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ABSTRACT

In this thesis, the main topic is convolution as a mathematical operation and Con-
volutional Neural Networks (CNN’s). While convolution is classically defined as a
function, it can also be defined as an operator from Lp(R) to itself for 1 ≤ p ≤ 2 where
Tw(f) = f ∗ w given some w ∈ L1(R). CNN’s use convolution in its convolutional
layers. Defining a neural network to be the composition of layer maps, we find that
the neural network is, by necessity, Lipschitz. While CNN’s can be very powerful
for image classification, slight changes to an image can completely fool the network.
By augmenting our training data with these modifications, the network’s ability to
correctly classify images with these modifications significantly increases.
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Chapter 1

Introduction

Convolutional Neural Networks (CNN’s) have become popular in the last decade for

their applications to image classification and signal processing. Their architecture is

well-designed for processing input data such as pixels, images, and audio signals due

to the mathematical operation behind it: convolution. While convolution is classically

studied in the continuous case, it can be defined for discrete inputs. This makes it

perfect for working with images. CNN’s can be quite a powerful and effective tool for

image classification. However, this is not always the case. Modifying an image even

slightly can completely fool the network. How can we fix this?

In this thesis, we present a rigorous study of both convolution in both the contin-

uous and discrete cases and of CNN’s. We begin in Chapter 2 by discussing spaces

of signals, in particular Hilbert spaces. We then move onto properties of operators

and define several operators that can interact with convolution. In Chapter 3, we

formally define convolution in the continuous and discrete cases. We extract several

key properties regarding norms and then move on to defining convolution as an oper-

ator. We then extract more properties and then conclude the chapter by looking at

the interaction between the convolution operator and other operators.

We then turn our attention to the structure and training of CNN’s in Chapter

4. We discuss the architecture and training of CNN’s, as well as the advantages and

disadvantages of using them. We then formally define several key components of the
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network, including the network itself before proving that the network satisfies the

Lipschitz property under certain conditions. In Chapter 5, we prepare to actually

use the network. We introduce the modifications we will apply to various images,

including a blur, a rotation, and a translation into a larger image. We then introduce

a technique that will give us insight into how the network approaches classifying a

particular image called a GradCAM.

In the final chapter, we run experiments to see how modifications to images affect

their classification. We first run these images on both a pre-trained network and a

manually trained network. We then run these images on a network whose training

data has been augmented to help it correctly classify images with modifications on it.

We find that, in each case, augmenting the training data results in an improvement in

performance.
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Chapter 2

Preliminaries

In this chapter, we will discuss theoretical concepts required for our study of convo-

lution and neural networks. We start by describing and defining different spaces that

we will use during the construction of the convolution operator. The spaces and their

corresponding norms we will work with are:

L2([−π, π]) = f : [−π, π] → C|
π

−π

|f(x)|2dx < ∞
{ ∫ }

with norm ∥f∥2 =
π

−π

|f(x)|2dx
√∫

L1(R) = f : R → C| |f(x)|dx < ∞ with norm ∥f∥1 = |f(x)|dx
{ ∫ ∞

−∞

} ∫ ∞

−∞

L2(R) = f : R → C|
∞

−∞
|f(x)|2 < ∞ with norm ∥f∥2 =

∞

−∞
|f(x)|2dx

{ ∫ } √∫
We will also consider the discrete versions of the spaces above:

l2(Z) = f : Z → C|
n∈Z

|f(n)|2 < ∞ with norm ∥f∥2 =
n∈Z

|f(n)|2
{ ∑ } √∑

l1(S) = {f : S → C|
x∈S

|f(x)| < ∞} with norm ∥f∥1 =
x∈S

|f(x)|
∑ ∑

where S is a countable set

l2(S) = {f : S → C|
x∈S

|f(x)|2 < ∞} where S is a countable set, and

C|S| = {f : S → C}

∑

If S is finite then l2(S) = C|S|.
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2.1 Properties of Spaces

We now discuss properties of spaces. In particular, we will consider Hilbert spaces and

their consequences.

Definition 2.1.1. Let H be a linear space. We call a function ⟨·, ·⟩ : H ×H → R an

inner product on H if ∀x1, x2, x, y ∈ H and α, β ∈ R, we have:

(i) ⟨αx1 + βx2, y⟩ = α⟨x1, y⟩+ β⟨x2, y⟩,

(ii) ⟨x, y⟩ = ⟨y, x⟩, and

(iii) ⟨x, x⟩ > 0 if x = 0.̸

Definition 2.1.2. If H is a linear space and is equipped with an inner product on

H, then we call H an inner product space with a norm induced by the inner product

∥f∥ = ⟨f, f⟩
√

Definition 2.1.3. If H is a Banach (complete) space with respect to the norm induced

by the inner product, the we call H a Hilbert space.

It is known that L2 and l2 are both Hilbert spaces. Let f, g L2,∈ then ⟨f, g⟩ =∫
f(x)ḡ(x)dx L1∈ by the Cauchy-Schwartz Inequality [2].

Theorem 2.1.1. L2([−π, π]) admits an orthonormal basis.

Proof. We first need to show that each vector has a unit norm. Let en L2([ π, π]),∈ −

where en(t) =
e

= [cos(nt) + i sin(nt)]
1int

2π
·
2π

The L2 norm of en gives us: ∥en∥22 =
π

−π

cos2(t)

4π2
+

sin2(t)

4π2
= 1

∫ √
4



Therefore each vector has a unit norm. We now need to show that:

⟨en, em⟩ =

1 n = m

0 n = m


̸

Case 1: n = m

⟨en, en⟩ =
∫ π

−π

en · ēn =
1

2π

∫ π

−π

eint · e−intdt

=
1

2π

∫ π

−π

[cos(nt) + i sin(nt)] · [cos(−nt) + i sin(−nt)]dt

=
1

2π

∫ π

−π

[cos(nt) + i sin(nt)] · [cos(nt)− i sin(nt)]dt

=
1

2π

∫ π

−π

cos2(nt) + sin2(nt)dt

=
1

2π

∫ π

−π

dt =
1

2π
t
∣∣∣π
−π

= 1

Case 2: n = m

⟨en, em⟩ =
∫ π

−π

en · ēmdt =
1

2π

∫ π

−π

eint · e−imtdt

=
1

2π

∫ π

−π

[cos(nt) + i sin(nt)] · [cos(mt)− i sin(mt)]dt

=
1

2π

∫ π

−π

cos[(n−m)t] + i sin[(n−m)t]dt

=
1

2π(n−m)
sin[(n−m)t]

∣∣∣π
−π

− i

2π(n−m)
cos[(n−m)t]

∣∣∣π
−π

= 0

̸

So (en)n∈Z is an orthonormal system. It is a known result from Real Analysis that

L2(E) is complete. Although it will not be proven here, this is formally known as the

Riesz-Fischer Theorem [2]. Before we move to the next theorem, an important result

is presented. This will be used in the proof of the next theorem.

Lemma 2.1.1 (Parseval’s Identities). Let {φn} be an orthonormal basis for a

5



Hilbert space H. Then ∀h, u, v ∈ H:

(i) ∥h∥2 =
∞∑
n=1

⟨φn, h⟩2 and

(ii) ⟨u, v⟩ =
∞∑
n=1

an · bn where ∀n ∈ N, an = ⟨u, φn⟩ and bn = ⟨v, φn⟩

We are now ready to discuss an operator from L2 to l2 defined by an inner product

and extract several key properties:

Theorem 2.1.2. Let f ∈ L2([−π, π]). Define T : L2([−π, π]) → l2(Z) by

T (f)(n) = ⟨f, en⟩ ∀n ∈ N, ∀f ∈ L2([−π, π])

Then T satisfies the following properties:

(i) T is linear

(ii) T is an isometry

Proof. (i) Let α, β be scalar constants. Then:

T (αf + βg) = ⟨αf + βg, en⟩

= ⟨αf, en⟩+ ⟨βg, en⟩

= α⟨f, en⟩+ β⟨g, en⟩

= αT (f)(n) + βT (g)(n)

(ii) We want to show ∥T (f)− T (g)∥l2 = ∥f − g∥L2

Since T is linear, ∥T (f)− T (g)∥2
l2
= ∥T (f − g)∥2

l2

By Parseval’s Identities, ∥T (f − g)∥2l2 =
∞∑
n=1

⟨f − g, en⟩2

=

∫ π

−π

|(f − g)|2 = ∥f − g∥2L2

6



Therefore ∥T (f)− T (g)∥l2 = ∥f − g∥L2

2.2 Operators

In preparation for discussing the convolution operator, we will now discuss several

operators related to actions we will later perform on images. We will consider these

operators defined over Hilbert spaces.

Definition 2.2.1. If H is a Hilbert space then T : H → H is a bounded operator if T

is linear and continuous.

Definition 2.2.2. Given a ∈ R, the translation operator Aa : L1,2(R) → L1,2(R) is

defined by Aa(f(x)) = f(x− a) where either L1 or L2 can be used.

Proposition 2.2.1. T is a bounded operator on H iff T is linear and ∥T∥ < ∞ where

T = sup T (v) v 1∥ ∥ {∥ ∥ | ∥ ∥ ≤ }

Proof. ⇒ Let T be bounded on H. By definition, T is both linear and continuous.

Assume vn → v in H.

Then vn − v → 0.

Since T is continuous, we have T (vn − v) → T (0) = 0.

Therefore T is uniformly continuous and we have that:

sup{∥T (v)∥ | ∥v∥ ≤ 1} < ∞

Thus ∥T∥ < ∞

7



⇐ Let T be linear and ∥T∥ < ∞. We need to show that T is continuous.

Let ε > 0 and take δ =
1

∥T∥ · ε.

Assume ∥v1 − v2∥ < δ for v1, v2 ∈ H.

Then, by using linearity and the Cauchy-Schwartz Inequality, we obtain:

∥T (v1)− T (v2)∥ = ∥T (v1 − v2)∥

≤ ∥T∥ · ∥v1 − v2∥

< ∥T∥ · 1

∥T∥ · ε = ε.

Therefore T is continuous and linear, so by definition T is bounded.

We will now define an adjoint and prove an important theorem that will help us once

we move to the convolution operator.

Definition 2.2.3. Let H be a separable Hilbert space and T : H → H be a bounded

operator. Then an adjoint T ∗ : H ′ → H is called the adjoint of T if ∀v ∈ H and

w ∈ H ′ we have the following:

⟨T ∗(w), v⟩H = ⟨w, T (v)⟩H

For the translation operator Aa : L
2(R) → L2(R), we have:

∥Aa∥2 = sup∥Aa(f)∥2 = 1

Theorem 2.2.1. A∗
a(f)(x) = f(x+ a) is the adjoint operator of Aa.

Proof. We need to show ⟨f, Aag⟩L2 = ⟨A∗
af, g⟩L2 . Starting with the left side, we get:

8



⟨f, Aag⟩L2 =

∫
R
f(x) · (Aag)(x)dx

=

∫
R
f(x) · g(x− a)dx

=

∫
R
f(y) · g(y − a)dy Substituting y = x+ a yields:

=

∫
R
f(x+ a) · g(x)dx

=

∫
R
A∗

af(x) · g(x)dx

=⟨A∗
af, g⟩L2 .

To finish the chapter, we will define another operator related to actions performed

on images and its adjoint:

Definition 2.2.4. The rotation operator Rθ : L
1,2(R) → L1,2(R) is defined by

Rθ(f)(x, y) = f(x′, y′) where x′ = x cos(θ) + y sin(θ) and y′ = y cos(θ)− x sin(θ)

Theorem 2.2.2. R∗
θ(f)(x, y) = f(x′′, y′′) where x′′ =

x− y cos(θ)

cos(θ)
and y′′ =

y + x sin(θ)

cos(θ)

is the adjoint operator of Rθ

Proof. We need to show that ⟨f,Rθ⟩H = ⟨R∗
θf, g⟩H . We obtain:

⟨f,Rθg⟩H =

∫
R
f(x, y) ·Rθ(g)(x, y)dxdy

=

∫
R
f(x, y) · g(x cos(θ) + y sin(θ), y cos(θ)− x sin(θ))dxdy

=

∫
R
f
(x′ − y sin(θ)

cos(θ)
,
y′ + x sin(θ)

cos(θ)

)
· g(x′, y′)dx′dy′

=

∫
R
f
(x− y sin(θ)

cos(θ)
,
y + x sin(θ)

cos(θ)

)
· g(x, y)dxdy

=

∫
R
f(x′′, y′′) · g(x, y)dxdy

9



=
R
R∗

θf(x, y) · g(x, y)dxdy

= ⟨R∗
θf, g⟩H .

∫

10



Chapter 3

Convolution

We are now ready to talk about convolution. In this chapter we will define convolution

in both the discrete and continuous cases, extract properties using the convolution

operator, and show examples of convolution in action.

3.1 Classical Convolution

We begin with the classically used definition:

Definition 3.1.1. For f, w ∈ L1(R), we define the convolution of f and w as

(f ∗ w)(x) =
∫
R
f(y)w(x− y)dy.

We will now prove several key properties of convolution:

Theorem 3.1.1. If f, g ∈ L1(R), then (f ∗ w) has the following properties:

(i) f ∗ w is well-defined

(ii) f ∗ w = w ∗ f

(iii) f w 1 f 1 w 1∥ ∗ ∥ ≤ ∥ ∥ · ∥ ∥
11



Proof. (i) Let F (x) =
R
f(y)w(x− y)dy where F : R → R̄

Since F is integrable, F is finite for a.e. x ∈ R.

By Fubini’s Theorem [2],

∫
R
|F (x)|dx ≤

∫
R

∫
R
|f(x− y)| · |w(y)|dxdy

=

∫
R
∥f∥1|w(y)|dy

=∥f∥1 · ∥w∥1 ≤ ∞.

Therefore F (x) ∈ L1(R).

(ii) (f ∗ w)(x) =
∫
R
f(y)w(x− y)dy Substitute y = x− z:

=

∫
R
f(x− z)w(z)dz =

∫
R
w(y)f(x− y)dy

=(w ∗ f)(x)

(iii) ∥f ∗ w∥1 =
∫
R
|(f ∗ w)(x)| dx ≤

∫
R

∫
R
|f(y)w(x− y)| dydx

=∥f∥1 · ∥w∥1.

∫

More general than the previous theorem, the following result from [3] is true:

Theorem 3.1.2. If f L1(R), g Lp(R) for 1 p , then (f g) LP (R)∈ ∈ ≤ ≤ ∞ ∗ ∈∫
Proof. Let h(x) = (f ∗ g)(x). Clearly |h(x)| ≤

R
|f(y)| · |g(x− y)|dy.

Using Minkowski’s Inequality, we obtain:(∫
R
|h(x)|pdx

) 1
p

≤
∫
R

(∫
R
|g(x− y)|pdx

) 1
p

|f(y)|dy

= ∥f∥1 · ∥g∥p < ∞.

12



Therefore (f ∗ g) ∈ LP (R).

Definition 3.1.2. Given f : R → R continuously differentiable and f ∈ L1, the

Fourier Transform of f is defined by:

F [f(t)](x) =
1√
2π

·
∫
R
f(t)e−itxdt.

One of the fundamental properties of the Fourier Transform is that when it is applied

to a convolution, the result is the product of the Fourier Transforms of each function:

Theorem 3.1.3. F(f ∗ g) = F(f) · F(g) where F is the Fourier Transform.

While a proof of this theorem is not given here, one can be found in [1].

3.2 Convolution Operator

Having looked at convolution as a function, we now want to look at it as an operator.

This will allow us to find connections between convolution and other operators. To

begin our discussion, we look at a very important class of functions for defining the

convolution operator.

Definition 3.2.1. The Schwartz Class of functions is denoted by

S(R) = {f ∈ C∞(R)| supx∈R |xif (j)(x)| ≤ Ni,j, Ni,j ∈ N}

Generally, the Schwartz class of functions on R can be thought of as the class of

continuously differentiable functions whose derivatives decay faster than any polyno-

mial. More importantly for our purposes, the Schwartz class is dense in both L1(R) and

L2(R). This result can be found in [3]. Therefore, if f, w ∈ S(R), then (f ∗w) ∈ S(R).

We can then define T : S(R) → S(R) T (f) = f∗w where T is well-defined. This admits

an extension to L2(R) which we will formally define as the convolution operator:

13



Definition 3.2.2. Given w ∈ L1(R), for 1 ≤ p ≤ 2 the convolution operator

Tw : Lp(R) → Lp(R) is defined by Tw(f) = f ∗ w with norm

∥Tw∥ = sup{∥Tw∥p|∥f∥p ≤ 1}.

We will now extract several properties from the convolution operator:

Theorem 3.2.1. The convolution operator has the following properties:

(i) Tw is well-defined

(ii) Tw is linear

(iii) ∥Tw∥ ≤ ∥w∥1

(iv) Tw is commutative

Proof. (i) By Theorem 3.1.1, Tw is well-defined.

(ii) Tw(αf + βg) = (αf + βg) ∗ w

=

∫
R
[αf + βg](y) · w(x− y)dy

=

∫
R
[αf(y) + βg(y)] · w(x− y)dy

=

∫
R
αf(y) · w(x− y) + βg(y) · w(x− y)dy

=α

∫
R
f(y) · w(x− y)dy + β

∫
R
g(y) · w(x− y)dy

=αTw(f) + βTw(g)

(iii) Using the definition of ∥Tw∥ and Theorem 3.1.2, we obtain:

∥Tw∥ = sup{∥Tw(f)∥p|∥f∥p ≤ 1}

sup f w p f p 1≤ {∥ ∗ ∥ |∥ ∥ ≤ }
14



≤ sup{∥f∥p · ∥w∥1|∥f∥p ≤ 1}

≤ ∥w∥1.

(iv) Let Tw and Tg be the convolution operators of w and g, respectively. Then:

Tw ◦ Tg = Tw(Tg(f))

=Tw(f ∗ g)

=(f ∗ g) ∗ w

=(g ∗ f) ∗ w

=g ∗ (f ∗ w)

=Tg(Tw(f))

=Tg ◦ Tw.

Definition 3.2.3. F : Lp(R) → Lp(R) is time-invariant if F is linear and F ◦ Aa =

Aa ◦ F where Aa is the translation operator.

The following Theorem can be found in [1]:

Theorem 3.2.2. If F is time-invariant on the space of piece-wise continuous func-

tions, then ∃w ∈ L1(R) such that F (f) = f ∗ w.

Theorem 3.2.3. The convolution operator is time-invariant.

Proof. Tw ◦ Aa(f)(x) = Tw(f)(x− a)

=

∫
f(y)w(x− a− y)dy

R
15



= (f ∗ w)(x− a)

= Aa(f ∗ w)(x)

= Aa ◦ Tw(f)(x).

We will now show examples of convolution in the discrete cases:

Definition 3.2.4. Given f, w ∈ l2(Z), we define the discrete convolution of f and w

as (f ∗ w)[n] =
∞∑

k=−∞

f [k]w[n− k]

Definition 3.2.5. Given f, w ∈ l2(Z) with 2-D discrete signals, we define the discrete

convolution of f and w as (f ∗ w)[n,m] =
∞∑

i=−∞

∞∑
j=−∞

f [i, j]w[n− i,m− j]

Instead of using continuous data, we will replace this with finite dimensional data to

approximate L2 or l2. In the 1-D case, we replace f(x) ∈ Lp(R) for 1 ≤ p ≤ 2 with

[fi]
k
i=1 where ∥f∥2 =

k∑
i=1

|fi|2. This is a suitable interpretation for audio signals or

images if we think of image data, which is a matrix, as a large row. In the 2-D case,

we replace f(x) ∈ Lp(R) with [f(i, j)]i=1,...,n
j=1,...,m. This is a more suitable interpretation

for image-like data.
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Chapter 4

Structure and Training of

Convolutional Neural Networks

Convolutional Neural Networks (CNN’s) are a special type of neural network often

used for image, audio, and speech recognition. There are three main types of layers:

convolutional layers, pooling layers, and the fully connected layer. The convolutional

layers are the foundation of the network and is where most of the computing occurs.

Inputs are convolved with a filter function to give an output called a feature. This

filter has weights on it that are created and adjusted during the training process. This

is done until what is called a feature map is extracted. There may be more than one

convolutional layer, if so the process is repeated in the next layer. The pooling layers

are similar to the convolutional layers in that a filter is applied to each input, but

they differ in that the filter no longer has any weights. The filter is an aggregation

function, usually either a max or averaging function. While some data is usually lost

in the pooling layer, it helps reduce complexity and can prevent potential overfitting.

The fully-connected layer has a different use. While the previous two types are used for

feature extraction, the fully-connected layer is used for classification. The classification

is based off of the filters applied to the features and the resulting feature map. An

activation function is used to give a prediction between 0 and 1.

Why are CNN’s better equipped for image classification than other types of neural
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networks? There are three main reasons: sparse interactions, parameter sharing, and

equivariant representations. In other neural networks, layers often use matrix multipli-

cation with a parameter matrix that describes the interactions between each input unit

and each output unit. This means that there are often a large number of parameters,

which can slow the network down. However, this is not the case in CNN’s. In CNN’s,

the filter is typically made smaller than the input. Instead of having the filter detect

every interaction between units, the filter can detect more meaningful features such

as edges. This means that CNN’s will have sparse interactions between units. Since

these features might only have a couple hundred pixels instead of millions, we can

store significantly fewer parameters. This improves efficiency and reduces the burden

of the hardware on the model.

Parameter sharing is when a single parameter is used for more than one function

in a model. In other types of neural networks, each element of the parameter matrix is

used once to compute a feature and then essentially forgotten as it is not used again. In

CNN’s each parameter of the filter is used for every input with some exceptions, such

as edges. This means that instead of learning a new set of parameters for each input,

the network only needs to know one set of parameters for every input. While this does

not affect the efficiency of the network, it does reduce the hardware requirements for

the model. We can call the number of parameters required k. As discussed in the

previous paragraph, k is significantly smaller than m. Since m and n are often the

same size, k is so much smaller than m× n, the hardware requirements for CNN’s are

significantly smaller than for other models.

CNN’s are trained using what is called ”supervised learning”. This consists of

two phases: the forward phase and the backward phase. During the forward phase,

the network will store any inputs it receives that it’ll need for the backward phase.

Once the forward phase is completed, the backwards phase will begin. In this phase,

each layer will receive a gradient and return a gradient. The gradient it receives is

the gradient of loss concerning its outputs, and the gradient it returns is the gradient

of loss concerning its inputs. This process is called gradient descent. The objective
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during training is to minimize the loss function, while simultaneously maximizing the

performance of the network. Here is an example of a loss function:

f(x) =
n∑

i=1

∥Axi + b− yi∥2.

This loss function could be used if the training used linear regression. It measures

the difference between the predicted value and the actual value. During the backward

phase, the loss function is used to adjust the weights in the convolutional layers. The

goal is to find A and b such that the loss function is minimized.

There are two major problems that we want to avoid during training: underfitting

and overfitting. Underfitting occurs when the network cannot identify dominant trends

in the training data so it will perform poorly on both the training data and the testing

data. This can be caused by a small training sample or an oversimplified model

network. This issue can be solved by either creating a suitable training sample or

adding more layers to the network. Since underfitting cause performance issues during

the training phase, it can be detected earlier and easier.

Overfitting is almost the exact opposite problem of underfitting. Overfitting occurs

when the training error is significantly smaller than the testing error. The network will

perform phenomenally on the training data but will struggle with testing data that it

hasn’t seen yet. This is often the result of a training sample that is too large since the

network will become very sensitive to specific parameters of the training data. This

can be harder to identify since the network will do very well with the training data

and potentially testing data that is very similar to the training data. Diversifying your

training sample can help with overfitting.

We will now discuss a particular CNN called GoogLeNet. GoogLeNet is a deep

CNN that is often used for image classification, among other things. The size of the

network is 224 × 224 with 22 layers trained on 1000 categories and over one million

images. Every convolutional layer uses a ReLU as an activation function, which we

formally define and discuss later in the chapter. Here is a table showing the architecture

of the network taken from [7]:
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Figure 4.1: Architecture of GoogLeNet

We will now formally define features, layers, and the net as functions:

Definition 4.0.1. Given a matrix M and a vector v⃗, we define a feature map F :

Rn → Rm as one of the following:

(i) F (x) = M · x+ v⃗

(ii) F (x) = M ∗ x

(iii) F (x) = M,x⟨ ⟩

In case (iii), M can be replaced by a vector.

Definition 4.0.2. We define a layer map L : Rn → Rm as

L(x) = (σ1(F1(x)), σ2(F2(x)), ..., σm(Fm(x)))

where σi are activation functions and Fi are feature maps.

Definition 3.3: A neural network of depth k is a map Φ : Rn → Rm where

Φ(x) = Lk Lk−1 ... L1(x)◦ ◦ ◦
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There are several different types of activation functions that can be chosen. In

general, non-linear activation functions are preferred. This is because linear activation

functions, which can be characterized as f(x) = ax+b, do not allow for gradient descent

during the backwards training phase, as the derivative of f(x) will be constant. In

addition, if a linear activation function is used, then every layer of the network can

be written in terms of the first layer, turning our network from a multi-layer network

into just a single layer. Therefore, non-linear activation functions are preferred.

A sigmoid function can be chosen as an activation function. We define a sigmoid

function, also called a logistic function, as f(x) =
1 + e−x

with f ′(x) = f(x)f(1 −1

f(x)). The range of this function is (0,1) so it can work well for outputting proba-

bilities. Sigmoids are also nice because they are continuously differentiable. Another

function that can be chosen as an activation function is the hyperbolic tangent func-

tion f(x) = tanhx with f ′(x) = sech2(x). This function is similar to the sigmoid

function in that its range is (-1,1) and is continuously differentiable.

Both of these functions suffer from the same problem called the ”vanishing gradi-

ent”. The range of both of these function’s derivatives is (0,1). During the backwards

phase, partial derivatives are computed using the chain rule. Therefore, in a suffi-

ciently large network, when enough of these derivatives are multiplied together the

gradient will exponentially decrease. This means that the weights created for each

layer during training will not be accurate and will hinder the accuracy of the network.

To solve this problem, a Rectified Linear Unit (ReLU) is often used as an activation

function. We define a ReLU as:

f(x) =


x x > 0

0 x ≤ 0



We define the derivative of the ReLU as:

f ′(x) =


1 x > 0

0 x < 0
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Since not every input will be activated, the ReLU is far more efficient compared

the the sigmoid or tanh functions. It is also easier to optimize since it behaves as

a linear function for positive values while being non-linear for negative values. This

disadvantage of a ReLU is that it can suffer from what is called the dying ReLU. Since

negative values will make the gradient 0, during the backwards phase weights will not

always be updated. This hinders the network’s ability to be trained from the data

accurately. This problem can be fixed by using a Leaky ReLU function. We define the

Leaky ReLU function as:

f(x) =


x x > 0

0.01x x ≤ 0



We define the derivative of the Leaky ReLU as:

f(x) =


1 x > 0

0.01 x < 0



The Leaky ReLU maintains all advantages of the ReLU while not disrupting the

backwards training phase for negative values. If one desires, the value 0.01 can be

changed to a different weight that might be more useful for the particular network.

This type of ReLU is called a Parametric ReLU.

We will now introduce one well-known property from analysis and relate it to our

neural network.

Definition 4.0.3. : Let f be a real-valued function defined on a set E. f is Lipschitz

if ∃c ≥ 0 such that ∥f(x)− f(y)∥ ≤ c · ∥x− y∥ ∀x, y ∈ E.

Definition 4.0.4. We define the Lipschitz constant as

c = inf{d | ∥f(x)− f(y)∥ ≤ d · ∥x− y∥ ∀x, y ∈ E}.
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Lemma 4.0.1. Each feature map is Lipschitz.

Proof. Case 1: F (x) = M · x+ v⃗

Using linearity of multiplication and the Cauchy-Schwartz Inequality, we obtain:

∥F (x)− F (y)∥ = ∥M · x+ v⃗ −M · y − v⃗∥

= ∥M · (x− y)∥

≤ ∥M∥ · ∥x− y∥

Case 2: F (x) = M ∗ x

Using linearity of convolution and Theorem 2.0.1, we obtain:

∥F (x)− F (y)∥ = ∥M ∗ x−M ∗ y∥

= ∥M ∗ (x− y)∥

≤ ∥M∥ · ∥x− y∥

Case 3: F (x) = ⟨M,x⟩

Using linearity of the inner product and the Cauchy-Schwartz Inequality for norms,

we obtain:

∥F (x)− F (y)∥ = ∥⟨M,x⟩ − ⟨M, y⟩∥

= ∥⟨M,x− y⟩∥

≤ ∥M∥ · ∥x− y∥

Lemma 4.0.2. If each activation function σi is Lipschitz, then each layer map is

Lipschitz.

23



Proof. Assume each activation function σi is Lipschitz with a corresponding Lipschitz

constant ci and denote the Lipschitz constant for each feature map as dj. Then:

∥L(x)− L(y)∥ = ∥(σ1(F (x)), ..., σm(F (x)))− σ1((F (y)), ..., σM(F (y)))∥

≤ c1 · d1∥(σ2(F (x)), ..., σm(F (x)))− (σ2(F (y)), ..., σm(F (y)))∥

.

.

.

≤ c1 · ... · cm · d1 · ... · dm · ∥x− y∥

Theorem 4.0.1. If each activation function σi is Lipschitz, then Φ is also Lipschitz.

Proof. Let each σi be Lipschitz with a corresponding Lipschitz constant ci and Φ(x)

be a neural network of depth k. Then ∀x, y ∈ Rn:

∥Φ(x)− Φ(y)∥ = ∥Lk(Lk−1 ◦ ... ◦ L1(x))− Lk(Lk−1 ◦ ... ◦ L1(y))∥

≤ ck · ∥Lk−1(Lk−2 ◦ ... ◦ L1(x))− Lk−1(Lk−2 ◦ ... ◦ L1(y))∥

≤ ckck−1 · ∥Lk−2(Lk−3 ◦ ... ◦ L1(x))− Lk−2(Lk−3 ◦ ... ◦ L1(y))∥

.

.

.

≤ ckck−1ck−2...c2 · ∥L1(x)− L1(y)∥

≤ ckck−1ck−2...c2c1 · ∥x− y∥

Taking c0 = ckck−1ck−2...c2c1, we obtain ∥Φ(x)− Φ(y)∥ ≤ c0 · ∥x− y∥
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Therefore, given Lipschitz activation functions, our neural network is also Lipschitz.

Denoting the Lipschitz constant of Φ as c, we know that c c0.≤ However, we don’t

know the exact value of this Lipschitz constant. Since c0 is a product of k distinct

values , it can be quite large. Therefore, even though x and y might be close to each

other, Φ(x) and Φ(y) might not be. If our Lipschitz constant c is small, this means

that if there is a small difference in x and y, then there would be a small difference

in the output by the network. Large changes in the network would require a large

change in x. Therefore, if our network has a small Lipschitz constant, then a very

small change to an input such as an image or pixel would only correspond to a very

small change in the output by the network.
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Chapter 5

Using the Network

We are almost ready to put our network into action. In this chapter, we will discuss

the various actions performed on our training data. We will discuss what the network

will output and how we will interpret it. We will begin with discussing the blur, rota-

tion, and translation actions on the images in our training data.

To blur an image, we need to use convolution. We convolve the image with a filter

matrix with entries summing up to 1 and a filter center of varying magnitude to obtain

a blurred version of our original image.

Figure 5.1: Image before Blur Figure 5.2: Blurred Image

The next action we will discuss is rotation. Rotation is applied by taking the center

point of an image and rotating each pixel counterclockwise around it by an angle θ.

For this paper, we will let θ= 90 degrees. We then obtain an image that has been

rotated 90 degrees counterclockwise:
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Figure 5.3: Image before Rotation
Figure 5.4: Rotated Image

The final action we will perform on our images is translation. This is done by

shifting the rows and columns of the image matrix diagonally and assigning zeroes in

their place. We then obtain our original image embedded in a larger blank image:

Figure 5.5: Image before Translation
Figure 5.6: Translated Image

We will train our network on different data sets and see how the performance of

the network changes. Regardless of which data set we use, once the training phase is

complete the network will give us an image of the training progress:
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Figure 5.7: Summary of Training Progress

Once the training phases are complete, we will be able to obtain a confusion matrix.

This matrix will show us how each class is performing and where potential confusion

between classes may lie:

Figure 5.8: Example Confusion Matrix
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From the matrix, we can see that both the pizza and french fries classes are per-

forming very well, while the hamburger class is performing adequately and the sushi

class is struggling to perform accurately. We can also tell what other classes the net-

work is confusing sushi for. This is very useful because we now have some insight into

where the network is going wrong.

However, we aren’t sure exactly how the network is misclassifying the sushi class.

We need to see how the network chooses its classifications. In order to understand

this, we will produce a visual called a Gradient-weighted Class Activation Mapping,

or Grad-CAM for short. This technique is explicitly described in [8]. This image

represents how the network made a decision on classifying a particular image using

gradients and produces a visual similar to a heat map, showing where the network is

targeting its efforts. We define Lc ∈ Ru×v as the class-discriminative map of width u

and height v for a given class c. In order to find Lc, we must compute
∂yc

∂F k
where

yc is the gradient of the score for the given class c and F k is the kth feature map

of a convolutional layer. The next step is to use Global Average Pooling (GAP) on

these gradients. This will average each gradient of each feature map. The advantage

of using this technique is that it creates correspondences between the feature maps

and the classes. Using this technique on these gradients, we can compute the neuron

importance weights:

αc
k =

1

Z

u∑
i=1

v∑
j=1

∂yc

∂F k
i,j

where Z is the number of feature maps. These weights capture the importance of a

feature map k for the class c. Before we can find Lc, we will use a ReLU to act as an

activation function for each feature. We can now calculate c:L

Lc = ReLU
(∑

k

αc
kF

k
)

This produces a heat map with the same size as the feature maps:
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Figure 5.9: Grad-CAM for a correct sushi classification

We can now see what activations will give a sushi classification. We will be able to

compare wrong classifications to the correct ones and see where the differences are.
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Chapter 6

Results

Our goal for these experiments is to see how the image classification is changed when

an image is altered by either a blur, a rotation, or a translation. We have a testing

data set of 20 images for each of our four classes: french fries, hamburgers, pizza, and

sushi. We will first run these through the GoogLeNet and see how the classification

changes. We will then train a network on these four classes with 150 images for each

class. We will see how the testing data performs on this network. Finally, we will then

run several different targeted trained networks with augmented data for each of the

actions and check how much improvement occurred. This will be validated by looking

at an independent testing data set and seeing how the network performs.

6.1 GoogLeNet

We ran our independent testing data through the GoogLeNet in four different ways:

unchanged, blurred, rotated, and translated. Here are the results:
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Figure 6.1: Testing Statistics for GoogLeNet

As you can see, the GoogLeNet did not perform very well overall on any of the

images. However, there is a clear decrease in performance once we alter the images,

with the worst cases being the translation and the heavy blur. There are several

possible reason for this. The first is that the data that GoogLeNet was trained on

was not augmented with altered data. This means that the network hasn’t seen these

deformities and doesn’t know how to respond to them. The second is that there are a

lot of categories that it is trained on. Since there are so many categories, it is possible

that a blur on an image will make the image resemble a different category. Here is an

example of an image that performed well without a blur but failed with one:
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Figure 6.2: GoogLeNet Classification and Prediction for Normal Image

Figure 6.3: GoogLeNet Classification and Prediction for Blurred image

6.2 Trained Network

We will first train our network on a training set with images that have not been changed

at all. We will have four different classes: Pizza, Sushi, Hamburger, and French Fries.

Each class will have 150 images in the total set, so there will be 90 images in the

training set, 30 in the validation set, and 30 in the testing set. We will then run a set

of independent data on the network for each class and perform a statistical analysis

to determine how well our network is performing. We will compare this data to later

networks with different training data. Training on this data set gives us the following

training progress:
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Figure 6.4: Training Progress

The validation is 94% which is not bad. However, the real test will come when we

test outside data on the network. We obtain this confusion matrix:

Figure 6.5: Confusion Matrix
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We can see that while the pizza, french fries, and hamburger classes performed

well, the sushi class barely passed our desired threshold of 70%. We will now run our

independent testing data through this network along with the altered versions of the

images:

Figure 6.6: Testing Statistics for Normal Data

Figure 6.7: Testing Statistics for Blurred Data
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Figure 6.8: Testing Statistics for Rotated Data

Figure 6.9: Testing Statistics for Translated Data

This network does very well with images that have not been altered, images with

a slight blur, and rotated images. The network begins to falter with translations but

is still able to correctly identify nearly half of the translated independent testing data.

However, once a larger blur is applied to the images, the network completely falls apart

with only 15% of images being correctly identified. Let us look at an example of the

network failing to correctly classify an image once an alteration has been applied:
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Figure 6.10: Classification and Prediction for Normal Image

Figure 6.11: Classification and Prediction for Blurred Image

We can also compare the GradCAM for each image:
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Figure 6.12: GradCAM for Normal Image versus GradCAM for Blurred Image

6.3 Augmented Trained Network for Blur

We want so see how we can improve the classification of blurred images. We will

augment our training data by applying a slight blur to each of the images in our

training data and add them to the training data. We now are training our network on

1200 images over 4 different classes. We then obtain the following training progress

and confusion matrix:
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Figure 6.13: Training Progress for Augmented Network with Blur

Figure 6.14: Confusion matrix for Augmented Network with Blur

From the confusion matrix, we can clearly see improvement in the performance of

our network. In particular, the sushi class has greatly improved. We now look at how

the testing data performs:
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Figure 6.15: Testing Statistics for Augmented Network for Blur

Comparing these results to the network trained solely on unaltered data, there is

a significant improvement for both lightly blurred images and heavily blurred images.

By augmenting our data, we were able to significantly improve performance.
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6.4 Augmented Trained Network for Rotation

We will now look at improving the classification of rotated images. We will augment

our data by applying different rotations on our training data and then adding those

images to the training data. As in the blur case, our network will now be trained on

1200 images over four classes. We obtain the following training progress and confusion

matrix:

Figure 6.16: Training Progress for Augmented Network with Rotation
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Figure 6.17: Confusion Matrix for Augmented Network with Rotation

We now run our independent testing set through the network;

Figure 6.18: Testing Statistics for Augmented Network with Rotation
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Once again, our network has improved. Even though our original network per-

formed very well with rotated images, our augmented network performs even better.

In our independent testing set, the rotated images performed just as well as the non-

rotated images.

6.5 Augmented Trained Network for Translation

Finally, we want to see if we can improve the classification of translated images. This

type of image performed poorly on our original network so improving this will be

difficult. We augment our training data by translating our data and then adding it to

the original training data. Our training data will once again consist of 1200 images.

By training the network on this augmented data, we obtain the following training

progress and confusion matrix:

Figure 6.19: Training Progress for Augmented Network with Translation
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Figure 6.20: Confusion Matrix for Augmented Network with Translation

Interestingly, by augmented our training data with translated images, we have

significantly improved the sushi class while significantly decreasing every other class.

We now run our independent testing data on our augmented network:
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Figure 6.21: Testing Statistics for Augmented Network with Translation

Despite the alarming confusion matrix, the classification of translated images from

our independent testing set has improved. Therefore, by augmenting the data with

translated images, we can see a clear improvement in classification.
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Chapter 7

Conclusion and Further Research

Empirically, augmenting our data improved performance in classification of blurred

images, rotated images and translated images. Theoretically, however, we don’t know

if there is a limit to the improvement caused by augmentation. One potential area of

further research would be trying to find a theoretical limit where no matter how much

you augment your data, there will still be some error in classification. Another area

of further research would be study training, in particular the backwards phase from a

rigorous mathematical point of view.
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