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Short‑term forecasts of streamflow 
in the UK based on a novel hybrid 
artificial intelligence algorithm
Fabio Di Nunno , Giovanni de Marinis  & Francesco Granata *

In recent years, the growing impact of climate change on surface water bodies has made the analysis 
and forecasting of streamflow rates essential for proper planning and management of water resources. 
This study proposes a novel ensemble (or hybrid) model, based on the combination of a Deep Learning 
algorithm, the Nonlinear AutoRegressive network with eXogenous inputs, and two Machine Learning 
algorithms, Multilayer Perceptron and Random Forest, for the short-term streamflow forecasting, 
considering precipitation as the only exogenous input and a forecast horizon up to 7 days. A large 
regional study was performed, considering 18 watercourses throughout the United Kingdom, 
characterized by different catchment areas and flow regimes. In particular, the predictions obtained 
with the ensemble Machine Learning-Deep Learning model were compared with the ones achieved 
with simpler models based on an ensemble of both Machine Learning algorithms and on the only Deep 
Learning algorithm. The hybrid Machine Learning-Deep Learning model outperformed the simpler 
models, with values of R2 above 0.9 for several watercourses, with the greatest discrepancies for 
small basins, where high and non-uniform rainfall throughout the year makes the streamflow rate 
forecasting a challenging task. Furthermore, the hybrid Machine Learning-Deep Learning model has 
been shown to be less affected by reductions in performance as the forecasting horizon increases 
compared to the simpler models, leading to reliable predictions even for 7-day forecasts.

Abbreviations
1	� Indicator function
1st Q	� First quartile of the daily streamflow rate
2nd Q	� Second quartile of the daily streamflow rate
3rd Q	� Third quartile of the daily streamflow rate
4th Q	� Fourth quartile of the daily streamflow rate
ANFIS	� Adaptive Neuro Fuzzy Inference System
ANN	� Artificial Neural Network
AI	� Artificial intelligence
b	� Bias in NARX model
BO	� Bayesian optimization
BR	� Bayesian regularization
BI-LSTM	� Bidirectional Long Short-Term Memory
BRF	� Boruta Feature Selection
BPNN	� Back-Propagation Neural Network
BRNN	� Bayesian Regularization Neural Network
BWNN	� Bootstrap Wavelet Neural Network
CNN	� Convolutional Neural Network
CVQ	� Coefficient of variation of the daily streamflow rate
DL	� Deep Learning
ESP	� Ensemble Streamflow Prediction
f1	� Sigmoid activation function
FFNN	� Feed-Forward Neural Network
GRU​	� Gated Recurrent Unit
GWO	� Grey Wolf Optimization
h	� Hidden nodes in NARX model
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IWD	� Intelligent Water Drop
LASSO	� Least Absolute Shrinkage and Selection Operator
LM	� Levenberg–Marquardt
LSTM	� Long Short-Term Memory
ML	� Machine Learning
MLR	� Multiple-Linear Regression
n	� Number of neurons in NARX model
NARX	� Nonlinear AutoRegressive network with eXogenous inputs
OLS	� Ordinary Least Squares
PSO	� Particle Swarm Optimization
QA 	� Mean streamflow rate
Qi
A	� Measured streamflow rate for the ith data

Qi
P	� Predicted streamflow rate for the ith data

Qmax	� Maximum daily streamflow rate
Qmean	� Mean daily streamflow rate
Qmedian	� Median daily streamflow rate
Qmin	� Minimum daily streamflow rate
R(tRF)	� Impurity at each node in RF model
RF	� Random Forest
SCG	� Scaled Conjugate Gradient
sgn(·)	� Sign Function
SkewQ	� Skewness of the daily streamflow rate
SVM	� Support Vector Machine
SVM-LF	� Support Vector Machine with Linear kernel function
SVM-RF	� Support Vector Machine with Radial basis kernel function
SVR	� Support Vector Regression
s	� Number of samples
t	� Forecast horizon
tRF	� Node in the RF model
UK	� United Kingdom
w	� Weight in NARX model
WANN	� Wavelet Artificial Neural Network
WSVM	� Wavelet Support Vector Machine
x(t)	� Value of the exogenous input at time t in the NARX model
yi	� Target variable in the ith unit in the RF model
ym	� Mean target variable in the node tRF
y(t)	� Target at time t in the NARX model
σQ	� Standard deviation of the daily streamflow rate

River discharge forecasting plays an essential role in flood protection and water resources planning and man-
agement. River flows are increasingly influenced by the climate changes observed in recent decades, which are 
leading to increasingly frequent flood and drought events1. In this scenario, optimal water resource management 
cannot disregard the prediction of river flows in the short and long term. However, while for the long term the 
considerable uncertainty of forecasts means that only trends can be reliably defined, for the short term it is 
possible to obtain even very accurate forecasts. These predictions can be conducted using different approaches, 
including physically based models, which consist of various mathematical equations used to describe hydrological 
processes2,3, and conceptual models, which describe the same processes based on simplified equations and empir-
ical relationships between parameters4. However, the high uncertainty and complexity associated with hydrologi-
cal processes and weather-climate factors affecting river basins have led researchers to increasingly use data-
driven approaches, in particular Artificial Intelligence (AI) algorithms, which guarantee fast processing without 
the need to define complex analytical relationships between input and target variables5. AI algorithms have been 
widely applied in recent years to tackle various hydrological problems6,7. Among these, several Machine Learning 
(ML) algorithms were used for the prediction of streamflow rate8–12. In addition, to improve streamflow predic-
tions, in the last few years researchers have moved towards the development of so-called hybrid or ensemble 
models, based on the combination of different individual ML and optimization algorithms. Li et al.13 compared 
three different ML algorithms: Back-Propagation Neural Network (BPNN), Support Vector Regression (SVR), 
and Adaptive Neuro Fuzzy Inference System (ANFIS), for the daily streamflow rate prediction for the Yuetan 
Basin, China. In particular, the authors applied the wavelet threshold de-noising method as pre-processing for 
time series. Then, both BPNN and SVR were combined with the Particle Swarm Optimization (PSO) algorithms. 
They showed how the PSO-SVR model showed a better overall performance compared to both PSO-BPNN and 
ANFIS models. Pham et al.7 proposed a hybrid model based on a ML algorithm, the Multi-Layer Perceptron 
(MLP), and an Intelligent Water Drop optimization algorithm (MLP-IWD) for the river flow rate forecasting 
of the Vu Gia Thu Bon River, Vietnam. The authors compared the predictions made with the individual MLP 
algorithm and the ensemble MLP-IWD, showing how hybridization led to a marked increase in performance. 
Saraiva et al.14 presented a comparative analysis of two ML models: Artificial Neural Network (ANN) and Sup-
port Vector Machine (SVM), coupled with wavelet transform and data resampling with the bootstrap method, 
applied for the daily streamflow rate forecasting for Sobradinho Reservoir, Brazil. The authors showed that the 
best combination was the BWNN, obtained combining Bootstrap (B), Wavelet (W) and Neural Network (NN), 
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highlighting the advantages of the ensemble approach. Tyralis et al.15 developed a super ensemble model for 
one-step-ahead daily streamflow forecasting on 511 basins located in USA, based on 10 different ML algorithms. 
The super ensemble learning algorithm outperformed all individual ML algorithms, with, however, NN which 
provided the best prediction among the 10 individual algorithms. Kumar et al.16 compared the performance of 
two data-driven techniques, a Wavelet ANN (WANN) and a SVM with linear and radial basis kernel functions 
(SVM-LF and SVM-RF), for the daily discharge prediction of a Perennial River, India. The authors showed how 
SVM-RF outperformed both WANN and SVM-LF models. Kumar et al.17 also compared the performance of five 
different data-driven techniques: ANN, WANN, SVM, Wavelet SVM (WSVM) and Multiple-Linear Regression 
(MLR), for the forecasting of daily suspended sediment concentration in Indian Rivers, with the WSVM that 
outperformed the other four techniques.

Moreover, as the great potential of Deep Learning (DL) algorithms in the prediction of time series is now well 
known, a number of researchers have developed streamflow prediction models based on them in recent years. 
Fu et al.18 proposed a DL model based on LSTM to predict the streamflow of the Kelantan River, Malaysia. They 
compared the performance of the LSTM model with that of a classical neural network with back-propagation 
and found a higher accuracy of the LSTM model in predicting both regular flow and rapid fluctuations in the 
dry and rainy seasons, respectively. Le et al.19 presented a comparative analysis of six DL models, including: 
Feed-Forward Neural Network (FFNN), Convolutional Neural Network (CNN), and four Long Short-Term 
Memory (LSTM) -based models, applied for streamflow forecasting in the Red River basin, Vietnam. They also 
compared the performance of two simpler LSTM and Gated Recurrent Unit (GRU) models, with only one hid-
den layer, with two more complex models, the Stacked-LSTM model and the Bidirectional LSTM (Bi-LSTM) 
ones. The authors indicated how the LSTM models outperformed both FFNN and CNN models. However, the 
higher complexity of the Stacked-LSTM and Bi-LSTM models did not lead to a significant performance increase 
compared to the simpler LSTM models. Ahmed et al.20 proposed a hybrid model based on the LSTM algorithm, 
used in conjunction with the Boruta Feature Selection (BRF) algorithm for the optimal choice of predictors, 
and applied it to the prediction of streamflow forecasting in six rivers in the Murray Darling Basin, Australia. 
They compared the performance of the BRF-LSTM model with other ML/DL -based models: individual LSTM, 
GRU, Recurrent Neural Network (RNN) and SVR, with the BRF-LSTM model that outperformed all the other 
models. Granata et al.21 proposed a comparison between two different models for the daily streamflow forecast-
ing: an ensemble model based on Random Forest (RF) and Multilayer Perceptron (MLP), hybridized using the 
Stacking ML technique, and a Bi-directional Long Short-Term Memory (Bi-LSTM) network, where for both the 
hyperparameters were optimized based on a Bayesian process. The authors showed how the ensemble model 
outperformed the Bi-LSTM network in predicting peaks of flow rates, with also computation times significantly 
shorter. Wegayehu and Muluneh22 also compared three DL algorithms: Stacked-LSTM, Bi-LSTM and GRU, with 
the classical MLP network for one-step daily streamflow forecasting for the rivers Abay and Awash, Ethiopia. 
They showed how both MLP and GRU algorithms outperform S-LSTM and Bi-LSTM on a nearly equal basis. A 
comprehensive review of the hybrid artificial intelligence and optimization modelling for streamflow forecasting 
was provided by Hassan Ibrahim et al.23.

Current literature, including a recent study by the authors mentioned above21, shows that reliable streamflow 
prediction models can be obtained using both hybrid ML and DL algorithms. Hence the idea of a possible ML-DL 
hybridisation with the aim of improving forecasts for both periods with ordinary flow rates and during flood 
events. Moreover, a further essential aspect is the forecasting horizon, which is a key element in the management 
of flood events. Accordingly, the performances of the developed models were assessed for forecast horizons 
up to 7 days. In this work, a novel prediction model was therefore developed based on the hybridization of a 
particular DL-RNN algorithm, the Nonlinear AutoRegressive network with eXogenous inputs (NARX), with 
the two algorithms RF and MLP. To the authors’ knowledge, no study in the literature proposes a hybrid model 
based on NARX, MLP and RF for the streamflow rate forecasting. NARX networks have proven to be a valuable 
tool for forecasting time series of several hydrological quantities24. On the other hand, RF and MLP considered 
individually do not represent excellent solutions to the problem of forecasting hydrological time series, however, 
their combination can in some cases even outperform a very powerful algorithm such as LSTM networks21.

From this perspective, the prediction made with the hybrid NARX-MLP-RF model were compared with the 
ones achieved with both a model based on the single NARX algorithm and another based on the hybridization 
of MLP and RF. Model training, testing and subsequent comparisons were conducted as part of a large regional 
study, which considered the daily flow rates of 18 watercourses throughout the United Kingdom (UK). The 
regional scope of the comparative study represents a further innovative aspect, as UK is characterized by basins 
with both very different extents and characteristics of rainfall and flow regimes. Therefore, this study can provide 
insights into the usefulness of implementing more or less complex hybrid models depending on the features of 
each river.

Materials and methods
Case studies and dataset.  The catchment areas of the 18 rivers investigated in this study cover a signifi-
cant and varied portion of the UK territory, from Scotland, where the Dee, Deveron, Spey, Tay, Nith, Teviot and 
Tweed rivers were analyzed, to England, where the Thames, Test, Tamar, Trent Bure, Ribble and Leven rivers 
were considered, and finally to Wales, where the Dee, Severn, Teifi and Wye rivers were studied (Fig. 1).

For each measurement station, the daily cumulative precipitation and average river flow rate from January 
1, 1961, to December 31, 2017, were considered. Catchment area of each basin and daily streamflow statistics 
were reported in Table 1. Figure 2 shows the average annual precipitation and the average annual discharge for 
each measuring station. The rivers investigated show considerable variability in terms of:
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•	 Catchment area, ranging from 161 km2, for Bure at Ingworth (eastern England), to 9937 km2 for Thames at 
Kingston (southern England).

•	 Precipitation over the catchment area, ranging from an average annual precipitation (Pannual) of 696 mm, for 
Bure at Ingworth, to 2277 mm for Leven at Newby Bridge (northern England). Low Pannual values were also 
observed for Thames at Kingston and Trent at Colwick, in southern and central England, equal to 723 mm 
and 769 mm, respectively, while high Pannual values were observed for the Scotland rivers of Tay at Ballathie 
(northern Scotland) and Nith at Friars Carse (southern Scotland), with Pannual of 1499 mm and 1533 mm, 
respectively.

Figure 1.   Location of the basins in UK. Maps created using the Free and Open Source QGIS25.

Table 1.   Catchment area and streamflow rate statistics for each basin. where: Area = catchment area, 
Qmean = mean daily streamflow rate, Qmedian = median daily streamflow rate, Qmax = maximum daily 
streamflow rate, Qmin = minimum daily streamflow rate, σQ = standard deviation of the daily streamflow rate, 
SkewQ = skewness of the daily streamflow rate, CVQ = coefficient of variation of the daily streamflow rate, 1st 
Q = first quartile of the daily streamflow rate, 2nd Q = second quartile of the daily streamflow rate, 3rd Q = third 
quartile of the daily streamflow rate, 4th Q = fourth quartile of the daily streamflow rate.

Bure at 
Ingworth

Dee at 
Manley Hall

Dee at 
Woodend

Deveron at 
Muiresk

Leven at 
Newby 
Bridge

Nith at 
Friars 
Carse

Ribble at 
Samlesbury

Severn at 
Montford

Spey at Boat 
o Brig

Tamar at 
Gunnislake

Tay at 
Ballathie

Teifi at 
Glanteifi

Test at 
Broadlands

Teviot at 
Ormiston 
Mill

Thames at 
Kingston

Trent at 
Colwick

Tweed at 
Peebles

Wye at 
Redbrook

Area (km2) 161 1009 1381 962 248 798 1146 2028 2854 920 4589 898 1035 1122 9937 7472 699 4019

Qmean (m3/s) 1.15 31.08 37.76 16.88 14.30 28.50 34.12 43.66 65.71 22.45 175.25 28.82 10.92 20.77 62.36 84.71 16.05 73.13

Qmedian 
(m3/s)

1.01 19.24 27.23 11.43 9.81 15.89 16.90 24.20 50.20 11.70 135.70 18.19 9.58 12.15 37.90 59.30 10.26 44.70

Qmax (m3/s) 11.8 521.0 860.8 387.7 191.0 467.1 765.0 462.0 1031.0 484.0 1965.0 447.2 36.8 554.8 581.0 982.0 306.7 781.0

Qmin (m3/s) 0.38 2.75 3.54 2.06 0.11 1.15 1.88 1.71 11.28 0.58 23.07 0.73 3.78 1.41 0.01 14.70 1.85 3.43

σQ (m3/s) 0.60 30.86 36.38 19.14 13.70 34.59 46.42 50.01 52.15 28.86 140.47 30.36 4.87 27.02 68.31 72.59 17.16 80.97

SkewQ 0.72 1.15 0.87 0.85 0.98 1.09 1.11 1.17 0.89 1.12 0.84 1.05 0.82 0.96 1.07 1.05 1.01 1.05

CVQ 0.52 0.99 0.96 1.13 0.96 1.21 1.36 1.15 0.79 1.29 0.80 1.05 0.45 1.30 1.10 0.86 1.07 1.11

1st Q 0.79 10.55 17.03 6.74 4.25 7.36 8.60 11.60 33.54 5.09 77.33 8.47 7.39 6.15 14.90 39.70 5.93 22.44

2nd Q 1.01 19.24 27.23 11.43 9.81 15.89 16.90 24.20 50.20 11.70 135.70 18.19 9.58 12.15 37.90 59.30 10.26 44.70

3rd Q 1.33 40.21 45.05 19.87 20.20 35.94 39.80 54.50 79.41 27.70 227.50 39.22 13.25 24.13 82.00 99.40 19.59 88.80

4th Q 11.8 521.0 860.8 387.7 191.0 467.1 765.0 462.0 1031.0 484.0 1965.0 447.2 36.8 554.8 581.0 982.0 306.7 781.0
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•	 Streamflow rate: the lowest average annual discharge Qannual was observed for Bure at Ingworth, equal to 
1.15 m3/s, while the highest Qannual was observed for Tay at Ballathie, equal to 175.25 m3/s. It should be 
noted that, despite Thames at Kingston has the largest catchment area of the 18 rivers, a Qannual of 62.36 m3/s 
was observed, which was in line or even lower than other rivers with much smaller basins but with higher 
precipitations.

Forecasting algorithms.  Three artificial intelligence algorithms, NARX, MLP and RF, were considered to 
develop models for predicting stream flows. Subsequently, the NARX-MLP-RF hybrid model was developed in 
order to obtain even more accurate predictions and was compared with both the MLP-RF hybrid model and the 
models based on the individual algorithms. The combination of algorithms was achieved by means of the stack-
ing technique, which allows hybrid models to be developed from multiple regression or classification models26. 
Specifically, individual models were first developed on the training dataset, then, based on the results of each 
model, a meta-learner was employed to develop the hybrid model. The Elastic Net algorithm27 was chosen as 
the meta-learner in the present study. Elastic Net is a combination of two widely used regularized variants of 
linear regression: the Least Absolute Shrinkage and Selection Operator (LASSO) and the Ridge Regression. The 
main difference between LASSO and Ridge is represented by the penalty (or regularization) term. LASSO uses 
the L1 regularization, with the aim of selecting the largest number of explanatory variables by introducing an 
absolute penalty to Ordinary Least Squares (OLS) regression. The L1 regularization imposes sparsity among the 
coefficients making the fitted model more interpretable. Ridge uses the L2 regularization, which also introduces 
a penalty in the OLS formulation, penalizing the square weights rather than the absolute ones. Moreover, the L2 
regularization limits the size of the coefficient vector. Elastic Net represents an optimal trade-off between Ridge 
and LASSO, with a penalty term which is a mix of the L1 and L2 regularizations28, allowing to keeps the feature 
selection quality from the LASSO penalty as well as the effectiveness of the Ridge penalty27. The parameters con-
sidered for the individual algorithms are reported in Sects. "NARX model architectures", "Multilayer Perceptron 
(MLP)" and "Random Forest (RF)". Rainfall was used as an exogenous input for the prediction of the streamflow. 
Furthermore, the time series were split with a 90–10% ratio for the training and testing stages, respectively. In 
preliminary tests, this subdivision proved to be optimal to guarantee high performance even in the prediction 
of flood peaks, while still preserving a sufficiently long testing period. Therefore, the period between January 
1961 and March 2012 was considered for the training stage. Then, the subsequent period between April 2012 
and December 2017 was considered for the testing stage. The Bayesian Optimization (BO) procedure was used 
for the selection of the ML hyperparameters and the optimal number of lagged values29. In ML applications, the 
BO process aims to build a probability model of the objective function in order to select the most promising 
hyperparameters. For a detailed description of the BO procedure, please refer to the relevant literature30.

NARX model architectures.  NARX is a particular RNN generally used for time series modeling, made up of 
interconnected nodes that serve as artificial neurons, receiving one or more inputs and processing them via a 
nonlinear activation function to produce an output. The NARX model can be formulated as:

where x(t) and y(t) indicate the exogenous input (i.e., precipitation) and the target (i.e., streamflow rate) at time 
t, respectively, pd and fd that represent the precipitation and flow rates lagged values, respectively. The NARX 
architecture consists of three layers (Fig. 3). The first is the input layer, which receives the input parameters. The 
second is the hidden layer, which represents the computational stage between input and output. The third is 
the output layer, which provides the predicted value. Then, the estimated output was fed back as input value for 
the iterative computation at the next instant31 (dashed line in Fig. 3). For the hidden layer, a sigmoid activation 
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Figure 2.   Average annual precipitation and streamflow rate.
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function f1 was used, which is particularly suitable in neural networks trained through back-propagation algo-
rithms. Moreover, the sigmoid function is derivable, making easier the neural network weights learning32. For 
the output layer, a linear activation function f2 with one neuron n was used. Weight w and bias b were optimized 
by means of the Bayesian Regularization (BR) back-propagation training algorithm33, which led to the best 
predictions compared with the other two training algorithms preliminarily tested, the Levenberg–Marquardt 
(LM) and the Scaled Conjugate Gradient (SCG). This agrees with previous literature studies that showed a slower 
convergence with, however, better performances for BR with respect to LM and SCG34.

The BO procedure led to the optimal values of both optimal number of hidden nodes (h1, h2, h…, hn, in Fig. 3) 
and of pd and fd. The NARX process was stopped when one of the following conditions was met35: maximum 
number of epochs, settled equal to 1000; LM adjustment parameter, settled equal to 1 × 10–10; error gradient 
below a minimal value, settled equal to 1 × 10–7.

Multilayer Perceptron (MLP).  MLP is a particular type of feedforward ANN36,37 with a similar structure to 
NARX, with three types of layers: input, hidden, and output (Fig. 4). The input layer is made up of a set of 
nodes corresponding to the input variables. One or more hidden layers contain neurons that process the values 
included in the input layer based on a weighted linear sum followed by a non-linear activation function. Then, 
the output layer gets the results from the last hidden layer, providing the expected values. Backpropagation 
learning algorithm was used for the training of the MLP neurons. The optimal structure of the MLP network 
for the present study includes one hidden layer, a neuron number equal to 10, and a Sigmoid activation func-
tion. Moreover, the optimal learning and momentum rates of the backpropagation algorithm were 0.3 and 0.2, 
respectively.

Random forest (RF).  Random Forest (Fig. 5) is an ensemble of regression tree algorithms38. Each tree is charac-
terized by root and internal nodes which, respectively, include the training data and indicate the input variables 
conditions, and by leaves, which are the real values assigned to the target.

The development of a regression tree model consists of a recursive subdivision of the input data set into 
subsets, where predictions for each subset were achieved through a multivariable linear regression model. The 
growth of the trees is also an iterative procedure, where each subset is divided into small branches, assessing all 
the possible split for each field and finding, for each stage, the subdivision in two separate partitions that leads 
to the minimum squared deviation:

x(t)

y(t)

w

w

b

+

h1

h2

Input Layer Hidden Layer

f1
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b
+
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y(t)n
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Figure 3.   Sketch of the NARX architecture.
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Figure 4.   Sketch of the MLP architecture.
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where N(t) is the tRF node’s sample size, yi is the target variable in the ith unit, and ym is the mean target variable 
in the node tRF . R(tRF) provides the “impurity” at each node. The algorithm stops when the minimum impurity 
is reached or based on when a different stopping rule is encountered. In addition, overfitting risk is reduced 
through a pruning process.

It should be noted that both MLP-RF and NARX-MLP-RF models were not particularly sensitive to the 
number of trees, which was set equal to 100 for all rivers and models.

Evaluation of model performance.  The performance of the models was evaluated as the forecast hori-
zon increased from 1 to 7 days ahead, based on five different evaluation metrics: the Coefficient of determina-
tion (R2), RMSE, the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE) and the Mean 
Directional Accuracy (MDA). A description of the evaluation metrics is reported in Table 2.

Results
Streamflow rate predictions on reference rivers.  This section focuses primarily on flow forecasting 
in three reference rivers, chosen to evaluate the performance of different forecasting models in areas of the UK 
characterized by different rainfall regimes. The evaluation metrics for the training and testing stages, calculated 
for all rivers, forecasting models and temporal horizon, are shown in Tables 3, 4 and 5. In addition, Figures from 
6 to 10 show the comparison between measured and predicted flow rate during the testing stage, for the different 
prediction models and forecast horizons.

(2)R(tRF) =
1

N(t)

∑

iǫtRF

(

yi − ym(tRF)
)

Initial Dataset

Training dataset 2Training dataset 1 Training dataset K

F1(x)

Tree 1

F2(x)

Tree 2

Fk(x)

Tree K

…

…

Prediction

Figure 5.   Sketch of the RF architecture.

Table 2.   Evaluation metrics for NARX modeling. where Qi
A = measured streamflow rate for the ith data 

and Qi
P = predicted streamflow rate for the ith data, QA = mean streamflow rate, n = number of samples, 

sgn(·) = sign function, 1 = indicator function.

Coefficient of determination
Evaluates the goodness of fit in a regression model. It ranges between 0 (the model does 
not predict the outcome) to 1 (the model perfectly predicts the outcome)

R2
= 1−

∑n
i=1

(

Qi
P−Qi

A

)2

∑n
i=1

(

QA−Qi
A

)2

          (3)

Root Mean Square Error
Root of total squared error between predicted and actual streamflow rate normalized by 
the number of samples. It ranges between 0 and + ∞ with lower values indicating more 
accurate models

RMSE =

√

∑n
i=1

(

Qi
P−Qi

A

)2

s           (4)

Mean Absolute Error
Absolute error between the predicted and actual streamflow rate normalized by the num-
ber of samples. It ranges between 0 and + ∞ with lower values indicating more accurate 
models

MAE =

∑n
i=1

∣

∣Qi
P−Qi

A

∣

∣

s           (5)

Mean Absolute Percentage Error
Relative error between predicted and actual streamflow rate normalized by the number 
of samples
It ranges between 0 and + ∞ with lower values indicating more accurate models

MAPE =

∑n
i=1

∣

∣

∣

∣

QiP−Qi
A

Qi
A

∣

∣

∣

∣

s           (6)

Mean Directional Accuracy
Compares predicted and actual direction (increasing or decreasing), providing the prob-
ability that the forecasting model can detect the correct direction along the time series. It 
ranges between 0 and 100%, with higher values indicating more accurate models

MDA =

∑n
i=1 1sgn

(

Qi
A
−Q

i−1
A

)

=sgn
(

Qi
P
−Q

i−1
A

)

s           (7)
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Table 3.   Evaluation metrics for NARX modeling.
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Table 4.   Evaluation metrics for MLP-RF modeling.
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Table 5.   Evaluation metrics for NARX-MLP-RF modeling.
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The first river considered was Tay at Ballathie, Scotland, with the second highest average annual precipitation 
over the catchment area and the highest average annual flow rate among the 18 rivers analyzed (see Section “Case 
studies and dataset”). The NARX-MLP-RF hybrid model outperformed both NARX and MLP-RF models. The 
best performance was observed for the shortest forecast horizon t = 1 day, with the NARX model outperforming 
MLP-RF model for both training and testing stages. As can be seen in Fig. 6, NARX led to a more accurate predic-
tion of the peak flow rates. However, compared to MLP-RF, NARX showed a tendency to overestimate the flow 
rates more frequently than MLP-RF. Therefore, the NARX-MLP-RF hybrid model, combined the advantages of 
both models, leading to more robust predictions compared with the two individual NARX and MLP-RF models. 
As the forecast horizon increases, a decrease in accuracy was observed for all models. Specifically, for t = 3 days 
(Fig. 7), the difference in prediction accuracy between the NARX and MLP-RF models is more marked, with the 
latter still showing a good ability to predict flow rate trends but with a more accentuated underestimation of the 
peaks, compared to t = 1 day. However, again the NARX-MLP-RF hybrid model resulted in the best forecasts, 
although metrics were only slightly better than the individual NARX model. The worst predictions were observed 
for t = 7 days (Fig. 8), with NARX showing a significant over- and underestimation of flow rates compared to 
shorter forecast horizons. Also, MLP-RF shows a decrease in performance with, however, a lower dispersion 
compared to NARX, particularly for the medium–low values of flow rate (Figur 8b and d). Consequently, the 
best prediction was obtained with the NARX-MLP-RF hybrid model, which showed a limited accuracy reduction 
from a 3-day to 7-day ahead forecast horizon.
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Figure 6.   1-day ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (c, d); MLP-RF-NARX (e, f).
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The second river analyzed in detail is the Ribble in Samlesbury, England. It showed, during the spring, a 
marked decreasing trend in both precipitation over the catchment area and streamflow. Figure 9 shows the 
comparison between measured and predicted flow rate, for forecast horizons of 1 day and 7 days, and for the 
NARX-MLP-RF hybrid model. Furthermore, the results for the individual models are shown in Tables 3 and 4. As 
for the testing stage, the best predictions were obtained for a forecast horizon of 1 day with the NARX-MLP-RF 
hybrid model, with R2 = 0.91. The NARX model (R2 = 0.90) resulted in slightly worse prediction than the hybrid 
model, while still providing more accurate forecasts than the MLP-RF model (R2 = 0.85). Again, as the forecast 
horizon increases, a reduction of the prediction accuracy was observed for the three different models. However, 
for t = 7 days, MLP-RF (R2 = 0.81) outperformed NARX (R2 = 0.77), which, however, still led to higher MDA 
values, indicating a better ability to follow the flow rate trend (MLP-RF–MDA = 62.84%, NARX–MDA = 74.53%), 
whereas the NARX-MLP-RF hybrid model combined the strengths of the individual models leading to better 
predictions (R2 = 0.81 and MDA = 76.31%).

The third reference river was the Thames at Kingston, in the south of England, which has the largest catchment 
area among the 18 rivers. This case study shows overall very accurate predictions for the three different forecast 
models and horizons. For t = 1 day and for the testing stage, R2 values of up to 0.98 were calculated for MLP-RF 
and up to 0.99 for both NARX and the NARX-MLP-RF hybrid. The predictions became less accurate as the 
forecast horizon increased while maintaining higher accuracy under the same conditions, compared to the two 
previously investigated cases, with R2 values up to 0.95 for MLP-RF and 0.98 for both NARX and NARX-MLP-RF, 
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Figure 7.   3-days ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (c, d); MLP-RF-NARX (e, f).
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for t = 3 days. A marked decrease was observed only for t = 7 days for MLP-RF with R2 = 0.88. Both NARX and 
NARX-MLP-RF showed an R2 equal to 0.98, with a limited reduction in the other metrics (Fig. 10).

Overall, the high performance of the forecast models for the Thames at Kingston can be justified by particu-
larly gradual variations in the flow rates, which facilitate the predictions of peaks along the time series, linked to 
the large catchment area and lower average rainfall compared to the rest of England, and with a homogeneous 
distribution throughout the year. These factors make the hybridization of NARX and MLP-RF less relevant in 
terms of forecast improvement. Conversely, forecast models for rivers with smaller catchments and higher but 
less homogeneous rainfall throughout the year, as in the case of Ribble at Samlesbury, benefited more from 
hybridization, with better forecasts and a lower reduction in performance as the forecast horizon increases.

One aspect investigated with special emphasis is the highest flow rates, which can represent critical scenarios 
as they can lead to flooding. From this point of view, relative errors were calculated with reference to the first 
decile of flow rates for the three different models and for different forecast horizons. The relative errors were 
calculated as the difference between the predicted and measured values, divided by the measured values. His-
tograms with the frequency of the relative errors for the three reference rivers are shown in Figs. 11, 12 and 13, 
respectively. For the Tay River at Ballathie (Fig. 11) and t = 1 day, the relative errors were in the range −0.5 ÷ 0.4, 
with an almost symmetrical distribution for all three models. In particular, the NARX-MLP-RF ensemble model 
showed the highest frequency of low relative errors, equal to 24% and 29% for relative errors between −0.1 and 
0 and between 0 and 0.1, respectively. MLP-RF, on the other hand, showed a lower frequency of relative errors 
between −0.1 and 0 and between 0 and 0.1, amounting to 19% and 23%, respectively. The NARX model showed a 
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Figure 8.   7-days ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (c, d); MLP-RF-NARX (e, f).
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Figure 9.   Predictions for Ribble at Samlesbury with MLP-RF-NARX model: t = 1 day (a, b); t = 7 days (c, d).
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similar frequency distribution to the NARX-MLP-RF ensemble model with, however, slightly lower frequencies 
for lower relative errors. As the forecast horizon increases, the accuracy of the three models is reduced. Thus, a 
decrease in frequency was observed for the lower relative errors, with a subsequent increase in frequency for the 
higher relative errors. For t = 7 days, the NARX-MLP-RF ensemble showed the highest frequency for the rela-
tive errors between −0.1 and 0, i.e., 25%, maintaining a rather symmetrical distribution. In contrast, the NARX 
model showed a less symmetrical distribution with a frequency of around 20%, for relative errors between −0.3 
and −0.2. Frequencies in the order of 20% were also observed for the MLP-RF model, both for relative errors 
between −0.3 and −0.2 (as for NARX) and between −0.2 and −0.1. This result showed a tendency for the NARX 
and MLP-RF models to underestimate peak flow rates.
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For the Ribble at Samlesbury (Fig. 12) and t = 1 day, the relative errors were in the range -0.6–0.6. The 
NARX-MLP-RF ensemble showed the highest frequency of low relative errors of 21% for both relative errors 
between −0.1 and 0 and between 0 and 0.1, showing an almost symmetrical distribution. In contrast, MLP-RF 
showed a lower frequency of relative errors between −0.1 and 0 and between 0 and 0.1. The latter also showed a 
peak frequency of 17% for relative errors between −0.2 and −0.1, showing a more skewed distribution than the 
NARX-MLP-RF ensemble model. The NARX model showed lower frequencies, compared to NARX-MLP-RF, 
for the relative errors between −0.1 and 0 and between 0 and 0.1, amounting to 20% and 16% respectively. As the 
prediction horizon increased, an increase in the variance of the relative error distributions was observed, with 
a reduction in the frequencies corresponding to the lowest relative errors. In particular, the NARX model also 
showed relative errors in the range between −0.9 and −0.8, but with a very low frequency of 2%. All three models 
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showed a higher frequency of negative relative errors, indicating that underestimates of extreme flows exceed 
overestimates in terms of frequency. However, the NARX-MLP-RF ensemble still showed a peak frequency of 
18% for both the low relative errors between −0.1 and 0 and between 0 and 0.1.

A lower variance in relative errors was observed for the Thames first-decile flow forecasts in Kingston 
(Fig. 13), compared to the other two reference rivers. Specifically, for t = 1 day, the NARX-MLP-RF ensemble 
model showed frequencies of 57% and 35% for the lowest relative error between -0.1 and 0 and between 0 and 0.1, 
respectively. Furthermore, the relative errors were generally within a narrow range, between −0.2 and 0.2. MLP-
RF showed a slightly worse situation, with a higher frequency of negative relative errors of 8% and 4%, between 
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−0.2 and −0.1 and between −0.3 and −0.2, respectively. As the forecast horizon increased, the NARX-MLP-RF 
model still showed an almost symmetric distribution, while both NARX and MLP-RF showed an increase in 
the frequency of negative relative errors, resulting in a more asymmetric distribution that confirms a greater 
underestimation of peak flows than the NARX-MLP-RF ensemble model.

Overall, the outcomes observed for streamflow rate prediction preformed on whole time series were in agree-
ment with what observed for the high flows. Actually, while for rivers like the Ribble, with smaller catchments and 
higher but less homogeneous rainfall throughout the year, relative error ranges were quite wide, for rivers with 
large catchments and more homogeneous rainfall like the Thames the relative error ranges were narrower, indicat-
ing a greater accuracy in the prediction of high flows. However, the hybrid NARX-MLP-RF model proves to be 
the best, with the NARX and MLP-RF models leading to more asymmetrical distributions even over larger basins.

Figure 14.   NARX-MLP-RF, testing stage: R2—MAPE (on the top) and RMSE—MDA (on the bottom). Maps 
created using the Free and Open Source QGIS25.
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Streamflow rate predictions for the whole of UK.  This section discusses the streamflow forecasts 
performed with the hybrid NARX-MLP-RF model, with reference to the testing stage, for all investigated rivers. 
Figure 14 provides a map with the different evaluation metrics, for R2–MAPE and RMSE–MDA couples, as the 
forecast horizon increases. Metrics are also shown in Table 5.

The R2 coefficient showed values ranging from 0.77 to over 0.99 for the 1-day forecasts. R2 decreased as the 
forecast horizon increased, in some cases dropping to values in the order of 0.7 for the 7-day forecast. However, 
there is a marked territorial difference. For rivers in the south of the UK, an R2 of over 0.8 was obtained, with 
peaks as high as 0.95, even for 7-day forecast, while for rivers in Scotland, particularly those in the north-east, 
lower values of 0.77 and 0.7 were obtained for the 1-day and 7-days ahead predictions, respectively. The MAPE 
shows a trend in agreement with the R2 values, with values between 1 and 26%, and increasing with the forecast 
horizon.

The RMSE values were consistent with the R2 maps, with lower values for the rivers of England and Wales, 
ranging from about 4 m3/s to 18 m3/s, and higher values for Scotland. The increase in RMSE as the forecast 
horizon increased was most pronounced for the northern UK, with RMSE up to about 40 m3/s for 7-days ahead 
predictions. However, many rivers of England and Wales were characterized by RMSE values between 4 m3/s 
and 18 m3/s even for 7-days ahead predictions. In addition, MDA values between 64 and 88% were calculated, 
showing a good ability of the forecasting model to follow the right direction along the streamflow time series. 
A slight reduction was observed as the forecast horizon increases, with, however values between 64 and 70% 
observed only for rivers in central and north-east Scotland, where the lowest R2 values were also obtained.

Overall, the hybrid NARX-MLP-RF model resulted in good predictions for all rivers and forecast horizon. 
However, the performance of the forecast model is highest for rivers with large basins and a homogeneous dis-
tribution of rainfall throughout the year, as observed for several English rivers, while it is lowest for rivers with 
smaller basins, characterized by less homogeneous rainfall, where peak prediction is more challenging due to 
the sudden variation in stream flow.

In order to provide an overview of how model performance changes with the forecast horizon, the percentage 
increase in MAPE, from a 1-day to a 7-day forecast horizon was analysed and reported in Fig. 15.

In particular, the ensemble NARX-MLP-RF model showed the lower MAPE variations for most stations, 
followed by the NARX model. Both showed MAPE variations of less than 10%. In contrast, MLP-RF showed 
more marked MAPE variations, with a maximum value of 56% for Tamar at Gunnislake. However, for some 
stations, MLP-RF also showed MAPE variation of less than 10%. For example, for Test at Broadlands, the MAPE 
variation was 4.57%. However, for the same station, NARX and NARX-MLP-RF showed lower MAPE variations 
of 3.60% and 2.90% respectively. It was noted that there is an appreciable correlation between the increase in 
MAPE just considered and the CV of the flow time series (Fig. 15). The correlation is high for the NARX model 
(r = 0.82) and rather high for the NARX-MLP-RF ensemble model (r = 0.72), whereas it is significantly lower for 
the MLP-RF hybrid model (r = 0.58).
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This result demonstrates that while the decrease in accuracy of the forecast models, as the forecast horizon 
increases, is proportional to the variability of the streamflow during the time series, and this decrease is much 
less pronounced in the NARX model than in the hybrid RF-MLP one. However, this aspect needs further inves-
tigation and specific studies.

Discussion
The extensive study carried out on the streamflow of a large number of rivers in the United Kingdom allows the 
following to be highlighted:

•	 The NARX-MLP-RF hybrid model outperformed both the NARX and MLP-RF models for all the investigated 
rivers and for all forecast horizons. All models resulted in very accurate predictions in the south of UK, while 
lower performance was observed in the north of UK.

•	 A reduction in performance was observed as the forecasting horizon increased, but this affected the NARX 
and MLP-RF models more than the hybrid NARX-MLP-RF model.

•	 The hybridization of NARX and MLP-RF had a greater impact in improving the predictions obtained for 
small basins with high and uneven precipitation throughout the year, which make peak forecasting more 
challenging. Conversely, individual NARX and MLP-RF models led in most cases to satisfactory results, 
without the need for hybridization, for large basins with a more gradual variation in flow rates.

Regarding the application of hybrid ML models for streamflow forecasting, Li et al.13 developed hybrid models 
for the Yuetan Basin, China, achieving the best results with a PSO-SVR model, which showed a Nash–Sutcliffe 
Efficiency (which has a mathematical expression almost identical to R2) of 0.82, lower than the R2 values obtained 
for several rivers investigated in this study. The super ensemble model proposed by Tyralis et al.15 resulted in 
large differences, in terms of prediction accuracy, among the large number of investigated rivers in USA, with R2 
values mostly between 0.60 and 0.65. Lee and Ahn39 developed a stacking model based on four ML algorithms: 
SVM, Gradient Boosting Machine (GBM), Cubist, and Bayesian Regularized Neural Networks (BRNN), for 
the streamflow rate prediction in South Korea. The authors calculated values of NSE up to 0.48, also showing a 
performance reduction as the forecast horizon increased, as observed in the present study. Kilinc and Yurtsever40 
also developed a hybrid DL model Based on Grey Wolf algorithm (GWO) and GRU for the daily streamflow 
forecasting in two stations located in the Seyhan basin, Turkey. The authors showed the advantages of the hybridi-
zation based on DL algorithms, achieving accurate predictions with R2 values up to 0.98. The results obtained by 
Kilinc and Yurtsever40 are in line with the prediction obtained for several rivers investigated in the present study 
for t = 1 day. However, they did not perform an analysis with increasing time horizon, as made in the present 
study. Granata et al.21, who proposed a comparison between Bi-LSTM and a stacked MLP-RF model, obtained 
very accurate predictions, also for the UK Trent River investigated in this study. However, they also showed a 
reduction in prediction accuracy as the forecast horizon increased, already for the 3-days forecast.

A comparison was also made with literature studies investigating the impact of climatic factors and catchment 
characteristics on the accuracy of river discharge forecasts. Xu et al.41 investigated the spatial and temporal scale 
effects on the predictive performance of the monthly streamflow prediction, based on a hybrid DL model based 
on the CNN and GRU algorithms applied to many watersheds around globe. The authors showed how the hybrid 
DL model performs better on large drainage areas, in agreement with the present study. Moreover, the predictive 
performance tends to get better also with the extension of a training period for the model, confirming how long 
time series can lead to more accurate predictions. Harrigan et al.42 evaluating the Ensemble Streamflow Predic-
tion (ESP) method for 314 catchments in the UK, exploring the relationship between basins characteristics and 
ESP skill. The ESP method allows factors such as precipitation, potential evapotranspiration, temperature, soil 
moisture, groundwater and snow for each basin to be included in the modelling. The authors showed how the 
performance of the ESP model decayed exponentially with increasing forecast horizon, but large catchments 
decayed at a slower rate. In addition, better performances were observed in the south and east of the UK, where 
large and slower responding catchments are mainly located. Conversely, lower performances were observed 
for the highly responsive catchments in the north and west. These outcomes are in agreement with the present 
study. We showed that for large basins, such as for the Thames River in southern England, the models tested led 
to accurate predictions for both ordinary and high flows, whereas for smaller basins, such as for the Ribble River 
in Northern England, forecasts were less accurate and decayed in accuracy at a higher rate compared to larger 
basins as the forecast horizon increased, particularly for the NARX and MLP-RF models.

Overall, although the methodology has been tested on a significant number of rivers, UK weather and cli-
mate conditions have different features in comparison with warmer climates. In the future it will be interest-
ing to test the methodology in semi-arid and Mediterranean areas, where the seasonal pattern of rainfall is 
more pronounced compared to UK. From this perspective, different ML or deep-learning algorithms could be 
included, together with further exogenous inputs, in the forecast procedure in order to improve the reliability 
of the streamflow rate forecasting. This could lead to overcoming the current limitations related to climate and 
streamflow regimes on the one hand and the forecasting horizon on the other, moving from the current short-
term to the medium-term scenario.

Conclusion
A novel streamflow prediction model, for forecast horizons of up to seven days, was developed in this research 
and applied to a regional study that considered 18 rivers throughout the UK. The proposed model was obtained 
by stacking the NARX, RF, and MLP algorithms and used a BO procedure for tuning the hyperparameters.
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Daily precipitations were considered as the only exogenous input variable. The NARX-MLP-RF ensemble 
model showed very good forecasting capabilities and outperformed both NARX and MLP-RF models, for all 
rivers and forecast horizons. NARX-MLP-RF showed a lower reduction of accuracy as the forecasting horizon 
increased, for both regular and extreme streamflow, compared to the NARX and MLP-RF models. In this regard, 
for both the NARX-MLP-RF and NARX models, a significant correlation was found between the increase in 
MAPE corresponding to the increase in the forecast horizon from 1 to 7 days and the CV of the flow time series.

In addition, NARX-MLP-RF has proven to be particularly suitable for providing accurate forecasts for rivers 
with small catchment areas with highly variable rainfall and streamflow rate distributions over time., for which 
the forecasting of the often-abrupt peaks is a challenging task. In particular, more accurate forecast values were 
generally obtained for rivers in Wales and southern England.

Overall, the accurate predictions made with the NARX-MLP-RF model make it a powerful tool for manag-
ing the risks associated with possible extreme flows involving frequent floods, and also for short-term water 
management decision-making.

Data availability
Data from the National River Flow Archive, which is the primary archive of daily and peak river flows for the 
United Kingdom, were used in the creation of this manuscript. Data are available at the following website: https://​
nrfa.​ceh.​ac.​uk. The elaborations were carried out mostly with the following software: MATLAB (https://​mathw​
orks.​com), Microsoft Excel (https://​www.​micro​soft.​com/​en-​ww/​micro​soft-​365/​excel), and QGIS (https://​qgis.​
org/​en/​site).
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