Fast Matrix-Free Algorithm
for Spectral Approximations to

High-Dimensional Partial Differential
Equations

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Bernd Brumm

aus Mühlacker

Tübingen
2015

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Prüfung: 13.01.2016
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Christian Lubich
2. Berichterstatter: Prof. Dr. Marlis Hochbruck

Abstract

This thesis is concerned with the computational intractabilities that arise from spectral
discretizations of high-dimensional partial differential equations. Using the example of the
time-dependent multi-particle Schrödinger equation, we consider a spectral Galerin approx-
imation in space with a tensor product basis of Hermite functions. When propagating the
resulting system of ordinary differential equations in time, one typically needs to evaluate
matrix-vector products involving a matrix representation of the Hamiltonian operator in
each time step. Since the size of this matrix equals the number of equations, which (for an
unreduced basis) depends exponentially on the dimension and thus quickly becomes enor-
mously large, this can make computations infeasible—both due to a lack of memory and
due to unbearably long computation times.

We present a fast algorithm for an efficient computation of these matrix-vector products
that scales only linearly with the size of the Galerkin basis—without assembling the matrix
itself. Besides being a matrix-free approach, the fast algorithm is compatible with the
idea of reducing the index set that underlies the basis. The computational speed-up is
achieved using orthogonality of the Hermite functions in combination with their generic
three-term recurrence. Briefly, these properties allow to compute the action of the matrix
representations of the coordinatewise position operators on vectors in linear time. The
basic idea is then to insert these coordinate matrices into a polynomial approximate of the
potential. This has originally been proposed by E. Faou, V. Gradinaru, and Ch. Lubich in
[23]. We modify their approach and turn it into a rigorous algorithm. For an unreduced set
of basis functions, we show this tentative proceeding to be equivalent to a suitable entrywise
approximation of the potential matrix by Gauß–Hermite quadrature. Reducing the index
set for the basis functions yields an additional error.

We derive error estimates for all approximation steps involved. In particular, using a
binary tree approach, bounds for the errors due to quadrature and index set reduction
are deduced. Both errors decay spectrally if the potential is significantly smoother than
the exact solution wherever the latter does not essentially vanish. Extensive numerical
experiments corroborate these findings. Besides, we show performance tests comparing the
fast algorithm to a matrix-free approach from the chemical literature.

Apart from the above basic form of the fast algorithm, we present applications of the
general methodology to the nonlinear Schrödinger equation and, most prominently, to
initial-boundary value problems. As an example, we study the acoustic wave equation
with non-constant coefficients and Engquist–Majda boundary conditions, and construct ef-
ficient procedures for the different kinds of matrix-vector products together with an error
analysis and numerical tests.

iii

Deutsche Zusammenfassung

Das Lösen hochdimensionaler partieller Differentialgleichungen mittels Spektralmethoden
stellt in Anbetracht der damit verbundenen enormen Speicherplatz- wie auch Zeitkom-
plexität eine besondere Herausforderung dar. Wir betrachten das Beispiel der zeitabhäng-
igen Vielteilchen-Schrödingergleichung, die mit einem Galerkinansatz im Raum diskretisiert
wird. Die zugrundeliegende Basis besteht aus Tensorprodukten von Hermitefunktionen.
Bei der Integration des zugehörigen Systems gewöhnlicher Differentialgleichungen sind in
jedem Zeitschritt typerischerweise Matrix-Vektor-Produkte mit der Darstellungsmatrix des
Hamiltonoperators der Gleichung bezüglich der gewählten Galerkinbasis zu berechnen. Die
Größe dieser Matrix hängt im Falle einer nicht ausgedünnten Basis exponentiell von der
Dimension des Problems ab. Das explizite Aufstellen der Matrix überschreitet damit leicht
den zur Verfügung stehenden Speicherplatz und erfordert unerträglich lange Rechenzeiten.

Diese Arbeit stellt einen schnellen Algorithmus zur Berechnung solcher Matrix-Vektor-
Produkte vor, dessen Komplexität nur linear von der Größe der Galerkinbasis abhängt und
der ohne explizites Aufstellen der Matrix auskommt. Darüber hinaus erlaubt er nahezu
beliebiges Ausdünnen der Basis – sofern eine entsprechende Ausdünnung selbst eine gute
Approximation an die gesuchte Lösung des Problems liefert. Stellt man die Ortsoperatoren
bezüglich der einzelnen Koordinaten in der gewählten Basis dar, so lassen sich mithilfe
der wechselseitigen Orthogonalität der Hermitefunktionen sowie der sie definierenden Drei-
Term-Rekursion Produkte dieser Koordinatenmatrizen mit Vektoren in linearer Zeit berech-
nen. Die bereits von E. Faou, V. Gradinaru und Ch. Lubich in [23] vorgestellte Kernidee
des schnellen Algorithmus besteht nun darin, die Koordinatenmatrizen formal in eine poly-
nomielle Approximation des Potentials einzusetzen. Wir modifizieren diesen Vorschlag und
präsentieren einen rigorosen Algorithmus. Für eine nicht ausgedünnte Galerkinbasis erweist
sich diese Idee als äquivalent zur Approximation der Integrale in jedem Eintrag der Matrix-
darstellung des Potentials mittels einer spezifisch gewählten Gauß-Hermite-Quadratur, wie
in der vorliegenden Arbeit gezeigt wird. Ausdünnen der Basis generiert einen zusätzlichen
Fehler.

Ein wichtiger Bestandteil dieser Arbeit ist die Fehleranalyse. Insbesondere lassen sich
die durch Quadratur und ggf. Ausdünnen der Basis verursachten Fehler jeweils durch
geschicktes Umschreiben der Hermite-Rekursion als Binärbaum kontrollieren. Unter der
Annahme eines im Vergleich zur exakten Lösung hinreichend glatten Potentials fallen diese
Fehler spektral ab. Dies wird in numerischen Experimenten bestätigt. Als Vergleichsmaß
für die tatsächliche Einsparung an Rechenzeit durch den schnellen Algorithmus dient uns
ein matrixfreier Ansatz, der in der chemischen Literatur entwickelt wurde.

Darüber hinaus übertragen wir den obigen Ansatz auf eine analoge Behandlung u.a. der
nichtlinearen Schrödingergleichung und von Anfangsrandwertproblemen. Als Beispiel für

v

letztere Klasse betrachten wir im zweiten Teil der Arbeit die Wellengleichung mit variablen
Koeffizienten und Engquist-Majda-Randbedingungen und konstruieren analoge effiziente
Verfahren für die zugehörigen Matrix-Vektor-Produkte. Wir führen ebenfalls eine Fehler-
analyse durch und präsentieren numerische Experimente.

vi

Danksagung

Diese Arbeit wäre ohne die Ideen Christian Lubichs sowie ohne die durch ihn erfahrene
Betreuung nicht denkbar. Für die mir angebotene Stelle als Mitarbeiter in seiner Gruppe,
für seine mathematischen (und manchmal auch literarischen) Anstöße sowie für die durch
ihn ermöglichten Konferenzteilnahmen und Reisen bin ich mehr als dankbar.

Mein Dank gilt meiner zweiten Gutachterin und Prüferin Marlis Hochbruck, nicht zuletzt
für die freundliche Einladung nach Karlsruhe.

Sehr verbunden bin ich dem GRK 1838, dem ich als Doktorand assoziiert war und aus
dessen Mitteln ein guter Teil meiner Reisen bestritten wurde. Namentlich erwähnt sei vor
allem Stefan Teufel, der sich auch als Prüfer zur Verfügung gestellt hat, sowie die stets
hilfreiche Stefanie Engstler.

Andreas Prohl möchte ich für seine Bereitschaft, als Prüfer zu fungieren, herzlich danken.

Bezahlt wurde ich aus Mitteln des DFG-Schwerpunktprogrammes 1324, wofür ich eben-
falls zu Dank verpflichtet bin.

Die in Kingston an der Queen’s University als Gast in Tucker Carringtons Gruppe ver-
brachten Monate werden mir eine besondere Erinnerung bleiben. Tucker und Gustavo Ávila
haben mir dort viel von ihrer Zeit gewidmet, so dass ich den Aufenthalt in Kanada als Ho-
rizonterweiterung erfahren durfte – fachlich und darüber hinaus.

Meinen Tübinger Kollegen, von denen mir viele zu Freunden geworden sind, danke ich für
die gemeinsame Zeit und für den fachlichen (und natürlich auch für den außerfachlichen!)
Austausch, insbesondere Thomas Dunst, Ludwig Gauckler, Markus Klein, Balázs Kovács,
Dhia Mansour, Chris Power, Jonathan Seyrich, Hanna Walach und nicht zuletzt Daniel
Weiß, von dem ich viel gelernt habe. Ausdrücklich danken möchte ich Balázs für sein
wertvolles und sehr gründliches Lektorat.

Ich danke meinem zeitweiligen “room mate” Emil Kieri aus Uppsala für die produk-
tive Zusammenarbeit, wie mir auch Nurcan Gücüyenen aus Izmir, Wencheng Li aus Xian
und Toshiaki Itoh aus Kyoto als Zimmergenossen in freundschaftlicher Erinnerung bleiben
werden.

Die mittägliche Kaffeerunde1 am runden Tisch wäre nicht vollständig ohne unsere Diplo-
manden und Masterstudenten, insbesondere Anna, Raphi und Thy. Und die Arbeitsgruppe
wäre nicht funktionsfähig ohne die Hilfe unserer bei Notfällen stets verlässlichen Computer-

1 Dank anbei auch den Firmen Philips und Jacobs Douwe Egberts für die Entwicklung einer gewissen
Portionskaffeemaschine mit Kaffeepads, welche die in unserer Arbeitsgruppe zahlreich durchgeführten
Belastungstests allesamt mit Bravour bestanden hat!

vii

administratoren. Ich werde den Umgang mit den vielen Studenten, denen ich in der Lehre
begegnet bin, vermissen.

Meinen Eltern sowie meinem Bruder Jochen danke ich für die langjährige Unterstützung
in allen Lebenslagen. Und meinem Lebenspartner Mirko, den ich sehr liebe.

viii

Contents

Introduction 1

Contributions and sources 11

I Basic fast algorithm 13

1 Spectral approximation of the linear Schrödinger equation 15
1.1 Galerkin approach . 15
1.2 Hermite basis . 17

1.2.1 Hermite functions in 1D . 17
1.2.2 Tensor product basis . 18

1.3 Multidimensional index sets . 19
1.3.1 Hyperbolically reduced index sets . 20
1.3.2 Additive reduction . 21
1.3.3 Linear order . 22

1.4 Smoothness assumptions and approximation of the potential 22
1.4.1 Regularity of wave function and potential 23
1.4.2 Chebyshev interpolation . 23
1.4.3 Relation of index sets . 24
1.4.4 Moving wavepackets . 25

1.5 Discretization in time . 25
1.5.1 Magnus integrators . 25
1.5.2 Approximation of matrix exponential 26

2 The fast algorithm 29
2.1 General setting . 29
2.2 Direct operation with coordinate matrices 31

2.2.1 One-dimensional approach . 31
2.2.2 Generalization to higher dimensions 31

2.3 Algorithmic description . 32
2.3.1 Insertion of coordinate matrices into the potential 32
2.3.2 Using the Chebyshev recurrence: the 1D case 33
2.3.3 First version . 33
2.3.4 Second version . 34
2.3.5 Reduced index sets for polynomial approximation 35

2.4 Complexity . 36
2.4.1 Space complexity . 36

ix

2.4.2 Time complexity . 37
2.5 Comments on implementation . 37

2.5.1 Linear addresses . 37
2.5.2 Index manuals . 38
2.5.3 Complexity . 40

2.6 Relation to Gauß–Hermite quadrature . 42
2.6.1 Preliminaries . 42
2.6.2 Equivalence of formal insertion and quadrature 43
2.6.3 Error due to index set reduction . 44

3 Time comparison 45
3.1 Assembling the matrix . 45
3.2 Sequential summations . 46

3.2.1 Basic idea . 47
3.2.2 Algorithmic description . 49
3.2.3 Reduced index sets . 50
3.2.4 Comparison to the fast algorithm . 52

3.3 Performance tests . 55

4 Error analysis 63
4.1 Outline and main results . 63

4.1.1 Solutions and their approximations 64
4.1.2 Organization of the analysis and main results 65

4.2 Interpolation error . 68
4.3 Spatial discretization . 69
4.4 Error decomposition for reduced index sets 72
4.5 Decay assumption . 74
4.6 Local error due to quadrature (reduced index set) 76
4.7 Local error due to index set reduction . 81
4.8 Remarks on the actual decay behavior . 86

5 Numerical experiments 89
5.1 Local errors due to quadrature and index set reduction 90
5.2 Matrix exponentials . 92
5.3 Time integration . 98

6 Further applications 105
6.1 Essentials and non-essentials . 105
6.2 Derivatives . 106

6.2.1 Differential operators . 107
6.2.2 Shifting vectors . 108
6.2.3 Doing derivatives by shifts . 109

6.3 Moving wavepackets . 110
6.3.1 Hagedorn wavepackets . 110
6.3.2 Semiclassical splitting and the fast algorithm 111
6.3.3 Error . 112

6.4 Nonlinearities . 113
6.4.1 Spectral discretization in space . 113
6.4.2 Propagation in time . 114

x

6.4.3 Approximation of the squared modulus 115
6.4.4 Factorization of triple products . 115
6.4.5 Efficient matrix-vector products . 116
6.4.6 Algorithmic description . 118

II Application to initial-boundary value problems 121

7 Introduction 123

8 Spectral approximation of the wave equation 127
8.1 The wave equation . 128
8.2 Galerkin approach . 129
8.3 Legendre basis . 131

9 Efficient procedures for matrix-vector products 133
9.1 Approximation of matrix-vector products 133
9.2 Fast algorithm for non-constant coefficients 136
9.3 Derivatives . 137
9.4 Treatment of boundary terms . 139
9.5 A brief note on complexity . 140

10 Error analysis 143
10.1 Outline and main results . 143
10.2 Interpolation error . 145
10.3 Stability of spatial semidiscretization . 147
10.4 Spatial discretization . 148

11 Numerical experiments 153
11.1 The acoustic wave equation . 153
11.2 Time propagation . 154
11.3 Assembling the stiffness matrix . 156
11.4 Comment on reduced index sets . 157

Afterword 159

Notations 161

Algorithms, figures, and tables 167

Lemmas and theorems 169

Bibliography 171

xi

Introduction

“Had we but world enough, and time”
– Andrew Marvell, To His Coy Mistress

In Andrew Marvell’s famous mid-17th century poem that has the above words at its begin-
ning, a poor soul laments a coy woman’s slow and hesitant response to his courtship; see
the commented edition [80]. By the constraint of a normal lifespan, so he mocks her while
she keeps playing hard to get, she’s putting the two of them at risk of dying of old age
before finally giving in. Within the temporal bounds of human existence, solving partial
differential equations (PDEs) can be no less an exercise in patience than winning a reluc-
tant heart. For both endeavors, time (or the lack thereof, that is) can be the crucial issue.
But since Marvell’s “coy mistress” is a hopeless case, the present thesis is rather concerned
with the computational intractabilities that arise from spectral discretizations in space of
high-dimensional PDEs than with love’s grief and impatience.

We start from a very brief characterization of spectral methods. For a given number of
degrees of freedom, spectral methods exhibit a higher accuracy than finite element or finite
difference methods. The reason is that they employ global basis functions of a high degree,
whereas the latter methods are built from local low-degree approximations to the unknown
solution. If the solution is infinitely differentiable, we get convergence rates faster than any
polynomial in the number of basis functions; see [57, 83]. Finite elements or finite differences
can be fitted to irregularly-shaped domains, while spectral methods are most useful when
the underlying geometry is fairly regular. Unbounded domains, in particular, typically fall
within the scope of spectral methods. On the downside, whereas finite elements or finite
differences yield sparse matrices, the matrices due to spectral discretizations are in general
dense. There is an abundant literature on spectral methods. To name just a few, see the
handbook article [8] and the textbooks [10, 15, 26, 38, 47, 76, 88].

As an example well-suited both for a spectral ansatz in general and for an illustration
of the computational challenges such an ansatz can bring about, consider the linear time-
dependent Schrödinger equation over the whole Rd,

iψt(x, t) = H(x, t)ψ(x, t), x = (x1, . . . , xd) ∈ Rd, t ≥ 0,

where the dimension d might become large. Using a spectral Galerkin approach in space,
we search for an approximation

ψ(x, t) ≈ ψK(x, t) =
∑

k∈K
ck(t)ϕk(x)

that is a linear combination of L2(Rd)-orthonormal basis functions ϕk with multi-indices
k = (k1, . . . , kd) taken from a d-dimensional index set K ⊂ Nd, and we determine the

1

Introduction

unknown coefficients c = (ck)k∈K by the requirement that the residual be in the orthogonal
complement of the corresponding linear approximation space. Equivalently, this yields a
system of |K| ordinary differential equations (ODEs),

iċ(t) = H(t)c(t), Hjk(t) =

∫

Rd
ϕ̄j(x)H(x, t)ϕk(x) dx,

with a (|K| × |K|)-matrix representation H of the Hamiltonian operator. Discretizing the
latter system in time using, e.g., a polynomial integrator or approximations to the matrix
exponential by a splitting method or a Magnus integrator all require the computation of
matrix-vector products involving H in each time step. If the Galerkin basis consists of
tensor products of univariate L2(R)-orthonormal functions,

ϕk(x) = ϕk1(x1) · . . . · ϕkd(xd), k ∈ K,

where each kα ranges from 0 to some threshold K, the number of equations amounts to
(K + 1)d. We write K = K(d,K) and call this the full index cube. For a moderate
choice of dimension, say d = 4, with a typical threshold of K = 30, storing all entries of
the corresponding matrix H separately on a machine in double precision arithmetics (64
bits) requires an impressive amount of 6.2 TB of memory (symmetries and zeros not taken
into account, though). Besides memory, computation time is equally severe an issue. For
instance, on a desktop computer with an Intel Core 2 Duo E8400 3.00 GHz processor
with 4 GB RAM using an implementation in C, the mere assembly takes more than 20
days. Cheaper than the assembly, but still unbearably expensive, is the computation of
the product Hv for some vector v ∈ C|K|, which scales quadratically with the size of the
Galerkin basis. The exponential dependency on the dimension thus proves to be enormously
harmful, and we realize that, in our context, the poet’s cry both for enough “world” and
“time” is really a cry for more memory and faster computations. For this computational
intractability, centuries after the coy mistress had passed away presumably untouched, the
term curse of dimensionality has been coined; see [7].

This thesis is a contribution to cope with the infamous curse of dimensionality in the con-
text of spectral discretizations of high-dimensional PDEs. It decomposes into two parts: In
Part I, we consider the Schrödinger equation as maybe the most prominent example of such
a problem. In Part II, we apply the methodology developed for the Schrödinger equation
on an unbounded domain to the wave equation on a bounded domain. This introduction
covers only the first part.

There are three established strategies to deal with the computational burden the above
problem poses: First, one reduces the Galerkin basis and skips those indices from K that
contribute the least to an acceptable approximation ψ ≈ ψK. If the index set can only be
sufficiently reduced, this can speed up computations drastically. Second, instead of assem-
bling H and then doing the matrix-vector product Hv explicitly, people try to compute
the resulting vector directly, i.e., in a matrix-free way. Leaving aside the tremendous as-
sembly costs for a moment, ideally, this reduces the quadratically scaling costs to a number
of operations that scales only linearly with the size of the Galerkin basis. Whereas index
set reduction techniques thus make the matrix smaller, but stick with quadratically scal-
ing costs, matrix-free approaches mitigate the computational complexity by avoiding an
assembly of H at all. Third, one replaces the matrix-vector product with the application of

2

Introduction

some fast transform between coefficient and physical space for which linearly scaling pro-
cedures are available or can be devised. Since matrix-free approaches, as we use the word,
are not transforms between different representation spaces, they are closely related to fast
transforms, but conceptually different.

In the subsequent paragraphs, we shall briefly comment on all three techniques. As will
become clear, these techniques are not mutually exclusive, and we shall indeed combine the
first two strategies in our own approach.

Reduced index set techniques have recently gained a greater popularity, but the very idea
can be traced back to the early 1960s. So-called sparse grids of nodes for high-dimensional
quadrature are commonly attributed to S. Smolyak (see [81]), who introduced a tensorized
construction based on a hierarchy of one-dimensional (1D) quadrature formulas to approx-
imate integrals of multivariate functions over d-dimensional cubes and thus overcome the
curse of dimensionality to some extent. An overview of subsequent applications of Smolyak’s
idea in various fields or for various problems is given in [14, 33] and, more recently, in [37].
Applying the technique with a spectral collocation approach for the solution of a PDE, one
employs a hyperbolic reduction for the indices for the spectral basis and a sparse grid of
collocation points, which are in a bijective correspondence. Drawing such a reduced index
set in two dimensions yields a cross-like distribution. Sparse grid methods are therefore also
known by the name of hyperbolic cross approximations; see [77, 84]. We shall comment on
spectral collocation methods and their relation to spectral Galerkin methods in more detail
in the introduction to Part II of this thesis. Since neither does our fast algorithm make
use of any kind of quadrature nor do we consider a collocation ansatz, optimal choices of
quadrature or collocation points taken from a reduced grid are not of interest for us, and
we focus solely on a reduction of the index set for the Galerkin basis. But then, besides
hyperbolic reductions, we consider a broad class of reduced index sets. Additive reductions,
in particular, will play a role.

In computational chemistry, people have long been aware of the need for matrix-free ap-
proaches; see the methods and references given in [20], where matrices of the above kind
are justifiably characterized as “monster matrices”. Another valuable source of references is
the review article [59]. Since we are addressing a mathematical audience, a comprehensive
reception of the corresponding chemical literature is out of scope. Sequential summations
is a matrix-free approach that has come up in the mid-1980s. It has since been put forward
most prominently by T. Carrington and his coworkers, who, to the best of our knowledge,
have contributed the most to its development. Roughly, if H is a sum of separable oper-
ators, a clever re-arrangement of the indices considerably economizes computations when
evaluating the sums

(Hv)j =
∑

k∈K
Hjkvk, j ∈ K.

A starting point is the work [11], where a full index cube is considered; see also [19, 27, 62]
for similar ideas. The approach has been generalized to an additively reduced basis in [90],
both in a quadrature-free version and with a full tensor grid of quadrature nodes for an
approximation of the integrals in the Galerkin matrix. In [2], an adaptation for modified
Smolyak quadrature is presented, which has since been put to use in [3, 4, 5] and adapted in
[6] to Smolyak interpolation in the context of a collocation approach. These latter references
cover situations where our matrix-free approach is not generally applicable, though, while

3

Introduction

the proceedings due to [11, 90] bear close resemblance to our own ideas. We shall extensively
comment on sequential summations and their relation to the present work.

For the full index cube, fast algorithms for the discrete transforms between grid values
and expansion coefficients such as the Fast Fourier Transform (for a periodic setting) or the
Fast Cosine Transform (in case of a Chebyshev basis for problems with bounded domain)
are well-known techniques; see, e.g., Chapter 12 of [72]. We shall comment on a simple
instance of how fast transforms can be applied in combination with spectral methods in
more detail in the introduction to Part II of this thesis. In recent years, going back to K.
Hallatschek’s work [44], fast transforms for sparse grids (i.e., hyperbolic reductions) and
their application to solving PDEs has become a topic. As for trigonometric polynomials
and periodic problems, see the works [34, 35, 52, 53, 54]. As for algebraic polynomials and
bounded, non-periodic as well as unbounded problems, an application of the Fast Cosine
Transform for sparse grid interpolation on [−1, 1]d is presented in [56]; the work [77] studies
hyperbolic cross approximations based on Jacobi polynomials and considers applications
to high-dimensional elliptic equations; sparse grid Chebyshev–Galerkin methods for ellip-
tic problems on bounded and unbounded domains (or Chebyshev–Legendre–Galerkin and
Chebyshev–Hermite–Galerkin methods, respectively) are proposed in [78, 79]; finally, in
[16], the authors consider orthogonal polynomial expansions on sparse grids and develop a
rather involved procedure for the computation of the expansion coefficients.

So, how does this thesis fit into the broader picture and what do we intend to do? We
develop a procedure for an efficient computation of matrix-vector products of the above
form, Hv, for any choice of dimension d that we shall henceforth call the fast algorithm.
Our approach is supposed to meet the following benchmark criteria:

• Index set reduction proves to be enormously helpful for lowering the computational
costs. However, not all kinds of reductions are always viable due to their specific
approximation properties with respect to specific problems. The above references for
fast transforms on reduced grids are all related to hyperbolic reductions. The fast
algorithm, in contrast, works with (almost) any kind of subset of the full index cube
and is therefore compatible with the idea of skipping basis functions and making the
matrix smaller in a more general sense.

• It scales essentially linearly with the size of the underlying Galerkin basis. Therefore,
it is necessarily matrix-free.

• The fast algorithm exploits the structure of the Galerkin representation matrix H in
using the facts that the basis functions are mutually orthogonal and consist of tensor
products of univariate functions that are each constructed recursively. Besides these
orthogonality and recursion properties, the underlying Galerkin basis can be any set
of function that is suitable for the very problem under consideration. In particular, it
is applicable with sets of basis functions that do not easily allow for a fast transform,
or that do not allow for such a transform at all.

This is the task we aim to perform in this thesis. In addition, as the fast algorithm is
only an approximate means to compute the above matrix-vector product, we wish the
corresponding error to decay spectrally and thus preserve the appproximation quality of
the spectral ansatz itself.

4

Introduction

In its very basic form, the fast algorithm has originally been devised for a Hamiltonian
operator with a multiplicative, possibly time-dependent potential V , viz.,

H = −1

2
∆ + V, (V ψ)(x, t) = V (x, t)ψ(x, t).

For the sake of brevity, we drop the time-dependency in V for the moment. The Laplacian
can be trivially dealt with using an appropriate choice of basis functions. In later chapters
of this thesis, we transfer the approach from potentials to spatial derivatives that do no
longer allow for as easy a treatment as the Laplacian, and that may even be accompanied by
non-constant coefficient functions. Additionally, we consider problems on bounded domains
and present an adaptation of the basic idea to boundary terms—without having to employ
a Galerkin basis suitably taylored for the very problem under consideration. A further topic
is nonlinearities. We shall comment on the details in due time. Anyway, the fast algorithm
shall be seen rather as a general tool or methodology for problems that share some specific,
yet fundamental properties with the above discretization of the linear Schrödinger equation.
It is in no way restricted to the Schrödinger equation alone.

How have we solved our task and what are those fundamental properties that any prob-
lems needs to exhibit in order to allow for an application of the fast algorithm? Our method
rests on two pillars: First, a suitable approximation of the potential by a multivariate poly-
nomial; second, a direct operation procedure with representation matrices of the position
operators with respect to every single coordinate.
As a first step, we approximate the potential by a multivariate polynomial. Any set of
polynomial basis functions is viable, as long as the polynomial representation yields a sum
of products of univariate polynomials. A suitable way to do this is Chebyshev interpolation
over a given cube [−S, S]d, S ∈ R. Slightly deviating from the actual proceeding, we set

V (x) ≈
∑

r∈R
v̂r

d∏

α=1

Trα(xα/S), x ∈ [−S, S]d,

where Tr is the univariate Chebyshev polynomial of order r, and R = R(d,R) ⊂ Nd is
another set of multi-indices with threshold R. The fast algorithm itself allows for other
than a Chebyshev basis, though.
Next, we define coordinate matrices, i.e., representations of position operators,

X
(α)
jk =

∫

Rd
ϕ̄j(x)xαϕk(x) dx, α = 1, . . ., d.

Using the orthogonality property and the recurrence relation for ϕk, the product X(α) can
be done directly in linear time only, without assembling X(α).
The key idea is then simply to insert X(α) in place of the coordinate xα into the polynomial
representation of V , which we represent by V (X). Using the one-dimensional recurrence
for the Chebyshev polynomial in combination with the direct operation approach for the
coordinate matrices, this can be turned into a rigorous algorithm that yields an efficient
way to compute the product V (X)v. As we shall explain in much more detail, the overall
time complexity is proportional to

|R||K|.

5

Introduction

The requirements that the solution ψ have support within the cube [−S, S]d and that the
potential be substantially smoother than the solution translate into the relations

K � R, |K| � |R|

between the two index sets involved. In this sense, since the contribution from |R| to the
computational costs is negligible, the fast algorithm scales essentially linearly with |K|.

Inserting the coordinate matrices into the polynomially approximated potential is a rather
tentative idea. We therefore dedicate a significant proportion of this thesis to a thorough-
going error analysis in order to account for how good an approximation V (X)v actually is
when compared to a suitable entrywise quadrature approximation of the matrix represen-
tation of V . As it turns out, there is a close connection between the fast algorithm and
Gaussian quadrature: For the example of the linear Schrödinger equation over Rd, we choose
tensor products of univariate Hermite functions as basis functions. Hermite functions are
a natural and, thus, widely-used spectral basis for the Schrödinger equation on unbounded
domains; see, e.g., [23, 61] for the linear and [30] for the nonlinear case. In particular, they
are the eigenfunctions of the harmonic oscillator, which trivializes the derivative part. Now,
if the integrals

Vjk =

∫

Rd
ϕ̄j(x)V (x)ϕk(x) dx

are approximated by a full-product Gauß–Hermite quadrature with exactly K+1 nodes
in each direction, the approximate representation matrix Vquad turns out to be equivalent
to the matrix V (X)—at least if the index set K is the full index cube. This error due to
quadrature can be estimated using an appropriate projection technique that is related to
the exactness properties of Gaussian quadrature. However, if the index set K is reduced,
invoking the exactness properties of Gaussian quadrature becomes considerably harder, and
many arguments that are valid for the full index cube cease to do the trick. In this case,
there is an additional error contribution from index set reduction. In case of a reduced index
set, both the error due to quadrature and due to index set reduction can be analyzed by
transforming the three-term recurrence relation for the underlying Hermite–Galerkin basis
into suitable binary trees and doing some extensive combinatorial reasonings on these binary
trees. If the potential can be sufficiently well approximated by a multivariate polynomial,
i.e., if K � R, also the errors are well-behaved. E.g., for a vector v = (vk)k∈K that decays
according to

vk ≤ C
d∏

α=1

max{1, kα}−s

with some s ∈ N, we find the local error to decay according to

(
V (X)−Vquad

)
v ≤ C(d,R, V pol, v, S)K−s

where the constant depends on the dimension d, the size of the index set R, the regularity
of V pol and v =

∑
k∈K vkϕk, and the size of the cube S, but is independent of K. The fast

algorithm thus also decays spectrally—as does the overall Galerkin ansatz in the first place.
As is commonly done, the global error can be decomposed into a standard L2-projection

6

Introduction

error and a defect contribution, which in turn employs the above local error result. Analo-
gous results for the aforementioned generalizations to problems other than the Schrödinger
equation are presented in Part II of this thesis.

The ideas that this thesis is based on as well as some of the techniques employed are
due to the following sources. In [34, 35], V. Gradinaru studies a spectral approach with
a hyperbolically reduced tensor product Fourier basis and collocation on a sparse grid for
the linear Schrödinger equation with periodic boundary conditions. As is pointed out in by
Ch. Lubich in [61], Chapter III.1.4, unlike on a full grid, the resulting coefficient ODE does
not exhibit a Hermitian matrix, which possibly gives rise to numerical troubles and limits
the range of applicable time-stepping methods. As a remedy, a Fourier Galerkin method in
combination with an approximation of the potential by a trigonometric polynomial,

V (x) ≈
∑

r∈R
exp(ir · x),

is proposed. This is essentially the same idea as in the present thesis, but in the much
simpler setting of a periodic problem. The setting is indeed much simpler since the triple-
products

∫

[−π,π]d
exp(−ij · x) exp(ir · x) exp(ik · x) dx

do not vanish only if jα = rα+kα, and the corresponding matrix-vector product for the
potential can trivially be evaluated exactly. We adopt this basic idea for the situation
of an unbounded problem with a Hermite instead of a Fourier basis and, say, a tensor
product Tr of Chebyshev polynomials in place of exp(ir · x). There does not seem to be
an easily exploitable product identity for such integrals, and classical results such as [24]
for the product of two Hermite polynomials do not seem to open a computationally viable
loophole. In [23], in collaboration with E. Faou, the same authors have already transferred
the very idea from trigonometric to algebraic polynomials, in the context of a splitting
procedure for the linear Schrödinger equation in the semi-classical regime. They introduce
the above coordinate matrices and propose a formal insertion into the polynomial. They
present, however, no rigorous algorithmic description, and neither do they relate the idea
to a suitably chosen Gaussian quadrature nor do they give an error analysis. This, together
with a broader perspective on where this general idea can be employed and all subsequent
generalizations and applications, is done in the present thesis.

As briefly explained above, the insight that V (X) is equivalent to a full product of (K+1)-
nodes Gaussian quadrature of the same type as the basis functions is the crucial step towards
an error estimate. In the context of discrete variable representations (DVR), arguments of
the kind as they lead to this very equivalence are common; see [59].

Not only does this make an error analysis feasible, such DVR-style reasonings also supply
the ideas for the treatment of non-constant coefficients as presented in Part II of this thesis.
Doing derivatives in linear time, in contrast, is a well-known topic; see, e.g., the textbook
[15]. The ideas that our approach for boundary terms is based on shall be traced back
separately in the extensive introduction to Part II.

Let us review some prominent features of our approach. First, it is appealing insofar as it
combines the advantages from different strategies to coping with the curse of dimensionality:

7

Introduction

It is matrix-free, allows for index set reductions of almost any kind, and it can be seen as
a substitute for a missing fast transform.

Second, in all these respects, it retains a great flexibility with respect to specific choices
of index sets, basis functions, and time integration schemes involving Galerkin matrix-
vector products. In particular, the methodology is not limited to Hermite functions, but
is applicable with all kinds of classical orthogonal polynomials since their construction
is generic. In Part II of this thesis, we present the choice of a Legendre basis. All of
the above general references for spectral methods contain extensive material on classical
orthogonal polynomials, on which there is also an abundant literature. The rich variety
of these polynomials has tempted some authors to speak about them in colorful wordings
borrowed from animality. In the appendix to the textbook [47], e.g., the reader is guided
through “a zoo of polynomials”, while [10] presents a whole “bestiary” of basis functions.
For further, comprehensive overviews over possible choices of basis functions and their main
properties, see the more prosaic handbook [1] and its successor [67], both available online.
The general theory of orthogonal polynomials can be found, e.g., in [31, 82].

Next, the fast algorithm brings together techniques from different fields, both for the
algorithmic development and for the error analysis. Quadrature is never actually employed,
and we consider the implementation to be relatively easy. The methodology is generic and
thus serviceable also for spectral Galerkin approximations to other (linear and nonlinear)
problems using a suitable Galerkin basis. Most prominent, though, is the fact that it
scales essentially linearly—regardless of the dimension and regardless of the way the basis
is reduced. Combining all these features in a single algorithm is clearly a novelty.

On the downside, the applicability of the fast algorithm is restricted to the case of poten-
tials (or non-constant coefficients in derivative operators) that are considerably smoother
than the solution we aim to approximate. In contrast to the aforementioned matrix-free
approach from the chemical literature, this limits its range of application and to some extent
corrupts its standing as a general tool for spectrally discretized PDEs. Finally, we still have
a quadratic cost for transformations between physical and coefficient space. We need such
transforms, e.g., to prepare the initial data and to visualize the solution. These operations
are, however, rare compared to the evaluation of the differential operator, which needs to
be done in every time step.

We conclude this introduction with a concise outline of the thesis. In Part I (Chapters
1–6), we present the fast algorithm in its basic form as devised for a multiplicative potential
in the context of a linear Schrödinger equation. Whereas some immediate generalizations
(nonlinearities, in particular) are discussed at the end of the first part, a generalization of
the methodology to bounded domains is the topic of Part II (Chapters 7–11).

In Chapter 1, we present a setting where the fast algorithm in its basic form can ideally
be employed (and that it has originally been devised for): Starting from a Galerkin ansatz
for the discretization of a linear Schrödinger equation in space (Section 1.1), we motivate
the choice of a tensor product basis of Hermite functions and discuss their main properties
as they shall be put into use for the derivation of the fast algorithm (Section 1.2). These
basis functions are taken from a multidimensional index set that is a subset of the afore-
mentioned full index cube. The two kinds of index reductions considered in this thesis,
viz., hyperbolic and additive reductions, are presented in Section 1.3. An important issue
for the applicability of the fast algorithm is smoothness assumptions both about the wave
function and about the potential. We comment on this issue together with how the poten-

8

Introduction

tial can be approximated by a polynomial in Section 1.4. Finally, in Section 1.5, we give
a brief sketch of Magnus integrators as our choice of time-stepping method together with
a Lanczos-based approximation to the matrix exponential, and point out when exactly the
matrix-vector products we aim to compute come into play.

In Chapter 2, we present the fast algorithm itself. After a concise record of all prerequi-
sites for a succesful application (Section 2.1), we present the linearly scaling direct operation
approach with the coordinate matrices X(α) in Section 2.2 as the core of the algorithm. A
full algorithmic description, i.e., the interplay of inserting these coordinate matrices into the
polynomially approximated potential and the application of the 1D Chebyshev recurrence
for the polynomial representation basis, is given in Section 2.3, both in a recursive and in a
non-recursive form. We shall discuss time and space complexity of both versions of the fast
algorithm in Section 2.4, and comment on the implementation in Section 2.5. To conclude
the presentation, we derive the exact relation between inserting X(α) into the polynomial
and Gauß–Hermite quadrature (Section 2.6).

Chapter 3 is dedicated to an extensive time comparison between the fast algorithm on
the one hand, and both an explicit assembly of the basis representation of the potential
matrix (Section 3.1) and a matrix-free approach from the chemical literature (Section 3.2)
on the other hand. The aim is to account for how much an economization in computational
costs the fast algorithm actually is. Besides a theoretical complexity analysis of all three
approaches to the matrix-vector product, some performance tests are shown in Section 3.3.

Chapter 4 contains the error analysis for the approximation of the matrix-vector prod-
uct by the fast algorithm. Starting from an outline that includes the main error results
(Section 4.1), we briefly derive the error due to polynomial interpolation of the potential
(Section 4.2), before the full spatial discretization error in case of the full index cube is
analyzed in Section 4.3. As mentioned earlier, this error decomposes into a contribution
from Galerkin projection and another one from quadrature. Both error contributions are
readily analyzed. Using a reduced Galerkin basis, in contrast, is considerably more difficult
and shall thus be treated separately. We give a suitable error decomposition for the case
of a reduced index set in Section 4.4. Besides an error due to quadrature, we additionally
have to deal with an error contribution due to index set reduction. Bounding these errors
necessitates an appropriate decay assumption on the vector as we discuss it in Secion 4.5.
Both errors can then be analyzed using the idea of converting the underlying three-term
recurrence for the univariate Hermite basis functions into suitably constructed binary trees
(Sections 4.6 and 4.7). To conclude the error analysis, we give some remarks on the actual
error behavior as we expect them in practical test (Section 4.8).

In Chapter 5, we show extensive numerical tests that corroborate the theoretical findings.
These tests cover three different kinds of errors: First, local errors due to quadrature and
index set reduction when applying the fast algorithm instead of explicitly assembling the
basis representation of the potential and multiplying it with a vector (Section 5.1), both
for hyperbolic and additive reductions. Next, in Section 5.2. we discuss how using the fast
algorithm in each step of the Hermitian Lanczos process yields a local perturbation to the
approximation of the matrix exponential. Finally, concluding the way from local to global
errors, we present a time propagation study for an instance of the original Schrödinger
equation (Section 5.3).

The last chapter of Part I, is dedicated to three immediate further applications of the
basic fast algorithm that are all still related to the Hermite–Galerkin framework for a
PDE on an unbounded domain. Having carved out retrospectively the essentials and non-

9

Introduction

essentials from the above derivation of the fast algorithm (Section 6.1), we first comment
on derivatives other than the Laplacian that do no longer allow to invoke the Hermite
eigenfunction relation, such that the derivative part no longer becomes trivial (Section 6.2).
This way, we meet the objection the fast algorithm might not be applicable unless derivatives
can be trivialized. Second, to show that restricting the wave function to a fixed cube known
in advance is dispensable, we briefly discuss the case of a moving wavepacket basis instead
of basis functions localized around zero (Section 6.3). Finally, in Section 6.4, we show how
the methodology carries over to the nonlinear Schrödinger equation.

Chapter 7 is the introduction to Part II of this thesis, where we present a generalization
of the fast algorithm to bounded domains. In contrast to the immediate generalizations
from the preceeding chapter, we leave the Hermite–Galerkin framework behind. Due to the
presence of boundary conditions and derivatives with non-constant coefficients, the above
techniques need to be developed further. We shall discuss the specific aims and challenges
together with references to the existing literature in this second introduction.

In Chapter 8, as a well-suited, educational example of an initial-boundary value problem
for an application of the generalized fast algorithm, we present a Galerkin approximation
to the wave equation on the unit hypercube with non-constant coefficients together with
Engquist–Majda boundary conditions (Sections 8.1 and 8.2). In particular, we comment
on how to impose the boundary conditions weakly. The chosen Galerkin basis is a set of
tensor products of Legendre polynomials indexed over the full index cube, introduced in
Section 8.3.

This Galerkin ansatz plus weak imposition of boundary conditions necessitates matrix-
vector products with three kinds of matrices in each time step: representations of non-
constant coefficients, derivatives, and boundary term matrices. Chapter 9 contains the
efficient procedures for the corresponding matrix-vector products. Again, there is a spe-
cific relation of the generalized fast algorithm to Gaussian quadrature. Starting from a
discussion of Gauß–Legendre quadrature (Section 9.1), we present the effective procedures
corresponding to the three kinds of matrices in Sections 9.2–9.4. The chapter concludes
with a brief note on the overall complexity of the method (Section 9.5).

In Chapter 10, we present an error analysis for the overall approximation to the solution
of our model problem. As we shall again make use of polynomial interpolation, after a
concise outline given in Section 10.1 where we also briefly summarize the main results, we
give a separate estimate for the polynomial interpolation error when approximating the
coefficient functions as occurring in the wave equation (Section 10.2). Our way of weakly
imposing the boundary condition allows for the derivation of a stability estimate of the
spatially discrete approximation that closely parallels the continuous case, as will be shown
in Section 10.3. Finally, a bound for the overall error due to spatial discretization is derived
in Section 10.4.

In the last chapter, we present some numerical experiments when propagating in time the
acoustic wave equation using the above discretization in space together with the generalized
fast algorithm.

10

Contributions and sources

We give a concise overview over the references the material presented in this thesis is drawn
from.

As explained in the above introduction and again in Section 2.3, the basic idea for the
fast algorithm is due to E. Faou, V. Gradinaru, and Ch. Lubich; see [23]. Their idea is
equivalent to the first version of the fast algorithm as given in this thesis, but neither do
they specify the chosen polynomial basis for the approximation to the potential nor do they
provide a rigorous algorithmic description. The relation to Gaussian quadrature, the error
analysis, and all generalizations are due to the present thesis alone.

The sources we have drawn our material from are the following: The main source, which
Part I is based upon, is a published article by the same author; see [12]. This covers the
first chapter; Sections 2.1–2.3, 2.6; Sections 4.1, 4.4–4.8; Sections 5.1 and 5.2. The way we
propose to assemble the matrix given in Section 3.1 has improved, though; the assembly
can now be done faster as in [12], but is still decisively outperformed. The second version
of the fast algorithm as given in Section 2.3.4 is a modification of Algorithm 1 from [13]; it
had not been developed yet when [12] was published. The numerical experiments shown in
Section 5.3 are based on the corresponding experiments done in [12], but with a different
initialization and partly different choices of parameters. Throughout Part I, all numerical
experiments have been redone and extended.

The next source is an unpublished, yet submitted manuscript by the same author in
collaboration with E. Kieri2 from Uppsala; see [13]. Most of the research reported in this
manuscript was carried out while E.K. was visiting Universität Tübingen. This covers
Part II of this thesis, but for a slightly modified introduction and additional numerical
experiments for the reduced index set case. Both authors have contributed equally to
the manuscript. Contributions that are exclusively due to E.K. are the following: First,
the weak imposition of boundary conditions by a penalty approach (see Chapter 7 and
Section 8.2 and the references therein) together with the stability estimates facilitated by
this ansatz (see the proofs of Lemmas 8 and 11). These are well-known techniques, which
E.K. has acquainted me with, for the benefit of our common research. Second, using a
projection matrix that is related to the exactness of Gaussian quadrature (see the proof of
Theorem 8; reused in the proof of Lemma 4). Third, many technicalities given in the proofs
of Lemma 10 and Theorem 8 are due to E.K.

Finally, the idea of sequential summations as presented in Section 3.2 is due to the
following sources. Although matrix-free computations have been a topic in computational

2 Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337,
SE-751 05 Uppsala, Sweden. emil.kieri@it.uu.se

11

chemistry for decades, it is T. Carrington and his collaborators who have most prominently
advocated for the sequential summations approach as a natural way to do products in a
matrix-free way, and, to the best of our knowledge, they have contributed the most to
the development of this idea. The material given in Section 3.2 has been compiled from
[11, 90], adapted for a mathematical audience, and boiled down from the chemical context
to its pure algorithmic core. Additionally, personal communication with G. Ávila, who has
advanced the technique further than we present it, during my visit at Queen’s University
has considerably helped giving the presentation its final shape. The idea has never been
laid out in this form before.

In all chapters, if some material has been taken from the above sources, we have rather
freely adapted it: The material has been rearranged, more details have been provided, and
the notation has been standardised. Figures taken from one of the above sources are indi-
cated as such.

To a considerable extent (ca. 30%), this thesis presents material that has never been
published or submitted before. In more detail, the following sections or chapters are com-
pletely new: the comments on complexity and implementation of the fast algorithm given
in Sections 2.4 and 2.5; the time comparison study given in Chapter 3; Sections 4.2 and 4.3
on the errors due to interpolation and quadrature (full index cube), respectively, and the
discussion of the decay assumption given in Section 4.5; Section 5.3, and the experiments
given in Sections 5.1 and 5.2 have been extended as compared to [12]; all generalizations
presented in Chapter 6.

12

I.

Basic fast algorithm

13

1 Spectral approximation of the
linear Schrödinger equation

In Part I of this thesis, we present the fast algorithm as applied to the linear time-dependent
Schrödinger equation with a multiplicative potential. This is what the fast algorithm has
originally been devised for; see [12, 23]. Although the underlying methodology is rather
general and allows for a wider range of applications as well as modifications, we post-
pone further generalizations to Part II, focussing for now on the essential ingredients for
a straightforward implementation of the methodology in a sufficiently simple setting. This
first chapter is dedicated entirely to setting up a scenario where the fast algorithm can be
put into use.

In Section 1.1, we introduce a Galerkin discretization of the Schrödinger equation with-
out specifying the underlying Galerkin basis of L2(Rd)-orthonormal functions yet, and we
rewrite the Galerkin condition as a system of ODEs for the coefficients of the unknown
approximation. In one spatial dimension, we employ Hermite functions as basis functions,
to be introduced in Section 1.2. In higher dimensions, an appropriate choice is a basis of
tensor products of univariate Hermite functions. Some choices of sets of multi-indices un-
derlying the tensor product basis are presented in Section 1.3. In Section 1.4, we discuss the
approximation of the potential by a multivariate polynomial, which already constitutes the
first step in developing the fast algorithm. Additionally, we bring up the issues of smooth-
ness assumptions both for the exact solution and for the potential as they are required for
the fast algorithm to be applicable. The fast algorithm is an efficient means to do matrix-
vector products as they typically arise when propagating in time the ODE resulting from
spatial discretization. In Section 1.5, we present a Magnus integrator in combination with
a Lanczos-based approximation to the matrix exponential as a discretization in time, and
we show where exactly the fast algorithm comes into play.

1.1 Galerkin approach

We consider the dimensionless linear Schrödinger equation over the whole Rd,

iψt(x, t) = H(x, t)ψ(x, t)

= −1

2
∆ψ(x, t) + V (x, t)ψ(x, t),

x = (x1, . . . , xd) ∈ Rd, (1.1)

for t ≥ 0, with a Hamiltonian operator H that consists of a Laplacian and a real-valued
multiplicative, possibly time-dependent potential.

15

Galerkin approach 1. Spectral approximation

Let us briefly comment on the existence and uniqueness of a solution to (1.1). Throughout
this thesis, we assume that V (·, t) is such that H(·, t) yields a well-defined self-adjoint
operator on D(H(·, t)) = D(∆) = H2(Rd) for all t ≥ 0. This hold, e.g., if V is bounded,
which is a special case of the Kato–Rellich theorem; see [55], Section V.4.1. Then, for an
initial value ψ0 = ψ(x, 0) ∈ H2(Rd), the equation (1.1) has a unique solution ψ(x, t) =
Φ(t)ψ0(x) with a unitary propagator Φ(t). See, e.g., the textbook [39], Chapter 2, based on
[73], for a proof in case V is time-independent. In case of a time-dependent Hamiltonian,
the proof can be found in [74], Section X.12, for d = 3 and V (·, t) = V∞(·, t) + V2(·, t),
with V∞(·, t) ∈ L∞(R3), V2(·, t) ∈ L2(R3), and V being continuously differentiable in t,
making use of another criterion for self-adjointness of H that follows from the Kato-Rellich
theorem together with the Sobolev inequality on R3 (see [55], Section V.5.3). In Section 1.4,
besides questions of existence and uniqueness of the solution, we shall comment on further
assumptions on V (·, t) as they are related to the fast algorithm itself.

Using a Galerkin ansatz, we search for an approximation ψK to ψ,

ψ(x, t) ≈ ψK(x, t) =
∑

k∈K(d,K)

ck(t)ϕk(x), (1.2)

from the linear, finite-dimensional approximation space

span {ϕk ; k ∈ K} ⊆ L2(Rd),

where the functions {ϕk}k∈Nd form an L2(Rd)-orthonormal basis. We comment on the
choice of basis functions in Section 1.2. The set K(d,K) consists of multi-indices k,

K(d,K) ⊆ Kfull(d,K) =
{

k = (k1, . . . , kd) ∈ Nd ; 0 ≤ kα ≤ K
}
,

which attain at most K + 1 different values in each component kα for some given threshold
K. Throughout this work, multi-indices (i.e., d-tuples of natural numbers) are typed in
bold, lower-case letters. For the sake of brevity, we shall often omit the arguments d and
K in K. We comment on the choice of K in Section 1.3.

The unknown coefficients ck are determined such that, when inserting ψK into the equa-
tion (1.1), the residual is orthogonal to the approximation space, i.e.,

(
ϕj, i(ψK(·, t))t − (HψK)(·, t)

)
= 0 ∀ j ∈ K. (1.3)

The curved brackets denote the standard L2(Rd)-inner product with complex conjugation
in its first argument,

(χ, η) =

∫

Rd
χ(x)η(x) dx, χ, η ∈ L2(Rd). (1.4)

The L2(Rd)-norm is then denoted by ‖ · ‖. We also introduce the L2(Rd)-orthogonal pro-
jection PK : L2(Rd)→ span{ϕk ; k ∈ K},

(ϕ, χ− PKχ) = 0 ∀ϕ ∈ span{ϕk ; k ∈ K}, χ ∈ L2(Rd). (1.5)

Assembling the coefficients as a vector

c(t) = (ck(t))k∈K

16

1. Spectral approximation Hermite basis

and inserting the ansatz (1.2) into (1.3) yields a linear system of |K| ODEs

iċ(t) = H(t)c(t), t ≥ 0,

with a matrix representation

Hjk(t) = (ϕj, H(·, t)ϕk), j,k ∈ K, (1.6)

of the Hamiltonian operator H in the Galerkin basis {ϕk}k∈K. The number of equations is
|K| ≤ (K + 1)d.

A first reasonable move is to get rid of all spatial derivatives hiding in H(t). This can be
achieved by choosing an appropriate Galerkin basis and splitting the Hamiltonian operator
into a corresponding eigenoperator D and a multiplicative potential W (·, t), viz.,

H(·, t) = D +W (·, t), Dϕk = λkϕk. (1.7)

We present such a choice of {ϕ}k∈Nd in the next section. The gain is that the action of a
representation of D on a vector reduces to a simple multiplication with a diagonal eigenvalue
matrix, which scales only linearly with the size of the Galerkin basis. The system then reads

iċ(t) = Dc(t) + W(t)c(t), t ≥ 0, (1.8)

with matrices

D = diagk∈K(λk), Wjk(t) = (ϕj,W (·, t)ϕk), j,k ∈ K. (1.9)

Throughout this work, bold, upper-case letters denote matrices (most often of size |K|×|K|),
and vectors (typically of size |K|) are typed in bold, lower-case letters. The letter c is
reserved for a coefficient vector of a spatially discrete equation, while v denotes a generic
vector.

1.2 Hermite basis

As a Galerkin basis, we choose tensor products of univariate Hermite functions. In this
section, we briefly review their construction alongside with basic properties as they are
needed in later chapters. See, e.g., the standard reference [1], Section 22, or the quantum
dynamics-related books [61], Chapter III.1.1, and [85], Section 7.7, for more details.

1.2.1 Hermite functions in 1D

In 1D, the Hermite functions can be constructed using the three-term recurrence relation

ϕ−1 ≡ 0, ϕ0(x) = π−1/4e−x
2/2,

xϕk(x) =

√
k + 1

2
ϕk+1(x) +

√
k

2
ϕk−1(x), k ≥ 0,

x ∈ R, (1.10)

which yields a complete L2(R)-orthonormal set {ϕk}k∈N ⊂ S(R) of Schwartz functions,
in particular, (ϕj , ϕk) = δjk. The recurrence relation (1.10) plays a crucial role both for

17

Hermite basis 1. Spectral approximation

the algorithm development and for the error analysis given in later chapters. An explicit
expression for the k-th Hermite function is

ϕk(x) = π−1/4
(

2kk!
)−1/2

Hk(x)e−x
2/2,

where Hk denotes the classical Hermite polynomial of degree k. Thus, ϕk is the product
of a normalization factor times a polynomial times a Gaussian. The Hermite functions ϕk
differ from their polynomial counterparts Hk by the facts that they are orthogonal with
respect to an unweighted scalar product, that they are bounded functions, viz., ‖ϕj‖ = 1,
and that they decay faster than any inverse power of x as x → ±∞. Figure 1.1 shows
some plots for different choices of k, where it becomes visible that ϕk is even if k is even,
and otherwise odd. The larger the index k, the more oscillatory the corresponding function
becomes and the wider it spreads. The largest extremal is bounded by

√
2(k + 1). The

Hermite functions are readily seen to be the eigenfunctions of the harmonic oscillator, i.e.,

−1

2

(
∂2

∂x2
− x2

)
ϕk =

(
k +

1

2

)
ϕk. (1.11)

Introducing the operator

(Aχ)(x) =
1√
2

(
xχ(x) +

d

dx
χ(x)

)
, (1.12)

we can state the following approximation result for a truncated Hermite expansion; see [76],
Section 7.3: For all 0 ≤ s ≤ K+1,

‖χ− PKχ‖ ≤ C(s)K−s/2‖Asχ‖
for all χ ∈ L2(R) with Asχ ∈ L2(R), where C(s) is a positive constant that depends on s
only, and PK is the L2(R)-orthogonal projection onto the linear space spanned by the first
(K+1) Hermite functions. See also [61], Theorem III.1.2 for an analogous result for the
case of χ being a Schwartz function.

1.2.2 Tensor product basis

In higher dimensions, we consider tensor products of Hermite functions, i.e.,

ϕk(x) = ϕk1(x1) · . . . · ϕkd(xd), x = (x1, . . ., xd) ∈ Rd,

where k = (k1, . . . , kd) ∈ Nd is a multi-index and ϕkα are univariate Hermite functions as
above, 1 ≤ α ≤ d. Again, {ϕk}k∈Nd ⊂ S(Rd) is a complete L2(Rd)-orthonormal set of
Schwartz functions. Due to the eigenfunction property (1.11), we find

−1

2

(
∆−

d∑

α=1

x2
α

)
ϕk =

d∑

α=1

(
kα +

1

2

)
ϕk. (1.13)

We comment on the approximation properties of a truncated tensor product basis with
indices taken from a multidimensional index set K ⊂ Nd in the next section. Turning back
to the decomposition (1.7), we can thus define

D = −1

2

(
∆−

d∑

α=1

x2
α

)
, W (x, t) = V (x, t)− 1

2

d∑

α=1

x2
α (1.14)

18

1. Spectral approximation Multidimensional index sets

k = 0
−

√

2(k + 1)
√

2(k + 1)

−1

−0.5

0

0.5

1

k = 5
−

√

2(k + 1)
√

2(k + 1)

−1

−0.5

0

0.5

1

k = 16
−

√

2(k + 1)
√

2(k + 1)

−1

−0.5

0

0.5

1

k = 32
−

√

2(k + 1)
√

2(k + 1)

−1

−0.5

0

0.5

1

Figure 1.1: [12] Univariate Hermite functions for some choices of k.

with V given as in (1.1), where (slightly overloading the notation) xα denotes both the
position operator with respect to the αth coordinate and the spatial coordinate component
itself. This yields a system of the form (1.8) with a diagonal eigenvalue matrix D with
diagonal entries λk =

∑d
α=1

(
kα + 1

2

)
and no spatial derivatives left.

1.3 Multidimensional index sets

We comment on possible choices of the multi-index set K(d,K) ⊆ Nd. Both from a concep-
tual point of view and with respect to an implementation of the subsequent method, the
full index cube

Kfull(d,K) =
{

k = (k1, . . . , kd) ∈ Nd ; 0 ≤ kα ≤ K
}

is clearly the simplest choice. However, the system (1.8) is then of size |Kfull| = (K + 1)d,
thus, the number of unknowns grows exponentially with the dimension d. Disregarding
for a moment the computational costs for an assembly of the right-hand side matrix W
by an appropriate entrywise quadrature, doing the corresponding matrix-vector products
explicitly scales quadratically with the size of the basis. In case of d ≥ 4, this yields infea-
sible computational costs even for moderate choices of K, and interesting computational

19

Multidimensional index sets 1. Spectral approximation

problems become intractable due to the computational complexity of the full index cube
ansatz. For this obstacle, the catch phrase curse of dimensionality has been coined; see
[7]. The assembly of W proves to be even more harmful than the quadratically scaling
matrix-vector products. In Section 3.1, we discuss how to assemble the matrix W—which
we strongly disencourage to do, anyway. In Section 3.3, we show some experimentally
obtained computation times.

A manifest strategy to cope with the computational challenge of the basis growing too
large too quickly is a reduction of the chosen index set such that K (Kfull—without
changing the overall approximation properties of the expansion (1.2) too much for the worse,
hopefully. The idea is commonly traced back to [81]. Bungartz and Griebel [14] provide a
survey of the literature on sparse grids; see also the overview in the above introduction for
further references.

The fast algorithm allows for any index set K such that,

∀α = 1, . . ., d : k ∈ K with kα > 0 ⇒ k− eα ∈ K, (1.15)

where eα is the αth unit vector, i.e., we require the index set to be closed under compo-
nentwise decrements. The restriction (1.15) eases the presentation of what we shall call a
direct operation procedure; see Section 2.2. We comment on this issue in due time.

1.3.1 Hyperbolically reduced index sets

Starting from a full tensor product expansion, we delete basis functions from the set Kfull

in case they do not add to the quality of the approximation significantly. In the present
work, we consider hyberbolically reduced index sets,

Khyp =

{
k = (k1, . . . , kd) ∈ Nd ; 0 ≤ kα,

d∏

α=1

(1 + kα) ≤ K+1

}
. (1.16)

The number of basis function then shrinks to

|Khyp(d,K)| ≤ (K + 1) log(K + 1)d−1 = O(K log(K)d−1);

see, e.g., [61], Lemma III.1.4, for a proof. Thus, the number of unknowns depends only
linearly on the threshold K, and the exponential dependency on d is mitigated by the
presence of the logarithm. An illustration of hyperbolic reductions in 2D and in 3D is given
in Figure 1.2.

As for the approximation properties, a hyberbolically reduced index set can still do us a
decent service: We define

As = As11 · . . . ·Asdd , s ∈ Nd,

where Aα = 1√
2

(
xα + ∂

∂xα

)
; cf. (1.12). Slightly, overloading the notation, we let xα denote

also the position operator with respect to the αth coordinate. Additionally, we introduce
the notation

|s|∞ = max
1≤α≤d

sα, s ∈ Nd, (1.17)

20

1. Spectral approximation Multidimensional index sets

k1

k2

k2

k3

k1

Figure 1.2: [12] Hyperbolically reduced index set. Left: d= 2, K= 32. Right: d= 3, K= 16. The
number of retained indices is O(K log(K)d−1). In case d=2, skipped indices are indicated by small
empty circles.

for the maximum norm of an integer d-tuple. In [77], Theorem 3.1, the following estimate
is shown with respect to a Korobov-type seminorm: For every fixed integer s and for all
χ ∈ L2(Rd) such that Asχ ∈ L2(Ω) for all s ∈ Nd with 0 ≤ |s|∞ ≤ s,

‖χ− PKχ‖ ≤ C(d, s)K−s/2


 ∑

|s|∞=s

‖Asχ‖




1/2

. (1.18)

The constant C(d, s) depends on d and s only. We introduce the notation

|χ|s =


 ∑

|s|∞=s

‖Asχ‖




1/2

(1.19)

for the Korobov seminorm. An analogous result for the case of χ being a Schwartz function
is shown in [61], Theorem III.1.5: For every fixed integer s and for all χ ∈ S(Rd),

‖χ− PKχ‖ ≤ C(d, s)K−s/2 max
0≤|s|∞≤s

‖Asχ‖,

where the maximum ranges over all s such that 0 ≤ |s|∞ ≤ s. Again, the constant C(d, s)
depends on d and s only. For the right-hand side norm, we introduce the notation

|χ|s;∞ = max
0≤|s|∞≤s

‖Asχ‖. (1.20)

Thus, even with a hyperbolically reduced index set, the approximation properties of a trun-
cated Hermite basis are asymptotically as good as with a full index cube—given sufficient
regularity of the approximated function.

1.3.2 Additive reduction

A less radical reduction is the additive reduction,

Kadd =
{

k = (k1, . . . , kd) ∈ Nd ; |k| ≤ K
}
, (1.21)

21

Smoothness assumptions and approximation of the potential 1. Spectral approximation

where

|k| =
d∑

α=1

kα, k ∈ Nd, (1.22)

denotes the 1-norm of the integer d-tuple k. The size of Kadd equals the number of d-variate
monomials of total degree ≤ K, which is well-known to be

|Kadd(d,K)| =
(
K + d

d

)
≈ 1

d!
Kd.

Figure 1.3 provides an illustration.

k1

k2

k2

k3

k1

Figure 1.3: Additively reduced index set. Left: d= 2, K= 16. Right: d= 3, K= 8. In 2D, half of
the indices is retained. In 3D, we retain only one sixth of them.

1.3.3 Linear order

The last paragraph in this section concerns the ordering of the occurring index sets. We
deal with multidimensional objects consisting of data that is referenced by multi-indices.
Throughout this thesis, we will always talk of “matrices” (of size (|K|×|K|) and “vectors” (of
size (|K|), although these objects need not be seen as matricised or vectorised in principle.
For this to make sense, the index set K (and all other occurring index sets, for that matter)
requires a linear ordering. A convenient choice is the lexicographical order. Thus, 0 =
(0, . . ., 0) ∈ Nd is the first element, ed = (0, . . ., 0, 1) ∈ Nd is the second element, and
so forth up to the last element (K, . . .,K) ∈ Nd of the full index cube. When talking
occasionally about “next” or “previous” indices in a set, the underlying ordering is to be
understood as the lexicographical order.

1.4 Smoothness assumptions and approximation of the po-
tential

In this section, we discuss a basic assumption on the general problem setting (1.1) for the
fast algorithm to be applicable, namely, an assumption on the smoothness of the exact
solution ψ of the Schrödinger equation as related to the smoothness of the potential V .

22

1. Spectral approximation Smoothness assumptions

1.4.1 Regularity of wave function and potential

We require the potential W (·, t) to be significantly smoother than the solution ψ(·, t) in a
region Ω ⊆ Rd where the solution does not essentially vanish for all times t ≥ 0. We cast
this as a relation of the Galerkin basis threshold K and of the degree R that is necessary for
a decent polynomial approximation of the potential. For the sake of a simpler presentation,
let us for now consider the case of ψ(·, t) being essentially supported within a cube

Ω = [−S, S]d ⊆ Rd, S given,

with a maximal spatial extension of ψ(·, t) given in advance, which we describe by a support
parameter S ∈ R. Typically, for most times t, ψ(·, t) might only cover a much smaller
subregion of Ω, as in the case of a moving wavepacket. Additionally, to vary the resolution
of the Hermite approximation to ψ, we may define adequately compressed or stretched basis
functions

ϕ̃k(x) =

d∏

α=1

ϕkα(S̃xα), k ∈ K,

for some positive stretching parameter S̃ ∈ R. As the univariate function ϕK is negligibly
small outside the interval

[−
√

2(K + 1)− 1,
√

2(K + 1) + 1]

(see Figure 1.1), we require S̃ and K to be chosen such that

S̃S ≥
√

2(K + 1) + 1. (1.23)

Increasing S̃ and K simultaneously yields a higher resolution within Ω. For ease of presen-
tation, we restrict our attention to the case S̃=1.

1.4.2 Chebyshev interpolation

We approximate the potential W (·, t) as defined in (1.14) by a multivariate polynomial. We
use, e.g., Chebyshev interpolation over the cube Ω to obtain an approximation

W (x, t) ≈W pol(x, t)

=
∑

r∈R
ŵr(t)Tr(x/S) =

∑

r∈R
ŵr(t)

d∏

α=1

Trα(xα/S),
x ∈ Ω, (1.24)

with a multi-index set R(d,R) ⊂ Nd that is defined by a maximal univariate polynomial
degree parameter R. The approximation basis consists of tensor products of univariate
Chebyshev polynomials, the latter being given by the recurrence relation

T0(x) = 1, T1(x) = x,

Tr+1(x) = 2xTr(x)− Tr−1(x), r ≥ 1,
x ∈ [−1, 1]. (1.25)

When R = Rfull is the full index cube, the coefficients are given by

ŵr(t) = γr1 . . . γrd
∑

s∈R
W (Szs, t)Tr(zs), γrα =

{
1/(R+ 1), rα = 0,

2/(R+ 1), 1 ≤ rα ≤ R,

23

Smoothness assumptions 1. Spectral approximation

where zs = (zs1 , . . . , zsd) with zsα being the zeros of TR+1. Within the cube Ω, this should
give a reasonable approximation to the potential. Outside Ω, the Galerkin basis essentially
vanishes anyway by assumption (1.23).

In case W (·, t) ∈ Hs
ω(Ω) with s > d/2, where Hs

ω(Ω) is the weighted Sobolev space with
the Chebyshev weight

ω(x) =
d∏

α=1

(1− (xα/S)2)−1/2, x ∈ Ω,

the coefficients ŵr decay exponentially, and the interpolation error in the weighted L2-norm
is bounded by

∥∥∥W (·, t)−W pol(·, t)
∥∥∥
L2
ω(Ω)
≤ CR−s |W (·, t)|

Hs;R
ω (Ω)

,

the latter norm being a weighted Sobolev seminorm; see [15] for a detailed theory of approxi-
mation by orthogonal polynomials, in particular, Chapter 5.8, on Chebyshev approximation
on product domains.

The index setRmight also be reduced. In this case, there exist fast polynomial transforms
on sparse grids to compute the interpolation coefficients efficiently; see, e.g., [16] for an
O(R ln(R)d+1) algorithm with still exponentially decaying coefficients ŵr (for W being
sufficiently regular) with a hyperbolically reduced set R.

1.4.3 Relation of index sets

Turning back to our basic smoothness assumption from the beginning of Section 1.4.1 and
using the above terminology, we thus require that

|K(d,K)| � |R(d,R)|, (1.26)

i.e., that the Chebyshev expansionW pol consist of significantly fewer terms than the Hermite
expansion ψK, and

K � R. (1.27)

As will become clear in the following chapters, we make these rather vaguely stated as-
sumptions for two different reasons:

• First, to ease the computational burden. The fast algorithm is of complexity

O(|R||K|)

which is essentially linear with the size of the basis only if (1.26) holds. If |R| comes
close to |K|, the computational costs deteriorate, and we end up with a possibly only
slightly subquadratic procedure. In principle, though, the case |R| ≥ |K| is feasible
for the fast algorithm, as long as K � R still holds.

• Second, to guarantee convergence of the algorithm. For the analysis as given in
Chapter 4, we require that powers of R be controlled by negative powers of K, which
is guaranteed in case the relation (1.27) holds.

24

1. Spectral approximation Discretization in time

1.4.4 Moving wavepackets

We close the present section with a remark on the assumption that ψ is confined to a fixed
cube during propagation in time. This assumption is restrictive, but in fact dispensable: If
ψ(·, t) has support outside Ω, a reasonable Galerkin approximation might require a larger
choice of K to reach out further in space, or the polynomial approximation of the potential
W beyond the cube might become useless without increasing R. This is an issue of (1.2)
with H replaced by D + W pol yielding a good approximation to (1.1) in the first place.
As long as the potential is sufficiently smooth in a region where the solution does not
essentially vanish, the fast algorithm is applicable. This is true for the numerical examples
considered in Chapter 5. If ψ resembles a moving wavepacket retaining a rather strong
localization over time, a set of moving basis functions that adapt to this localization of ψ
is preferable as a Galerkin basis. In fact, a modified version of the fast algorithm has been
applied successfully with a moving wavepacket basis; see [23]. However, an adaptation to
this setting both of the fast algorithm and notably of the following error analysis as given
in Chapter 4 heavily complicates the presentation due to the presence of time-dependent
evolution parameters in the basis. In Section 6.3, we shall briefly explain how the fast
algorithm changes with a moving wavepacket basis. For the case of a full index cube, an
adaptation of the analysis is sketched in Section 6.3.3. For a reduced, however, the analysis
of the moving wavepacket case is still a partly unresolved issue, as we shall explain. In the
following chapters, we restrict our attention to the case of confined ψ and basis functions
localized around zero.

1.5 Discretization in time

In this section, we illustrate when to apply the fast algorithm during propagation in time
after a Galerkin semidiscretization in space as given above.

1.5.1 Magnus integrators

The spatially discrete system under consideration reads

iċ(t) = Dc(t) + Wpol(t)c(t), t ≥ 0, (1.28)

with D being the above diagonal eigenvalue matrix and

Wpol
jk (t) = (ϕj,W

pol(·, t)ϕk), j,k ∈ K. (1.29)

It is of the general form

iċ(t) = A(t)c(t) (1.30)

with a time-dependent Hermitian matrix A(t) and initial value c(0) = c0. E.g., polynomial
integrators of the form c(n+1) = P (−ihA(t))c(n) that comprise the class of explicit Runge–
Kutta methods, as well as approximations to the matrix exponential by a Magnus integrator
or by a splitting method each require multiplications of A with a vector in each time step. In
the following, we consider instances of Magnus integrators; see the review [9], in particular,
Sections 5 and 6, for numerical integration methods based on Magnus expansions. As for

25

Discretization in time 1. Spectral approximation

splitting methods, see the review [64]. A concise review of numerical integrators for the
time-dependent Schrödinger equation can be found in [60].

Magnus integrators are one-step methods consisting of an exponential stepping procedure
of the form

c(n+1) = exp(Ω(n))c(n) (1.31)

with a suitably chosen matrix Ω(n), where c(n) ≈ c(tn) is supposed to be an approximation
at time tn = hn with time step size h. The exponential mid-point rule

Ω(n) = −ihA(tn + h/2). (1.32)

is a simple choice of Ω(n). A more complicated choice is the method

Ω(n) = − ih
2

(A
(n)
1 + A

(n)
2)− i

√
3h2

12
[A

(n)
2 ,A

(n)
1] (1.33)

with

A
(n)
j = A(tn + cjh), j = 1, 2,

based on two-stage Gauß–Legendre quadrature with nodes c1,2 = 1
2∓
√

3
6 , where [·, ·] denotes

the commutator of matrices. The schemes (1.32) and (1.33) both have a unitary propagator.
For the time-dependent Schrödinger equation, M. Hochbruck and Ch. Lubich show that they
are of optimal temporal orders 2 and 4, respectively, under the assumptions of a potential
with bounded time derivatives of low order and certain commutator bounds; see [50].

1.5.2 Approximation of matrix exponential

The action exp(Ω(n))c(n) of the matrix exponential of Ω(n) on a vector c(n) as required
in each time step (1.31) can be approximated using a Galerkin approach on a Krylov
subspace where the Krylov basis is generated by the Hermitian Lanczos process. Using
the Lanczos method to approximate matrix exponentials of the form exp(−ihΩ̃(n))v has
first been proposed in [70], and Krylov subspace approximation to the matrix exponential
operator has since been included into the famous review article [65]. An error analysis is
due to [49], including further references to previous error studies. We briefly explain the
essentials of the procedure. For more details, see [61], Chapter III.2.2.

We start writing

Ω(n) = −ihΩ̃(n), Ω̃(n) =

{
A(tn + h/2), (1.32),
1
2(A

(n)
1 + A

(n)
2) +

√
3h

12 [A
(n)
2 ,A

(n)
1], (1.33),

such that Ω̃(n) is a Hermitian matrix. The m-step Hermitian Lanczos process then generates
recursively the Krylov basis

V(n)
m = (v

(n)
1 | . . . |v(n)

m) ∈ C|K|×m

of

span
(
v, Ω̃(n)v, . . . ,

(
Ω̃(n)

)m−1
v
)

26

1. Spectral approximation Discretization in time

and a tridiagonal, real symmetric coefficient matrix

T(n)
m ∈ Rm×m

such that

T(n)
m = (V(n)

m)∗Ω̃(n)V(n)
m ,

starting from v
(n)
1 = c(n). This requires m multiplications of Ω̃(n) with a Lanczos vector,

where m � |K|. A Galerkin approximation of the initial value problem (1.30) on this
Krylov subspace then allows for

exp(Ω(n))c(n) ≈ V(n)
m exp(−ihT(n)

m)e1, e1 = (1, 0, . . ., 0)T ∈ Rm,

using the matrices V
(n)
m and T

(n)
m . This reduces the problem to a diagonalization of the

small matrix T
(n)
m , and matrix-vector products with V

(n)
m scale linearly with |K| anyway.

Algorithm 1: Hermitian Lanczos process for the computation of Tm and Vm =
(v1| . . . |vm) such that

Tm = V∗mAVm

starting from a given unit vector v = v1, where A is a Hermitian matrix and m is
the number of Lanczos steps.

function [Tm,Vm] = lanczos (A,v,m)
1 v1 := v, v0 := 0, β1 := 0
2 for j to m do
3 u := Avj − βjvj−1, αj := v∗ju

4 u := u− αjvj , βj+1 = ‖u‖
5 vj+1 := u/βj+1

6 Tjj := αj
7 if j < m then
8 Tj+1,j := βj+1, Tj,j+1 := βj+1

Algorithm 1 shows the Hermitian Lanczos process. Consider line 3. In each step of the

Lanczos process, the action of Ω̃(n) on a Lanczos basis vector v
(n)
k , 1 ≤ k ≤ m, consists of

applications of the diagonal matrix D on vectors, which is trivially done exactly in O(|K|),
and of applications of the matrix Wpol(t) on vectors, which can be approximated using
the fast algorithm as given in Chapter 2 in O(|R||K|), i.e., in essentially linear time under
the assumption (1.26) on the sizes of R and K. The overall Lanczos process can thus be
efficiently realized in O(m|R||K|) operations.

The time-dependent polynomial approximation coefficients ŵr(t) of W pol(t) are evaluated
at times t as prescribed by the chosen Magnus integrator. If the potential W does not
depend on t, the coefficients ŵr can be computed in advance once and for all. If W is
time-dependent, these coefficients have to be recomputed in each time step according to
the choice of Ω(n). Algorithm 2 gives an algorithmic description of a numerical integration
of (1.28) for the choice of the exponential mid-point rule (1.32).

27

Discretization in time 1. Spectral approximation

Algorithm 2: Computation of an approximation

c(N) = (c
(N)
k)k∈K ≈ c(tN), tN = Nh,

to the solution of (1.28) with initial value c(0) using the exponential mid-point rule
(1.32) with time step size h and m Lanczos steps in each time step. The underlying
index set K(d,K) for the Galerkin basis is either the full cube or any appropriately
reduced index set.

function c(N) = time-stepping (c(0), h,m,N)
for n = 0 to N−1 do

I. Polynomial approximation of the potential :
If W depends on time: compute coefficients of approximation

W (x, tn + h/2) ≈W pol(x, tn + h/2) =
∑

r∈R
ŵr(t

n + h/2)Tr(x/S)

for some suitable index set R(d,R) ⊂ Nd such that

|K| � |R|, K � R.

If W does not depend on time, compute (ŵr)r∈R in advance.

II. Hermitian Lanczos process (Algorithm 1):

[T(n)
m ,V(n)

m] = lanczos(D + Wpol(tn + h/2), c(n),m)

In each Lanczos step:

– matrix-vector products with diagonal D are trivial

– use fast algorithm (see Chapter 2) for Wpol(tn + h/2)

III. Approximation of matrix exponential :

c(n+1) = V(n)
m exp(−ihT(n)

m)e1

– use (small) diagonalization of T
(n)
m

– matrix-vector product with V
(n)
m costs O(|K|m2)

28

2 The fast algorithm

Having spent the first chapter of this thesis on setting up a detailed scenario for a possible
application of the fast algorithm, we shall now finally turn to the algorithm itself.

The fast algorithm as we shall outline it in the present chapter allows for generalizations in
quite a few respects, be it the choice of Galerkin basis functions, be it the way the polynomial
approximation of the potential is done, or be it possible reductions of the multi-index sets
both for the Galerkin approximation of the wave function and for the approximation of the
potential. What needs to be given, in essence, is only an appropriate recurrence relation for
the Galerkin basis, the fact that the approximate potential is a multivariate polynomial with
significantly fewer terms than the approximate wave function expansion in the exact sense
given in Section 1.4, and an index set for the basis that is closed under componentwise
decrements. For ease of presentation, we shall stick for now with the chosen Hermite
function approximation of the wave function and with Chebyshev interpolation for the
potential. The index sets we consider in the present chapter, however, are full index cubes or
arbitrary subsets, and need to obey the aforementioned restrictions only. Some immediate
generalizations and further applications (nonlinearities, in particular) are postponed to
Chapter 6. In Part II of this thesis, we present a more far-reaching adaptation of the fast
algorithm to problems with position-dependent coefficient functions in the spatial derivative
terms, with boundary values. The present chapter, though, gives the fast algorithm in its
very basic form, i.e., for a multiplicative potential.

It is outlined as follows: In Section 2.1, we introduce the general setting for an application
of the fast algorithm. Section 2.2 contains the construction of coordinate matrices, which
do not need to be assembled, but allow for a direct operation approach. In Section 2.3,
we use these matrices to set up the matrix-free fast algorithm to approximate the matrix-
vector products under conisderation itself, and we provide an algorithmic description. Its
complexity is analyzed in Section 2.4. In Section 2.5, we comment on the implementation of
the fast algorithm. As it turns out, the approximation is closely linked to a suitably chosen
quadrature rule, which is discussed in Section 2.6. This relation between the algorithm and
a specific application of numerical quadrature will play a crucial role in the analysis of our
method given in Chapter 4.

2.1 General setting

The fast algorithm is a means to compute efficiently the action of a (|K| × |K|)-matrix Q,

Qjk = (ϕj, qϕk) =

∫

Rd
ϕj(x)q(x)ϕk(x) dx, j,k ∈ K, (2.1)

29

General setting 2. The fast algorithm

on a vector v ∈ C|K|. The sets

K(d,K) ⊆ Kfull(d,K) =
{

k = (k1, . . . , kd) ∈ Nd ; 0 ≤ kα ≤ K
}

and R(d,R) ⊆ Rfull(d,R) are sets of multi-indices k and r with components kα and rα
ranging from 0 to some given thresholdsK andR, respectively. We often omit the arguments
d, K, and R in K(d,K) and R(d,R). Both sets can be arbitrary subsets of the respective
full index cubes, but we require that the set K be closed under componentwise decrements,
see (1.15), and that the relations

|K| � |R|, K � R

hold. The functions ϕk are tensor products

ϕk(x) = ϕk1(x1) · . . . · ϕkd(xd), x = (x1, . . ., xd) ∈ Rd,

of univariate Hermite functions ϕkα(xα) as introduced in Section 1.2. The univariate Her-
mite functions can be constructed by the three-term recurrence relation (1.10) and form an
L2(R)-orthonormal set. We introduce the domain

Ω = [−S, S]d ⊆ Rd, S given in advance,

with a parameter S ∈ R that does not depend on K, for which we assume

√
2(K + 1) + 1 ≤ S, (2.2)

i.e., all functions ϕk essentially vanish outside Ω. The function q is a multivariate polynomial
in Chebyshev representation on the cube Ω, viz.,

q(x) =
∑

r∈R
q̂rTr(x/S), x ∈ Ω,

where, in analogy to ϕk, the functions Tr are tensor products of univariate Chebyshev
polynomials,

Tr(x/S) = Tr1(x1/S) · . . . · Trd(xd/S), x ∈ Ω.

The reasoning behind the introduction of the cube Ω in combination with the assumptions
(2.2) and |K| � |R| has been given in Section 1.4: The matrix Q as defined in (2.1) stems
from a spatial Galerkin discretization with a basis {ϕk}k∈K of an equation that involves a
multiplicative potential—which q is a placeholder for, obviously. We require the potential
to be considerably smoother than the solution in a region where the solution does not
essentially vanish. Now, when doing Chebyshev interpolation on a compact domain, this
translates into the Chebyshev expansion consisting of much fewer terms than there are basis
functions, which explains the requirement |K| � |R|; and we have to assume that the exact
solution is supported within the cube for all times. The latter assumption means that the
basis functions do not need to have support outside Ω, which explains (2.2). This joint
smoothness assumption on the solution and the potential is for complexity reasons, as will
soon become clear. Alternatively, we might want to work with a moving Galerkin basis to
track the solution instead of in a basis localized around zero.

30

2. The fast algorithm Direct operation with coordinate matrices

2.2 Direct operation with coordinate matrices

This section contains an efficient procedure to compute the action of what we call coordinate
matrices on a vector in linear time only. The procedure is based on the orthogonality of the
chosen Galerkin basis and its three-term recurrence, and it plays a crucial role in setting
up the fast algorithm as done in the subsequent section.

2.2.1 One-dimensional approach

We begin with some simple considerations in 1D that will be generalized afterwards to
arbitrary dimensions. The action of the one-dimensional ((K+1) × (K+1))-coordinate
matrix X, Xjk = (ϕj , xϕk), on a vector v ∈ CK+1 can be computed in O(K) operations
only. Invoking the recurrence relation (1.10) together with the orthogonality of the Hermite
functions, this is seen as follows: We write out a component of the resulting vector in a
suitable way, viz.,

(Xv)j =
K∑

k=0

(ϕj , xϕk)vk

=
K∑

k=0

√
k + 1

2
(ϕj , ϕk+1)︸ ︷︷ ︸

=δj,k+1

vk +
K∑

k=0

√
k

2
(ϕj , ϕk−1)︸ ︷︷ ︸

=δj,k−1

vk

=

√
j

2
vj−1 +

√
j + 1

2
vj+1

(2.3)

for all j = 0, . . .,K, where we use v−1 = vK+1 = 0. The recurrence relation replaces the
position operator x applied to a basis function by a finite number of shifted and appro-
priately weighted basis functions, and the orthogonality then makes the outer sum break
down. A single component of the resulting vector is thus computed in O(1) from weighted
components of the original vector, and the whole resulting vector, being of size O(K), can
therefore be computed in O(K) componentwise.

2.2.2 Generalization to higher dimensions

This procedure generalizes to higher dimensions. We define coordinate representations of
the position operators with respect to every coordinate,

X
(α)
jk = (ϕj, xαϕk), j,k ∈ K, α = 1, . . . , d. (2.4)

By the tensor product structure of the Galerkin basis, for a fixed coordinate α, we can
repeat the argument given in 1D to obtain

(
X(α)v

)
j

=

√
jα
2
vj−eα +

√
jα + 1

2
vj+eα

(2.5)

for all j ∈ K, where eα is the αth unit vector and vj−eα = 0 if jα = 0 and vj+eα = 0 if
j + eα happens to fall outside K. Doing this for all components, we obtain X(α)v via (2.5)
in O(|K|) operations. An algorithmic description is given in Algorithm 3. The matrices
X(α) are never actually assembled. If the index set K is not closed under componentwise

31

Algorithmic description 2. The fast algorithm

decrements (cf. (1.15)), the first term in (2.5) also vanishes in case j−eα /∈ K, even though
jα ≥ 1, and Algorithm 3 needs to be adjusted accordingly.

Algorithm 3: Computation of
w = X(α)v

in O(|K|) using the direct operation given in (2.5).

1 function w = directoperation(α,v)
2 for j ∈ K do

3 wj :=





1√
2
vj+eα , jα = 0,√
jα
2 vj−eα , j + eα /∈ K,√
jα
2 vj−eα +

√
jα+1

2 vj+eα , else.

2.3 Algorithmic description

Having defined the above coordinate matrices, the idea underlying the fast algorithm can
now be motivated in a simple way. We introduce the notations

j(¬α) = (j1, . . ., jα−1, jα+1, . . ., jd) ∈ Nd−1, j = (j1, . . ., jd) ∈ Nd, (2.6)

for the deletion of the α-th component from a given multi-index j, and

j
α←− k = (j0, . . . , jα−1, k, jα+1, . . . , jd) ∈ Nd, j = (j1, . . ., jd) ∈ Nd, (2.7)

for the replacement of the αth component in a given multi-index j by a given integer k.

2.3.1 Insertion of coordinate matrices into the potential

Consider the following two examples of q. In case q(x) = xα, for some coordinate α, the
Galerkin matrix trivially reduces to the αth coordinate matrix, i.e., Q = X(α). In case
q(x) = xαxβ, for some distinct coordinates α and β, we find Q = X(α)X(β) = X(β)X(α),
which is seen from

(
X(α)X(β)

)
jk

=
∑

m∈K
(ϕj, xαϕm)(ϕm, xβϕk)

=
∑

m∈K
(ϕj(¬α) , ϕm(¬α))(ϕm(¬β) , ϕk(¬β))(ϕjα , xαϕmα)(ϕmβ , xβϕkβ)

=
∑

m∈K
δ
m,j

α←−kαδm,k
β←−jβ

(ϕjα , xαϕmα)(ϕmβ , xβϕkβ)

= (ϕj, xαxβϕk) = Qjk

and the fact that the coordinate matrices are symmetric matrices. The argument no longer
works in case there occur squares or higher powers of some X(α). Still, carrying on with

32

2. The fast algorithm Algorithmic description

the above procedure for an arbitrary multivariate polynomial q, we tentatively compute Qv
by formally inserting the coordinate matrices X(α) in place of the position coordinates xα
into the polynomial q, for all 1 ≤ α ≤ d, and approximate the matrix-vector product Qv
by the product of the matrix due to formal insertion of the coordinate matrices into the
polynomial q times v, as proposed in [23]. We denote this formal insertion by

Qv ≈ q(X)v =
∑

r∈R
q̂rTr

(
1
SX
)
v =

∑
r∈R q̂r

∏d
α=1 Trα

(
1
SX(α)

)
v. (2.8)

2.3.2 Using the Chebyshev recurrence: the 1D case

How can (2.8) be computed efficiently using the coordinate matrices? To see this, consider
again the 1D case first. In 1D, using the Chebyshev recurrence relation (1.25), viz.,

T0

(
1
SX
)
v = v, T1

(
1
SX
)
v = 1

SXv,

Tr+1

(
1
SX
)
v = 2 1

SXTr
(

1
SX
)
v − Tr−1

(
1
SX
)
v, r ≥ 1,

(2.9)

the right-hand side of (2.8) is obtained in O(RK) operations: Given vectors Tr
(

1
SX
)
v and

Tr−1

(
1
SX
)
v, we employ (2.9) in combination with the direct operation technique (2.3) to

compute w = Tr+1

(
1
SX
)
v in O(K), then multiply w with q̂r, and proceed with the next

term.
This 1D approach generalizes to arbitrary dimensions in two different ways: There is a

non-recursive version of the fast algorithm that is optimal with respect to space complexity
(i.e., it requires less storage), but suffers from a weaker time complexity. The second,
recursive version is not space-, but time-optimal; thus, it exhibits the converse complexity
behavior. The first version is due to [12], while the second version constitutes a modification
thereof and has been proposed in [13] (for a Legendre basis, though). In both versions, the
idea is to compute the right-hand side of (2.8) termwise.

2.3.3 First version

As for the first, non-recursive version, consider the algorithmic description given in Algo-
rithm 4. We factorize

∑

r∈R
q̂r

d∏

α=1

Trα
(

1
SX(α)

)
v =

∑

r∈R
q̂r
(
Tr1
(

1
SX(1)

)
·
(
Tr2
(

1
SX(2)

)
·
(
. . . ·

(
Trd
(

1
SX(d)

)
v
)))) (2.10)

and compute the action of Trd evaluated at 1
SX(d) on v first, which is done using the recursive

1D procedure as given above in combination with (2.5) (lines 6 to 16), then operate in the
same way on the resulting vector with Trd−1

evaluated at 1
SX(d−1), and so forth (loop in

line 5). We then move on to the next term in the Chebyshev expansion according to the
linear ordering of R (loop in line 3). Apparently, there is no analog of the 1D Chebyshev
recurrence in higher dimensions (or a competitive analog of Clenshaw’s algorithm, for that
matter) that allows to compute Tr

(
1
SX
)

from an R-independent number of insertions of
the coordinate matrices into tensor products of other Chebyshev polynomials each bearing

33

Algorithmic description 2. The fast algorithm

an index that is lower with respect to a specific ordering of R. For this reason, we factorize
the tensor products as in (2.10).

Algorithm 4: First, non-recursive version of the fast algorithm for

w = q(X)v

for given v, where q(X) is given as in (2.8). Figure taken from [12] and modified.

1 function w = fastalgorithmV1(v)
2 w := 0
3 for r ∈ R do
4 v+ := v
5 for α = 1 to d do
6 if rα > 0 then
7 v− := v+

8 w := directoperation(α,v+) use Algorithm 3: O(|K|)
9 v+ := 1

Sw
10 for r = 2 to rα do
11 temp := v+

12 w := directoperation(α,v+) use Algorithm 3: O(|K|)
13 v+ := 2 1

Sw−v− Chebyshev recurrence (2.9)
14 v− := temp

15 else
16 v+ := v

17 w := w + q̂rv+

2.3.4 Second version

In contrast to the first version, the second version is recursive. Consider the pseudocode
formulation given in Algorithm 5. The first term in the right-hand side expansion of (2.8)
is the one corresponding to r = 0, which is also the initial term in this termwise procedure.
Starting from r = 0 and α = 1, we carry out a single step of the 1D Chebyshev recurrence
(2.9) in combination with (2.5) (lines 3 to 11) and then carry on recursively with r

α←− r
instead of r and with α+1 instead of α (lines 13, 15). Having reached α = d, we multiply
with q̂r, where r indicates the currently considered term in (2.8), and sum up the result (line
17). Figure 2.1 shows the order of function calls of fastalgorithmV2(. . . , α, r) according to the
choices of r taken by the algorithm together with how the recursions are nested. It becomes
visible that Algorithm 5 adds up matrix-vector products termwise in lexicographical order.

34

2. The fast algorithm Algorithmic description

Algorithm 5: Second, recursive version of the fast algorithm for

w = q(X)v

for a given vector v ∈ C|K| starting from w = 0, α = 1, and r = (0, . . ., 0) ∈ Nd,
where q(X) is given as in (2.8). Figure taken from [13] and modified.

1 function w = fastalgorithmV2(v,w, α, r)
2 for r = 0 to R do
3 if r = 0 then
4 v− := v
5 else if r = 1 then
6 v+ := 1

Sdirectoperation(α,v) use (2.5): O(|K|)
7 else
8 temp := v+

9 temp2 := directoperation(α,v+) use Algorithm 3: O(|K|)
10 v+ := 2 1

S temp2− v− Chebyshev recurrence (2.9)
11 v− := temp

12 w̃ :=

{
v−, r = 0,

v+, else,

13 r := r
α←− r

14 if α < d then
15 w := fastalgorithmV2 (w̃,w, α+1, r) recursion: next coordinate
16 else
17 w := w + q̂rw̃ last coordinate: sum up

2.3.5 Reduced index sets for polynomial approximation

If the index set R(d,R) is also reduced, Algorithm 5 needs to be modified slightly, whereas
Algorithm 4 remains unaltered. We introduce the following notation to comment on this
modification: For a given index r ∈ R(d−1, R) taken from a (d−1)-dimensional analog of
R(d,R), we define

vmax
R(d,R)(r) = arg maxr∈N

{
r

?←− r ∈ R(d,R)
}
, r ∈ R(d−1, R), (2.11)

to be the maximum over all integer values r such that, when inserted into r at an arbitrary
position, the resulting vector is in R(d,R). Trivially,

vmax
Rfull

(r) = R, r ∈ Kfull(d−1, R).

For a hyperbolically reduced index set (1.16), an analytic expression is

vmax
Khyp

(r) =

⌊
(R+ 1)/

d−1∏

α=1

(rα+1)

⌋
, r ∈ Rhyp(d−1, R),

35

Complexity 2. The fast algorithm

depth = 1 . . . depth = d−1 depth = d

(1,0) (2,0) . . . (d−1,0) (d,0) + (d,ed) +. . . + (d,Red)

(d−1,ed−1) (d,ed−1) +. . . + (d,ed−1 +Red)

(d−1,2ed−1) (d,2ed−1) +. . . + (d,2ed−1 +Red)

(d−1,3ed−1) . . .
...

(d−1,Red−1) (d,Red−1) +. . . + (d,Red−1 +Red)

(d− 2,ed−2) (d−1,ed−2) (d,ed−2) +. . . + (d,ed−2 +Red)

(d−1,ed−2+ed−1) (d,ed−2 + ed−1) +. . . + (d,ed−2 + ed−1 +Red)
...

(d−1,ed−2+Red−1) (d,ed−2 +Red−1) +. . . + (d,ed−2 +Red−1 +Red)

(d− 2,2ed−2) (d−1,2ed−2) (d,2ed−2) +. . . + (d,2ed−2 +Red)
...

(d−1,2ed−2+Red−1) (d,2ed−2+Red−1) +. . . + (d,2ed−2+Red−1+Red)
...

Figure 2.1: Function calls of (α, r) = fastalgorithmV2(. . . , α, r) according to the order of chosen r
starting from (1,0). Solid arrows represent recursive function calls of fastalgorithmV2, while dashed
arrows stand for the termination of a recursive call. Plus signs represent addition of terms com-
puted within one function call; see line 17 of Algorithm 5. Clearly, the underlying order of r is
lexicographical. The gray background color indicates that the recursive depth is always equal to d.

where b·c is the floor function. For an additively reduced index set (1.21), we find

vmax
Radd

(r) = R−
d−1∑

α=1

rα, r ∈ Radd(d−1, R).

The required modification consists in replacing R in line 2 of Algorithm 5, which is only
true in case R = Rfull, by

vmax
R (r(¬α)),

where vmax
R is defined according to the chosen reduction of R.

2.4 Complexity

Time and space complexity of both versions can readily be extracted from the above pseu-
docode formulations.

2.4.1 Space complexity

The first version of the fast algorithm requires the storage of a fixed, d- and R-independent
number of vectors of size |K| each. Algorithm 5 is less favorable with respect to space
complexity. Since it has maximum recursion depth d, we need to keep a number of vectors
in storage that is of the size O(d), but does not depend on R either. This can be seen from
Figure 2.1.

36

2. The fast algorithm Comments on implementation

2.4.2 Time complexity

Accounting for the numbers of operations, Algorithm 5 proves to be superior over the first
version: Both algorithms proceed termwise. For every term bearing an index r, Algorithm
4 invokes the 1D Chebyshev recurrence (2.9) up to order rα together with an application
of the direct operation procedure (2.5) in every recursion step, for all choices of α, which
yields computational costs of O(|r||K|). Summing up, the overall computational costs for
the matrix-vector product amount to

O
(∑

r∈R
|r||K|

)
.

In Algorithm 5, the recursion is used in a more efficient way. For every choice of r, the 1D
Chebyshev recursion (2.9) is invoked exactly once. This yields overall computational costs
of only

O(|R||K|).

We can roughly estimate the contribution of the polynomial degree to the time complexity
of Algorithm 4 by

∑

r∈R
|r| ≤

∑

r∈R
dR ≤ dR|R|.

Since we assume |R| � |K| and R� K, both versions scale essentially linearly with |K|.

2.5 Comments on implementation

As stated in Section 1.3, for the high-dimensional objects we deal with, we adhere to the
notion of “vectors” and “matrices” with entries being referenced by multi-indices, where
the underlying index sets are linearly ordered. The order of choice is the lexicographical
order. When implementing the above methods, it is not in general advisable to represent
what we see as vectors or matrices indexed over multi-index sets as multidimensional arrays.
Instead, we treat vectors as 1D arrays and matrices as 2D arrays, whatever the underlying
dimension d of the problems happens to be. Every row or every column in such a vector
or a matrix, respectively, is uniquely referenced by a multi-index k according to the linear
order of the set K. We are thus confronted with the issue of determining the linear address
of k, i.e., the corresponding row or column number. The present section is a brief discussion
of how we opt to do the mapping between multi-indices and their linear address in a given
multi-index set K.

2.5.1 Linear addresses

We denote the linear address of a given multi-index k from a lexicographically ordered
multi-index set K ⊆ Nd by lin(k). Additionally, we need to obtain the linear addresses

lin(k± eα), α = 1, . . ., d, (2.12)

when using the direct operation procedure for X(α) as given in Section 2.2; see lines 8, 12
in Algorithm 4 and lines 6, 9 in Algorithm 5.

37

Comments on implementation 2. The fast algorithm

For a full index cube, addressing a given multi-index set in such a structure is rather
trivial, viz.,

lin(k) =
d∑

α=1

kα(K + 1)d−α + 1 ∀k ∈ Kfull(d,K).

The multi-indices (2.12) are then not difficult to obtain either: For every r ∈ N and for
every coordinate α such that k± reα ∈ Kfull, respectively, we find

lin(k± reα) =
d∑

β=1

kβ(K + 1)d−β + 1− kα(K + 1)d−α + (kα ± r)(K + 1)d−α

= lin(k) + 1± r(K + 1)d−α.

For a reduced index set, such a mapping might not be readily available, or we might
prefer to avoid its computation at run time. For an additively reduced index set, linear
addresses can be computed recursively. Briefly, the linear address of an index k in a d-
dimensional additively reduced index set is the sum of all sizes of additively reduced index
sets in dimension d−1 with thresholds K−k for k ranging from 0 to k1−1, plus the linear
address of k(¬1) in K(d−1,K−k1). In 2D, there is an explicit formula. Formally,

linKadd(d,K)(k) =

k1−1∑

k=0

(
K−k+d−1

d−1

)
+ linKadd(d−1,K−k1)(k

(¬1))

=
K+d

d

(
K+d−1

d−1

)
− K+d−k1

d

(
K−k1+d−1

d−1

)

+ linKadd(d−1,K−k1)(k
(¬1))

linKadd(2,K̃)((k1, k2)) = k1(K̃+1) + k2 −
k1−1∑

k=0

k + 1.

(2.13)

If one precomputes the values

(
K−β+d−1

d−1

)
, 0 ≤ β ≤ K,

linKadd(d,K)(k) can be computed in O(d−2 + kd−1) operations. For a hyperbolic reduction,
we are not aware of an analogous formula. Instead, we propose a precomputing approach.
This resolves the difficulty of evaluating a computationally expensive or even unavailable
analytic function lin(·). The following proceeding is not restricted to a specific kind of
reduction.

2.5.2 Index manuals

We consider the task of computing the linear addresses of all increments or decrements by
1 in a single components for any k ∈ K. We set up a so-called index manual, where all
indices are stored according to their linear order together with lin(k ± eα), α = 1, . . ., d.
The index manual is a 2D, (|K| × (3d))-array of integers.

38

2. The fast algorithm Comments on implementation

Its lin(k)th row reads

k lin(k− e1 lin(k + e1) . . . lin(k− ed) lin(k + ed)

where the first d columns contain k, and the next 2d columns contain the linear addresses
of the increments or decrements in a single component starting with α = 1. If an increment
or decrement does not exist in K, we simply write 0. An example of an index manual for a
hyperbolically reduced index set is shown in Figure 2.2, where we choose d=3 and K=5.

1 0 0 0 0 15 0 7 0 2

2 0 0 1 0 16 0 8 1 3

3 0 0 2 0 17 0 9 2 4

4 0 0 3 0 0 0 0 3 5

5 0 0 4 0 0 0 0 4 6

6 0 0 5 0 0 0 0 5 0

7 0 1 0 0 18 1 10 0 8

8 0 1 1 0 0 2 11 7 9

9 0 1 2 0 0 3 0 8 0

10 0 2 0 0 19 7 12 0 11

11 0 2 1 0 0 8 0 10 0

12 0 3 0 0 0 10 13 0 0

13 0 4 0 0 0 12 14 0 0

14 0 5 0 0 0 13 0 0 0

15 1 0 0 1 20 0 18 0 16

16 1 0 1 2 21 0 0 15 17

17 1 0 2 3 0 0 0 16 0

18 1 1 0 7 22 15 19 0 0

19 1 2 0 10 0 18 0 0 0

20 2 0 0 15 23 0 22 0 21

21 2 0 1 16 0 0 0 20 0

22 2 1 0 18 0 20 0 0 0

23 3 0 0 20 24 0 0 0 0

24 4 0 0 23 25 0 0 0 0

25 5 0 0 24 0 0 0 0 0

Figure 2.2: Index man-
ual for a hyperbolically re-
duced index set with d =
3 and K = 5 in lexico-
graphical order. The very
first column (bold num-
bers) gives the row num-
ber. The first d columns
(typewritten) contain the
indices themselves, the re-
maining 2d columns show
the linear addresses of k±
eα. Their order is lin(k−
e1), lin(k+e1), lin(k−e2),
lin(k+e2), . . . , lin(k+ed).
As an example, consider
line 18. Decrementing the
first and second compo-
nents by 1 leads to the in-
dices in lines 7 and 15,
respectively. Increment-
ing them leads to lines
22 and 19. Decrementing
the last component would
yield a negative compo-
nent, incrementing it vio-
lates the hyperbolic reduc-
tion; the last two columns
thus have 0 as their en-
tries.

An algorithmic description for an efficient computation of the index manual both for a
hyperbolic and an additive reduction is given in Algorithm 6. The basis idea is to browse
the full index cube starting with 0, i.e., the very first index according to the lexicographical
order (line 2). If an index k under consideration belongs to the reduced set K, we store
it (line 7). Then, for each coordinate α, we decrement the αth component of k by 1 and
browse the already computed multi-indices for the decrement, i.e., descend from the current
row until there’s a match (lines 10 to 20). Trivially, this also yields the linear address for
the increment of the decrement (line 18). If an index k does not belong to K, seen from
the right, we set all its components to the right of its first zero component to K, because
incrementing one of these components will result in an index that does not belong to K either
(lines 23 and 24). This way, we avoid checking unnecessarily whether an index belongs to

39

Comments on implementation 2. The fast algorithm

K or not by skipping the appropriate indices in the full cube. Finally, we increment the
current index (line 25). In both the hyperbolic and the additive reduction, the index Ke1

is the last index according to lexicographical order, giving us a stopping criterion (line 9).

Algorithm 6: Computation of the index manual for chosen d and K and an arbi-
trarily reduced index set K(d,K) (Kfull(d,K).

1 function man = indexmanual (d,K)
2 k := 0 start with first index
3 lin:= 1
4 continue:= true
5 while continue do
6 if k ∈ K then
7 man (lin,1 : d) := k store indices ∈ K
8 if k1 = K then
9 continue:= false k = Ke1 is the last index: stop

10 for α = 1 to d do
11 if kα > 0 then
12 k− := k− eα consider all decrements . . .
13 continue−:= true . . . and search for their linear addresses

14 lin−:= lin
15 while continue− do
16 if man (lin−,1:d)=k− then
17 man (lin, d+ 2α− 1) := lin− store addresses
18 man (lin−, d+ 2α) := lin
19 continue−:= false

20 lin−:= lin−- 1

21 lin:= lin + 1

22 else
23 β := argmaxα{kα 6= 0}
24 kβ+1 := . . . := kd := K

25 k := increment (k) increment k according to linear order

2.5.3 Complexity

We briefly comment on the complexity of Algorithm 6. Let N(k, α) be the number of
iterations used in the innermost while loop (line 15). We find N(k, d) = 1 and

N(k, α) ≤




K
(
d− α,

⌊
K+1∏α
β=1 kβ+1

− 1
⌋)
, K = Khyp,

K
(
d− α,K −∑α

β=1 kβ

)
, K = Kadd,

40

2. The fast algorithm Comments on implementation

for α < d, and the overall number of iterations amounts to

∑

k∈K

d∑

α=1

N(k, α).

This yields sub-quadratic complexity behavior, but we are unable to provide an explicit
bound. In Figure 2.3, we show the overall number of iterations for some choices of d and
K and both kinds of index set reduction. The actual complexity appears to be similar to

d · |K|3/2

for the choices of d and K we consider in this thesis. Actual computation times are shown
in Table 2.1. All computations are carried out on a desktop computer with an Intel Core
2 Duo E8400 3.00 GHz processor with 4 GB RAM using an implementation in C. As the
figures reveal, even for a choice as large as K = 50, precomputing the index manual is
feasible. For an additive reduction, though, the combination of high dimensions and large
bases can become tedious, and the usage of the explicit formula (2.13) might be preferable
in some cases, although it worsens the run time. Since it consists of integers only, storing
the index manual is not an issue either.

K

number of iterations

10 20 30 40 50
1e+ 02

1e+ 04

1e+ 06

1e+ 08

1e+ 10
d = 2

d = 3

d = 4

iterations

d|K|3/2

Figure 2.3: Actual number of iterations in Algorithm 6 compared to the size of the index set
for different choices of d and K both for a hyperbolic (dashed lines, asterisks) and an additive
reduction (solid lines, plus signs). Black, dark and light gray color stands for d=2, d=3, and d=4,
respectively. The plus signs and asterisks represent d|K|3/2. Semi-logarithmic plot.

The linear addresses of the indices r = r
α←− r as they occur in line 13 of Algorithm 5 are

not used in the computational process. Thus, we do not need to compute them.

41

Relation to Gauß–Hermite quadrature 2. The fast algorithm

d→ 2 3 4 5

hyperbolic 1.91e-04 1.62e-03 8.11e-03 3.33e-02

additive 1.36e-03 5.37e-01 1.23e+02 2.36e+04

Table 2.1: Actual computation times for the index manual in sec for K = 50 and varying choices
of d. In case d ≥ 3, the choice of K = 50 constitutes the upper bound for most of our subsequent
experiments; see Chapter 5, in particular.

2.6 Relation to Gauß–Hermite quadrature

In Section 2.3, inserting the coordinate matrices into the polynomial potential to approx-
imate the matrix-vector product Qv has been presented as a rather tentative idea. The
error of this approximation is actually closely related to a suitable application of Gaussian
quadrature for the approximation of the entries in Q. This is discussed in the present
section. Note that the fast algorithm never actually employs any kind of quadrature.

2.6.1 Preliminaries

We start with some general considerations about Gauß–Hermite quadrature, which, in 1D,
is the instance of Gaussian quadrature that uses e−x

2
as a weight function and approximates

integrals of weighted functions over the whole real line,

∫

R
f(x)e−x

2
dx ≈

M∑

m=0

wmf(ξm);

see, e.g., [32], Chapter 3.2. As for the choice of the order parameter M , if the corresponding
quadrature nodes ξm are the zeros of HM+1 with corresponding weights wm, the resulting
quadrature formula (wm, ξm)Mm=0 is exact for polynomials of degree ≤ 2M+1. In higher
dimensions, we define

ξm = (ξm1 , . . ., ξmd),

ωm =
d∏

α=1

ωmα =
d∏

α=1

wmαe
ξ2mα ,

m ∈Mfull(d,M), (2.14)

which constitutes a product of 1D Gauß–Hermite quadrature formulas with M+1 nodes
in every direction. We speak of (M+1)-nodes full-product quadrature. This d-dimensional
quadrature rule is exact for polynomials of degree up to 2M+1 in each variable, denoted
henceforth by a subscript or a superscript “quad”. The entries of Q might then be approx-
imated by

Qjk ≈ (Qquad)jk =
∑

m∈M
ωmϕj(ξm)q(ξm)ϕk(ξm) (2.15)

In the context of Section 2.1, further restrictions notwithstanding, the index set K has
been introduced as any subset of the full index cube Kfull. For the subsequent considerations,
however, we assume K(d,K) = Kfull(d,K). Additionally, let us now choose M =K in the
definition of full-product Gauß–Hermite quadrature (2.14).

42

2. The fast algorithm Gauß–Hermite quadrature

2.6.2 Equivalence of formal insertion and quadrature

Given these preliminaries, we examine the relation between formal insertion of the coor-
dinate matrices into the polynomially approximated potential and Gaussian quadrature.
First, we define the matrix

Ujk =
√
ωjϕk(ξj) =

d∏

α=1

√
ωjαϕkα(ξjα), j,k ∈ K, (2.16)

bearing square roots of Gauß–Hermite weights multiplied by Hermite functions evaluated
at corresponding Gauß–Hermite nodes in its entries.

Lemma 1. (orthogonality of U)
The matrix U is orthogonal.

Proof. Since K(d,K) = Kfull(d,K), we can invoke the exactness properties of full-product
Gauß-Hermite quadrature with exactly K+1 nodes in each direction together with the
orthogonality of the Hermite functions to obtain

(UTU)jk =
∑

m∈K
UmjUmk =

∑

m∈K
ωmϕj(ξm)ϕk(ξm)

= (ϕj, ϕk)quad = (ϕj, ϕk) = δjk.

Thus, the matrix U has full rank,

Uv = 0⇒ UTUv = 0⇒ v = 0,

and so has UUT . Therefore,

UTU = I⇒ UUTUUT = UUT ⇒ UUT = I.

In case of a K being the full index cube, the matrix U provides an orthogonal diagonal-
ization of each coordinate matrix X(α),

X(α) = X
(α)
quad = UT diagm∈K(ξmα)U, α = 1, . . ., d, (2.17)

which is readily seen from

X
(α)
jk = (ϕj, xαϕk) = (ϕj, xαϕk)quad

=
∑

m∈K
ωmϕj(ξm)ξmαϕk(ξm) =

(
UT diagm∈K(ξmα)U

)
jk

using the exactness properties of full-product Gauß–Hermite quadrature once more. This
diagonalization allows to prove the following lemma, which is the backbone of the error
analysis given in Chapter 4.

43

Gauß–Hermite quadrature 2. The fast algorithm

Lemma 2. (equivalence lemma)
For an arbitrary multivariate polynomial q defined on Ω = [−S, S]d, we have

q(X) = Qquad.

The left-hand side denotes formal insertion of the coordinate matrices X(α) = (ϕj, xαϕk),
j, k ∈ Kfull(d,K), defined over the full index cube in place of xα into q; and

(Qquad)jk =
∑

m∈K
ωmϕj(ξm)q(ξm)ϕk(ξm), j, k ∈ Kfull(d,K),

results from entrywise approximation of the representation matrix of q in the Galerkin basis
{ϕk}k∈Kfull

, i.e.,

Qjk = (ϕj, qϕk), j, k ∈ Kfull(d,K),

by full-product Gauß–Hermite quadrature with exactly K+1 nodes in each direction. The
matrix q(X) is symmetric.

Proof. Consider an arbitrary multi-index r ∈ Nd. Using the orthogonal diagonalization
(2.17), we find

Xr =
(
X(1)

)r1 · . . . ·
(
X(d)

)rd

=
(
UT diagm∈K(ξm1)U

)r1 · . . . ·
(
UT diagm∈K(ξmd)U

)rd

=
(
UT diagm∈K

(
ξr1m1

)
U
)
· . . . ·

(
UT diagm∈K

(
ξrdmd
)
U
)

= UT diagm∈K
(
ξrm
)
U

=
∑

m∈K
ωmϕj(ξm)ξrmϕk(ξm)

= (ϕj, x
rϕk)quad,

(2.18)

where the order of the factors in Xr is actually arbitrary. In particular, symmetry of Xr is
seen from

UT diagm∈K
(
ξrm
)
U =

(
UT diagm∈K

(
ξrdmd
)
U
)
· . . . ·

(
UT diagm∈K

(
ξr1m1

)
U
)

=
(
Xr
)T
.

Since this is true for any monomial, the claim follows.

This kind of argument is common in the context of DVR techniques; see [59].

2.6.3 Error due to index set reduction

The fact that both Mfull(d,M) and K(d,K) are full index cubes as well as the choice
M = K are crucial ingredients for the proof of Lemma 2 to be valid. If M < K, the
resulting quadrature does not exactly integrate all occurring Hermite functions. Then, the
orthogonality of U is lost, and so is the diagonalization (2.17) of X(α). Thus, there needs to
be at least a bijection between the quadrature and the basis indices. However, this obviates
any reduction of K for Lemma 2 still to hold true. Nevertheless, for a reduced index set
K (Kfull, we adhere to the idea of inserting the coordinate matrices into the polynomial.
Besides an approximation that is equivalent to the above Gauß–Hermite quadrature, this
induces an additional error due to index set reduction. As the analysis given in Chapter 4
shall reveal, the latter error still behaves almost equally well as the error due to quadrature.

44

3 Time comparison

The fast algorithm as presented in Section 2.3 constitutes an efficient way to compute an
approximation to the matrix-vector product

Wpol(t)v, Wpol
jk (t) = (ϕj,W

pol(·, t)ϕk), j,k ∈ K,

where v ∈ C|K| is a vector and W pol(·, t) =
∑

r∈R ŵr(t)Tr is a polynomial approximation
to the potential W (·, t) due to Chebyshev interpolation over an index set R. As seen in
Section 2.4, the two version of the fast algorithm require

∑

r∈R
|r| · |K| and |R| · |K|

operations, respectively, for a single matrix-vector product. In the present chapter, we
account for how good this actually is.

When trying to compute Wpol(t)v, a first idea might be to assemble a quadrature ap-
proximation (in every time step), and then multiply it with the vector. We comment on
this naive approach in Section 3.1. This sharply contrasts to matrix-free approaches. In
Section 3.2, we present a matrix-free approach based on an efficient organization of the sum
when formally writing out the matrix-vector product as

(
Wpol(t)v

)
j

=
∑

k∈K
Wpol(t)jkvk.

In Section 3.2.4, we compare this idea of so-called sequential summations to our fast algo-
rithm. The chapter concludes with an overview over experimentally obtained computation
times for all three approaches given in Section 3.3. Throughout this chapter, we shall
occasionally skip the dependency on t.

3.1 Assembling the matrix

We briefly outline how the matrix

Wquad
jk (t) = (ϕj,W

pol(t)ϕk)quad

=
∑

r∈R
ŵr(t)

d∏

α=1

(ϕjα , Trαϕkα)quad︸ ︷︷ ︸
?

,
j,k ∈ K, (3.1)

could be assembled using (M+1)-nodes full-product Gauß–Hermite quadrature for every
entry in the most effective way—while we strongly disencourage anyone to actually do so.

45

Sequential summations 3. Time comparison

First, we need to obtain the Gaussian quadrature nodes ξm and weights wm, 0 ≤ m ≤M ,
which can be done using, e.g., the procedures given in [72], Chapter 4.6. We assume these
nodes and weights to be given. Second, the 1D Hermite and Chebyshev recurrences (see
(1.10) and (1.25), respectively) yield the values

ϕk(ξm), 0 ≤ k ≤ K,
Tr(ξm), 0 ≤ r ≤ R, 0 ≤ m ≤M, (3.2)

in O((R+K) ·M). Third, this enables us to compute the terms

(ϕj , Trϕk)quad, 0 ≤ j, k ≤ K, 0 ≤ r ≤ R, (3.3)

in O(K2 ·R ·M). Even in case of W pol being time-dependent, the above computations can
be done in advance and only once. If the coefficients αr depend on time, the subsequent
steps need to be repeated in every time step.

Given the terms (3.3), which we mark with a ? in (3.1), we compute a single entry

Wquad
jk in O(|R| · d). Hence, the assembly of Wquad requires O

(
|K|2 · |R| · d

)
operations,

computation of the terms marked with ? not taken into account. By virtue of the equivalence
for the fast algorithm given in Lemma 2, we choose M = K. This yields overall costs that
scale as

{
|K|2 · |R| · d, in every time step,

K3 ·R+ (R+K) ·K, for precomputations.

Using a full index set K, the time-dependent contribution is dominant in case d ≥ 2.
Choosing a hyberbolical reduction, we can expect the precomputed part to dominate over
a matrix assembly in a single time step (for a sufficiently small set |R|.

Employing Smolyak sparse grid quadrature (see [33, 81, 91]) does not reduce the cost for
assembling the matrix significantly. An adaptation of Smolyak quadrature to the increas-
ingly oscillatory behavior of the high-order Hermite functions is discussed in [61], Chapter
III.1.2., where it is pointed out that a sufficiently accurate sparse grid quadrature (i.e.,
yielding asymptotically the same quadrature error as a full-product quadrature) requires at
least O(|K|2 ·M) evaluations of the potential anyway.

3.2 Sequential summations

The last section has been concerned with an explicit assembly of the matrix representation
Wpol of the polynomial potential W pol, which is a prohibitive choice due to the poor
computational performance of any actual assembly procedure. The idea of using instead a
matrix-free approach for the direct compuation of the product Wpolv has been around in
the chemical literature for many years; see the references given in the introduction to Part I.
In a nutshell, the main difference between the approach given in this thesis and what has
been done by chemists (to the extent we are going to receive the chemical literature) lies in
the organization of the computations. We crucially make use of recurrence relations as they
underly the chosen Galerkin approximation basis in order to speed up computations, most
prominently so in the context of the direct application procedure for the coordinate matrices
X(α); see Section 2.2. The following approach from the chemical literature, in contrast, does
not employ given recurrence relations. Instead, the basic idea is to appropriately rewrite

46

3. Time comparison Sequential summations

the matrix-vector products and then ingeniously juggle with the occurring multi-indices. In
Section 3.2.4, we shall give a more detailed comparison between the two approaches.

The following scheme is due to [11] for a full and due to [90] for an additively reduced
index set, respectively. We present the ideas due to [11, 90] in more generality than the
actual authors do, i.e., for any kind of reduced index set, and we add a brief derivation of
the computational complexity, which has not been provided in [90], but only in the simpler
setting of [11].

3.2.1 Basic idea

We consider the product of a matrix representation T ∈ C|K|×|K| of an operator T ,

Tjk = (ϕj, Tϕk), j,k ∈ K,
with a vector v ∈ C|K|, where K(d,K) ⊆ Kfull(d,K) is a multi-index set, {ϕk}k∈Nd is a
tensor product L2(Rd)-orthonormal set, and T is in sum-of-products form (SOP), viz.,

T =
∑

r∈R
t̂rTr =

∑

r∈R
t̂r

d∏

α=1

T (α)
rα (3.4)

with a multi-index set R(d,R) ⊆ Rfull, where T
(α)
r acts on functions of xα only. Using (3.4),

we write

Tjk =
∑

r∈R
t̂rT

r
jk, Tr

jk = (ϕj, Trϕk) =
d∏

α=1

(
ϕjα , T

(α)
rα ϕkα

)

︸ ︷︷ ︸
?

We assume the terms denoted by ? to be either analytically known or otherwise easily
computable using a 1D quadrature formula. As seen above, the matrix-vector product

w = Tv

could then be naively computed componentwise according to

(Tv)j =
∑

k∈K
(ϕj, Tϕk) vk =

∑

r∈R
t̂r
∑

k∈K

d∏

α=1

(
ϕjα , T

(α)
rα ϕkα

)

︸ ︷︷ ︸
O(d)

vk

in |K|2 · |R| · d operations altogether. The approach due to [11] constitutes a much faster
way to do this. Assume, for a moment, K = Kfull and R = Rfull. The SOP form of T allows
to write the matrix-vector product termwise according to

wr
j = (Trv)j =

∑

k∈K
Tr

jkvk =
∑

k∈K

d∏

α=1

(ϕjα , p
rα
α ϕkα) vk

=
K∑

k1=0

(
ϕj1 , T

(1)
r1 ϕk1

)
· . . . ·

K∑

kd=0

(
ϕjd , T

(d)
rd
ϕkd

)
vk

=
K∑

k1=0

(T (1)
r1)j1k1 · . . . ·

K∑

kd=0

(T (d)
rd

)jdkdvk

︸ ︷︷ ︸
d sums

,

(3.5)

47

Sequential summations 3. Time comparison

with precomputed 1D matrices (slightly overloading the notation)

(T (α)
r)jk =

(
ϕj , T

(α)
r ϕk

)
, 0 ≤ j, k ≤ K, 0 ≤ r ≤ R,

and, eventually,

w =
∑

r∈R
t̂rw

r.

The key idea is the evaluate the sums in equation (3.5) sequentially—instead of naively
using d loops with (K + 1)d operations for wr

j and, thus, |R| · (K + 1)2d operations for w
altogether. For the moment, let us write indices in brackets instead of as subscripts. We
define

v(1)(k1, . . ., kd−1, jd) =

K∑

kd=0

(T (d)
rd

)jdkdvk,

v(2)(k1, . . ., kd−2, jd−1, jd) =
K∑

kd−1=0

(T (d−1)
rd−1

)jd−1kd−1
v(1)(k1, . . ., kd−1, jd),

...

v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd) =

K∑

kd−α+1=0

(T (d−α+1)
rd−α+1

)jd−α+1kd−α+1
v(α−1)(k1, . . ., kd−α+1, jd−α+2, . . ., jd),

...

wr
j = v(d)(j1, . . ., jd) =

K∑

k1=0

(T (1)
r1)j1k1v

(d−1)(k1, j2, . . ., jd).

Each vector

v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd)

depends on d indices taking K+1 different values each and, for fixed values of these indices,
v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd) is computed by summation over one index taking at most

K+1 different values, depending on the sparsity of T
(d−α+1)
rd−α+1 . If the matrix T

(d−α+1)
rd−α+1 contains

at most B
(d−α+1)
rd−α+1 non-zero entries in each row, the right-hand side sum over kd−α+1 consists

of T
(d−α+1)
rd−α+1 terms only.

Therefore, the scalar quantities

v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd), 0 ≤ k1, . . ., kd−α, jd−α+1, . . ., jd ≤ K,

can be obtained in B
(d−α+1)
rd−α+1 · (K+1)d operations. This is done sequentially for α = 1, . . ., d.

After d blocks of d+1 nested loops each, the output vector v(d) = wr is obtained in

d∑

α=1

B(d−α+1)
rd−α+1

· (K + 1)d

48

3. Time comparison Sequential summations

operations. For each choice of r, only three vectors of size (K+1)d have to be stored. This
is repeated for all r ∈ R, which yields overall computational costs for w of

∑

r∈R

d∑

α=1

B(d−α+1)
rd−α+1

· (K + 1)d ≤ |R| · d · (K+1) · (K+1)d = d · (K + 1) · |R| · |K|

operations—instead of a naive approach using |R| · (K+1)2d operations.

3.2.2 Algorithmic description

In the following, we provide an algorithmic description, slightly generalizing summations as
given above: For fixed α, we want to compute

v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd) =

K∑

kd−α+1=0

(T (d−α+1)
rd−α+1

)jd−α+1kd−α+1
v(α−1)(k1, . . ., kd−α+1, jd−α+2, . . ., jd)

with d+1 indices with index ranges

0 ≤ kβ ≤ kmax
β , 1 ≤ β ≤ d− α+ 1

and

0 ≤ jβ ≤ jmax
β , d− α+ 1 ≤ β ≤ d,

and given values

(T (d−α+1)
rd−α+1

)jd−α+1kd−α+1
,

0 ≤ kd−α+1 ≤ kmax
d−α+1,

0 ≤ jd−α+1 ≤ jmax
d−α+1,

0 ≤ rd−α+1 ≤ rmax
d−α+1.

We require

max
β

kmax
β ≤ K, max

β
jmax
β ≤ K.

In case of K = Kfull, we have kmax
β = jmax

β = K for all β. In case R = Rfull, we have
rmax
β = R for all β. Transitioning

from v(α−1) ∈ C|K(d−α+1,K)|·|K(α−1,K)| to v(α) ∈ C|K(d−α,K)|·|K(α,K)|,

the dependency on kd−α+1 is replaced by the dependency on jd−α+1. See Algorithm 7 for an
algorithmic description of this transition using a single block of d+1 nested loops. A possible

sparsity of the matrices T
(d−α+1)
rd−α+1 has been taken into account;, see Line 11. The number of

loops depends on d, and the choice of α governs how many k- and j-loops there are. This
suggests a recursive implementation. The linear addresses of v(α)(. . .) and v(α−1)(. . .) with
indices as given in Lines 11 and 12 can be obtained using index manuals without further
computational effort at run time.

This procedure is then repeated for all different values of α sequentially, which yields d
blocks of d+1 loops each for the full index transition k→ j. Eventually, this is applied for
each term in the sum (3.4). Algorithm 8 summarizes the proceeding.

49

Sequential summations 3. Time comparison

Algorithm 7: Computation of vector v(α) from v(α−1) using d+ 1 nested loops.
Reversing the order of the j-indices makes the presentation more readable when
doing the index transition k → j: k-indices are replaced with j-indices having the
same subscript.

1 function v(α) = computeblock
(
v(α−1); T

(d−α+1)
rd−α+1 ∈ Ckmax

α−1×jmax
α−1
)

2 for k1 = 0 to kmax
1 do

3 for k2 = 0 to kmax
2 do

4
. . .

5 for kd−α = 0 to kmax
d−α do

6 for jd = 0 to jmax
d do

7
. . .

8 for jd−α+1 = 0 to jmax
d−α+1 do

9 temp:= 0

10 for kd−α+1 = 0 s.t. (T
(d−α+1)
rd−α+1)jd−α+1kd−α+1

6= 0 do
11 temp:= temp +

(T
(d−α+1)
rd−α+1

)jd−α+1kd−α+1
v(α−1)(k1, . . ., kd−α+1, jd−α+2, . . ., jd)

12 v(α)(k1, . . ., kd−α, jd−α+1, . . ., jd) := temp

The terms we need to collect or compute in advance are the non-zeros of

(T (α)
rα)jαkα =

(
ϕjα , T

(α)
rα ϕkα

)
,

0 ≤ jα ≤ jmax
α ,

0 ≤ kα ≤ kmax
α ,

0 ≤ rα ≤ rmax
α ,

α = 1, . . ., d. (3.6)

In case these terms are not analytically available, we employ an M -point 1D quadrature
formula requiring

(rmax
α + 1) · (jmax

α + 1) · (kmax
α + 1) ·M ≤ (R+ 1) · (K + 1)2 ·M

operations. We have to store
∑d

α=1(rmax
α + 1) ≤ d · (R + 1) matrices of size at most

(jmax
α + 1) · (kmax

α + 1) ≤ (K+1)2, which is negligible.

3.2.3 Reduced index sets

We now consider the case K Kfull of a reduced index set. The following is due to
[90], who discuss the case of an additively reduced index set Kadd(d,K), which is of size(
K+d
d

)
≈ 1

d!K
d. In addition, we also consider a hyperbolic reduction Khyp(d,K), where we

retain only O((K + 1) ln(K + 1)d−1) multi-indices.
The difference between reduced and full index sets is that, in the former case, the upper

bounds kmax
β and jmax

β of the sums in Algorithm 7 now depend on previous summation

50

3. Time comparison Sequential summations

Algorithm 8: Doing the matrix-vector product

w = Tv

termwise with sequential summations in each term.

1 function w = sequ-sum
(
v; T

(d−α+1)
rd−α+1 ∈Ck

max
α ×jmax

α , 0≤rα≤rmax
α , 1≤α≤d

)

2 w := 0
3 for r ∈ R do
4 wr := v
5 for α = 1 to d do

6 wr := computeblock
(
wr; T

(d−α+1)
rd−α+1

)

7 w := w + t̂r(t) ·wr

indices. In case of Kadd, we have

kmax
β (k1, . . ., kβ−1) = K −

β−1∑

γ=1

kγ , β = 1, . . ., d− α+ 1,

jmax
β (jβ+1, . . ., jd) = K −

d∑

γ=β+1

jγ , β = d, . . ., d− α+ 1,

for all α = 1, . . ., d. In case of Khyp, we have

kmax
β (k1, . . ., kβ−1) =

(K + 1)/

β−1∏

γ=1

(kγ + 1)− 1

 , β = 1, . . ., d− α+ 1,

jmax
β (jβ+1, . . ., jd) =

(K + 1)/
d∏

γ=β+1

(jγ + 1)− 1

 , β = d, . . ., d− α+ 1.

For fixed α, the number of different k-multi-indices

(k1, . . ., kd−α)

equals the size of the multi-index set K(d−α,K). Taking into account a possible sparsity

of T
(d−α+1)
rd−α+1 , e.g., that it bears at most B

(d−α+1)
rd−α+1 ≤ kmax

d−α+1(k1, . . ., kd−α) non-zeros in each
row, the overall number of k-multi-indices is

B(d−α+1)
rd−α+1

· K(d− α,K).

Analogously, the number of different j-multi-indices (jd−α+1, . . ., jd) equals the size of the
multi-index set K(α,K). The complexity of Algorithm 7 therefore reduces to

B(d−α+1)
rd−α+1

·
(
K + d− α
d− α

)
·
(
K + α

α

)

≈ B(d−α+1)
rd−α+1

1

(d− α)!α!
Kd = B(d−α+1)

rd−α+1
·
(
d

α

)
|Kadd(d,K)|

51

Sequential summations 3. Time comparison

and

B(d−α+1)
rd−α+1

· (K + 1) ln(K + 1)d−α−1 · (K + 1) ln(K + 1)α−1

= B(d−α+1)
rd−α+1

· K + 1

ln(K + 1)
· |Khyp(d,K)|

in case of Kadd and Khyp, respectively. In case of Kadd, this leads to an overall complexity
of

∑

r∈R

d∑

α=1

B(d−α+1)
rd−α+1

(
d

α

)
|Kadd(d,K)| (3.7)

for the matrix-vector product. In case of Khyp, the overall complexity is

∑

r∈R

d∑

α=1

B(d−α+1)
rd−α+1

K + 1

ln(K + 1)
|Khyp(d,K)|. (3.8)

3.2.4 Comparison to the fast algorithm

We compare the sequential summations approach to the fast algorithm as given in Chapter 2
when applied to a potential matrix-vector product with the potential being approximated
by Chebyshev interpolation, i.e.,

W ≈
∑

r∈R
ŵrTr;

see Section 1.4. Using the above notation, this yields an operator in SOP form with T
(α)
rα

being the univariate Chebyshev polynomial of degree rα with respect to the αth coordinate.
As for the number of non-zeros in the 1D corresponding banded matrices, with the help of
the 1D Chebyshev recurrence (1.25), it is readily seen that

B(α)
r =

1

2
(r + 1) ∀ 1 ≤ α ≤ d, ∀ 0 ≤ r ≤ R, (3.9)

where the factor 1
2 comes from the fact that (ϕj , Trϕk) vanishes if j+r+k is odd.

There is a caveat to the subsequent considerations: Sequential summations are an appro-
priate tool for a broader range of applications than the fast algorithm because they do not
suffer from the restrictions imposed in Section 1.4. In situations where the joint assump-
tions on the regularity of the potential W and the solution ψ do not hold, the concept is stil
applicable. Furthermore, one might want to combine it with a suitably reduced quadrature.
The fast algorithm, in contrast, then fails to do us any service. We shall be more precise
on these issues in the following.

The table given in Table 3.1 summarizes the key properties of both algorithms. We
briefly comment on them in terms of what is required for the approaches to work, how the
computational speed-up is actually achieved, in what way the computation unwinds, and
to what extend they might be generalized.

• Both approaches require the operator T to be in SOP form. First, in both ap-
proaches, the product with the corresponding matrix representation is done for each

52

3. Time comparison Sequential summations

fast algorithm sequ. summations

matrix-free 3 3

scales linear with |K| 3 3, unless reduction is too radical

requires SOP 3 3

m-v product done exactly 7 3

allows for R ≥ K 7 3

large |R| feasible 3, but expensive 3, but expensive

employs recurrences 3 7

uses precomputations 3 (index manuals) 3 (1D matrix entries)

allows for index manuals 3 3

full-product quadrature
not employed, but adaptation in [90]

equivalent; see 2.6

Smolyak quadrature not employed adaptation in [2, 3, 4, 5, 6]

generalizsations 3; see Part II 3, T not specified

Table 3.1: Key features of sequ. summations and the fast algorithm.

fast algorithm sequential summations

version 1: full index set:∑
r∈R |r||K|

∑
r∈R |r + 1||Kfull|

c
o
m

p
le

x
it

y additive reduction:

version 2:
∑

r∈R
∑d

α=1(rα+1) d!
(d−α)!α! |Kadd|

|R| · |K| hyperbolic reduction:
∑

r∈R |r + 1| (K+1)
ln(K+1) |Khyp|

Table 3.2: Time complexity of sequ. summations and the fast algorithm, where 1 = (1, . . ., 1) ∈ Nd.

term in the sum expansion separately. Second, doing a single term, both approaches
make use of the term being a product of univariate operators only. In the context
of sequential summations, the latter yields to favorable block structure consisting of
(d+1) sums over a single integer index each; see Algorithm 7. For the fast algorithm,
this enables us to use the 1D recurrence for the polynomial representation basis, viz.,
the Chebyshev recurrence (1.25), for each coordinate.

• Sequential summations is a means to compute the matrix-vector product exactly,
while the fast algorithm does so only approximately. For the approximation error
to decay spectrally, the latter approach requiresK � R, as will be shown in Chapter 4.
For sequential summations, there is no constraint on how R and K are related.

• Both approaches can in principle deal with a large index set R for the polynomial
representation of the potential, however, this is not an advisable setting for either

53

Sequential summations 3. Time comparison

approach. As for sequential summations, the reason is that there exists a more suitable
modification using Smolyak sparse grid quadrature; see the subsequent comments. In
case of |R| coming close to |K|, the essentially linear scaling is lost for both approaches.

• As mentioned above, the 1D recurrence (1.10) constitutes the core ingredient to
the fast algorithm in order to obtain its computational speed-up. In sequential sum-
mations, recurrences are never employed, and the speed-up is due to a clever index
management.

• Technically, sequential summations is a matrix-free approach, although, during the

precomputation process that is necessary in order to obtain the values (T
(α)
r)jk,

matrix entries are de facto computed. No matrix is actually assembled. Using the
fast algorithm, there are no precomputations at all (but for the index manuals), and
no matrix entries are ever computed.

• For both approaches, using index manuals is possible. An alternative to index
manuals for the problem of addressing components of the input and output vectors
as needed in Algorithm 7 is mentioned in [3], where an example in d= 12 is consid-
ered with an additive reduction. Since computing the index manual for an additively
reduced index set in as large a dimension as this is tedious (in contrast to a hyper-
bolic reduction), the approach chosen in [3] is preferable. The explicit formula (2.13)
constitutes a further alternative. Once the index manual has been computed, though,
there are no additional costs at run time.

• While the approximation due to the fast algorithm is closely related to a specific kind
of entrywise Gauß–Hermite quadrature (see Section 2.6) no quadrature approxi-
mation is actually ever computed. As for sequential summations, if |R| becomes large,
a different approach is proposed in [90] that uses full-product quadrature with an in-
dex set M for the nodes to approximate every entry (ϕj,Wϕk), and no polynomial
interpolation of W at all. The basic idea is to write the entries as

∑

k∈K
(ϕj,Wϕk)quadvk =

∑

m∈M
ϕj(ξm)ωmW (ξm)

∑

k∈K
ϕk(ξm)vk

and to do two sequential summations in a row: First, one uses an index transition
k → m, then multiplies with precomputed values W (ξm) in an intermediate step,
and eventually does another index transition m→ j. This approach is generalized to
Smolyak sparse grid quadrature in [2] and has been further applied in [3, 4, 5, 6].
Accounting for the computational costs of an evaluation of W at a quadrature node
depends, however, on how expensive an evaluation of W actually is. We shall not
discuss this modifcation of sequential summations in the present thesis.

• In the sequential summations approach, it is not specified what the operator T is
supposed to be. E.g., derivatives, possibly even with non-constant coefficents, are a

viable choice. We only need to be able to compute the quantites (T
(α)
r)jk—whatever

the operators T
(α)
r might be. As for the fast algorithm, we will also open up a wider

range of generalizations in Chapter 6 and, most notably, in Part II.

The most crucial difference between the two approaches lies, of course, in their respective
computational complexity. Time complexity for doing a single matrix-vector product

54

3. Time comparison Performance tests

is summarized in Table 3.2. The number of operations for sequential summations has been
obtained via (3.9) in combination with (3.7) and (3.8).

• The fast algorithm scales linearly with |K|—in both versions and with whatever un-
derlying index set. Using sequential summations, the actual scaling depends on the
choice of index set reduction, and linear scaling with respect to |K| gets more and
more lost the more the basis is reduced.

• In the best-case scenario for sequential summations, which is the full index set, the
computational complexity comes close to Version 1 of the fast algorithm. In general,
the fast algorithm scales more favorable than sequential summations. The more rad-
ical the reduction, the more favorable the complexity ratio from the point of view of
the fast algorithm.

• On the other hand, sequential summations are more economical with respect to space
complexity. They require the storage of only four vectors of size |K|; see Algorithm 8.

In the next section, we shall present computation times for both approaches. The findings
will corroborate the above complexity analysis.

3.3 Performance tests

We conclude this chapter by giving actual computation times for

• an explicit assembly of Wquad and multiplication with a vector v ∈ R|K|,

• doing this matrix-vector product via sequential summations as devised in Section 3.2,

• and the fast algorithm (both versions) as developed in Chapter 2

using a simple test example. Our aim is to corroborate the theoretical predictions for the
computation times from the previous section and Chapter 2 for different choices of index
sets K. As an underlying potential, we consider the stretched torsional potential

W (x) =
d∑

α=1

(1− cos(xα/S)), x ∈ Ω = [−S, S]d, S = 16. (3.10)

A plot is shown in Figure 3.1. Respecting S ≥
√

2(K+1)+1, this choice of S allows
for K ≤ 111; see (1.23). As W is separable, we can approximate it by multidimensional
Chebyshev interpolation over Ω with nodes along the coordinate axes only. If we choose
R+1 nodes on each axis, one of them being the origin, the overall number of nodes is thus

|R| = R+ 1 +R(d− 1) = Rd+ 1.

For R=8 and d = 2, 3, 4, e.g., this yields interpolation errors

‖W −W pol‖∞, ‖W −W pol‖ ≤ 5e-9.

To obtain this information, we have approximated the L∞- and L2-norms by transformation
of the interpolation coefficients to function values on a spatial grid with 100 grid points per
coordinate. Even for a hyperbolically reduced index set K, we can thus easily meet the
requirements (1.26) and (1.27) for the fast algorithm to be applicable.

55

Performance tests 3. Time comparison

Figure 3.1: The torsional potential (3.10) for d=2.

In the following, we list compu-
tation times for the matrix-vector
products Wquadv (explicit assem-
bly and sequential summations)
and W pol(X)v (fast algorithm).
All figures have been obtained on
a desktop computer with an In-
tel Core 2 Duo E8400 3.00 GHz
processor with 4 GB RAM using
an implementation in C in double
precision arithmetics. The vector
v ∈ R|K| consists of random en-
tries vk ∈ [0, 1] generated with
rand().

Both for the explicit assembly
and for sequential summations, we need to precompute the 1D quadrature formulas

(ϕj , Trϕk)quad =

M∑

m=0

ωmϕj(ξm)Tr(ξm)ϕk(ξm), 0 ≤ j, k ≤ K, 0 ≤ r ≤ R;

see (3.2) and (3.6). In accordance with the equivalence stated in Lemma 2, we use M=K
when assembling the matrix Wquad. For fixed r, the 1D integral matrix (ϕj , Trϕk)jk has
at most 1

2(r+1) non-zeros it each row. In order to make use of this sparsity property when
computing the innermost sum in Algorithm 7, these integrals need to be computed exactly,
which necessitates

M =

⌈
2K +R− 1

2

⌉

for the sequential summations approach. Both for sequential summations and for the fast
algorithm, we need to precompute index manuals. In the following experiments, neither the
time necessary to precompute integrals nor the computational costs for setting up index
manuals have been counted in.

Besides consuming enormous amounts of time, the computational burden for an explicit
assembly of the matrix is equally due to its devastating memory requirements. In Table 3.3,
for illustration purposes, we give the actual number of Galerkin basis functions for different
choices of K together with the memory required to store the whole corresponding matrix
Wquad. For the sake of the argument, we have not taken into account zeros in Wquad or
symmetries. We consider the case d=3 and thresholds for a small, an intermediate, and a
large basis. For the sake of the argument, we have not taken into account zeros in Wquad or
symmetries. As the figures reveal, for a full index cube, all but small bases and all but small
choices of d are intractable. The choice K = 75 yields an impressive memory requirement
of 1.4 TB. For an additive reduction, using 4 GB RAM, we cannot hope to deal with large
bases either, and the restriction to relatively low dimensions is already severe. Only a
hyperbolic reduction seems to constitue a feasible way when trying to explicitly assemble
the matrix. Anyway, assembling Wquad is obviously a poor idea.

56

3. Time comparison Performance tests

K→ 25 50 75

full index cube
17576 132651 438976

2.3 GB 131 GB 1.4 TB

additive reduction
3276 23426 76076

81.9 MB 4.1 GB 41.3 GB

hyperbolic reduction
218 573 1000

371.3 kB 2.5 MB 7.6 MB

Table 3.3: Sizes |K| of Galerkin bases and explicitly assembled matrices Wquad for a full index cube
and both additive and hyperbolic reductions in case d=3. We consider thresholds K=25, 50, 75 for
a small, intermediate, and large basis. In each cell, the upper figure represents the number of basis
functions, and the lower figure gives the approximate memory needed to store |K|2 64-bit double
precision numbers, i.e., for the whole matrix. On our machine, insufficient memory is expected for
an additive reduction with K=50.

For the subsequent experiments, we start in reversed order with a hyperbolically reduced
index set because only there can we hope to be able to assemble the corresponding matrix
Wquad up to fairly large dimensions and with fairly large Galerkin bases in order to study the
time behavior of the three approaches. We consider the additive reduction and the full index
cube afterwards. In Figure 3.2, we show both computation times and ratios of computation
times for an explicit assembly vs. sequential summations vs. the fast algorithm, where
black color always represents the explicit assembly, and increasingly light gray stands for
sequential summations and for the two versions of the fast algorithm, respectively. Different
symbols stand for different choices of dimensions. We consider d=2, . . . , 5. As for the choice
of the threshold K, we start from K=10 and proceed in steps of 5 until K=75. The upper
half of Figure 3.2 contains absolute computation times in seconds, while the lower part
gives the corresponding ratios of computation times. Table 3.7 contains a selection of
the underlying data (as well as data corresponding to the subsequent experiments for the
additive reduction and for the full index sube). The hyperbolic reduction is the setting
where the relative performance of the fast algorithm as compared to sequential summations
is the strongest. When compared to an explicit assembly, its second version easily allows
for a reduction of two orders of magnitude.

Next comes the additive reduction. In this case, it only takes a moderate choice of d for
an explicit assembly to become infeasible. In accordance with the indication from Table
3.2, the choices d = 3 and K = 50 actually make us run out of memory. To circumvent
at least this problem of lack of memory, we should better do the matrix-vector product
entrywise by computing only a single row, then compute its inner product with the vector,
store only the resulting scalar quantity, and proceed with the next row. Still, the problem
of unbearably long computation times remains. In case d= 4, what we have done instead
is measure the computation time for only the first row of Wquad and multiply it by the
number of rows. This way, we miss the time contribution from the subsequent matrix-
vector multiplication. However, as we have experienced in cases where there is still enough
memory, the bottleneck is actually the assembly, and the figures we present are only about
10–15% below the expected computation times when the matrix-vector multiplication is
included. Thus, our little cheating yields the same qualitative behavior. We restrict our
considerations to d = 2, 3, 4. The experimental results are given in Figure 3.3 and Table

57

Performance tests 3. Time comparison

d = 2

25 50 75

1e− 04

1e− 03

1e− 02

1e− 01

1e+ 00

1e+ 01

ass

ss

v1

v2

Hyperbolic reduction: computation times (sec)

d = 3

25 50 75

d = 4

25 50 75

K

d = 5

25 50 75

25 50 75

1e+ 01

1e+ 02

ass vs. ss ass vs. v1 ass vs. v2

Hyperbolic reduction: ratios of computation times
K25 50 75

ss vs. v1 ss vs. v2

d=2
d=3
d=4
d=5

Figure 3.2: Hyperbolic reduction Khyp: Computation times for explicit assembly (ass, black color),
sequential summations (ss, dark gray), and the fast algorithm in both versions (v1, middle gray, and
v2, light gray). Solid lines indicate d= 2. Plus symbols, circles, and asterisks stand for d= 3, 4, 5,
respectively. A selection of underlying data is provided in Table 3.7. Semi-logarithmic plots.

3.7. As the figures reveal, increasing the dimension by only 1 makes the time scale change
from seconds to minutes to hours. It can be seen that the fast algorithm still outperforms
sequential summations, but by a less significant margin, as we expect from the theoretical
analysis given at the end of the previous chapter. On the other hand, the gap between
assembly and sequential summations widens. Even in case d=4 and with a large threshold
K, sequential summations take only a few minutes, while assembling the matrix would take
several days.

58

3. Time comparison Performance tests

d = 2 (sec)

15 30 45

1e− 03

1e− 01

1e+ 01

Additive reduction: computation times

d = 3 (min)

15 30 45

1e− 05

1e− 03

1e− 01

1e+ 01

K

d = 4 (h)

15 30 45

1e− 05

1e− 03

1e− 01

1e+ 01 ass
ss

v1

v2

15 30 45

1e+ 01

1e+ 03

1e+ 05

ass vs. ss ass vs. v1 ass vs. v2

Additive reduction: ratios of computation times
K15 30 45

1e+ 01

1e+ 02

ss vs. v1 ss vs. v2

Figure 3.3: Additive reduction Kadd: Computation times and ratios as in the above Figure 3.2.
Colors and symbols are the same as above. Again, a selection of underlying data is provided in
Table 3.7. The time scale (sec, min, h) now depends on the choice of d. For d = 2, 3, we have
assembled the matrix as above. Due to lack of memory, in d= 4, we have only computed the first
row of Wquad and multiplied the computation time by the number of rows to obtain an approximate
overall computation time.Semi-logarithmic plots.

We finally turn to the full index cube. In this case, there is no hope for the endeavor
of explicitly assembling the full matrix. By taking an explicit assembly into consideration,
we merely intend to give a flavor of how heavy a computationl burden the full index cube
actually is. The performance is shown in the lower part of Table 3.7. We restrict ourselves
to K=30. In accordance with the above analysis, sequential summations perform not much

59

Performance tests 3. Time comparison

worse than the first version of the fast algorithm.
To conclude, we briefly mention the two main findings from the above experiments: First,

from a computational point of view, there is still a considerable leeway beyond index set
reduction. This motivates both the sequential summations approach and the fast algorithm.
To put it differently, if index set reduction is not a means of choice due to missing regularity
of the approximated function, direct operation procedures such as sequential summations or
the fast algorithm may allow us to perform computations within a reasonable amount of time
and with reasonable memory even though the underlying basis is relatively large. Second,
the closer the chosen index set comes to the full index cube, the closer the computational
performance of sequential summations and the fast algorithm. The more the basis is pruned,
the more is sequential summations outperformed by the fast algorithm.

60

3. Time comparison Performance tests

hyperbolic reduction

time (sec) ratio

K ass ss v1 v2 ass
ss

ass
v1

ass
v2

ss
v1

ss
v2

d
=

2 25 4.90e-03 2.23e-03 4.72e-04 9.40e-05 2.2 10.4 52.1 4.7 23.7

50 2.61e-02 8.13e-03 1.03e-03 2.15e-04 3.2 25.3 121.6 7.9 37.8

75 6.95e-02 1.87e-02 1.65e-03 3.37e-04 3.7 42.1 206.2 11.3 55.5

d
=

3 25 5.50e-02 1.92e-02 2.12e-03 3.89e-04 2.9 26.0 141.4 9.1 49.4

50 3.85e-01 8.65e-02 5.56e-03 1.01e-03 4.5 69.2 382.8 15.6 86.0

75 1.16e+00 2.17e-01 9.67e-03 1.77e-03 5.4 120.1 655.2 22.4 122.2

d
=

4 25 3.48e-01 1.10e-01 7.05e-03 1.16e-03 3.2 49.3 300.9 15.6 95.1

50 3.01e+00 5.68e-01 2.06e-02 3.43e-03 5.3 146.4 877.2 27.6 165.6

75 1.00e+01 1.49e+00 3.80e-02 6.50e-03 6.7 264.1 1544.1 39.3 229.7

d
=

5 25 1.74e+00 4.57e-01 1.94e-02 2.86e-03 3.8 89.6 606.6 23.6 159.8

50 1.74e+01 2.65e+00 6.18e-02 8.96e-03 6.6 282.1 1943.9 42.9 295.6

75 6.55e+01 7.66e+00 1.23e-01 1.74e-02 8.5 533.6 3770.8 62.5 441.4

additive reduction

time (sec) ratio

K ass ss v1 v2 ass
ss

ass
v1

ass
v2

ss
v1

ss
v2

d
=

2 15 1.11e-02 1.51e-03 7.67e-04 1.55e-04 7.4 14.5 71.7 2.0 9.7

30 1.45e-01 7.84e-03 2.79e-03 5.85e-04 18.5 51.9 247.3 2.8 13.4

45 6.95e-01 2.23e-02 5.88e-03 1.19e-03 31.2 118.3 586.3 3.8 18.8

d
=

3 15 7.83e-01 2.39e-02 8.59e-03 1.52e-03 32.8 91.2 514.7 2.8 15.7

30 3.47e+01 2.31e-01 5.81e-02 1.07e-02 150.2 596.9 3229.2 4.0 21.5

45 3.51e+02 1.01e+00 2.04e-01 3.46e-02 349.2 1719.3 10142.4 4.9 29.0

d
=

4

15 2.33e+01 2.97e-01 7.00e-02 1.19e-02 78.3 332.6 1950.8 4.2 24.9

30
3.33e+03

5.02e+00 9.20e-01 1.53e-01 662.8 3614.9 21753.9 5.5 32.8
≈ 55.5 min

45
6.95e+04

3.19e+01 4.35e+00 7.55e-01 2177.8 15983.7 92037.3 7.3 42.3
≈ 19.3 h

full index cube

time (sec) ratio

d K ass ss v1 v2 ass
ss

ass
v1

ass
v2

ss
v1

ss
v2

2 30 5.44e-01 1.04e-02 4.48e-03 9.18e-04 52.4 121.4 592.6 2.3 11.3

3 30
8.54e+02

7.24e-01 2.71e-01 5.01e-02 1179.9 3148.3 17029.1 2.7 14.4
≈ 14.2 min

4 30
1.74e+06

5.79e+01 1.55e+01 2.81e+00 3.00e+04 1.12e+05 6.19e+05 3.7 20.6
≈ 20.4 days

Table 3.7: Table of data corresponding to Figures 3.2, 3.3, and for the full index cube.

61

4 Error analysis

The fast algorithm is a means to compute approximately the action of the matrix

W(t)v, Wjk(t) = (ϕj,W (·, t)ϕk), j,k ∈ K, t ≥ 0,

on a vector v ∈ C|K|, for a sufficiently smooth potential W (·, t). As a first step, we need to
approximate W (·, t) by a multivariate polynomial W pol(·, t). The error due to polynomial
approximation of W is studied separately in Section 4.2.

The fast algorithm itself gives rise to an error due to quadrature and, in case K (Kfull

is smaller than the full index cube, to an additional error due to index set reduction. Sec-
tion 4.1 contains a detailed outline of the different error contributions and what techniques
they are dealt with in the subsequent analysis, introducing all the necessary notation. For
a full index cube, the error due to quadrature is discussed in Section 4.3. The case of K
being reduced is considerably more difficult. An appropriate error decomposition is given
in Section 4.4. We cast the regularity assumption on the exact solution as a componentwise
decay assumption on the corresponding coefficient vector, see Section 4.5, which is then
used in the analysis of the errors due to quadrature and index set reduction as given in
Section 4.6 and 4.7, respectively.

4.1 Outline and main results

We repeat some notations together with general assumptions that are tacitly used through-
out the subsequent analysis. Let

D = −1

2

(
∆−

d∑

α=1

x2
α

)
, W (x, t) = V (x, t)− 1

2

d∑

α=1

x2
α

denote the harmonic oscillator and the potential, respectively, with a smooth and possibly
time-dependent potential V (·, t) as it occurs in (1.1); see Section 1.1.

Additionally, as said earlier, we assume that W (·, t) is sufficiently smooth such that it can
be approximated by a polynomial with significantly fewer terms of significantly lower degree
than the Galerkin approximate to the solution ψ(·, t) of the Schrödinger equation (1.1)
wherever the latter does not essentially vanish, for all t ≥ 0. More precisely, as explained
in Section 1.4, we consider Chebyshev interpolation on a cube where ψ is assumed to be
essentially supported for all times, viz.,

W (x, t) ≈W pol(x, t) =
∑

r∈R
ŵr(t)Tr(x/S), x ∈ Ω = [−S, S]d.

63

Outline and main results 4. Error analysis

The multi-index set R(d,R) ⊆ Nd is assumed to satisfy

|K(d,K)| � |R(d,R)|, K � R,

where K(d,K) is the index set for the spectral approximate to K, and K is chosen such that
S ≥

√
2(K + 1)+1; see Section 1.4.

4.1.1 Solutions and their approximations

To facilitate the error analysis, we introduce the Hermite expansions

ψ(x, t) =
∑

k∈Nd
uk(t)ϕk(x), ψpol(x, t) =

∑

k∈Nd
upol
k (t)ϕk(x),

as well as the truncated Hermite expansions

ψquad
K (x, t) =

∑

k∈K
cquad
k (t)ϕk(x), ψfast

K (x, t) =
∑

k∈K
cfast
k (t)ϕk(x),

where K = K(d,K) ⊆ Kfull(d,K) is a subset of the full multi-index cube that satisfies the
closure condition (1.15).

The coefficients uk are chosen such that ψ solves the original weakly formulated problem,

i(ϕ,ψt(·, t)) = (ϕ,Dψ(·, t)) + (ϕ,W (·, t)ψ(·, t)) (4.1)

for all ϕ ∈ H1(Ω) and for all t ≥ 0, with initial data ψ(x, 0) = ψ0(x).
Analogously, ψpol is the solution to the same problem, but with W replaced by W pol,

i(ϕ,ψpol
t (·, t)) = (ϕ,Dψpol(·, t)) + (ϕ,W pol(·, t)ψpol(·, t)) (4.2)

for all ϕ ∈ H1(Ω) and for all t ≥ 0, with the same initial data ψpol(x, 0) = ψ0(x). We recall
the definition of the matrix representation of W pol(·, t),

Wpol
jk (t) = (ϕj,W

pol(·, t)ϕk), j,k ∈ K, t ≥ 0. (4.3)

The function ψquad
K is the Galerkin approximation to ψpol, where (K+1)-nodes full-product

Gauß–Hermite quadrature has been taken into account for the potential part,

i(ϕj, (ψ
quad
K)t(·, t)) = (ϕj, Dψ

quad
K (·, t)) + (ϕj,W

pol(·, t)ψquad
K (·, t))quad (4.4)

for all j ∈ K and t ≥ 0 or, equivalently,

iċquad(t) = Dcquad(t) + Wquad(t)cquad(t), (4.5)

where we set cquad(t) = (cquad
k (t))k∈K, and

D = diagk∈K

(
d∑

α=1

(
kα +

1

2

)
)
, Wquad

jk (t) = (ϕj,W
pol(·, t)ϕk)quad. (4.6)

As an initialization, we choose the L2(Rd)-orthogonal projection of ψ0, i.e., PKψ0; cf. the
definition of PK given in (1.5).

64

4. Error analysis Outline and main results

symbol coefficients equ. init. description

(1) ψ uk, k ∈ Nd (4.1) ψ0 original weak formulation

(2) ψpol upol
k , k ∈ Nd (4.2) ψ0 W ≈W pol

(3) ψquad
K cquad

k , k ∈ K (4.4) PKψ0

W ≈W pol,

Galerkin approximation,

quadrature

(4) ψfast
K cfast

k , k ∈ K (4.7) PKψ0

W ≈W pol,

Galerkin approximation,

insertion of X(α) into W pol

Table 4.1: Overview: Steps of error analysis. (1) vs. (2) is the interpolation error; see Section 4.2.
(2) vs. (3) is the error due to the fast algorithm over a full index cube; see Section 4.3. (2) vs. (4)
is the error due to the fast algorithm over a reduced index set; see Sections 4.4–4.7.

Finally, ψfast
K =

∑
k∈K c

fast
k ϕk is the physical space representation of the solution cfast(t) =

(cfast
k (t))k∈K to

iċfast(t) = Dcfast(t) +W pol(X, t)cfast(t), (4.7)

where, in the last term on the right-hand side, W pol(X, t) denotes again formal insertion of
the coordinate matrices

X
(α)
jk = (ϕj, xαϕk), j,k ∈ K,

in place of xα into the polynomial W pol;, see Section 2.3. The initial value is again PKψ0.
Equation (4.7) is the semidiscrete problem as we actually propagate it in time. Thus, our

overall aim is to estimate the spatial error

‖ψ(·, t)− ψfast
K (·, t)‖, t ≥ 0.

We do this using the above error decomposition. An overview over all steps of the subse-
quent error analysis is provided in Table 4.1, where we recap the above notation including
a concise characterization of what the different quantities represent.

4.1.2 Organization of the analysis and main results

In Section 4.2, we discuss the error due to polynomial interpolation of the potential, i.e., the
difference between ψ and ψpol. This involves standard techniques. We shall nevertheless
go through the details of the analysis because, first, the proof serves as a sketch for the
derivation of global error estimates in subsequent sections and, second, the presentation
can afterwards focus more easily on essential novelties.

In Section 4.3, we consider the choice of a full index set. As we have seen in Lemma 2,
in case of K = Kfull, approximation of the potential matrix W(t) by the kind of quadrature
under consideration is actually equivalent to formal insertion of X(α) into the potential.

65

Outline and main results 4. Error analysis

Thus, ψquad
K and ψfast

K coincide. We present an analysis that comprises the errors both due

to a truncation of the Galerkin basis and due to quadrature, i.e., we compare ψpol and ψquad
K .

This is done using adaptations of ideas developed in [13]; see the introductory remarks at
the beginning of Section 4.3. Leaving aside the error due to polynomial interpolation of the
potential as given in Lemma 3, we can summarize the error due to spatial discretization as
given by our method as follows. For the full index cube, we find:

Theorem 1. (global error of spatial discretization, full index cube)

Let ψpol =
∑

k∈Nd u
pol
k ϕk be the solution to (4.2), and let ψquad

K be the solution to (4.4) with

initialization PKψpol(·, 0) = ψquad
K (·, 0), where K(d,K) is the full index cube.

For all even integers s such that

|ψpol(·, t)|s <∞, t ≥ 0,

the global error due to spatial discretization is then given by

‖ψpol(·, t)− ψquad
K (·, t)‖ ≤ CK−s/2

(
|ψpol(·, t)|s +

∫ t

0
|ψpol(·, τ)|s dτ

)
, t ≥ 0.

where C = C(W pol, d, s).

This is simply a repetition of the below Theorem 3. See (1.19) for a definition of the
| · |s-seminorm.

Reducing the index set makes the analysis considerably more intricate. In case of K (
Kfull, the solutions ψquad

K and ψfast
K no longer coincide. In Section 4.4, comparing ψpol and

ψfast
K , we give an appropriate error decomposition that facilitates the analysis. In a specific

way, the error can be split into a contribution due to quadrature and a contribution due to
index set reduction itself. Based on a decay assumption on the coefficient vector of the exact
solution ψpol introduced and explained in Section 4.5, the corresponding local errors are
then analyzed in Sections 4.6 and 4.7, respectively. The analysis as it concerns the reduced
case is due to [12]. Sections 4.4–4.7 contain an extended and slightly modified version of
the material presented in [12]. We restrict our considerations to a hyperbolically reduced
index set. After a thorough analysis, we eventually find:

Theorem 2. (global error of spatial discretization, hyperbolic reduction)

Let ψpol =
∑

k∈Nd u
pol
k ϕk be the solution to (4.2), and let ψfast

K be the solution to (4.7) with
initialization PKψpol(·, 0) = ψfast

K (·, 0), where K(d,K) is a hyperbolically reduced index set.
For all integers s such that

|ψpol(·, t)|s <∞, t ≥ 0,

the global error due to spatial discretization is then given by

‖ψpol(·, t)− ψfast
K (·, t)‖ ≤ C1K

−s/2(|ψpol(·, t)|s +

∫ t

0
|ψpol(·, τ)|s dτ

)

+ C2(t)Kd/2ε

∫ t

0
|PKψpol(·, τ)|s;∞ dτ,

t ≥ 0.

66

4. Error analysis Outline and main results

where

C1 = C1(W pol, d, s), C2(t) = C2(d, s,R,W pol, S, t),

and the factor ε is defined as

ε = min{εquad, εred}, (4.8)

where

εquad = min
k∈K,

∃α:kα≥K−R+2

d∏

β=1

max{1, kβ}−s/2,

εred = min
k∈K,r∈R,

k+r∈Kfull\K

d∏

β=1

max{1, kβ − rβ}−s/2

This follows directly from putting together the estimates given in the subsequent Theo-
rems 4–6 according to the decomposition given in Section 4.4. The norm | · |s;∞ is defined
in (1.20).

Some comments are in order: In the estimate given in the previous Theorem 1, the error
due to quadrature is subsumed in the standard projection error. In case of a reduced index
set, this is no longer possible. Quite the contrary, as we can no longer invoke arguments
that are valid only for a full index cube, not even the error contribution due to quadrature
can be easily accounted for any more—not to mention the additional error due to index set
reduction itself. Consequently, the error bound given in Theorem 2 exhibits another term,
which is due to both quadrature and index set reduction. We shall comment on where the
full cube strategy fails in case of a reduced index set in the course of the below analysis. The
below Theorem 4 gives an estimate for the global error due to spatial discretization that
summarizes the proceeding up to the point where the paths separate and new techniques
need to be applied.

To solve the difficulties that arise from the failure of our previous strategy, first, we
translate the regularity condition |ψpol(·, t)|s < ∞ on the projected exact solution into a
decay property for the corresponding coefficient vector upol. In Section 4.5, we discuss how
exactly this decay property reflects the regularity of ψpol, and why this makes the norm
|PKψpol(·, t)|s;∞ of the projected exact solution pop up in the estimate. Second, we employ
new techniques based on binary trees to study both the error due to quadrature and due to
index set reduction. The idea is to convert the Hermite and Chebyshev recurrence relations
into binary trees in a suitable way, and to apply combinatorial arguments to these trees.
This eventually leads to the somewhat complicated statement of the error decay as given
above in eq. (4.8). The requirement that s be even is only for ease of presentation; see the
remarks at the end of Section 4.5.

Each of the minima that occur in (4.8) has its specific meaning that we shall elucidate
in Sections 4.6 and 4.7. The first argument in the outermost minimum stems from the
local error contribution due to quadrature; see Theorem 5. The second argument comes
from reducing the index set; see Theorem 6. As will become clear from the proofs to these
theorems, the above definition of ε is a conservative bound. Using K � R, it is easily seen

ε ∼ K−s/2,

67

Interpolation error 4. Error analysis

thus, the overall error decays spectrally if s > d.
The dependency of the constant C2 on S (and on t) comes from the Chebyshev coefficients

of W pol and does not affect the bound as a function of K.
In the following, for the sake of easier readability, we shall often drop explicit time-

dependency whenever it is justified by the context. In order to avoid any confusion, be
aware that we always consider a full product of (K+1)-nodes Gaussian quadrature formulas,
which we refer to by a superscript or a subscript “quad”, despite K(d,K) possibly being
reduced.

4.2 Interpolation error

We estimate the error due to replacing the potential W by some polynomial approximation
W pol on Ω = [−S, S]d.

Lemma 3. (interpolation error)
If ψ ∈ H2(Ω) is the solution to (4.1) and ψpol ∈ H2(Ω) is the solution to (4.2) with
initialization ψ(·, 0) = ψpol(·, 0), the error is given by

‖ψ(·, t)− ψpol(·, t)‖ ≤
∫ t

0
‖W (·, τ)−W pol(·, τ)‖‖ψ(·, τ)‖ dτ, t ≥ 0.

Proof. The proof uses standard techniques; cf. [61], Theorem II.1.5. For ease of presenta-
tion, we omit explicit time-dependency. We define e = ψ − ψpol and subtract (4.2) from
(4.1). Using

Wψ −W polψpol = W pol(ψ − ψpol) + (W −W pol)ψ = W pole+ (W −W pol)ψ,

this yields the error equation

i(ϕ, et) = (ϕ, (D +W pol)e) + (ϕ, (W −W pol)ψ) (4.9)

for all ϕ ∈ H1(Ω). Because W pol is real-valued, we find

(ϕ,W polϕ) = (ϕ,W polϕ)

for all ϕ ∈ L2(Ω), thus, <(−i(ϕ,W polϕ)) = 0. Additionally, the operator −1
2∆ is self-

adjoint with the domain H2(Rd). Using (4.9) with ϕ = e and taking the real part, this
allows to compute

‖e‖ d

dt
‖e‖ =

1

2

d

dt
‖e‖2 = <(e, et)

= <(−i(e, (D +W pol)e))︸ ︷︷ ︸
=0

+<(−i(e, (W −W pol)ψ)

≤ ‖e‖‖(W −W pol)ψ‖

Dividing by ‖e‖ and integrating from 0 to t gives the desired result.

The interpolation error W −W pol can now be bounded in terms of the order R of the
interpolant and of the derivatives of W using standard theory. We refer to the comments
in Section 1.4 for the details.

68

4. Error analysis Spatial discretization

4.3 Spatial discretization

In the present section, we restrict our considerations to the case K = Kfull. The case of a
reduced index set is more complicated and shall thus be delayed to Section 4.4 and onwards.
On the full index cube, applying the fast algorithm is equivalent to (K+1)-nodes full-product
Gauss–Hermite quadrature for the potential part, as seen in Section 2.6. Hence, we compare
ψpol and ψquad

K in order to analyze the overall error due to spatial discretization. Again, let
PK denote the L2(Rd)-orthogonal projection onto the approximation space span{ϕk ; k ∈
K} and P⊥K its orthogonal complement; see (1.5). Following [86], the basic idea is to invoke a
standard projection error estimate for the exact solution ψpol, and to compare the projected
solutions PKψpol and ψquad with and without quadrature separately; see the ansatz in the
proof of Theorem 3. The latter error can be analyzed using an appropriate projection
matrix that is related to the exactness properties of Gaussian quadrature; see the below
Lemma 4. The technique has been developed in [13]. We present an adaptation to a Hermite
basis. The errors are given in terms of Korobov seminorms of the solution ψpol to (4.2).

Theorem 3. (global error of spatial discretization, full index cube)

Let ψpol =
∑

k∈Nd u
pol
k ϕk be the solution to (4.2), and let ψquad

K be the solution to (4.4) with

initialization PKψpol(·, 0) = ψquad
K (·, 0), where K(d,K) is the full index cube.

For all integers s such that

|ψpol(·, t)|s <∞, t ≥ 0,

the global error due to spatial discretization is then given by

‖ψpol(·, t)− ψquad
K (·, t)‖ ≤ CK−s/2

(
|ψpol(·, t)|s +

∫ t

0
|ψpol(·, τ)|s dτ

)
, t ≥ 0.

where C = C(W pol, d, s).

Proof. Again, we omit time-dependency. A common way of decomposing the error is

ψpol − ψquad
K =

(
ψpol − PKψpol

)
︸ ︷︷ ︸

=ρ

+
(
PKψpol − ψquad

)
︸ ︷︷ ︸

=θ

; (4.10)

see [86]. The error component ρ is bounded by the standard projection estimate

‖ψpol − PKψpol‖ ≤ C(d, s)K−s/2|ψpol|s; (4.11)

see (1.18). The error component θ is controlled as follows. By orthogonality,

(ϕj, (P⊥Kψpol)t) =
∑

k/∈K

(ϕj, ϕk)u̇pol
k = 0 ∀ j ∈ K

and, using the eigenfunction relation,

(ϕj, DP⊥Kψpol) =
∑

k/∈K

(ϕj, Dϕk)upol
k

=
∑

k/∈K

(ϕj, ϕk)

d∑

α=1

(
kα +

1

2

)
upol
k = 0 ∀ j ∈ K.

69

Spatial discretization 4. Error analysis

Therefore, using (4.2) with ϕ = ϕj, j ∈ K, we get

i(ϕj, (PKψpol)t) = (ϕj, DPKψpol)

+ (ϕj,W
polPKψpol) + (ϕj,W

polP⊥Kψpol)
∀ j ∈ K. (4.12)

Defining a defect

dj = (ϕj,W
polP⊥Kψpol)

and setting d = (dj)j∈K, upol = (upol
k)k∈K, we can rewrite (4.12) equivalently as

iu̇pol = Dupol + Wpolupol + d. (4.13)

By Parseval’s identity, the error e = upol−cquad equals θ. What follows is a discrete analog
of the proceeding given in the proof of Lemma 3. We subtract (4.5) from (4.13) to obtain
the error equation

iė = De + Wquade + (Wpol −Wquad)upol + d. (4.14)

Multiplying (4.14) with e∗, taking the real part, and using

e∗De =
∑

j

Djj︸︷︷︸
≥0

|ej|2 ∈ R, e∗Wquade = e∗Wquade ∈ R,

we find

d

dt
‖e‖ ≤ ‖(Wpol −Wquad)upol‖+ ‖d‖.

The term (Wpol −Wquad)upol can be estimated as in Lemma 4, see below. Using (4.11),
the defect is controlled via

‖d‖2 ≤ ‖W pol‖2‖P⊥Kψpol‖2 ≤ C(W pol, d, s)K−s|ψpol|2s. (4.15)

Integrating from 0 to t then yields the desired result.

The following Lemma gives an estimate for the error when approximating each entry in
the matrix representation of the potential part using (K + 1)-nodes full-product Gaussian
quadrature.

Lemma 4. (error due to quadrature)
Let q be a multivariate polynomial with maximal univariate degree R such that supp(q)
⊂ Ω = [−S, S]d. Consider a function in Hermite representation,

v =
∑

k∈Nd
vkϕk,

such that |v|s <∞ for some integer s, and matrices

Qjk = (ϕj, qϕk), Qquad
jk = (ϕj, qϕk)quad, j, k ∈ Kfull,

where K(d,K) = Kfull(d,K) is the full index cube with K � R. Setting v = (vk)k∈K, we
find

‖(Q−Qquad)v‖ ≤ CK−s/2|v|s,
where C = C(q, d, s).

70

4. Error analysis Spatial discretization

Proof. Consider an entry of the difference matrix (Q − Qquad)jk. The error vanishes if
|j + k|∞ = maxα(jα + kα) ≤ 2K + 1 − R. Hence, defining a diagonal projection matrix P
that is related to the exactness of Gaussian quadrature,

Pjj =

{
1, |j|∞ > K + 1−R,
0, else,

we can write

Q−Qquad = P(Q−Qquad)P,

which allows for

‖(Q−Qquad)v‖ ≤ ‖P‖
(
‖Q‖+ ‖Qquad‖

)
‖Pv‖,

where the matrix norm is the spectral matrix norm, and ‖P‖ = 1. The formal extension of
P to an infinite matrix, with ones on the new diagonal elements, can be interpreted as the
matrix representation of an operator P : L2 → L2. With this operator, we can rewrite Pv
to get

‖Pv‖ = ‖PPKv‖ = ‖Pv − PP⊥Kv‖ ≤ ‖Pv‖+ ‖P⊥Kv‖,
and, by the projection estimate (4.11),

‖Pv‖ ≤ C(d, s)(K −R)−s/2|v|s ≤ C(d, s)K−s/2|v|s.

This bound is conservative, but still spectrally accurate with respect to K for K � R. It is
only in this estimate that we make use of K � R. Since Q is symmetric, the matrix norm
of Q is readily controlled using Rayleigh quotients,

‖Q‖ = sup
‖w‖=1

∑

j,k

wjQjkwk = sup
‖w‖=1

([∑

j∈K
wjϕj

]
, q
[∑

k∈K
wkϕk

])

≤ max
x∈Ω
|q(x)|2 ≤ C(q),

The matrix norm of Qquad is estimated as follows: Using the factorization

Qquad = UT diagm∈K(q(ξm))U, (4.16)

and the fact that U is a unitary matrix, we find

‖Qquad‖ ≤ max
m∈K

|q(ξm)|‖UT ‖‖U‖ ≤ C(q).

Putting everything together proves the claim.

For a reduced index set, the above factorization (4.16) of Qquad is no longer valid, and
neither is U unitary any more. We can therefore not expect an analogous procedure as in
the proof of Lemma 4 to be viable in case K (Kfull. The remaining sections are dedicated
to a remedy for this difficulty.

71

Error decomposition for reduced index sets 4. Error analysis

4.4 Error decomposition for reduced index sets

In the following sections, we restrict our attention to a hyperbolically reduced index set
K = Khyp. As will be seen in the proof of Theorem 5, the subsequent analysis is valid for
any kind of index set reduction that satisfies the vague condition

∀k ∈ K, α = 1, . . ., d : kα ≈ K ⇒ ∀β 6= α : kβ � kα,

i.e., every index has at most one component that comes close to K. This is valid for a
hyperbolic and for an additive reduction, but not for the full index cube. The adaptation
of the following analysis to an additive reduction is straightforward.

As explained in Section 2.6, for a reduced index set, formal insertion of the coordinate
matrices X(α) into the polynomial is no longer equivalent to (K + 1)-nodes full-product
Gauß–Hermite quadrature in every entry of the potential representation Wpol(t). Therefore,

the solutions ψquad
K and ψfast

K to (4.4) and (4.7), respectively, do no longer coincide, but
exhibit different dynamics. As the proof of Lemma 4 is no longer valid, a comparison of
ψpol and ψfast

K cannot be given by simply smuggling in ψquad
K . In the present section, first,

we briefly explain to what extant the above analysis carries over from the case of K being a
full index cube. Second, we give an outline of how to fill the arising gap, i.e., the invalidity
of an analog to Lemma 4. The latter is due to [12].

The very ansatz for the proof of Theorem 3 carries over when comparing ψpol to ψfast
K

instead of ψquad
K together with most of the subsequent steps. In order to make all annoying

terms vanish when multiplying the error equation by the error vector and taking the real
part, we have to ensure that e∗(t)W pol(X, t)e(t) is a real quantity, where we now set e(t) =
upol(t)− cfast(t). This is readily seen from the fact that W pol(X, t) is a real and symmetric
matrix. We thus find:

Theorem 4. (global error of spatial discretization, hyperbolic reduction)

Let ψpol =
∑

k∈Nd u
pol
k ϕk be the solution to (4.2), and let ψfast

K be the solution to (4.7) with
initialization PKψpol(·, 0) = ψfast

K (·, 0), where K(d,K) is a hyperbolically reduced index set.
For all integers s such that

|ψpol(·, t)|s <∞, t ≥ 0,

the global error due to spatial discretization is then given by

‖ψpol(·, t)− ψfast
K (·, t)‖ ≤ CK−s/2

(
|ψpol(·, t)|s +

∫ t

0
|ψpol(·, τ)|s dτ

))

+

∫ t

0
‖(Wpol(τ)−W pol(X, τ))upol(τ)‖ dτ,

t ≥ 0.

where C = C(W pol, d, s).

There is, however, no analog of Lemma 4 for a reduced index set, which is due to the
matrix U being no longer unitary. Hence, the integrand

‖(Wpol(τ)−W pol(X, τ))upol(τ)‖

72

4. Error analysis Error decomposition

as occuring on the right-hand side of the estimate given in Theorem 4 needs to be dealt
with in a different way. This is done in the remainder of the present chapter.

We start with some tools and technicalities. For now, let X
(α)
full denote the (|Kfull|×|Kfull|)-

coordinate matrices with respect to the full index cubeKfull(d,K), while X(α) are the smaller
coordinate matrices with respect to the hyperbolically reduced index set K = Khyp(d,K).
We define a cutting opertor

σ : C|Kfull|×|Kfull| → C|K|×|K|, σ(A) = (Ajk)j,k∈K (4.17)

that trims a fully indexed matrix to the size of the hyperbolically reduced index set by
deleting rows and columns which bear indices from Kfull \K. Slightly overloading notation,
let σ denote the analogous operator for vectors instead of matrices. A complementary
operation is the blow-up

σ+ : C|K| → C|Kfull|, (σ+(v))j =

{
vj, j ∈ K,
0, j /∈ K,

(4.18)

which turns a vector of reduced size into a full-sized vector by adding zeros at indices
missing in K. We need the blow-up for vectors only, not for matrices. The following rather
trivial lemma relates the two operations.

Lemma 5. (cutting and blowing up)
For any matrix A|Kfull|×|Kfull| and any vector v ∈ C|K|, it holds

σ(A)v = σ(Aσ+(v)).

For all vectors v ∈ C|K| and all times t ≥ 0, we can decompose the relevant error
(Wpol(t)−W pol(X, t))v according to (omitting explicit time-dependency)

(Wpol −W pol(X))v = (Wpol −Wquad)v + (Wquad −W pol(X))v

= (Wpol −Wquad)v

+
(
Wquad − σ(W pol(Xfull))

)
︸ ︷︷ ︸

?

v +
(
σ(W pol(Xfull))−W pol(X)

)
v,

where the difference ? vanishes by virtue of Lemma 2. This separates the two sources of
error, i.e., quadrature and index set reduction. The error due to quadrature is given by

equad(v, t) = (Ejk(t))j,k∈K v, Ejk(t) = Wpol
jk (t)−Wquad

jk (t). (4.19)

Using Lemma 5, the error due to grid reduction can be expressed as (omitting again time-
dependency at various occurrences for the sake of readability)

ered(v, t) = (ej(t))j∈K ,

ej =
(
Wquadv

)
j
−
(
W pol(X)v

)
j

=
(
σ(W pol(Xfull))v

)
j
−
(
W pol(X)v

)
j

=
(
W pol(Xfull)σ+(v)

)
j
−
(
W pol(X)v

)
j
.

(4.20)

We eventually find the error decomposition

(Wpol(t)−W pol(X, t))v = equad(v, t) + ered(v, t).

The error (4.19) due to quadrature is analyzed in Section 4.6. The error (4.20) due to index
set reduction is analyzed in Section 4.7.

73

Decay assumption 4. Error analysis

4.5 Decay assumption

To facilitate the subsequent error analysis, we need to convert the regularity assumption on
ψpol from Theorem 4, viz.,

|ψpol(·, t)|s <∞, t ≥ 0,

for some s ∈ N, into a decay condition on the coefficient vector upol = (upol
k (t))k∈K corre-

sponding to PKψpol. This is done in the present section.
For a general vector v ∈ C|K|, we aim for a decay condition of the form

vk ≤ C
d∏

α=1

max{kα, 1}−r, k ∈ K, (4.21)

with some decay parameter r ∈ N. In the following, we motivate this assumption if v is
interpreted as the coefficient vector of the Schwartz function

v =
∑

k∈K
vkϕk

In particular, we comment on how the constant C depends on v and how the decay pa-
rameter r is related to the regularity of v. Briefly, the above decay condition (4.21) reflects
the natural decay behavior of the coefficients in a product Hermite expansion of a suffi-
ciently smooth function. Obviously, the larger the index components, the faster the decay.
Explaining this in more detail, we start with the so-called ladder operators

(A−χ)(x) =
1√
2

(
x+

d

dx

)
χ(x), (A†χ)(x) =

1√
2

(
x− d

dx

)
χ(x). (4.22)

Their name comes from the fact that they relate the univariate Hermite functions to one
another via

ϕk+1 =
1√
k + 1

A†ϕk, ϕk−1 =
1√
k
A−ϕk. (4.23)

We have already encountered the lowering operator A− by the name of A (with no raising
counterpart) in (1.12). The ladder operators (4.22) are adjoint to one another on the space
S(R) of Schwartz functions, i.e.,

(A†η, χ) = (η,A−χ) ∀ η, χ ∈ S(R), (4.24)

which follows easily from integration by parts. In higher dimensions, defining A−α and A†α
to be the 1D ladder operators (4.22) with respect to the αth coordinate, we write

(A−)r = (A−1)r1 . . .(A−d)rd , r = (r1, . . . , rd) ∈ Nd,

and analogously for (A†)r. In particular, the corresponding 1D relations (4.23) immediately
yield

ϕk+eα =
1√

kα + 1

(
A†
)eα

ϕk =
1√

kα + 1
A†αϕk,

ϕk−eα =
1√
kα

(A−)eαϕk =
1√
kα
A−αϕk

(4.25)

74

4. Error analysis Decay assumption

as higher-dimensional counterparts for the ladder relations. See the references given in
Section 1.2 for the above facts. These tools allow to proof the following lemma, which is
the key to an understanding of the above decay assumption.

Lemma 6. (decay of Hermite expansion coefficients)
Consider a function v =

∑
k∈K vkϕk ∈ S(Rd) in Hermite representation. For every fixed

integer s, the expansion coefficients decay as

|vk| ≤
d∏

α=1

(1 + (kα − s)+)−s/2 |v|s;∞.

For the definition of the | · |s;∞-norm, see again (1.20).

Proof. The proof follows [61], Theorem III.1.5. For every k, we define the multi-index m(k)
by the condition

kα −m(k)α = (kα − s)+, α = 1, . . ., d,

where a+ = max{a, 0}. Then, 0 ≤ m(k) ≤ s. We introduce the shorthand notation

v(k, s) =
d∏

α=1

((1 + (kα − 1)+). . .(1 + (kα − s)+))−1/2 .

By repeated application of (4.24) in combination with (4.25), we can then estimate

|vk| = |(ϕk, v)| = v(k, s)

∣∣∣∣
((

A†
)m(k)

ϕk−m(k), v

)∣∣∣∣

= v(k, s)
∣∣∣
(
ϕk−m(k), (A

−)m(k)v,
)∣∣∣

≤ v(k, s)
∥∥∥(A−)m(k)v

∥∥∥ ≤
d∏

α=1

(1 + (kα − s)+)−s/2
∥∥∥(A−)m(k)v

∥∥∥ .

We aim for vk ≤ C
∏d
α=1 max{kα, 1}−r. In the light of Lemma 6, for some k ∈ K,

consider the inequalities

(1 + (kα − s)+)−s/2 ≤ k−rα , (4.26)

where s is some fixed integer. For all choices of α such that kα ≥ 2, a solution r of (4.26)
satisfies

r ≤ s

2
logkα

(
1 + (kα − s)+

)
≤ s

2
.

If kα = 1, the relation (4.26) holds true for any choice of r. Thus, if s is even, we can choose
r = s

2 , and we eventually obtain the desired decay property

vk ≤ |v|s;∞
d∏

α=1

max{1, kα}−s/2,

75

Local error due to quadrature (reduced index set) 4. Error analysis

for every even integer s. If s is odd, the choice is r = s−1
2 .

We return to the question of how the regularity of ψpol translates into a decay condition
on upol of the desired form (4.21). If |ψpol(·, t)|s <∞ for some (say, even) s ∈ N, where | · |s
is the seminorm defined in (1.19), it follows that |PKψpol(·, t)|s;∞ <∞, where | · |s;∞ is the
norm defined in (1.20). From the above considerations, we then have

upol
k (t) ≤ |PKψpol(·, t)|s;∞

d∏

α=1

max{1, kα}−s/2. (4.27)

4.6 Local error due to quadrature (reduced index set)

In the present section, we analyze the error due to quadrature as defined in (4.19). At the
core of the below analysis is a suitable conversion of the corresponding 1D quadrature error
into a binary tree. The 1D error can then be estimated using combinatorial arguments. In
higher dimensions, the hyperbolic reduction allows for a reduction of the analysis to the 1D
case.

Theorem 5. (local error due to quadrature, hyperbolic reduction)
Consider a vector v ∈ C|K| that satisfies the decay assumption (4.27), viz.,

vk ≤ |v|s;∞
d∏

α=1

max{1, kα}−s/2,

for some even integer s, where v =
∑

k∈K vkϕk. Let K(d,K) be a hyperbolically reduced
index set. Then, the error (4.19) due to quadrature behaves as

‖equad(v, t)‖ ≤ Kd/2 max
j∈K

∣∣∣∣
((

Wpol(t)−Wquad(t)
)

v
)
j

∣∣∣∣

≤ C(R,W pol, S, t) · |v|s;∞ · Kd/2 · min
k∈K,

∃α:kα≥K−R+2

d∏

β=1

max{1, kβ}−s/2,
t ≥ 0,

where the matrices Wpol(t) and Wquad(t) are defined as in (4.3) and (4.6), respectively,
and the constant C(R,W pol, S, t) depends only on R(d,R), the regularity of W pol(·, t), the
parameter S, and time t.

As for the min in the right-hand side estimate, for each k ∈ K, there is at most one α
such that kα ≥ K −R+ 2. This will become clear in the following proof.

The first estimate is simply the compatibility of ‖ · ‖ and the maximum norm—a rough
estimate, admittedly. For the following binary tree analysis, the maximum norm is the
natural norm, though.

The restriction that s be even is merely for ease of presentation; see the above consider-
ations in Section 4.5.

Proof. The proof is outlined as follows. We consider a termwise quadrature approximation
of W pol. In the first part, we discuss the case d= 1. In 1D, termwise error matrices can
be turned into binary trees. The binary tree representation then allows for a combinatorial
treatment of the 1D quadrature error. In the second part, we consider the quadrature

76

4. Error analysis Error due to quadrature

error in arbitrary dimensions, which we can reduce to the 1D case by the definition of the
hyberbolical reduction and invoke the combinatorial results.

Separating the terms in W pol, viz.

Ejk(t) =
∑

r∈R
ŵr(t)E

r
jk, j,k ∈ K, t ≥ 0, (4.28)

gives rise to termwise error matrices

Er
jk = (ϕj(S·), Tr(·/S)ϕk(S·))− (ϕj(S·), Tr(·/S)ϕk(S·))quad .

The proof proceeds along the following lines: In Step 1.1, we convert the 1D quadrature
error for a single term into a binary tree. A characterization of its non-vanishing leaves is
given in Step 1.2. In Step 1.3, we count these leaves. The 1D error is finally accumulated in
Step 1.4. Then, in multiple dimensions, we decompose the error into appropriate 1D error
term (Step 2.1), before it can eventually be estimated in Step 2.2 by reduction to the 1D
case.
Step 1.1: Conversion of 1D error into binary tree: In 1D, we invoke the Chebyshev recur-
rence (1.25) together with the Hermite recurrence (1.10) for the right-hand side argument
to obtain a decomposition of Chebyshev–Hermite products

ϕj(x)Tr(x/S)ϕk(x) =
(√

2(k + 1)

S
ϕj(x)Tr−1(x/S)ϕk+1(x)

)

+

(√
2k

S
ϕj(x)Tr−1(x/S)ϕk−1(x)− ϕj(x)Tr−2(x/S)ϕk(x)

)
(4.29)

into three single terms, which we group as above. Due to S ≥
√

2(K + 1) + 1, see (1.23),
all occurring coefficients are bounded by

√
2k

S
≤
√

2(k + 1)

S
≤ 1. (4.30)

Considering the total polynomial degrees of the Chebyshev–Hermite products in each term,
we realize that the first term has an unaltered degree (shifting one power of x from the
Chebyshev factor to the second Hermite factor), while the latter terms both exhibit a
reduction of degree by 2. This is reflected by the bracketing. The observed changes in
polynomial degrees when applying the recurrences is the starting point for converting (4.29)
into a binary tree. Interpreting ϕjTrϕk as the root of a binary tree, we define the first term
on the right-hand side of (4.29) to be its left child, and the latter terms to be its right child.
To each child, we apply the same procedure recursively. An r-fold application of (4.29) to
each child then yields the binary tree pattern T of depth r as given in Figure 4.1, where we
omit all arguments and coefficients. Descending to the right reduces the polynomial degree
by 2, descending to the left leaves it unaltered. In case r > k, we may define ϕk(x) = 0 for
k ≤ −1, preserving the recurrence relation (1.10) for negative indices. We expand termwise
until each leaf bears a single term of the form ϕjϕk+λ−ρ, where ρ and λ are the numbers of
index-changing right and left descents, respectively, and λ+ ρ ≤ r. By the same procedure
for the corresponding quadrature formulas instead of the exact integrals, we convert both

77

Error due to quadrature 4. Error analysis

ϕjTrϕk

ϕjTr−1ϕk+1

ϕjTr−2ϕk+2
ϕjTr−2ϕk

+ϕjTr−3ϕk+1

ϕjTr−1ϕk−1 + ϕjTr−2ϕk

ϕjTr−2ϕk

+ϕjTr−3ϕk+1

ϕjTr−2ϕk−2

+ϕjTr−3ϕk−1

+ϕjTr−4ϕk

left descent: degree ±0
right descent: degree −2

...

d
ep
th
r

Figure 4.1: [12] Expansion of 1D quadrature error as a binary tree. In case r=1, we just use (1.10)
on a term. In case r=0, terms are added to the left child without expanding.

terms in Erjk into a binary tree T of depth r. Each leaf in T then bears the difference of
a 1D integral with the integrand being a product of two Hermite functions only (thus, the
Chebyshev polynomial is gone by recursive application of (4.29)) and the corresponding
quadrature formula.

As next steps, we characterize all non-vanishing leaves in T. As it turns out, at a non-
vanishing leaf, the exact integral is zero. Then, we examnie how many these leaves are, and
what quantity they sum up to.
Step 1.2: Characterization of non-vanishing leaves: Consider a fixed leaf in T connected
to the root Erjk by ρ and λ right and left descents, respectively. For the quadrature error
not to vanish, we require 2(K + 1) ≤ j + k + λ − ρ for each single term, by the exactness
properties of Gaussian quadrature. For the exact integral not to vanish by orthogonality of
the Hermite functions, it is required j = k+λ−ρ. Together, this leads to the contradiction

2(K + 1) ≤ j + k + λ− ρ = 2j.

Thus, leaves with non-vanishing quadrature errors bear only the quadrature formulas, but
not the exact integrals.
Step 1.3: Number of non-vanishing leaves: This is where the combinatorics comes into play.
For a non-vanishing quadrature error at a particular leaf, we have

2(K + 1) ≤ j + k + λ− ρ ≤ j + k + r − 2ρ.

This motivates the definition

ρmax(j, k, r) =

⌊
j + k + r − 2(K + 1)

2

⌋

+

≤ r

2
− 1,

which is the maximal number of right descents that does not reduce the polynomial degree
of the integrand to the extent that the quadrature becomes exact, where a+ = max{a, 0}.

In general, in an arbitrary full binary tree of depth r, the number of leaves connected to
the root by a path containing exactly s right descents equals

(
r
s

)
. This can easily be seen

as follows: Consider Figure 4.2, showing a full binary tree of height r with its left and right
subtrees of height r−1 each attached to its root. Clearly, all relevant trees are those being
connected by s right descents in the left and by s−1 right descents in the right subtree,
thus, our statement is just a reformulation of the binomial recursion formula

(
r

s

)
=

(
r − 1

s

)
+

(
r − 1

s− 1

)
.

78

4. Error analysis Error due to quadrature

Hence, the number of non-vanishing leaves in T is given by

a(j, k, r) =

ρmax(j,k,r)∑

s=0

(
r

s

)
(4.31)

We are looking for an upper bound for a(j, k, r) that does not depend on j or k, but only
on the polynomial degree r. To investigate this, consider the sum

∑b
s=a

(
c
s

)
with some

a, b, c ∈ N such that a ≤ 2b < c. For s ≤ b, we find

(
c

s

)/(
c

b

)
=
b!(c− b)!
s!(c− s)! =

b · . . . · (s+ 1)

(c− s) · . . . · (c− b+ 1)
<

(
b

c− b+ 1

)b−s
. (4.32)

The assumption c > 2b implies b/(c− b+ 1) < 1. Therefore, using (4.32),

b∑

s=a

(
c

s

)
=

(
c

b

) b∑

s=a

(
c

s

)/(
c

b

)
<

(
c

b

) b∑

s=a

(
b

c− b+ 1

)b−s
<

(
c

b

)
(b− a+ 1). (4.33)

By definition, we have 2ρmax < r, thus, using (4.33) for an estimation of (4.31), we find

a(j, k, r) <

(
r⌊

r
2 − 1

⌋
+

)
r

2
< C

1√
2π

2r
√
r. (4.34)

At best, j + k + r = 2K + 2, and we have a(j, k, r) = 1. At worst, j, k = K, thus,
ρmax =

⌊
r
2 − 1

⌋
+

, which makes the first estimate in (4.34) almost sharp. The second
estimate is due to Stirling’s formula.

(
r − 1
s

) (
r − 1
s− 1

)

+1 Figure 4.2: A binary tree of
depth r with its left and right
subtrees of height r−1 each at-
tached to its root.

Step 1.4: Error accumulation in 1D: Taking into account the facts that the occurring
coefficients in the binary tree are bounded by 1 (see (4.30)), and that exact integrals vanish
at non-vanishing leaves, we sum up all non-vanishing leaves and, together with the bound
(4.34), we obtain

∣∣Erjk
∣∣ ≤ a(j, k, r) ·max

j,k

∣∣∣∣∣
K∑

m=0

ωmϕj(ξm)ϕk(ξm)

∣∣∣∣∣ ≤ C
1√
2π

2r
√
r (4.35)

where the maximum ranges over all j and k such that

0 ≤ j ≤ K, −r ≤ k ≤ K + r, j + k ≥ 2K + 2,

and the constant is independent of j, k, r, or K. Due to cancellation effects by Hermite
function evaluations with rapidly alternating signs, the absolute value of the quadrature

79

Error due to quadrature 4. Error analysis

formula is of size O(1). This concludes the first part of the proof
Step 2.1: Decomposition of error in multiple dimensions: We set

D = {1, . . ., d}

and consider the error matrices Er for d ≥ 2. For arbitrary j,k ∈ K and r ∈ R,

∀α ∈ D : kα ≤ K − rα + 1 ⇒ jα + kα + rα ≤ 2K + 1.

If the left-hand side condition holds for all α ∈ D, the full-product quadrature is exact in
every coordinate, hence, Er

jk = 0. Conversely, for fixed j ∈ K and r ∈ R, if there is an index
k ∈ K such that Er

jk 6= 0, we find a subset of components

D̃ = D̃(k) = {α ∈ D : kα ≥ K − rα + 2} ⊆ D,

and the corresponding 1D quadrature errors Erαjαkα do not vanish, for all α ∈ D̃. This allows

for a decomposition (omitting the factor S−1 in the Chebyshev arguments)

Er
jk = (ϕj, Trϕk)− (ϕj, Trϕk)quad

=

[
d∏

α=1

(ϕjα , Trαϕkα)

]
−
[

d∏

α=1

(ϕjα , Trαϕkα)quad

]

=






∏

α∈D̃

(ϕjα , Trαϕkα)




︸ ︷︷ ︸
A

−


∏

α∈D̃

(ϕjα , Trαϕkα)quad




︸ ︷︷ ︸
B






∏

α/∈D̃

(ϕjα , Trαϕkα)




︸ ︷︷ ︸
C

(4.36)

of a non-vanishing entry Er
jk. Because the indices from D \ D̃ stand for the coordinates

with exact quadrature, the exact integral factors in C coincide with their quadrature coun-
terparts.

By the definition of the hyperbolically reduced set K, non-vanishing errors Er
jk have

indices k that need to satisfy

K + 1 ≥
∏

α∈D
(kα + 1)

=


∏

α/∈D̃

(kα + 1)




∏

α∈D̃

(kα + 1)




≥


∏

α/∈D̃

(kα + 1)




∏

α∈D̃

(K − rα + 3)


 .

For every k ∈ K, if K � |r|∞, this is only possible if there is at most one large component
kα, thus,

|D̃(k)| ≤ 1.

Consequently, the terms A and B as occurring in the decomposition (4.36) consist of exactly
one factor each, and A−B equals the one-dimensional quadrature error E

rα0
jα0kα0

for some

80

4. Error analysis Local error due to index set reduction

α0 ∈ D̃. As a side note, all choices of index set reductions that yield indices with at most
one large (i.e., close to K) index component are viable options in order to deduce |D̃| ≤ 1.
Step 2.2: Error estimate in multiple dimensions: Consider a non-vanishing entry Er

jk of
the error matrix. By the above considerations for the one-dimensional case, the term A
vanishes, since leaves with non-vanishing quadrature errors have vanishing exact integrals.
Due to |D̃(k)| = 1, there is α0 ∈ D̃ such that B equals E

rα0
jα0kα0

. For a single factor in C,

using Cauchy–Schwarz, we find

| (ϕjα , Trαϕkα) | ≤ C(rα), α /∈ D̃.

Thus, from (4.36) and (4.35), we have

Er
jk ≤ CE

rα0
jα0kα0

≤ C2rα0
√
rα0 .

For a hyperbolically reduced index set K(d,K) with R ≤ K−1
2 + 2 (which we consider

implied by R� K), it is easily seen that the total number of non-vanishing entries in Er is
at most 1

2 |r|2∞. Multiplying the matrix with a rapidly decaying vector and using the decay
condition (4.27) then yields

(Erv)j ≤
∑

k∈K
Er

jkvk

≤ C · 1

2
|r|2∞ · 2|r|∞ |r|1/2∞ · min

k∈K
Er

jk 6=0

|vk|

≤ C · 2|r|∞−1|r|5/2∞ · |v|s;∞ · min
k∈K,

∃α:kα≥K−rα+2

d∏

β=1

max{1, kβ}−s/2.

Due to |D̃(k)| ≤ 1, for every k with Er
jk 6= 0, there is exactly one α such that kα ≥

K − rα + 2. Summing up all the terms in (4.28), the time- and S-dependent, rapidly
decaying interpolation coefficients enter into the constant. This yields

equad(v)j ≤
∑

r∈R
ŵr(t) (Erv)j

≤ C
∑

r∈R
ŵr(t)2

|r|∞−1|r|5/2∞ · |v|s;∞ · min
k∈K,

∃α:kα≥K−rα+2

d∏

β=1

max{1, kβ}−s/2,
(4.37)

which proves the claim.

4.7 Local error due to index set reduction

In this last section, we analyze the error due to index set reduction as defined in (4.20). Once
more, we employ the strategy of converting analytic error formulations into binary trees in
order to obtain estimates by combinatorial arguments. This time, we do not reduce the
multidimensional error to 1D (because there is no index set reduction in 1D), but construct
more complicated binary trees dealing with the coordinates sequentially.

81

Error due to index set reduction 4. Error analysis

Tr,j

r−1∑
s=1,
s odd

(−1)s+1Tr−s,j−eα ± vj r−1∑
s=1,
s odd

r−s−1∑
t=1,
t odd

(−1)s+tTr−s−t,j−2eα

+
r−1∑
s=1,
s odd

(−1)s+1vj−2eα ± vj

(. . .)j +
r−1∑
s=1,
s odd

(−1)s+1vj

r−1∑
s=1,
s odd

(−1)s+1Tr−s,j+eα

(. . .)j +
r−1∑
s=1,
s odd

(−1)s+1vj

(. . .)j+2eα
+

r−1∑
s=1,
s odd

(−1)s+1vj+2eα

left descent: −1
right descent: +1

. . .

Figure 4.3: [12] Expansion of T
(α)
r,j as a binary tree T(α)(j) of depth r. We draw the case of r being

even. Terms with reduced or unaltered index are attached to the left child, otherwise to the right
child. The figure is rotated by 90◦ and all coefficients have been omitted.

Theorem 6. (local error due to index set reduction, hyperbolic reduction)
Consider a vector v ∈ C|K| that satisfies the decay assumption (4.27), viz.,

vk ≤ |v|s;∞
d∏

α=1

max{1, kα}−s/2,

for some even integer s, where v =
∑

k∈K vkϕk. Let K(d,K) be a hyperbolically reduced
index set. Then, the error (4.20) due to index set reduction behaves as

‖ered(v, t)‖ ≤ Kd/2 max
j∈K

∣∣∣∣
(
W pol(Xfull, t)σ+(v)−W pol(X, t)v

)
j

∣∣∣∣

≤ C(d,R,W pol, S, t) · |v|s;∞ · Kd/2 · min
j∈K,r∈R,

j+r∈Kfull\K

d∏

β=1

max{1, jβ − rβ}−s/2,
t ≥ 0,

where the matrices W pol(Xfull, t) and W pol(X, t) result from formally inserting the coordi-

nate matrices X
(α)
full (indexed over the corresponding full index cube Kfull(d,K)) and X(α)

into W pol, respectively; see Section 2.3. The constant C(d,R,W, S, t) depends only on
R(d,R), the regularity of W pol, the parameter S, and the time t—and on d, in contrast to
the constant as occurring in the previous theorem.

Proof. As in the previous theorem, we consider a termwise partition of the error

ered(v) =
∑

r∈R
ŵr(t)

[
Tr
(

1
SXfull

)
σ+(v)− Tr

(
1
SX
)
v
]
,

see (4.20), and analyze the terms separately. We fix r for the rest of the proof.
Again, we split the proof into smaller parts: In Step 1, we explain how to construct binary
tress both for the case of a reduced and of a full index set. The key idea is to consider
differences of these trees (Step 2) and to characterize which leaves do not vanish in a suitable
difference tree (Step 3). In Step 4, we count these non-vanishing leaves, before the overall

82

4. Error analysis Error due to index set reduction

error can eventually be given by putting everything together in Step 5.
Step 1: Construction of binary trees: We use the abbreviations

T
(α)
r,j =

(
Tr
(

1
SX(α)

)
v
)
j
,

α = 1, . . ., d,

r = 1, . . ., R.

Fix α and r. The 1D Chebyshev recurrence (1.25) together with the direct operation
procedure (2.5) yields

T
(α)
r,j =

√
2jα
S

T
(α)
r−1,j−eα +

√
2(jα + 1)

S
T

(α)
r−1,j+eα

− T (α)
r−2,j,

and, after repeated application with the right-most term,

T
(α)
r,j =

√
2jα
S

r−1∑

s=1,
s odd

(−1)s+1Tr−s,j−eα +

√
2(jα + 1)

S

r−1∑

s=1,
s odd

(−1)s+1Tr−s,j+eα + τ
(α)
r,j , (4.38)

where

τ
(α)
r,j =





vj, r even and 4 | r,
−vj, r even and 4 - r,
1
S

(√
jα
2 vj−eα +

√
jα+1

2 vj+eα

)
, r odd and 4 | (r + 1),

− 1
S

(√
jα
2 vj−eα +

√
jα+1

2 vj+eα

)
, r odd and 4 - (r + 1).

We interpret T
(α)
r,j as a node in a binary tree, where all the terms on the right-hand side of

(4.38) with their index components jα reduced by one or left unaltered are defined as the
left child, while all the terms with their index components jα incremented by 1 make up
the right child. This procedure is repeated, and we end up with a binary tree T(α)(j) of
depth r that bears only sums of weighted components of v at its leaves. We illustrate the
construction in Figure 4.3, where we omit all coefficients for the sake of simplicity. With
each left or right descent, all indices of newly expanded terms have their αth component
reduced or increased by 1, respectively. A simple calculation reveals that leaves exhibit
sums of less than 1

2r(r − 1) terms.
Starting from some j ∈ K, a binary tree T(j) for the product

(
Tr
(

1
SX
)
v
)
j

=
(
Tr1
(

1
SX(1)

)
·
(
. . .
(
Trd
(

1
SX(d)

)
v
)
. . .
))

j

is then obtained by attaching to each term in each leaf of T(α) analogously defined trees
T(α+1) starting from α = 1, such that a leaf in layer α is a root of a subtree in layer α+ 1;
see the pattern given in Figure 4.4, where the topmost and lowermost layers are numbered
1 and d, respectively. Along the path to a proper leaf in layer d (a d-leaf), let λα and ρα
denote the number of left and right descents in layer α, respectively. Starting from j, in
layer α, only the αth component of j is changed. Thus, d-leaves exhibit sums of weighted
components of v whose component indices are of the form

j−
d∑

α=1

λ̃α +
d∑

α=1

ρ̃α, λ̃α, ρ̃α ∈ {0, 1}.

83

Error due to index set reduction 4. Error analysis

...d
ep
th
|r|

|r d
|

|r 1
|

|r 2
|

Figure 4.4: [12] Forming T by layerwise attachments of T(α).

The very same considerations also apply with an unreduced index set, i.e., with X
(α)
full in

place of X(α) and with σ+(v) in place of v, yielding an analogously defined binary tree
Tfull(j). By the definition (4.20) of the error due to index set reduction, we are interested
in root indices j ∈ K.

Step 2: Difference of binary trees. By (4.20), we consider the difference tree

D(j) = T(j)− Tfull(j), j ∈ K,

based on the vectors v ∈ C|K| and σ+(v), where we fix j as the root index in layer 1
from now on. Let us introduce some terminology: Consider an index appearing in a term
somewhere along a path from the 1-root j to one of its d-leaves. If this index or any
index of a predecessor term does not belong to K or Kfull, we say that the corresponding
terms vanish in T(j) or Tfull(j), respectively. A term in the difference tree D(j) vanishes
if corresponding terms in T(j) and Tfull(j) vanish or do not vanish both at the same time
in their respective trees. Finally, a d-leave in D(j) is said to vanish if all terms in the
leave vanish. As in the proof of the previous theorem, we examine non-vanishing d-leaves
in D(j). We state the following obvious, yet important observation: If a d-leave does not
vanish, there is at least one term somewhere along the path connecting it to the root such
that the corresponding index belongs to Kfull \ K. In particular, for a fixed choice of r, the
existence of a non-vanishing d-leaf implies j + r ∈ Kfull \ K.

Step 3: Characterization of non-vanishing leaves: We consider a root index m in some
fixed layer α, where mα = jα. Our aim is to characterize indices of single α-leaf terms
by means of the minimal and maximal numbers of left descents within the layer such that
these leaves do not vanish. We have the following necessary condition for a term depending
on m not to vanish in Tfull(j) or T(j), respectively:

(Tfull) For the αth component index, it is required that

0
!
≤ jα + ρα − λα ≤ jα + rα − 2λα

!
≤ K,

which gives the bounds

λmin
α (r, j) =

⌊
jα + rα −K

2

⌋
≤ λα ≤

⌊
jα + rα

2

⌋
= λmax

α (r, j).

84

4. Error analysis Error due to index set reduction

(T) The upper bound is the same as in (Tfull). By the definition of K, one needs

jα + rα − 2λα + 1
!
≤ (K + 1)

(d∏

β=1
β 6=α

(1 +mβ)
)−1

. (4.39)

From m ∈ K, it follows that

1 + jα ≤ (K + 1)
(d∏

β=1
β 6=α

(1 +mβ)
)−1

,

thus, by subtraction, rα − 2λα
!
≤ 0. This means that the leaf term in T(j) does not

vanish for

λα ≥
⌈rα

2

⌉
= λmin,hyp

α (r). (4.40)

If a leave term index in the difference tree D(j) does not vanish, it satisfies (Tfull), but
it does not satisfy the more restrictive (T). The converse is not true, since a leaf term
index violating (T) might still fulfill (4.39), and thus vanish in D(j). This complicates a
characterization of terms vanishing in D(j). To make things simpler, we consider the more
handy condition (4.40) to constitute the lower bound in (T) . Obviously,

λmin
α ≤ λmin,hyp

α .

Step 4: Number of non-vanishing leaves: Summing up as in the proof of the previous
theorem, we have at most

λmax
α∑

s=λmin
α

(
rα
s

)
−

λmax
α∑

s=λmin,hyp
α

(
rα
s

)
=

λmin,hyp
α −1∑

s=λmin
α

(
rα
s

)
= aα(r, j)

non-vanishing α-leaves. Once more, we use (4.33) with

a = λmin
α , b = λmin,hyp

α − 1, c = rα.

By virtue of λmin,hyp
α =

⌈
rα
2

⌉
, we have 2(λmin,hyp

α − 1) < rα, hence,

aα(r, j) <

(
rα

b rα2 − 1c

)
rα
2
< C

1√
2π

2r
√
r = a(rα).

Step 5: Error accumulation: As explained at the end of Step 2, a non-vanishing error
yields j + r ∈ Kfull \ K. In the following, we assume that our choices of j and r are such.
Along the path to a non-vanishing d-leaf, at any α-leaf, the most unfavorable weight, viz.,

2rα/2
rα∏

s=1

(jα + s)1/2

S
≤ 2rα/2 = b(rα)

85

Remarks on the actual decay behavior 4. Error analysis

comes from descending right only. Using the decay assumption (4.27) on v, the d-leaf can
be bounded by

c(r, j) ≤
d∏

α=1

1

2
rα(rα − 1) ·

{
max

−r1≤s1≤r1
·. . . · max

−rd≤sd≤rd

∣∣∣vj−∑d
α=1 sαeα

∣∣∣
}

≤
d∏

α=1

1

2
rα(rα − 1) · |v|s;∞ ·

d∏

β=1

max{1, jβ − rβ}−s/2.

Hence, the error over all layers can be bounded by

|Er
j | ≤

d∏

α=1

{a(rα) · b(rα)} · c(r, j)

≤ C
d∏

α=1

{ 1√
2π

2rα
√
rα · 2rα/2 ·

1

2
rα(rα − 1)

}
· |v|s;∞ ·

d∏

β=1

max{1, jβ − rβ}−s/2

≤ Cd 23/2|r|∞ |r|5/2∞ · |v|s;∞ ·
d∏

β=1

max{1, jβ − rβ}−s/2.

Finally, we sum up and obtain

ered(v, t)j ≤ C
∑

r∈R
ŵr(t) d 23/2|r|∞ |r|5/2∞ · |v|s;∞ ·

d∏

β=1

max{1, jβ − rβ}−s/2. (4.41)

This proves the claim.

4.8 Remarks on the actual decay behavior

A few remarks concerning the error in case of a reduced index set are in order. In particular,
we shall comment on the actual error behavior of the local errors as analyzed in Theorems 5
and 6 when considering different components of the error vectors equad(v, t) and ered(v, t).

• First, in the maximum norm, using K � R, the local errors equad(v, t) and ered(v, t)
both exhibit an asymptotic decay of

C(R,W pol, S, t)K−s/2 and C(d,R,W pol, S, t)K−s/2,

respectively.

• The next comment concerns the actual order of decay for a specific choice of error
component from the local error due to index set reduction. As for the componentwise
error estimates (4.37) and (4.41), it is only the decay in the estimate for (ered(v, t))j
that actually depends on the component index j.
We have to distinguish three cases: First, for fixed r ∈ R, if j + r ∈ K (roughly, if
there are only small index components in j), all paths in the difference tree D(j) from
the proof of Theorem 6 cancel out, and the error

Tr
(

1
SX
)
v − Tr

(
1
SXfull

)
σ+(v)

86

4. Error analysis Decay behavior

vanishes. As is seen from Part 5 of the above proof, the actual error behavior depends
on the number of large index components in j: Roughly, if there is more than one
large component in j, say,

N(r, j) ≥ 2,

where N(r, j) ∈ {1, . . . , d} is the number of components jα such that K ≈ jα � rα,
we find

c(r, j) ≤ C
d∏

α=1

1

2
rα(rα − 1) · |v|s;∞ ·K−Ns/2.

Therefore, if Ñ = minr∈RN(r, j),

ered(v, t)j ≤ C
∑

r∈R
ŵr(t) d 23/2|r|∞ |r|5/2∞ · |v|s;∞ ·K−Ñs/2.

This is the second case. Third, if there are only intermediate-sized index components,
neither of the above considerations applies. Thus, the error decay is worst away from
the corners of the index cube. This behavior shall be reproduced and visualized in
the numerical experiments given in Section 5.1; see Figure 5.3, in particular.

• Finally, which of the two local errors do we expect to decay faster? The constants in
the termwise local error estimates (4.37) and (4.41) appear to be similar. However,
the constant in the estimate for ered(v) depends on d, in contrast to the d-independent
constant in the estimate for equad(v). We therefore expect that the local error due to
index set in the maximum norm worsens for increasing d, whereas the local error due
to quadrature remains unaffected. Additionally, in (4.41), the reduction by rβ in the
factors max{1, jβ − rβ}−s/2 slows down the decay. We therefore expect the error due
to quadrature to be smaller than the error due to index set reduction. This behavior
shall be reproduced in the numerical experiments; see Figure 5.1, in particular.

87

5 Numerical experiments

In this chapter, we present some numerical experiments that corroborate the theoretical
predictions from the above error analyis. In Section 5.1, we illustrate the local error behavior
when approximating the matrix-vector product

Wquadv ≈W pol(X)v, v ∈ C|K|,

where

Wquad
jk = (ϕj,W

polϕk)quad, j,k ∈ K,

denotes the matrix due to entrywise quadrature approximation of the representation of
the polynomially approximated potential W by (K+1)-nodes full-product Gauß–Hermite
quadrature, and W pol(X) denotes formal insertion of the coordinate matrices X(α) in place
of xα into the polynomial W pol; see Section 2.6 and 2.3 for the respective details. The
effect on the Galerkin approximation based on the Hermitian Lanczos process to the matrix
exponentials

exp(−ih(D + Wquad))v vs. exp(−ih(D +W pol(X)))v

is shown in Section 5.2. In both sections, the potential under consideration is the time-
independent torsional potential. Finally, in Section 5.3, we propagate the semidicrete sys-
tems

iċquad(t) = Dcquad(t) + Wquad(t)cquad(t),

iċfast(t) = Dcfast(t) +W pol(X, t)cfast(t);

see (4.5) and (4.7), respectively, using the Magnus integrators given in Section 1.5 and
compare the dynamics. The potential is the Hénon–Heiles potential with a time-dependent
linear perturbation.

Throughout this section, we have mostly chosen a hyperbolic reduction for the underlying
index set K. The specific choice is always indicated.

Again, all figures have been obtained on a desktop computer with an Intel Core 2 Duo
E8400 3.00 GHz processor with 4 GB RAM using an implementation in C. The code is
provided on the author’s webpage:

https://na.uni-tuebingen.de/~brumm/

89

https://na.uni-tuebingen.de/~brumm/

Local errors due to quadrature and index set reduction 5. Numerical experiments

K0 25 50 75
1e− 12

1e− 10

1e− 08

1e− 06

1e− 04

1e− 02

max. error: max
j

∣

∣

∣
equad(v)j

∣

∣

∣
, max

j

∣

∣

∣
ered(v)j

∣

∣

∣

s = 5, hyperbolic reduction

d = 2

d = 3

d = 4

d = 5

1
10K

−s

quadrature, index set reduction

K ↓ d = 2 d = 3 d = 4 d = 5

25
1.270e-09 8.978e-10 6.347e-10 4.559e-10

2.975e-08 1.345e-06 6.834e-05 1.744e-04

50
7.628e-11 5.392e-11 3.812e-11 2.695e-11

1.621e-09 4.207e-08 1.426e-06 5.907e-05

75
1.466e-11 1.037e-11 7.328e-12 5.181e-12

2.729e-10 5.540e-09 1.879e-07 8.227e-06

Figure 5.1: Errors
equad(v) (black) and
ered(v) (gray) for a
hyperbolic reduction
and a vector decaying
according to (5.2)
(S = 16, R = 8,
s = 5). The solid
lines represent d = 2,
selected errors in cases
d = 3, 4, 5 are indi-
cated by plus signs,
circles, and asterisks,
respectively. The
dashed line represents
1
10K

−s. Increasing d
worsens the constant
in ered(v); cf. The-
orem 6. In contrast,
equad(v) is unaffected.
Semi-logarithmic plot.
Figure taken from [12]
and extended.

5.1 Local errors due to quadrature and index set reduction

We consider the aforementioned stretched torsional potential as given in (3.10), viz.

W (x) =
d∑

α=1

(1− cos(xα/S)), x ∈ [−S, S]d, S = 16, (5.1)

approximated by Chebyshev interpolation with R = 8 nodes on each coordinate axis. In
cases d= 2, 3, 4, as mentioned in Section 3.3, this yields L2- and L∞-interpolation errors
not larger than 5e-09. This error contribution will thus be dominated by the error due to
index set reduction unless the spatial resolution is chosen particularly fine.

To illustrate the local error behavior of the fast algorithm, we consider a vector v ∈ C|K|
that satisfies the decay assumption (4.21), and do the corresponding matrix-vector products
in the following ways. We set

vk =

d∏

α=1

max{kα, 1}−s, for some given s ∈ N, (5.2)

and then normalize such that ‖v‖ = 1.
First, we illustrate the error due to quadrature,

max
j∈K

∣∣equad(v)j
∣∣, equad(v) = (Wpol −Wquad)v,

90

5. Numerical experiments Local errors

as a function of K; see (4.19). As shown in Theorem 5, the error is expected to decay
spetrally, i.e., ∼ K−s, for all choices of d and K, where the constant does not depend on
the dimension. This is shown in Figure 5.1 for a hyperbolic reduction with s = 5 (black
lines and symbols). We start from K= 10 and proceed in steps of 1 (d= 2) and 5 (d ≥ 2)
until the fine resolution of K = 75. For different choices of d, the error behavior is indeed
almost identical.

Throughout most of the following experiments, in case d ≥ 3, we face the difficulty that
both matrix-vector products Wpolv and Wquadv are too expensive to compute in a naive
way, and we might thus easily lack the quantities the fast algorithm needs to be compared
to. In this situation, sequential summations do us a good service and constitute an efficient
means to obtain these matrix-vector products exactly when combined with a suitable choice
of Gaussian quadrature, viz.,

Mpol =

⌈
2K +R− 1

2

⌉
, Mquad = K + 1.

With these choices of full-product quadrature thresholds, the entries of Wpol and Wquad

are computed exactly.
Next, we illustrate the error due to index set reduction,

max
j∈K

∣∣ered(v)j
∣∣, ered(v) = (Wquad −W pol(X))v,

as a function of K; see (4.20) and the discussion at the end of Section 4.4. As shown in
Theorem 6, the error is expected to decay spetrally as well, i.e., ∼ K−s, for all choices of
d and K, but the constant depends on the dimension and worsens for increasing d. This is
also shown in Figure 5.1 for a hyperbolic reduction and s = 5 (gray lines and symbols).

Besides the hyperbolic reduction, we also consider the additively reduced index set. Anal-
ogous local error results are shown in Figure 5.2. While the error due to quadrature is of a
similar size as for the hyperbolic reduction, the error due to index set reduction now decays
faster. This difference can be elucidated by recourse to the analysis given in Theorem 6 and
to the subsequent remarks from Section 4.8: As explained there, for K being sufficiently
large, the error ered(v)j is not evenly distributed, but varies according to the choice of j. If j
consists of small components jα only (i.e., increasing by R in any component does not lead
out of the index set), we expect no error due to index set reduction at all. Wherever the
error does not vanish, it decreases the faster the more components are large as compared
to R. Roughly spoken, for the choice of vector decay (5.2) under consideration, we expect
an error decay ∼ K−Ns, where N is the number of components that are large as compared
to R. For a hyperbolic reduction, this yields the largest error contributions for indices with
moderately sized components only. In 2D and for not too large a choice of K, this is the
region close to the boundary of the index set, but away from its flanks. For an additive
reduction, errors corresponding to indices close to the flanks are expected to decay slightly
slowlier than indices close to the center of the boundary line because moderately sized in-
dices from the half-cube still bear indices that are all large as compared to R. Figure 5.3
illustrates this decay behavior in the individual components of ered(v) for a hyperbolic and
for an additive reduction, respectively, with d=2 and s=3.

A final issue worth mentioning is whether one should prefer a hyperbolic or an additive
reduction from the point of view of their respective local error behaviors. There is no
general answer to this question. In Figure 5.4, we plot the observed errors due to index

91

Matrix exponentials 5. Numerical experiments

K

max. error: max
j

∣

∣

∣
equad(v)j

∣

∣

∣
,

0 15 30 45

1e− 10

1e− 08

1e− 06

1e− 04

max
j

∣

∣

∣
ered(v)j

∣

∣

∣

s = 5, additive reduction

d = 2

d = 3

d = 4

1
10K

−s

quadrature

K ↓ d = 2 d = 3 d = 4

15 1.013e-08 7.160e-09 5.062e-09

30 6.061e-10 4.284e-10 3.029e-10

45 1.170e-10 8.271e-11 5.847e-11

index set reduction

K ↓ d = 2 d = 3 d = 4

15 1.527e-08 1.654e-08 1.845e-08

30 7.465e-10 6.469e-10 5.663e-10

45 1.351e-10 1.088e-10 8.854e-11

Figure 5.2: Errors equad(v) (black) and ered(v) (gray) for an additive reduction and a vector
decaying according to (5.2) (S = 16, R = 8, s = 5). The symbols are the same as in Figure 5.1.
Semi-logarithmic plot.

set reduction vs. the respective computation times for both kinds of reductions and both
versions of the fast algorithm and d=2, 3, 4 using the data from Figures 5.1 and 5.2. As for
the first version, the hyperbolic reduction is seen to be always superior over the additive
one. As for the second version, the hyperbolic reduction is still preferable for all choices
of K in case d= 2, but the higher the dimension the larger a choice of K it takes for the
hyperbolic reduction to outperform its additive counterpart. These observations are not
directly related to the respective approximation qualities of both index set reductions, but
are merely due to the fact that the hyperbolically reduced index sets comes with indices
that contribute at most a single negative power of K to the local error bound, while the
additive reduction can give as more.

5.2 Matrix exponentials

The matrices D + Wquad and D +W pol(X) both are Hermitian, and the respective matrix
exponentials times a unit vector v ∈ C|K| can be approximated by a Galerkin ansatz,

exp(−ih(D + Wquad))v ≈ Vquad
m exp(−ihTquad

m)e1,

exp(−ih(D +W pol(X)))v ≈ Vfast
m exp(−ihTfast

m)e1,

where the matrices Vquad
m , Tquad

m , Vfast
m , and Tfast

m are obtained by an m-step Hermitian
Lanczos process starting from vquad

1 = vfast
1 = v; see Section 1.5 for the details. The real

92

5. Numerical experiments Matrix exponentials

j1

j 2

0 5 10 15 20

0

5

10

15

20

K = 10

= 13

errors
∣

∣

∣
ered(v)j

∣

∣

∣
, d = 2, s = 3, hyperbolic reduction

j1
j 2

0 5 10 15 20

0

5

10

15

20

K = 20

= 12

1e-05≤ < 5.264e-05

7e-06≤ < 1e-05

3e-06≤ < 7e-06

1e-06≤ < 3e-06

7e-07≤ < 1e-06

j1

j 2

0 5 10 15 20

0

5

10

15

20

K = 30
= 10

j1

j 2

0 5 10 15 20

0

5

10

15

20

K = 40
= 2

j1

j 2

0 5 10

0

5

10 K = 10

= 13

errors
∣

∣

∣
ered(v)j

∣

∣

∣
, d = 2, s = 3, additive reduction

j1

j 2

0 5 10 15 20

0

5

10

15

20

K = 20

= 21

1e-06≤ < 7.917e-06

5e-07≤ < 1e-06

1e-07≤ < 5e-07

5e-08≤ < 1e-07

1e-08≤ < 5e-08

j1

j 2

0 10 20 30
0

10

20

30

K = 30
= 10

j1

j 2

0 10 20 30 40
0

10

20

30

40

K = 40
= 6

Figure 5.3: [12] ered(v)j
due to index set reduc-
tion for the torsional po-
tential (5.1) and a vec-
tor decaying according to
(5.2) with d=2 and differ-
ent choices of K (as above,
S = 16, R = 8, s = 3).
Each dot or box repre-
sents an error vector com-
ponent. Upper figure: hy-
perbolic reduction. Lower
figure: additive reduction.
Errors being small with
respect to the largest ob-
served error component
emax ≈ 5.264e-05 (hy-
perbolic) and emax ≈
7.917e-06 (additive), re-
spectively, are simply in-
dicated by a dot; indices
carrying larger errors are
indicated by a gray box.
The darker the box, the
closer the error to emax.
In the upper figure, the
pictures corresponding to
K = 30, 40 show an en-
larged view. The symbol
points to the number
of large error components.
The errors decrease with
growing K as indicated by
a decreasing number of in-
creasingly light boxes. As
for the hyperbolic reduc-
tion, the error is concen-
trated in the region with
only “intermediate” index
components. As explained
in the text, the additive
reduction exhibits a some-
what complementary be-
havior.

93

Matrix exponentials 5. Numerical experiments

lo
g
(e
rr
o
r)

d = 2

1e− 04 5e− 04
1e− 10

1e− 08

1e− 06

1e− 04
d = 3

1e− 03 2e− 03

1e− 08

1e− 06

1e− 04

1e− 02

sec

d = 4

1e− 03 7e− 03

1e− 08

1e− 06

1e− 04

1e− 02

version 1

version 2

hyperbolic

additive

Figure 5.4: Com-
putation times
vs. errors for the
hyperbolic (dark
gray) and for the
additive reduction
(light gray). The
two versions of
the fast algorithm
are represented
by a solid line
and by a dashed
line, respectively.
Semi-logarithmic
plot.

quantity h is the time step size, and v is assumed to decay according to (5.2) for some
given s. In this section, we illustrate the effect of replacing Wquad by W pol(X) when
computing the above matrix exponentials. It is only in case of a full index cube that we
have Wquad = W pol(X), and the two matrix exponentials coincide; cf. Lemma 2 from
Section 2.6. In case of a hyperbolic reduction, in particular, this is false. As it turns out,
even a fairly small number of Lanczos iterations makes the error due to index set reduction
dominate the error due to Lanczos itself.

We set

Aquad = D + Wquad, Afast = D +W pol(X)

and decompose the error for the matrix exponentials according to

(
exp(−ihAquad)−exp(−ihAfast)

)
v =

(
exp(−ihAquad)v−Vquad

m exp(−ihTquad
m)e1

)
(5.3)

+
(
Vfast
m exp(−ihTfast

m)e1 − exp(−ihAfast)v
)

(5.4)

+
(
Vquad
m exp(−ihTquad

m)e1 −Vfast
m exp(−ihTfast

m)e1

)
. (5.5)

The errors (5.3) and (5.4) are the errors due to Lanczos approximation of the respective
matrix exponentials. The error (5.5) is the error due to a perturbation of Lanczos by
replacing Wquad by W pol(X). Our aim is to compare (5.3) and (5.5).

Lemma 7. (perturbation error)
The error (5.5) due to a perturbation of Lanczos is given by

∥∥Vquad
m exp(−ihTquad

m)e1 −Vfast
m exp(−ihTfast

m)e1

∥∥
≤ h‖F‖C(Aquad,F, h),

(5.6)

where C decreases for decreasing h or increasing K, and the matrix F satisfies ‖F‖ → 0
for K →∞.

94

5. Numerical experiments Matrix exponentials

Proof. We set

Afastvfast
k = Aquadvquad

k + Afast
(
vfast
k − vquad

k

)
+
(
Afast −Aquad

)
vquad
k

= Aquadvquad
k + f̃k

for all 1 ≤ k ≤ m, and

F̃ =
(̃
f1|. . .|̃fm).

Thus, ‖F̃‖ → 0 for K →∞; cf. Theorem 6. Using the Lanczos identities

Vquad
m Tquad

m (Vquad
m)∗ = AquadVquad

m (Vquad
m)∗ − τquad

m+1,mvquad
m+1e

T
m(Vquad

m)∗,

Vfast
m Tfast

m = AfastVfast
m − τ fast

m+1,mvfast
m+1e

T
m

(see Section 1.5 and [61], Chapter III.2.2) together with the above relation

AquadVquad
m (Vquad

m)∗ = AfastVfast
m (Vquad

m)∗ + F̃(Vquad
m)∗,

we find

Vquad
m Tquad

m (Vquad
m)∗ = AfastVfast

m (Vquad
m)∗ + F̃(Vquad

m)∗

− τquad
m+1,mvquad

m+1e
T
m(Vquad

m)∗

= Vfast
m Tfast

m (Vquad
m)∗ + F̃(Vquad

m)∗

+ (τ fast
m+1,mvfast

m+1 − τquad
m+1,mvquad

m+1)eTm(Vquad
m)∗

= Vfast
m Tfast

m (Vfast
m)∗ + Vfast

m Tfast
m

(
(Vquad

m)∗ − (Vfast
m)∗

)
+ F̃(Vquad

m)∗

+ (τ fast
m+1,mvfast

m+1 − τquad
m+1,mvquad

m+1)eTm(Vquad
m)∗

= Vfast
m Tfast

m (Vfast
m)∗ + F,

where ‖F‖ → 0 for K →∞. This gets us

Vquad
m exp(−ihTquad

m)e1 −Vfast
m exp(−ihTfast

m)e1

= Vquad
m exp(−ihTquad

m)(Vquad
m)∗Vquad

m e1︸ ︷︷ ︸
=v

−Vfast
m exp(−ihTfast

m)(Vfast
m)∗Vfast

m e1︸ ︷︷ ︸
=v

=
[
exp(−ihVquad

m Tquad
m (Vquad

m)∗)− exp(−ih(Vquad
m Tquad

m (Vquad
m)∗ − F)

]
v.

By the sensitivity analysis for the matrix exponential given in [89], we can then establish
the desired result.

Having established this theoretical estimate for how the Lanczos process is perturbed by
replacing Wquad with W pol(X) in each step, we turn to experimental tests. We consider
the matrix D + Wquad where W is again the torsional potential,

W (x) =
d∑

α=1

(1− cos(xα/S))− 1

2

d∑

α=1

x2
α, x ∈ [−S, S]d, S = 16,

95

Matrix exponentials 5. Numerical experiments

h→ 1/10 1/20 1/40 1/80

d=2,K=10 5.266e-06 2.632e-06 1.316e-06 6.581e-07

d=2,K=20 7.946e-07 3.954e-07 1.976e-07 9.882e-08

d=2,K=30 3.040e-07 1.485e-07 7.411e-08 3.705e-08

d=2,K=40 1.636e-07 7.689e-08 3.823e-08 1.911e-08

d=3,K=40 6.598e-07 3.253e-07 1.625e-07 8.125e-08

d=4,K=40 5.321e-06 2.662e-06 1.331e-06 6.655e-07

Table 5.1: [12]
Perturbation error
(5.6) depending
linearly on h for
fixed m = 5 and
various choices of
d and K (torsional
potential, S = 16,
R=8, s=3).

approximated by Chebyshev interpolation with R= 8 as above. The underlying index set
K is hyperbolically reduced. The linear decay of the error (5.6) with respect to h is shown
in Table 5.1. Additionally, for a fixed choice of h, the error is seen to become worse for
constant K and increasing d (as predicted by Theorem 6, where the constant in the error
estimate depends on the dimension), and it becomes arbitrarily small for constant d and a
sufficiently large choice of K (because ‖F‖ becomes smaller).

Next, we compare the perturbation error (5.6) to the unperturbed Lanczos error (5.3),

∥∥ exp(−ih(D + Wquad))v −Vquad
m exp(−ihTquad

m)e1

∥∥

≤ 8
(

exp(1− (ω/2m)2)
ω

2m

)m
,

(5.7)

where ω = h(b − a)/2 and [a, b] is the interval that contains all the eigenvalues of the
Hermitian matrix D + Wquad; see, e.g., [61], Theorem III.2.10. The analogous error (5.4)
yields almost the same figures, so we restrict our attention to a comparison of (5.6) to (5.7).
We illustrate the error behavior for various choices of d, K, and m and for a fixed choice of
h in Figure 5.5. The errors (5.6) and (5.7) are printed in black and gray color, respectively.
In the upper part, we fix d= 2 and vary m. In the lower part, we fix m= 5 and vary d.
We first consider the upper part. As the figures reveal, there is an antagonism: On the one
hand, increasing m improves on (5.7), while increasing K worsens it due to the eigenvalues
of D + Wquad becoming larger. On the other hand, the error (5.6) is hardly affected by an
increase in m at all, while a larger choice of K improves on it, as seen above. What we wish
for is an optimal combination of m and K such that neither error contribution is strongly
dominant (for fixed choices of h and d). Presently, we lack further analytical insight into
how to relate m, K, h, and d in an optimal way. For the choice m= 7, the perturbation
error dominates until K is about 40. Thus, for small or moderate choices of K, it does not
take too large a choice of m for the perturbation error to become the dominant contribution,
and a larger choice of m is not advisable, because it yields only additional costs and no
additional benefits. We note that increasing m is always possible, though. The lower part
shows the harmful effect on (5.6) of an increase in the dimension, while the error (5.7) is
not affected, when m=5 (which happens to be a good choice for most of our examples) is
fixed.

To obtain exp(−ihAquad)v, we have assembled Aquad as explained in Section 3.1 and
used the procedure zheev from the LAPACK C-library.

96

5. Numerical experiments Matrix exponentials

K10 20 30 40

1e− 09

1e− 07

1e− 05

1e− 03

perturbation error vs. unperturbed Lanczos

s = 3, hyperbolic reduction, h = 1
10

perturbation

Lanczos

m = 3

m = 5

m = 7

m = 9

d = 2 only

K10 20 30 40
1e− 07

1e− 06

1e− 05

1e− 04

d = 2

d = 3

d = 4

m = 5 only

K→ 10 20 30 40

d=2 7.162e-05 1.015e-04 1.212e-04 1.386e-04
m=3 5.525e-06 1.015e-07 4.837e-07 3.116e-07

d=2 1.938e-07 1.464e-06 3.86e-06 7.935e-06
m=5 5.266e-06 7.946e-07 3.04e-07 1.636e-07

d=2 1.64e-10 7.103e-09 5.089e-08 1.848e-07
m=7 5.265e-06 7.906e-07 2.966e-07 1.532e-07

d=2 5.381e-14 1.712e-11 3.172e-10 2.271e-09
m=9 5.265e-06 7.906e-07 2.964e-07 1.529e-07

d=3 2.063e-07 1.359e-06 3.399e-06 7.288e-06
m=5 2.049e-04 5.04e-06 1.732e-06 6.598e-07

d=4 1.724e-07 1.192e-06 4.132e-06 9.352e-06
m=5 1.747e-04 1.922e-04 2.695e-05 5.321e-06

Figure 5.5: Errors (5.6) (black) and (5.7) (gray) as functions of K for fixed h= 1/10 and various
choices of d and m (torsional potential, S=16, R=8, s=3). Upper figure: d=2, m=3,. . ., 9 (dashed,
solid, chain dotted, and dotted line, respectively). Lower figure: d=2, 3, 4, m=5 (plus signs, circles,
and asterisks, respectively). In each cell of the table, the upper and lower figure corresponds to (5.7)
and (5.6), respectively. Semi-logarithmic plot. Figure taken from [12] and modified.

97

Time integration 5. Numerical experiments

5.3 Time integration

We conclude this chapter on numerical experiments with a propagation in time of the
semidicrete system

iċfast(t) = Dcfast(t) +W pol(X, t)cfast(t), t ∈ [0, 1]; (5.8)

see (4.7). The underlying potential W is a stretched Hénon–Heiles potential with a linear
time-dependent perturbation,

W (x, t) =

d−1∑

α=1

[
(xα/S)2(xα+1/S)− 1

3
(xα+1/S)3

]
−sin2(t)x1−

1

2

d∑

α=1

x2
α,

(x ∈ [−S, S]d, S = 16) exactly represented by fully-indexed Chebyshev interpolation with
R=3 nodes in every direction. This models the interaction of an atom or a molecule with
a high-intensity CW laser in x1-direction (see [71], with a quantum harmonic oscillator in
place of a Hénon–Heiles potential). Some plots of the Hénon–Heiles potential without the
harmonic oscillator correction term at different points in time are shown in Figure 5.6.

The stretched and linearly per-
turbed Hénon–Heiles potential for
d = 2, S = 16, and t = 0, 0.25, 0.5.
The correction term from the har-
monic oscillator has been left out.
With increasing t, the saddle that is
the Hénon–Heiles potential is more
and more transformed into an in-
clined plane.

Figure 5.6: W (x)+ 1
2

∑d
α=1 x

2
α =

∑d−1
α=1

[
(xα/S)2(xα+1/S)− 1

3 (xα+1/S)3
]
− sin2(t)x1

We want to demonstrate that the fast algorithm can be succesfully employed to (5.8)
even in case the underlying Galerkin basis is drastically reduced, and therefore choose a
hyperbolically reduced index set. When comparing the exact solution c(t) of (5.8) to the
solution of the corresponding spatially continuous problem, our task is to come up with
choices of parameters and initial data such that

• the truncation error does still not dominate the error due to a subsequent discretiza-
tion in time (for fixed K and reasonable choices of time step size h),

98

5. Numerical experiments Time integration

• the error due to a perturbation of Lanczos does not dominate either (which, for fixed
h, requires not too small a choice of K),

• the corresponding reference solutions are still computable with no excessive memory
or time consumption (which requires not too large a choice both of h and K),

• and the resulting dynamics is still interesting enough. In particular, for the fast
algorithm to be applicable, the solution needs to be significantly less smooth than the
evolving potential surface.

Our aim is to show numerically the expected order of convergence with respect to h and to
illustrate the error behavior ifm, K, and d vary individually. We have observed the following
choices to do us a good service in case d=2, 3, 4, and also to yield a good illustration of the
difficulties involved.

As an initialization, we choose

cfast(0) = c̃(0)/ ‖c̃(0)‖ , c̃k =

{
1, k = 0 or k = (0, . . . , 0, 1, 1),

0, else.

We start with a visualization of the exact solution ψ(·, t) to the corresponding spatially
continuous problem in case d=2. For this purpose, we consider (5.8) based on the full index
cube with K = 50, and propagate this system in time using the scheme (1.33) with time
step size h= 1e-03 and m= 20 Lanczos steps in each time step. Using a full index set, we
can safely employ the fast algorithm as an equivalent, but computationally much cheaper
alternative to quadrature. With as large a choice of K as this, we can expect the error
due to quadrature to be negligible. Additionally, these careful choices of h and m yields a
negligibly small time discretization error. We then transform the obtained coefficients to a
grid of 100 equidistant points in [−5, 5]2 and plot the squared modulus |ψ(·, t)|2 evaluated
at these points. This is shown in Figure 5.7 for different choices of t. As one can see,
the function actually has support within [−5, 5]2. From the values at these grid points,
we compute approximations to the L2-norm of |ψ(·, t)|2. Transforming coefficients to this
spatial grid constitutes a means to compare different choices of underlying index sets.

Before considering time discretization errors, we need to examine how sound an idea
using a hyperbolically reduced grid in order to approximate ψ is in the first place. For this
purpose, we consider the corresponding unperturbed system

iċquad(t) = Dcquad(t) + Wquad(t)cquad(t), (5.9)

with the same initialization cquad(0) = cfast(0); see (4.5). The underlying index set is the
hyperbolically reduced index set with a varying threshold K. Time propagation is done
using again the scheme (1.33) with h=1e-03 and m=20. Transforming the obtained coeffi-

cients to the above spatial grids yields an approximate solution ψquad
K , which is almost exact

in time, but not in space. As we use a sufficiently high order for the Gauß–Hermite quadra-
ture involved, the error stems exclusively from the reduction of the underlying Galerkin
basis. Table 5.2 gives the corresponding L2-errors

‖ψ(·, t)− ψquad
K (·, t)‖ (5.10)

at time t= 1 for d= 2, 3 and various choices of K. As can be seen, in 2D, we can expect
the decay in time errors not to be dominated by these spatial truncation errors unless h

99

Time integration 5. Numerical experiments

|ψ(·, t)|2 for different choices of t.
In each plot, the below contour
lines indicate the altitude of the
wave. The semi-transparent sur-
face indicates the evolving poten-
tial. One can see how the wave is
gradually shifted to the right and
disected by the incoming poten-
tial surface.

Figure 5.7: Exact solution to the linearly perturbed Hénon–Heiles problem.

100

5. Numerical experiments Time integration

is considerably small. However, it is already the choice d= 3 that does not as easily allow
for a small choice of h as in 2D, while for higher choices of d, the approximation quality of
the hyperbolic reduction is doubtful for the problem under consideration. We come back
to this issue in the subsequent experiments.

K→ 10 15 20 25

d=2 1.388e-03 2.697e-05 2.113e-06 3.825e-07

K→ 10 20 30 40

d=3 1.280e-01 1.384e-02 1.779e-03 1.604e-04

Table 5.2: Error
‖ψ(·, t) − ψquad

K (·, t)‖
due to spatial discretiza-
tion at time t = 1 for
various choices of d and
K.

Next, we eventually propagate (5.8) in time using the scheme (1.32) of order 2 with step
sizes between 1

10 and 1
160 in case d=2. The Galerkin basis is again hyperbolically reduced.

As a reference, we propagate the unperturbed system (5.9) using the scheme (1.33) with
h= 1e-03 and m= 20, and (K+1)-nodes Gauß–Hermite quadrature. The latter is a safe
choice, since, when applying the fast algorithm, the error due to quadrature is dominated
by the error due to index set reduction; see the error analysis given in Sections 4.6 and 4.7.
The respective approximations after n time steps are denoted by

(
cfast

)(n) ≈ cfast(tn),
(
cquad

)(n) ≈ cquad(tn), tn = nh, n = 0, 1, . . .

The left picture in Figure 5.8 shows the error

∥∥∥
(
cfast

)(h−1) −
(
cquad

)(1e+03)
∥∥∥ (5.11)

at time t = 1. The choice of K varies between 10 (lightest gray) and 25 (black). In each
time step, we employ the Lanczos process and m= 7 Lanczos steps together with the fast
algorithm. Additionally, we use asterisks to indicate the difference in the dynamics, viz.,

∥∥∥
(
cfast

)(h−1) −
(
cquad

)(h−1)
∥∥∥ , (5.12)

where (5.9) has been propagated using the same integrator with exactly the same time step
size. The latter error is the error due to a perturbation of Lanczos by replacing Wquad

by W pol(X). This error contribution has been studied in Section 5.2. There are three
noticeable observations: First, the perturbation error (5.12) becomes eventually dominant
for decreasing h, as predicted in the last section, but it decreases arbitrarily for increasing
K and fixed h. Second, unless (5.12) dominates, the figures reveal the expected order of
convergence as visualized by the dashed line, which represents the slope. In the correspond-
ing table, the columns “ratio” give the quotients of two consecutive errors. Third, in case
K=25 and h = 1

160 , the error (5.11) is of similar size as the truncation error given in Table
5.2. For all other combinations of K and h, the truncation error is easily dominated by the
error (5.11), and the hyperbolic reduction reveals to be a proper choice.

Let us examine a bit closer the role of the perturbation of Lanczos. The right picture
shows the same error as on the left in case of fixed K = 25, and of various choices of m
as indicated by a solid line, circles, and plus signs, respectively. We use again the scheme
(1.32). The perturbation error (5.12) for the choice m=3 is marked by asterisks. Being of
almost exactly the same size, the perturbations for the other choices of m have been left

101

Time integration 5. Numerical experiments

h
1

160
1
80

1
40

1
20

1
10

1e − 08

1e − 07

1e − 06

1e − 05

m = 7, various K

K = 10
K = 15
K = 20
K = 25

slope 2

1
160

1
80

1
40

1
20

1
10

1e − 07

1e − 06

1e − 05

K = 25, various m

m = 3

m = 5

m = 9

error at t = 1, d = 2, hyperbolic reduction

K→ 10 15 20 25

m
=

7

h↓ (5.11) ratio (5.11) ratio (5.11) ratio (5.11) ratio

1/10 4.278e-05 – 3.638e-05 – 3.637e-05 – 3.637e-05 –

1/20 2.439e-05 1.75 9.098e-06 4.00 9.074e-06 4.01 9.074e-06 4.01

1/40 2.278e-05 1.07 2.360e-06 3.85 2.267e-06 4.00 2.265e-06 4.01

1/80 2.268e-05 1.00 8.715e-07 2.71 5.731e-07 3.96 5.636e-07 4.02

1/160 2.267e-05 1.00 6.794e-07 1.28 1.734e-07 3.30 1.390e-07 4.06

m→ 3 5 9 (5.12), m=3

K
=

25

h↓ (5.11) ratio (5.11) ratio (5.11) ratio

1/10 2.035e-03 – 3.640e-05 – 3.637e-05 – 1.640e-08

1/20 5.087e-04 4.00 9.074e-06 4.11 9.074e-06 4.01 1.573e-08

1/40 1.272e-04 4.00 2.265e-06 4.03 2.267e-06 4.01 1.547e-08

1/80 3.180e-05 4.00 5.636e-07 4.03 5.636e-07 4.02 1.538e-08

1/160 7.951e-06 4.00 1.390e-07 4.08 1.390e-07 4.06 1.536e-08

Figure 5.8: Error (5.11) at t=1 when propagating (5.8) using the scheme (1.32) of order 2. Left:
d=2, m=7, various K. Right: d=2, K=25, various m. The perturbation error (5.12) is indicated
by asterisks. Log–log plot.

out. As can be seen, all choices of m between 5 and 9 yield almost exactly the same figures,
and the perturbation does not interfere with the expected time convergence for our choices
of h.

Next, we consider fixed choices of K=40, m=7, and vary d. Some convergence results in
cases d=2, 3, 4 are shown in the upper half of Table 5.3. When d is increased, there are two
separate issues we need to address: First, as stated above, the hyperbolic reduction ceases to
be a good approximation for our example, and the truncation error (5.10) dominates. This
is a general point of criticism of the hyperbolic reduction that does not directly affect the
fast algorithm itself. Second, the perturbation error (5.12) (not explicitly given in the table)

102

5. Numerical experiments Time integration

becomes dominant more easily, and we fail to observe the expected order of convergence
before the contribution from (5.12) outweighs. The order of the method (1.32) is therefore
not fully revealed.

d→ 2 3 4

h↓ (5.11) ratio (5.11) ratio (5.11) ratio
h
y
p

.,
K

=
40

1/10 3.637e-05 – 2.684e-05 – 2.713e-05 –

1/20 9.074e-06 4.01 6.705e-06 4.00 8.022e-06 3.38

1/40 2.265e-06 4.01 1.711e-06 3.92 4.810e-06 1.67

1/80 5.634e-07 4.02 5.556e-07 3.08 4.552e-06 1.06

1/160 1.381e-07 4.08 3.827e-07 1.45 4.540e-06 1.00

ad
d

.,
K

=
20

1/10 3.637e-05 – 2.684e-05 – 2.786e-05 –

1/20 9.074e-06 4.01 6.695e-06 4.01 6.713e-06 4.15

1/40 2.265e-06 4.01 1.671e-06 4.01 1.672e-06 4.02

1/80 5.634e-07 4.02 4.157e-07 4.02 4.157e-07 4.02

1/160 1.381e-07 4.08 1.019e-07 4.08 1.019e-07 4.08

Table 5.3: Error (5.11) at t=1 when propagating (5.8) using the scheme (1.32) of order 2. Upper
half: Hyperbolic reduction, m=7, K=40, various d. Lower half: Additive reduction, m=7, K=20,
various d.

Finally, in view of these findings, we turn to the additive reduction. The lower half of
Table 5.3 shows the errors (5.11) for fixed choices of K = 20, m= 7, and varying d. Even
with only half the threshold as in the hyperbolic case, the 2D errors are exactly reproduced,
and the expected order of convergence still is observable in case d= 3, 4. As an additional
comment that cannot be seen from the table, for all these choices of d, the truncation error
(5.10) is of size ∼ 1e-14, and the observed time-error ratios have been similar to those given
in Figure 5.4. For the example under consideration, at least in case d ≥ 4, the additive
reduction is thus preferable over the hyperbolic reduction.

To conclude with, we briefly summarize the two main lessons to draw from these exper-
iments: First, given any fixed kind of reduction, the fast algorithm is seen to work well.
In principle, a reduction as radical as the hyperbolic one is not an obstacle for a succesful
application. Second, in all our experiments, the error induced by the fast algorithm due to
a reduction of the index set is not larger than the truncation error itself. Thus, if a spe-
cific kind of index reduction is feasible with a specific example, the fast algorithm can be
safely applied. To put it differently, we do not expect a situation where a specific reduction
yields a reasonable approximation, but the fast algorithm does not allow for a succesful
propagation in time. All our observations nicely reflect the theoretical predictions.

103

6 Further applications

We conclude the first part of this thesis with a brief discussion of crucial assumptions for
the fast algorithm as given above to be applicable vs. non-essential choices that were either
made to ease the presentation, or could easily be dropped without too much additional
efforts to circumvent the minor issues that arise from dropping them. Furthermore, we
present further applications of the fast algorithm.

Section 6.1 gives a concise list of those crucial assumptions. In Section 6.2, we consider
the case of a Hermite basis together with a differential operator that does not allow for
a simple replacement of spatial derivatives by a diagonal eigenvalue matrix. It is shown
how the fast algorithm can be applied with differential operators other than the harmonic
oscillator. In Section 6.3, we comment on the applicability of the fast algorithm with a
set of moving wavepacket basis functions, which is a more natural choice in case the wave
function can be expected to be localized. Finally, in Section 6.4, we show how to apply the
fast algorithm to the Schrödinger equation with a cubic nonlinearity.

6.1 Essentials and non-essentials

When developing the fast algorithm in Chapter 2, not all choices we made were necessary
ones. The fast algorithm actually comes closer to being a general tool to deal with the
intricacies of spectral discretizations of high-dimensional PDEs than a narrowly-taylored
procedure for the linear Schrödinger equation with a specific kind of potential only. A
presentation of the wider range of applications of the fast algorithm shall be postponed
until Part II of this thesis. In the present section, we point out to what are the essential
ingredients for the above procedure to be applicable, and to where there is still some leeway
for generalizations.

• As pointed out multiply, the fast algorithm is applicable in arbitrary dimensions and
with any kind of index set

K(d,K) ⊆ Kfull(d,K),

as long as K satisfies the weak closure property (1.15).

• Additionally, the index sets for the Galerkin basis and the one for the polynomial
approximation of the potential, viz., R(d,R), must be related via

|K| � |R|, K � R, (6.1)

which is implied by the requirement that the polynomial W (·, t) as defined in (1.14) be
significantly smoother than the solution ψ(·, t) to the original problem (1.1) wherever

105

Derivatives 6. Further applications

ψ does not essentially vanish, for all t ≥ 0. The two assumptions given in (6.1) each
play a specific role: The assumption |K| � |R| guarantees essentially linear scaling of
the procedure, while K � R guarantees convergence of the approximation.

• The chosen basis for a polynomial representation of the potential W is arbitrary.
In Section 1.4, we choose Chebyshev polynomials, and the fast algorithm in both
its versions thus employs the 1D Chebyshev recurrence (2.9) for the factors in each
term of the multivariate Chebyshev expansion of W pol; see line 13 of Algorithm 4
and line 10 of Algorithm 5, respectively. The particular benefits of Chebyshev inter-
polation notwithstanding, for an orthogonal polynomial basis other than Chebyshev
polynomials, these lines need to be adjusted accordingly. Even a monomial repre-
sentation is viable, which reduces the computations to direct applications of X(α) on
vectors only.
The fast algorithm as given in Chapter 2 requires a multivariate polynomial with not
too many terms of not too high a degree for the approximation of W . Non-polynomials
might also be applicable as a representation basis. In Section 6.4, when discussing
nonlinearities, we consider a Hermite function approximation (i.e, polynomials times
squares of a weight function) to the nonlinearity, and give it a treatment similar to the
one for the multiplicative potential. Besides, the present thesis does not investigate
any further into the issue of using non-polynomial approximation, though.

• Amongst their generic features, the defining three-term recurrence (1.10) of the Her-
mite functions is the one we put into use the most prominently, besides them being
mutually orthogonal with respect to the scalar product that underlies the Galerkin
approximation and being bounded independently of their index. Actually, any set of
tensor products of univariate orthogonal basis functions that come with a recurrence
of a K-independent number of terms does the trick. Classical orthogonal polynomi-
als (or their corresponding functions, i.e., the polynomials times the square of the
corresponding weight function and possibly an appropriate normalization factor) are
thus a natural candidate for a Galerkin basis that allows for an application of the fast
algorithm. A zoo of these polynomials and functions, including the underlying general
theory, is readily found in various textbooks; see the references given in the introduc-
tion to Part I, page 8. In Part II, e.g., we shall consider the choice of a Legendre basis
in place of Hermite functions. All that needs to be changed is the application of the
specific recurrence relation in the direct operation procedure for the action of X(α) on
a vector; see Algorithm 3.

The above considerations are summed up in Table 6.1.

6.2 Derivatives

There is an obvious objection to considering orthogonal polynomials or functions other than
Hermite functions as a Galerkin basis: In Section 1.1, our first move was to get rid of spatial
derivatives as they occur in the Hamiltonian operator H by invoking the eigenfunction
relation the chosen Galerkin basis provides. In our case, this trick was facilitated by the
interplay of the harmonic oscillator and the Hermite functions. Will the fast algorithm still
be applicable with basis functions other than Hermite function? Will it be applicable with
the same Hermite basis, but with a differential operator that does not yields the harmonic

106

6. Further applications Derivatives

item minimal requirement

Galerkin basis index set K(d,K)
any subset of Kfull(d,K)

such that (1.15) holds

polynomial approximation any subset of Rfull(d,R)

index set R(d,R) such that |K| � |R| and K � R

basis for W pol ≈W classical orthogonal polynomials,

monomials

Galerkin basis
small recurrence, orthogonality,

boundedness

Table 6.1: Essentials and non-essentials for the fast algorithm.

oscillator by suitably smuggling in terms? To both questions, the answer is positive. As for a
change of Galerkin basis, see the above comments at the end of Section 6.1 and, primarily,
Part II of this thesis. In this section, we consider only the second issue: We retain the
Hermite basis, but study more general kinds of differential operators. Even though the
right-hand side of our PDE might not allow to invoke the Hermite eigenfunction property
(1.11) such that the task of evaluating spatial derivatives can easily be circumvented, the
methodology of the fast algorithm can still be applied. We briefly sketch the proceeding.
For second-order differential operators, a more systematic way of doing spatial derivatives
including an error analysis shall be presented in Part II.

6.2.1 Differential operators

The follwing observations apply with any Hamiltonian operator of the form H = D + W
where W is a multiplicative potential as above and D is a sum of products, viz.,

D =
∑

r∈R
ar(x)∂rx =

∑

r∈R
ar(x)

d∏

α=1

∂rα

∂xrαα
(6.2)

with real-valued, position-depedendent coefficient functions ar(x), x ∈ Rd, which we ap-

proximate by polynomials apol
r . Note that |R| is the number of terms in the operator D,

not the number of terms in a polynomial approximation. For the sake of simplicity, we
restrict ourselves to the special case

D =
d∑

α=1

aα(x)
∂

∂xα
,

i.e., R = {eα ; 1 ≤ α ≤ d}. Even without the harmonic oscillator trick given in Sections 1.1
and 1.2, the following proceeding then easily allows for a treatment of, e.g., the Fokker–
Planck equation. Again, we consider termwise evaluation of the matrix-vector product with
the corresponding matrix representation of the derivative operator, viz.,

Dpolv =
d∑

α=1

(
ϕj, a

pol
α

∂

∂xα
ϕk

)
j,k∈Kv =

d∑

α=1

D(α′)v, v ∈ C|K|.

107

Derivatives 6. Further applications

The Hermite functions come with a three-term recurrence for their spatial derivatives,

ϕ′k(x) = −
√
k + 1

2
ϕk+1(x) +

√
k

2
ϕk−1(x), k ≥ 0,

where we set ϕ−1 ≡ 0. This enables us to write

(
D(α′)v

)
j

=
∑

k∈K

(
ϕj, a

pol
α

∂

∂xα
ϕk

)
vk

=
∑

k∈K
(ϕj, a

pol
α ϕk+eα)

(
−
√
kα + 1

2
vk
)
+
∑

k∈K
(ϕj, a

pol
α ϕk−eα)

(
√
kα
2
vk
)

=
(
D̃(+α)v(+)

)
j
+
(
D(−α)v(−)

)
j
,

(6.3)

where

(
D̃(+α)

)
jk

= (ϕj, a
pol
α ϕk+eα),

(
D(−α)

)
jk

=

{
(ϕj, a

pol
α ϕk−eα), kα > 0,

0, kα = 0,

and

v
(+α)
k = −

√
kα + 1

2
vk, v

(−α)
k =

√
kα
2
vk.

We now explain how the latter matrix-vector products with D̃(+α) and D(−α) can be reduced
to matrix-vector products with D(α),

(
D(α)

)
jk

= (ϕj, a
pol
α ϕk), j,k ∈ K,

which enables us to use the fast algorithm with the polynomially approximated coefficient
function apol

α in place of a polynomial potential.

6.2.2 Shifting vectors

Consider the following simple observation in 1D: Given an arbitrary matrix

A = (Ajk)0≤j,k≤K ∈ C(K+1)×(K+1),

we define

A
(+)
jk =

{
Aj,k+1, 0 ≤ k ≤ K−1,

0, k = K + 1,
0 ≤ j ≤ K,

A
(−)
jk =

{
Aj,k−1, 1 ≤ k ≤ K,
0, k = 0,

0 ≤ j ≤ K,

i.e., the matrix is shifted to the left and to the right, respectively, and the free column is
filled with zeros. Using lower and upper diagonal unit matrices

I
(±)
jk = δj,k±1, 0 ≤ j, k ≤ K,

108

6. Further applications Derivatives

we readily find

A(±) · v = A · I(±)v

for the products of the shifted matrices with a vector v ∈ C(K+1). Thus, we can express
these products as products of the original matrix with shifted vectors.

In higher dimensions, for each 1 ≤ α ≤ d, we set

I
(±α)
jk = δj,k±eα , j,k ∈ K.

The analogous shifted (|K| × |K|)-matrix A reads

A
(±α)
jk =

{
Aj,k±eα , k ∈ K \ {k ; k± eα /∈ K},
0, k± eα /∈ K,

j,k ∈ K,

for all 1 ≤ α ≤ d. We then find

(
AI(±α)

)
jk

=
∑

m∈K
AjmI

(±α)
mk =

∑

m∈K
Ajmδm,k±eα

=

{
Aj,k±eα , k± eα ∈ K
0, k± eα /∈ K,

= A
(±α)
jk ,

j,k ∈ K.

Again, products with shifted matrices can be turned into products of unshifted matrices
with shifted vectors. If Ajk = (ϕj, a

polϕk) with a multivariate polynomial apol, we can thus
approximate the matrix-vector product with the shifted matrix according to

A(±α)v = A
(
I(±α)v

)
≈ apol(X)

(
I(±α)v

)

using the fast algorithm for the formal insertion of the coordinate matrices into the poly-
nomial apol.

6.2.3 Doing derivatives by shifts

Applying these ideas to (6.3), we first compute v(±α) from v, then shift v(±α) to obtain

I(±α)v(±α), all in in O(|K|), and then use the fast algorithm with apol
α (X) and I(±α)v(±α),

which takes O(Rα|K|) operations if Rα is the number of terms in the polynomial expansion
of aα. This needs to be done for every choice of α. As a minor issue, the matrix D̃(+α) does
not equal the matrix

D
(+α)
jk =

{
(ϕj, a

pol
α ϕk+eα), k + eα ∈ K,

0, k + eα /∈ K,

and

(
D̃(+α)v(+α)

)
j

=
(
D(+α)v(+α)

)
j
+

∑

k+eα /∈K

(ϕj, a
pol
α ϕk+eα)v

(+α)
k . (6.4)

109

Moving wavepackets 6. Further applications

The sum on the right-hand side of (6.4) contains all the boundary elements in the index
set K(d,K). It has |K(d− 1,K)|-many terms and can be dealt with using an adaptation of
the sequential summations approach given in Section 3.2.

As an afternote, consider the idea of introducing shifted coordinate matrices to operate
on the original (i.e., not shifted) vector only instead of using shifted vectors. The matrices

X
(±α)
jk = (ϕj, xαϕk±eα) , U

(±α)
jk =

√
ωjϕk±eα(ξj),

however, do not yield a unitary diagonalization of X(α) analogous to (2.17), because

(
(U(±α))TU(±α)

)
jk

=
∑

m

ωmϕj±eα(ξm)ϕk±eα(ξm),

which does neither equal the corresponding exact integral for all choices of j and k (even
for a full-product Gaussian quadrature, due to excessive degrees), nor does it evaluate to
δjk as required.

6.3 Moving wavepackets

The fast algorithm has first been proposed in [23] in the context of a time-splitting procedure
for the Schrödinger equation in the semiclassical regime. Instead of Hermite functions with
a fixed localization around zero, the underlying basis consists of parameterized, moving
wavepackets. Such a basis that adapts to the localization of the solution could also be used
in the classical regime if the solution is known in advance to exhibit a strong localization. We
shall briefly introduce the moving wavepacket basis, give a rough presentation of the time-
splitting procedure together with a sketch of how the fast algorithm needs to be adapted,
and comment on how (and to what extent) the above error analysis carries over.

6.3.1 Hagedorn wavepackets

The Hagedorn wavepackets are a multidimensional generalizsation of Hermite functions; see
[41, 42, 43]. They allow for more flexibility with respect to their position and momentum
localization. Starting from the parameterized complex Gaussian wavepacket

ϕε0(x) = (πε)−d/4 det(Q)−1/2 exp

(
i

2ε
(x− q)TPQ−1(x− q) +

i

ε
pT (x− q)

)
, x ∈ Rd,

centered in position q ∈ Rd and momentum p ∈ Rd with invertible matrices Q,P ∈ Cd×d
that satisfy a specific symplecticity condition, the Hagedorn wavepackets ϕεk, k ∈ Nd, can
be constructed recursively via

Q
(√

kα + 1ϕεk+eα(x)
)d
α=1

=

√
2

ε
(x− q)ϕεk(x)− Q̄

(√
kαϕ

ε
k−eα(x)

)d
α=1

. (6.5)

Therefore, ϕεk = ϕεk[q, p,Q, P] is the product of a polynomial of degree
∑d

α=1 kα times a
complex Gaussian, viz.,

ϕεk(x) =
(
2
∑
α ka

∏

α

kα!
)−1/2

pεk(x)ϕε0(x);

110

6. Further applications Moving wavepackets

see [58], Prop. 2, for the latter identity. If Q is real and symmetric, the polynomials pεk turn
out to be products of suitably evaluated Hermite polynomials. The scale parameter ε > 0
determines the width of a wavepacket to be of size O(ε−1/2) and its wavelength to be of
size O(ε). The family {ϕεk(x)}k∈Nd forms an L2(Rd)-orthonormal basis of highly oscillatory
functions.

6.3.2 Semiclassical splitting and the fast algorithm

In case of a quadratic (possibly time-dependent) potential V , the Hagedorn wavepackets
multiplied with a phase factor exp

(
i
εS(t)

)
turn out to solve the semiclassical Schrödinger

equation

iεψt(x, t) = (Hεψ)(x, t)

= −ε
2

2
(∆ψ)(x, t) + V (x, t)ψ(x, t),

x = (x1, . . . , xd) ∈ Rd, 0 < ε� 1, (6.6)

exactly if the parameters q(t), p(t), Q(t), P (t) follow a set of classical and linearized equa-
tions of motions, respectively, and if S(t) is the classical action; see [43], or (in our notation)
[61], Chapter V.

In [23], this is used to devise a fully discrete, explicit, and time-reversible time-stepping
algorithm to propagate the parameters, the phase, and the coefficients ck in the ansatz

ψ(x, t) ≈ ψK(x, t) = exp
(i
ε
S(t)

)∑

k∈K
ck(t)ϕεk[q(t), p(t), Q(t), P (t)](x),

where ψ is the solution to (6.6) and K(d,K) ⊆ Kfull(d,K) is a d-dimensional index set. The
idea is to split the Hamiltonien operator Hε into its kinetic part and its potential part, and
to further subdivide V into a local quadratic approximation around the current position and
the non-quadratic remainder W . The free Schrödinger equation and the quadratic potential
part can then each be solved exactly with unaltered coefficients ck, and the non-quadratic
potential equation is approximated using a Galerkin ansatz on the linear space spanned by
the functions ϕεk with fixed parameters q, p,Q, P and varying coefficients ck. The kinetic
and potential parts are trivially propagated with negligible costs, and the non-quadratic
remainder part requires to compute the action of the matrix exponential exp

(
− ih

ε W) on

a vector v ∈ C|K| in each time step. This can be accomplished using a few Lanczos steps
in combination with our fast algorithm.

As already mentioned, using the fast algorithm for the above task has actually been pro-
posed in [23] without further details. Let us briefly explicate this: The overall computational
procedure for the approximation

Wv ≈W pol(X(α;ε))v, (6.7)

where W pol is a polynomial approximate of the non-quadratic remainder of the potential,
remains almost unaltered when replacing tensor products of Hermite functions by Hagedorn
wavepackets. By virtue of the recurrence (6.5), a direct operation with the ε-dependent
coordinate matrices

X
(α;ε)
jk = (ϕεj , xαϕ

ε
k), j,k ∈ K, α = 1, . . ., d,

111

Moving wavepackets 6. Further applications

can be performed via

(
(X(α;ε)v)j

)d
α=1

= vjq +

√
ε

2
Q
(√

jαvj−eα

)d
α=1

+

√
ε

2
Q̄
(√

jα + 1vj+eα

)d
α=1

; (6.8)

cf. Algorithm 3. Note that, due to the presence of the matrices Q and Q̄, this recurrence
formula no longer consists of only a single row, but of d rows. The complexity of X(α;ε)v is
thus O(d|K|). Apart from the above direct operation procedure (6.8), the rest of the fast
algorithm is exactly the same as before. And so is the complexity, but for an additional
factor of d.

6.3.3 Error

An error estimate for a splitting scheme even more elaborate than the above has been given
in [36]. However, the error due to a numerical solution of the non-quadratic remainder
equation has not been discussed. In particular, there is no analysis for an approximation of
the matrix-vector product Wv (polynomial interpolation, quadrature, index set reduction).
We restrict our attention to the local error (6.7) that arises from computing the matrix-
vector product W pol(X(α;ε))v with the help of the fast algorithm adapted to a Hagedorn
wavepacket basis.

Following [23], we use the change of variables x = q+
√
ε|Q|y, where |Q| = (QQ∗)1/2, to

define the ε-independent functions φk via

φ0(y) = π−d/4 exp
(
− 1

2

∑

α

y2
α

)
,

Q
(√

kα + 1φk+eα(y)
)d
α=1

=
√

2(y − q)φk(y)− Q̄
(√

kαφk−eα(y)
)d
α=1

.

Again, these functions are polynomials of degree
∑

α kα times the Gaussian φ0. We aim for
a formal relation between the fast algorithm and a suitable choice of quadrature. With the
help of the φ-functions, the proceeding from Section 2.6 can be mimicked. We rewrite and
approximate the entries of the matrix representation Wpol according to

Wquad
jk =

∫

Rd
ϕ̄εj (x)W pol(x)ϕεk(x) dx =

∫

Rd
φ̄j(y)W pol(q +

√
ε|Q|y)φk(y) dy

≈
∑

m∈Kfull

ωmφ̄j(ξm)W pol(q +
√
ε|Q|ξm)φk(ξm),

where we use again (K+1)-nodes full product Gauß–Hermite quadrature. The φ-functions
no longer yield a highly oscillatory integrand. Thus, we no longer require an excessive
amount of quadrature nodes for an accurate computation of Wpol.

Let us first consider the full index cube. Using orthonormality of the Hagedorn wavepack-
ets together with the exactness properties of Gaussian quadrature, we can define a param-
eterized counterpart to the above matrix U built from φk, viz.,

Ujk =
√
ωjφk(ξj), j,k ∈ K,

(cf. (2.16)) and diagonalize the ε-dependent coordinate matrices according to

X(α;ε) = UT diagm∈Kfull

(
qα +

√
ε(|Q|ξm)α

)
U.

112

6. Further applications Nonlinearities

Again, this holds true only for the full index index cube. We see that the very same
equivalence of formal insertion of coordinate matrices and Gaussian quadrature as already
given in Lemma 2 for the Hermite basis is also valid for Hagedorn wavepackets, and the
error due to the fast algorithm again turns out to be an error due to quadrature. Since the
matrix Wquad is Hermitian, we can mimic the proof of Lemma 4 in detail.

The case of a reduced index set is partly an unresolved issue, though. The problem is
that Hagedorn wavepackets are multivariate functions that do not factorize into a prod-
uct of univariate functions—unlike their tensorized Hermite counterparts. In the proof of
Theorem 5, however, the error due to quadrature is reduced to the 1D case by means of
this very factorization. We do not see how to transfer the binary tree technique, that cru-
cially makes use of the 1D Hermite recurrence (1.10), from the Hermite to the Hagedorn
case. A Hagedorn analog to Theorem 6 can be proved, though, since the underlying binary
tree construction only invokes the 1D Chebyshev recurrence, but not (1.10). As one might
imagine from the binary tree devised in Figure 4.3, mimicking the proceeding only works
at the cost of highly complicated binary tree expressions.

6.4 Nonlinearities

We consider the dimensionless Schrödinger equation with a cubic nonlinearity,

iψ̇(x, t) = −1

2

(
∆ψ)(x, t)−

d∑

α=1

x2
α

)
ψ(x, t)

+
(
W (x, t) + g|ψ(x, t)|2

)
ψ(x, t),

x = (x1, . . . , xd) ∈ Rd, (6.9)

for t ≥ 0, where W is a real-valued multiplicative, possibly time-dependent potential and g
is a constant. For the sake of simplicity, we set g=1. In case W ≡ 0, eq. (6.9) describes the
wave function of a Bose–Einstein condensate in a harmonic trap. First, we discretize (6.9)
in space using the same Hermite spectral approach as in Sections 1.1 and 1.2, and then
propagate it in time using a Strang splitting ansatz: The harmonic oscillator part yields
a trivially computable analytic solution. For the remainder part, however, time-stepping
involves matrix-vector products we avoid to do explicitly by a modification of the above
fast algorithm.

Let all assumptions on ψ and W from Sections 1.4 and Section 2.1 for the fast algorithm
to be applicable hold true. As will be seen, the only further assumption on (6.9) we need
concerns the regularity of |ψ|2 as compared to ψ.

6.4.1 Spectral discretization in space

We use the same spectral ansatz as in Sections 1.1 and 1.2. In 1D, we write

ϕk(x) = fkHk(x) exp(−x2/2), fk =
(

2kk!π1/2
)−1/2

, k ≥ 0,

for the univariate Hermite functions, where Hk is again the k-th order Hermite polynomial.
In higher dimension, we use a tensor product Hermite basis as in Section 1.2, where the
underlying index set is the full index cube

K(d,K) =
{

k ∈ Nd | 0 ≤ kα ≤ K
}
.

113

Nonlinearities 6. Further applications

The unknown coefficients c(t) = (ck(t))k∈K of the approximation

ψ(x, t) ≈ ψK(x, t) =
∑

k∈K
ck(t)ϕk(x) ∈ span {ϕk |k ∈ K(d,K)} ,

are determined via
(
ϕj, iψ̇K +

1

2
∆ψK −

1

2

d∑

α=1

x2
αψK −

(
W + |ψK|2

)
ψK

)
= 0 ∀ j ∈ K. (6.10)

Using the eigenfunction relation (1.13) for the Hermite functions together with the or-
thonormality of the basis, eq. (6.10) is seen to be equivalent to the system of ODEs

iċ(t) = Dc(t) + (W(t) + P(t))c(t),

with the diagonal matrix D = diagk∈K
(∑d

α=1(kα + 1
2)
)

and (|K| × |K|)-matrices

Wjk(t) = (ϕj,W (·, t)ϕk), Pjk(t) = (ϕj, |ψK(·, t)|2ϕk), j,k ∈ K. (6.11)

6.4.2 Propagation in time

For an abstract evolution equation of the form

u̇(t) =
(
A+B(u(t), t)

)
u(t), t ≥ 0, u(0) given,

where A is a linear and B is a nonlinear operator, a Strang or symmetric Lie-Trotter splitting
method is built from the solutions of evolution equations

{
v̇(t) = Av(t),

v(0) = v0 given,

{
ẇ(t) = B(w(t), t),

w(0) = w0 given,

with exact solutions and evolution operators

v(t) = ΦA(t)[v0], w(t) = ΦB(t)[w0], t ≥ 0,

respectively. The Strang splitting scheme reads

un+1 = ΦA(h/2)
[
ΦB(h)

[
ΦA(h/2)[un]

]]
, n ≥ 0,

and u0 = u(0). In our case, u is a placeholder for the coefficient vector c(t), and

A = −iD, B(c(t), t) = −i(W(t)c(t) + P(t))c(t),

are the Galerkin representations of the right-hand side operators as occurring in (6.9).
The linear evolution operator ΦA trivially is given as

ΦA(t) = diagk∈K

(
exp

(
−it

d∑

α=1

(kα +
1

2

))
.

As for the evolution ΦB, we have to discretize in time the system of ODEs

iċ(t) = (W(t) + P(t))c(t). (6.12)

This involves evaluations of B(v, t), for some vectors v ∈ C|K|, which in turn necessitates
efficient evaluation procedures for W(t)v and P(t)v. The fast algorithm as devised in
Chapter 2 applies to approximate W(t)v. We shall now devise a similar procedure for
P(t)v.

114

6. Further applications Nonlinearities

6.4.3 Approximation of the squared modulus

We consider a truncated Hermite expansion of |ψK|2,

|ψK(x, t)|2 ≈ PL|ψK(x, t)|2 =
∑

l∈L
dl(t)ϕl(x), dl(t) = (ϕl, |ψK(·, t)|2),

where PL is the L2-orthogonal projection onto span {ϕl | l ∈ L(d, L)} with a multi-index set
L = L(d, L) ⊂ Nd.

For all t ≥ 0, by the definition of dl(t) and by the fact that the Hermite functions are
real-valued, we find

dl(t) = (ϕl, |ψK(·, t)|2) =
(
ϕl, (

∑

k

c̄k(t)ϕk)(
∑

j

cj(t)ϕj)
)

=
∑

k

c̄k(t)
∑

j

(ϕk, ϕlϕj)cj(t),

or, equivalently,

dl(t) = c∗(t)P(l)c(t),

with triple-product matrices

P
(l)
jk = (ϕj, ϕlϕk), j,k ∈ K, l ∈ L. (6.13)

In particular, if P(l)c(0) is known, the set of coefficients (dl(0))l∈L is computable from c(0)
and P(l)c(0) in O(|L||K|). If the squared modulus of ψK is considerably smoother than ψK
itself, we can choose L such that

|K(d,K)| � |L(d, L)|, K � L,

which parallels the smoothness assumptions on ψ and the potential W as discussed in
Section 1.4. We are thus in need of an efficient procedure for the matrix-vector product of
the form P(l)v for some v ∈ C|K|. Given such a procedure that also takes only O(|L||K|)
operations, we end up with an overall algorithm that scales essentially linearly with |K|.

We write (6.12) equivalently as

iċ(t) =
(
W(t) +

∑

l∈L
c∗(t)P(l)c(t) P(l)

)
c(t). (6.14)

This is the spatially discrete system as we actually propagate it in time.

6.4.4 Factorization of triple products

Our aim is to factorize the triple-product matrices P(l) in a way that allows for an efficient
procedure for corresponding matrix-vector products. As shown in Section 2.6,

diagm∈K
(
− 1

2

d∑

α=1

ξ2
mα

)
= U

(
− 1

2

d∑

α=1

(X(α))2
)
UT ,

115

Nonlinearities 6. Further applications

where U and X(α) are defined as in (2.16) and (2.4), respectively. This implies

UT diagm∈K(ϕ0(ξm))U = π−d/4UT exp
(

diagm∈K
(
− 1

2

d∑

α=1

ξ2
mα

))
U

= π−d/4 exp
(
− 1

2

d∑

α=1

(X(α))2
)
.

Setting fl = fl1 · . . . · fld , we can thus approximate P(l) by quadrature and factorize the
approximation according to

P(l) = (ϕk, ϕlϕk)j,k∈K

≈ ((ϕk, ϕlϕk)quad)j,k∈K = fl((ϕj, ϕ0Hlϕk)quad)j,k∈K

= flU
T diagm∈K

(
Hl(ξm)ϕ0(ξm)

)
U

= flU
T diagm∈K

(
Hl(ξm)

)
UUT diagm∈K

(
ϕ0(ξm)

)
U

= π−d/4flHl(X) exp
(
− 1

2

d∑

α=1

(X(α))2
)
.

Turning back to the system (6.14), we are thus concerned with the matrix-vector product

∑

l∈L
v∗P(l)v P(l)v ≈ π−d/2

∑

l∈L
f2
l v∗Hl(X)wHl(X)w, v ∈ C|K|, (6.15)

where

w = exp
(
− 1

2

d∑

α=1

(X(α))2
)
v.

In Section 6.4.5, we present both a direct evaluation procedure for the computation of w
and a modification of the above fast algorithm for the computation of the product (6.15).
Applying these procedures sequentially then yields a linearly scaling procedure for the
overall matrix-vector product.

6.4.5 Efficient matrix-vector products

We recall the direct operation procedure with the coordinate matrices given in Section 2.2,
viz.,

(
X(α)v

)
j

=

√
jα
2
vj−eα +

√
jα + 1

2
vj+eα

(6.16)

for all j ∈ K, where eα is again the αth unit vector, and vj−eα = 0 if jα = 0 and vj+eα = 0
if jα = K. Repeating this, we find

(
− 1

2

d∑

α=1

(X(α))2v
)
j
=

d∑

α=1

[
− 1

4

(√
jα(jα−1)vj−2eα+jαvj

)
(1−δjα0)

− 1

4

(
(jα+1)vj+

√
(jα+1)(jα+2)vj+2eα

)
(1−δjαK)

] (6.17)

116

6. Further applications Nonlinearities

Algorithm 9: Recursive procedure for

y =
∑

l∈L
f2
l v∗Hl(X)wHl(X)w

for given vectors v, w ∈ C|K| and given coefficients fl, l ∈ L, starting from y = 0, α = 1,
and l = 0 ∈ Nd.

1 z = fastalgorithm (v,w,y, α, l)
2 for l = 0 to L do
3 if l = 0 then
4 w− := w
5 else if l = 1 then

6 w+ := 2X(α)w use (6.16): O(|K|)
7 else
8 temp := w+

9 w+ := 2X(α)w+ − 2lw− use (6.19) together with (6.16): O(|K|)
10 w− := temp

11 w̃ :=

{
w−, l = 0,

w+, else,

12 l := l
α←− l

13 if α < d then
14 fastalgorithm (v, w̃,y, α+1, l) recursion: next coordinate
15 else
16 z := v∗w̃ scalar product: O(|K|)
17 y := y + f2

l zw̃ last coordinate: sum up

for all j ∈ K, where vj−2eα = 0 if jα ∈ {0, 1} and vj+2eα = 0 if jα ∈ {K − 1,K}. Thus,

X(α)v is obtained via (6.16) in O(|K|) operations, and −1
2

∑d
α=1(X(α))2v is obtained via

(6.17) in O(d|K|) operations.
We approximate the matrix exponential

exp
(
− 1

2

d∑

α=1

(X(α))2
)
v ≈ Vm exp(Tm)e1

by a Galerkin ansatz based on an m-step Hermitian Lanczos process as given in Section 1.5.
In each step of the Lanczos process, we evaluate the product of the Hermitian matrix
−1

2

∑d
α=1(X(α))2

)
with a vector using the efficient procedure (6.17). The overall Lanczos

process takes O(md|K|) operations.
We now turn to the computation of

π−d/2
∑

l∈L
f2
l v∗Hl(X)wHl(X)w, w given, (6.18)

and propose a simple modification of the procedure presented in Section 2.3. In 1D, (6.18)

117

Nonlinearities 6. Further applications

can be computed using the Hermite recurrence relation

Hl+1(X)w = 2XHl(X)w − 2lHl−1(X)w,

H1(X)w = 2Xw, H0(X)w = w,
(6.19)

(instead of its Chebyshev analog as used before) in O(LK) operations, where X is again
the 1D coordinate matrix. The generalization to higher dimensions then fully parallels
the proceeding in Section 2.3. As compared to Algorithm 5, in the last lines of the below
Algorithms 9, we additionally need to compute a scalar product (line 16) and multiply with
f2
l instead of the Chebyshev expansion coefficient ŵr (line 17).
At the very end of doing the matrix-vector product, we need to multiply with π−d/2 once.

6.4.6 Algorithmic description

Having chosen spatial discretization parameters K, L and R for the multi-index sets K, L,
and R that underly the Hermite and Chebyshev approximations ψ ≈ ψK, |ψK|2 ≈ PL|ψK|2,
and W (·, t) ≈W pol(·, t), respectively, we propagate the system

iċ(t) = Dc(t) +
(
W(t) +

∑

l∈L
c∗(t)P(l)c(t) P(l)

)
c(t), (6.20)

for some given initial value c(0). We employ the Strang splitting scheme as given in Sec-
tion 6.4.2.

The harmonic oscillator part is trivially propagated exactly with linearly scaling costs.
To illustrate time-propagation of the remainder part using the efficient procedures devised
in Section 6.4.5, we choose, e.g., the classical 4th-order Runge–Kutta method. This yields
an approximation Bdiscr to the operator B; see Section 6.4.2. The matrix-vector products of
the factorized form (6.15) and with the matrix representation of the polynomial potential
W pol as required for the computation of the Runge–Kutta increments is done using the
efficient procedures given in Section 6.4.5 and in Chapter 2, respectively. No matrices are
assembled.

Given a choice of time step size h and a choice of number of Lanczos steps m for the matrix
exponentials as occurring in (6.15), propagation is explicitly done as given in Algorithm 10.
The overall computational costs for a single time step scale as

O
(
(|L|+ |R|+md)|K|

)
.

If |L|, |R| � |K|, this is essentially linear in |K|.
Alternatively, for the remainder part, we can employ a Lanczos-based Galerkin approx-

imation to the matrix exponential as required, e.g., when using a Magnus integrator.

118

6. Further applications Nonlinearities

Algorithm 10: Time propapgation of (6.20) using the fast algorithm.

1 timepropagation(h,m, c(0))
2 c0 := c(0)
3 for n = 0, 1, . . . do
4 Harmonic oscillator half-step:

5 cAn+1 := ΦA(h/2)cn = diagk∈K

(
exp

(
−ih2

∑d
α=1(kα + 1

2

))
cn O(|K|)

6 Remainder step for Φdiscr
B (h)cAn+1, where we choose, e.g., the classical 4th-order RK

method:
7 b1 := Bdiscr(cAn+1); i.e.,

8 b
(0)
1 :=exp

(
−1

2

∑d
α=1(X(α))2

)
cAn+1 Section 6.4.5:: O(md|K|)

9 b
(1)
1 :=π−d/2

∑
l∈L f

2
l (cAn+1)∗Hl(X)b

(0)
1 Hl(X)b

(0)
1 Alg. 9:O(|L||K|)

10 b1 :=−i(W pol(X, tn)cAn+1 + b
(1)
1) Chapter 2: O(|R||K|)

11 and analogously for

12 b2 := Bdiscr(cAn+1 + h
2 b1) O((|L|+ |R|+md)|K|)

13 b3 := Bdiscr(cAn+1 + h
2 b2) O((|L|+ |R|+md)|K|)

14 b4 := Bdiscr(cAn+1 + hb3) O((|L|+ |R|+md)|K|)
15 cBn+1 := cAn+1 + h

6 (b1 + 2b2 + 2b3 + b4)

16 Harmonic oscillator half-step:
17 cn+1 := ΦA(h/2)cBn+1 O(|K|)

119

II.

Application to initial-boundary
value problems

121

7 Introduction

When solving, for instance, the linear Schrödinger equation (1.1) using a spectral method,
there are essentially two ways to determine the unknown coefficients (ck)k∈K in the linear
expansion ψK. The first way is a Galerkin approach as used in Part I of this thesis. The
second way is collocation: to require that ψK satisfy the equation in a finite number of
grid points, where the number of points equals the number of unknown coefficients. Let us
begin with a few remarks on the latter approach. Consider, for the sake of simplicity, the
Schrödinger equation on the domain [−π, π]d with periodic boundary conditions. Using a
trigonometric polynomial as an approximate,

ψK(x, t) =

K/2−1∑

k1=−K/2

. . .

K/2−1∑

kd=−K/2

ck(t) exp(ik · x),

and a full grid of K points per coordinate, we require that

i(ψK)t(ξj, t) = −1

2
∆ψK(ξj, t) + V (ξj, t)ψK(ξj, t),

where

ξj = (ξj1 , . . ., ξjd), ξjα = jα · 2π/K, −K/2 ≤ jα ≤ K/2−1, α = 1, . . ., d.

In coefficient space, this can equivalently by written as

iċ(t) = diagj∈K

(
1

2

∑

α

j2
α

)
c(t) + F diagj∈K

(
V (ξj, t)

)
F−1c(t),

where F denotes the d-dimensional discrete Fourier transform of length K; see [61], Chapter
III.1.3. The Fast Fourier Transform (FFT) together with its inverse allow to compute the
action of F and F−1 in O(dKd log(K)); see, e.g., [72], Chapter 12. Derivatives are thus
trivially done in coefficient space, while multiplication with a potential becomes trivial in
physical space, and FFT enables us to switch between the two spaces. By virtue of the fast
transform, the costs for an evaluation of the right-hand side scale essentially linearly with
the size of the full tensor grid. In general, having a basis that admits for a fast transform
between expansion coefficients (ck)k∈K and grid values (ψK(ξj))j∈K yields an essentially
linearly scaling method; for derivative operators other than the Laplacian, or for spectral
bases other than trigonometric functions, corresponding diagonal derivative matrices have
been devised for a variety of problems throughout the literature on spectral methods; see
again, e.g., [10, 15, 26, 38, 47, 76, 88].

123

7. Introduction

The above collocation ansatz is easily seen to be equivalent to a corresponding Galerkin
ansatz if each entry

(
1

2π

)d ∫

[−π,π]d
exp(−ij · x)V (x, t) exp(ik · x) dx

≈ 1

Kd

∑

l

exp(−ij · ξl)V (ξl, t) exp(ik · ξl)

of the matrix representation of V is replaced by a trapezoidal sum approximation. The
equivalence “collocation = Galerkin + quadrature” is a generic feature for full index sets and
full tensor grids; see, e.g., [10], Chapter 4.4. Analogously, in the setting of Chapter 1, using
full-product (K+1)-nodes Gauß–Hermite quadrature is the same as collocation with ξj being
tuples of zeros of HK+1. Thus, fast transforms provide a loophole for the computational
challenges posed by both kinds of spectral methods based on full index sets or tensor grids.

As we have already mentioned in the introduction to Part I, fast transforms have also
been devised for reduced grids, where the equivalence between the collocation ansatz and the
Galerkin ansatz in combination with quadrature is lost, though. We refer to the literature
given above. However, in Part II, we restrict our attention to the full index cube. This
is for two reasons: First, we consider boundary value problems, where d is typically small
(say, d = 2, 3), and reducing the spectral basis is therefore less urgent a need—provided
one manages to come up with a linearly scaling method. Second, although our method
does scale linearly, it turns out not to bear a significant advantage when reducing the basis
because the time-error ratio does not improve sufficiently (or even becomes worse). We
shall comment on this issue in Section 11.4.

What if, for a particular basis that is favorable for some reason, there is no fast transform?
We use, e.g., a basis of Legendre polynomials, because it yields an efficient way to do
derivatives, but Legendre polynomials do not come with a fast transform (see [16], though).
Or what if the problem exhibits non-trivial boundary conditions such that a basis that allows
for a fast transform (e.g., a Fourier or a Chebyshev basis) is inappropriate? To complicate
matters, we add non-constant coefficients to the derivatives. Normally, as stated above, one
wishes to do derivatives in coefficient space and multiplication with non-constant coefficients
in physical space. This road is now blocked, as we can no longer switch efficiently between
the spaces. The fast algorithm in its basic form can already be seen as a substitute for a
missing fast transform, but it is serviceable also in cases where fast transforms do exist.

The fast algorithm presented in Part I for the Schrödinger equation on an unbounded do-
main is free of any transformations and still scales linearly. As we will show, even with non-
trivial boundary conditions and derivatives with non-constant coefficients, its methodology
carries over to initial-boundary value problems discretized in space by a Legendre–Galerkin
approach. We briefly summarize the main ideas of the subsequently devised method in an
abstract manner. First, we impose boundary conditions weakly. This shall be discussed sep-
arately in a subsequent paragraph. Second, we suggest working in the Legendre coefficient
space instead of in a nodal basis, and, in higher dimensions, tensor products of univariate
Legendre polynomials are employed. The choice of Legendre polynomials as Galerkin basis
functions makes evaluations of derivatives feasible in linear time using well-known recur-
rence relations of the Legendre polynomials. Third, in Legendre space, however, variable
coefficients lead to dense matrices. Still, the corresponding matrix-vector products can also
be evaluated efficiently in essentially linear time by an appropriate enhancement of the

124

7. Introduction

fast algorithm in its basic form. Again, we have to assume that the coefficients are much
smoother than the solution. This is a typical situation: For wave propagation problems, or
in the presence of boundary layers, the solution can exhibit rapid oscillations despite the
coefficients of the PDE being smooth. These are problems where spectral and high order
methods are advantageous.

A related technique for one-dimensional boundary value problems was presented in [68].
It operates in a Chebyshev basis and treats boundary conditions using boundary bordering
[69]. Similarly as we do in our matrix-free, recursive procedure, they approximate variable
coefficients by polynomials. Thereby, they get banded discretization matrices, and thus a
linearly scaling method. The method was extended to boundary value problems in two
dimensions in [87], albeit no longer with linear complexity.

We conclude this introduction with some comments on the way we impose boundary
conditions. There are two main approaches to enforce boundary conditions: Strongly,
where the solution is set to satisfy the boundary conditions exactly, and weakly, where
penalty terms force the solution to satisfy the boundary conditions approximately. Enforc-
ing boundary conditions in a strong way may seem more natural and, at least for problems
with certain simple boundary conditions and constant coefficients, problem-specific bases
built from standard basis functions can be constructed [76]. E.g., so-called recombinations
of Chebyshev polynomials yield an easy way to deal with homogeneous Dirichlet boundary
conditions on [−1, 1]d:

ϕk(x) =

{
Tk(x)− T0(x), k even,

Tk(x) + T0(x), k odd,
such that ϕk(±1) = 0.

However, the convenience of using a standard basis is lost, and implementing more gen-
eral boundary conditions strongly is not straightforward. Stability of the resulting scheme
can also be an issue; see [18]. Weak enforcement of boundary conditions using penalties
was introduced for spectral methods in [28, 29]. Penalty methods are flexible, and can be
applied to a good variety of boundary conditions for PDEs of different type. By construc-
tion, the resulting spatial discretizations satisfy similar energy estimates as the continuous
problems, which in combination with suitable time-stepping guarantees stability. Penalty
methods are not only used for spectral methods. They are essential building blocks for
discontinuous Galerkin (DG) methods (see [21, 48, 66]) , and also the dominant way of
imposing boundary conditions for finite difference methods on summation by parts (SBP)
form; see [18, 63, 75]. Weak boundary conditions are typically implemented analogously
for DG, SBP and spectral methods. For spectral penalty methods, one typically uses a
Lagrange basis on Gauß–Lobatto quadrature nodes; see [17, 25, 45, 46]. The motivation
is that if the corresponding quadrature rule is used to evaluate the integrals defining it,
the mass matrix becomes diagonal. This simplifies the implementation and improves the
efficiency of the method, not least by facilitating explicit time-stepping. Differentiation ma-
trices are however still dense. Unfortunately, penalty methods cannot be used together with
the Chebyshev weight function since it is singular at the boundaries. One can therefore not,
as far as we know, use weak boundary conditions and at the same time take advantage of
diagonal mass matrices and the fast Fourier transform. The present approach combines the
flexibility of weak enforcement of boundary conditions with the convenience of a standard
Legendre basis and still yields a linearly scaling scheme.

125

7. Introduction

The second part of this thesis is organized as follows. In Chapter 8, we present our
Legendre–Galerkin spectral method. For illustration purposes, we use the example of a
wave equation with spatially variable coefficients on the unit hypercube. In Chapter 9, we
explain how to compute the different kinds of matrix-vector products in linear time, without
assembling any matrices. Chapter 10 contains the error analysis. Numerical experiments
for the wave equation in curvilinear coordinates are presented in Chapter 11.

126

8 Spectral approximation of the
wave equation

We illustrate possible generalizations of the fast algorithm as given in Part I according to the
program outlined in the above introduction to Part II. Although the method is applicable
under much less severe restrictions than the following, since we want to demonstrate its
strengths, we impose a few criteria for an interesting problem setting: We seek for an
educational example that

• exhibits derivatives with non-constant coefficients that cannot be easily converted into
trivial (i.e., linearly scaling) multiplications,

• comes with boundary conditions that do not easily allow for a strong imposition using
appropriate recombinations of classical orthogonal polynomials as basis functions,

and combine this with a standard choice of Galerkin basis that

• meets the requirements for the fast algorithm to be applicable as they are given in
Section 6.1,

• generalizes to arbitrary dimensions due to its tensor product structure,

• but does not yield a fast transform,

• and still allows for an overall algorithmic treatment that scales only linearly with the
size of the basis in each time step.

The methodology is general, though, and can be adapted to well-posed initial-boundary
value problems other than the following example.

In Section 8.1, we introduce the wave equation with non-constant coefficients on a d-
dimensional hypercube as an illustrative example for our method, and we prove stability
of the solution. Stability of the subsequent semidiscrete approximation is later deduced
by arguments that parallel the continuous proceeding. Section 8.2 contains the Galerkin
approach where weak imposition of boundary conditions is also discussed. In Section 8.3,
we present the Legendre polynomial basis together with its key features as they are later
used when devising efficient procedures for the corresponding matrix-vector products.

127

The wave equation 8. Spectral approximation

8.1 The wave equation

In the below numerical experiments given in Chapter 11, we consider the acoustic wave
equation in Cartesian coordinates and with an isotropic medium on some bounded domain,
say Ω̃ ⊂ Rd. We assume that there exists a smooth curvilinear coordinate transformation
from Ω̃ to

Ω = [−1, 1]d.

This yields an abstract wave equation with variable coefficients on the d-dimensional hy-
percube. Now, we start right from such an abstract problem, viz.,

ψtt(x, t) = ∇ · a(x)∇ψ(x, t) + f(x), x ∈ Ω, t ≥ 0, (8.1)

ψ(x, 0) = ψ1(x), x ∈ Ω, (8.2)

ψt(x, 0) = ψ2(x), x ∈ Ω, (8.3)

b(x)ψt(x, t) + n · a(x)∇ψ(x, t) = g(x, t), x ∈ ∂Ω, t ≥ 0, (8.4)

with coefficient functions a(x) and b(x). We assume that a is a symmetric and positive
definite (d× d)-matrix with real entries and that b is a real-valued function such that

det(a(x)) ≥ a0 > 0, b(x) ≥ b0 > 0, x ∈ Ω, (8.5)

and that the norms of a and b and all elements of a and are bounded for all x,

‖a(x)‖ ≤ amax <∞, |aαβ(x)| ≤ amax, 1 ≤ α, β ≤ d, b(x) ≤ bmax.

The vector n denotes the outward unit normal. Again, we denote the standard L2(Ω)-inner
product and norm by (·, ·) and ‖ · ‖, respectively. Similarly, (·, ·)∂Ω and ‖ · ‖∂Ω denote the
L2-inner product and norm on the boundary.

The positivity assumptions (8.5) allows for an application of the energy method from [40]
in order to prove strong well-posedness of the continuous problem (8.1)–(8.4). A problem is
strongly well-posed if it has a unique solution and there is an appropriate energy seminorm
‖ · ‖E such that the solution satisfies an energy estimate of the form

‖ψ(·, t)‖2E ≤ κ(T)
(
‖ψ(·, 0)‖2E +

∫ t

0
(‖f(·, τ)‖2 + ‖g(·, τ)‖2∂Ω) dτ

)
∀ t ∈ [0, T], (8.6)

where κ is independent of ψ1, ψ2, f and g, and is bounded for any finite T ; see [40]. We
define the seminorm

‖ψ‖E =
(
‖ψt‖2 + (∇ψ, a∇ψ)

)1/2
. (8.7)

Although the below proof of well-posedness merely uses standard techniques, it still deserves
some attention. The reason is that the subsequent spectral approach (viz., the way we
impose boundary conditions) gives a scheme that allows us to closely mimic the following
continuous stability analysis when proving stability of the spatial semidiscretization; see
Section 10.3.

128

8. Spectral approximation Galerkin approach

Lemma 8. (well-posedness)
The problem (8.1)–(8.4) is strongly well-posed in the seminorm (8.7).

Proof. We use the energy method from [40]. First, we differentiate ‖ψ(·, t)‖2E with respect
to t, use integration by parts, and invoke the boundary conditions (8.4), which yields

1

2

d

dt
‖ψ‖2E = (ψt, ψtt) + (∇ψt, a∇ψ)

= (ψt,∇ · a∇ψ) + (ψt, f) + (∇ψt, a∇ψ)

= (ψt, f)− (ψt, bψt)∂Ω + (ψt, g)∂Ω

≤ ‖ψt‖‖f‖+

∫

∂Ω
(−bψ2

t + ψtg) dx,

where we have omitted time-dependency in ψ(·, t). Next, due to the positivity assumption
(8.5) on b, we can complete the square, viz.,

−bψ2
t + ψtg = −

(√
bψt −

g

2
√
b

)2

+
g2

4b

(omitting all arguments). Together with the definition (8.7) of the energy seminorm, we
thus have

1

2

d

dt
‖ψ‖2E ≤ ‖ψ‖E‖f‖ −

∫

∂Ω

(√
bψt −

g

2
√
b

)2

dx+

∫

∂Ω

g2

4b
dx,

Using a scaled version of Young’s inequality for the product of ‖ψ‖E‖f‖ together with the
positivity of the squared integrand and the lower bound for b, we find

d

dt
‖ψ‖2E ≤

1

T
‖ψ‖2E + T‖f‖2 +

1

2b0
‖g‖2∂Ω.

Finally, by integrating this differential inequality, we arrive at (8.6) with

κ(T) = e max(1, 1/2b0, T)

for all t ∈ [0, T].

8.2 Galerkin approach

This sections basically parallels the proceeding for the Hermite–Galerkin approach to the
linear Schrödinger equation as given in Section 1.1. Additionally, we have to discuss how
the Galerkin ansatz needs to be extend by suitably chosen boundary terms in order to
incorporate the boundary conditions.

As for the Galerkin basis, we consider again a set of L2(Ω)-orthonormal functions. This
normalization yields a diagonal mass matrix, which eases both the presentation of the
method and computations. In 1D, we choose L2([−1, 1])-normalized Legendre polynomials
ϕk; see Section 8.3. In higher dimensions, we consider an expansion of tensor products of
these univariate Legendre polynomials,

ψK(x, t) =
∑

k∈K
ck(t)ϕk(x), ϕk(x) =

d∏

α=1

ϕkα(xα),

129

Galerkin approach 8. Spectral approximation

where K is the full index cube

K = K(d,K) =
{
k ∈ Nd : 0 ≤ kα ≤ K

}
.

Again, for the sake of brevity, we shall often omit the arguments d and K. Through-
out Part II, we omit the subscript “full”. We determine the unknown coefficients c(t) =
(ck(t))k∈K of the approximation ψK to the solution ψ of (8.1)–(8.4) by the Galerkin condi-
tion

(ϕj, (ψK)tt(·, t)) =− (∇ϕj, a∇ψK(·, t))
+ (ϕj,n · a∇ψK(·, t))∂Ω + (ϕj, f),

j ∈ K. (8.8)

Eq. (8.8) defines a system of ODEs for c(t), but it does not respect the boundary conditions
and it is not stable. We address this by replacing n · a∇ψK using the boundary condition
(8.4), as is commonly done in Galerkin methods. The resulting system of ODEs reads

(ϕj, (ψK)tt(·, t)) =− (∇ϕj, a∇ψK(·, t))
− (ϕj, b(ψK)t(·, t))∂Ω + (ϕj, f) + (ϕj, g)∂Ω,

j ∈ K, (8.9)

or, equivalently,

c̈ = −Sc−Bċ + f + g, (8.10)

with the stiffness and boundary term matrices

Sjk =
d∑

α,β=1

S
(α,β)
jk =

d∑

α,β=1

(∂

∂xα
ϕj, a

(α,β) ∂

∂xβ
ϕk

)
,

Bjk = (ϕj, bϕk)∂Ω,

j, k ∈ K, (8.11)

respectively, and load vectors

fj = (ϕj, f), gj = (ϕj, g)∂Ω, j ∈ K.

We will prove stability for this system or, more precisely, for a suitable approximation to
(8.9), in Section 10.3.

The replacement of the boundary term above can also be seen as adding penalty terms
to the scheme in order to enforce the boundary conditions weakly. We did indeed add

(ϕj, g)∂Ω − (ϕj,n · a∇ψK(·, t))∂Ω + (ϕj, b(ψK)t(·, t))∂Ω

to the right-hand side of (8.8). These terms vanish when the boundary conditions are
satisfied and penalize deviation from the boundary conditions. The penalty terms carry a
large weight in physical space: As can be seen by a rather tedious exercise, their contribution
to (ψK)tt(x, t), x ∈ ∂Ω, is of order K2. That is, the enforcement of the boundary conditions
becomes stronger when the basis is enlarged. In general, for linear problems, if the added
penalty terms (i) vanish when ψK(x, t) satisfies the boundary conditions, and (ii) make the
semidiscretization stable, we can expect the scheme to converge.

130

8. Spectral approximation Legendre basis

8.3 Legendre basis

The classical orthogonal Legendre polynomials, Pk, are normalized with respect to their
boundary values, viz., Pk(1) = 1 and Pk(−1) = (−1)k, and the L2([−1, 1])-inner product
of two Legendre polynomials evaluates to (Pj , Pk) = 2/(2j + 1)δjk. See again, e.g., [1],
Section 22, for basic properties of Pk. We aim at a renormalization such that the above
Galerkin approach yields an identity mass matrix. The desired relation of a set {ϕk}k≥0 of
L2([−1, 1])-normalized Legendre polynomials to their classical counterparts must then read

ϕk(x) =

√
2k+1

2
Pk(x),

which, by the generic recurrence for the classical Legendre polynomials, yields the three-
term recurrence

ϕ0(x) =
1√
2
, ϕ1(x) =

√
3

2
x,

ϕk(x) =

√
(2k−1)(2k+1)

k
xϕk−1(x)− k − 1

k

√
2k+1

2k−3
ϕk−2(x), k ≥ 2,

(8.12)

on [−1, 1]. The values at the boundary are given by

ϕk(1) =

√
2k+1

2
, ϕk(−1) =

√
2k+1

2
(−1)k,

which is also the maximum over [−1, 1]. For some choices of k, the polynomials ϕk are
visualized in Figure 8.1.

Besides having a recurrence for the Galerkin basis functions themselves, as required by
the fast algorithm in its basic form, we additionally need an analogous recurrence for their
first derivatives, which the efficient evaluation procedur of derivative matrices will be built
upon; see Section 9.3. It is easily seen that the derivatives of ϕk obey the relation

ϕ′0(x) = 0, ϕ′1(x) =

√
3

2
,

ϕ′k(x) =
√

(2k−1)(2k+1)ϕk−1(x) +

√
2k+1

2k−3
ϕ′k−2(x), k ≥ 2,

(8.13)

on [−1, 1]. Due to the presence of ϕk−1 without a derivative in the second line of (8.13),
the two recurrences (8.12) and (8.13) are intertwined. This latter recurrence will more or
less immediately translate into an algorithm for the derivatives.

In higher dimensions, we consider again tensor products

ϕk(x) = ϕk1(x1) · . . . · ϕkd(xd), k ∈ Nd, x = (x1, . . ., xd) ∈ Ω,

of univariate L2([−1, 1])-normalized Legendre polynomials, which then constitute an L2(Ω)-
orthonormal set of functions {ϕk}k∈Nd . Let PK denotes the L2(Ω)-orthogonal projection
onto the polynomial approximation space span{ϕk ; k ∈ K(d,K)}, where K(d,K) is the
full index cube; cf. (1.5). If ‖ · ‖Hs(Ω) and | · |Hs(Ω) denote the standard Sobolev norm

131

Legendre basis 8. Spectral approximation

k = 0
-1 1

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

k = 5
-1 1

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

k = 16
-1 1

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

k = 32
-1 1

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

−

√

2k+1

2

√

2k+1

2

0

Figure 8.1: L2([−1, 1])-normalized Legendre polynomials for some choices of k.

and seminorm, respectively, the truncation error is then given by the standard projection
estimate

‖χ− PKχ‖Hn(Ω) ≤ CKr−s|χ|Hs(Ω), r =

{
0, n = 0,

2n− 1
2 , n ≥ 1,

(8.14)

provided χ is sufficiently regular; see [15], Chapter 5.8.2.

132

9 Efficient procedures for matrix-
vector products

In Chapter 11, we propagate (8.10) in time using the classical Runge–Kutta method of order
4. For any explicit Runge–Kutta method or multistep method, time propagation of (8.10)
involves computing the actions of the dense matrices S and B on vectors in each time step.
As in the first part of this thesis, our aim is again to reduce the computational costs for
doing these matrix-vector products from a number of operations that scales quadratically
with |K| to a linearly scaling procedure only. We do so by an adaptation of the above fast
algorithm as given in Chapter 2 of the first part, which invovles an efficient algorithm for
evaluating derivatives, in particular. This is discussed in detail in the present chapter.

As we have seen in Section 2.6, on a full index cube, the fast algorithm for the Schrödinger
equation is equivalent to an approximation of the potential matrix representation by suitably
chosen Gaussian quadrature. In the context of the wave equation with a differential operator
that exhibits non-constant coefficient functions, there also exists a connection between a
modified fast algorithm and Gaussian quadrature. In contrast to the presentation chosen in
Part I, we now start right from Gaussian quadrature. As a starting point, we approximate S
by Gauss–Legendre quadrature and factorize the approximate matrix Squad suitably. Each
factor can then be dealt with separately in an efficient way, with computational costs that
scale only linearly. The factorization is derived in Section 9.1. In Section 9.2, we give a
concise description of the procedure for non-constant coefficients—which is simply the fast
algorithm from Part I adapted to a Legendre basis. The routine for the derivative part is
discussed in Section 9.3. Section 9.4 contains an efficient routine for the boundary term
matrix B, which basically reduces to the original fast algorithm in d−1 dimensions. To
conclude this chapter, we briefly outline the overall algorithm procedure and comment on
its computational complexity in Section 9.5.

9.1 Approximation of matrix-vector products

This time, having a Galerkin basis of Legendre polynomials instead of Hermite functions, we
employ Gauß–Legendre quadrature instead of Gauß–Hermite quadrature for an entrywise
approximation of the matrix representations. In 1D, this is the instance of Gaussian quadra-
ture that uses the constant unit weight function and approximates integrals of functions
over [−1, 1],

∫ 1

−1
f(x) dx ≈

K∑

m=0

wmf(ξm);

133

Approximation of matrix-vector products 9. Efficient procedures

see again, e.g., [32], Chapter 3.2. The quadrature nodes ξm are the zeros of PK+1 with
corresponding weights wm, and the resulting quadrature formula (wm, ξm)Km=0 is exact for
polynomials of degree at most 2K+1. In higher dimensions, we define

ξm = (ξm1 , . . ., ξmd), wm =
d∏

α=1

wmα , m ∈ K(d,K), (9.1)

which constitutes a product of 1D Gauß–Legendre quadrature formulas with K+1 nodes
in every direction. This d-dimensional quadrature rule is exact for polynomials of degree
up to 2K+1 in each variable. In Part II of this thesis, the subscript or superscript “quad”
now refers to this kind of Gaussian quadrature.

We consider again a multivariate polynomial with real coefficients,

q : Ω→ R,

which is a placeholder for polynomial approximates to the coefficients functions as occurring
in (8.10), and the corresponding matrix representations Q and Q(α,β) with and without
derivatives, respectively,

Qjk = (ϕj, qϕk),

Q
(α,β)
jk =

(
∂

∂xα
ϕj, q

∂

∂xβ
ϕk

)
,

j,k ∈ K, α, β = 1, . . . , d. (9.2)

The approximate counterparts read

(Qquad)jk =
∑

m∈K
ωmϕj(ξm)q(ξm)ϕk(ξm),

(Q
(α,β)
quad)jk =

∑

m∈K
ωm

∂

∂xα
ϕj(ξm)q(ξm)

∂

∂xβ
ϕk(ξm).

Our aim is to devise efficient procedures for a matrix-free computation of Qv and Q(α,β)v
with a vector v ∈ R|K|.

In addition to the matrix

Ujk =
√
ωjϕk(ξj), j,k ∈ K, (9.3)

(cf. (2.16)), we define the matrices

U
(α)
jk =

√
ωj

∂

∂xα
ϕk(ξj), j,k ∈ K, α = 1, . . . , d, (9.4)

each now based on the above Gauß–Legendre quadrature. By the same arguments as in
Lemma 1, we see that the matrix U is orthogonal. Finally, we introduce the Galerkin
differentiation matrices

D
(α)
jk =

(
ϕj,

∂

∂xα
ϕk

)
, j,k ∈ K, α = 1, . . . , d. (9.5)

The following lemma shows how these matrices are related.

134

9. Efficient procedures Approximation of matrix-vector products

Lemma 9. (quadrature and derivatives)
The matrices defined in (9.3), (9.4), and (9.5) satisfy

UTU(α) = D(α), α = 1, . . . , d.

Proof. Using the exactness of (K+1)-nodes full-product Gauß–Legendre quadrature, we
can compute

(
UTU(α)

)
jk

=
∑

m∈K
UmjU

(α)
mk =

∑

m∈K
wmϕj(ξm)

∂

∂xα
ϕk(ξm)

=
(
ϕj,

∂

∂xα
ϕk

)
quad

=
(
ϕj,

∂

∂xα
ϕk

)
= D

(α)
jk .

With the help of Lemma 9, these matrices can be used to reformulate the quadrature
approximations of Q and Q(α,β). In Section 2.6, we have already stated that

Q ≈ Qquad = UT diagm∈K(q(ξm))U.

As for the derivative matrices Q(α,β), we then find

Q(α,β) ≈ Q
(α,β)
quad =

(
U(α)

)T
diagm∈K(q(ξm))U(β)

=
(
U(α)

)T
UUT diagm∈K(q(ξm))UUTU(β)

=
(
D(α)

)T
QquadD(β),

(9.6)

where we use Lemma 9 and the fact UUT = I. The quadrature approximation of Q(α,β) is
thus a product of the Galerkin differentiation matrices with the quadrature approximation
to Q.

We can now turn to the fast algorithm itself. The coordinate matrices

X
(α)
jk = (ϕj, xαϕk), j,k ∈ K, α = 1, . . . , d,

are the same as in (2.4), but with Legendre polynomials instead of Hermite functions. The
Legendre analog of the equivalence given in Lemma 2 reads

Qquad = q(X(1), . . . ,X(d)) = q(X), (9.7)

where the right-hand side denotes again formal insertion of the matrices X(α) into the
polynomial q. We can then use the equivalence (9.7) together with the factorization (9.6)
to approximately compute the matrix-vector product

Q(α,β)v ≈ Q
(α,β)
quad v =

(
D(α)

)T
q(X)D(β)v

for an arbitrary vector v ∈ R|K|. This is done by performing the three matrix-vector
products

D(β)v, q(X)v,
(
D(α)

)T
v

135

Fast algorithm for non-constant coefficients 9. Efficient procedures

sequentially. The fast evaluation of these matrix-vector products is discussed in the subse-
quent sections. Section 9.2 contains the fast evaluation procedure for q(X)v which is simply
the second version of the fast algorithm given in Section 2.3 adapted to a Legendre basis.

The products D(β)v and
(
D(α)

)T
v, whose computational costs scale as |K|, are considered

in Section 9.3.
Turning back to the system (8.10), we replace all matrices by their quadrature coun-

terparts. If we approximate the coefficient functions a(α,β) by polynomial interpolation,
say

a(α,β) ≈ a(α,β)
pol , α, β = 1, . . . , d,

we can then compute the actions of the corresponding matrices according to

Squadc =

d∑

α,β=1

S
(α,β)
quad c =

d∑

α,β=1

(
D(α)

)T
a

(α,β)
pol (X)D(β)c. (9.8)

The treatment of the boundary term matrix also builts upon the preliminaries given in the
present section, but shall be delayed until Section 9.4.

9.2 Fast algorithm for non-constant coefficients

In this section, we briefly describe the efficient algorithm for the matrix-vector product
q(X)v, where X(α) are the coordinate matrices built from the Legendre basis. This section
completely mirrors the proceeding given in Chapter 2.

The analog to the direct operation procedure given in Section 2.2 adapted to a Legendre
basis reads

(
X(α)v

)
j

=
jα√

(2jα−1)(2jα+1)
vj−eα +

jα + 1√
(2jα + 1)(2jα + 3)

vj+eα (9.9)

for all j ∈ K, where vj−eα = 0 if jα = 0 and vj+eα = 0 if jα = K. We use again orthogonality
of the basis together with the recurrence (8.12). This allows to compute X(α)v in O(|K|)
operations. Algorithm 11 shows a brief algorithmic description. Again, we assume q to be
in Chebyshev form,

q(x) =
∑

r∈R
q̂rTr(x) =

∑

r∈R
q̂r

d∏

α=1

Trl(xl), (9.10)

where the multi-index set R(d,R) is assumed to satisfy

|K| � |R|, K � R,

and we compute the matrix-vector product according to

w = q(X)v =
∑

r∈R
q̂r

d∏

α=1

Trα(X(α))v.

Because the dimensionality d of the underlying boundary value problem is normally smaller
than for the Schrödinger initial value problem considered in Part I (say, d = 2, 3), the

136

9. Efficient procedures Derivatives

fact that the required storage grows linearly in d is not an issue. Hence, the recursive
version of the fast algorithm devised in Section 2.3 is clearly preferable over its non-recursive
counterpart. Again, we employ the 1D Chebyshev recurrence (2.9), viz.,

T0

(
X(α)

)
v = v, T1

(
X(α)

)
v = X(α)v,

Tr+1

(
X(α)

)
v = 2XTr

(
X(α)

)
v − Tr−1

(
X(α)

)
v, r ≥ 1,

in combination with the above direct operation procedure (9.9) to compute the vector w.
The resulting algorithm is identical to the one given as Algorithm 5, but with the procedure
directoperation replaced by directoperation-Legendre as given in Algorithm 11.

Algorithm 11: Computation of
w = X(α)v

in O(|K|) using the direct operation given in (9.9).

1 function w = directoperation-Legendre(α,v)
2 for j ∈ K do

3 wj :=





1√
3
vj+eα , jα = 0,

K√
(2K−1)(2K+1)

vj−eα , jα = K,

jα√
(2jα−1)(2jα+1)

vj−eα + jα+1√
(2jα+1)(2jα+3)

vj+eα , else.

9.3 Derivatives

As follows directly from the recurrence relation (8.13) for the Legendre polynomials, matrix-
vector products with the 1D differentiation matrix D,

Djk = (ϕj , ϕ
′
k), 0 ≤ j, k ≤ K, (9.11)

and a vector v ∈ RK+1 can be evaluated recursively as

(Dv)K = 0, (Dv)K−1 =
√

(2K+1)(2K−1)vK ,

(Dv)j−2 =

√
2j−3

2j+1
(Dv)j+

√
(2j−1)(2j−3)vj−1, j = 2, . . . ,K.

(9.12)

This is well-known; see, e.g., [15], Chapter 2.3. Clearly, the computational work to compute
the resulting vector scales linearly with K. Similarly, the product DTv can be evaluated as

(DTv)0 = 0, (DTv)1 =
√

3v0,

(DTv)j =

√
2j+1

2j−3
(DTv)j−2+

√
(2j+1)(2j−1)vj−1, j = 2, . . . ,K.

(9.13)

As for the order of indices, the recurrence (9.12) is top-down, while the recurrence (9.13) is
bottom-up. This is reflected in the subsequent algorithmic descriptions.

137

Derivatives 9. Efficient procedures

In higher dimensions, we wish to evaluate the matrix-vector product

w = D(α)v =
(∑

k∈K
(ϕj,

∂

∂xα
ϕk)vk

)
j∈K

,

with a vector v ∈ R|K|, as well as (D(α))Tv. Since the basis is orthonormal, we find

wj =
∑

k(¬α)

(ϕj(¬α) , ϕk(¬α))
∑

kα

(ϕjα , ϕ
′
kα)vk =

K∑

kα=0

(ϕjα , ϕ
′
kα)v

j
α←−kα , j ∈ K.

Thus, the computation of D(α)v boils down to computing the action of the 1D differentiation
matrix D on the 1D vectors

(
v
j
α←−kα

)K
kα=0

, j(¬α) ∈ K(d−1,K),

recursively using (9.12). An algorithmic description implementing these ideas is given as
Algorithm 12. The matrix-vector product (D(α))Tv is computed analogously using (9.13);
see Algorithm 13 for an algorithmic description. Obviously, both algorithms scale linearly
with |K|.

Algorithm 12: Efficient computation of w = D(α)v.

1 w = Dalpha (α, v)

2 for j(¬α) ∈ K(d−1,K) do
3 w

j
α←−K := 0

4 w
j
α←−K−1

:=
√

(2K+1)(2K−1)v
j
α←−K

5 for jα = K,K − 1, . . ., 2 do

6 w
j
α←−jα−2

:=
√

2jα−3
2jα+1wj

α←−jα +
√

(2jα−1)(2jα−3)v
j
α←−jα−1

Algorithm 13: Efficient computation of w = (D(α))Tv.

1 w = Dalphatransp (α, v)

2 for j(¬α) ∈ K(d−1,K) do
3 w

j
α←−0

:= 0

4 w
j
α←−1

:=
√

3v
j
α←−0

5 for jα = 2, . . .,K do

6 w
j
α←−jα :=

√
2jα+1
2jα−3wj

α←−jα−2
+
√

(2jα+1)(2jα−1)v
j
α←−jα−1

138

9. Efficient procedures Treatment of boundary terms

9.4 Treatment of boundary terms

This section is concerned with an efficient procedure for the matrix-vector product with
the boundary term matrix B, cf. (8.10), and a vector v ∈ R|K|. The work mainly consists
in rewriting the matrix-vector product in a suitable way such that the procedure given in
Section 9.2 can be applied, but now in d−1 dimensions.

First, we introduce some notation which makes the handling of the boundary terms more
convenient. We denote the boundary faces by

Ω(±α) = {x ∈ Ω : xα = ±1}, α = 1, . . . , d.

We also introduce the notation

Ω(¬α) =
{
x(¬α) = (x1, . . ., xα−1, xα+1, . . ., xd) : x ∈ Ω

}
,

where x(¬α) denotes the free coordinates on a boundary face and Ω(¬α) denotes the di-
mensional reduction of the domain. Then, if f and g are separable functions, i.e., f(x) =
f(xα)f¬α(x(¬α)) and similarly for g, their L2 inner product over a boundary face can be
written as

(f, g)Ω(±α) = fα(±1)gα(±1)(f¬α, g¬α)Ω(¬α) .

For an arbitrary polynomial q : Ω → R, its restrictions to the boundary faces are denoted
by

q(±α) = q|Ω(±α) , α = 1, . . ., d. (9.14)

Note that q(±α) only depends on the coordinates x(¬α). Using separability, the action of
the boundary-restricted matrix

Q
(±α)
jk = (ϕj, q

(±α)ϕk)Ω(±α) , j,k ∈ K, (9.15)

on a vector v ∈ R|K| is given by
(
Q(±α)v

)
j

=
∑

k∈K

(
ϕj, q

(±α)ϕk

)
Ω(±α)

vk

= ϕjα(±1)
∑

k(¬α)∈K(d−1,K)

(
ϕj(¬α) , q

(±α)ϕk(¬α)

)
Ω(¬α)

v
(¬α,±)

k(¬α) ,

with

v
(¬α,±)
m =

K∑

m=0

ϕm(±1)v(m1,...,mα−1,m,mα,...,md−1), m ∈ K(d−1,K). (9.16)

It takes O(|K(d,K)|) operations to compute v(¬α,±) from v. Using again the equivalence
of Gauß–Legendre quadrature and insertion of coordinate matrices into a polynomial, we
can thus approximate

(
Q(±α)v

)
j
≈
(
Q

(±α)
quadv

)
j
= ϕjα(±1)

(
q(±α)

(
X(¬α)

)
v(¬α,±)

)
j(¬α)

, (9.17)

139

A brief note on complexity 9. Efficient procedures

for all j ∈ K, where we set

q(±α)
(
X(¬α)

)
= q(±α)

(
X(1), . . .,X(α−1),X(α+1), . . .,X(d)

)
,

and

X
(β)
jk = (ϕj, xβϕk), j,k ∈ K(d−1,K),

Given v(¬α,±), the action of q(±α)
(
X(¬α)

)
on a vector can then be computed efficiently

using the procedure given in Section 9.2, but now in d−1 dimensions.
Turning back to the system (8.10), we define the restrictions of the boundary function b

to the boundary faces

b(±α) = b|Ω±(α) , α = 1, . . ., d,

and approximate b(±α) by polynomial interpolation, say b(±α) ≈ b(±α)
pol . The action of B on

v̇ is then computable via

Bv̇ =
∑

±α
B(±α)v̇ ≈

∑

±α
B

(±α)
quad v̇ = Bquadv̇, (9.18)

where

B
(±α)
jk = (ϕj, b

(±α)
pol ϕk)Ω(±α) , α = 1, . . ., d,

and B
(±α)
quad v̇ is computed as in (9.17) with b

(±α)
pol in place of q(±α). A fast evaluation procedure

for matrix-vector products with b
(±α)
pol

(
X(¬α)

)
has been given in Section 9.2.

9.5 A brief note on complexity

To sum up, using (9.8) and (9.18) in (8.10), the system of ODEs we actually solve reads

c̈ = −Squadc−Bquadċ + f + g.

The matrix-vector products (9.8) and (9.18) are computed using the efficient procedures
devised in this chapter. If all a(α,β) are approximated using a Chebyshev polynomial tensor
product expansion with polynomials indexed over a set R(d,R),

a(α,β)(x) ≈ a(α,β)
pol (x) =

∑

r∈R
â

(α,β)
r

d∏

γ=1

Trγ (xγ), α, β = 1, . . . , d,

and if b is approximated analogously using an index set R(d−1, R), these procedures require

∼ d2
(
|R(d,R)|+ 2

)
|K(d,K)|

)
(9.19)

and

∼ 2d
(
|K(d,K)|+ |R(d−1, R)||K(d−1,K)|

)
(9.20)

140

9. Efficient procedures A brief note on complexity

operations, respectively. The number of operations given in (9.19) is due to the fact that
there are d2 coefficient functions a(α,β), and each one requires a single application of the
linearly scaling coefficient procedure given in Section 9.2, which explains the factor |R(d,R)|,
and a single application of the linearly scaling Algorithms 12 and 13, which explains the
factor 2. The costs given in (9.20) are due to there being 2d boundary faces, where each
boundary face requires a single computation of v(¬α,±), which explains the factor |K(d,K)|,
and an application of the fast algorithm given in Section 9.2 in d−1 dimensions, which
explains the factor |R(d−1, R)||K(d−1,K). If we choose a different number of interpolation
nodes for different coefficient functions, the expressions (9.19) and (9.20) become more
complicated, but in a straightforward way.

141

10 Error analysis

The following error analysis parallels the proceeding from Chapter 4, Sections 4.1–4.3.
There are three sources of error: First, there is an error due to polynomial approximation
of the coefficient functions. Again, we opt for Chebyshev interpolation. Second, we truncate
the Galerkin basis. Third, we approximate the stiffness and boundary term matrices by
entrywise Gauß–Legendre quadrature, the latter being equivalent to the fast matrix-vector
product procedures given in Chapter 9.

In Section 10.1, we give an outline of the subsequent error analysis including the main
result. As before, the interpolation error is dealt with separately in Section 10.2, while the
truncation plus quadrature errors are treated in a combined analysis in Section 10.4. The
intermediate Section 10.3 contains a stability analysis for the spatially discrete system of
ODEs as we actually solve it.

As we restrict our attention to the case of a full index cube, there is no error due to index
set reduction reduction. We shall comment on our experiences with reduced index sets in
Chapter 11.

In this chapter, we omit time-dependency of functions or vectors whenever it is clear
from the context. The constants C and κ denote general constants, which may adopt
different values at different occurrences. For matrix-valued arguments, the Sobolev norm is
understood as the Frobenius norm of the Sobolev norm of the matrix elements.

10.1 Outline and main results

We start with some notational conventions. Let

a
(α,β)
pol : Ω→ R, α, β = 1, . . . , d,

bpol : ∂Ω→ R

denote polynomial approximations to the coefficient functions a(α,β) and b as they occur in
the original problem (8.1)–(8.4). For the sake of simplicity, we assume them all to be given
as a sum of separable polynomials where the sum ranges over a common index set R(d,R)

for all a
(α,β)
pol (and over R(d−1, R) for bpol) such that

|K(d,K)| � |R(d,R)|, |K(d−1,K)| � |R(d−1, R)|, K � R.

The index set K(d,K) = Kfull(d,K) is the full index cube that underlies the Galerkin

approximation to the original problem. We set apol = (a
(α,β)
pol)dα,β=1.

143

Outline and main results 10. Error analysis

To facilitate the error analysis, we introduce the Legendre expansions

ψ(x, t) =
∑

k∈Nd
uk(t)ϕk(x), ψpol(x, t) =

∑

k∈Nd
upol
k (t)ϕk(x),

as well as the truncated Legendre expansion

ψK(x, t) =
∑

k∈K
ck(t)ϕk(x).

The coefficients uk are chosen such that ψ solves the original problem (8.1)–(8.4). In
particular, ψ satisfies the weakly formulated problem (omitting unnecessary arguments)

(ϕ,ψtt) = −(∇ϕ, a∇ψ)

− (ϕ, bψt)∂Ω + (ϕ, f) + (ϕ, g)∂Ω

∀ϕ ∈ H1(Ω), (10.1)

with the initial data ψ(x, 0) = ψ1(x) and ψt(x, 0) = ψ2(x).

Analogously, ψpol is the solution to the same problem, but with a(α,β) replaced by a
(α,β)
pol

and with b replaced by bpol. In particular, ψpol satisfies the weakly formulated problem

(ϕ,ψpol
tt) = −(∇ϕ, apol∇ψpol)

− (ϕ, bpolψpol
t)∂Ω + (ϕ, f) + (ϕ, g)∂Ω

∀ϕ ∈ H1(Ω), (10.2)

with the same initial data ψpol(x, 0) = ψ1(x) and ψpol
t (x, 0) = ψ2(x).

The function ψK is the Galerkin approximation to ψpol, where (K+1)-nodes full-product
Gauß–Legendre quadrature has been taken into account for the stiffness and boundary term
matrices,

(ϕj, (ψK)tt) = −(∇ϕj, a
pol∇ψK)quad

− (ϕj, b
pol(ψK)t)∂Ω,quad + (ϕj, f) + (ϕj, g)∂Ω

∀ j ∈ K, (10.3)

or, equivalently,

c̈ = −Squadc−Bquadċ + f + g, (10.4)

with the stiffness and boundary term matrices

Squad
jk =

d∑

α,β=1

(S
(α,β)
quad)j,k =

d∑

α,β=1

(∂

∂xα
ϕj, a

(α,β)
pol

∂

∂xβ
ϕk

)
quad

,

Bquad
jk = (ϕj, b

polϕk)∂Ω,quad,

j, k ∈ K,

respectively, and vectors

fj = (ϕj, f), gj = (ϕj, g)∂Ω, j ∈ K. (10.5)

As an initialization, we use the L2(Ω)-orthogonal projections of ψ1 and ψ2, i.e., PKψ1 and
PKψ2, respectively.

144

10. Error analysis Interpolation error

Equation (10.4) is the semidiscrete problem as we actually propagate it in time. We
show that the method devised in this paper is spectrally accurate with respect to the
energy seminorm (8.7). Our overall aim is to estimate the spatial error

‖ψ(·, t)− ψK(·, t)‖E , t ∈ [0, T].

We do this using the above error decomposition. The error due to polynomial interpolation
of the coefficient functions can be bounded in terms of the interpolation errors and of the
exact solution using energy estimates. Following standard theory, Section 10.2 contains
an analysis of this error due to replacing the coefficient functions by their polynomial
counterparts before discretizing the equation in space. In Section 10.3, we show stability of
the spatially discrete system (10.4). In Section 10.4, we give an estimate for the combined
error due to Galerkin approximation (i.e., truncation of the basis) and entrywise quadrature
for the right-hand side matrices. The error is bounded in terms of the exact solution
using energy estimates in combination with the above standard Legendre approximation
result (8.14) and an appropriate projection which is related to the exactness of Gaussian
quadrature; for the latter technique see also the above proof of Lemma 4 from Section 4.3.

Putting everything together then yields the following overall error result:

Theorem 7. (error due to interpolation and spatial discretization)
For the solution ψ(·, t) of (8.1)–(8.4), assume that ψ(·, t) ∈ Hs(Ω) and ψt(·, t) ∈ Hs−1(Ω)
for all t ∈ [0, T], with s ≥ 4. Assume also that the degree R interpolants apol and bpol of a
and b satisfy

‖a− apol‖H1(Ω) ≤ ε, ‖b− bpol‖L2(∂Ω) ≤ ε,

with R ≤ K/2. Then, the error of the solution ψK(·, t) of the semidiscretized problem (10.3)
is bounded by

‖ψ(·, t)− ψK(·, t)‖2E ≤ C
(
C2ε

2 + CsK
−2s+7

)
∀ t ∈ [0, T],

where C = C(d, a, b,Ω, T) is independent of ψ, K, and R, and depends linearly on T , and
where

Cr =

∫ t

0

(
‖ψ(·, τ)‖2Hr(Ω) + ‖ψt(·, τ)‖2Hr−1(Ω)

)
dτ,

with r = 2, s.

10.2 Interpolation error

Before dealing with the error due to discretization in space, we consider the error due to
replacing the coefficients a and b by their polynomial counterparts apol and bpol still on the
continuous level with respect to the energy norm (8.7). Since the proof employs again the
energy method given in [40], we can keep the presentation brief and refer back to the proof
of strong well-posedness of the continuous solution as done in Lemma 8.

145

Interpolation error 10. Error analysis

Lemma 10. (interpolation error)
If ψ(·, t) ∈ H2(Ω) is the solution at time t of (8.1)–(8.4), ψt(·, t) ∈ H1(Ω), and if ψpol(·, t) ∈
H1(Ω) is the solution at time t of the same problem with the coefficients a and b replaced
with their polynomial approximants apol and bpol, the error due to interpolation is given by

‖ψ(·, t)− ψpol(·, t)‖2E ≤ C
∫ t

0

(
‖a− apol‖2H1(Ω)‖ψ(·, τ)‖2H2(Ω)+

+ ‖b− bpol‖2L2(∂Ω)‖ψt(·, τ)‖2H1(Ω)

)
dτ

for all t ∈ [0, T], where C = C(Ω, T) is independent of ψ and depends linearly on T .

Proof. Subtracting the weak equations (10.1) and (10.2) shows that the error

epol = u− upol

satisfies the error equation

(ϕ, epol
tt) = −(∇ϕ, apol∇epol)

− (ϕ, bpolepol
t)∂Ω + (ϕ, fpol) + (ϕ, gpol)∂Ω

∀ϕ ∈ H1(Ω), (10.6)

with epol(x, 0) = epol
t (x, 0) = 0 due to the choice of initializations, and forcings

fpol = ∇ · (a− apol)∇ψ, gpol = −n · (a− apol)∇ψ − (b− bpol)ψt,

where we have used integration by parts. Since (10.6) is of the same form as (10.1), it
satisfies a similar energy estimate, viz.,

‖epol(·, t)‖2E ≤ κ(T)

∫ t

0
(‖fpol(·, τ)‖2 + ‖gpol(·, τ)‖2∂Ω) dτ

for all t ∈ [0, T], where κ(T) depends linearly on T . We can thereby bound epol in terms of
the interpolation errors a− apol and b− bpol, and of the exact solution ψ.

The rest of the proof is manipulations of Sobolev norms in order to bound fpol and gpol.
Writing out

fpol =
d∑

j,k=1

(a− apol)jk∂
2
j,ku+

d∑

j,k=1

(∂j(a− apol)jk)(∂ku),

and using

d∑

j,k=1

(a− apol)jk∂
2
j,ku ≤

(d∑

j,k=1

|a− apol|2jk
)1/2(d∑

j,k=1

|∂2
j,ku|2

)1/2

= ‖a− apol‖|u|H2(Ω),

d∑

j,k=1

(∂j(a− apol)jk)(∂ku) ≤
∥∥∥

d∑

j=1

∂j(a− apol)j,·

∥∥∥|u|H1(Ω)

≤
(

2

d∑

j,k=1

‖∂j(a− apol)jk‖2
)1/2
|u|H1(Ω)

≤
√

2|a− apol|H1(Ω)|u|H1(Ω),

146

10. Error analysis Stability of spatial semidiscretization

we find
‖fpol‖ ≤ |a− apol|H1(Ω)|u|H1(Ω) + ‖a− apol‖|u|H2(Ω).

By the trace inequality,
‖u‖2L2(∂Ω) ≤ C‖u‖2H1(Ω),

we can bound gpol as

‖gpol‖∂Ω ≤ ‖n · (a− apol)∇u‖∂Ω + ‖(b− bpol)ut‖∂Ω

≤ ‖(a− apol)‖∂Ω‖∇u‖∂Ω + ‖b− bpol‖∂Ω‖ut‖∂Ω

≤ C(‖a− apol‖H1(Ω)‖u‖H2(Ω) + ‖b− bpol‖L2(∂Ω)‖ut‖H1(Ω)).

Putting the bounds together yields the desired result.

The interpolation errors a − apol and b − bpol can be bounded in terms of the order R
of the interpolants and of the derivatives of a and b using standard theory; see [15]. For
smooth coefficients, the error decays faster than any polynomial in R.

10.3 Stability of spatial semidiscretization

The spatial semidiscretization given in (10.4) is constructed such that the resulting system
of ODEs satisfies a similar energy estimate as the PDE. A semidiscretization with such a
property is called (strongly) stable; see [40]. Strong stability of the semidiscretization (10.4)
with respect to a discrete analog of the seminorm (8.7), viz.,

‖c‖2E = ‖ċ‖2 + cTSquadc, (10.7)

can be established using similar arguments. Before giving a proof, we have to show that
(10.7) is actually a seminorm. If det(apol(x)) ≥ a0 > 0, the inner matrix in

Squad =




U(1)

...

U(d)




T



[a
(1,1)
pol] · · · [a

(1,d)
pol]

...
. . .

...

[a
(d,1)
pol] · · · [a

(d,d)
pol]







U(1)

...

U(d)


 (10.8)

is positive definite, where we use the abbreviation

[a
(α,β)
pol] = diagk∈K(a

(α,β)
pol (ξk)), α, β = 1, . . . , d.

Then, Squad is positive semidefinite, which implies that ‖ · ‖E is a seminorm.

Lemma 11. (strong stability of spatial discretization)
Provided det(apol(x)) ≥ a0 > 0 and bpol(x) ≥ b0 > 0 for all x, the semidiscretization (10.4)
is strongly stable in the discrete seminorm (10.7).

Proof. If bpol(x) ≥ b0 > 0, B is positive semidefinite, and positive definite with respect
to the boundary norm. We now prove that this property transfers to Bquad. Consider an

147

Spatial discretization 10. Error analysis

arbitrary v = (vk)k∈K and set χ =
∑

k∈K vkϕk. Recall the notation from Section 9.4. For

any boundary face Ω(±α), we find

vTB
(±α)
quadv =

∑

k∈K
vk(B

(±α)
quadv)k

=
∑

k∈K
vkϕkα(±1)(b

(±α)
pol (X(¬α))v(¬α,±))k(¬α)

=
∑

k(¬α)∈K(d−1,K)

(∑

kα

vkϕkα(±1)
)(
b
(±α)
pol (X(¬α))v(¬α,±)

)
k(¬α)∈K(d−1,K)

= (v(¬α,±))T b
(±α)
pol (X(¬α))v(¬α,±)

=
∑

j∈K(d−1,K)

v
(¬α,±)
j

∑

k∈K(d−1,K)

(∑

m∈K(d−1,K)

wmϕj(ξm)b
(±α)
pol (ξm)ϕk(ξm)

)
v

(¬α,±)
k

=
∑

m

(∑

j

v
(¬α,±)
j ϕj(ξm)

)(∑

k

v
(¬α,±)
k ϕk(ξm)

)
b
(±α)
pol (ξm)wm

≥ b0‖v‖2Ω(±α) ,

where we have used the equivalence of matrix insertion and quadrature, and the fact that

b
(±α)
pol is positive. After multiplication of (10.4) by ċT from the left, the rest is then simply

a discrete analog of the proof of stability for the continuous counterpart; cf. Lemma 8. In
particular, we can complete the square using the positivity results established above. We
eventually get the estimate

‖c(t)‖2E ≤ κ(T)
(
‖c(0)‖2E +

∫ t

0
(‖f(·, τ)‖2 + ‖g(·, τ)‖2∂Ω) dτ

)
∀ t ∈ [0, T],

with κ = e max(1, 1/2b0, T).

10.4 Spatial discretization

In this section, we study the error when comparing the exact solution to the semidiscretiza-
tion, approximation of the matrix elements by quadrature taken into account. For the sake
of simplicity, we drop all subscripts or superscripts “pol” throughout this section and let a
and b refer to the polynomial approximants of the coefficients.

In the error estimates given in Part I of this thesis, as a starting point of our analysis,
we could profit from self-adjointness of the Hermitian operators under consideration and
the fact that taking the real part in the error equation thus made certain terms vanish.
Now, since there are only real quantities involved, energy estimates are the backbone of
the analysis. The very ansatz of a suitable error decomposition is the same as in Part I,
though; see [86].

Let PK and P⊥K be the L2(Ω)-orthogonal projection onto the polynomial approximation
space span{ϕj ; j ∈ K} and its orthogonal complement, respectively. The exact solution

ψ(x, t) =
∑

k∈Nd
uk(t)ϕk(x)

148

10. Error analysis Spatial discretization

of (8.1)–(8.4) satisfies, in particular,

(ϕj,PKψtt) = −(∇ϕj, a∇PKψ)

− (ϕj, bPKψt)∂Ω + (ϕj, f + fK) + (ϕj, g + gK)∂Ω,
j ∈ K,

with the internal and boundary defects

fK = ∇ · a∇P⊥Kψ, gK = −n · a∇P⊥Kψ − bP⊥Kψt.

If we let u = (uk)k∈K, fK = (fK,j)j∈K, gK = (gK,j)j∈K, where

fK,j = (ϕj, fK), gK,j = (ϕj, gK)∂Ω, (10.9)

this can equivalently be written as

ü = −Su−Bu̇ + f + g + fK + gK. (10.10)

Similarly, let c = (ck)k∈K be the solution of the semidiscrete system (10.4). Repeating
the strategy used for the proof of Theorem 3 from Section 4.3, we decompose the error
according to

ψ −
∑

k∈K
ckϕk =

(
ψ − PKψ

)

︸ ︷︷ ︸
=ρ

+
(
PKψ −

∑

k∈K
ckϕk

)

︸ ︷︷ ︸
=θ

,

where ρ can be bounded using the standard projection estimate (8.14). The error θ or,
equivalently, u − c, is bounded in the below Theorem 8. The proof is based on standard
energy estimates in combination with a suitable projection matrix which is related to the
exactness properties of Gaussian quadrature. This kind of projection matrix has already
been used in the proof of Lemma 4 from Section 4.3.

Theorem 8. (global error of spatial discretization)
Let ψ(·, t) be the solution at time t of (8.1)–(8.4) with the coefficient functions replaced with
their degree R polynomial interpolants, and PKψ(·, t) =

∑
k∈K uk(t)ϕk be the orthogonal

projection of ψ(·, t) onto the polynomial approximation space span{ϕj ; j ∈ K}, with K =
K(d,K) being the full index cube. Denote u(t) = (uk(t))k∈K, and let c(t) be the solution at
time t of the semidiscrete approximation (10.4). Then,

‖u(t)− c(t)‖2E ≤ C(K−R)−2s

∫ t

0

(
K7|u(·, τ)|2Hs(Ω) + (K−R)5|ut(·, τ)|2Hs−1(Ω)

)
dτ

for all t ∈ [0, T], where C = C(d, a, b,Ω, T) is independent of ψ, K, and R, and depends
linearly on T .

Proof. We set e = u−w and subtract (10.4) from (10.10) to obtain

ë = −Squade−Bquadė + fquad + fK + gquad + gK,

where
fquad = −(S− Squad)u, gquad = −(B−Bquad)u̇.

149

Spatial discretization 10. Error analysis

We can bound the error e using energy estimates of the same form as before. Differentiating
the discrete seminorm (10.7) of e with respect to time yields

1

2

d

dt
‖e‖2E = ėT (fquad + fK)− ėTBquadė + ėT (gquad + gK), (10.11)

d

dt
‖e‖2E ≤

1

T
‖ė‖2 + T‖fquad + fK‖2 − 2ėTBquadė + 2ėT (gquad + gK)

≤ 1

T
‖e‖2E + 2T‖fquad‖2 + 2T‖fK‖2 − 2ėTBquadė + 2ėT (gquad + gK)

for all t ∈ [0, T]. We first treat the contributions from the internal forcings fquad and fK,
and then turn to the boundary forcings gquad and gK.

Controlling the internal forcing fquad is done using the same line of arguments as in the
proof of Lemma 4 from Section 4.3. We start with a suitable projection matrix that is
related to the exactness properties of Gauß–Legendre quadrature. We get a non-vanishing
quadrature error only in the elements (j,k) of S − Squad and B − Bquad with |j + k|∞ =
max(j + k) > 2K + 1 − R. This yields again the diagonal projection matrix P as Pjj = 1
for |j|∞ > K + 1−R, and Pjj = 0 otherwise. Then,

S− Squad = P(S− Squad)P,

and
‖fquad‖ = ‖(S− Squad)u‖ ≤ (‖S‖+ ‖Squad‖)‖Pu‖, (10.12)

where the matrix norm is the spectral matrix norm. Again, by the projection estimate
(8.14),

‖Pu‖ ≤ C(K −R)−s|ψ|Hs(Ω).

This bound is still spectrally accurate with respect to K for K � R.
We can estimate ‖S‖ using Rayleigh quotients,

‖S‖ = sup
‖v‖6=0

vTSv

vTv
= sup
‖v‖=1

∑

j,k∈K
vjSjkvk

= sup
‖v‖=1

((∑

j∈K
vj∇ϕj

)
, a
(∑

j∈K
vj∇ϕj

))

= (∇ϕ(K,...,K), a∇ϕ(K,...,K))

≤ amax‖∇ϕ(K,...,K)‖2 ≤ CdamaxK
3,

since, subject to ‖v‖ = 1, the integral

∫

Ω

(∑

j∈K
vj

∂

∂xα
ϕj(x)

)2
dx

has a (non-unique) maximum for

vj =

{
1, j = (K, . . . ,K),

0, otherwise,

and ‖ϕ′k‖ ≤ Ck3/2.

150

10. Error analysis Spatial discretization

Using the factorization (10.8), the quadrature approximation to the stiffness matrix can
be bounded by

‖Squad‖ ≤ amax

d∑

α,β=1

‖U(α)‖‖U(β)‖, amax = max
α,β,m

|a(α,β)(ξm)|.

By the exactness of Gaussian quadrature,

‖U(α)v‖2 =
∑

l∈K
ωl

(∑

j∈K
vj

∂

∂xα
ϕj(ξl)

)2
=

∫

Ω

(∑

j∈K
vj

∂

∂xα
ϕj(x)

)2
dx.

Thereby, using the orthonormality of ϕk,

‖U(α)‖2 = sup
‖v‖=1

‖U(α)v‖2 =

∫

Ω

(∂

∂xα
ϕ(K,...,K)(x)

)2
dx = ‖ϕ′K‖2 ≤ CK3.

Consequently,
‖Squad‖ ≤ Cd2amaxK

3. (10.13)

Together with (10.12) and (10.13), this yields

‖fquad‖ ≤ Cd2amaxK
3(K −R)−s|ψ|Hs(Ω).

The norm of fK is bounded by

‖fK‖ ≤ ‖fK‖ = ‖∇ · a∇P⊥Kψ‖ ≤ |a|H1(Ω)|P⊥Kψ|H1(Ω) + ‖a‖|P⊥Kψ|H2(Ω)

≤ CK7/2−s|ψ|Hs(Ω).

Bounding the influence of the boundary forcings gquad and gK is done using similar
ideas, but we need to work on the boundary faces—it is not enough to bound ‖gquad +
gK‖. Eq. (9.16), which extracts the Legendre coefficients on a boundary face, is a linear
transformation from R|K(d,K)| to R|K(d−1,K)|. It can therefore be written as

v(¬α,±) = H(±α)u,

where the matrix H(±α) is defined implicitly through (9.16). This allows us to write B(±α)

and B
(±α)
quad as

B(±α) = (H(±α))T B̂(±α)H(±α), B
(±α)
quad = (H(±α))T B̂

(±α)
quadH(±α),

with the (|K(d−1,K)| × |K(d−1,K)|)-matrices

B̂
(±α)
quad = UT diagm∈K(b(±α)(ξm))U,

(B̂(±α))jk = (ϕj, b
(±α)ϕk)Ω(±α) , j,k ∈ K(d− 1,K),

where U is defined as in (9.3), but in d−1 dimensions. We decompose the boundary forcings

gquad =
∑

g(±α),quad and gK =
∑

g
(±α)
K into their contributions on each boundary face.

We also note that for any v ∈ R|K|,

vTg
(±α)
K = vT (H(±α))T ĝ

(±α)
K ,

(
ĝ

(±α)
K,j

)
j

= (ϕj, gK|xα=±1)Ω(¬α) , j ∈ K(d−1,K).

151

Spatial discretization 10. Error analysis

Then, the boundary terms as appearing in (10.11), on each face, read

Υ(±α) := −ėTB
(±α)
quad ė + ėTg(±α),quad + ėTg

(±α)
K

= −ėTB
(±α)
quad ė− ėT (B(±α) −B

(±α)
quad)u̇ + ėT (H(±α))T ĝ

(±α)
K

= −(H(±α)ė)T B̂
(±α)
quadH(±α)ė+

− (H(±α)ė)T (B̂(±α) − B̂
(±α)
quad)H(±α)u̇ + (H(±α)ė)T ĝ

(±α)
K .

The positivity condition on b(±α)(x) gives vT B̂
(±α)
quadv ≥ b0vTv. We are then able to bound

the contribution from g(±α),quad by completing the square,

Υ(±α) ≤ −b0(H(±α)ė)TH(±α)ė + (H(±α)ė)T
(
− (B̂(±α) − B̂

(±α)
quad)H(±α)u̇ + ĝ

(±α)
K

)

≤ 1

4b0
‖(B̂(±α) − B̂

(±α)
quad)H(±α)u̇ + ĝ

(±α)
K ‖2.

Using a (d−1)-dimensional analog of the projection P, we find

B̂(±α) − B̂
(±α)
quad = P(¬α)(B̂(±α) − B̂

(±α)
quad)P(¬α).

Together with the bound on b(x) and the projection estimate (8.14), this implies

‖(B̂(±α) − B̂
(±α)
quad)H(±α)u̇‖ ≤ (‖B̂(±α)‖+ ‖B̂(±α)

quad‖)‖P(¬α)H(±α)u̇‖
≤ 2Cbmax(‖P(¬α)ψt‖Ω(±α) + ‖P⊥Kψt‖Ω(±α)).

We add the contributions from the different boundary faces together and apply the trace
inequality. This yields

‖(B̂− B̂quad)
∑

±α
H(±α)u̇‖ ≤ Cbmax(‖

∑

±α
P(¬α)ψt‖∂Ω + ‖P⊥Kψt‖∂Ω)

≤ Cbmax(‖
∑

±α
P(¬α)ψt‖H1(Ω) + ‖P⊥Kψt‖H1(Ω))

≤ Cbmax(K −R)5/2−s|ψt|Hs−1(Ω).

We also have

‖ĝK‖ ≤ ‖gK‖∂Ω ≤ ‖n · a∇P⊥Kψ‖∂Ω + ‖bP⊥Kψt‖∂Ω

≤ damax‖P⊥Kψ‖H1(∂Ω) + bmax‖P⊥Kψt‖∂Ω

≤ damax‖P⊥Kψ‖H2(Ω) + bmax‖P⊥Kψt‖H1(Ω)

≤ CK7/2−s|ψ|Hs(Ω) + CK5/2−s|ψt|Hs−1(Ω).

Thereby,

−ėTBquadė + ėT (gquad + gK) ≤ CK7−2s|ψ|2Hs(Ω) + C(K −R)5−2s|ψt|2Hs−1(Ω).

Integrating (10.11) and putting everything together proves the lemma.

152

11 Numerical experiments

In this chapter, we demonstrate our method using the above example of the wave equation
in d dimensions, where d = 2, 3. In Section 11.1, we set up the problem by defining the
wave equation in Cartesian coordinates and with an isotropic medium on a bounded d-
dimensional domain. After transformation to the hypercube [−1, 1]d, this problem turns
out to be equivalent to the abstract setting we have considered in the previous chapters.
Time propagation of the semidiscrete approximation using the classical 4th-order Runge–
Kutta scheme is done in Section 11.2. In each time step, we employ the efficient procedures
devised in Chapter 9. Some error results for the choice of a full index sets are given. In
Section 11.3, we briefly comment on how long it takes to assemble only the stiffness matrix
to illustrate how much a gain in computational costs this actually constitutes. To conclude
the second part of this thesis, some comments on the applicability of our method with an
additively reduced index set are given in Section 11.4.

All computations have been carried out on a desktop computer with an Intel Core 2 Duo
E8400 3.00 GHz processor with 4 GB RAM using an implementation in C.

11.1 The acoustic wave equation

In Cartesian coordinates and with an isotropic medium, the acoustic wave equation reads

ψtt = ∆ψ, y ∈ Ω̃, t ≥ 0,

ψ(y, 0) = ψt(y, 0) = 0, y ∈ Ω̃,

b̃ψt + n · ∇ψ = g̃(y, t), y ∈ ∂Ω̃,

(11.1)

where Ω̃ ⊂ Rd is a bounded domain. We use homogeneous initial data, and excite the
problem through the boundary condition. We assume that there exists a smooth coordinate
transformation x = x(y) which maps

Ω̃ 7→ Ω = [−1, 1]d,

and that the corresponding Jacobian matrix is positive definite,

Jjk =
∂yj
∂xk

, J = det(J) ≥ γ0 > 0 ∀x ∈ Ω.

We can then reformulate the problem on the hypercube Ω,

Jψtt = ∇ · a∇ψ, x ∈ Ω, t ≥ 0,

ψ(x, 0) = ψt(x, 0) = 0, x ∈ Ω,

bψt + n · a∇ψ = g(x, t), x ∈ ∂Ω,

153

Time propagation 11. Numerical experiments

with

a = JJ−1J−T , b = δb̃, g = δg̃,

and δ = J‖J−Tn‖. But for the presence of the function J , this problem is of the form
(8.1)–(8.4) as we have discussed it throughout this part of the thesis.

When d = 2, we use a combination of Neumann and absorbing boundary conditions, viz.,

δψt + n · a∇ψ = 0, on x1 = 1,

n · a∇ψ = g(x, t), on x1 = −1,

n · a∇ψ = 0, on x2 = ±1.

Engquist and Majda [22] describe the absorbing conditions on x1 = 1. The function g is
given as

g̃(x, t) = Mx2 exp
(
− 20x2

2 − 200(t− t0)2
)
, M = 200, t0 =

1

2
.

We solve the problem on the domain

Ω̃ = {(y1, y2) : −1 + φ(y1) ≤ y2 ≤ 1− φ(y1), −1 ≤ y1 ≤ 1},

with φ(y1) = 0.2 cos(πy1).
For d = 3, we extrude the domain to −1 ≤ y3 ≤ 1. We then use homogeneous Neumann

boundary conditions on x3 = ±1 as well as on x2 = ±1. The first order Engquist–Majda
boundary condition on x1 = 1 has a direct generalization to three dimensions, and the
boundary forcing on x1 = −1 is extended as

g̃(x, t) = M2x2x3 exp
(
− 20x2

2 − 20x2
3 − 200(t− t0)2

)
, M = 200, t0 =

1

2
.

With the same positivity assumptions on a and b as previously, this problem satisfies an
energy estimate of the form (8.6) in the J-weighted energy norm

‖u‖E,J =
(

(ut, Jut) + (∇u, a∇u)
)1/2

;

cf. (8.7). However, the energy estimate blows up when b0 → 0. As we have chosen b = 0 on
parts of the boundary, we cannot show strong well-posedness for this problem using energy
estimates alone. Strong well-posedness can nevertheless be proved by combining an energy
estimate, which exists for b = 0 and g = 0, with the Laplace–Fourier technique, as described
in [40], Chapter 10.

11.2 Time propagation

After spatial discretization, we get a system of ODEs of the form

Jpol(X)c̈ = −Sc−Bċ + g, (11.2)

154

11. Numerical experiments Time propagation

Figure 11.1: Time evolution of (11.1) for d = 2. Figure taken [13] from and converted to black
and white.

where Jpol(X) denotes again formal insertion of the coordinate matrices into a polynomial
approximation of J(x). (Jpol(X))−1 is computed as (J−1)pol(X), rather than as the inverse
of Jpol(X). We let d = ċ and rewrite (11.2) as the first order system

(
ċ

ḋ

)
=

(
0 I

−(J−1)pol(X)S −(J−1)pol(X)B

)(
c
d

)
+

(
0

(J−1)pol(X)g

)
. (11.3)

A first order formulation facilitates explicit time-stepping using standard methods, e.g.,
the 4th-order Runge–Kutta method. All constituent parts of the right-hand side can be
evaluated in essentially linear time using the procedures devised in Chapter 9.

In Figure 11.1, we show what the solution of the two-dimensional problem looks like at
four different points in time. Note how the solution is reflected by, as well as glancing along,
the curved boundaries. The computation was done with order K=48 Legendre polynomials
in each direction, and the coefficients a, b and (J−1)pol were represented by their order R=6
Chebyshev interpolants. Time-stepping was done with the 4th-order Runge–Kutta method
with the time step ∆t = 2e-03.

To test the accuracy of our method, we propagate (11.3) using the 4th-order Runge–
Kutta method with the time step ∆t = 1e-03. We measure the L2-error of the obtained
approximations for various choices of K when compared to a reference solution after trans-
formation of the propagated coefficients to function values on a spatial grid with 100 grid

155

Assembling the stiffness matrix 11. Numerical experiments

K d = 2 d = 3

error
time

error
time

(s) (h)

22 3.529e-02 37.2 3.767e-01 1.93

26 2.103e-02 51.5 2.353e-01 3.15

30 1.431e-02 68.5 1.531e-01 4.80

34 7.159e-03 87.7 7.719e-02 6.94

38 3.808e-03 109.5 4.396e-02 9.90

42 2.238e-03 133.8 2.433e-02 14.18

46 9.802e-04 160.6 1.065e-02 17.60

50 4.888e-04 188.3 5.629e-03 22.72
K

log(L2-error)

22 26 30 34 38 42 46 50

1e− 03

1e− 02

1e− 01

d = 2
d = 3

full index cube

Figure 11.2: [13] L2-errors and computation times for both d = 2 (black lines) and d = 3 (gray
lines) for various choices of K. The solid lines represent the L2-errors, while the dashed lines stand
for curves that are proportional to exp(−0.15K). Semi-logarithmic plot.

points per dimension. The reference solution was computed with K = 64 and ∆t = 5e-04.
Figure 11.2 shows the observed errors and propagation times in two and three dimensions.
As is readily seen, the observed errors decay exponentially with respect to K.

11.3 Assembling the stiffness matrix

To illustrate how much a gain in computation time using the above matrix-free procedures
actually is, we briefly compare the observed propagation times to an explicit assembly of
the stiffness matrix Squad using (K+1)-nodes full-product Gauß–Legendre quadrature.

The derivatives of the Legendre basis functions can be computed using the recurrence
relations (8.12) and (8.13). To compute ϕ′k(ξj) at the Gaussian quadrature nodes, for all
0 ≤ j, k ≤ K, it takes O(K2) operations. Given these values and interpolation coefficients

â
(α,β)
r , r ∈ R(d,R), for a

(α,β)
pol , α, β = 1, . . ., d, the entries of Squad are computed by the

quadrature rule

Squad
jk =

d∑

α,β=1

∑

r∈R
â

(α,β)
r

d∏

γ=1

K∑

mγ=0

ωmγϕ
(α,γ)
jγ

(ξmγ)Trγ (ξmγ)ϕ
(β,γ)
kγ

(ξmγ),

where ϕ
(α,γ)
j = ∂

∂xα
ϕj in case α = γ, and ϕ

(α,γ)
j = ϕj otherwise. Thus, the overall assembly

costs for the full stiffness matrix amount to

∼ d3|R|(K + 1)|K|2 ∼ d3RdK2d+1

operations.
In Table 11.1, we show assembly times for Squad corresponding to the above example.

The number of non-vanishing coefficients â
(α,β)
r is only 18 and 22 for d = 2 and d = 3,

respectively, which has been taken into account. As is seen, for d = 2, it does not take an
excessive K for the assembly of the stiffness matrix to require a similar amount of time as
the full time propagation with our matrix-free method. For d = 3, assembling the matrix is

156

11. Numerical experiments Comment on reduced index sets

prohibitively expensive: For K = 50, there are 132651 basis functions. Computing a single
row of the corresponding stiffness matrix takes about 11.6 s. By extrapolation, the overall
assembly time would amount to 427.2 h or 17.8 days—memory requirements left aside.

K d = 2 d = 3

time (s) ratio time ratio

30 10.0 0.15 41.7 h 8.69
50 104.5 0.55 ≈ 17.8 days 18.80

Table 11.1: [13] Computation times
for the assembly of Squad and time ra-
tios when compared to the overall prop-
agation times using our fast algorithm
as given in Figure 11.2.

11.4 Comment on reduced index sets

Throughout Part II of this thesis, we have not yet taken into account the possibility as
well as the effects of reducing the underlying index set K(d,K). As in the case of the
fast algorithm for the linear Schrödinger equation, the procedures devised in Chapter 9 are
applicable with any index set that is closed under componentwise decrements (cf. (1.15))
provided that the regularity relations

|K(d,K)| � |R(d,R)|, K � R

hold true, where R(d,R) stands for any index that is used for the polynomial approximation
of an arbitrary coefficient function a(α,β), b.

Algorithmically, reducing the index set yields some changes to the above procedures. We
recall the definition (2.11) of vmax

K (k), which is the maximal integer such that, when inserted
into K(d−1,K) at an arbitrary position, the resulting index is in K(d,K). We consider an
additive reduction K(d,K) = Kadd(d,K); see (1.21). It holds

vmax
Kadd

(k) = K −
d−1∑

α=1

kα ∀k ∈ Kadd(d−1,K).

The algorithmic changes can then be stated as follows: First, upper bounds as occurring in
a number of loops need to be adjusted. In Algorithms 12 and 13, the upper bounds for jα
in Lines 5 have to be changed from K to vmax

Kadd
(j(¬α)). In Algorithm 12, this also applies

to Lines 3 and 4. Using the notation of Chapter 9, if the index set R for the polynomial
interpolation of q as defined in (9.10) is also reduced, the upper bound R for r in the
recursive fast algorithm for the action of the coefficients has to be replaced by vmax

R (r(¬α));
see the end of Section 9.2. Next, the second term in the coordinate matrix application (9.9)
vanishes if j + eα happens to fall outside Kadd.

Again, we opt for using index manuals in order to compute missing linear addresses of
manipulated indices; see the discussion in Section 2.5.

For any reduced index set, the identities given in Section 9.1, where the exactness of Gaus-
sian quadrature has been used, do no longer hold. Using again the notation of Chapter 9,
this yields additional errors due to index set reduction

Qquad ≈ q(X), Q
(α,β)
quad ≈

(
D(α)

)T
QquadD(β) ≈

(
D(α)

)T
q(X)D(β). (11.4)

It is unclear how the right-hand side error in (11.4) can be dealt with using the binary
tree technique developed in Sections 4.4–4.7. The procedures have proven to work, though,
experimentally.

157

Comment on reduced index sets 11. Numerical experiments

K d = 2 d = 3

error
time

error
time

(s) (h)

30 3.158e-02 44.0 1.407e+00 1.14

34 1.896e-02 56.4 1.078e+00 1.72

38 1.197e-02 69.5 8.704e-01 2.30

42 7.248e-03 85.0 6.867e-01 3.08

46 4.304e-03 100.3 5.264e-01 4.02

50 2.832e-03 118.2 3.577e-01 5.19

K

log(L2-error)

30 34 38 42 46 50
1e− 03

1e− 02

1e− 01

1e+ 00

d = 2
d = 3

additive reduction

Figure 11.3: L2-errors and computation times as in Figure 11.2, but with an additively reduced
index set. The dashed lines stand for curves that are proportional to exp(−0.12K) and exp(−0.07K)
in case d=2 and d=3, respectively. Semi-logarithmic plot.

In Figure 11.3, we show exactly the same experiment as in Figure 11.2 of Section 11.2,
but with an additively reduced index set in place of a full index cube. As it is seen, the
method still decays exponentially, but the decay becomes slower with increasing d.

However, when applying our method with a reduced index set, it is flawed by the ap-
proximations (11.4). In Figure 11.4, we plot computation times vs. errors both in 2D and
3D, both for the full and the reduced index set. As can be seen, there is almost no gain
in efficiency in the 2D case, while the time-error ratio actually gets worse in 3D. This is
due to the errors (11.4) not behaving sufficiently well. We have done further tests with a
hyperbolic reduction, where the time-error behavior happens to be even more unfavorable.

sec

lo
g
(L

2
-e
rr
o
r)

50 85 120 155 190
4e− 04

1e− 03

1e− 02

4e− 02
d = 2

full

additive

h
1 5 10 15 20

1e− 03

1e− 02

1e− 01

2e+ 00
d = 3

efficiency gap

Figure 11.4: Time vs. error for the full index set (black) and the additive reduction (gray). The
left picture shows the case d=2; the right picture shows d=3. The data is taken from Figures 11.2
and 11.3.

158

Afterword

“All that indeed your poem lacked
Was logic, modesty, and tact”

– Alec Derwent Hope, His Coy Mistress to Mr. Marvell

In Australian poet A.D. Hope’s answer to Marvell (published in 1978 with a respectable
delay of about 325 years), the resolute mistress turns down the courtship outright and picks
Marvell’s art of persuasion to pieces; see [51]. So the poor fool’s life has been spent in vain
with all his efforts being ridiculed. We shall therefore say that our own endeavor has turned
out to be less of a failure than Mr. Marvell’s: One might still spent a lifetime trying to win
a reluctant heart, but with the help of the fast algorithm, solving high-dimensional PDEs
is no longer an eternal task.

We started from a Galerkin discretization in space of the time-dependent Schrödinger
equation, using tensor products of Hermite functions as the underlying basis. Without
reducing the number of basis functions, the number of equations in the resulting system
of ODEs depends exponentially on the dimension of the problem. Since time-stepping
typically requires matrix-vector products with the corresponding matrix representation of
the Hamiltonian operator, this is a hopeless situation in dimensions larger than three.
Based on the orthogonality and three-term recurrence for the Hermite functions, we have
devised and analyzed a fast algorithm that nevertheless allows to compute such matrix-
vector products without assembling the matrix itself in essentially linear time. The approach
is compatible with an arbitrary reduction of the basis set. It is serviceable also in cases
where the chosen Galerkin basis does not allow for a fast transform.

Applying the fast algorithm is restricted to situations where the potential is significantly
more regular than the wave function, both due to complexity reasons and to ensure conver-
gence. For an unreduced basis, the approach turns out to be equivalent to a suitable choice
of Gaussian quadrature. We have analyzed the local errors due to quadrature and due to
index set reduction, and we have presented a global error analysis.

The fast algorithm is not narrowly taylored for the Schrödinger equation only, but rather
constitutes a general tool to deal with the intractabilities of spectral approximations to
high-dimensional PDEs. In particular, we have shown further applications of the strategy
to nonlinearities and, most notably, to initial-boundary value problems with non-constant
coefficients and non-trivial boundary conditions.

The efficiency of the fast algorithm becomes clear when comparing it to an existing
approach from the chemical literature. We hope that people might find it beneficial for
their purposes to use the new methodology.

159

Notations

We give a brief overview over the notational conventions used in this thesis. The first column
of the following table contains the symbols; the second column gives a concise explanation in
prose; in the last column, if applicable, we refer to the equation number or section number
where the symbol is defined. Some minor notational conventions that have just been used
locally, e.g., within a proof, have not been added to the list.
Explanations of symbols that appear in Part II only are written in italics.

symbol explanation no.

integer and real parameters

d ∈ N dimension of the underlying problem (1.1)

α, β, γ ∈ {1, . . ., d} variables for dimension –

K,L,M,R ∈ N threshold for index sets 1.3

r, s ∈ N regularity indices –

S ∈ R width of support of exact solution
1.4.1

and polynomial approximation to potential

S̃ ∈ R stretching parameter for Galerkin basis 1.4.1

h ∈ R time step size
1.5.1

n, N ∈ N counter and total number of time steps

m ∈ N number of Lanczos iterations 1.5.2

spatial domain

Ω =

{
[−S, S]d, Part I

[−1, 1]d, Part II

1.4.1

8.1

Ω(±α) boundary face 9.4

Ω(¬α) dimensional reduction of Ω 9.4

x = (x1, . . . , xd) spatial variable (1.1)

spaces and norms

(·, ·), ‖ · ‖
{
L2(Rd)-scalar prod. & norm, Part I

L2([−1, 1]d)-scalar prod. & norm, Part II
(1.4)

‖ · ‖L2
ω(Ω) weighted L2-norm 1.4.2

(·, ·)∂Ω, ‖ · ‖∂Ω restriction to boundary 8.1

161

(·, ·)Ω(±α) , ‖ · ‖Ω(±α) restriction to boundary face 9.4

(·, ·)Ω(¬α) dimensional reduction 9.4

‖v‖ for vector arguments: Euclidean norm –

‖ · ‖Hs(Ω), | · |Hs(Ω) standard Sobolev (semi)norm 8.3

|·|
Hs;R
ω (Ω)

weighted Sobolev seminorm 1.4.2

| · |s
Korobov-type (semi)norms

(1.19)

| · |s;∞ (1.20)

‖ · ‖E continuous energy norm (8.7)

‖ · ‖E discrete energy norm (10.7)

S(R), S(Rd) Schwartz space 1.2

multi-indices

j,k, l,m ∈ Nd d-dimensional multi-indices, N = {0, 1, 2, . . . } –

k(¬α) ∈ Nd−1 delete αth component from k ∈ Nd (2.6)

k
α←− k ∈ Nd replace kα with k in k ∈ Nd (2.7)

eα ∈ Nd αth unit tuple (1.15)

|k| 1-norm (1.22)

|k|∞ maximum norm (1.17)

multi-index sets

K = K(d,K) set of d-dim. multi-indices with threshold K,

1.3⊆ Kfull(d,K), subset of the corresponding full index cube,

analogously with L(d, L), M(d,M), R(d,R)

Khyp(d,K) hyperbolically reduced set (1.16)

Kadd(d,K) additively reduced set (1.21)

|K| size of index set = number of indices –

lin(k) linear address of k ∈ K w.r.t. linear order of K 2.5.1

vmax
K (k) maximal insertable value without leaving K (2.11)

operators

H Hamiltonian operator (1.1)

D differential operator in SOP form, (6.2)

in particular: harmonic oscillator (1.7)

T =
∑

r∈R t̂rTr =
any operator in SOP form; only in 3.2 3.2∑

r∈R t̂rT
(1)
r1 . . .T

(d)
rd

x, xα 1D and position operator w.r.t. αth coordinate (1.14)

A, Aα ladder operators (w.r.t. αth coordinate), (1.12)

A−, A†, A−α , A
†
α As = As11 . . .A

sd
d , and analogously for A−, A† (4.22)

162

σ cutting operator (4.17)

σ+ blow-up operators (4.18)

functions and their polynomial approximants

η, φ, χ, ψ L2-functions over Rd or [−1, 1]d –

q arbitrary d-variate polynomial . . . 2.1

q(±α) = q|Ω(±α) . . . and their restrictions to boundary face (9.14)

V,W multiplicative, non-polynomial potentials . . . 1.1

W pol . . . and their polynomial approximants (1.24)

a, a(α,β), b, b(±α) non-polynomial coefficient functions . . . 8.1

apol, a
(α,β)
pol ,

. . . and their polynomial approximants 9.5
bpol, b

(±α)
pol

q̂r, ŵr, â
(α,β)
r expansion coefficients of q, W pol, a

(α,β)
pol –

f , g right-hand side of wave equation
8.1

n outer normal vector

Galerkin basis, orthogonal polynomials

ϕk(x), 0 ≤ k ≤ K
{

Hermite function, x ∈ R, Part I

L2-norm. Legendre pol.s, x ∈ [−1, 1], Part II

1.2.1

8.3

ϕk(x), k ∈ K =
∏d
α=1 ϕkα(xα), tensor product basis

1.2.2

8.2

PK,P⊥K L2-orth. projection onto span{ϕk |k ∈ K} (1.5)

Hk, Hk (tensor products of) Hermite polynomials 1.2

Pk 1D boundary-norm. Legendre polynomials 8.3

Tr, Tr (tensor products of) Chebyshev polynomials (1.24)

ω 1D weight function for class. orth. polynomials –

quadrature

(wm, ξm)Mm=0 1D Gaussian quadrature: ξm are zeros of ϕM+1

2.6

9.1

ωm= exp(ξ2
m)wm Gauß–Hermite weights times exponentials (2.14)

ξm=(ξmα)dα=1,
full-product Gaussian quadrature

(2.14)

wm, ωm, m ∈Mfull (9.1)

exact solutions and their coefficients

ψ, uk Part I: original weak formulation (4.1)

ψpol, upol
k Part I: W ≈W pol (4.2)

ψquad
K , cquad

k Part I: Galerkin + quadrature (4.4)

ψfast
K , cfast

k Part I: Galerin + fast alg. (4.7)

ψ, uk Part II: original weak formulation (10.1)

163

ψpol, upol
k Part II: approximation of coefficients (10.2)

ψK, ck Part II: Galerkin + fast alg. (10.3)

vectors

c = (ck)k∈K,
real or complex vectors of size |K| –

u,v,w

v(α) block vectors for sequential summations 3.2.1

equad(v, t) error due to quadrature (4.19)

ered(v, t) error due to index set reduction (4.20)

(dl)l∈L expansion coefficients of nonlinearity 6.4.3

f, g internal and boundary vectors (10.5)

fK, gK internal and boundary defects (10.9)

v(¬α,±) dimensional reduction of v (9.16)

matrices

Hjk = (ϕj, Hϕk), (|K| × |K|)-basis representation of H (1.6)

D
basis representation of D, –

in particular: diagonal eigenvalue matrix (1.8)

Q basis representations of q (2.1)

Q(±α) . . . of q(±α) (9.15)

W . . . of W (1.9)

Wpol . . . of W pol (1.29)

T, Tr . . . of T , Tr; only in 3.2,
3.2

where (T
(α)
r)jk = (ϕj , T

(α)
r ϕk)

S, S(α,β) stiffness matrix (8.11)

B, B(±α) boundary term matrix (8.11)

Q(α,β) basis representation of q with derivatives (9.2)

Qquad quadrature approximation to Q (2.15)

Q
(±α)
quad . . . to Q(±α) (9.17)

Wquad . . . to Wpol (3.1)

Squad, S
(α,β)
quad . . . to S, S(α,β) (9.8)

Bquad, B
(±α)
quad . . . to B, B(±α) (9.18)

Q
(α,β)
quad . . . to Q(α,β) (9.6)

X 1D coordinate matrix (2.3)

X(α) coordinate matrix w.r.t αth coordinate (2.4)

q(X), W pol(X),
formal insertion of X(α) in place of xα 2.3.1

a(α,β)(X), b(±α)(X)

164

U
orthogonal diagonalization matrices

(2.16)

U(α) (9.4)

D 1D differentiation matrix (9.11)

D(α) differentiation matrix w.r.t. αth coordinate (9.5)

P basis representation of nonlinearity (6.11)

P(l), l ∈ L triple-product matrix (6.13)

Ω(n) Magnus integrator matrix 1.5.1

Vm, V
(n)
m (|K| ×m)-Lanczos basis matrices

1.5.2
Tm, T

(n)
m (m×m)-Lanczos coefficient matrices

165

Algorithms, figures, and tables

The following table gives an overview over all algorithms, figures, and tables contained in
this thesis. The columns give the number, a concise explanation, and the page number.
Algorithms etc. taken from Part II are indicated by italics.

explanation page

Algorithms

1 Hermitian Lanczos process 27

2 time-stepping 28

3 direct operation with coordinate matrices 32

4 fast algorithm, first version 34

5 fast algorithm, second version 35

6 computation of the index manuals 40

7 sequential summations: a single block 50

8 applying sequential summations termwise 51

9 fast algorithm for nonlinearity 117

10 time propagation of nonlinear Schrödinger equation 119

11 direct operation (Legendre basis) 137

12 efficient computation of derivatives 138

13 efficient computation of derivatives (transpose) 138

Figures

1.1 univariate Hermite functions 19

1.2 hyperbolically reduced index set 21

1.3 additively reduced index set 22

2.1 recursive structure of Algorithm 5 36

2.2 example of an index manual 39

2.3 number of iterations in Algorithm 6 41

3.1 torsional potential in 2D 56

3.2 (ratios of) computation times, hyperbolic reduction 58

3.3 (ratios of) computation times, additive reduction 59

167

4.1 expansion of 1D quadrature error as a binary tree 78

4.2 binomial coefficient recurrence as a binary tree 79

4.3 binary tree expansion for error due to index set reduction 82

4.4 forming a binary tree by layerwise attachments 84

5.1 local error, hyperbolic reduction 90

5.2 local error, additive reduction 92

5.3 decay behavior in 2D, hyperbolic and additive reduction 93

5.4 time vs. error 94

5.5 perturbation error vs. unperturbed Lanczos 97

5.6 Hénon–Heiles potential 98

5.7 exact solution to the linearly perturbed Hénon–Heiles problem 100

5.8 time propagation error in 2D, hyperbolic reduction 102

8.1 L2-normalized Legendre polynomials 132

11.1 time evolution of wave equation 155

11.2 L2-error for wave equation, full index cube 156

11.3 L2-error for wave equation, additive reduction 158

11.4 time vs. error for full and reduced basis 158

Tables

2.1 Actual computation times for the index manual 42

3.1 key features of sequential summations and the fast algorithm 53

3.2 time complexity of sequ. summations and the fast algorithm 53

3.3 sizes of Galerkin bases and explicitly assembled matrices 57

3.7 table of data corresponding to Figures 3.2 and 3.3 61

4.1 overview: steps of error analysis 65

5.1 perturbation error depending linearly on h 96

5.2 truncation error, hyperbolic reduction 101

5.3 time propagation error, higher dimensions 103

6.1 essentials and non-essentials for the fast algorithm 107

11.1 computation times vs. assembly of stiffness matrix 157

168

Lemmas and theorems

The following table gives an overview over all lemmas and theorems. The columns give the
number, a concise explanation, and the page number. Again, lemmas and theorems given
in Part II are indicated by italics.

explanation page

Lemmas

1 orthogonality of diagonalization matrix U 43

2 equivalence lemma: insertion of coordinate matrices = quadrature 44

3 interpolation error (Schrödinger equation) 68

4 local error due to quadrature (full index cube) 70

5 cutting and blowing up 73

6 decay of Hermite expansion coefficients 75

7 perturbation of Lanczos 94

8 well-posedness of continuous problem 129

9 quadrature and derivatives 135

10 interpolation error (wave equation) 146

11 strong stability of spatial discretization (wave equation) 147

Theorems

1 global error of spatial discretization, full index cube 66

2 global error of spatial discretization, hyperbolic reduction 66

3 (repetition of Theorem 1) 69

4
global error of spatial discretization, hyperbolic reduction;

72
local error in potential not taken into account

5 local error due to quadrature, hyperbolic reduction 76

6 local error due to index set reduction, hyperbolic reduction 82

7 overall error (wave equation) 145

8 global error of spatial discretization (wave equation) 149

169

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publi-
cations, New York, NY, 10th printing, 1972. Available at http://people.math.sfu.
ca/~cbm/aands/.

[2] G. Ávila and T. Carrington. Nonproduct quadrature grids for solving the vi-
brational Schrödinger equation. J. Chem. Phys., 131:174103, 2009. doi:10.1063/1.

3246593.

[3] G. Ávila and T. Carrington. Using nonproduct quadrature grids to solve the
vibrational Schrödinger equation in 12D. J. Chem. Phys., 134:054126, 2011. doi:

10.1063/1.3549817.

[4] G. Ávila and T. Carrington. Using a pruned basis, a non-product quadrature
grid, and the exact Watson normal-coordinate kinetic energy operator to solve the
vibrational Schrödinger equation for C2H4. J. Chem. Phys., 135:064101, 2011. doi:

10.1063/1.3617249.

[5] G. Ávila and T. Carrington. Solving the vibrational Schrödinger equation using
bases pruned to include strongly coupled functions and compatible quadratures. J.
Chem. Phys., 137:174108, 2012. doi:10.1063/1.4764099.

[6] G. Ávila and T. Carrington. Solving the Schrödinger equation using Smolyak
interpolants. J. Chem. Phys., 139:134114, 2013. doi:10.1063/1.4821348.

[7] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton, NJ, 1961.

[8] C. Bernardi and Y. Maday. Spectral Methods. In: P. Ciarlet and J. Lions
(editors), Handbook of Numerical Analysis, Elsevier, Amsterdam, 1997, 209–486. doi:
10.1016/S1570-8659(97)80003-8.

[9] S. Blanes, F. Casas, J. Oteo, and J. Ros. The Magnus expansion and some of its
applications. Phys. Rep., 470:151–238, 2009. doi:10.1016/j.physrep.2008.11.001.

[10] J. Boyd. Chebyshev and Fourier Spectral Methods. Dover, Mineola, NY, 2nd edition,
2001.

[11] M. Bramley and T. Carrington. A general discrete variable method to calculate
vibrational energy levels of three- and four-atom molecules. J. Chem. Phys., 99:8519,
1993. doi:10.1063/1.465576.

171

http://people.math.sfu.ca/~cbm/aands/
http://people.math.sfu.ca/~cbm/aands/
http://dx.doi.org/10.1063/1.3246593
http://dx.doi.org/10.1063/1.3246593
http://dx.doi.org/10.1063/1.3549817
http://dx.doi.org/10.1063/1.3549817
http://dx.doi.org/10.1063/1.3617249
http://dx.doi.org/10.1063/1.3617249
http://dx.doi.org/10.1063/1.4764099
http://dx.doi.org/10.1063/1.4821348
http://dx.doi.org/10.1016/S1570-8659(97)80003-8
http://dx.doi.org/10.1016/S1570-8659(97)80003-8
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1063/1.465576

[12] B. Brumm. A Fast Matrix-free Algorithm for Spectral Approximations to the
Schrödinger Equation. SIAM J. Sci. Comput., 37:A2003–A2025, 2015. doi:10.1137/
140981022.

[13] B. Brumm and E. Kieri. A matrix-free Legendre spectral method for initial-
boundary value problems. Preprint, 2015. Available at https://na.uni-tuebingen.
de/~brumm/.

[14] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
doi:10.1017/S0962492904000182.

[15] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Meth-
ods: Fundamentals in Single Domains. Springer, Berlin, 2006. doi:10.1007/

978-3-540-30726-6.

[16] Y. Cao, Y. Jiang, and Y. Xu. Orthogonal polynomial expansions on sparse grids.
J. Complexity, 30:683–715, 2014. doi:10.1016/j.jco.2014.04.001.

[17] M. Carpenter and D. Gottlieb. Spectral methods on arbitrary grids. J. Comput.
Phys., 129:74–86, 1996. doi:10.1006/jcph.1996.0234.

[18] M. Carpenter, D. Gottlieb, and S. Abarbanel. Time-Stable Boundary Con-
ditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and
Application to High-Order Compact Schemes. J. Comput. Phys., 111:220–236, 1994.
doi:10.1006/jcph.1994.1057.

[19] C. Corey, J. Tromp, and D. Lemoine. Fast Pseudospectral Algorithm in Curvi-
linear Coordinates. In: C. Cerjan (editor), Numerical Grid Methods and their Ap-
plication to Schrödinger’s Equation, NATO ASI Series. Series C: Mathematical and
Physical Sciences 412. Kluwer Academic, Boston, MA, 1993, 1–23. doi:10.1007/

978-94-015-8240-7_1.

[20] E. Davidson. Monster Matrices: Their Eigenvalues and Eigenvectors. Comput. Phys.,
7:519–522, 1993. doi:10.1063/1.4823212.

[21] D. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods.
Springer, Berlin, 2012. doi:10.1007/978-3-642-22980-0.

[22] B. Engquist and A. Majda. Absorbing boundary conditions for the nu-
merical simulation of waves. Math. Comp., 31:629–651, 1977. doi:10.1090/

S0025-5718-1977-0436612-4.

[23] E. Faou, V. Gradinaru, and Ch. Lubich. Computing Semiclassical Quantum
Dynamics with Hagedorn Wavepackets. SIAM J. Sci. Comput., 31:3027–3041, 2009.
doi:10.1137/080729724.

[24] E. Feldheim. Quelques Nouvelles Relations Pour les Polynômes D’Hermite. J. London
Math. Soc., 13:22–29, 1938. doi:10.1112/jlms/s1-13.1.22.

[25] K.-A. Feng, C.-H. Teng, and M.-H. Chen. A Pseudospectral Penalty Scheme for
2D Isotropic Elastic Wave Computations. J. Sci. Comput., 33:313–348, 2007. doi:

10.1007/s10915-007-9154-8.

172

http://dx.doi.org/10.1137/140981022
http://dx.doi.org/10.1137/140981022
https://na.uni-tuebingen.de/~brumm/
https://na.uni-tuebingen.de/~brumm/
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1007/978-3-540-30726-6
http://dx.doi.org/10.1007/978-3-540-30726-6
http://dx.doi.org/10.1016/j.jco.2014.04.001
http://dx.doi.org/10.1006/jcph.1996.0234
http://dx.doi.org/10.1006/jcph.1994.1057
http://dx.doi.org/10.1007/978-94-015-8240-7_1
http://dx.doi.org/10.1007/978-94-015-8240-7_1
http://dx.doi.org/10.1063/1.4823212
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1137/080729724
http://dx.doi.org/10.1112/jlms/s1-13.1.22
http://dx.doi.org/10.1007/s10915-007-9154-8
http://dx.doi.org/10.1007/s10915-007-9154-8

[26] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, Cambridge, 1996. doi:10.1017/CBO9780511626357.

[27] R. Friesner, R. Wyatt, C. Hempel, and B. Criner. A generalized version of the
recursive residue generation method for vector computers. J. Comput. Phys., 64:220–
229, 1986. doi:10.1016/0021-9991(86)90026-4.

[28] D. Funaro. Domain decomposition methods for pseudo spectral approximations.
Numer. Math., 52:329–344, 1987. doi:10.1007/BF01398883.

[29] D. Funaro and D. Gottlieb. A new method of imposing boundary conditions in
pseudospectral approximations of hyperbolic equations. Math. Comp., 51:599–613,
1988. doi:10.2307/2008765.

[30] L. Gauckler. Convergence of a split-step Hermite method for the Gross–Pitaevskii
equation. IMA J. Numer. Anal., 31:396–415, 2011. doi:10.1093/imanum/drp041.

[31] W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford
University Press, New York, NY, 2004.

[32] W. Gautschi. Numerical Analysis: An Introduction. Birkhäuser, Boston, MA, 2nd
edition, 2012. doi:10.1007/978-0-8176-8259-0.

[33] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer.
Algor., 18:209–232, 1998. doi:10.1023/A:1019129717644.

[34] V. Gradinaru. Fourier transform on sparse grids: Code design and the time
dependent Schrödinger equation. Computing, 80:1–22, 2007. doi:10.1007/

s00607-007-0225-3.

[35] V. Gradinaru. Strang Splitting for the Time-Dependent Schrödinger Equation on
Sparse Grids. SIAM J. Numer. Anal., 46:103–123, 2008. doi:10.1137/050629823.

[36] V. Gradinaru and G. Hagedorn. Convergence of a semiclassical wavepacket based
time-splitting for the Schrödinger equation. Numerische Mathematik, 126:53–73, 2014.
doi:10.1007/s00211-013-0560-6.

[37] M. Griebel and J. Hamaekers. Fast Discrete Fourier Transform on Generalized
Sparse Grids. In: J. Garcke and D. Pflüger (editors), Sparse Grids and Appli-
cations – Munich 2012, Lecture Notes in Computational Science and Engineering 97.
Springer, Berlin, 2014, 75–107. doi:10.1007/978-3-319-04537-5_4.

[38] B.-Y. Guo. Spectral Methods and Their Applications. World Scientific Publishing Co.
Inc., River Edge, NJ, 1998. doi:10.1142/9789812816641_fmatter.

[39] S. Gustafson and I. Sigal. Mathematical Concepts of Quantum Mechanics. Springer,
Berlin, 2003. doi:10.1007/978-3-642-21866-8.

[40] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems
and Difference Methods. Wiley, Hoboken, NJ, 2nd edition, 2013. doi:10.1002/

9781118548448.

173

http://dx.doi.org/10.1017/CBO9780511626357
http://dx.doi.org/10.1016/0021-9991(86)90026-4
http://dx.doi.org/10.1007/BF01398883
http://dx.doi.org/10.2307/2008765
http://dx.doi.org/10.1093/imanum/drp041
http://dx.doi.org/10.1007/978-0-8176-8259-0
http://dx.doi.org/10.1023/A:1019129717644
http://dx.doi.org/10.1007/s00607-007-0225-3
http://dx.doi.org/10.1007/s00607-007-0225-3
http://dx.doi.org/10.1137/050629823
http://dx.doi.org/10.1007/s00211-013-0560-6
http://dx.doi.org/10.1007/978-3-319-04537-5_4
http://dx.doi.org/10.1142/9789812816641_fmatter
http://dx.doi.org/10.1007/978-3-642-21866-8
http://dx.doi.org/10.1002/9781118548448
http://dx.doi.org/10.1002/9781118548448

[41] G. Hagedorn. Semiclassical quantum mechanics. III: The large order asymptotics
and more general states. Ann. Phys, 135:58–70, 1981. doi:10.1016/0003-4916(81)

90143-3.

[42] G. Hagedorn. Semiclassical quantum mechanics, IV: large order asymptotics and
more general states in more than one dimension. Ann. Inst. Henri Poincaré Sect. A,
42:363–374, 1985. Available at http://www.numdam.org/item?id=AIHPA_1985__42_

4_363_0.

[43] G. Hagedorn. Raising and Lowering Operators for Semiclassical Wave Packets. Ann.
Phys., 269:77–104, 1998. doi:10.1006/aphy.1998.5843.

[44] K. Hallatschek. Fouriertransformationen auf dünnen Gittern mit hierarchischen
Basen. Numer. Math., 63:83–97, 1992. doi:10.1007/BF01385849.

[45] J. Hesthaven. Spectral penalty methods. Appl. Numer. Math., 33:23–41, 2000.
doi:10.1016/S0168-9274(99)00068-9.

[46] J. Hesthaven and D. Gottlieb. A Stable Penalty Method for the Compressible
Navier–Stokes Equations: I. Open Boundary Conditions. SIAM J. Sci. Comput.,
17:579–612, 1996. doi:10.1137/S1064827594268488.

[47] J. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-
Dependent Problems. Cambridge University Press, Cambridge, 2007. doi:10.1017/

CBO9780511618352.

[48] J. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer, Berlin, 2008. doi:10.1007/

978-0-387-72067-8.

[49] M. Hochbruck and Ch. Lubich. On Krylov Subspace Approximations to the Matrix
Exponential Operator. SIAM J. Numer. Anal., 34:1911–1925, 1997. doi:10.1137/

S0036142995280572.

[50] M. Hochbruck and Ch. Lubich. On Magnus Integrators for Time-Dependent
Schrödinger equations. SIAM J. Numer. Anal., 41:945–963, 2003. doi:10.1137/

S0036142902403875.

[51] A.D. Hope. A Book of Answers. Angus & Robertson, Sydney, 1978.

[52] Y. Jiang and Y. Xu. Fast discrete algorithms for sparse Fourier expansions of high
dimensional functions. J. Complexity, 26:51–81, 2010. doi:doi:10.1016/j.jco.2009.
10.001.

[53] Y. Jiang and Y. Xu. Fast computation of the multidimensional discrete Fourier
transform and discrete backward Fourier transform on sparse grids. Math. Comp.,
83:2347–2384, 2014. doi:10.1090/S0025-5718-2014-02785-3.

[54] L. Kämmerer and S. Kunis. On the stability of the hyperbolic cross discrete Fourier
transform. Numer. Math., 117:581–600, 2011. doi:10.1007/s00211-010-0322-7.

174

http://dx.doi.org/10.1016/0003-4916(81)90143-3
http://dx.doi.org/10.1016/0003-4916(81)90143-3
http://www.numdam.org/item?id=AIHPA_1985__42_4_363_0
http://www.numdam.org/item?id=AIHPA_1985__42_4_363_0
http://dx.doi.org/10.1006/aphy.1998.5843
http://dx.doi.org/10.1007/BF01385849
http://dx.doi.org/10.1016/S0168-9274(99)00068-9
http://dx.doi.org/10.1137/S1064827594268488
http://dx.doi.org/10.1017/CBO9780511618352
http://dx.doi.org/10.1017/CBO9780511618352
http://dx.doi.org/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1137/S0036142902403875
http://dx.doi.org/10.1137/S0036142902403875
http://dx.doi.org/doi:10.1016/j.jco.2009.10.001
http://dx.doi.org/doi:10.1016/j.jco.2009.10.001
http://dx.doi.org/10.1090/S0025-5718-2014-02785-3
http://dx.doi.org/10.1007/s00211-010-0322-7

[55] T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, 2nd edition,
1980. doi:10.1007/978-3-642-66282-9.

[56] A. Klimke. Efficient Construction of Hierarchical Polynomial Sparse Grid Interpolants
using the Fast Discrete Cosine Transform. Technical report, IANS preprint 2006/007,
University of Stuttgart, 2006. Available at http://preprints.ians.uni-stuttgart.
de.

[57] H.-O. Kreiss and J. Oliger. Stability of the Fourier Method. SIAM J. Numer.
Anal., 16:421–433, 1979. doi:10.1137/0716035.

[58] C. Lasser and S. Troppmann. Hagedorn Wavepackets in Time-Frequency and Phase
Space. J. Fourier An. Appl., 20:679–714, 2014. doi:10.1007/s00041-014-9330-9.

[59] J. Light and T. Carrington. Discrete Variable Representations and their Utiliza-
tion. Adv. Chem. Phys., 114:263–310, 2000. doi:10.1002/9780470141731.ch4.

[60] Ch. Lubich. Integrators for quantum dynamics: a numerical analyst’s brief re-
view. In: J. Grotendorst, D. Marx, and A. Muramatsu (editors), Quantum
Simulations of Many-Body Systems: From Theory to Algorithms, NIC Series Vol.
10. John von Neumann Institute for Computing, Jülich, 2002, 459–466. Available at
https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf.

[61] Ch. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and
Numerical Analysis. European Math. Soc., Zürich, 2008. doi:10.4171/067.

[62] U. Manthe and H. Köppel. New method for calculating wave packet dynamics:
Strongly coupled surfaces and the adiabatic basis. J. Chem. Phys., 93:345, 1990.
doi:10.1063/1.459606.

[63] K. Mattsson, F. Ham, and G. Iaccarino. Stable Boundary Treatment for the
Wave Equation on Second-Order Form. J. Sci. Comput., 41:366–383, 2009. doi:

10.1007/s10915-009-9305-1.

[64] R. McLachlan and G. Quispel. Splitting methods. Acta Numer., 11:341–434, 2002.
doi:10.1017/S0962492902000053.

[65] C. Moler and Ch. Van Loan. Nineteen Dubious Ways to Compute the Exponential
of a Matrix, Twenty-Five Years Later. SIAM Rev., 45:3–49, 2003. doi:10.1137/

S00361445024180.

[66] J. Oden, I. Babuška, and C. Baumann. A Discontinuous hp Finite Element Method
for Diffusion Problems. J. Comput. Phys., 146:491–519, 1998. doi:10.1006/jcph.

1998.6032.

[67] F. Olver, D. Lozier, R. Boisvert, and C. Clark. NIST Handbook of Mathematical
Functions. Cambridge University Press, New York, NY, 2010. Online companion
NIST Digital Library of Mathematical Functions available at http://dlmf.nist.gov/
(release 1.0.10 of 2015-08-07).

[68] S. Olver and A. Townsend. A Fast and Well-Conditioned Spectral Method. SIAM
Rev., 55:462–489, 2013. doi:10.1137/120865458.

175

http://dx.doi.org/10.1007/978-3-642-66282-9
http://preprints.ians.uni-stuttgart.de
http://preprints.ians.uni-stuttgart.de
http://dx.doi.org/10.1137/0716035
http://dx.doi.org/10.1007/s00041-014-9330-9
http://dx.doi.org/10.1002/9780470141731.ch4
https://juser.fz-juelich.de/record/24560/files/NIC-Band-10.pdf
http://dx.doi.org/10.4171/067
http://dx.doi.org/10.1063/1.459606
http://dx.doi.org/10.1007/s10915-009-9305-1
http://dx.doi.org/10.1007/s10915-009-9305-1
http://dx.doi.org/10.1017/S0962492902000053
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1006/jcph.1998.6032
http://dx.doi.org/10.1006/jcph.1998.6032
http://dlmf.nist.gov/
http://dx.doi.org/10.1137/120865458

[69] E. Ortiz. The Tau Method. SIAM J. Numer. Anal., 6:480–492, 1969. doi:10.1137/
0706044.

[70] T. Park and J. Light. Unitary quantum time evolution by iterative Lanczos reduc-
tion. J. Chem. Phys., 85:5870, 1986. doi:10.1063/1.451548.

[71] U. Peskin, R. Kosloff, and N. Moiseyev. The solution of the time-dependent
Schrödinger equation by the (t, t’) method: The use of global polynomial propagators
for time-dependent Hamiltonians. J. Chem. Phys., 100:8849, 1994. doi:10.1063/1.

466739.

[72] W. Press, S. Teukolsky, W. Vetterlin, and B. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, New York, NY, 3rd
edition, 2007. Limited access at http://apps.nrbook.com/empanel/index.html#.

[73] M. Reed and B. Simon. Methods of Modern Mathematical Physics. I: Functional
Analysis. Academic Press, New York, NY, 2nd edition, 1980.

[74] M. Reed and B. Simon. Methods of Modern Mathematical Physics. II: Fourier-
Analysis, Self-Adjointness. Academic Press, New York, NY, 1975.

[75] G. Scherer. On energy estimates for difference approximations to hyperbolic par-
tial differential equations. PhD thesis, Department of Computer Sciences, Uppsala
University, 1977.

[76] J. Shen, T. Tang, and L.-L. Wang. Spectral Methods: Algorithms, Analysis and
Applications. Springer, Berlin, 2011. doi:10.1007/978-3-540-71041-7.

[77] J. Shen and L.-L. Wang. Sparse Spectral Approximations of High-Dimensional
Problems Based on Hyperbolic Cross. SIAM J. Numer. Anal., 48:1087–1109, 2010.
doi:10.1137/090765547.

[78] J. Shen and H. Yu. Efficient Spectral Sparse Grid Methods and Applications to
High-Dimensional Elliptic Problems. SIAM J. Sci. Comput., 32:3228–3250, 2010. doi:
10.1137/100787842.

[79] J. Shen and H. Yu. Efficient Spectral Sparse Grid Methods and Applications to
High-Dimensional Elliptic Equations II. Unbounded Domains. SIAM J. Sci. Comput.,
34:A1141–A1164, 2012. doi:10.1137/110834950.

[80] N. Smith (editor). The Poems of Andrew Marvell. Pearson Education Ltd., Harlow,
2007.

[81] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain
classes of functions. Soviet Math. Dokl., 4:240–243, 1963. Russian original in Dokl.
Akad. Nauk SSSR, 148:1042–1045, 1963.

[82] G. Szegő. Orthogonal Polynomials. American Mathematical Society, Providence, RI,
4th edition, 1975.

[83] E. Tadmor. The Exponential Accuracy of Fourier and Chebyshev Differencing Meth-
ods. SIAM J. Numer. Anal., 23:1–10, 1986. doi:10.1137/0723001.

176

http://dx.doi.org/10.1137/0706044
http://dx.doi.org/10.1137/0706044
http://dx.doi.org/10.1063/1.451548
http://dx.doi.org/10.1063/1.466739
http://dx.doi.org/10.1063/1.466739
http://apps.nrbook.com/empanel/index.html#
http://dx.doi.org/10.1007/978-3-540-71041-7
http://dx.doi.org/10.1137/090765547
http://dx.doi.org/10.1137/100787842
http://dx.doi.org/10.1137/100787842
http://dx.doi.org/10.1137/110834950
http://dx.doi.org/10.1137/0723001

[84] V. Temlyakov. Approximation of Periodic Functions. Nova Science, New York, NY,
1993.

[85] B. Thaller. Visual Quantum Mechanics. Springer, New York, corrected 2nd printing,
2002. doi:10.1007/b98962.

[86] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer,
Berlin, 2nd edition, 1997. doi:10.1007/3-540-33122-0.

[87] A. Townsend and S. Olver. The automatic solution of partial differential equations
using a global spectral method. J. Comput. Phys., 299:106–123, 2015. doi:10.1016/

j.jcp.2015.06.031.

[88] L. Trefethen. Spectral Methods in MATLAB. SIAM, Philadelphia, PA, 2000. doi:
10.1137/1.9780898719598.

[89] Ch. Van Loan. The Sensitivity of the Matrix Exponential. SIAM J. Numer. Anal.,
14:971–981, 1977. doi:10.1137/0714065.

[90] X. Wang and T. Carrington. The Utility of Constraining Basis Function Indices
when using the Lanczos Algorithm to Calculate Vibrational Energy Levels. J. Phys.
Chem. A, 105:2575–2581, 2001. doi:10.1021/jp003792s.

[91] Ch. Zenger. Sparse grids. In: W. Hackbusch (editor), Parallel Algorithms for Par-
tial Differential Equations, Notes on Numerical Fluid Mechanics 31. Vieweg, Braun-
schweig, 1991, 241–251.

177

http://dx.doi.org/10.1007/b98962
http://dx.doi.org/10.1007/3-540-33122-0
http://dx.doi.org/10.1016/j.jcp.2015.06.031
http://dx.doi.org/10.1016/j.jcp.2015.06.031
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1137/0714065
http://dx.doi.org/10.1021/jp003792s

	Introduction
	Contributions and sources
	I Basic fast algorithm
	Spectral approximation of the linear Schrödinger equation
	Galerkin approach
	Hermite basis
	Hermite functions in 1D
	Tensor product basis

	Multidimensional index sets
	Hyperbolically reduced index sets
	Additive reduction
	Linear order

	Smoothness assumptions and approximation of the potential
	Regularity of wave function and potential
	Chebyshev interpolation
	Relation of index sets
	Moving wavepackets

	Discretization in time
	Magnus integrators
	Approximation of matrix exponential

	The fast algorithm
	General setting
	Direct operation with coordinate matrices
	One-dimensional approach
	Generalization to higher dimensions

	Algorithmic description
	Insertion of coordinate matrices into the potential
	Using the Chebyshev recurrence: the 1D case
	First version
	Second version
	Reduced index sets for polynomial approximation

	Complexity
	Space complexity
	Time complexity

	Comments on implementation
	Linear addresses
	Index manuals
	Complexity

	Relation to Gauß–Hermite quadrature
	Preliminaries
	Equivalence of formal insertion and quadrature
	Error due to index set reduction

	Time comparison
	Assembling the matrix
	Sequential summations
	Basic idea
	Algorithmic description
	Reduced index sets
	Comparison to the fast algorithm

	Performance tests

	Error analysis
	Outline and main results
	Solutions and their approximations
	Organization of the analysis and main results

	Interpolation error
	Spatial discretization
	Error decomposition for reduced index sets
	Decay assumption
	Local error due to quadrature (reduced index set)
	Local error due to index set reduction
	Remarks on the actual decay behavior

	Numerical experiments
	Local errors due to quadrature and index set reduction
	Matrix exponentials
	Time integration

	Further applications
	Essentials and non-essentials
	Derivatives
	Differential operators
	Shifting vectors
	Doing derivatives by shifts

	Moving wavepackets
	Hagedorn wavepackets
	Semiclassical splitting and the fast algorithm
	Error

	Nonlinearities
	Spectral discretization in space
	Propagation in time
	Approximation of the squared modulus
	Factorization of triple products
	Efficient matrix-vector products
	Algorithmic description

	II Application to initial-boundary value problems
	Introduction
	Spectral approximation of the wave equation
	The wave equation
	Galerkin approach
	Legendre basis

	Efficient procedures for matrix-vector products
	Approximation of matrix-vector products
	Fast algorithm for non-constant coefficients
	Derivatives
	Treatment of boundary terms
	A brief note on complexity

	Error analysis
	Outline and main results
	Interpolation error
	Stability of spatial semidiscretization
	Spatial discretization

	Numerical experiments
	The acoustic wave equation
	Time propagation
	Assembling the stiffness matrix
	Comment on reduced index sets

	Afterword
	Notations
	Algorithms, figures, and tables
	Lemmas and theorems
	Bibliography

