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ABSTRACT 

 

  Recognizing the distributional patterns of species can inform management actions and increase 

scientific knowledge about species. Habitat Suitability Models (HSMs) are valuable tools in 

modeling species’ niches and effects of climate change and anthropogenic and natural 

disturbances on species’ distributions and abundances. In this dissertation, I expanded the 

application of hierarchical HSMs for a rare bird (Virginia’s warbler) and an economically 

valuable bird (ring-necked pheasant) in South Dakota. Also, we developed multiscale HSMs for 

grassland birds in the Upper Missouri River Basin (UMRB) to quantify current habitat 

associations and predict the influences of climate and landcover change associated with the 

implementation of bioenergy with carbon capture and storage (BECCS) and other carbon 

mitigation scenarios. We found that applying an Ensemble of Small Models (ESMs) approach 

within a hierarchical framework can lead to detailed information about niches of rare species, 

limiting factors at each habitat selection order, and potential distribution, which could help 

inform multiscale management. At the broadest habitat selection order, Virginia’s warbler had a 

narrow climatic niche. The importance of environmental variables changed across finer orders, 

such that at broader orders many covariates were important whereas at finer orders certain 

covariates became more important than others. For the model of pheasant abundance, my results 

showed that our hierarchical Bayesian approach allows for simultaneous selection of variables 

and scales of effect. I found that pheasant abundance was positively affected by intermediate 

levels of grassland cover. Scales of effect and spatiotemporal variation influenced predictor 

variable impacts on pheasant abundance. For the modeling of grassland birds across the UMRB, 

my results showed that the influence of climate change on abundance, distribution and species 

richness of grassland species is more pronounced than the influence of landcover changes due to 

implementing BECCS scenarios. This finding implies that regardless of landcover and land-use 

changes, climate change may limit or expand abundance and distribution of grassland bird 

species in the UMRB. Further, we found that grassland birds will be more affected by regional 

increases in temperature than decreases in precipitation. 
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Introduction 

Recognizing the distributional patterns of species can inform management actions and 

increase scientific knowledge about species. Habitat Suitability Models (HSMs) are valuable 

tools which have been applied widely to model species’ niches and effects of climate change and 

anthropogenic and natural disturbances on species’ distributions and abundances (Elith et al., 

2006). HSMs are empirical methods relating species records (occurrences or counts) to biotic 

and/or abiotic predictor variables through statistically or theoretically derived response curves 

(Guisan et al., 2000).  

Multi-scale relationships among ecological factors such as species abundance and 

landscape patterns can affect modeling results for ecological processes and our interpretation of 

habitat-species relationships (Mayor et al., 2009; Moraga et al., 2019). Many species, especially 

highly mobile species like birds, perceive the landscape at multiple scales when selecting habitat 

and restrict available habitat based on information gathered at each scale (Jedlikowski et al., 

2016). Finding biologically meaningful relationships between environmental covariates and 

response variables, therefore, requires determining relevant scales of effect (Jackson and Fahrig, 

2015). An ideal multi-scale modeling approach includes selecting the best subset of covariates 

from a full model, including all combinations of candidate covariates and scales of effect, after 

correcting for imperfect detection in a hierarchical framework (Stuber and Gruber, 2020). In 

recent years, applying HSMs in hierarchical frameworks has been highlighted in literature, 

opening a new avenue in HSMs-related research (Jorgensen et al., 2014; Stuber et al., 2017; 

Stuber and Gruber, 2020). This framework enables models to incorporate hierarchical habitat 

selection theory, detectability, ecological processes, and spatiotemporal variation in data.  
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In this dissertation, I expanded the application of hierarchical HSMs for a rare bird 

(Virginia’s warbler, Leiothlypis virginiae) and an economically valuable bird (ring-necked 

pheasant, Phasianus colchicus) in South Dakota. Also, I developed multiscale HSMs for 

grassland birds throughout the Upper Missouri River Basin (UMRB) to quantify current habitat 

associations and predict the influence of climate and landcover change due to the implementation 

of bioenergy with carbon capture and storage (BECCS) and other carbon mitigation scenarios. 

In the first study ( Chapter 1, Goljani Amirkhiz et al., 2021), I developed a modeling 

approach to apply the Ensemble of Small Models (ESMs) technique in a hierarchical framework 

to model the distribution of Virginia’s Warbler at the most northeastern extent of its range in the 

Black Hills of South Dakota. ESMs, which are ensemble of all possible bivariate models, were 

introduced to overcome the problem of limited occurrence records in HSMs (Lomba et al., 

2010). In this study, I investigated whether applying ESMs in a hierarchical framework can 

increase accuracy of models and our knowledge about the species niche.  

In the second study ( Chapter 2, Goljani Amirkhiz et al., 2023), I developed hierarchical 

models in a Bayesian framework to investigate the effects of seasonal and annual habitat 

variations on pheasant rooster abundance in South Dakota. I developed a modeling approach to 

select the best subset of predictor covariates and their scales of effect simultaneously without 

being impacted by multicollinearity.  

In the third study (Chapter 3), I developed generalized additive models to explore 

landscape factors associated with grassland bird distributions and abundances in the UMRB and 

predict their future distributions and abundances under various climate and landcover change 

scenarios associated with regional carbon mitigation strategies. I employed a shrinkage method 

to overcome the problem of collinearity among variables and scales of effect. 
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Modeling approaches introduced in this dissertation can improve conservation and 

management of birds and other taxa by exploring detailed information about species niches, 

limiting factors, distributions, and abundances at various spatiotemporal scales. Findings of this 

dissertation can help managers and researchers design survey methods to increase accuracy of 

predictions of species abundances and distributions.  
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Chapter 1 Investigating niches and distribution of a rare species in a hierarchical 

framework: Virginia’s warbler (Leiothlypis virginiae) at its northeastern range limit 

Abstract 

Ensemble of Small Models (ESMs) is a technique to overcome the problem of few 

occurrence points. Applying the ESMs in a spatially hierarchical framework could increase the 

accuracy of predictions and conclusions by restricting available habitat at sequentially finer 

spatial scales. Our objective was to show how applying ESMs in a hierarchical habitat selection 

framework could help to understand rare species’ niches at various scales. We compared the 

accuracy of ESMs made by committee averaging and weighted averaging methods. We also 

compared the predictive power of ESMs made by various modeling techniques for Virginia’s 

warbler (Leiothlypis virginiae) at its northeastern range limit. We defined biologically relevant 

hierarchical orders of habitat selection for Virginia’s warbler in the Black Hills, U.S.A. We 

modeled habitat suitability at the broadest scale as a function of bioclimatic covariates and at 

finer scales as functions of landcover, soil group and landscape covariates. The performance of 

modeling techniques varied among scales. Using the committee averaging method led to more 

accurate results than weighted averaging. At the broadest order, Virginia’s warbler had a narrow 

climatic niche. The importance of covariates changed across finer orders, such that at broader 

orders many covariates were important whereas at finer orders certain covariates became more 

important than others. We conclude that applying ESMs within a hierarchical framework can 

lead to detailed information about rare species’ niches, limiting factors at each habitat selection 

order, and potential distribution, which could help inform multiscale management.  

 



 

5 

 

Introduction 

Recognizing the spatial distribution of species is one of the primary steps in their 

conservation and management. Species Distribution Models (SDMs) are powerful tools for 

estimating habitat preferences and for projecting species realized niches onto geographic space 

(Guisan et al., 2017, 2013). However, application of SDMs for rare species has been challenging 

because the accuracy of models decreases with lower numbers of occurrence records (Hernandez 

et al., 2006). Inclusion of a high number of covariates in models with few occurrences increases 

the risk of overfitting and collinearity between variables (Dormann et al., 2013). These problems 

reduce the ability to generalize from the model. One approach to address the overfitting problem 

is to reduce the number of covariates in the model to those with greatest probable contributions 

to model fit by relying on expert knowledge about the species’ niche, but such knowledge may 

not be available for rare species. In addition, excluding covariates for better generalizability 

could reduce the chances of capturing more dimensions of a species’ niche and limit our 

understanding of niche requirements (Guillera-Arroita et al., 2015).  

Lomba et al. (2010) introduced a new strategy to deal with overfitting in rare species 

distribution modeling which appeared to result in more accurate spatial projections. This strategy 

is based on fitting bivariate models for all binary combinations of covariates and creating an 

ensemble prediction by weighted averaging of predictions based on their performances. They 

proposed their strategy in a spatially hierarchical framework in which the climatic niche was 

modeled at the scale of the entire species’ range and then was filtered by regional model 

predictions based on finer scale covariates. Breiner et al. (2015, 2018) named this approach as 

Ensembles of Small Models (ESMs) and found that this approach outperformed a wide range of 

standard SDMs for rare species. They recommended use of tuned ESMs made by Artificial 
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Neural Networks (ANN) or Generalized Boosted Models (GBM) when the goal is high 

predictive performance and use of ESMs-Maxent with tuned features when projection to other 

regions is the main objective. Assuming that these recommendations also lead to the best results 

for other taxa, ESMs have been applied to model habitat suitability of some rare species of 

insects (Della Rocca et al., 2019), Caucasian grouse (Habibzadeh and Ludwig, 2019), bats 

(Scherrer et al., 2019), and invasive squirrels (Di Febbraro et al., 2019), but ESMs were not 

compared with other modeling approaches in these studies. Moreover, the modeling 

recommendations of Breiner et al. (2015, 2018) were based on ESMs made for some rare plant 

species and may not lead to the best results for other taxa, especially for highly mobile species 

(Guisan & Thuiller, 2005). In addition, committee averaging as an alternative for weighted 

averaging has not been previously employed in ESMs studies. One of the advantages of the 

committee averaging method is that it provides a measure of uncertainty along with predictions. 

Predictions near 0 or 1 mean that all models agree to predict absence or presence, respectively, 

and a prediction around 0.5 means that half of the models predict absence and half predict 

presence (Araújo and New, 2007). 

Rare species often have restricted ranges and do not occupy all available suitable habitat, 

leading to a patchy distribution (Pacifici et al., 2012). Field surveys for detecting rare species are 

mostly conducted in areas where the presence of the species had been previously detected. Thus, 

occurrence records may not represent the full range of the species niche nor do absences 

necessarily mean that habitat is unsuitable (Guisan et al. 2006, McCune 2016). One approach to 

deal with such imbalanced data is to apply presence-background modeling techniques (Guisan, 

Thuiller, & Zimmermann, 2017). However, disregarding true absence points obtained from field 

surveys can lead to loss of useful information (Guillera-Arroita et al., 2015). The geographic 
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extent of the background, from which pseudo-absence points should be selected, can influence 

model parametrization and the accuracy of the predictions (Merow et al., 2013). Many species, 

especially highly mobile species like birds, perceive the landscape at multiple scales when 

selecting habitat and restrict available habitat based on information gathered at each scale 

(Jedlikowski et al., 2016; Mayor et al., 2009; Zimmerman et al., 2009). Having a restricted range 

and being a habitat specialist (because of specific habitat requirements, interspecific competition, 

etc.) could imply that hierarchical habitat selection is more focused on specific habitat features 

and, thereby, is more pronounced for rare than for generalist species (Devictor et al., 2008; 

Razgour et al., 2011). Applying the ESMs approach in a spatially hierarchical framework based 

on habitat selection concepts (Johnson, 1980) could increase the accuracy of predictions by 

restricting available habitat (i.e., background extent) sequentially from coarse to finer spatial 

scales. Such an approach also allows incorporation of both true and pseudo-absences and 

increases chances of capturing more dimensions of the niche of rare species (Lomba et al., 2010; 

McGarigal et al., 2016).  

In this study, we apply ESMs and a hierarchical Bayesian approach in a spatially 

hierarchical framework to model breeding habitat suitability of Virginia’s warbler (Leiothlypis 

virginiae) in the Black Hills of South Dakota and Wyoming. The breeding range of Virginia’s 

warbler covers mountainous regions of the southwestern U.S and extreme northern Mexico 

(Olson and Martin, 1999). Previous studies indicate that the northeastern-most breeding 

population is isolated in the southern Black Hills, where it is considered rare and a species of 

conservation concern (Swanson et al., 2016, 2000). Genetic data are consistent with recent range 

expansion of Virginia’s warblers into the Black Hills (Bubac and Spellman, 2016), which 

suggests that not all suitable habitat in the Black Hills may be currently occupied. We employ 
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the hierarchical habitat selection concept (Johnson, 1980) to increase the accuracy of model 

predictions and show how this approach could help represent habitat selection of a rare species at 

various scales. Subsequently, we compare the accuracy of ESMs made by the weighted 

averaging method with those made by the committee averaging method. We also compare the 

predictive power of ESMs made by various modeling techniques (ANN, GLM, GBM, GAM, RF, 

Maxent, and MARS). 

Materials and Methods 

Study area and occurrence records 

The study was conducted in the Black Hills which is an isolated mountain range located 

in western South Dakota and extending into northeastern Wyoming, U.S.A. The dominant tree 

species over much of the Black Hills is ponderosa pine (Pinus ponderosa), with small areas of 

white spruce (Picea glauca), paper birch (Betula papyrifera) and quaking aspen (Populus 

tremuloides) mainly at higher elevations or along canyon bottoms (Orr, 1975).  Previous studies 

documented that Virginia’s warbler in South Dakota exists in a unique pine-juniper-shrub habitat 

within the southwestern Black Hills. This habitat occurs on steep rocky terrain covered by 

scattered ponderosa pine and/or Rocky Mountain juniper (Juniperus scopulorum) as dominant 

overstory species, with a shrubby understory of mountain mahogany (Cercocarpus montanus) 

and skunkbush sumac (Rhus aromatica) (Swanson et al., 2016). We used 62 presence and 59 

absence points obtained from point count surveys (with the aid of broadcast songs) in July 2016 

(Swanson et al., 2016) to create a preliminary ESMs to help us design a complementary field 

survey to enhance the number of our occurrence records upon which we could base our models. 

Following the Swanson et al. (2016) survey protocol, we conducted a survey in June 2018 in 

predicted suitable habitats and some areas outside of the known Virginia’s warbler distribution in 
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the Black Hills, leading to an additional 14 presence and 55 absence points. These two survey 

efforts provided totals of 76 presence and 114 absence points upon which subsequent models 

were based (Figure 1.1).  

 

Figure 1.1. The location of the study area in the U.S.A and distribution of presence-absence points 

obtained from field surveys in Black Hills area. 

 

Modeling framework 

Following Johnson (1980) and Meyer and Thuiller (2006), we considered four 

hierarchical orders of habitat selection. From broad to fine scales, these included Order 0: 

Species range order; Order 1: Population order; Order 2: Individual order; and Order 3: 

Individual life requirement order. For each order we defined (see below for details) an extent 

(available habitat). For population and individual orders, we used suitable habitats defined for 

the preceding order as their extents and for the individual life requirement order, we used our 

presence-absence points rather than defining an a priori extent. For the population order we 

selected the optimum scale-of-effect from a range of scales (Jackson and Fahrig, 2015). For the 

species range order, we fixed the scale of analysis to incorporate the known range of the 
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Virginia’s warbler; for individual and individual life requirements orders, we fixed the scale of 

analysis at 90-m radii to reflect the home range size of Virginia’s warbler (see below for details). 

Habitat Selection Extents 

As the broadest scale, the species range order accounts for the geographic distribution of 

a species within a region. We assumed that Virginia’s warbler has a narrow niche and its 

potential suitable habitats at the broadest scale are limited. Thus, we applied a 75-km buffer 

around the Black Hills National Forest as the species range order extent, since such a buffer 

includes all the preferred pine-juniper-shrub habitats of the Virginia’s warbler within the Black 

Hills region (Swanson et al., 2000). Because habitat selection at finer scales is constrained by 

selection at broader scales (Manly et al., 2007), the next two extents (population and individual 

orders) were defined based on suitable habitats recognized from their previous scales (i.e., 

suitable habitats of species range order as the extent of population order and suitable habitats of 

population order as the extent of individual order). The population order extent accounts for 

selection of habitats by populations within the geographic range. Previous studies identified the 

southwestern Black Hills as suitable habitat for Virginia’s warbler populations (Swanson et al., 

2016). We considered the population order based on the assumption that potential suitable 

habitats other than current known habitats for Virginia’s warbler populations may exist within 

the species range order because of recent colonization of the Black Hills, so that not all suitable 

habitats are occupied (Bubac and Spellman, 2016). The individual order extent accounts for 

home range requirements. This order was considered based on the assumption that requirements 

for Virginia’s warbler at the home range scale may only occur at a subset (discrete patches) of 

the entire population order extent, resulting in patchy home ranges. The individual life 

requirement order accounts for life requirements within home range patches. We assumed that 
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there should be some specific habitat requirements in an area to be considered as a home range 

by Virginia’s warbler. For this extent we used our real absence points obtained from our surveys 

rather than deriving pseudo-absence points from the available habitat (extent). 

Independent variables and scale-of-effect  

Climate conditions govern distribution of birds at broad scales directly (Gaston and 

Blackburn, 2008; Root, 1988) or through formation of plant communities and food availability 

(Suárez-Seoane et al., 2002). Thus, for the species range order, we employed WorldClim data, 

version 2, with a 1-km spatial resolution because this dataset is one of the most recent and widely 

used climate datasets and provides climate data at a spatial resolution appropriate for the 

modeling approach that we employed. In addition to 19 conventional bioclimatic variables that 

represent annual data, we used mean monthly climate data for minimum, average, and maximum 

temperatures and for precipitation for June and July of 1970-2000 (Fick and Hijmans 2017; 

Table 1.1). Habitat components may have different functions in defining the species niche at 

different scales if limiting factors change with scale (Fletcher and Fortin, 2018; Rettie and 

Messier, 2000). Hence, at finer scales than species range order, based on our literature review of 

Virginia’s warbler habitat associations, we considered a suite of landcover, soil groups and 

landscape covariates (Table 1.1). 
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Table 1.1. Descriptions, calculations, and sources of variables used in spatial modeling of Virginia’s 

warbler distribution in the Black Hills, USA. 

Covariate Variable description/calculation Source 

 BIOCLIMATIC COVARIATES  

BIO1 Annual mean temperature 

(Fick and Hijmans 2017; 

http://www.worldclim.org/) 

http://www.worldclim.org/) 

 

 

BIO2 

Mean diurnal range (Mean of monthly 

(max temp - min temp)) 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO4 
Temperature seasonality (standard 

deviation *100) 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO5 Max temperature of warmest month 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO6 Min temperature of coldest month 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO7 
Temperature annual range (BIO5-

BIO6) 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO8 Mean temperature of wettest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO9 Mean temperature of driest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO10 Mean temperature of warmest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO11 Mean temperature of coldest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 
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Covariate Variable description/calculation Source 

BIO12 Annual precipitation 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO13 Precipitation of wettest month 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO14 Precipitation of driest month 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO15 
Precipitation seasonality (coefficient of 

variation) 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO16 Precipitation of wettest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO17 Precipitation of driest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO18 Precipitation of warmest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO19 Precipitation of coldest quarter 
(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO20 Minimum temperature of Jun and July (Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO21 Maximum temperature of Jun and July (Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO22 Average temperature of Jun and July (Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO23 Average precipitation of Jun and July (Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO24 Average solar radiation (kJ m-2 day-1) 

of Jun and July 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 
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Covariate Variable description/calculation Source 

BIO25 Average wind speed (m s-1) of Jun and 

July 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

BIO26 Average water vapor pressure (kPa) of 

Jun and July 

(Fick and Hijmans, 2017; 

http://www.worldclim.org/) 

 LANDCOVER COVARIATES  

TCC Tree Canopy Cover, Considering the 

middle range of tree canopy cover 

categories to obtain a continuous raster 

LANDFIRE canopy cover 

(USGS 2013; 

http://www.landfire.gov/) 

NDVI ArcGIS 10.7 Raster Dataset tool (Data 

management toolbox) to mosaic annual 

NDVI raster files to create an 

integrated raster for entire study area 

Web-Enabled Landsat data 

(USGS 

2015;https://landsat.usgs.gov/W

ELD.php) 

VCVar Vegetation Cover Variation: ArcGIS 

10.7 Focal Statistics tool (Spatial 

Analysis toolbox) to calculate the 

number of canopy cover types within 

Virginia’s Warbler home range. 

LANDFIRE canopy cover 

(USGS 2013; 

http://www.landfire.gov/) 

VH-Herb Considering the middle range of herb 

height categories to obtain a 

continuous raster 

LANDFIRE canopy cover 

(USGS 2013; 

http://www.landfire.gov/) 

VH-Shrub Considering the middle range of shrub 

height categories to obtain a 

continuous raster 

LANDFIRE canopy cover 

(USGS 2013; 

http://www.landfire.gov/) 

VH-Tree Considering the middle range of tree 

height categories to obtain a 

continuous raster 

LANDFIRE canopy cover 

(USGS 2013; 

http://www.landfire.gov/) 
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Covariate Variable description/calculation Source 

VHVar Vegetation Height Variation: ArcGIS 

10.7 Focal Statistics tool (Spatial 

Analysis toolbox) to calculate the 

number of vegetation height categories 

within Virginia’s Warbler home range.

  

LANDFIRE vegetation height 

(USGS 2013; 

http://www.landfire.gov/) 

VT3106 Northern Rocky Mountain Montane-

Foothill Deciduous Shrubland. ArcGIS 

10.7 Focal Statistics tool (Spatial 

Analysis toolbox) to calculate the 

number of pixels containing VT3106 

within Virginia’s warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3125 Inter-Mountain Basins Big Sagebrush 

Steppe. ArcGIS 10.7 Focal Statistics 

tool (Spatial Analysis toolbox) to 

calculate the number of pixels 

containing VT3125 within Virginia’s 

warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3141 Northwestern Great Plains Mixed grass 

Prairie. ArcGIS 10.7 Focal Statistics 

tool (Spatial Analysis toolbox) to 

calculate the number of pixels 

containing VT3141 within Virginia’s 

warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3147 Western Great Plains Foothill and 

Piedmont Grassland. ArcGIS 10.7 

Focal Statistics tool (Spatial Analysis 

toolbox) to calculate the number of 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 
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Covariate Variable description/calculation Source 

pixels containing VT3147 within 

Virginia’s warbler home range 

VT3148 Western Great Plains Sand Prairie 

Grassland. ArcGIS 10.7 Focal 

Statistics tool (Spatial Analysis 

toolbox) to calculate the number of 

pixels containing VT3148within 

Virginia’s warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3162 Western Great Plains Floodplain Forest 

and Woodland. ArcGIS 10.7 Focal 

Statistics tool (Spatial Analysis 

toolbox) to calculate the number of 

pixels containing VT3162 within 

Virginia’s warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3179 Northwestern Great Plains-Black Hills 

Ponderosa Pine Woodland and 

Savanna. ArcGIS 10.7 Focal Statistics 

tool (Spatial Analysis toolbox) to 

calculate the number of pixels 

containing VT3179 within Virginia’s 

warbler home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 

VT3250 Inter-Mountain Basins Curl-leaf 

Mountain Mahogany Shrubland. 

ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

VT3250 within Virginia’s warbler 

home range 

LANDFIRE vegetation type 

(USGS 2013; 

http://www.landfire.gov/) 
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Covariate Variable description/calculation Source 

SOIL GREAT GROUPS 

Argiustolls ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Argiustolls within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer et al. 

2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.gov/; 

GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.shtml) 

datasets  

Calciustolls ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Calciustolls within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer et al. 

2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.gov/; 

GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.shtml) 

datasets  

Hapludolls ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Hapludolls within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer et al. 

2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.gov/; 

GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.shtml) 

datasets  

Haplustalfs ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Haplustalfs within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer et al. 

2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.gov/; 

GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.shtml) 

datasets  

Ustifluvents ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Ustifluvents within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer et al. 

2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.gov/; 

GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.shtml) 

datasets  
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Covariate Variable description/calculation Source 

Ustorthent ArcGIS 10.7 Focal Statistics tool 

(Spatial Analysis toolbox) to calculate 

the number of pixels containing 

Ustorthent within Virginia’s warbler 

home range 

Soil Survey Geographic (Comer 

et al. 2003; USDA 2015, 

https://websoilsurvey.nrcs.usda.

gov/; GTES, USFS 1998, 

https://www.fs.fed.us/soils/teui.s

html) datasets 

LANDSCAPE VARIABLES 

Elevation Downloaded Digital Elevation Model National Elevation Dataset 

(USGS 2009; 

http://nationalmap.gov/elevation

.html) 

DisRidge Distance to the Ridge. Arc GIS 10.7 

Euclidean Distance tool (Spatial 

Analysis toolbox) to calculate the 

minimum distance from each pixel to 

Ridges. Ridges’ map was created using 

ArcGIS 10.7 Topography toolbox. 

National Elevation Dataset 

(USGS 2009; 

http://nationalmap.gov/elevation

.html) 

HLI Heat Load Index. ArcGIS 10.7 

Topography toolbox.  A southwest 

facing slope should have warmer 

temperatures than a southeast facing 

slope, so the highest values for Heat 

Load Index are for southwest-facing 

slopes and the lowest values are for 

northeast-facing slopes (McCune and 

Keon, 2002). 

National Elevation Dataset 

(USGS 2009; 

http://nationalmap.gov/elevation

.html) 

Terrain 

ruggedness index  

Terrain Ruggedness Index. ArcGIS 

10.7 Raster Calculator tool to calculate 

National Elevation Dataset 

(USGS 2009; 
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We expected that like many other terrestrial species (Boyce et al., 2003; Martínez et al., 

2003), decision making by Virginia’s warbler regarding importance of habitat covariates is more 

general at broader than at finer scales. Also, following Rettie and Messier (2000) and Fletcher 

and Fortin (2018),  we hypothesized that at broader scales Virginia’s warbler spatially avoids 

those factors that most strongly limit fitness. For instance, we expect this species to avoid 

grassland-dominated, closed canopy cover and mesic habitats at broader scales since Virginia’s 

warbler exists in a unique pine-juniper-shrub habitat in the Black Hills (Swanson et al., 2016). At 

finer scales, we expect factors with less importance at broader scales to become more important 

because limiting factors at broader scales have already been avoided. For example, at finer 

scales, vegetation cover, slope, and mountain mahogany density should have higher ranks of 

variable importance than density of grasslands and high canopy cover, which have already been 

avoided at broader scales. 

To determine the optimal scale-of-effect for the population order, we followed Bellamy 

et al. (2013) in examining various scales-of-effect. We calculated the proportion of each category 

for categorical covariates (vegetation types and soil groups) and the mean of continuous 

covariates within concentric windows around each pixel using the focal statistics tool in ArcGIS 

10.7 (ESRI, 2019). The radius of windows ranged from 90 m, which is consistent with the 

Covariate Variable description/calculation Source 

the average absolute difference 

between each pixel elevation value and 

each of its eight neighbors 

http://nationalmap.gov/elevation

.html) 

IMI Integrated Moisture Index.  ArcGIS 

10.7 Topography toolbox 

National Hydrologic Dataset 

(USGS 2015b; 

https://nhd.usgs.gov/) 
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maximum Virginia’s warbler home range radius (Fischer, 1978), to 990 m (approximate species 

range order scale-of-effect), with an interval of 90 m. To identify the best window radius for 

each covariate, we developed univariate models for each combination of covariate and window 

radius using Maxent 3.3.3 (Phillips et al., 2006) with the R-package BIOMOD2 (Thuiller et al., 

2009). The maximum number of background points was randomly selected within the population 

range extent such that the minimum distance between points was 30 m, so that only one point 

was included for a 30 x 30 m pixel. Models were cross validated using 50 split-sample runs (80% 

of points for training and 20% for testing). The best window radius for each covariate was 

selected based on the area under the curve (AUC) from receiver operation-characteristic (ROC) 

plots (Fielding and Bell 1997;Figure 1.2). 

 

Figure 1.2. Test AUC values of various window sizes to select the best scale-of-effect for each covariate 

for the population order. 
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For the individual and individual life requirements orders, we considered the maximum 

home range size for Virginia’s warbler (90-m radius, Fischer 1978) as the scale-of-effect because 

the goal was to compare used and unused sites at the home range scale. We calculated the 

proportion of categorial covariates and the mean of continuous covariates within this radius for 

each occurrence record. 

Multicollinearity 

To avoid multicollinearity, we ran a hierarchical clustering method based on a distance 

measure (1 - the absolute value of the Pearson’s product-moment correlation) between variables 

using R-package KlaR (Weihs et al., 2005) to group correlated variables (correlation > 0.7;  

Dormann et al. 2013) into clusters. We then excluded binary models from covariates within 

clusters from the suite of all possible binary combinations of variables. Using a hierarchical 

clustering method instead of removing one of the paired correlated variables allowed us to 

investigate the role of all candidate covariates in the Virginia’s warbler’s niche.  

Modeling 

We developed a suite of ESMs with seven modeling techniques for species range, 

population, and individual orders. We developed generalized linear models (GLMs), generalized 

additive models (GAM; Hastie and Tibshirani 1987), generalized boosting models (GBMs), 

multivariate adaptive regression splines  (MARS; Friedman 1991), artificial neural networks 

(ANN; Ripley 1996), random forests (RF; Breiman 2001) and maximum entropy models 

(Maxent; Phillips et al. 2006). Binary models for the ESMs-Maxent were tuned by employing the 

“ENMevaluate” function in the “ENMeval” R-package (Muscarella et al., 2014). Binary models 

of the remaining modeling techniques were tuned using the “BIOMOD-tuning” function 

implemented in the “escopat” R-package (Breiner et al. 2018; see Guisan et al. 2017 for details 
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of tuning parameters). We also made an ensemble of predictions of all ESMs (EP-ESMs) 

weighted by their AUC values. To reduce the effect of sampling bias (Phillips et al., 2009), we 

removed all but one presence or absence point within each 1 km × 1 km (species range order) 

and  30 m × 30 m (the remaining orders) pixel (Boria et al., 2014; Goljani Amirkhiz et al., 2018). 

For species range, population, and individual orders, we defined the maximum number of 

background points such that each pixel was represented by a single point. Background points 

were down-weighted to equal presence points (prevalence of 0.5; Ferrier et al. 2002). We applied 

10-fold split sampling (90% for training and 10% for testing) to calculate Somers’ D (2×AUC-

0.5) to evaluate and weight average small models into ESMs. Small models with Somers’ D 

values ≤ 0 were considered as random models and were not included in ESMs. 

To define extent for population and individual orders , in addition to the weighted 

average method, we applied a committee averaging method (Araújo and New, 2007) to the 

prediction maps of the best ESMs for the previous order based on model evaluation results.  

Committee averaging is an unweighted averaging method requiring continuous prediction maps 

to be reclassified into binary maps. Binary maps developed from each model were then summed 

and the total divided by the total number of binary maps to obtain a single binary map as the 

output (Araújo and New 2007). We reclassified the prediction maps of small models by 

calculating their optimal thresholds maximizing the sum of sensitivity and specificity and 

meeting a required specificity in the R-package “PresenceAbsence” (Freeman and Moisen, 

2008). We employed maximum sum of sensitivity and specificity since it serves as a robust 

method for classification of prediction maps for presence-background and rare species 

distribution models (Liu et al., 2016, 2013). We used required specificity because our goal in 

defining extent was the conservative removal of unsuitable areas based on the previous order’s 
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models. Required specificity considers the lowest threshold that met a required specificity, 

defined as the proportion of observations correctly predicted as absence points (Wilson et al., 

2005). We considered 85% as the required specificity (Freeman and Moisen, 2008). We next 

divided the sum of binary prediction maps by the total number of binary prediction maps. Thus, 

for the best modeling technique for each order based on model evaluation results, we obtained 

three separate ESMs: ESMs-Weighted average, ESM- Committee averaging (maximum sum of 

sensitivity and specificity) and ESMs- Committee averaging (required specificity). We then used 

true absence points from our field surveys, along with presence points, to determine the optimum 

threshold resulting in the best binary map. To accomplish this, we calculated 12 thresholds based 

on all available criteria in the R-package “PresenceAbsence” (Freeman and Moisen, 2008) and 

chose the threshold providing the highest scores for kappa and true skill statistic indices, which 

are robust methods for evaluating binary prediction maps (Segurado and Araújo 2004, Allouche 

et al. 2006). 

For the individual life requirement order, using our absence points, we developed a 

hierarchical Bayesian logistic regression model using the R-package brms (Bürkner, 2017). First, 

we clipped out those absence points falling in unsuitable areas recognized in previous orders. We 

next applied a Gaussian mixture model (Banfield and Raftery 1993) corresponding to predictor 

variable values for occurrence records to discover clusters of occurrence records which share a 

degree of similarity in at least some niche dimensions. We assumed there are some unobserved 

patterns within clusters which did not result from our predictor variables. We considered these 

clusters as random effects in the hierarchical Bayesian logistic regression model. We determined 

the optimum number of clusters and Gaussian mixture model parameters based on the Bayesian 

Information Criterion (BIC), which works well in model-based clustering (Dasgupta and Raftery, 
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1998). We used the R-package mclust (Scrucca et al., 2016) to implement the Gaussian mixture 

model. Rare species have narrow niches and usually occupy a small portion of the available 

habitat (Lomba et al., 2010). Our preliminary models for various orders also indicated that 

Virginia’s warbler has a narrow niche. Thus, we considered Student's t distribution with a mean 

of zero (because we standardized predictor variables by their standard deviations) as a weakly 

informative prior for the predictor’s coefficients. Using the Widely Applicable Information 

Criterion (WAIC; Watanabe 2010), we selected the optimum Degrees of Freedom (DF) and 

Standard Deviation (SD) by comparing models with a range of degrees of freedom (3 to 7 with 

an increment of 0.5) and a narrow range of standard deviations (1 to 4 with an increment of 0.5) 

as recommended for the weakly informative priors (Ghosh et al., 2018). We then applied an 

indicator variable selection approach to select the best subset of predictors by removing predictor 

variables with a posterior mean close to zero in a stepwise manner (Hooten and Hobbs, 2015; 

O’Hara and Sillanpaa, 2009). We compared models with and without predictors with a posterior 

mean close to zero using 10-fold cross-validation and estimating expected log pointwise 

predictive density (elpd; Vehtari et al. 2017). To run hierarchical Bayesian logistic regression 

models, we considered four chains each with 12,000 iterations, with 6,000 iterations to prime the 

models. To determine the importance of each variable in the model, we applied a projection 

predictive variable selection approach using the R-package “projpred” (Piironen and Vehtari, 

2017).  

Model evaluation, variable importance, and response curves 

To evaluate the accuracy of predictions of ESMs, we used the block method in the R-

package “ENMeval” (Muscarella et al., 2014) to split occurrence records into four spatially 

independent bins and used half the data for training models and half for testing them 
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independently. Using partitioned data, we calculated threshold-independent and threshold-

dependent model evaluation metrics using R-packages “PresenceAbsence” (Freeman and 

Moisen, 2008) and “escopat” (Breiner et al., 2018). We used averaged AUC (AUC.mean) as a 

threshold-independent method to evaluate overall model performance (Peterson et al., 2008). We 

also calculated the AUC difference (AUC.diff). AUC.diff represents the difference between 

AUCs calculated on training data and testing data and allows evaluation of model overfitting 

(Warren and Seifert, 2011). We also used the continuous Boyce index (Boyce.mean) as a 

background points-independent index (Hirzel et al., 2006). For threshold-dependent methods, we 

used the mean true skill statistic across blocks (Allouche et al. 2006). We found the optimum 

threshold for mean true skill statistic using maximum sum of sensitivity and specificity. 

To obtain the relative importance of variables of the best ESMs, we calculated the mean 

of permutation importance metrics through all binary models using the “variables_importance” 

function in the R-package Biomod2, version 3.3-7.1 (Thuiller et al., 2009). We used Mann-

Whitney U tests to compare importance of variables used in their corresponding small models. 

Variables were grouped if there was no significant difference among their variable importance 

scores and then ranked based on the mean variable importance. To produce response curves for 

each covariate, we plotted the mean of predicted probability of binary models including the 

covariate (when the other covariate in the binary model was kept at its median value) against the 

corresponding values of the covariate. We used the “response” function in the R-package dismo  

(Hijmans et al., 2017) to create response curves.  

Results 

Hierarchical clustering analysis 
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Hierarchical clustering analysis for bioclimatic covariates 

Figure 1.3 shows correlation clusters of bioclimatic covariates based on the hierarchical 

clustering method and the distance measure (1 - the absolute value of Pearson’s correlation 

coefficient). Rectangles represent correlated covariates at a threshold of r = 0.7. Small models 

from covariates within clusters that had a correlation greater than 0.7 were removed from the 

ESMs. Based on the hierarchical clustering of covariates, we found six clusters of correlated 

covariates which led us to remove 32 of 300 binary combinations of bioclimatic covariates from 

analyses. This resulted in developing 268 binary models for each modeling technique (e.g., 

bio16+bio21; bio16+bio26; etc.). 

 

Figure 1.3. Correlation clusters of bioclimatic covariates based on the hierarchical clustering method. 

 

Hierarchical clustering analysis for landcover, soil and landscape covariates  

Figure 1.4 shows correlation clusters of landcover, soil and landscape covariates based on 

the hierarchical clustering method and the distance measure (1 - the absolute value of Pearson’s 

correlation coefficient). Rectangles represent correlated covariates at a threshold of r = 0.7. 

Binary models from covariates within clusters were removed from the ESMs. For variable 
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descriptions see Table 1.1. Based on the hierarchical clustering of covariates, we found three 

clusters of correlated covariates which led us to remove three of 780 binary combinations of 

landcover, soil and landscape covariates from analyses. This resulted in developing 777 binary 

models for each modeling technique (e.g., VT3062+DisRidge; VT3062+IMI; etc.). 

 

  

 

Figure 1.4. Correlation clusters of landcover, soil and landscape covariates. 

 

Species range order 

Regarding the AUC.mean, except for ESMs-MARS, all ESMs and ensemble of 

predictions of all ESMs (EP-ESMs) had values > 0.9 and ESMs-Maxent and ESM-GLM had the 

highest values ( 0.97). These two ESMs also had the lowest AUC.diff (0.015 and 0.013, 

respectively) but ESMs-Maxent had the highest TSS.mean value (0.898) and a higher Boyce 

mean value (0.897) than ESMs-GLM (0.87). Regarding the Boyce.mean, although ESMs-RF 

had the highest value, it suffered from overfitting based on both visual inspection and its 
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relatively higher AUC.diff (0.076). Since ESMs-Maxent had better evaluation metrics than other 

ESMs and EP and it was more accurate based on visual inspection, we selected it as the ultimate 

modeling technique for the species range order ( 

 

 

 

Table 1.2). The optimum beta multiplier (AICc =0) of ESMs-Maxent’s small models 

ranged from 0.5 to 2 and most models had a beta multiplier of 0.5 (68%). Also, the majority of 

models with AICc =0 had a combination of linear, quadratic and hinge features ( 46%; Table 

1.3). An ESMs-Maxent with committee averaging, in which small model prediction maps were 

classified using maximum sum of sensitivity and specificity resulted in the most accurate binary 

map. For this map, three threshold selection criteria (Maximum sum of sensitivity and 

specificity, Maximum Kappa, and Minimum ROC Distance) indicated that 0.53 is an optimum 

threshold for the classification. Thus, we defined the extent of the population order by classifying 

the ESMs-Maxent using 0.53 as the threshold (Table 1.4). According to this map, suitable in-

range habitats for the species range order are located in the southern, southwestern and western 

Black Hills, extending into Wyoming. Additional potentially suitable habitats may also occur in 

the northwestern Black Hills and northwest of the study area (Figure 1.2). The maximum 

temperature of June and July (BIO23) and mean temperature of the wettest quarter (BIO8) had 

the highest contributions to the Virginia’s warbler’s niche at this order. However, based on a 

Mann-Whitney U test these two variables did not show significantly higher importance than 

annual precipitation (BIO12), and the maximum temperature and precipitation of the warmest 

month (BIO5 and BIO18; P > 0.05). Thus, these five variables had the greatest contributions to 

defining the niche of Virginia’s warblers (Figure 1.5). 
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Table 1.2. Evaluation metrics of the species range order’s ensemble of small models and the ensemble of 

predictions made by various modeling techniques.  

Modeling 

technique 

Evaluation metric 

Boyce.mean AUC.mean TSS.mean AUC.diff 

Maxent 0.897 0.968 0.898 0.015 

GLM 0.871 0.965 0.873 0.013 

EP 0.919 0.946 0.828 0.028 

RF 0.933 0.944 0.865 0.076 

GBM 0.881 0.932 0.800 0.020 

GAM 0.815 0.932 0.800 0.060 

ANN 0.884 0.907 0.858 0.100 

MARS 0.590 0.820 0.750 0.050 

 

Table 1.3. The number and percentage of each combination of beta multipliers and features in the 

ensemble of small models created by tuned binary Maxent models (ESMs-Maxent) for the species range 

order. 

Betamultiplier  Features Count Percentage 

0.5 

H 32 9.82 

LQH 103 31.6 

LQHP 73 22.39 

LQHPT 13 3.99 

Total   221 67.79 

1 

H 9 2.76 

LQH 41 12.58 

LQHP 19 5.83 

LQHPT 16 4.91 

Total   85 26.07 

1.5 

H 4 1.23 

LQH 7 2.15 

LQHP 2 0.61 
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Betamultiplier  Features Count Percentage 

LQHPT 2 0.61 

Total   15 4.6 

2 
LQH 1 0.31 

LQHPT 4 1.23 

Total   5 1.54 

Table 1.4. Results of evaluation of different ensemble modeling techniques to create an ensemble of small 

models for the species range order using Maxent as the modeling technique. 

Ensemble modeling approach Threshold criterion Threshold Kappa TSS 

CA-maxSSS Sens=Spec 0.53 0.6742 0.7614 

CA-maxSSS maxSSS 0.53 0.6742 0.7614 

CA-maxSSS MinROCdist 0.53 0.6742 0.7614 

CA-ReqSpes Sens=Spec 0.69 0.5478 0.6351 

CA- ReqSpes maxSSS 0.69 0.5478 0.6351 

CA- ReqSpes MinROCdist 0.69 0.5478 0.6351 

WA Sens=Spec 0.35 0.4391 0.5263 

WA maxSSS 0.35 0.4391 0.5263 

WA MinROCdist 0.35 0.4391 0.5263 

WA MaxKappa 0.55 0.4587 0.4536 

CA-maxSSS Default 0.5 0.3632 0.4474 

CA-Reqspes ReqSens 0.91 0.4218 0.4451 

CA-maxSS MaxKappa 0.93 0.444 0.4375 

CA-Reqspes MaxKappa 0.96 0.444 0.4375 

WA ReqSens 0.44 0.4024 0.4276 

WA Default 0.5 0.417 0.4185 

CA- ReqSpes Default 0.5 0.3308 0.4123 

CA-maxSSS ReqSens 0.8 0.3737 0.4012 

CA-maxSSS PredPrev=Obs 0.98 0.3658 0.3376 

CA-maxSSS MeanProb 0.1131 0.2157 0.2807 

CA-maxSSS ReqSpec 0.22 0.2157 0.2807 

CA- ReqSpes ReqSpec 0.34 0.2157 0.2807 

WA MeanProb 0.0696 0.2157 0.2807 

WA ReqSpec 0.13 0.2157 0.2807 

WA MaxPCC 0.67 0.2944 0.2598 
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Ensemble modeling approach Threshold criterion Threshold Kappa TSS 

WA Cost 0.67 0.2944 0.2598 

WA PredPrev=Obs 0.61 0.2841 0.2569 

CA- ReqSpes PredPrev=Obs 0.99 0.2743 0.2541 

CA-maxSSS MaxPCC 0.99 0.2552 0.2261 

CA-maxSSS Cost 0.99 0.2552 0.2261 

CA-Reqspes MeanProb 0.1822 0.1582 0.2105 

CA-maxSSS ObsPrev 0.0031 0 0 

CA-Reqspes ObsPrev 0.0031 0 0 

WA ObsPrev 0.0031 0 0 

CA-Reqspes MaxPCC 1 0 0 

CA-Reqspes Cost 1 0 0 

CA: Committee averaging; maxSSS: Maximum Sensitivity + Specificity; ReqSpes: Required Specificity; 

WA: Weighted Average; Sens=Spec: Sensitivity = Specificity; MinROCdist: Minimum ROC Distance. 

 

 

 

Figure 1.5. Mean variable importance of binary models of the species range order. 

Dots: Mean, bars: Standard deviation. See Table 1.1 for the description of variables. 

 

Response curves for the top five most important variables showed that the Virginia’s 

warbler has a narrow niche regarding climate variables. All response curves had quadratic shapes 

around narrow ranges of variables at the species range order background extent. These curves 
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showed that Virginia’s warblers prefer areas with a moderate maximum temperature in June and 

July, in the wettest quarter of the year and in the warmest month of the year. This species shows 

higher occupancy in areas with lower annual precipitation and moderate precipitation in the 

warmest quarter of the year (Figure 1.6).  

 

Figure 1.6. Response curves of the top five most important covariates for the ensemble of small models at 

the species range order. The solid line represents the mean and the dashed lines the standard deviation. 

 

Population order 

Regarding the selected window radius according to AUC values, the majority of soil 

great groups univariate models showed their best performance at a 1-km window radius. 

Conversely, most of the landcover covariates had their best performance at a window radius of 

90 m. Topographic and vegetation type covariates showed their best performance at various 

windows radii (Figure 1.2). At the population order, ESMs-GBM performed better than other 

models (Table 1.5). Using a committee averaging approach in which small models were 

classified using maximum sum of sensitivity and specificity resulted in the most accurate binary 

map. For this map, three threshold selection criteria (Maximum sum of sensitivity and 

specificity, Maximum Kappa, and Minimum ROC Distance) indicated that 0.42 is an optimum 
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threshold for the classification which was used to define the background extend of the individual 

order Table 1.6). Based on a Mann-Whitney U test, variables with significant contributions to the 

Virginia’s warbler’s niche (P < 0.05) were height of shrubs (VH-Shrub), Terrain Ruggedness 

Index (TRI), Heat Load Index (HLI), frequency of Haplustlfs and Argiustolls soil groups, 

Northwestern Great Plains mixed grass prairie (VT3141), Western Great Plains floodplain forest 

and woodland (VT3162), Western Great Plains sand prairie grassland (VT3148), and northern 

Rocky Mountain montane-foothill deciduous shrubland (VT3106; Figure 1.7). The prediction 

map showed that the most suitable habitats for Virginia’s warbler at this order are located in 

southern areas of the species range order with additional potentially suitable habitats in the 

western and northern regions (Figure 1.10). 

Table 1.5. Evaluation metrics of the population order’s ensemble of small models and the ensemble of 

predictions made by various modeling techniques. 

Modeling 

technique 

Evaluation 

metric 

Evaluation 

metric 

Evaluation 

metric 

Evaluation 

metric 
 

Boyce.mean AUC.mean TSS.mean AUC.diff 

GBM 0.928 0.843 0.753 0.118 

MARS 0.42 0.801 0.527 0.142 

EP 0.931 0.79 0.674 0.21 

ANN 0.926 0.784 0.665 0.215 

Maxent 0.942 0.782 0.68 0.218 

GAM 0.956 0.775 0.634 0.224 

GLM 0.867 0.755 0.651 0.233 

RF 0.784 0.715 0.27 0.122 

 

Table 1.6. Results of evaluation of different ensemble modeling techniques to create an ensemble of small 

models for the population order using GBM as the modeling technique. 

Ensemble modeling approach Threshold 

criterion 

Threshold Kappa TSS 

CA-maxSSS MaxSens+Spec 0.42 0.9057 0.9077 
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CA-maxSSS MaxKappa 0.42 0.9057 0.9077 

CA-maxSSS MinROCdist 0.42 0.9054 0.9047 

CA-maxSSS Cost 0.54 0.9053 0.9040 

CA-Reqspes MaxSens+Spec 0.56 0.8898 0.8908 

CA-Reqspes MaxKappa 0.56 0.8898 0.8908 

CA-Reqspes MaxPCC 0.56 0.8898 0.8908 

CA-Reqspes MinROCdist 0.56 0.8898 0.8908 

CA-Reqspes Cost 0.56 0.8898 0.8908 

maxss MaxPCC 0.70 0.8898 0.8908 

WA Sens=Spec 0.67 0.8897 0.8901 

WA MaxSens+Spec 0.67 0.8897 0.8901 

WA MaxKappa 0.67 0.8897 0.8901 

WA PredPrev=Obs 0.67 0.8897 0.8901 

WA MinROCdist 0.67 0.8897 0.8901 

WA MaxPCC 0.69 0.8897 0.8893 

WA Cost 0.69 0.8897 0.8893 

CA-maxSSS Sens=Spec 0.72 0.8897 0.8893 

CA-maxSSS PredPrev=Obs 0.72 0.8897 0.8893 

CA-maxSSS MeanProb 0.62 0.8743 0.8769 

WA ReqSpec 0.62 0.8587 0.8615 

CA-maxSSS ReqSpec 0.61 0.8587 0.8615 

CA-Reqspes MeanProb 0.54 0.8585 0.8600 

WA MeanProb 0.62 0.8430 0.8462 

CA-Reqspes Sens=Spec 0.60 0.8424 0.8424 

CA-Reqspes PredPrev=Obs 0.60 0.8424 0.8424 

WA ReqSens 0.74 0.8420 0.8395 

CA-Reqspes ReqSens 0.68 0.8420 0.8395 

CA-maxSSS ReqSens 0.79 0.8420 0.8395 

CA-Reqspes ReqSpec 0.51 0.8271 0.8293 

CA-Reqspes ObsPrev 0.49 0.8118 0.8154 

CA-Reqspes Default 0.50 0.7960 0.7993 

CA-maxSSS Default 0.50 0.7338 0.7385 

CA-maxSSS ObsPrev 0.49 0.7338 0.7385 
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WA Default 0.50 0.6717 0.6769 

WA ObsPrev 0.49 0.6562 0.6615 

CA: Committee averaging; maxSSS: Maximum Sensitivity + Specificity; ReqSpes: Required Specificity; 

WA: Weighted Average; Sens=Spec: Sensitivity = Specificity; MinROCdist: Minimum ROC Distance. 

 

 

Figure 1.7. Mean variable importance of binary models of the population order. 

Dots: Mean, bars: Standard deviation. See Table 1.1 for the description of variables. 

 

Individual order 

At the individual order, ESMs-ANN had the best performance among all models based 

on all metrics ( 

Table 1.7) and was used to explore the Virginia’s warbler’s niche. The prediction map 

revealed that within the suitable areas for the population order, most suitable habitats at the 

individual order level were located in southern and western regions of the Black Hills, but some 

small suitable habitats occurred in northwestern areas (Figure 1.8). The most important 

covariate, based on a Mann-Whitney U test, at the individual order was terrain ruggedness index 

and the second most important was Integrated Moisture Index (IMI, P < 0.05). Other important 

covariates were frequency of Calciustolls and Ustorthent soil groups, vegetation cover variation 

(VCVar), frequency of Inter-Mountain Basins Big Sagebrush Steppe (VT3125), Northwestern 
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Great Plains mixed grass prairie (VT3141), ground canopy cover (GCC), and Northwestern 

Great Plains-Black Hills Ponderosa Pine Woodland and Savanna (VT3179), height of shrubs, 

and height of trees (VH-Tree). These latter covariates did not differ significantly from each other 

(P > 0.05) so can all be considered as the third most important variables (Figure 1.8).  

Table 1.7. Evaluation metrics for the individual order's ensemble of small models and the ensemble of 

predictions. 

Modeling 

technique 

Evaluation metric 

Boyce.mean AUC.mean TSS.mean AUC.diff 

ANN 0.842 0.813 0.446 0.286 

Maxent 0.798 0.726 0.31 0.358 

GBM 0.451 0.687 0.263 0.403 

GAM 0.782 0.645 0.322 0.351 

EP 0.779 0.638 0.328 0.351 

RF 0.516 0.629 0.239 0.155 

GLM 0.552 0.569 0.281 0.415 

MARS 0.751 0.592 0.203 0.368 

 

 

Figure 1.8. Mean variable importance of binary models of the individual order. 

Dots: Mean, bars: Standard deviation. See Table 1.1 for the description of variables. 
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Individual life requirements order  

The Gaussian mixture model showed two clusters of occurrence records which were used 

as random effects. Based on WAIC, the best prior for the coefficients was a Student's t 

distribution with DF and SD of 3 and 2.25, respectively. The optimum DF and SD for the 

intercept was 4 and 1, respectively. The 10-fold cross-validation showed that a model including 

the best subset of covariates with a varying intercept had the best performance (Table 1.8). The 

best model included 15 covariates (six with positive, eight with negative and one with a 

quadratic relationship with the probability of occurrence, Figure 1.9). The increase in expected 

log pointwise predictive density when adding each predictor variable to the model showed that 

terrain ruggedness index is the most important variable in this model, while Inter-Mountain 

Basin Big Sagebrush Steppe (VT3125) and Northern Rocky Mountain Montane-Foothill 

Deciduous Shrubland (VT3106)  had the least contributions to the model (Table 1.9). The 

marginal effect plots showed that the amount of uncertainty in prediction in areas with lower 

habitat suitability was generally higher (Figures 1.11 and 1.12).  

Table 1.8. The results of 10-fold cross-validation to find the best Bayesian logistic 

regression model at the individual life requirement order. 

Model elpd_kfold a elpd_diff b SE SE_diff c 

Best subset + varying intercept d -36.2 0 8.2 0 

Best subset e -41.4 -5.2 9.9 2.5 

Best subset + varying intercept & slopes f -41.4 -5.2 8.7 5.4 

Full model with a varying intercept g -51.4 -15.2 11.2 5 

Full model g -54.6 -18.4 11.8 4.9 

Null model h -65.9 -29.7 2.7 8.3 

a: expected log pointwise predictive density; b: Difference between elpd of models with the top best model; e: SD of 

differences; d: A Hierarchical Bayesian Logistic Regression Model (HBLRM) made by best subset of predictor 

variables with varying intercept; e: A BLRM made by best subset of predictor variables; f: An HBLRM made by 

best subset of predictor variables with varying intercept and slopes; g: An HBLMR made by all predictor variables; 

h: A BLMR made by only intercept.  
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Figure 1.9. The posterior mean and 95% credible interval of coefficients of the hierarchical Bayesian 

logistic regression model of the individual life requirement order. SD-clusters: variation between two 

clusters of occurrence records. See Table 1.1 for the description of variables. 

 

Table 1.9. The amount of increase in the expected log pointwise predictive density by adding each 

predictor variable to the null (intercept only) model. 

Predictor Variable Size a elpd b SE 

Intercept 0 -64.44 2.53 

Terrain Ruggedness Index 1 -48.59 5.52 

Hapludolls Soil Group 2 -39.54 5.34 

Ustifluvents Soil Group 3 -35.25 5.06 

Integrated Moisture Index 4 -33.62 5.25 

Distance to Ridge 5 -31.39 5.41 

Western Great Plains Foothill and Piedmont 

Grassland 

6 -29.37 5.47 

Northwestern Great Plains Mixed Grass Prairie 7 -26.9 4.55 

Heat Load Index 8 -26.07 4.59 

Elevation 9 -25.37 4.73 

Calciustolls Soil Group 10 -24.71 4.68 

Height of Herbs 12 -23.27 4.48 

Height of Trees 13 -21.9 4.18 

Inter-Mountain Basins Big Sagebrush Steppe 14 -20.46 4.03 
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Predictor Variable Size a elpd b SE 

Northern Rocky Mountain Montane-Foothill 

Deciduous Shrubland 

15 -19.68 4 

a: Number of predictor variables in the model; b: expected log pointwise predictive density. The greatest 

and least increases in expected log pointwise predictive density (elpd) occurred when terrain ruggedness index and 

frequency of Northern Rocky Mountain Montane-Foothill Deciduous Shrubland habitat, respectively, were added to 

the model. This pattern implied that these predictor variables had the highest and lowest contributions, respectively, 

to the Virginia’s warbler niche at the individual life requirements order. 

 

 

 

 

Figure 1.10. Prediction maps. a: species range order, b: population order and c: Individual order in Black Hills 

region. Panel d provides background extents for ensemble of small models of a to c. These maps depict the 

hierarchical habitat selection by Virginia’s warbler in the Black Hills, U.S.A. Maps depict predictions of ensembles 

of small models made by modeling techniques that performed better (a: maximum entropy, b: generalized boosting 

models, c: artificial neural networks) than other modeling techniques (generalized linear models, generalized 

additive models, multivariate adaptive regression splines, and random forests) at each hierarchical order of habitat 
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selection. The suitable habitats recognized at each order were used as the background extent for the subsequent 

order. 
 

 

 

 

Top-ranked covariates and niche characteristics at population, individual and individual life 

requirement orders 

Terrain ruggedness index (TRI) is the most important variable for all three orders (Figure 

1.11). The quadratic shape of the terrain ruggedness index response curve at the population order 

showed that available habitats are limited to low to medium values of terrain ruggedness index. 

However, at the next finer scale levels (individual and and individual life requirment orders), 

areas with the highest terrain ruggedness index are preferred, implying that other factors limit 

selection of areas with the most suitable terrain ruggedness index at the population order. Eight 

other covariates occurred at the same level of importance as terrain ruggedness index at the 

population order (Figure 1.11), so these variables may interact to limit the use of optimum levels 

of other covariates (e.g., terrain ruggedness index and height of shrubs). Virginia’s warblers 

prefer areas with low to medium shrub height at the population order. However, the importance 

of shrub height decreases at the individual order and becomes unimportant at the individual life 

requirement order, allowing response to optimum levels of other variables. Such a decrease in 

importance at lower levels is also evident for other top-ranked covariates at the population order. 

For example, heat load index (HLI), shows a bimodal pattern at population and individual orders 

with both colder and warmer slopes being preferred. However, at the individual life requirement 

order, only moderate to warmer areas (higher heat load index) are preferred. Virginia’s warblers 

avoid areas with Haplustalf and Argisutull soils, Western Great Plains Floodplain Forest and 

Woodland (VT3162) and Western Great Plains Sand Prairie Grassland (VT3148) at species 

range and population orders, but these variables play no role at the individual life requirement 
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order. Haplustalf and Argiustoll soil groups support grasslands and our results showed that these 

habitats are unsuitable breeding habitat for Virginia’s warbler, so they are avoided at the broader 

orders. Low coverages of Northwestern Great Plains Mixed Grass Prairie (VT3141) and 

Northern Rocky Mountain Montane-Foothill Deciduous Shrubland (VT3106) are preferred at all 

three orders, implying that the presence of other vegetation types is also required to select an 

area as breeding habitat. The integrated moisture index (IMI) is not a top-ranked variable at the 

population order, but its influence becomes greater at finer scales. Low levels of integrated 

moisture index are favored at all three orders below species range order. The Ustifluvents soil 

group is less important at broader orders but becomes a top-ranked variable at the individual life 

requirement order. Distance to ridge and areas underlain by Hapludolls soils were significant 

predictors only at the individual life requirement order showing that they are considered by 

Virginia’s warbler only at finer scales (Figure 1.11).  

Among covariates with a secondary importance at the population order, Virginia’s 

warbler prefers habitats with intermediate levels of tree height and tree canopy cover at the two 

broadest orders, but with zero to average tree height at the individual life requirement order 

showing that tree cover is more important at broader scales. Ustorthent soil has a secondary and 

tertiary importance at the species range and population orders and is preferred at intermediate 

levels. This soil group supports deciduous forest or savanna with scattered grasses mixed with 

xerophytic shrubs (USDA, 2015). Our results showed that this soil group is a prerequisite for the 

establishment of a breeding territory at the individual life requirement order by Virginia’s 

warbler. This species prefers areas with an average vegetation cover variation at the species 

range and population orders. Northwestern Great Plains-Black Hills Ponderosa Pine Woodland 

and Savanna (VT3179) and Inter-Mountain Basin Curl-leaf Mountain-mahogany Woodland and 
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Shrubland (VT3250) are vegetation types with a secondary importance at the population order. 

VT3179 represents typical Virginia’s warbler breeding habitat land cover and is composed of a 

mix of tree cover and mountain mahogany (Comer et al., 2003; Swanson et al., 2000). Virginia’s 

warblers prefer areas with higher frequency of VT3179 at population and individual orders. A 

low frequency of VT3250 is preferred by Virginia’s warbler, perhaps because of a lack of 

sufficient tree cover in this vegetation type. Western Great Plains Foothill and Piedmont 

(VT3147) is the only vegetation type with importance rank three at the population order. A 

higher frequency of VT3147 is preferred at population, individual and individual life 

requirement orders which could be because of neighboring vegetation types. The VT3147 

vegetation type usually occurs in narrow elevational bands between montane woodlands and 

shrublands and its adjacent ecological systems include foothill shrublands and ponderosa pine 

savannas (Comer et al., 2003), which have a positive impact on Virginia’s warbler breeding 

habitat suitability (Figure 1.12).  
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Figure 1.11. Response curves of top ranked covariates of population, individual and individual life 

requirement orders. The numbers at the top right of each figure refer to the importance score (most 

important = 1, second most important = 2, etc.) for each covariate at the corresponding habitat selection 

order. This figure illustrates that probability of occurrence varies in relation to changes in predictor 

variables and how the importance of variables changes at different habitat selection orders. 
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Figure 1.12. Response curves for the last three habitat selection orders with covariates having secondary 

and tertiary rank order of importance. The numbers at the top right indicate the rank order of importance 

of the covariate at the corresponding habitat selection order. 
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Discussion 

Virginia’s Warbler Niche Requirements 

At broader habitat selection orders below the species range order (population and 

individual order), Virginia’s warbler prefers areas with intermediate vegetation cover height and 

variation, low humidity levels, and intermediate slopes and avoids grassland-dominated habitats 

(probably due to lack of sufficient cover components). Previous studies also reported that this 

species tends to occupy xeric habitats (Olson and Martin, 1999). With less importance, 

Virginia’s warblers also prefer habitats with a mix of tree and shrub cover at lower elevations at 

broader habitat selection scales. These habitats have intermediate NDVI values and shallow to 

moderately deep and rocky soils which are characteristics of shrub habitat types with mountain 

mahogany, the favored vegetation type for Virginia’s warbler in the Black Hills (Swanson et al. 

2000, 2016). At the individual life requirement order, Virginia’s warblers occupy steep areas 

close to ridges with moderate to warm temperatures, consistent with the idea that Virginia’s 

warblers use ridges as territory boundaries (Swanson et al., 2016) and prefer habitats that are 

warmer than surrounding areas (Olson and Martin, 1999). At this order, Virginia’s warbler 

occupy regions with Hapludoll and Ustifluvent soils. Typical vegetation cover of Hapludoll soils 

is tall grass with a tree overstory (Soil Survey Staff, 2015) and this vegetation could serve as a 

cover component when Virginia’s warblers select their nest sites, if mountain mahogany is also 

present. Ustifluvent soil groups are favored by Virginia’s warbler at the population order and 

occur along streams (Soil Survey Staff, 2015), which usually occur in areas with high terrain 

ruggedness, a feature preferred by Virginia’s warbler. Thus, at population and individual orders, 

an intermediate frequency of the Ustifluvent soil group is preferred, since higher frequencies 

occur close to streams in moister habitats than those preferred by Virginia’s warbler. However, at 
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the individual life requirement order the highest frequencies of Ustifluvent soil groups are 

favorable since unsuitable frequencies have already been disregarded at higher habitat selection 

orders.   

Ensemble of small models within hierarchical habitat selection framework 

Our study suggests that choosing extents and scales-of-effect based on habitat selection 

concepts (Johnson, 1980; Mayor et al., 2009) could improve understanding of rare species niche 

requirements and increase the accuracy of predictions. Our results are consistent with the 

hypothesis that covariates can have different roles, interpretations, and influences on the 

occurrence of Virginia’s warbler at different scales. Many studies show that disregarding 

hierarchy theory (O’Neill et al., 1986) in habitat selection and suitability studies may lead to 

misinterpretation of the niche ( e.g., Syfert et al. 2013, Vergara et al. 2016). For instance, 

although terrain ruggedness is one of the most important variables at three habitat selection 

orders, its relative influence on Virginia’s warbler habitat preference varies at different scales. 

Some covariates are only influential at broader scales (e.g., shrub height), whereas others are 

important only at the finest scale (e.g., distance to the ridge). At broader scales (species range 

and population orders) Virginia’s warblers make general decisions, as many covariates show 

high importance in the corresponding models. However, at finer scales certain covariates become 

more important than others (terrain ruggedness index and integrated moisture index at population 

order; terrain ruggedness index, Hapludolls and Ustifluvents soil groups at individual order). 

Response curves showed that the Virginia’s warbler habitat selection pattern at larger scales is to 

avoid unsuitable habitats (e.g., Haplustalfs and Argiustolls), whereas less important covariates at 

larger scales become important at the finest scale (distance to the ridge and Hapludolls). Such 

patterns are also reported by studies of habitat selection for other birds (MacFaden and Capen, 
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2002; Martínez et al., 2003). The importance of multiscale modeling could be magnified in rare 

species with narrow niches as a result of specific ecological adaptations and life history strategies 

(Guisan & Thuiller, 2005). Habitat selection could, therefore, provide a theoretical framework to 

specify appropriate extents and scales-of-effect when ESMs are employed in rare species 

distribution studies. We acknowledge that these results are based on correlations but identified 

associations can lead to future studies investigating mechanisms that drive multi-scale habitat 

selection and influence fitness of nesting Virginia’s warblers.   

Our modeling method is complementary to and builds upon those developed by Lobma et 

al. (2010) and Breiner et al. (2015, 2018). In our study, tuned ESMs-Maxent, ESMs-GBM and 

ESMs-ANN performed best at the three broadest habitat selection orders, which is consistent 

with the results of Breiner et al. (2015). However, our study showed that the performance of 

different modeling techniques could vary among scales. While Maxent had the best performance 

at the species range order, it did not perform as well as GBM at the population order. Whereas 

GBM performed best at the population order, it had a weak performance at the individual order. 

ANN was the best technique at the individual order, but not at other orders. 

Conclusions about the relative merits of using presence-absence based methods vs. 

presence-background methods (Brotons et al., 2004; Guisan et al., 2016) generally depend on the 

sample size and/or statistical methods (Elith et al., 2006). A spatial hierarchical framework can 

take advantage of strengths of both approaches to test habitat selection hypotheses for rare 

species. The projections of our preliminary ensembles of small models (using only presence and 

absence points, and not including pseudo-absence points) into our broadest scale (species range 

order) resulted in weak and unrealistic predictions. For Virginia’s warbler, our absence points 

did not represent the entire available habitat. Thus, using pseudo-absence (background) points 
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was a better choice to test our hypotheses at the broadest three habitat selection orders. Response 

curves and prediction maps of the best ESMs supported our expectation that Virginia’s Warbler 

occupies a narrow niche with limited regional potential distribution at the species range order. 

Incorporating pseudo-absence points identified some potential suitable habitats separated from 

the known range at the population order. In addition, the entire suitable population order extent 

does not encompass all habitat requirements at the individual order. However, at the individual 

life requirement order, using absence points helped delineate which covariates served as specific 

habitat requirements for the establishment of a breeding territory by Virginia’s warblers (e.g., 

vicinity to ridges, warmer slopes and higher moisture). Although other modeling techniques 

(e.g., logistic regression) could be applied to presence-absence data at this order, applying a 

hierarchical Bayesian approach facilitated variable selection by shrinking coefficients of 

unimportant covariates to zero, resulting in a suite of the most important covariates in the model. 

This approach also quantified that uncertainty in coefficient estimations is much higher for 

presence points than for absence points, suggesting that more data describing unsuitable habitats 

at the individual life requirements order is required to better define the Virginia’s warbler niche 

at finer scales.  

Ensemble of small models through committee averaging  

Previous ESMs studies used the weighted averaging method to create an ensemble of 

small models (e.g. Lomba et al. 2010, Breiner et al. 2018). Our study showed that the committee 

averaging method may lead to more accurate results, especially when creating binary prediction 

maps is an objective. In this study, potential suitable habitats at each order served as the 

background extent for the next order. To define background extents, we reclassified the 

prediction map for each order into a binary map by selecting the best threshold criterion. In this 
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way we could select background extents based on the objectives of our study, leading to 

biologically meaningful response curves (Guisan et al., 2016; Merow et al., 2013).  

Management implication and future studies guideline 

Applying an ESMs approach within a hierarchical framework led to detailed information 

about the Virginia’s warbler ’s niche, limiting factors at each habitat selection order, and 

potential distribution, which could be helpful for multiscale management and future research. 

Limiting factors have an important role in habitat selection and, consequently, could shape 

management actions (Rettie and Messier, 2000). The species range order model showed that 

Virginia’s warbler has a narrow niche regarding bioclimatic variables, which restricts its 

distribution to some parts of the southern, western and northwestern Black Hills. Climate change 

could potentially affect future Virginia’s warbler distribution in the Black Hills. Indeed, some 

models predict an increase in suitable habitats for Virginia’s warbler in the Black Hills as a 

function of climate change, which may buffer range-wide population declines (van Riper III et 

al., 2014), especially if Virginia’s warblers continue to expand their range to occupy these new 

habitats (Bubac and Spellman, 2016). Future studies can investigate the impact of climate change 

on Virginia’s warbler distribution in the Black Hills by comparing its Black Hills niche with the 

climatic niches of southern populations of this species.  

Virginia’s warblers mostly avoid unsuitable habitats at the population order characterized 

by highly rugged areas dominated by grasslands and shrublands with little tree cover. As a 

consequence, wildfire events, extensive tree harvesting, or drought could decrease the suitability 

of current habitats for Virginia’s warblers. The population order model indicated that some other 

habitats outside of the current known Virginia’s warbler distribution could potentially serve as 

suitable habitats in the Black Hills. More field surveys and source-sink population studies could 
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provide additional evidence about presence of Virginia’s warblers in these potential habitats. At 

the individual order, avoidance of some habitat features such as high moisture and dense 

grasslands compel Virginia’s warbler to search for suitable habitats lacking these features. Such 

suitable habitats are characterized by rugged terrain, higher vegetation cover and variation 

(including moderate densities of trees and shrubs), and low grassland density. Maintaining 

appropriate vegetation cover variation in suitable habitats should be considered in management 

plans. At the individual life requirement order, areas which are close to ridges and have moderate 

vegetation cover variation, including trees, shrubs, and tall grasses, have the highest suitability. 

Thus, at this scale, landcover configuration is important and should be considered, especially in 

case of disturbances. At the finest scale, our model showed that more data are needed to better 

delineate habitat features associated with unsuitable breeding territories (e.g., biotic interactions 

(Swanson et al., 2016) and vegetation composition and configuration).  
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Chapter 2 A Bayesian approach for multiscale modeling of the influence of seasonal and 

annual habitat variation on relative abundance of ring-necked pheasant roosters 

Abstract 

Finding ecologically relevant relationships between environmental covariates and 

response variables requires determining appropriate scales of effect. While considering multiple 

spatial scales of effect in hierarchical models has been the focus of recent studies, the effect of 

spatiotemporal scales, and temporal resolution of data on habitat suitability and species 

abundance has received less attention. We investigated relationships between ring-necked 

pheasant rooster abundance and environmental covariates with the goal of identifying important 

variables and their scales of effect in South Dakota, U.S.A. Using a suite of remote sensing data, 

we examined whether seasonal environmental conditions influence pheasant relative abundance 

and how survey conditions might affect detectability of roosters. To select optimal scales of 

effect and the best subset of covariates simultaneously, we employed a Reversible-Jump Monte 

Carlo Markov Chain (RJMCMC) approach in a Bayesian framework. We explored sources of 

uncertainty in data and controlled them through consideration of random effects. The use of 

seasonal covariates in addition to annual covariates revealed differential effects on species 

abundance. The proportion of grasslands on the landscape was an important covariate in models 

in all years, with rooster abundance generally being highest at intermediate levels of grassland 

density at local scales of effect. Pheasant abundance was also positively related to the proportion 

of small grain crop cover on the landscape at > 2 km scales. Spring gross primary productivity 

and percentage of herbaceous wetlands on the landscape, both at a large scale (8 km), were the 

most important covariates in the wet years of 2018 and 2019 and were positively related to 

pheasant abundance. Grasslands at intermediate levels of density explained variability of 

pheasant abundance. However, other variables important to pheasant relative abundance varied 

among years depending on prevailing weather and climate conditions. Our workflow to model 

relationships between relative abundance and habitat components for pheasants can also be 

employed to model count data for other species to inform management decisions. 
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Introduction 

Identifying habitat drivers governing species abundance can reveal information on 

population-level responses to environmental changes (Kéry and Royle, 2016) and can help 

prioritize management actions (Ficetola et al., 2018; Yoccoz et al., 2001). Multi-scale 

relationships among ecological factors such as species abundance and landscape patterns can 

affect modeling results for ecological processes and our interpretation of habitat-species 

relationships (Mayor et al., 2009; Moraga et al., 2019). Finding biologically meaningful 

relationships between environmental covariates and response variables requires determining 

relevant scales of effect. An ideal multi-scale modeling approach includes selecting the best 

subset of covariates from a full model including all combinations of candidate covariates and 

scales of effect after correcting for imperfect detection in a hierarchical framework (Stuber and 

Gruber, 2020). While considering multiple spatial scales of effect in hierarchical models has 

been the topic of recent multi-scale studies (Goljani Amirkhiz et al., 2021; Jorgensen et al., 2014; 

Stuber et al., 2017; Stuber and Gruber, 2020), the effect of temporal scales, duration, and 

temporal resolution of data on habitat suitability and species abundance has received less 

attention (Mayor et al., 2009; McGarigal et al., 2016). Ecosystem structure and function vary in 

space-time and species respond to this spatiotemporal variability at multiple scales. Spatial and 

temporal scales are thus linked, and their relationship depends on the ecology and mobility of 

species (Mayor et al., 2009). 

The ring-necked pheasant (Phasianus colchicus; hereafter pheasant), is a cultural symbol 

and economically important gamebird species in South Dakota (Laingen, 2011). Loss of high-

quality habitat due to grassland-to-cropland conversion and ongoing climate change are among 

the primary concerns for pheasant management in South Dakota (Pauly et al., 2018; Wimberly et 
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al., 2017; Wright and Wimberly, 2013). The pheasant is a non-migratory bird with seasonal 

movements within its habitat. A supportive habitat for pheasants is characterized by a suitable 

juxtaposition of nesting (spring), brood-rearing (summer) and winter habitats in close proximity. 

Low quality in  any of these seasonal habitats can lead to local population declines (Gabbert et 

al., 1999; Leif, 2005; Riley et al., 1998). Also, pheasant abundance changes annually depending 

on weather and climatic conditions as well as habitat availability and suitability which can 

change dramatically from year to year in areas with continental climate such as South Dakota 

and the Northern Great Plains (Frankson et al., 2022; Gabbert et al., 1999; South Dakota 

Department of Game, Fish and Parks [SDFGP], 2016). Thus, it is necessary to include both 

spatial and temporal scales to determine which environmental covariates provide the greatest 

contributions to changes in pheasant abundance in space and time.  Previous habitat selection 

studies mainly considered pheasant-habitat associations in a single year, single season or within a 

limited range of spatial scales (Clark et al., 1999; Jorgensen et al., 2014; Stuber et al., 2017). 

Annual summer pheasant brood surveys were conducted from 1949–2019 by SDGFP to 

estimate county-wide relative densities, reproductive success, population trends and population 

levels relative to previous years throughout South Dakota (Runia, 2019). These route-based 

counts were replicated in space and time, making them appropriate for estimating abundance 

through hierarchical models like N-mixture models (Royle, 2004). Several studies highlight the 

advantages of N-mixture models over classical methods that do not consider imperfect detection 

for birds (Jorgensen et al., 2014; Kéry et al., 2005; Rota et al., 2011; Royle, 2007) and other taxa 

(Chen et al., 2013; Poley et al., 2014). Nevertheless, these data have not been used to investigate 

relationships between pheasant abundance and habitat factors in ecologically relevant 

spatiotemporal scales to understand why pheasant abundance and distribution may change year 
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to year and if seasonal variations in habitat resources can influence abundance. Such count data 

are available for many species, but they may not fully satisfy assumptions of N-mixture models 

as they were not collected through a robust design (MacKenzie et al., 2003; Pollock, 1982). 

However, N-mixture models could still be useful in modeling count data either through buffering 

the impact of violating assumption(s) or through adjusting the interpretation of estimates. The 

main benefit of these models is to take advantage of information obtained from repeated 

sampling to account for detectability in order to standardize estimations regardless of how results 

are interpreted (e.g., absolute or relative abundance; Kéry and Royle 2021).  

In this study, we investigated relationships between adult male (hereafter rooster) 

pheasant abundance and environmental covariates in South Dakota from 2015 to 2019 with the 

goal of identifying the covariates and their scales of effect that best explain changes in pheasant 

relative abundance.  Using a suite of remote sensing products, we employed a Reversible-Jump 

Monte Carlo Markov Chain approach (RJMCMC; Green 1995) in a Bayesian framework for 

model selection to identify the best subset of covariates and their respective scales of effect. We 

ask the following questions: 1) how does pheasant distribution and relative abundance change 

spatio-temporally?  2) do seasonal environmental conditions influence pheasant relative 

abundance and how do survey conditions affect detectability of roosters?, and 3) can N-mixture 

models in a Bayesian framework help to reduce uncertainty in data? 

Methods 

Study area 

To detect environmental effects on pheasant abundance, we used counts of roosters to 

avoid the potential group size bias of detection posed by hens and chicks, which are often 

grouped into variably sized broods during our survey period. Rooster abundance has been used 
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as the dependent variable in previous studies of scale-dependent habitat relations (Jorgensen et 

al., 2014; Stuber et al., 2017) and habitat selection and the quality of rooster pheasant territories 

can influence survival of breeding hen pheasants and their broods (Leif, 2005; Ridley and Hill, 

1987). Count data were collected from 110 routes, each approximately 48 km in length. These 

routes were distributed across South Dakota in areas where pheasants occur in sufficient 

numbers to survey (SDGFP, 2016). Most of these routes are in eastern South Dakota (Figure 

2.1).  

South Dakota lies within the Northern Great Plains and Prairie Pothole regions of the 

north-central United States (T. Sohl et al., 2019, 2018). The state has a continental climate with 

cold winters and hot, humid summers and is characterized by highly, and increasingly, variable 

climates (Flanagan et al., 2020; Frankson et al., 2022; Hoell et al., 2021; Johnson et al., 2012). 

South Dakota straddles the 100th Meridian, the unofficial boundary between arid western and 

humid eastern regions of North America, so the western portion of the state is drier than the 

eastern portion (Seager et al. 2018). The average annual temperature for South Dakota is 8°C, 

with average daily temperatures across the state ranging from -12 to -6°C in January to 20 to 

26°C in July. Average annual precipitation varies from 330 mm/year in the northwest to 660 

mm/year in the southeast and higher elevations of the Black Hills (Tallman et al. 2002). 

According to the landcover maps (2015-2019) of the Cropland Data Layer (USDA-NASS 2021), 

South Dakota is dominated by grasslands (grass, pasture, and switchgrass; 50.0%±0.01), 

followed by row crops (corn, sorghum, soybeans, sunflower; 23.2%±0.03). Eastern South 

Dakota was historically covered with tallgrass prairie, which has now been mostly converted to 

row-crop agriculture, whereas western South Dakota retains more intact mixed-grass prairie 
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grasslands (Jarchow et al. 2020). The average elevation of South Dakota is 671 msl, with a range 

from 294 to 2207 msl. 

 

Figure 2.1. Distribution of brood survey routes within level III ecological regions, the Prairie Pothole 

region, and counties of South Dakota. 

 

Data preparation 

Count data 

We considered 32 ha (560x560 m) as the appropriate grain size for landscape analyses, 

based on the average reported home range for pheasant roosters in the region (Leif, 2005; Riley 

et al., 1998). We split each survey route into uniform 560 x 560-m blocks by creating 280m wide 

buffers along both sides of routes and then divided routes into 560 segments. We discarded the 

last route segment if it was shorter than 560m. We filtered out observations with incorrect GPS 

records. Surveys were performed from 25 July to 15 August each year and each route was 

surveyed from one to five times each year during this period (SDGFP, 2016). We summed all 

counts recorded on the same survey date within each block. We then estimated pheasant 
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abundance for each 560 x 560 m block for each year.  Pheasants spend most of their time in a 

relatively small area and have the lowest rates of movement in summer (Whiteside and Guthery, 

1983). We assumed population closure, as each survey occurred during a short period of time. To 

maximize pheasant detections, surveys were conducted under very specific weather conditions 

called “prime conditions” (during mornings with clear skies, heavy dew, and light winds) which 

draw pheasants to roadways where surveys were located (SDGFP, 2016). Surveying under these 

conditions maximized the chance of meeting assumptions of similar detection probabilities for 

all individuals at a given block and time and independence of detections. While prime conditions 

were the goal, in practice variation in survey conditions might exist. To control for such 

variation, we added random effects to the structure of models. 

Predictor covariates  

We assumed that under prime survey conditions, pheasants gather in open areas such as 

roadways to dry their feathers in the warm morning sun (SDGFP, 2016). Thus, as detection 

covariates, we considered daily water vapor pressure, precipitation, maximum and minimum 

temperature, shortwave radiation, and normalized difference vegetation index (hereafter NDVI, a 

proxy for vegetation density) and the quadratic form of NDVI. Daily 1km climate layers were 

obtained from Daymet (Thornton et al., 2020a), while MODIS-derived 250m NDVI raster layers 

were obtained from the VegScape (USDA- NASS 2020) dataset. We calculated the spatial mean 

of covariates from all pixels in climate and NDVI layers that at least partially overlapped each 

pheasant survey block. We then extracted the corresponding spatial mean value for each block-

survey day. We assumed that Water Vapor Pressure (WVP) and precipitation could affect 

visibility and movement of roosters and that the shortwave radiation variable indirectly 

represented the level of dew, as dew formation is based on humidity, temperature, and aspect 
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(Thornton et al., 2021). Dewpoint is positively related to WVP such that high dewpoints produce 

heavy dew events when temperatures drop at night, even at relatively warm temperatures 

(Monteith and Unsworth, 2013). High short-wave radiation means clear sky conditions, but at 

night clear skies would allow for temperatures to drop to lower levels than under cloudy skies. 

We assumed that clear skies at night would allow for lower temperatures, and high WVP under 

such conditions would result in increased condensation leading to more dew on mornings with 

clear skies (i.e., high shortwave radiation). The increased shortwave radiation evaporates the dew 

more quickly, but there should be a higher amount of dew early in the day when the surveys 

were conducted. We also considered the interaction terms for NDVI and water vapor pressure, as 

well as NDVI and shortwave radiation, assuming vegetation conditions could affect the 

relationships between these covariates and, therefore, detection probability.  

For covariates affecting abundance, we considered a suite of seasonal and annual 

covariates for each year (2015–2019) to account for the effect of temporal scale. We considered 

five biological seasons for roosters (Runia, 2011): Fall (September, October, and November), 

Winter (December, January, February), Spring (March, April), breeding (May, Jun), and 

Summer (July, August), and assumed habitat conditions in these seasons were related to rooster 

pheasant abundance. Fall is the season of post-harvest waste grains with different nutritional 

values. For instance, corn (row crop) produces high metabolizable energy, wheat (small grain) 

contains more protein, weed seeds have high levels of both energy and protein, and annual 

grasses are highly nutritional and provide suitable habitat for insects. During fall, roosters store 

fat and may use whatever foods are available to them (Etter et al., 1988; Runia, 2011).  In winter, 

availability and proximity of insulating cover, food resources, daytime and nocturnal 

temperatures and snow depth could be related to habitat suitability for pheasants. Pheasants may 
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move long distances to find suitable winter habitats (Runia, 2011). Herbaceous wetlands and 

woody habitats might serve as suitable winter habitats for pheasants (Gabbert et al., 1999; 

SDGFP, 2016; Whiteside and Guthery, 1983). In spring, pheasants disperse from their winter 

habitat, which could expose them to predation and increase mortality rate as they move to 

unfamiliar and open habitats. Rooster dispersal does not follow random patterns, as they prefer 

landscapes with appropriate cover to avoid predators and enable them to establish high-quality 

territories for the breeding season (Beardsworth et al., 2021; Lachlan and Bray, 1976; Smith et 

al., 1999). Roosters spend most of the breeding season on courtship display activities and these 

months are critical for survival of juveniles. During summer and fall, roosters should finish 

molting and gain weight to be prepared for winter. These activities are energetically demanding 

and could be affected by availability of food and cover habitat resources and weather conditions 

(Leif, 2005; Runia, 2011). To account for variability in vegetation cover in various seasons, we 

produced mean seasonal NDVI composite layers from monthly NDVI from the VegScape 

dataset (USDA- NASS 2020). In addition to NDVI, we also produced mean seasonal composite 

layers of Gross Primary Production (GPP) from the 16-day Landsat CONUS productivity dataset 

as well as annual Net Primary Production (NPP) raster layers (N. P. Robinson et al., 2018). We 

also employed cropland layers of the Cropland Data Layer dataset (Han et al., 2014) to consider 

the effect of different agricultural land cover types. We reclassified these cropland layers into the 

following categories: fallow/idle, alfalfa, grassland, hay, herbaceous wetlands, row crops, small 

grains, and woody habitats. To examine the relationship between rooster pheasant abundance and 

natural landscape variation, we used land cover layers of the Rangeland Analysis Platform 

including continuous percent cover of annual and perennial forbs and grasses, shrubs, bare 

ground, litter and trees (Jones et al., 2018). To test whether Land Surface Temperature (LST) 
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during day and night in different seasons affect rooster abundance, we produced mean seasonal 

daytime and nighttime LST raster layers from 1km biweekly MODIS land products, version 6.1 

(Wan et al., 2021), using all pixels from raster layers that at least partially overlapped with 

survey blocks to calculate means. For winter, we also created raster layers of accumulated snow 

depth and number of days with more than 2.5 cm snow depth, as this is a reported threshold that 

can negatively impact pheasant survival (Homan et al., 2000). We obtained daily snow depth 

data for winter months from the National Snow & Ice Data Center (National Operational 

Hydrologic Remote Sensing Center, 2004).  In addition, we created mean seasonal total 

precipitation raster layers from monthly 1-km Daymet data (Thornton et al., 2020a), using all 

pixels that at least partially overlapped with survey blocks to calculate means. For instance, for 

winter 2017 we calculated the mean of total precipitation for December 2016 and January and 

February 2017. Since rooster abundance might be related to topographic relief in their home 

range rather than elevation above sea level (Jorgensen et al., 2014), we calculated Topographic 

Position Index (TPI) as the difference between the elevation of a pixel and the mean elevation 

within a circular neighborhood area with radii from 319 m to 12 km, as described below (Wilson 

and Gallant, 2000). We considered a range of candidate nested circular scales with radii from 

319 m (32 ha, our block size) to 12 km (maximum reported movement distance to winter 

habitats; Runia 2011), with intermediate radii of 391 m, 451 m, 625 m, 800 m, 1 km, 2 km, 3 km, 

5 km, and 8 km. Within each of these nested circular scales, we calculated the proportion of each 

cropland category, the TPI index, and means for the remaining covariates using Arc GIS 10.7 

(ESRI, 2019). For covariates with coarser resolution than 30 m, we considered only radii  625 

m. We standardized all covariates by subtracting the mean value from each individual value and 

dividing by the standard deviation. For seasonal covariates we scaled them to within-year means. 
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Data analysis 

We first assumed that excessive zeros in our dataset could lead to overdispersion as we 

assigned arbitrary zero counts to blocks with no observations (Wenger and Freeman, 2008; Yau 

et al., 2003). Thus, for variable selection, we developed Zero-Inflated Poisson N-mixture models 

(ZIPN) and adopted Reversible-Jump MCMC simulation (RJMCMC; Green 1995) using R-

package Nimble, version 0.9.1 (de Valpine et al. 2017). Also, we assumed that there could be 

some sources of variability in blocks affecting abundance and detection which are not explained 

by covariates that can be captured by random effects. One of the main advantages of Bayesian 

inference is its efficiency in accommodating random effects and accounting for sources of 

uncertainty in estimation of parameters (Hobbs and Hooten, 2015; Kéry and Royle, 2016). 

Therefore, in an exploratory analysis, using data from 2019, we developed and compared 

goodness of fit of ZIPN models with and without block random effects for abundance, block or 

block-by-survey random effects for detection, and all combinations. We classified the best model 

structure based on goodness of fit measures and our visual investigation for the variable selection 

through RJMCMC. For each year, we embedded all combinations of scales of effects and 

abundance covariates. We used linear and quadratic forms of each candidate covariate at all 

candidate scales of effect, indicator variables (which act to turn model parameters off and on in 

the variable selection process) and a hyperprior for inclusion probability (NIMBLE development 

team, 2020). We then used covariates from models with the highest posterior inclusion 

probabilities to develop predictive ZIPN models. To find relationships between selected seasonal 

covariates and between the proportion of different landcover types and seasonal precipitation, we 

developed Bayesian generalized linear models with flat priors using the R-package brms (Ver. 

2.16.3; Bürkner 2017). For highly correlated landcover covariates, we developed separate 
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models for each covariate (Figure 2.2). Cropland layers of the Cropland Data Layer dataset were 

based on satellite images acquired during the peak growing season, i.e., mid-latitude summer 

(Han et al., 2014), and thus, may not represent conditions at other seasons. The spatiotemporal 

variability in GPP across the terrestrial surface is dynamic, determined by ecological 

disturbances, climate, land cover change and land use practices (Robinson et al., 2018). LST is 

determined by surface radiation and energy exchange and is correlated with landcover-land use 

(Kafy et al., 2021; Tariq et al., 2019). GPP and LST have finer temporal resolution than land 

cover type data and unlike the Cropland Data Layer, they are available for other seasons.  We 

assumed that seasonal values of GPP and LST differ among landcover types and, as surrogates, 

can represent habitat conditions at different seasons. 

We compared model goodness of fit via posterior predictive checking (Gelman et al., 

1996). We compared chi-squared discrepancy measure (Gelman et al., 1996), c-hat (the amount 

of over dispersion), Bayesian p-value (global lack of fit) and theta (the expected proportion of 

blocks with structural zero counts) values of different models (Kéry and Royle, 2016). While 

posterior predictive checking is a conservative tool and may not reveal subtle lack of fit, it can 

diagnose obvious cases (Conn et al., 2015). Violation of the closure assumption could lead to 

over and under estimation of abundance and detection probabilities, respectively (Kery and 

Royle 2016). Thus, we compared estimated abundances from models with observed data to 

identify blocks where the closure assumption was potentially violated. We then removed these 

blocks and reran the models (Conn et al., 2015). We also compared estimated relative abundance 

from models with estimates of pheasant population size and harvest per hunter from the SDGFP. 

These latter estimates are based on random mail and phone interviews of 2–5% of hunters 
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(SDGFP, 2016). We projected the best model of each year to the entire state of South Dakota to 

produce prediction maps of mean relative abundance and credible interval range for each year. 

To develop our prediction hierarchical models, we used JAGS (v. 4.3.0;  Plummer 2003), 

executed through R-package jagsUI (v. 1.5.1; Kellner 2019), to employ its straightforward 

parallel computation option. We used the Gelman-Rubin statistic (Rhat) to assess MCMC 

convergence of models by comparing the estimated between-chains and within-chain variances 

for each model parameter (Gelman et al., 2013). We obtained posterior summaries from three 

chains, each run for 200,000 iterations, thinned at a rate of 100 after burn-in of 20,000 samples. 

 

Figure 2.2. A conceptual diagram of the modeling framework and data analysis approach used in this 

study. Oval gray circles are input data and dashed lines show where they were used. Pink rectangles include 

modeling approaches and solid lines show how they are connected. Green rounded rectangles represent modeling 

outcomes and thick gray arrows show the processes through which they are achieved. ZIPN:  Zero-Inflated Poisson 

N-mixture models. RJMCMC: Reversible-Jump Marco Chain Monte Carlo. 

Results 

Random effects 

Our exploratory analysis showed that “block-by-survey” was the optimum random effect, 

so we considered it for models from 2015 to 2019. By adding random effects, the c-hat value 

approached 1, signifying a decrease in overdispersion. Overdispersion of the model with block-

by-survey random effects in detection was lower than models with site random effects in 
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abundance or detection. In models with two or three random effects, those with block-by-survey 

random effects also had lower overdispersion than the model without them (Table 1). Models 

with block-by-survey random effects also had much better Bayesian p-values than other models. 

Adding block random effects to abundance models dramatically decreased the proportion of 

structural zeros (Theta = 0.099), implying the presence of competition between “zero-inflation” 

in the model and these random effects. Hence, models without block random effects in 

abundance allowed the “zero-inflation” level of the model to reduce overdispersion. The model 

with only site-by-survey random effects had an intermediate value of theta, a low c-hat, and a 

Bayesian p-value close to 0.5 ( 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1). Also, our visual investigation of its prediction map showed that this model 

suffered less from over and under estimation. Therefore, we considered “block-by-survey” as the 

optimum random effect for models from 2015 to 2019. 
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Table 2.1 Goodness of fit values of Zero-Inflated Poisson N-mixture models (ZIPN) of rooster pheasants 

in 2019 with and without block random effects in abundance, block or block-by-survey random effects at 

the detection level. 

  
Model (Type of heterogeneity) c-hat* 

Bayesian  

p-value** 
Theta*** 

1 ZIPN with no random effects 

 
 

1.019 0.153 0.503 

2 Block random effects in abundance 

 
 

1.012 0.265 0.099 

3 Block random effects in detection 

 
 

1.015 0.26 0.427 

4 Block by survey random effect in detection 

 
 

1.003 0.495 0.268 

5 
Block random effects in abundance  

Block random effects in detection 
 

1.013 0.25 0.097 

6 
Block random effects in abundance 

Block by survey random effect in detection 
 

1.002 0.499 0.07 
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Model (Type of heterogeneity) c-hat* 

Bayesian  

p-value** 
Theta*** 

7 

 

Block random effects in abundance 

Block random effects in detection 

Block by survey random effect in detection 

1.001 0.495 0.071 

* Represents the amount of over dispersion. A good model has a c-hat close to 1. ** indicates at what degree 

simulated counts from the joint posteriori distribution are consistent with input data. Bayesian p-values close to 0 or 

1 indicate lack of fit. *** the expected proportion of blocks with structural zero counts. 

 

The c-hat value of all ZIPN models of 2015–2019 was close to 1 (Table 2.2), indicating 

that model structures reduced overdispersion which led to well fitted models (Bayesian p-values 

 0.5). According to theta values, the proportion of blocks with structural zeros was highest and 

lowest in 2017 and 2018, respectively. Estimated population sizes in the 3492 designated blocks 

were about 3- to 5-fold higher than observed counts. Posterior means of block-by-survey random 

effects indicated that some unexplained variance remained in the imperfect detection component 

of models which was captured by this random effect. The posterior means of statewide relative 

abundance estimations from our models were lower in 2018 and 2019 than in other years 

whereas the estimated state population size from SDGFP harvest estimates showed higher 

relative abundances than in other years only for 2015 and 2016 (Table 2.2). Harvest per hunter 

estimates showed the same trend as harvest estimates. 

Detection covariates 

Daily minimum temperature was highly correlated with daily shortwave radiation and 

was removed from models (r = 0.91). The interaction term of NDVI and daily shortwave 

radiation was not effective (credible interval included zero) in all models and was thus excluded 

from models. The variability in rooster detection was explained by NDVI (mostly its quadratic 
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form) in 2015 to 2018, such that birds were more detectable in areas with an intermediate value 

of NDVI. Water vapor pressure negatively affected detections in 2015 and 2019 but had a 

positive effect in 2017 (Figure 2.3). Daily precipitation negatively influenced observations in 

2015 but was not important in other years (Figure 2.3). Daily maximum temperature was 

positively related to detections in 2015 but was negatively related in both 2016 and 2018 (Figure 

2.3). Daily shortwave radiation had a negative relationship with probability of detection in 2015 

and 2019 but a positive relationship in 2017 and 2018 (Figure 2.3). The interaction term of 

NDVI and water vapor pressure was negatively related to detections in 2015, 2016 and 2019 

(Table 2.3, Figure 2.3). 
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Table 2.2. Goodness of fit values, posterior means and 95% credible intervals of components of Zero-

Inflated Poisson N-mixture models with block-by-survey as the random effects. 
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relativ
e 
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u

n
d
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H
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est 

estim
ate

 

H
arv

est 

p
er 

h
u

n
ter 

2015 1.006 0.491 

0.174 

(0.986–

0.248) 

0.528 

(0.327–

0.764) 

1.776 

(1.525–1.980) 

5429 

(4806–5603) 
1051 

952,890  

(850,715–

1,064,830

) 

1,255,878 

8.4 

2016 1.003 0.506 

0.240 

(0.169–

0.306) 

0.503 

(0.337–

0.680) 

1.909 

(1.736–1.996) 

4850 

(4172–5680) 
905 

796,782  

(716,209–

879,543) 

1,170,596 

8.2 

2017 1.006 0.481 

0.305 

(0.234–

0.283) 

1.041 

(0.811–

1.327) 

1.828 

(1.5861.991) 

5948 

(4770–7735) 
903 

1,122,748  

(954,305–

1,310,666

) 

828,079 

6.9 

2018 1.003 0.501 

0.081 

(0.017–

0.091) 

0.056 

(–0.13–

0.27) 

1.706 

(0.143–1.970) 

3706 

(3278–4325) 
798 

587,939  

(532,383–

646,201) 

950,883 

7.8 

2019 1.005 0.486 

0.216 

(0.113–

0.307) 

0.253 

(0.183–

0.458) 

1.874 

(1.618–1.899) 

2927 

(2537–3423) 
813 

541,188 

 

(488,256–

600,663) 

829,496 

7.5 

 

c-hat is the amount of over dispersion. A good model has a c-hat close to 1. Bayesian p-value indicates at what 

degree simulated counts from the joint posteriori distribution are consistent with input data. Bayesian p-values close 

to 0 or 1 indicate lack of fit. Theta is the expected proportion of blocks with structural zero counts. Lambda is the 

intercept of abundance. Last two columns are comparisons with population estimates from pheasant harvest data 

(Harvest estimate) from the South Dakota Game, Fish and Parks (Shafer, 2019). 
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Table 2.3. Posterior means and 95% credible intervals of detection covariates for rooster pheasant 

abundance models in 2015–2019.  
NDVI Water 

Vapor Pressure 

Precipitation Maximum 

Temperature 

Shortwave 

Radiation 

NDVI*WVP 

2015 -0.188 

(-0.276, -

0.1) 

-0.216 

(-0.377, -0.057) 

-0.167 

(-0.358, -0.034) 

0.252 

(0.074, 0.439) 

-0.216 

(-0.391, -

0.039) 

-0.092 

(-0.184, -

0.003) 

2016 -0.287 

(-0.507, 

0.065) 

-0.098 

(-0.279, 0.08) 

0.103 

(-0.053, 0.259) 

-0.117 

(-0.264, -0.032) 

0.079 

(-0.09, 

0.247) 

-0.09 

(-0.194, -

0.012) 

2017 -0.133 

(-0.26, -

0.008) 

0.329 

(0.159, 0.506) 

-0.029 

(-0.194, 0.127) 

0.073 

(-0.076, 0.223) 

0.238 

(0.063, 

0.417) 

0.013 

(-0.107, 

0.135) 

2018 -0.073 

(-0.142, -

0.003) 

0.013 

(-0.144, 0.169) 

-0.04 

(-0.297, 0.205) 

-0.348 

(-0.5, -0.199) 

0.235 

(0.051, 

0.432) 

-0.031 

(-0.121, 

0.057) 

2019 -0.018 

(-0.116, 

0.089) 

-0.111 

(-0.269, -0.014) 

0.014 

(-0.095, 0.118) 

-0.11 

(-0.291, 0.077) 

-0.157 

(-0.321, -

0.006) 

-0.166 

(-0.312, -

0.027) 
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Figure 2.3. Marginal effects (black lines: posterior mean, dashed lines: 95% credible interval) of detection 

covariates for rooster pheasant abundance models from 2015–2019. Only relationships for which credible 

intervals did not overlap with zero are shown. 
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Abundance covariates  

According to the RJMCMC simulations, 3 to 7 covariates and their scales of effect were 

selected as most effective in explaining variations in relative abundance in different years 

(Figure 2.4). The proportion of grasslands at different scales of effect was an important covariate 

in all years in models with the highest posterior inclusion probability (PIP). However, different 

combinations of covariates and scales of effect were selected as the best model for each year. 

According to the PIP of covariates, the quadratic form of percentage of grasslands was the most 

important variable in 2015 and 2017 at 800 m and 319 m, respectively, with intermediate levels 

of grassland percent being positively related to pheasant abundance. The most important 

covariate in 2015 and 2016 was the percentage of small grains at 2 km and 12 km, respectively, 

and this was positively related to pheasant abundance. Spring GPP at 8 km (2018) and 

percentage of herbaceous wetlands at 8 km (2019) had the greatest contribution in the models for 

those years, and both had positive effects. Seasonal covariates were selected as important factors 

affecting abundance in all years. The quadratic forms of summer nighttime LST and precipitation 

were important factors in 2015 and 2018, respectively. In winter, GPP (2015 and 2016), 

precipitation (2016) and daytime LST (2019) were important factors associated with pheasant 

abundance. Spring GPP was an important factor for abundance in 2017 and 2018. For summer 

and breeding seasons, quadratic and linear forms of nighttime LST were included in the best-fit 

models for 2015–2018. In each year, the PIP of covariates changed at different scales of effect 

and these changes were more pronounced in covariates with the highest PIPs in selected models. 

For instance, while PIPs of proportion of small grains in 2015 at 2 km and in 2016 at 12 km were 

100%, they dropped to less than 7% at other scales of effect. In 2017, PIP for the quadratic form 

of proportion of grasslands at 319 m was 100%, but the PIP for this variable was less than 55% 

to near zero at other scales of effect (Figure 2.4, Figure 2.5, Figure 2.6). The distribution of 
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seasonal covariates was not random and was associated with the proportion of different 

landcover types in their selected scales of effect (Table 2.4). 

 

Figure 2.4. Posterior inclusion probability of selected abundance covariates and their scales of effect 

based on the Reversible-Jump Marco Chain Monte Carlo simulations. 
Numbers within plots indicate the order of covariate importance. “(2)” behind horizontal axis values indicate the 

quadratic format of the variable. Numbers in parentheses are posterior means and their 95% credible intervals for 

coefficients of selected covariates (i.e., those with highest posterior inclusion probability) obtained from Zero 

Inflated Poisson N-mixture models. 
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Figure 2.5. Marginal effects (black lines: posterior mean, dashed lines: 95% credible interval) of selected 

covariates for rooster pheasant abundance models for years 2015–2019. GPP: Gross Primary Production, 

NPP: Net Primary Production, LST: Land Surface Temperature
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Figure 2.6. Marginal effects (black lines: posterior mean, dashed lines: 95% credible interval) of selected 

covariates for rooster pheasant abundance models for years 2015–2019. 

GPP: Gross Primary Production, NPP: Net Primary Production, LST: Land Surface Temperature.
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Table 2.4. Posterior mean and 95% credible intervals of coefficients estimated from Bayesian linear 

regressions between selected seasonal covariates and proportion of different landcover types within their 

selected scale of effect. 
 

GPP: Gross Primary Production, NPP: Net Primary Production, NLST: Nighttime Land Surface Temperature, 

DLST: Daytime Land Surface Temperature. NLST^2: Quadratic format of NLST. 

 

 

 

 Winter Winter Spring Spring Fall 
Breeding 

season 

Breeding 

season 
Summer  

 
GPP-
2015  

(391m) 

GPP-
2016 

( 5km) 

GPP-
2017 

(2km) 

GPP-
2018 

 (5km) 

NLST^2 -
2015 

(3km) 

DLST-2015  

(12km) 

NLST-2018 

 (12km) 

NLST^2-
2015  

(800m) 

NLST^2-
2018 

(5km) 

Intercept 

0.00 

(-0.01, 
0.01) 

0.00 

(-0.01, 
0.01) 

0.00 

(-0.01, 
0.01) 

0.00 

(-0.01, 
0.01) 

1 

(0.98, 
1.02) 

0.00 

(-0.01, 0.01) 

0.00 

(-0.01, 0.01) 

1 

(0.98, 
1.02) 

0.00 

(-0.01, 
0.01) 

Alfalfa 

0.05 

(0.03, 
0.06) 

0.02 

(0.01, 
0.04) 

0.4 

(0.39, 
0.41) 

0.16 

(0.15, 
0.17) 

-0.02 

(-0.04, 0) 

-0.32 

(-0.34, -
0.31) 

-0.32 

(-0.34, -
0.31) 

0.04 

(0.01, 
0.06) 

-0.23 

(-0.25, -
0.22) 

Fallow-Idle 

0.00 

(-0.02, 

0.01) 

0.27 

(0.26, 

0.28) 

-0.03 

(-0.04, -

0.02) 

0.05 

(0.04, 

0.06) 

0.03 

(0.01, 

0.04) 

0.19 

(0.18, 0.2) 

-0.26 

(-0.27, -

0.25) 

-0.04 

(0.01, 

0.06) 

0.3 

(0.29, 

0.32) 

Grassland 
-0.11 

(-0.13, -

0.09) 

-0.04 
(-0.05, -

0.02) 

-0.06 
(-0.07, -

0.04) 

-0.03 
(-0.04, -

0.02) 

0.03 
(0.01, 

0.05) 

-0.26 
(-0.27, -

0.25) 

0.34 

(0.32, 0.35) 

0.09 
(0.06, 

0.13) 

-0.01 
(-0.03, 

0.01) 

Hay 
0.11 

(0.09, 

0.12) 

0.40 
(0.39, 

0.28) 

0.24 
(0.22, 

0.25) 

0.43 
(0.41, 

0.44) 

0.21 
(0.18, 

0.22) 

0.26 

(0.25, 0.28) 

0.34 

(0.32, 0.35) 

0.03 
(0.01, 

0.06) 

-0.02 
(-0.04, -

0.01) 

Herbaceous 

wetland 

-0.03 
(-0.04, -

0.01) 

-0.06 
(-0.07, 

0.28) 

-0.01 

(-0.02, 0) 

-0.06 
(-0.07, -

0.05) 

-0.09 
(-0.11, -

0.07) 

-0.19 

(-0.2, -0.18) 

-0.15 
(-0.16, -

0.14) 

-0.11 
(-0.13, -

0.09) 

-0.21 
(-0.22, -

0.19) 

Row crop 
-0.03 

(-0.05, -

0.01) 

0.14 
(0.13, 

0.28) 

0.06 
(0.04, 

0.07) 

0.03 
(0.02, 

0.05) 

0.07 
(0.05, 

0.09) 

0.03 

(0.01, 0.05) 

0.34 

(0.33, 0.36) 

-0.1 
(-0.13, -

0.06) 

-0.08 
(-0.1, -

0.06) 

Small grain 
-0.12 

(-0.13, -

0.10) 

0.24 
(0.22, 

0.28) 

0.12 
(0.1, 

0.13) 

0.25 
(0.23, 

0.26) 

0.21 
(0.19, 

0.23) 

-0.31 
(-0.32, -

0.30) 

-0.22 
(-0.23, -

0.21) 

0.07 
(0.04, 

0.09) 

-0.17 
(-0.19, -

0.16) 

Woody 
0.04 

(0.02, 

0.05) 

0.10 
(0.09, 

0.28) 

-0.09 
(-0.11, -

0.08) 

0.1 
(0.09, 

0.11) 

0.19 
(0.17, 

0.21) 

0.26 

(0.24, 0.27) 

0.31 

(0.3, 0.32) 

0.09 
(0.06, 

0.11) 

0.21 
(0.2, 

0.23) 
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Prediction maps 

We used predictor covariates at their selected scales of effect, their posterior means and 

credible intervals (Figure 2.4) to estimate mean relative abundance and credible interval range 

into the entire geography of South Dakota. The mean of predicted relative abundance in most of 

South Dakota was 1–2 roosters per 31.4 ha (the area of survey blocks) in 2015 and 2016 while it 

was 0.5–1 roosters per 31.4 ha in the following years. The percentage of areas with 2–5 roosters 

per 31.4 ha relative abundance was highest in 2015 and decreased in the following years (Figure 

2.7). Prediction maps showed that the spatial pattern of predicted habitat suitability and relative 

abundance of roosters changed through the five years of the study Figure 2.8). These maps depict 

relative abundance of different areas in comparison to other areas in each year, not their absolute 

abundances. According to the credible interval range (upper CI - lower CI, Figure 2.9), the 

uncertainty in predictions was relatively higher in 2015 and 2017, especially in western South 

Dakota. Although in 2015 northwest and central-east regions had relatively higher mean 

predicted relative abundance, they also had higher uncertainties in predictions. In the years since 

2016, the areas of predicted unsuitable or low-quality habitats increased, especially in the east. In 

2017, while western South Dakota had mostly a mean relative predicted abundance of 0.5–2 

roosters per 31.4 ha, these areas had a similar range of CI as well, meaning that predictions could 

vary from 0–4 roosters per 31.4 ha.  
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Figure 2.7. Percentage of areas of mean relative abundance per 31.4 ha categories in years 2015–2019 

according to the posterior means of Zero-Inflated Poisson N-mixture models. 
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Figure 2.8. Prediction maps of mean relative abundance of rooster pheasants per 31.4 ha in South Dakota 

for the years of 2015–2019. 

Black lines represent county boundaries. 
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Figure 2.9. Maps of credible interval range (Upper CI minus lower CI) of relative abundance of rooster 

pheasants per 31.4 ha in South Dakota for the years of 2015–2019. 
Black lines represent county boundaries.  
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Discussion 

Random effects and model fitting 

Our results showed that, although surveyors attempted to collect data only under “prime 

conditions,” some heterogeneity in detections still existed. Some of this heterogeneity was either 

accounted for at the detection level within the model or captured by block-by-survey random 

effects. Roosters were more visible in areas with intermediate vegetation density in all years 

except 2019, when the vegetation density was relatively low because of high precipitation and an 

increase in the area of fallow croplands (Figure 2.10, Figure 2.11, Figure 2.12). Increased 

detectability at intermediate vegetation cover densities could be explained by roosters being able 

to hide in local areas of relatively dense vegetation cover or noticing observer presence at longer 

distances and subsequently retreating from observers in areas with low vegetation density. 

Alternatively, roosters could have smaller home ranges in areas with intermediate average 

vegetation density, making consistent detection more likely. In general, detections along survey 

routes in far eastern parts of the state were more impacted by vegetation density, as this part of 

the state typically receives more precipitation than western and central areas (Figure 2.12).  

Water Vapor Pressure (WVP) was an important variable in detection of roosters in 2015, 

2017 and 2019. Higher WVP in 2015 and 2019 was associated with a decrease in the probability 

of detection. Dewpoint is positively related to WVP such that high dewpoints produce heavy 

dew events when temperatures drop at night, even at relatively warm temperatures (Monteith and 

Unsworth, 2013). Runia (2019) suggested that heavy dew tends to make pheasants more visible 

on brood surveys, as they congregate on roads to dry their feathers in the morning sun, but our 

data only provide mixed support for this idea, as we documented a negative relationship with 

detection probably of 2015 and 2019 but a positive relationship in 2017. Perhaps these differing 



 

81 

 

trends could be related to differing air temperatures among 2015, 2017 and 2019, as July and 

August temperatures on brood surveys in 2015 and 2019 were generally below average (Figure 

2.13, Figure 2.14), whereas in July and August of 2017, the majority of survey routes had above 

average temperatures (Figure 2.15). Alternatively, perhaps daily average WVP was not 

uniformly well correlated with actual dew conditions in every year. 

Daily maximum temperature had a positive relationship with detection probability in 

2015, a negative relationship in 2016 and 2018, and no significant relationship in 2017 or 2019. 

In July-August 2015, eastern South Dakota had below average maximum temperatures while 

central and western South Dakota experienced above average maximum temperatures (Figure 

2.13) and our results showed that detection probability was higher on routes with higher 

maximum temperature. In comparison, almost the entirety of South Dakota experienced above 

and below average maximum temperatures in 2017 and 2019, respectively (Figure 2.14, Figure 

2.15). Consequently, there were not substantial differences among survey routes based on 

differences in their maximum temperatures. These findings imply that higher maximum 

temperatures in colder survey seasons can increase detection probability of roosters. In July-

August of 2016 and 2018 many survey routes had mostly near average or above maximum 

temperatures (NOAA 2016, 2018; Figure 2.16, Figure 2.17), so surveys run on cooler days may 

have increased chances of detecting roosters during those years.  

Daily shortwave radiation had negative relationships with detections in 2015 and 2019 

and positive relationships in 2017 and 2018. Both 2015 and 2019 were wetter than average years 

and surveys with lower shortwave radiation (more cloudy days) had higher observations, perhaps 

because pheasants move to areas near roads where surveys were conducted to avoid wet 

vegetation from dew or rain (Runia, 2019). Years 2017 and 2018 were drier than average in 
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summer in most areas (Figure 2.18, Figure 2.19, Figure 2.20) and dry soil and vegetation 

conditions could lead to lower development of dew on most days. In these years, areas with 

higher shortwave radiation (clearer skies) and higher WVP (at least in 2017, see above), had 

more detections implying that birds may have been congregating on roads to dry their feathers on 

days with dew (Runia, 2019), which could increase detection of roosters. 

Two main assumptions of N-mixture models are population closure and the absence of 

unmodeled heterogeneity in expected abundance () and detection probability (p). Pheasants 

spend most of their time in a relatively small area and have the lowest within-season movement 

in summer (Whiteside and Guthery, 1983). By assigning blocks with a size based on the average 

home range size of roosters (560*560 m = 31.4 ha) and summing all observations within each 

block, we maximized the chance of meeting the population closure assumption. However, we 

consider our predictions as relative abundance rather than density, to be conservative with our 

interpretations (Kéry and Royle, 2021). By considering a ZIP structure, selecting appropriate 

random effects, and selecting the most effective set of covariates from biologically relevant and 

temporally and spatially fine-resolution candidate variables, we attempted to minimize the 

presence of unmodeled heterogeneity in our models.  

Habitat components and their scales of effect 

ZIP models estimate probability of use directly which is shaped by habitat selection. 

Thus, our models can serve as resource selection functions. We define preference and avoidance 

in the context of niche habitat selection theories in which more individuals are located in higher-

quality habitats (Boyce et al., 2016; Johnson, 1980; Nielsen et al., 2005). We employed 

previously described pheasant population processes and individual behaviors to interpret our 

findings. Specifically, we assumed that selective seasonal movements drive the spatial pattern of 
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habitat use by roosters (Boyce et al., 2016). Roosters may move into habitats that maximize 

fitness, even if their population is not at carrying capacity (Mysterud and Ims, 1998). We 

considered the average home range size of pheasant roosters as the grain size which aligns with 

the individual order of habitat selection (Johnson, 1980; Manly et al., 2007; Meyer and Thuiller, 

2006). However, processes in other habitat selection orders could be influential. For instance, 

associations between relative abundance and habitat factors could be the result of habitat-

mediated variation in several factors related to survival and dispersal. These include initial 

densities of juvenile male pheasants during the previous fall (which is a function of the previous 

year's nest densities, nest success, and chick survival), subsequent survival of those males to the 

survey period, settling behavior following seasonal dispersal episodes, and within-home-range 

habitat selection during the survey period. Whereas all processes can plausibly contribute to 

relations at small spatial scales, larger scale relations could be due to survival and productivity 

processes rather than individual movements. Our data and analyses were not designed to detect 

nor were they able to distinguish among these processes. We attempted to explain these relations, 

where possible, in terms of scale-appropriate, previously described pheasant population 

processes and individual behaviors. 

RJMCMC simulations showed that the proportion of grassland cover was an important 

covariate in all years. In 2015–2017 roosters preferred areas with an intermediate percentage of 

grassland cover at smaller scales of effect ( 1 km). In 2018, while birds were attracted to these 

areas, they avoided areas with a high percentage of grassland cover at larger scales of effect (> 5 

km). In addition to grasslands, the percentage of perennial forb and grass cover at 625 m was 

among top ranked covariates for 2018 models. Precipitation levels across the state in 2018 

provided relief from the severe drought of 2017 (Figure 2.10). Landcover maps also showed an 
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increase in perennial forbs and grasses from 2017 to 2018, which could motivate roosters to 

include more grassland cover in their home range. In 2019, grasslands were not an important 

factor at smaller scales but were avoided at larger scales (Figure 2.4), which might result from 

widespread flood conditions during 2019. In general, our data suggest that grasslands are an 

essential part of rooster niches at intermediate proportions when mixed with other landcovers at 

home range scales. Previous studies also found that grasslands at intermediate percentages were 

important at small scales when mixed with other landcover types, such as small grains 

(Jorgensen et al., 2014; Pauly et al., 2018). Our results also showed that grasslands tend to be 

avoided at broader scales, implying that grassland-dominated landscapes might not provide 

optimum suitability. 

Our study revealed that the importance of proportion of herbaceous wetlands to pheasant 

abundance varies from year to year in a complicated manner. In general, herbaceous wetlands 

and woody cover might provide cover to help roosters survive cold winter temperatures (Homan 

et al., 2000; Leptich, 1992). Consistent with this possibility, the proportion of herbaceous 

wetland cover had a positive effect on rooster abundance in 2015 (PIP 35%) and 2016 (PIP 99%) 

at 450 m and at 8 km in 2019. The winters of both 2015 and 2016 were both characterized by 

above-average temperatures (Runia, 2015; NOAA 2016), but 2016 also experienced above 

average precipitation in eastern and southeastern regions of the state (Figure 2.21, Figure 2.22). 

The differences in PIP between 2015 and 2016 could possibly be related to mild winter 

temperatures and lower precipitation in 2015 reducing dependency of roosters on herbaceous 

wetlands for winter cover, whereas higher snow cover might have increased the importance of 

herbaceous wetlands for winter cover in 2016. Alternatively, pheasants might have used 

wetlands as winter cover in 2015 just as much as in 2016, but it did not provide a similar survival 
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advantage. Weather conditions in winter and early spring differed substantially between 2017 

and 2018 (Figure 2.21), but herbaceous wetlands were not among selected covariates for models 

in either year. Many parts of South Dakota had above average precipitation in Winter 2017 

(Figure 2.23). However, drought conditions in late winter and spring in 2017 (NOAA, 2017) 

might have forced roosters to disperse longer distances from winter habitats in spring 2017 to 

find favorable breeding habitats. Such increases in dispersal distances between wintering and 

breeding areas in years where suitable breeding habitat is limited by climatic conditions have 

been previously documented for pheasants (Lachlan and Bray, 1976; Smith et al., 1999). Much 

of South Dakota in winter and early spring of 2018, however, had below average precipitation 

(Figure 2.21, Figure 2.24), with temperatures generally above average in January and March and 

below average in February and April (NOAA, 2018), perhaps releasing roosters from 

dependency on herbaceous wetlands. In 2019, herbaceous wetlands again became an effective 

covariate (PIP:60%) but at a larger scale of effect. This pattern might possibly be related to very 

wet late winter and spring weather in 2019, which caused widespread flooding in many parts of 

the state (NOAA 2019; S.I. Figure 2.25). Under such conditions, herbaceous wetlands might be 

too wet to provide cover at small scales but might be associated with habitats that provide better 

cover at larger scales. An alternative possibility is that wetlands might have provided improved 

overwinter survival at larger scales, but flooding reduced their small-scale (within-home-range) 

use during the summer.  

Whereas the  relationship of woody cover with pheasant abundance was negative in 

Nebraska (Jorgensen et al., 2014; Stuber et al., 2017) and no relationship was found in 

Minnesota (Drake et al., 2009), we found a negative effect at large scales (5 km) in 2017–2019 

but also a positive effect of tree cover at smaller scales (1 km) in 2019. Woody cover can have 
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negative effects on pheasant abundance through increasing the risk of predation (Jorgensen et al., 

2014). In contrast, some studies suggests that woody cover within pheasant home ranges can 

provide habitat to escape from predators during the breeding season (Leif, 2005) and could serve 

as complementary cover in severe winter conditions when snow reduces the availability of 

herbaceous vegetation cover (Gabbert et al., 1999). Winter 2019 had above average snowfall 

followed by widespread flooding in spring, which could potentially motivate roosters to establish 

their home ranges in areas with limited tree cover, such as shelterbelts, to avoid cold while 

simultaneously lowering the risk of predation.  

The interactions among grasslands, herbaceous wetlands, woody cover and pheasant 

habitat selection are complicated, but may relate to cover and dispersal distances needed to reach 

these habitats. For example, nearby herbaceous wetlands could potentially decrease the need for 

long-distance dispersal to winter habitats in mild winters like 2015 and 2016. Moreover, mild 

winters (2015 and 2018) or severe drought conditions (2017) could reduce dependence on 

herbaceous wetlands or woody cover, with grasslands serving as the main cover under such 

conditions, assuming the quality and quantity of grasslands as cover is higher than the quality of 

herbaceous wetlands. Previous studies also found a preference for herbaceous wetlands over 

woody cover (Gabbert et al., 1999; Leptich, 1992), with opposite patterns of woody cover 

preferences in consecutive years depending on winter conditions, along with use of grasslands as 

winter cover in mild winters (Homan et al., 2000; Perkins et al., 1997). Leif (2005) also 

documented that higher woody cover reduced home range size for pheasants in eastern South 

Dakota, suggesting a preference for at least some woody cover within home ranges. 

The proportion of small grains was positively related to rooster abundance in 2015 and 

2016 (PIP: 100%) at 2 km and 12 km, respectively. These years both experienced mild winters 
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with spring and/or early summer rains that resulted in rapid growth of small grains (Runia, 2016, 

2015), which might encourage roosters to expand their spring dispersal and foraging habitat 

search radius to include access to small grain fields. In 2017, drought impeded the growth of 

small grains (Runia, 2017) and small grain cover remained relatively low in 2018 and 2019 

(Runia 2019). These results are consistent with the possibility that roosters include small grains 

as a part of their home range whenever they occur at sufficient levels on the landscape. Small 

grains on the landscape are often positively associated with pheasant abundance (Drake et al., 

2009), so our data are consistent with recommendations to promote small grains on the landscape 

for pheasant management (National Wild Pheasant Technical Committee 2021). 

GPP in winters of 2015 and 2016 (PIP  50%) and springs of 2017 and 2018 (PIP = 59–

100%) had positive effects on rooster abundance. The winter of 2015 was milder than the winter 

of 2016 (Figure 2.21), so snow cover had relatively minor impacts on reducing winter GPP, 

although scales of effect differed between the two years. Our results revealed that in 2015, winter 

GPP was higher in open habitats (hay and alfalfa) and woody cover whereas it decreased in other 

landcover types (Table 2.4). Winter 2016 had higher precipitation (Figure 2.21) and winter GPP 

increased with an increase in proportions of open habitats (hay, alfalfa, and pastures), fallow-

idle, small grains, row crops and woody cover (Table 2.4). During these winters, high rooster 

abundance could potentially force younger roosters to include more unobstructed habitats with 

nearby woody cover as alternative habitats to grasslands and herbaceous wetlands in their home 

range (Runia, 2015). Radio-telemetry studies in eastern South Dakota during winters of 1997-

2001 suggest that roosters may select open habitats with nearby woody cover and such habitats 

might serve as an alternative cover type to substitute for the herbaceous cover component (Leif, 

2005).  
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Spring GPP had a positive relationship with predicted pheasant abundance at 

intermediate scales in 2017 and 2018 (2 km and 5 km radius, respectively). In 2017, spring GPP 

increased with increases in proportions of alfalfa, hay, small grains and row crops cover types, 

whereas it decreased with other landcover types, including grasslands. The widespread drought 

of 2017 limited growth of cool season grasses and many small grain fields were baled for 

livestock feed (Runia, 2017). This suggests that the drought of 2017 might have forced roosters 

to establish home ranges in areas with higher proportions of croplands. While spring 

precipitation eased drought conditions in 2018, lingering drought effects (NOAA, 2018, 2017; 

Runia, 2018, 2017) might still have caused roosters to include relatively high proportions of 

croplands within home ranges. Spring GPP could represent both quality and quantity of habitat 

resources (N. P. Robinson et al., 2018) and our results showed that areas with higher spring GPP 

had higher abundances of roosters. Previous studies also found that relationships between habitat 

productivity and abundance could change among seasons and years such that the relationship 

between pheasant abundance and GPP may be context dependent (Dobson et al., 2015). Our 

findings where intermediate proportions of grasslands at local scales and higher proportions of 

small grains at large scales increased pheasant abundance are consistent with results of multi-

scale studies of pheasant abundance in Nebraska (Jorgensen et al., 2014; Stuber et al., 2017) and 

Minnesota (Drake et al., 2009). In contrast to these studies, however, we found that pheasants 

may avoid areas with high proportions of grasslands at large scales, especially in years with high 

precipitation and/or flooding. 

In 2015, areas with a mix of low and high fall nighttime LST were favored by roosters. 

These biophysical, land surface phenomena occurred more often in areas with higher proportions 

of small grains, hay, and woody cover on the landscape. However, this relationship was weaker 
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when the proportions of row crops and grasslands increased, characterized by a negative 

relationship with nighttime and daytime LST (Table 2.4). Areas with a mix of low and high fall 

nighttime LST are mostly located in the vicinity of water bodies, specifically in the Missouri 

River valley, where there is a mix of cropland types including small grains and row crops. In fall, 

rooster diets vary with food item availability, but birds prefer corn to meet energy and protein 

needs (Runia, 2011). The fall of 2015 was a season of extremes with a warm and dry September 

and October followed by a very cold November (NOAA 2015; S.I. Figure 2.11). Choosing areas 

with high nighttime and lower daytime land surface temperatures might potentially be a strategy 

to cope with early winter conditions through foraging in croplands and roosting in areas that 

were both warmer and had greater canopy cover, which occurred near water bodies. Radio-

telemetry studies also found different patterns of pheasant habitat use within a patchwork habitat 

matrix of row crops, small grains and herbaceous wetlands by pheasants in days and nights of 

cold months. In winter in North Dakota, pheasants used herbaceous wetlands more often at night 

and uplands and croplands more often during the day (Homan et al., 2000). In Idaho, pheasants 

used woody cover during the day, herbaceous wetlands at night and small grain fields at dawn 

and dusk, with birds often remaining in the vicinity of their breeding habitats until forced to 

leave due to loss of residual cover in colder months (Leptich, 1992). Our study showed that LST 

data has the potential to distinguish habitat use during night and day by pheasants.  

The early breeding season of 2015 was wet and relatively cool, with some freeze events 

(NOAA, 2015), which could help explain why areas with higher daytime LST at 12 km were 

associated with higher pheasant abundance. These areas also had higher nighttime LST. Our 

results showed that hay, row crop and small grain land cover types had higher land surface 

temperatures than other land cover types. During the breeding season of 2018, areas with lower 
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nighttime land surface temperatures at the broadest scale were associated with higher pheasant 

abundance. May 2018 was the fifth warmest on record (NOAA, 2018) and pheasants might 

respond to such warm temperatures by favoring areas with lower temperatures during nights, in 

contrast to the cold breeding season of 2015, when areas with higher nighttime LST supported 

higher pheasant abundance.  

The covariates net primary production at 800 m (negative quadratic effect), proportion of 

litter at 625 m (negative effect), and winter daytime LST at 5 km (positive effect) were 

influential only in 2019, which could reflect the unique widespread flooding conditions during 

this year (NOAA, 2019). The negative relationships with litter and NPP might be associated with 

pheasant use of uplands rather than lowlands (the latter of which might have generally higher 

litter and NPP) because of flooding in lowland areas. January and February of 2019 both had 

higher than normal precipitation and February had colder than average temperatures (NOAA, 

2019), so the positive effect of winter temperature on summer pheasant abundance suggests 

roosters in locations with less severe late winter/early spring conditions may have exhibited 

higher overwinter survival and/or body condition going into the breeding season (Edwards et al., 

1964; Mateos, 1998; Peterson et al., 1988).  

Previous studies relating pheasant abundance to habitat attributes have examined effects 

at both single and multiple temporal and spatial scales. Multiscale studies developed either single 

year-single season models (Stuber et al., 2017) or tested a limited number of scales (Clark et al., 

1999; Jorgensen et al., 2014). In our study, applying RJMCMC simulations at a wide range of 

scales on covariates for multiple years and using seasonal covariates showed that importance, 

scales of effect and the direction of relationships among covariates could vary seasonally and/or 

annually. Also, our results support previous studies showing that characteristics of pre-survey 
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seasons can influence adult pheasant abundance (Beardsworth et al., 2021; Gabbert et al., 1999). 

One of the advantages of RJMCMC over other variable selection methods (e.g., see Stuber et al., 

2017) is that scale and variable selection can be performed together. Our results showed that 

credible intervals of covariates of models with highest PIPs did not overlap with zero, suggesting 

their importance in explaining pheasant abundance estimates. Having PIP values for each 

covariate helped elucidate the relative importance of covariates in each year. Also, important 

covariates and their scales of effect were not highly correlated (r < 0.7), allowing the effects of 

individual covariates to be interpreted independently from potentially competing covariates. 

Lower estimated statewide relative abundance in 2018 and 2019 than in 2015–2017 in 

our models is mostly consistent with SDGFP harvest estimates, which showed lower estimated 

relative abundance in 2017–2019 than in 2015–2016. However, in 2017 our models estimated 

the highest statewide relative abundance whereas the lowest estimated statewide relative 

abundance from harvest estimates occurred during this year. In 2017, the total count on brood 

surveys was similar to 2016 (905 to 903; Table 1), but the proportion of blocks with structural 

zeros in 2017 was highest among all years. This implies that the number of blocks with no 

roosters observed was higher in 2017 than in 2016, which might indicate more extensive areas of 

lower habitat suitability in 2017, potentially leading to fewer roosters detected along routes when 

surveys were conducted. Pheasants expand their movement distance when food and cover are not 

sufficiently available in their home range (Whiteside and Guthery, 1983). The prediction map of 

2017 projected that areas with relative abundance greater than 0–0.5 roosters per 31.4 ha were 

scattered throughout the state (Fig. 6) which could reflect the drought conditions of this year 

(NOAA 2017; S.I. Fig.S.1). Consequently, roosters might move to more isolated areas with 

higher habitat suitability, where they were detected in greater numbers along certain survey 
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routes. This finding suggests that survey routes may need to be altered in years with extreme 

habitat conditions for more accurate estimation of abundance. In addition, adult pheasants make 

up only a variable fraction of the fall harvest, so summer counts of adult roosters may not reflect 

overall harvest numbers (Rice, 2003). The similar harvest estimates in 2017 and 2019, despite 

much higher adult rooster numbers in 2017 surveys in the present study, support the hypothesis 

that fall pheasant population sizes are relatively insensitive to breeding rooster numbers. This 

finding suggests that indices other than breeding male population sizes (e.g., total pheasants per 

mile, chicks per hen) may better reflect fall rooster population sizes (Dienes, 2022). These data 

are also consistent with relatively low pheasant reproductive success during the drought year of 

2017. 

 Conclusions 

Our study showed that relationships among species abundance, habitat factors, and scales 

of effect may vary seasonally and annually. Our findings emphasize the necessity of considering 

temporal as well as spatial resolution of landcover datasets for species like pheasants where 

habitat selection may differ based on available habitat resources and climate conditions.  

Employing seasonal covariates of primary production, daytime and nighttime land surface 

temperatures, air temperature and precipitation, in addition to commonly used annual land cover 

data, could help account for the impact of seasonal changes on habitat suitability and relative 

abundance of pheasants, although potential mechanisms for these effects were not always clearly 

evident. Using RJMCMC allows selecting optimal scales of effect and the best subset of 

covariates simultaneously without being impacted by collinearity. We highlight that our findings 

are based on correlative relationships, so future studies should investigate mechanisms 

underlying these relationships. 



 

93 

 

One potential limitation of our study is that we did not have access to Conservation 

Reserve Program (CRP) landcover data because such data are not publicly available. However, 

our seasonal covariates and landcover types should represent the general conditions present on 

CRP lands. Future study should investigate how changes in quality and quantity of CRP lands 

through time may affect pheasant abundance at various scales of effect. Our models were based 

on rooster pheasant detections, so understanding how habitat selection by rooster pheasants 

influences habitat selection by breeding hen pheasants and overall pheasant abundance is another 

appropriate target for future research. In our study, we modeled relative abundance of pheasants 

rather than absolute density since we used survey data that were not designed to meet N-mixture 

model assumptions. Future research which develops and conducts surveys designed to meet N-

mixture model assumptions could ascertain whether N-mixture models can be used to effectively 

estimate absolute pheasant densities. Our workflow should be helpful in modeling count data for 

bird species in addition to pheasants, especially for grassland bird species, to help inform 

management decisions. 
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Figure 2.10. Boxplots of the spatial average of seasonal precipitation (mm) in South Dakota, USA. 
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Figure 2.11. Boxplots of the spatial average of annual precipitation (mm) in South Dakota, USA from 

2009 to 2019. 

Gray horizontal dashed line represents mean precipitation (mm) in 2009-2019 

 

 

Figure 2.12. Mean Annual Precipitation (mm) in South Dakota in years 2015-2019. 
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Figure 2.13. Areas with below and above average maximum air temperature (C) in July and August of 

2015. The average maximum air temperature of July and August of 2009-2019 was 29.2 C ( Daymet ; 

Thornton et al. 2020).  

 

Figure 2.14. Areas with below and above average maximum air temperature (C) in July and August of 

2019. The average maximum air temperature of July and August of 2009-2019 was 29.2 C. 

 

Figure 2.15. Areas with below and above average maximum air temperature (C) in July and August of 

2017. The average maximum air temperature of July and August of 2009-2019 was 29.2 C. 



 

97 

 

 

Figure 2.16. Areas with below and above average maximum air temperature (C) in July and August of 

2016.  The average maximum air temperature of July and August of 2009-2019 was 29.2 C. 

 

Figure 2.17. Areas with below and above average maximum air temperature (C) in July and August of 

2018. The average maximum air temperature of July and August of 2009-2019 was 29.2 C. 

 

Figure 2.18. Boxplots of the spatial average of July and August mean precipitation (mm) in South Dakota, 

USA from 2009 to 2019. Gray horizontal dashed line represents mean precipitation (mm) of 2009-2019. 
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Figure 2.19. Areas with below and above average precipitation in July and August of 2017. The average 

precipitation of July and August of 2009-2019 was 73.9 mm. 

 

Figure 2.20. Areas with below and above average precipitation in July and August of 2018. The average 

precipitation of July and August of 2009-2019 was 73.9 mm. 

 
Figure 2.21. Boxplots of the spatial average of mean winter precipitation (mm) in South Dakota, USA 

from 2009 to 2019. Gray horizontal dashed line represents mean precipitation (mm) of 2009-2019. 
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Figure 2.22. Areas with below and above average precipitation in winter of 2016. The average 

precipitation during winter of 2009-2019 was 17.5 mm. 

 

Figure 2.23. Areas with below and above average precipitation in winter of 2017. The average 

precipitation of July and August of 2009-2019 was 17.5 mm. 

 

Figure 2.24. Areas with below and above average precipitation in winter of 2018. The average 

precipitation of July and August of 2009-2019 was 17.5 mm. 
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Figure 2.25. Areas with below and above average precipitation in winter of 2019. The average 

precipitation of July and August of 2009-2019 was 17.5 mm. 
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Chapter 3 Multi-scale modeling to predict the influence of landcover associated with 

Bioenergy with Carbon Capture and Storage (BECCS) and climate change scenarios on 

grassland bird abundance in the Upper Missouri River Basin 

Abstract 

An estimated 70% of the grasslands in the Great Plains have been converted to other land 

uses. Those that remain are crucial reservoirs of biodiversity. Grassland birds throughout North 

America have been declining in recent decades and the primary cause of these declines is loss of 

habitat. Bioenergy with carbon capture and storage (BECCS) is a technological strategy to 

mitigate climate change that may be viewed as a positive strategy in global climate change 

mitigation efforts; however, its implications for biodiversity are less clear. Under BECCS land-

use changes will occur to develop renewable energies. Climate and land-use changes can have 

synergistic effects on species abundances, and it is important to consider their dynamic together. 

In this study, we investigated how climate and landcover changes will impact relative 

abundances and distributions of 17 grassland bird species by 2050 and 2100 in Upper Missouri 

River Basin (UMRB). Using a wide range of bioclimatic and landcover variables, we employed a 

shrinkage method to overcome the problem of collinearity among variables and scales of effect. 

Our results showed that the influence of climate change on changes in abundance, distribution 

and species richness of grassland species is more pronounced than the influence of land cover 

changes due to implementing BECCS scenarios. This is mainly because the proportions of 

different landcover types will not be impacted dramatically by the end of the century under these 

scenarios. We found that seven species are projected to increase in abundance, five species are 

projected to lose almost their entire distribution, four species are projected to survive through 

2050 under the RCP4.5 climate change scenario, but thereafter decline, regardless of BECCS. 

Thick-billed longspur demonstrated a unique response, with declines projected by 2050, but 

persistence thereafter under RCP2.5, but extirpation by 2100 under RCP4.5. Grassland birds will 

be more affected by increases in temperature than decreases in precipitation. Relationships 

between landcover variables and the abundances of grassland birds can vary in different scales of 

effect. Maintaining and restoring habitat heterogeneity is important for many grassland species. 

Hay, crop and herbaceous wetlands could provide some habitat requirements or be used as 
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alternative habitats by grassland species, as long as appropriate proportion of grasslands remain 

in the landscape. 

Introduction 

Grasslands are one of the most productive global biomes, providing food and habitat for 

humans and wildlife (Henwood, 2010). However, they are also one of the most threatened 

ecosystems in the world (Fargione et al., 2009; Stephens et al., 2008). North American 

grasslands have been extensively modified since the 18th century, mostly due to conversion to 

croplands (Samson and Knopf 1994, Jarchow et al. 2020). The Upper Missouri River Basin 

(UMRB) covers northern parts of the North American Great Plains and has undergone severe 

landcover change over the past two centuries (Mac et al., 1998; Wright and Wimberly, 2013). An 

estimated 70% of the grasslands in the Great Plains have been converted to other land uses. 

Those that remain are crucial reservoirs of biodiversity (Samson et al., 2004). Grassland birds 

throughout North America have been declining in recent decades (Rosenberg et al., 2019; 

Schipper et al., 2016) and the primary cause of these declines is loss of habitat (Knopf and 

Samson, 1994; Samson and Knopf, 1994). 

Bioenergy with carbon capture and storage (BECCS) is a technological strategy to help 

mitigate climate change (Kriegler et al., 2013). In BECCS, carbon dioxide (CO2) is removed 

from the atmosphere through production of bioenergy crops, and CO2 produced by converting 

these crops to energy is stored underground (Smith et al., 2016; van Vuuren et al., 2013). 

Although BECCS may be viewed as a positive strategy in global climate change mitigation 

efforts, its implications for biodiversity are less clear (Stoy et al., 2018; Tian et al., 2016). Under 

BECCS and other carbon mitigation scenarios, land-use changes will occur to develop renewable 

energies in the UMRB (Stoy et al., 2018). These changes could influence the quality and quantity 

of suitable habitats for grassland birds. Thus, spatial models predicting future trends of 
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distribution and abundance of grassland birds under different carbon balance scenarios are 

required for effective management plans (Baltensperger et al., 2020; Sohl, 2014; Stoy et al., 

2018).  

Climate and land-use changes can have synergistic effects on species abundance, and it is 

important to consider their dynamic together (Northrup et al., 2019; Zhao et al., 2019). Also, 

different scenarios under time series can lead to various outcomes (Bateman et al., 2020b; Hof et 

al., 2018). In addition, multi-scale relationships among ecological factors such as species 

abundance and landscape patterns can shape our interpretation of habitat-species relationships 

(Mayor et al., 2009; Moraga et al., 2019) and the effect of changes in habitat components on 

species abundance and distribution (Hattab et al., 2014; Martin et al., 2013). Finding ecologically 

meaningful relationships between environmental covariates and species responses requires 

determining relevant scales of effect. An ideal multi-scale modeling approach includes selecting 

the best subset of covariates from a full model, including all combinations of candidate 

covariates and scales of effect, after correcting for imperfect detection (Stuber and Gruber, 

2020).  

To the best of our knowledge, there are no integrated studies on grassland birds that 

predict the influence of climate change and land-use changes resulting from expansion of 

BECCS strategies along with consideration of scales of effects under a wide range of scenarios 

(Stoy et al., 2018). Previous studies that used both climate and land use changes did not consider 

multiple scales of effect and all possible scenarios. Also, these studies focused on changes in 

distribution, species richness and/or abundance in the future and gave less attention to potential 

changes in species-habitat characteristics (Baltensperger et al., 2020; Hof et al., 2018; Sohl, 

2014). 
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In this study, we used a generalized additive modeling approach to project how climate 

and landcover changes will impact relative abundances and distributions of 17 grassland bird 

species under several BECCS scenarios by 2050 and 2100 in the UMRB. Using a wide range of 

bioclimatic and landcover variables, we employed a shrinkage method to overcome the problem 

of collinearity among variables and scales of effect. We asked the following questions: 1) What 

are the most important habitat components determining relative abundances and distributions of 

grassland bird species?, 2) how will habitat components change under different landcover and 

climate change scenarios?, and 3) how will these changes potentially shape future distributions, 

species richness, and relative abundances and of grassland birds? 

Methods 

Study area 

We defined our study area according to Stoy et al. (2018) as the United States portion of 

the UMRB, extending from Montana and Wyoming to the Prairie Pothole Region of North and 

South Dakota. The UMRB encompasses large portions of Montana, North Dakota, South 

Dakota, Wyoming, and small parts of Iowa, Minnesota, and Nebraska (Figure 3.1). As an 

agricultural hub, the UMRB produces 30% of wheat, 13% of soybean, 11% of cattle, and 9% of 

corn production in the U.S. The major landcover type in this area is grassland (46.6%), with 

other landcover types including croplands (19.9%), shrublands (13.8%), forests (8.8%), and 

urban and other land uses (6.2%; Stoy et al. 2018).  
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Figure 3.1. The location of the UMRB study area and general land cover classes based on the National 

Land Cover Database of 2011 (Homer et al., 2012). 

 

Species records 

We used bird count records from eBird data (Sullivan et al., 2009) that cover the UMRB 

to model relative abundances of 17 grassland bird species (Table 3.1). We chose these 17 species 

because they either have broad distributions associated with grasslands across the UMRB or 

have distributions limited to the Northern Great Plains. We did not consider grassland species 

that might also associate with wetlands in the region (e.g., waterfowl and shorebirds other than 

upland sandpiper). For each species we extracted the corresponding data from the breeding 

season (May-August) from 2009-2013 to match the year range for our landcover data. eBird data 

include effort information (search radius, travel distance and number of observers) enabling 

correction of the model for imperfect detection. These data also include information about 
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“complete checklists” (i.e., checklists where observers reported all observed species). With this 

information, we can distinguish records where species were not detected from those where 

species were not reported to allocate a true “zero” wherever any study species was not detected 

(Kelling et al., 2019). We used the R-package “auk” (Strimas-Mackey et al., 2018) to extract and 

zero-fill species records. We only considered “complete checklists” in which the survey protocol 

was either traveling or stationary. To reduce the impact of variation in detectability, we only 

considered checklists with total observation durations less than 5 hours and total distances 

traveled less than 5 km in length, and with 10 or fewer observers (Strimas-Mackey et al., 2020). 

To account for detectability, we extracted start time, checklist duration, distance travelled and 

number of observers from all checklists and used these variables in models (Johnston et al., 

2021). To reduce class imbalance and spatial and temporal bias, we performed spatial 

subsampling on data for each species because eBird checklists tend to have non-random 

distributions in space and time, and they usually include more non-detections than detections 

(Robinson et al., 2018; Steen et al., 2021). We created hexagonal grids, using R-package 

“dggridR” (Barnes and Sahr, 2017), for subsampling as they are less spatially distorted than 

other shapes (Sahr, 2011). We employed 1-km intervals between centers of adjacent hexagons, 

then sampled randomly one record for a given species from these hexagonal cells. Our 

explorative subsampling showed that this interval increased the prevalence of detections from 

2% to 12% for our target species. 
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Table 3.1. The list of grassland bird species modeled in this study. 

Species Scientific Name 

Western meadowlark Sturnella neglecta 

Vesper sparrow Pooecetes gramineus 

Lark sparrow Chondestes grammacus 

Grasshopper sparrow Ammodramus savannarum 

Upland sandpiper Bartramia longicauda 

Savannah sparrow Passerculus sandwichensis 

Bobolink Dolichonyx oryzivorus 

Sharp-tailed grouse Tympanuchus phasianellus 

Chestnut-collared longspur Calcarius ornatus 

Swainson's hawk Buteo swainsoni 

Baird’s sparrow Ammodramus bairdii 

Dickcissel Spiza americana 

Greater sage-grouse Centrocercus urophasianus 

Sprague’s pipit Anthus spraguei 

Ferruginous hawk Buteo regalis 

Thick-billed longspur Rhynchophanes mccownii 

Sedge wren Cistothorus platensis 

 

Environmental covariates 

Land cover 

For future projections of landcover/landuse (LCLU), we used raster products (30 m x 30 

m cells) from a parametric logit model of LCLU change developed for the UMRB (Rashford et 

al., 2022). This modeling approach closely follows economic LCLU modeling methods (Lewis 

and Plantinga, 2007; Rashford et al., 2011). Using the National Land Cover Database of 2011 

(NLCD; Homer et al. 2012), this model produced estimates of the probability of land-use 

conversion between four broad uses (crops, pasture and hay, grass and shrubland, and urban), 

and produced estimates of marginal effects, which measure how changes in the drivers affect 

probabilities of conversion (Rashford et al., 2022). This model considers various economic 

drivers believed to influence landowner incentives to choose to transition between the different 

land use categories such as net crop returns, ethanol production, federal payments, and cattle 
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prices. In addition, the model includes historical and projected climate measures from ensembles 

of all available General Circulation Models (GCMs) for two Representative Concentration 

Pathways (RCP 2.6 and RCP 4.5) as climate drivers, which heavily rely on BECCS (Thomson et 

al., 2011; van Vuuren et al., 2011). Biophysical variables, including soil characteristics and 

topographic variables, were also included in the model (Rashford et al., 2022). This model used 

different scenarios to produce multiple climate and landcover projections for the years 2050 and 

2100 (Rashford et al., 2022).  

We used the following subset of projections in the present study. Climate-only scenarios 

include only climate to project future land cover using the Intergovernmental Panel on Climate 

Change (IPCC, 2017) climate features (RCP 2.6 and RCP 4.5). For climate-only scenarios, no 

other policies or technologies were changed from conditions existing in 2011. First Generation 

Biofeedstock scenarios assume current biofuel crops (corn, soybean) will be expanded in the 

UMRB under two alternative positive price incentives: 1) a 5% (Crop05pct) and 2) a 30% 

(Crop30pct) increase in relative commodity prices. Second Generation Biofeedstock scenarios 

assume switchgrass (Panicum virgatum) will be the major source of biofuels in the UMRB, with 

a relative price of $ 80/ton. The corresponding land-use for switchgrass is considered as hay 

(GrassP80_Y1). Each biofeedstock scenario was projected under both RCP 2.6 and RCP 4.5. To 

represent current land cover, we aggregated the NLCD land use categories of 2011 (Homer et al., 

2012) into four categories consistent with the categories of future projections (Table 3.2).  

We generated future projection raster layers in probability format. Each 30 x 30-meter 

pixel had a probability value of transitioning to another land use or remaining intact. For each 

pixel we designated a land-use class which had the highest probability of transition. These 

projections do not cover tribal lands, and do not include woodlands, open water and wetlands. To 
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fill these gaps, we matched the closest projections of USGS’s FORE-SCE model for the UMRB 

and Prairie Potholes of the U.S (Sohl et al., 2019, 2018): “GCAM 2.6” and “GCAM 4.5” for 

Climate-only, “Business-as-usual” for First Generation Biofeedstock, and “Billion Ton Update 

scenario ($80 farmgate price)” for the Second Generation Biofeedstock scenarios.  

For current climate, we employed 19 bioclimatic variables ( 

Table 3.3) using monthly means of minimum and maximum temperature and 

precipitation from Daymet monthly climate summaries from 1983-2013 (1-km cells, Thornton et 

al. 2020) using the R-package “dismo”  (Hijmans et al., 2017). For future projections, we 

employed future climate data of the WorldClim 2.1 database (Fick and Hijmans, 2017) for year 

periods of 2041-2060 and 2081-2100. These data are downscaled projections of future 

alternative scenarios derived within the Coupled Model Intercomparison Project Phase 6 

(CMIP6) which updates RCPs with a new framework of Shared Socioeconomic Pathways (SSP) 

focused on the effect of possible socioeconomic developments on adaptation and mitigation 

policies (Riahi et al., 2017). We averaged all GCMs for SSP 126 and SSP 245 which are updated 

scenarios of RCP 2.6 and RCP 4.5 (Popp et al., 2017). For topographic variables, we developed a 

Terrain Ruggedness Index (Riley et al., 1999), a Topographic Position Index (Wilson and 

Gallant, 2000), and a Heat Load Index (McCune and Keon, 2002) based on the National 

Elevation Dataset (USGS, 2009) and assumed these indices will remain constant by the end of 

the century.   

Previous studies showed that environmental covariates are related to the distribution of 

grassland birds at 1 km2 scales in the Northern Great Plains (Lipsey et al., 2017; Pavlacky Jr et 

al., 2017). Thus, we assumed environmental covariates are related to grassland bird abundance at 

a 1 km2 landscape scale. We also considered 0.0625 km2 (250 m x 250 m) as a local scale for 
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land cover and topographic variables. Within these scales of effect, we calculated the proportion 

of each land cover category and the mean of other covariates. Also, we created landcover 

variation raster layers by summing the number of different categories per pixel at each scale. We 

then resampled all raster layers to 250-m pixel size. We did all these preparations in in Arc GIS 

10.7 (ESRI, 2019). 

Modeling approach 

In this study we used Generalized Additive Models (GAMs, Hastie and Tibshirani 1987) 

in R- package “mgcv” (Wood, 2011; Wood et al., 2016) to predict species relative abundances 

(abundance of each pixel relative to values of other pixels). GAMs can estimate smooth 

functional relationships between predictor and response variables and can incorporate various 

error distributions for count data (Barry and Welsh, 2002). eBird counts of different species, 

seasons, and regions can have very different distributions. Thus, employing an appropriate 

distribution could substantially increase the accuracy of estimations (Strimas-Mackey et al., 

2020). Hence, we tested Zero-Inflated Poisson (ZIP), to account for excessive zeros in data, 

Negative Binomial (NB), to account for overdispersion, and Tweedie (Tw) distributions. ZIP fit 

a binomial model to distinguish variables associated with species presence and then used a 

truncated Poisson probability function to model counts greater than zero. In NB, variance can be 

larger than the mean which relaxes the assumption of equal variance of the Poisson distribution. 

The NB distribution is effective when the variance of counts is considerably larger than the mean 

of the counts. Tw is a special case of exponential dispersion models with a high flexibility, 

encompassing several familiar probability distributions including the normal, gamma, inverse 

Gaussian and Poisson distributions (Wood et al., 2016; Wood and Fasiolo, 2017).  
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We randomly split data for each bird species into 80% training and 20% testing datasets 

to evaluate the predictive performance of models. Through cross-validation using Spearman’s 

Rank Correlation, we calculated the magnitude of underestimated observations and Mean 

Absolute Deviation (MAD ; Strimas-Mackey et al. 2020). For smoothing parameter estimation, 

we used Restricted Maximum Likelihood (REML) since it is less vulnerable to under-smoothing 

or overfitting and leads to more stable estimations of smoothing parameters than other methods 

(Wood, 2011). For variable selection, we employed a shrinkage approach using thin plate 

regression splines which estimate smooth functions of the covariates by trading off data-fitting 

with smoothness. Using the shrinkage approach, we could include all predictor variables in the 

model and let shrinkage terms force coefficients of less effective correlated variables shrink to 

zero (Marra and Wood, 2011). For checklist start time, we used cubic cyclic spline to consider 

both 0 and 24 hours as midnight (Strimas-Mackey et al., 2020). For each species, we used the 

best performing model to predict current and future relative abundance under different scenarios. 

To create species richness maps, we first created binary maps by considering pixels with a 

predicted relative abundance greater than 0.5 as presence. We then summed all binary maps of 

each species for every scenario. 
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Table 3.2. Landcover categories of National Landcover Dataset (NLCD) of 2011 and their corresponding 

aggregated categories from Rashford et al. (2022). 
NLCD 2011 Aggregated category 

Water  Open water  

Developed Urban 

Mechanically Disturbed National Forests Urban 

Mechanically Disturbed Other Public Lands Urban 

Mechanically Disturbed Private Urban 

Mining  Urban 

Deciduous Forest Woodland 

Evergreen Forest Woodland 

Mixed Forest  Woodland 

Grassland Grass and shrubland 

Shrubland  Grass and shrubland 

Cropland Cropland  

Hay/Pastureland  Pasture and hay  

Herbaceous Wetland Wetland 

Woody Wetland Wetland 

 

Table 3.3. The list of bioclimatic variables used to predict current and future relative abundance of 

grassland bird species. 

BIO1 Annual Mean Temperature ( C) 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (BIO2/BIO7) (×100) 

BIO4 Temperature Seasonality (standard deviation ×100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation (mm) 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 
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BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 

 

Results 

Predictive performance  

For 13 of the 17 species, the NB distribution led to the best performing GAM models, 

whereas for four species the Tw distribution performed slightly better than the NB distribution. 

ZIP was the worst distribution for all species and models did not converge for some species 

(Table 3.4).  

Climate and land use changes 

Future climate projections for the UMRB in this study generally predict that the amount 

of precipitation will decrease while the temperature will increase. Except for precipitation of the 

driest month, all other precipitation variables will decrease under both RCP2.6 and RCP4.5 

climate scenarios. Also, the rate of change in precipitation will not differ significantly between 

between RCP2.6 and RCP4.5 climate scenarios and between the two-time steps. On the other 

hand, except for mean temperature of the driest quarter, all other temperature variables are 

projected to increase. Differences in the rate of change in temperature variables are more 

pronounced than precipitation variables among climate scenarios and time steps. In particular, 

temperature increases less under RCP4.5 for the mid-century than for the late century and 

temperature increases less under the RCP2.6 scenario than under the RCP4.5 scenario (Figure 

3.2 & Figure 3.3).  
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Table 3.4. The result of predictive performance testing of different distributions for GAM models.  
Zero-Inflated Poisson Negative Binomial Tweedie Selected  

distribu

tion 
Species SRC MUO 

(%) 

MAD SRC MUO 

(%) 

MAD SRC MUO 

(%) 

MAD 

Western 

meadowlark 

0.521 2.4 23785 0.547 1.8 1.05 0.544 1.8 1.06 NB 

Vesper 

sparrow 

0.253 4.38 0.489 0.266 2.95 0.471 0.261 3.35 0.47 NB 

Lark 

sparrow 

0.298 2.71 10.5 0.319 2.15 0.357 0.31 2.23 0.344 NB 

Grasshoppe

r sparrow 

0.246 1.72 0.201 0.265 1.39 0.182 0.259 1.34 0.179 TW 

Upland 

sandpiper 

0.27 1.6 47.2 0.293 0.9 0.117 0.291 0.9 0.0117 NB 

Savannah 

sparrow 

0.33 2.8 0.33 0.35 1.89 0.35 0.347 2.06 0.347 NB 

Bobolink 0.215 1.38 9999 0.338 0.749 0.305 0.339 0.806 0.3 TW 

Sharp-tailed 

grouse 

0.164 0.668 0.51 0.178 0.629 0.317 0.177 0.719 0.214 NB 

Chestnut-

collared 

longspur 

0.238 1.2 9999 0.256 0.457 0.232 0.256 0.431 0.215 TW 

Swainson's 

hawk 

0.207 3.75 0.473 0.233 2.21 0.134 0.231 2.29 0.134 NB 

Baird’s 

sparrow 

0.189 2.3 90600 0.196 0.352 14.3 0.095 0.352 120 NB 

Dickcissel 0.237 0.704 3.84 0.266 0.493 0.0971 0.266 0.591 0.0974 NB 

Greater 

sage-grouse 

- - - 0.101 0.13 0.0718 0.101 0.125 0.05 TW 

Sprague’s 

pipit 

0.149 0.496 0.0319 0.158 0.377 0.0351 0.157 0.377 0.0317 NB 

Ferruginous 

hawk 

   
0.133 0.895 0.0281 0.132 0.878 0.0282 NB 

Thick-billed 

longspur 

   
0.148 0.241 0.102 0.149 0.227 0.0696 NB 

Sedge wren 
   

0.184 0.512 0.0543 0.184 0.529 0.0536 NB 

SRC: Spearman’s Rank Correlation; a higher value for one model compared to other models signifies that the model 

more effectively ranked sites from highest to lowest abundance. MUO (%): the Magnitude of Underestimated 

Observations; a lower value for one model than others means that the model had fewer underestimated predictions. 

MAD: Mean Absolute Deviation; a lower value for one model than others means that the average deviation between 

observed and predicted abundance values was lower for the model. Gray cells denote the best values for each index 

for each species. 
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Figure 3.2. Boxplots of bioclimatic temperature variables of current climate and future climate under RCP 

2.6 and RCP 4.5 in 2050 and 2100. 
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Figure 3.3. Boxplots of bioclimatic precipitation variables of current climate and future climate under 

RCP 2.6 and RCP 4.5 in 2050 and 2100. 

 

In general, predicted landcover and land-use changes due to implementing BECCS 

scenarios are less pronounced than changes in land cover due to climate conditions under the 

RCPs. Under BECCS, the percentage of area with no cropland or hay increased by 1–5% at the 

250-m radius scale and increased or decreased by 1 to 2% and 1-10%, respectively, at the 1-km 

radius scale (Figure 3.4 & Figure 3.5). The percentage of areas lacking wetlands is projected to 

increase by 10% (at a 250-m radius) and by 20% (at a 1-km radius; Figure 3.6). Areas lacking 

woodlands are projected to increase by 3% at a 250-m radius scale and by 5% at a 1-km radius 

BIO13 BIO4 BIO15 

   

BIO16 BIO17 BIO18 

   

BIO19   
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scale (Figure 3.7). The percentage of areas without urbanization will increase by 4-5% at a 250-

m radius and will remain stable at 1-km radius (Figure 3.8). Areas with 90-100% grasslands will 

increase by 5-10% at both scales under different scenarios, while areas of other grassland 

percentage categories will decrease slightly. (Figure 3.9). The percentage of areas with only a 

single landcover types at the 250-m radius scale is projected to increase by 8-10 percent, whereas 

at the 1-km radius scale, the percentage of areas with three landcover types will increase by 3-5 

% (Figure 3.10). 
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Figure 3.4. Comparison of current and future percentage of areas with croplands within two scales of 

effect (250m & 1km) under different BECCS scenarios. 

 

 

Figure 3.5. Comparison of current and future percentage of areas with hay cover within two scales of 

effect (250m & 1km) under different BECCS scenarios. 
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Figure 3.6. Comparison of current and future percentage of areas with wetlands within two scales of 

effect (250m & 1km) under different BECCS scenarios. 

 

 

Figure 3.7. Comparison of current and future percentage of areas with woody cover within two scales of 

effect (250m & 1km) under different BECCS scenarios. 
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Figure 3.8. Comparison of current and future percentage of areas with urban cover within two scales of 

effect (250m & 1km) under different BECCS scenarios. 

 

 

 

Figure 3.9. Comparison of current and future percentage of areas with grass cover within two scales of 

effect (250m & 1km) under different BECCS scenarios. 
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Figure 3.10. Comparison of current and future percentage of areas with different landcover type variations 

within two scales of effect (250m & 1km) under different BECCS scenarios. 
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The impact of climate changes on abundance and distribution of grassland birds 

Precipitation patterns and bird abundance 

In general, trend differences in the percentage of areas with a prediction of at least one 

individual were less pronounced under different landcover scenarios than under climate 

scenarios (RCP 2.6 and RCP 4.5; Figure 3.11).  Low to intermediate values for precipitation of 

the wettest month were favored by most species, except for hawks, which preferred higher 

precipitation. Some sparrows preferred areas with higher precipitation in the wettest quarter, 

whereas other bird species tended to prefer drier areas. All species responded positively to 

habitats with lower precipitation of driest quarter. However, in the warmest and coldest quarters 

of the year, most bird species had higher abundance in areas with intermediate to high and low 

precipitation, respectively (Figure 3.12, Figure 3.13 & Figure 3.14).  

Temperature patterns and bird abundance 

Response curves showed that study species niches were restricted by one to several 

temperature variables (Figure 3.16, Figure 3.18, Figure 3.21). Based on changes in abundance 

and distribution, grassland bird species in the UMRB can be categorized into three groups, 

species projected to experience increases or only small decreases in their abundance, species 

projected to lose almost their entire distribution by 2050, and species projected to persist through 

2050 under RCP4.5, but largely disappear by 2100 (Figure 3.11). 
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Figure 3.11. Percentage of changes in areas occupied by species with a predicted relative abundance of > 

0.5 under different landcover and climate change scenarios. 
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Figure 3.12. Response curves of selected precipitation bioclimatic variables versus relative abundance of 

grassland bird species. Gray shade represents 95% confidence intervals.  

BIO13: Precipitation of Wettest Month, BIO14: Precipitation of Driest Month, BIO15: Precipitation 

Seasonality, BIO16: Precipitation of Wettest Quarter, BIO17: Precipitation of Driest Quarter, BIO18: 

Precipitation of Warmest Quarter, BIO19: Precipitation of Coldest Quarter. 
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Figure 3.13. Response curves of selected precipitation bioclimatic variables versus relative abundance of 

grassland bird species. Gray shade represents 95% confidence intervals. 

BIO13: Precipitation of Wettest Month, BIO14: Precipitation of Driest Month, BIO15: Precipitation 

Seasonality, BIO16: Precipitation of Wettest Quarter, BIO17: Precipitation of Driest Quarter, BIO18: 

Precipitation of Warmest Quarter, BIO19: Precipitation of Coldest Quarter. 
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Figure 3.14. Response curves of selected precipitation bioclimatic variables versus relative abundance of 

grassland bird species. Gray shade represents 95% confidence intervals. 

BIO13: Precipitation of Wettest Month, BIO14: Precipitation of Driest Month, BIO15: Precipitation 

Seasonality, BIO16: Precipitation of Wettest Quarter, BIO17: Precipitation of Driest Quarter, BIO18: 

Precipitation of Warmest Quarter, BIO19: Precipitation of Coldest Quarter. 
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Species projected to experience increases or only small decreases in their abundance: 

Abundances of seven species, including western meadowlark, lark sparrow, sedge wren, 

sharp-tailed grouse, dickcissel, ferruginous hawk and vesper sparrow, are projected to increase 

by 2050 and then remain stable or slightly increase or decrease by the end of the century under 

different climate and landcover change scenarios (Figure 3.15). Western meadowlark currently 

occurs at intermediate to high abundance throughout the UMRB, except for some mountainous 

areas in the western region. The range and abundance of this species is projected to expand 

throughout the entire UMRB under both climate scenarios, but to a lesser extent by 2050 under 

RCP 4.5. Lark sparrow mostly occurs in the central UMRB. While abundance of this species is 

projected to increase under both climate scenarios, its distribution under RCP 2.6 is projected to 

shift southward and westward. Under RCP 4.5, lark sparrow distribution is projected to expand 

by 2050 and then shift southward and westward by the end of the century. Sedge wren currently 

occurs in the far eastern UMRB, and sharp-tailed grouse occurs mainly in northern areas with 

relatively low abundance. Under RCP 2.6 and RCP4.5, abundances of both species are projected 

to increase by 2100. Sedge wren is projected to remain present throughout most of the eastern 

UMRB but will also shift its distribution west. Sharp-tailed grouse is projected to occur over 

many parts of UMRB, except for some areas of eastern and far western UMRB and the Black 

Hills area. However, distribution and abundance of both these species are predicted to shrink by 

2050 under the RCP 4.5 scenario. The current distribution of the dickcissel is mainly in the 

southeastern UMRB but is projected to expand through central and western regions under both 

climate scenarios. Dickcissel abundance and distribution are projected to be higher and more 

expanded by the end of the century under RCP 4.5. Ferruginous hawks currently occur mainly in 

central, western and northeastern regions of the UMRB. Under both climate scenarios, habitats in 
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the northeast are projected to shrink so that its distribution will expand more to the south and 

west, with an increase in relative abundance. Vesper sparrow currently occurs over most of the 

UMRB except for some areas in the southeast, the Black Hills area and far west. The abundance 

of this species is projected to decrease in the eastern UMRB while its abundance in the west is 

projected to remain stable. Vesper sparrow abundance is highest when the annual temperature 

range is approximately 40 C and decreases in areas with lower and higher temperature ranges. 

In the future, areas with an annual temperature range of approximately 40 C occur mostly in the 

western UMRB (Figure 3.15). 

Western meadowlark and lark sparrow abundances increased with increasing minimum 

temperature of the coldest month and reached maximum levels where minimum temperature 

reaches -10 C (Figure 3.16). Western meadowlark and sharp-tailed grouse both prefer areas 

with a lower mean temperature of the driest quarter. In the future, areas with such characteristics 

are projected to be more prevalent in the UMRB than currently, especially under the RCP 4.5 

climate scenario by 2100. In addition, western meadowlark prefers areas with a high mean 

diurnal temperature range, which are projected to be more common in the future. Under RCP 4.5 

in 2050, however, the increase in temperature is projected to be lower than under other climate 

scenarios and, consequently, the increase in western meadowlark abundance will be less (Figure 

3.16). Unlike western meadowlark, sharp-tailed grouse abundance is restricted by a mean annual 

temperature < 5C, a minimum temperature of the coldest month >-15C, and an annual 

temperature range > 40C. Under RCP 4.5 in 2050, much of current suitable sharp-tailed grouse 

habitat are projected to have an annual temperature range of less than 40 C, which is the lower 

threshold for maintaining abundance for this species and is the reason for a predicted a sharp 

decline in abundance under this scenario. In contrast to western meadowlark and sharp-tailed 
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grouse, lark sparrow abundance is highest in areas with a mean temperature of the driest quarter 

of 0-8 C. Also, its abundance is restricted to areas with a mean annual temperature above 2C 

and abundance peaks around 5C and in areas with and annual temperature range > 41C. In the 

future, more areas in southern and northwestern regions of the UMRB are projected to meet lark 

sparrow preferred temperate conditions, resulting in a distributional shift to the north and west by 

2100. However, the mean annual temperature increase is projected to be reduced under RCP 4.5 

by 2050 and, consequently, the distribution of lark sparrow is projected to expand instead of 

shift. Suitable habitats for dickcissel are largely restricted to areas with a mean annual 

temperature > 7.5 C and an annual temperature range of 37 – 47 C. In the future, the mean 

annual temperature is projected to exceed 7.5 C under both scenarios in much of the UMRB, 

thus providing more suitable habitats. However, except under RCP 4.5 in 2050, the annual 

temperature range will exceed the upper threshold for this variable, limiting the expansion of 

suitable habitat in the region. Ferruginous hawk abundance increases with increasing minimum 

temperature of the coldest month and reaches maximum when this variable exceeds -10 C. Also, 

its abundance peaks when mean temperature of the driest quarter is near 0 C. In the future, more 

areas of the UMRB are projected to have such characteristics, except under RCP 4.5 at mid-

century, when lower mean temperatures of the driest quarter are predicted than under current and 

other future climate scenarios. Sedge wren abundance is lowest when the annual temperature 

range is below 44C and increases with increase in this variable. Except under RCP 4.5 in 2050, 

the annual temperature range is projected to exceed this threshold throughout most of the 

UMRB, resulting in widespread increases in abundance for this species (Figure 3.16). 
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Figure 3.15. Predictions maps for species projected to experience increases or small decreases in their 

abundance in the UMRB. The first column represents current relative abundance. The remaining columns 

represent predictions based on climate-only BECCS scenarios matched with their corresponding climate 

change scenarios. 
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Figure 3.16. Response curves of selected bioclimatic temperature variables versus relative abundance for 

species projected to experience increases or only small decreases in their abundance in the UMRB. 

Gray shade represents 95% confidence intervals. BIO1 = Annual Mean Temperature, BIO2 = Mean 

Diurnal Range. BIO6 = Min Temperature of Coldest Month, BIO7 = Temperature Annual Range, BIO9 = 

Mean Temperature of Driest Quarter. 
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Species projected to lose almost their entire distribution:  

The abundances of Baird’s sparrow, Sprague's pipit, greater sage-grouse, chestnut-

collared longspur and upland sandpiper are projected to drop to zero in the UMRB under 

different climate and land use change scenarios (Figure 3.17). Baird’s sparrow and Sprague’s 

pipit, iconic birds of the Northern Great Plains, are mostly distributed in north-central regions of 

the UMRB, with relatively low abundance. Greater sage-grouse occurs mainly in eastern 

Montana through Wyoming in big sagebrush (Artemesia tridentata) habitats, with low to 

intermediate relative abundance. Baird’s sparrow, Sprague's pipit, and greater sage-grouse are 

projected to lose their entire distribution in the UMRB under all scenarios. Chestnut-collared 

longspur is mainly distributed in northern regions and upland sandpiper in eastern regions of the 

UMRB. These two species are projected to persist to 2050 under RCP 4.5 only in small areas at 

the northeastern and eastern edges of the UMRB (Figure 3.17). 

These species in this category have narrow thermal niches for mean annual temperature 

limiting their distribution to areas with mean annual temperatures of 0-6 C (Figure 3.18). In the 

future, most of the UMRB is projected to have mean annual temperatures above 6 C. Greater 

sage-grouse distribution is also limited to areas with precipitation in the wettest month of 100-

275 mm (Figure 3.13). Under all future scenarios, most of the UMRB is projected to experience 

less than 100 mm precipitation in the wettest month. Upland sandpiper, greater sage-grouse and 

chestnut-collared longspur are tolerant of some variability in the mean diurnal and annual 

temperature ranges, so their current distributions are projected to shift to the extreme southern 

and eastern parts of the UMRB (Figure 3.18).  
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Figure 3.17. Predictions maps for species projected to lose almost their entire distribution in the UMRB.  

The first column represents current predicted relative abundance. The remaining columns represent 

predictions based on climate-only BECCS scenarios matched with their corresponding climate change 

scenarios. 
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Figure 3.18. Response curves of selected bioclimatic temperature variables versus relative abundance of 

species projected to lose almost their entire distribution in the UMRB. Gray shading represents 95% 

confidence intervals. Bioclimatic variables as defined in Figure 3.16. 

 

Species projected to persist through 2050 under RCP4.5, but largely disappear by 2100: 

 Bobolink, grasshopper sparrow, savannah sparrow, and Swainson's hawk are projected 

to lose all or most of their distribution under RCP2.6 by both 2050 and 2100 (Figure 3.19). 

However, some parts of their distribution are projected to remain, or their distribution is 

projected to expand under RCP4.5 by 2050. Bobolinks are distributed, for the most part, in 

wetter northern and eastern regions of the UMRB, with intermediate relative abundance. The 

predicted distribution of this species in the future under RCP 2.6 is projected to be limited to the 

Black Hills of South Dakota and some scattered patches in southeast. Under RCP 4.5 this species 
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is expected to persist to 2050 with intermediate to high abundance in the Black Hills, and central 

and southeastern parts of the UMRB. Grasshopper sparrow is distributed with intermediate to 

high abundance throughout most of the study area. Under RCP 2.6 its abundance is projected to 

decrease and be limited to some patches in the west by 2050, with a greater decrease under the 

crop05 landcover scenario (see below). Grasshopper sparrow distribution is projected to expand 

to some additional patches in the central UMRB by 2100. Under RCP 4.5, grasshopper sparrow 

abundance is projected to increase by 2050 followed by a decrease where populations are 

projected to be limited to small patches in the west by 2100. Savannah sparrow predominantly 

occurs in northern regions of the UMRB. This species is projected to persist under RCP 4.5 by 

2050 only in patches in the western UMRB. Swainson’s hawk is primarily distributed in the 

northern and eastern UMRB. Swainson’s hawk distribution is projected to be limited to small 

patches in western and southwestern regions at low abundance, with the highest abundance under 

RCP 4.5 in 2050 (Figure 3.19).  Bobolink, Swainson’s hawk, and grasshopper sparrow habitats 

are restricted to areas with annual temperature ranges of 38 to 47 C, 44 to 47 C, and 47 to 50 

C, respectively. In the future, only RCP4.5 in 2050 provides annual temperature ranges 

relatively comparable with current conditions in the UMRB. Grasshopper sparrow suitable 

habitat mostly occurs in areas with a mean diurnal temperature range of 9-13 C. In the future, 

only some areas in the far western UMRB under RCP4.5 in 2050 will have such conditions 

(Figure 3.19).  

Thick-billed longspur 

Thick-billed longspur is currently distributed in eastern Montana and to a limited extent 

in Wyoming and the western Dakotas. Projections of this species distribution has a distinct 

pattern. Under RCP 2.6, its population is projected to shrink and shift to some patches in 

northern Montana and North Dakota and in western and southwestern parts of the UMRB. Under 

RCP 4.5, its distribution and abundance are projected to shrink even further and to be limited to 

fewer patches. This species has a narrow niche for mean annual temperature (1 – 5C) and 

minimum temperature of the driest quarter (-8 – -2C) which will be accessible only in small 

patches in the far north and southwest UMRB in the future under different climate scenarios 

(Figure 3.20). 
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Figure 3.19. Predictions maps of species which persist through 2050 under RCP4.5 in the UMRB. 

The first column represents current predicted relative abundance. The remaining columns 

represent predictions based on climate-only BECCS scenarios matched with their corresponding 

climate change scenarios.  

 

 

 

Figure 3.20. Predictions maps of thick-billed longspur in the UMRB. The first column represents 

current predicted relative abundance. The remaining columns represent predictions based on 

climate-only BECCS scenarios matched with their corresponding climate change scenarios.  
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Figure 3.21. Response curves of selected bioclimatic temperature variables versus relative abundance of 

species which are projected to persist through 2050 under RCP4.5 in the UMRB. Gray shading represents 

95% confidence intervals.  

 

Land cover and grassland bird niches 

Figure 3.22 to Figure 3.27 depicts response curves of selected landcover and topographic 

variables versus relative abundance for the three groups of grassland bird species. 
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Crop cover: 

At a 250-m radius, abundances of western meadowlark, sharp-tailed grouse, dickcissel, 

chestnut-collared longspur, and Sprague’s pipit increased slightly, whereas sedge wren 

abundance decreased, with increasing in crop density. At a 1-km radius, abundances of vesper 

sparrow, sedge wren, greater sage-grouse, bobolink, and savannah sparrow increased with 

increasing crop density. However, abundances of sharp-tailed grouse, dickcissel, ferruginous 

hawk, and grasshopper sparrow were highest at low to intermediate crop densities. Abundances 

of upland sandpiper and Swanson’s hawk were positively related to the frequency of croplands at 

both scales. Thick-billed longspur abundance was lowest in areas with less than 40% croplands 

in a 1-km radius. The abundance of Baird’s sparrow was not related to the frequency of cropland 

on the landscape (Figure 3.22, Figure 3.23, Figure 3.24). 

Grass cover: 

At a 250-m radius, abundances of sharp-tailed grouse, lark sparrow, Baird’s sparrow, and 

chestnut-collared longspur increased with increasing grassland density to peak at 100% 

grassland. At this scale, however, abundances of western meadowlark, dickcissel, and sedge 

wren peaked at 75-80% grassland and grasshopper sparrow abundance peaked at 50-75% 

grassland and then decreased slightly. At a 1-km radius, abundance of grasshopper sparrow 

increased with increasing grassland density and abundances of ferruginous hawk and vesper 

sparrow peaked at 90-100% grassland. Bobolink, Baird’s sparrow and chestnut-collared longspur 

abundances peaked at about 75-80% grassland. Abundances of western meadowlark, lark 

sparrow, dickcissel, sharp-tailed grouse and sedge wren peaked at 60-80% grassland and then 

decreased at higher grassland densities. Abundances of Sprague’s pipit and upland sandpiper 

were positively related to grassland density at both scales. Abundance of greater sage-grouse was 

lowest in areas with < 55% grassland density within a 1-km radius and > 50% grassland within a 

250-m radius. Thick-billed longspur abundance increased with increasing grassland density in 

areas with >50% grassland density at a 250-m radius and were highest in areas with > 50% 

grassland density at a 1-km radius. Abundance of savannah sparrow declined in areas with > 

70% grassland density at a 1-km radius and increased with increasing grassland density at a 250-

m radius (Figure 3.22, Figure 3.23, Figure 3.24). 
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Hay cover 

Hay cover percentages at the two scales were highly correlated (r ≈ 1). Thus, for this 

variable we only considered the 1-km scale of effect. Abundances of western meadowlark, 

sharp-tailed grouse, lark sparrow, dickcissel, sedge wren, Baird’s sparrow, chestnut-collared 

longspur, Sprague’s pipit, and upland sandpiper increased with increasing hay lands on the 

landscape.  Abundances of ferruginous hawk and greater sage-grouse peaked at intermediate 

densities of hay cover. Abundances of vesper sparrow and Swainson’s hawk peaked at 70-75% 

and 50-60% hay densities, respectively. Abundances of bobolink, savannah sparrow and 

grasshopper sparrow increased with increasing hay density in areas with < 40-50% hay on the 

landscape (Figure 3.22, Figure 3.23, Figure 3.24). 

Wetland cover 

At a 250-m radius, abundances of western meadowlark, vesper sparrow, upland 

sandpiper, grasshopper sparrow, greater sage-grouse, Swainson’s hawk, and thick-billed 

longspur declined with increases in wetland density. At a 1-km radius, abundances of Baird’s 

sparrow and chestnut-collared longspur declined, while abundances of sharp-tailed grouse, lark 

sparrow, dickcissel and ferruginous hawk increased with increasing wetland density. Abundance 

of sedge wren increased with increases in wetland density at a 250-m radius and peaked at 

approximately 75% wetland at a 1-km radius. Bobolink abundance was highest at intermediate 

wetland densities at a 1-km radius and was inversely related to wetland density at a 250-m 

radius. Savannah sparrow abundance was highest in areas with >25% wetland density at a 250-m 

radius (Figure 3.22, Figure 3.23, Figure 3.24). 

Woody cover  

Abundances of western meadowlark, dickcissel, ferruginous hawk, chestnut-collared 

longspur, and savannah sparrow at a 250-m radius, and abundances of vesper sparrow, sharp-

tailed grouse, Baird’s sparrow, upland sandpiper, and Swainson’s hawk at a 1-km radius, 

decreased with increasing woodland density. However, abundance of upland sandpiper increased 

slightly with increasing woodland on the landscape at a 250-m radius. Abundances of greater 

sage-grouse and bobolink declined with increasing woodland density at both scales. Abundances 
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of lark sparrow and sedge wren at a 250-m radius, and ferruginous hawk at a 1-km radius were 

highest at intermediate woodland densities (Figure 3.22, Figure 3.23, Figure 3.24). 

Urban cover 

At both scales, abundances of western meadowlark, vesper sparrow, dickcissel, sedge 

wren, Baird’s sparrow, upland sandpiper, greater sage-grouse, bobolink, and grasshopper 

sparrow declined with increasing density of urbanization. Abundances of savannah and lark 

sparrows decreased at 250-m and 1-km radii, respectively, with increasing urbanization density. 

With increasing urbanization density, abundances of sharp-tailed grouse and ferruginous hawk 

declined at a 1-km radius. However, at a 250-m radius, abundances of these species, along with 

Swainson’s hawk and thick-billed longspur peaked when the percentage of urban landcover was 

25% (Figure 3.25, Figure 3.26, Figure 3.27). 

Landcover variation 

Abundances of western meadowlark, sharp-tailed grouse, Baird’s sparrow, and Sprague’s 

pipit were negatively associated with the number of landcover types on the landscape at a 250-m 

radius, and their abundances were highest in areas with three landcover types at a 1-km radius. 

At a 250-m radius, abundances of dickcissel and sedge wren increased, while abundances of 

vesper sparrow, chestnut-collared longspur, and greater sage-grouse decreased with increasing 

number of landcover types on the landscape. 

At a 1-km radius, abundances of upland sandpiper increased, and abundances of 

ferruginous hawk declined when there were more than five landcover types present. Bobolink 

abundance was highest in areas with three and four landcover types at 250-m and 1-km radii, 

respectively. Abundance of grasshopper sparrow was highest in areas with four landcover types 

at a 1-km radius. Savanah sparrow abundance decreased in areas with more than four landcover 

types at a 1-km radius. Swainson’s hawk abundance declined with increasing landcover types at 

a 1-km radius but was highest in areas with more than six landcover types at a 250-m radius. 

Thick-billed longspur abundance was highest in areas with six and four landcover types at 250-m 

and 1-km radii scales, respectively (Figure 3.25, Figure 3.26, Figure 3.27). 
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Topographic variables 

Terrain Ruggedness Index (TRI) was important for five species, all of which avoided 

rugged areas. Topographic Position Index (TPI) was selected only at the 1-km scale for six 

species, which all preferred areas with higher elevations than surrounding areas (Figure 3.25, 

Figure 3.26, Figure 3.27). 

Species richness 

Currently, half of the UMRB has four to seven of the 17 species per 250 x 250 m pixel 

(Figure 3.28). Approximately 25% of the UMRB currently harbors nine or more species and 

these areas are primarily located in the north. Areas with no predicted species occurrences 

include 7.3% of the UMRB, and these areas are mostly located in mountainous areas in the south 

and central regions of the UMRB. The spatial pattern of species richness is projected to vary 

among different scenarios and time steps.  In general, species richness in the far east and 

northeast is projected to decrease more than in other areas . By 2050, under RCP 2.6, species 

richness of mountainous areas is projected to increase, while under (Figure 3.29). RCP 4.5 

species richness is projected to remain similarly low compared to current predicted richness. 

However, by 2100 mountainous areas are projected to have higher species richness than 

currently under both climate scenarios. By the end of century, our models predict that there will 

be almost no areas with more than seven species. However, the proportion of areas with zero 

species is projected to decrease to almost zero under RCP 2.6, and under RCP 4.5 the proportion 

of areas with zero species is projected to decrease to 6% by 2050 and 0% by 2100. In 2050, 

under the RCP 2.6 climate change scenario, 86% (±4) of the UMRB is projected to harbor 4-7 

species, while under RCP 4.5, 81% (±0.2) of the UMRB will have 2-6 species per 250 *250m 

pixel. By 2100, 83% (±0.7) and 80% (±2), respectively, of the UMRB will harbor 4-7 species per 

250 x 250m pixel (Figure 3.28 & Figure 3.29). 
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Figure 3.22. Response curves of selected landcover variables versus relative abundance species expected 

to experience increases or only small decreases in their abundance. Gray shade represents 95% 

confidence intervals. 
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Figure 3.23. Response curves of selected landcover variables versus relative abundance of species 

projected to lose almost their entire distribution. Gray shading represents 95% confidence intervals. 

 



 

144 

 

 

Figure 3.24. Response curves of selected landcover variables versus relative abundance of species 

projected to persist through 2050 under RCP4.5, but decline strongly thereafter, except for thick-billed 

longspur. Gray shading represents 95% confidence intervals.  
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Figure 3.25. Response curves of selected landcover and topographic variables versus relative abundance 

of species expected to experience increases or only small decreases in their abundance. Gray shading 

represents 95% confidence intervals. 
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Figure 3.26. Response curves of selected landcover and topographic variables versus relative abundance 

of species projected to lose almost their entire distribution. Gray shading represents 95% confidence 

intervals. 
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Figure 3.27. Response curves of selected landcover and topographic variables versus relative abundance 

of grassland bird species projected to persist through 2050 under RCP4.5. Gray shadimg represents 95% 

confidence intervals. 
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Figure 3.28. The percentage of areas (250 * 250 m pixels) in the UMRB study region with different 

species richness under current predictions and future projections for BECCs scenarios. 
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Figure 3.29. Spatial distribution of species richness for current predictions and future projections under 

different BECCS scenarios. 

 

Discussion 

My results showed that, in the UMRB, the influence of climate change on changes in 

abundance, distribution and species richness of grassland bird species is more pronounced than 

the influence of land cover changes due to implementing BECCS scenarios. This is mainly 

because the proportions of different landcover types will not be impacted dramatically by the end 

of the century by implementing these scenarios. This finding implies that regardless of landcover 

and land-use changes, climate change can limit or expand abundances and distributions of 

grassland birds in UMRB. Stronger responses of birds to climate than to land-use/landcover 
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variables in the present study are consistent with other studies of birds in the Northern Great 

Plains region (Sohl 2014, Baltensperger et al. 2020). 

I found that seven species are projected to experience increases in their abundance, five 

species to lose almost their entire distribution in the UMRB, and four species to persist through 

2050 under RCP4.5 but largely disappear from the UMRB by 2100. Previous studies also found 

that some grassland bird species of the Great Plains are projected to experience increases and 

others declines in their distributions and abundances as a result of climate change (Langham et 

al., 2014; Sohl, 2014). In this study, we investigated how changes in land-use and climate are 

related to species niches. By applying a shrinkage approach, we could include a wide range of 

bioclimatic variables. In addition, we could incorporate both fine and coarse scales of effect for 

landcover and topographic variables in models while minimizing the impact of variable 

collinearity, even when habitat associations appeared in opposite directions for the two scales. 

Our models projected that grassland birds will be more affected by increases in temperature than 

decreases in precipitation, which is consistent with previous studies (Bateman et al., 2020a, 

2020b). Response curves showed that the niches of most of our study species are restricted by 

one or multiple temperature variables. I further found that relationships between landcover 

variables and the abundances of grassland birds can vary at different scales of effect. Some 

relationships appeared at either or both 250-m or 1-km scales, emphasizing the importance of 

considering multiple scales in studying habitat associations of birds in agricultural landscapes 

(Best et al., 2001; Lipsey et al., 2017). 

Among species that are projected to experience increases in their abundance and 

expansion in their distribution, western meadowlark has the widest thermal niche. While its 

population is projected to increase with increases in winter temperatures and mean diurnal 
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temperature range, and decrease with temperature in the driest quarter, its niche is not restricted 

by any other temperature variable. Since western meadowlark is only present during the breeding 

season in the UMRB, there must be indirect effects of winter climate conditions on vegetation 

cover or other factors related to its habitat quality. Also, decreases in winter precipitation could 

open more habitats for this species. Vesper sparrow is also projected to preserve most of its 

abundance in the UMRB, although its distribution is projected to shift westward, consistent with 

the results of Baltensperger et al. (2020). Vesper sparrow also has a wide thermal niche. 

Although its preferred habitat for the annual temperature range is projected to decrease, 

increasing areas with lower cold season precipitation are projected to increase the quality of its 

habitats in the western UMRB. While the other species in this category generally will be favored 

by reduced precipitation, niches of these species are restricted by one or more climatic variables, 

limiting their range expansion in the UMRB. 

The model results show that five species are predicted to lose their entire distribution in 

UMRB in the future under every climate scenario. These species all have a restricted niche for 

mean annual temperature (0-6 C). Even upland sandpiper, greater sage-grouse and chestnut-

collared longspur, all of which have flexible tolerances to higher temperature annual ranges, are 

predicted to lose their distributions due to increases in mean annual temperatures. In the future, 

northern habitats in Canada may have more suitable habitats for these species. 

Increases for most temperature variables under RCP 4.5 at 2050 are projected to be less 

than their increases under other climate scenarios. Also, the annual temperature range is not 

projected to change much from the current range. We found that these conditions are projected to 

allow bobolink, grasshopper sparrow, savannah sparrow, Swainson's hawk and thick-billed 
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longspur to maintain or expand their distribution by 2050 and then will disappear by 2100 under 

RCP 4.5. 

Most of the species showed a positive relationship with density of croplands, albeit at 

only one of the scales of effect. Abundances of Baird’s and lark sparrows were not associated 

with cropland density and sedge wren showed a negative relationship with cropland density. 

These findings are consistent with previous findings of relatively weak positive or negative 

associations between croplands on the landscape and habitat suitability for grassland birds 

(Johnson and Igl, 1995; Niemuth et al., 2017). At broad scales, some grassland birds can utilize 

surrounding landcover types within the landscape matrix as alternatives for resources (Scholtz et 

al., 2017). Farm borders, grassed waterways, riparian buffers and filter strips can increase bird 

abundance and richness in croplands (Best et al., 2001; Schulte et al., 2016). Thick-billed 

longspur showed a threshold relationship with cropland density, increasing in its abundance in 

areas with more than 40% crop density at a 250-m radius. This finding is consistent with the 

results of Swicegood et al. (2022) that crop fields provide alternative breeding habitat for this 

species within agricultural landscapes of Northern Great Plains. 

I found positive relationships between the abundances of our study species and grassland 

density at either or both scales of effect, except for Swainson’s hawk. Most species reached their 

highest abundance at grassland densities less than 100%, implying that a mix of other landcover 

types might be required for optimal habitat. This finding is consistent with previous studies of 

grassland birds (e.g. Fisher and Davis, 2010; Lipsey et al., 2017). Moderate levels of grassland 

density can provide a trade-off between concealment and foraging efficiency (Lusk et al., 2003). 

In the Northern Great Plains, habitat selection by Swainson’s hawk is not limited to grasslands 

(Inselman et al., 2016). This species also includes other landcover types, such as crops, hay and 
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developed areas (e.g., tree lines around farms) within their home range if they provide better 

habitat resources (Inselman et al., 2016). We found that thick-billed longspur abundance was 

lowest in areas with less than 50% grasslands at the 1-km scale, but at the 250-m scale its 

abundance was highest in areas with  50% grassland. This longspur is a shortgrass-obligate 

species, but it can use other landcover types, such as croplands, as alternative habitats 

(Swicegood et al., 2022). Our results indicate that for this species, the presence of grasslands at 

the broader scale of effect is more important than grassland presence at finer scales of effect. Our 

modeling results also showed that abundance of greater sage-grouse was lowest in areas with 

more than 50% grassland density at the finer scale but higher in areas with >50% grassland 

density at the broader scale. This finding is consistent with previous findings that greater sage-

grouse prefers areas with juxtaposition of low and high vegetation cover density to avoid high-

density grass and forb cover in the breeding season and use high-density cover in winter 

(Doherty et al., 2010; Hupp and Braun, 1989). Regarding hay cover, our finding of positive 

relationships between grassland bird abundances and hay density is consistent with results of 

previous studies suggesting that exotic grasses and legumes provide generally favorable habitats 

for these species (Davis et al., 2016; Niemuth et al., 2017).  

My model results showed positive relationships between wetland density and abundances 

of sharp-tailed grouse, dickcissel, sedge wren, ferruginous hawk, and lark and savannah 

sparrows. Surrounding vegetation cover of wetlands can be attractive to grassland birds for their 

food resources (e.g., insect diversity) or structural advantages like thermal conditions (Geaumont 

and Graham, 2020).  Projected precipitation amounts vary across the UMRB region. Specifically, 

the Prairie Pothole region will be wetter than the Northern Great Plains. However, increases in 

evaporation due to increases in temperature are projected to negatively affect wetlands with 
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similar negative impacts on birds using their surrounding habitats (Johnson et al., 2010; Rashford 

et al., 2016). 

For most species, I found negative relationships between woodland density and bird 

abundances. However, sedge wren and lark sparrow at 250-m and ferruginous hawk at 1-km 

scales preferred intermediate woodland densities, and upland sandpiper preferred areas with 

higher density of woodlands than surrounding areas at the 250-m scale. We found no 

relationships with woodland cover for thick-billed longspur. Grassland birds may perceive trees 

as a visual cue of predation risk. In an open landscape the presence of a few trees may attract 

birds of prey, which may explain the positive relationship of intermediate woodland density with 

ferruginous hawk abundance in the present study (Cunningham and Johnson, 2019). Structural 

cover on the landscape, such as woody cover, can also provide hiding spots and so may reduce 

nest predation by specific predators of grassland birds and/or provide suitable microclimates, 

particularly in cold or hot weather (Ibáñez-Álamo et al., 2015; Martin, 1993). 

The urban density landcover class (which included farmsteads and other low-density 

development) showed negative relationships with abundance of all species except sharp-tailed 

grouse, ferruginous and Swainson's hawks, and thick-billed longspurs. For these species, 

abundances increased with increasing urban density up to 25% cover. For hawks, farmsteads can 

provide mature nesting trees, which are limited in prairie grasslands, and roads may provide ideal 

foraging habitat (Zelenak and Rotella 1997). Mowed areas along ditches and transmission line 

poles can increase prey accessibility (Inselman et al., 2016; Zelenak and Rotella, 1997). 

Developed areas also can attract lark sparrow and thick-billed longspur, species which show a 

preference for selecting recently disturbed habitats with sparse vegetation cover (Lusk et al., 

2003; With, 2021).  
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Regarding landcover variation, our modeling results showed that some species had higher 

abundance in more homogeneous habitats at the 250-m scale, while their abundance was highest 

at areas with 3-4 landcover types at the 1-km scale. At finer scales, habitat selection could be 

focused on specific habitat requirements while at broader scales species may consider the 

juxtaposition of multiple habitat resources (Goljani Amirkhiz et al., 2021; Johnson, 1980; Mayor 

et al., 2009). Abundance of hawks was highest in areas with 5-6 landcover types at the 250-m 

scale. Previous studies also documented the utilization of multiple landcover types by hawks in 

Northern Great Plains, primarily due to grassland degradation forcing hawks to use multiple 

landcover types to find habitat resources (Gilmer and Stewart, 1984; Inselman et al., 2016; 

Murphy, 2010). Thick-billed longspur occurred in the most diverse habitats (4-6 landcover 

types), implying adaptive habitat selection in human-dominated landscapes (Swicegood et al., 

2022).  

By the end of the century in the UMRB, the maximum number of species per 250 x 250m 

pixel is projected to drop from nine to seven due to range contractionby some species. However, 

because of expansion in the distribution of some other species, almost the entire UMRB is 

projected to have at least one of the 17 focal species per 250 x 250m pixel. Our modeling results 

showed that species richness in agricultural areas of the far east and northeast are projected to 

decrease, while species richness of mountainous areas is projected to increase. By the mid-

century, our models predicted different outcomes for species richness for the two climate change 

scenarios. Under RCP 2.6, species richness of mountainous areas will increase, while under RCP 

4.5 species richness will remain stable or increase slightly in comparison to current species 

richness in mountainous areas. This is mainly because under RCP 4.5, temperature variables will 

increase less than under RCP 2.6. Consequently, mountainous areas could act as climate refugia 
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for species with lower tolerance of higher temperatures predicted under the RCP 2.6 scenario. 

Previous studies also found that mountainous areas of UMRB and higher latitudes in the northern 

UMRB are projected to experience an increase in species richness (Baltensperger et al., 2020; 

Nixon et al., 2016). 

My results are also consistent with previous studies on spatial variation in changes in 

species richness and abundances for most species under climate and landcover change scenarios 

(Baltensperger et al., 2020; Distler et al., 2015). However, our findings differ for some species. 

Our models projected that Baird’s sparrow, greater sage-grouse, Sprague’s pipit, and chestnut-

collared longspur will lose their distributions in the UMRB in the future. Future disappearance of 

these species from the study region is consistent with Audubon’s Birds and Climate Change 

Report (ABCCR 2014). However, Baltensperger et al. (2020) predicted persistence of these 

species within the western UMRB under RCP 4.5 by 2050, with either declines or increases in 

abundance. This discrepancy likely results from use of different modeling approaches or 

different climate or land-use/landcover scenarios. I used a suite of 19 bioclimatic variables in this 

study while Baltensperger et al. (2020) used a limited number of these variables. 

My models projected that sharp-tailed grouse, sedge wren and ferruginous hawk will 

experience increases in abundance under RCP 2.6. However, our models predicted that 

abundance of these species will decrease under RCP 4.5 by 2050 but will recover by 2100. 

Baltensperger et al (2020) predicted increasing abundance for sharp-tailed grouse and ABCCR 

(2014) predicted range losses under all warming scenarios for all three species. ABCCR (2014) 

employed Special Report on Emission Scenarios (SRES) in their modeling effort and 

Baltensperger et al (2020) also used a SRES scenario but coupled it with the RCP 6.0. The RCP 

2.6 scenario is more optimistic than any SRES scenario because it includes the option of using 



 

157 

 

policies to achieve net negative carbon dioxide emissions before the end of the century, while 

SRES scenarios do not (Riahi et al., 2017).  

My modeling results projected that upland sandpiper will lose its distribution in the 

UMRB in the future. However, ABCCR (2014) and Baltensperger et al (2020) both predicted 

that its distribution will not change. Our models revealed that areas of highest abundance for 

upland sandpiper, and other species with predicted declining abundances in the future, were 

limited to areas with relatively low mean annual temperature. In the future, increases in mean 

annual temperature will exceed the upper limit of this variable for these species. Predictions of 

ABCCR (2014) and Baltensperger et al. (2020) for current upland sandpiper distribution are 

optimistic, predicting most non-woody habitats as suitable habitats. In contrast, our prediction of 

the current distribution of upland sandpiper follows that of Sauer et al. (2017), in which the 

highest abundance is expected to be in the central Dakotas to northeastern Montana and the 

lowest abundance is expected to be in far east and west of the UMRB. Again, these differences 

could result from applying different modeling approaches and different climate/land use-land 

cover scenarios. 

My modeling results projected that some species facing declines in their populations by 

mid-century may rebound by the end of the century under specific climate change scenarios. 

Thus, projecting abundances for longer time periods and various climate and landcover change 

scenarios could help to better assess the influence of climate change on species and help 

managers develop climate change mitigation plans. Also, species that are predicted to go through 

population declines in the UMRB could shift their distributions northward, beyond the 

boundaries of our study area (Nixon et al., 2016). Thus, preserving and restoring remaining 
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grasslands within current and northern suitable habitats are important considerations for ensuring 

long-term persistence of grassland bird species.  

M results also indicate that modeling relationships between species niches and changes in 

abundance and considering multiple scales of effect could help to understand mechanisms by 

which climate and land-use changes could influence avian abundance. According to my 

modeling results, maintaining and restoring habitat heterogeneity at 1-km radius scales is 

important for many grassland species. Hay, crop, and herbaceous wetlands could provide some 

habitat requirements or be used as alternative habitats by grassland species with an appropriate 

proportion of grasslands on the landscape. Future studies can investigate the importance of 

landcover heterogeneity at broader scales. In addition, future studies can incorporate more 

detailed landcover data in their models. Experimental studies that manipulate landcover at 

various scales and monitor grassland bird responses (e.g., abundance, nesting success, predator 

avoidance) would also be beneficial to elucidate mechanisms for population changes. Finally, 

future studies of thermal tolerances and thermal effects on nesting productivity and winter 

survival (for permanent resident species) are also needed for a more mechanistic understanding 

of how climate change might mediate population responses in grassland birds. 
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Chapter 4 Highlights and Conclusion 

My findings in this dissertation showed that considering multiple scales of effects can 

increase our understanding of species-habitat relationships. Moreover, incorporating the effects 

of multiple spatiotemporal scales into habitat suitability modeling can improve species-habitat 

predictions.  

Our study on niches and distribution of Virginia’s warbler at its northeastern range limit 

(Chapter 1, Goljani Amirkhiz et al., 2021), showed that choosing extents and scales of effect 

based on habitat selection concepts (Johnson, 1980) could improve understanding of rare species 

niche requirements and increase the accuracy of predictions. Our results were consistent with the 

hypothesis that environmental covariates can have different roles, interpretations, and influences 

on the occurrence of Virginia’s warbler at different scales. The importance of multiscale 

modeling could be magnified in rare species with narrow niches. This study showed that habitat 

selection could provide a theoretical framework to specify appropriate extents and scales of 

effect when an Ensemble of Small Models (ESMs) is employed in rare species distribution 

studies. Regarding the ESMs, we found that the performance of different modeling techniques 

(e.g., random forest, artificial neural networks, regression) could vary among scales. Thus, 

finding an optimal modeling technique for each scale of effect should be considered when ESMs 

are employed. We found that a spatial hierarchical framework can take advantage of strengths of 

both presence-absence-based methods and presence-background approaches to test habitat 

selection hypotheses for rare species. In this study, applying an ESMs approach within a 

hierarchical framework led to detailed information about the Virginia’s warbler’s niche, limiting 

factors at each scale of habitat selection, and potential distribution, which could be helpful for 

multiscale management and future research.  Future research can apply the framework that we 
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introduced in this study for other rare species and taxa to investigate their habitat associations at 

multiple scales. Developing an R-package or extending current ESMs packages to be able to 

consider habitat selection at multiple scales is another potential open research avenue. Model 

predictions from this study can inform future survey work to further test model predictions, to 

more fully define the Virginia's warbler’s range, and to inform future management plans for 

Virginia's warbler in the Black Hills. 

Our research on the influence of seasonal and annual habitat variation on relative 

abundance of ring-necked pheasant roosters (Chapter 2, Goljani Amirkhiz et al., 2023) showed 

that relationships among species abundance, habitat factors, and scales of effect may vary 

seasonally and annually. Our findings emphasize the necessity of considering temporal as well as 

spatial resolution of landcover datasets for species like pheasants, where habitat selection may 

differ based on available habitat resources and climate conditions. Employing seasonal 

covariates of primary production, daytime and nighttime land surface temperatures, and air 

temperature and precipitation, in addition to commonly used annual land cover data, could help 

account for the effects of seasonal changes on habitat suitability and relative abundance of 

pheasants, although potential mechanisms for these effects were not always clearly evident. 

Using a reversible-jump Markov chain Monte Carlo method allowed us to select optimal scales 

of effect and the best subset of covariates simultaneously without being impacted by collinearity. 

Future studies should investigate how changes in quality and quantity of Conservation Reserve 

Program (CRP) lands through time may affect pheasant abundance at various scales of effect. 

Our models were based on rooster pheasant detections, so understanding how habitat selection 

by rooster pheasants influences habitat selection by breeding hen pheasants and overall pheasant 

abundance is another appropriate target for future research. In our study, we modeled relative 
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abundance of pheasants rather than absolute density since we used survey data that were not 

designed to meet N-mixture model assumptions. Future research which develops and conducts 

surveys designed to meet N-mixture model assumptions could ascertain whether these models 

can be used to effectively estimate absolute pheasant densities. Our workflow should be helpful 

in modeling count data for other bird species, especially for grassland bird species, to help 

inform management decisions. 

In the third study of this dissertation (Chapter 3), we modeled the influence of landcover 

and climate change under bioenergy with carbon capture and storage (BECCS) scenarios on 

grassland bird abundances in the UMRB at multiple scales. In this study, we investigated how 

predicted responses to these changes are related to species niches. By applying a shrinkage 

approach, we included a wide range of bioclimatic variables. In addition, we were able to 

incorporate fine and coarse scales of effect for landcover and topographic variables in models 

while minimizing the impact of collinearity, even when habitat associations appeared in opposite 

directions at different scales. We found that relationships between landcover variables and the 

abundances of grassland birds varied at different scales of effect. Some relationships appeared at 

one or both scales, emphasizing the importance of considering multiple scales in studying habitat 

associations of birds in agricultural landscapes. Similar to some other recent studies (Sohl 2014, 

Baltensperger et al. 2020), our results showed that the influence of climate change on changes in 

abundance, distribution and species richness of grassland birds in the UMRB is more pronounced 

than the influence of land-cover changes due to implementing BECCS or other carbon mitigation 

scenarios. This is mainly because the proportion of different landcover types will not be 

impacted dramatically by the end of the century by implementing these scenarios. This finding 

implies that regardless of landcover and land-use changes, climate change can limit or expand 
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abundance and distribution of grassland birds in the UMRB. We found that grassland birds will 

be more affected by increases in temperature than by decreases in precipitation. Response curves 

showed that the niches of most of our study species are restricted by one or multiple temperature 

variables. Our results indicated that investigating relationships between species niches and 

changes in abundance while considering multiple scales of effect could help to understand why 

and how climate and land-use changes can influence abundance. According to our results, 

maintaining and restoring habitat heterogeneity at a 1-km radius is important for many grassland 

species. Hay, crop and herbaceous wetland habitat types could meet some habitat requirements 

or be used as alternative habitats by grassland species as long as appropriate proportions of 

grasslands are present on the landscape. Future studies should investigate the importance of 

landcover heterogeneity at broader scales and should incorporate more detailed landcover data.  
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