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Abstract: This paper illustrates the development of a recursive QR technique for the analysis of
transient events, such as disruptions or scenario evolution, in fusion devices with three-dimensional
conducting structures using an integral eddy current formulation. An integral formulation involves
the solution, at each time step, of a large full linear system. For this reason, a direct solution is
impractical in terms of time and memory consumption. Moreover, typical fusion devices show a
symmetric/periodic structure. This can be properly exploited when the plasma and other sources
possess the same symmetry/periodicity of the structure. Indeed, in this case, the computation can be
reduced to only a single sector of the overall structure. In this work the periodicity and the symmetries
are merged in the recursive QR technique, exhibiting a huge decrease in the computational cost.
Finally, the proposed technique is applied to a realistic large-scale problem related to the International
Thermonuclear Experimental Reactor (ITER).

Keywords: plasma fusion; integral formulations; fast methods; eddy current; QR-MGS sparsification;
H-matrix

1. Introduction

The working principle of magnetic confinement fusion devices is fundamentally based
on the electromagnetic interaction of the plasma, where fusion reactions occur with the
conducting structures surrounding the plasma, and where external currents circulate. Such
conductors can be both actively fed (e.g., poloidal field, PF, coils and toroidal field, TF, and
coils) and passive (e.g., the vacuum vessel). The currents flowing in the former set are
responsible for the magnetic field needed to keep the plasma in equilibrium, hence giving
rise to the nominal desired plasma configuration. Conversely, passive conductors play a
fundamental role in the stability of such an equilibrium configuration. In fact, assuming the
plasma is described as a current-carrying fluid using the Magneto-Hydro-Dynamics (MHD)
model, it can be demonstrated that there exist unstable modes of evolution—the so-called
MHD instabilities. A huge number of such unstable modes may exist, whose triggering
depends on several physical and geometrical plasma parameters, such as pressure, current,
position, and shape. They are usually classified in terms of the toroidal and poloidal number,
i.e., the Fourier decomposition in the toroidal and poloidal direction of the dominant
plasma perturbation. In the present paper, we consider situations in which the plasma
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evolves in an axisymmetric way, although this is not an intrinsic limitation of the proposed
approach, as we will clarify below. Practically, this means that the plasma geometrical
descriptors (e.g., the centroid vertical position, gaps with respect to the first wall, and the
displacement with respect to the nominal configuration) may grow exponentially in time,
after an initial perturbation takes place. The time scale of such phenomenon—the so-called
growth rate of the instability—may be as fast as microseconds in typical fusion devices,
in the absence of passive conducting structures, being related to the inertial dynamics of
the plasma, which is very fast due to its very small mass. Such abrupt movements and
deformations of the current-carrying plasma induce eddy currents in surrounding passive
conductors; such eddy currents, in turn, tend to counteract the plasma movement, thanks
to the Lenz rule, hence slowing down the instability to the time scale over which eddy
currents decay—tens or hundreds of milliseconds for typical devices. This allows an active
control of the instability to be practically feasible [1].

The discussion reported above demonstrates clearly that numerical modelling of the
conducting structures surrounding the plasma is of paramount importance for a macro-
scopic description of the behaviour of a fusion device. A comprehensive, modern, and
rigorous presentation of the theory leading to the numerical modelling of such complex
electromagnetic problems can be found in the book of Bossavit [2]. In its exposition,
Bossavit limits the attention to the variational formulation of the field problems. In this
case, the quasi-stationary approximation of the Maxwell equations are discretized by the
Finite Element Method (FEM). Here, the computational domain in principle also includes
the air. This approach is very well diffused (see for instance [3]) and it is at the basis
of many general-purpose commercial codes. For avoiding the discretization of the air, a
boundary integral equation can be coupled to the differential equations on the boundary of
the conducting domain, leading to the so-called FEM-BEM (Boundary Element Method), as
described for instance in [2,4,5]. The thermonuclear fusion devices present very complex
geometries in which massive structures and thin shells coexist and ferromagnetic effects
are usually negligible. In this respect, integral formulations are usually quite advantageous,
because they allow (i) to mesh the conductors only and (ii) to implicitly take into account
regularity conditions at infinity. For this reason, in the first generation of tokamaks, made
almost completely of thin conducting structures, the finite element eddy current integral for-
mulation for nonmagnetic shells proposed by Kameari [6], Bossavit [7], and Blum et al. [8]
resulted in being particularly efficient, from the computational point of view. The main
obstacle to the treatment of fully three-dimensional massive conductors was the lack of a
general method for generating a complete set of independent, solenoidal shape functions
for the current density. The proposal [9] of a numerical formulation for modelling in an
efficient way these 3D massive structures was the main step leading to the implementation
of the CARIDDI code [9,10], and indeed it has been extensively used for the modelling of
fusion devices, such as for instance JET, EAST, COMPASS, RFX, JT-60SA, ITER, and DEMO.
On the other hand, general purpose commercial codes based on differential formulations
substantially improved in the course of the years [11–14]. Nowadays, they represent a
valid alternative in many cases where the presence of the plasma does not pose specific
challenges in the modelling.

One drawback of integral formulations—and of course CARIDDI is no exception—is
that they give rise to fully populated matrices to be inverted to find the solution. This
inevitably poses a limitation to the maximum number of discrete unknowns—the Degrees
Of Freedom, DOF—that can be practically handled. On the other hand, the complexity
of devices and the accuracy required for the analyses require very detailed models and
hence huge numerical models to be considered. To tackle this problem, so-called “fast meth-
ods” can be used, ranging from FFT (Fast Fourier Transform)-based approaches [15–17] to
multipole approximations [18,19], to QR-recursive compression [20,21]. Although all such
methods have been successfully implemented in the CARIDDI code, our previous experi-
ence clearly show that for fusion devices, the most effective technique is the QR-recursive
(see [22] for the definition of QR matrix factorization). This is the reason why, in the present



Energies 2022, 15, 3214 3 of 31

paper, we focus on a number of significant extensions of such a technique, which computes
the effective numerical solution of the problem with a very high efficiency, hence allowing
an unprecedented level of detail in the description of fusion devices.

In the present paper, the authors starting from the previous version of the QR-recursive
method, face some important numerical issues, adding new efficient enhancements. We
can summarize the new features addressed by the paper in the following:

• The extension of the method when both the structure and the sources exhibit the
same symmetries. This is quite important because symmetry is typical in devices for
fusion applications.

• A new approach (namely the DOF-based method) is introduced for the QR-recursive
method, which compared to the old one (ELEMENT-based method) is numerically
more effective.

• An efficient numerical approach is used in solving the system in order to handle the
“electrodes” case. This case is very usual for practical fusion device application.

• We tackle the problem of the “small boxes” in QR-recursive, which could degrade the
performances of the overall method.

Finally, we applied the method to a relevant application case of the International
Thermonuclear Experimental Reactor (ITER) [23].

2. Mathematical Formulation
2.1. Integral Formulation

Here we summarize the Magneto-Quasi-Static volume integral formulation at the
basis of the numerical model. We refer to a conducting three-dimensional domain Vc
excited by a time varying magnetic field and by a set of current/voltage sources applied at
a subset SE of its boundary made by a set of equipotential electrodes.

Faraday’s law is automatically satisfied by assuming

E = −∂A
∂t
−∇ϕ , in R3. (1)

The magnetic vector potential is uniquely defined by ∇×A = B with the Coulomb
gauge and the regularity conditions at infinity. Consequently, it is possible to express A in
terms of the unknown solenoidal current density, by using the Biot–Savart law:

A(r, t) =
µ0
4π

∫
Vc

J
(

r
′
, t
)

∣∣r− r′
∣∣dV′ + As(r, t) , in R3, (2)

where

As(r, t) =
µ0
4π

∫
R3−Vc

Js

(
r
′
, t
)

∣∣r− r′
∣∣ dV′ , in R3, (3)

and Js is the (known) current density due to the external sources.
The constitutive equation

J = σ E , in Vc , (4)

where σ is the electric conductivity tensor, can be verified in an average sense by adopting
a weighted residual approach. It results in the following weak form

∫
Vc

w ·

σ−1J +
∂

∂t

µ0
4π

∫
Vc

J
(

r
′
, t
)

∣∣r− r′
∣∣dV′

+
∂As

∂t

dV + ∑
h=1, NE

∫
SE

φh w · ^
n dS = 0 (5)
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for any w ∈ S and with J ∈ S. Here S is the set of solenoidal vector functions with zero

normal component on ∂Vc\SE, being
^
n the unit normal pointing outward Vc:

S =

{
w ∈ H(div; Vc)

∣∣∣∣ div w = 0 in Vc and w · ^
n = 0 on ∂Vc\SE

}
. (6)

NE is the number of electrodes (they are part of the boundary of the conducting
domain), identified by the surface SE. At each electrode h, there is an unknown potential
φh and a prescribed current Ih(t).

In Figure 1 we report a schematic sketch showing the geometrical objects involved in
Equation (5). Note that, being an integral formulation, only the sources in the conducting
domain are involved in the computation of the integrals. The air regions do not bring any
additional unknowns.
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2.2. Numerical Model

A numerical solution is obtained by applying Galerkin’s method to Equation (5). The
unknown is the current density vector J, which we represent as the linear combination of
N basis functions Ji ∈ S:

J(r, t) = ∑
i=1:N

Ii(t) Ji(r). (7)

According to the Galerkin’s method, we choose N independent weighting functions
as Wi = Ji. Condition Ji ∈ S can be satisfied by introducing the electric vector potential
T (J = ∇ × T) and adopting edge element shape functions for T. The uniqueness of
the vector potential is assured by the tree-cotree gauge [10]. This gauge is conveniently
imposed directly on the basis functions, introducing the tree-cotree decomposition of the
mesh and eliminating the degrees of freedom associated to the tree edges. Condition

Ji ·
^
n = 0 on ∂Vc\SE can also be imposed on the shape functions using the approach

described in [10,24,25]. The shape functions Ji are therefore derived from the Ni edge
element functions for the gauged vector potential:

Ji = ∇×Ni. (8)

In this way, Galerkin’s method applied to (5) gives the following linear dynamical
system, for t ≥ 0:

L
dI
dt

+ RI + FTΦ = −dVS

dt
, (9)
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with I(0) = I0, where I0 is the prescribed initial condition.
In (9) the unknowns are

• I(t) is a column vector discretizing the unknown density current J(r, t)(i.e., I(t) = [Ii(t)] )
• Φ(t) is a column vector representing the unknown voltages at the electrodes (i.e.,

Φ(t) = [φh(t)])

In the RHS of (9) appears the source term VS(t) = [Vsk(t)] given by

Vsk(t) =
∫

Vc
∇×Nk(r) ·As(r, t) dV (10)

The matrices in (9) are R =
[
Rij
]
, L =

[
Lij
]
, F =

[
Fij
]
. They are defined as

Rij =
∫

Vc
∇×Ni(r) · σ−1∇×Nj(r) dV, (11)

Lij =
µ0

4π

∫
Vc

∫
Vc

∇×Ni(r) · ∇ ×Nj

(
r
′
)

∣∣r− r′
∣∣ dVdV′, (12)

Fij =
∫

Si

∇×Nj(r) ·
^
n dS. (13)

The dimension of the matrix F is NE × N. It is worth noticing that

• Fij is the contribution to the current flowing in the electrode i due to the DOF j

The current Ci flowing in the i-th electrode, is the product of the i-th row (Fi) of
F times I. That is:

Ci = FiI. (14)

Rewriting the condition (14) for each electrode we have

FI = Ih, (15)

• Fij is zero for those DOF j, which do not belong to the boundary.

Hence F is sparse due to the local interaction of the electrodes.
Matrices R and L (whose dimensions are N × N) represent the discrete counterparts

of the electric constitutive relationship (Ohm’s law) and of the vector potential operator,
respectively. Matrices R and L are symmetric and positive definite. In addition, matrix R is
sparse, since it arises from a local operator, whereas matrix L is fully populated, because it
arises from the Biot–Savart integral operator.

Applying implicit time step integration to Equation (9), and keeping into account
constrain (15) and the initial condition, the algebrical system to be solved is:

(L + ∆t R)I(k+1) + ∆t FTφ(k+1) = LI(k) + V(k+1)
S −V(k)

S

F I(k+1) = I(k+1)
h

I(0) = I0
k ≥ 1

(16)

where

• ∆t is the time step
• I(k) = I(k∆t) and φ(k) = φ(k∆t) are the unknowns at integration instant k∆t

• I(k+1)
h = Ih((k + 1)∆t) are the prescribed currents flowing in the electrodes at integra-

tion instant k∆t
• and V(k)

s = Vs(k∆t) are source terms at integration instant k∆t
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2.3. Symmetric Periodic Boundary Condition

In many relevant situations, two proper conditions are satisfied. First, the plasma
discharge is axisymmetric. Therefore, the plasma discharge can also be retained periodically,
with the same period of the nuclear fusion reactor. Second, the electrodes present on each
sector and used to inject electrical energy into the system, may be driven by the same
waveforms. Under these two conditions, the electromagnetic fields are periodic with the
period of the nuclear fusion reactor. Similar arguments can be used in the presence of other
symmetries, other than rotations.

For the sake of clarity, in Figure 2 we report a simple case in which a periodic boundary
condition should be set at ϕ = −20◦ and ϕ = +20◦ on a symmetry mesh. We should
force the density current J(r, t), at each boundary point at ϕ = −20◦, to be equal to the
correspondent point at ϕ = +20◦.
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Let α be defined as the semi-angular width of the sector. For each pair of facets f 1
and f 2 lying, respectively, at ϕ = +α and ϕ = −α and coupled by the condition imposed
by the periodicity, we force the current flowing through f 1 to be equal to the one flowing
through f 2. This can be easily done by the means of the matrix F. Keeping into account
definition (15) we should have

C f 1 = C f 2, (17)

and hence
(F f 1 − F f 2)I = 0 (18)

Therefore, the periodic boundary conditions act like the electrode’s conditions, adding
an equation such as (18) for each corresponding pair of facets.

Summing up, in the presence of both electrode currents and periodic boundary condi-
tions, the second equation in (16) is generalized as:

B I(k+1) = M(k+1), (19)

where

B =

[
FE

Fα − F−α

]
, (20)



Energies 2022, 15, 3214 7 of 31

M(k+1) =

[
I(k+1)

h
0

]
(21)

FE
def
=
{

Fij
∣∣ i ∈ SE, j ∈ 1, N

}
Fα

def
=
{

Fij
∣∣ i ∈ πα, j ∈ 1, N

}
F−α

def
=
{

Fij
∣∣ i ∈ π−α, j ∈ 1, N

}
where πα and π−α are the planes at ϕ = +α and ϕ = −α, respectively.

In accordance with the two different constrains, the matrix B has a number of row
equal to NE + Np, where

NE is the number of electrodes on SE where the current should be prescribed.
Np is the number of faces at ϕ = +α (or at ϕ = −α).
Finally, in place of the (16), the overall numerical system to be solved is:

(L + ∆t R)I(k+1) + ∆t BTφ(k+1) = LI(k) + V(k+1)
S −V(k)

S
B I(k+1) = M(k+1)

I(0) = I0
k ≥ 1

(22)

At the discrete level, the dynamical matrix is:

A = R ∆t + L. (23)

The solution of large-scale problems involving a fully populated matrix poses a rele-
vant challenge both in the assembly and in the solution of the dynamical system (22) [26].

Indeed

(i) The assembly of L has a cost of O
(

N2).
(ii) The inversion (usually factorization) of the matrix A, using a direct method, as well

know, requires O
(

N3) operations.

The authors developed a parallel implementation of the direct method to solve system
(22) [26,27], based on the Scalapack library [28].

3. QR-Recursive Method
3.1. Summary of QR-Recursive Approach

As explained in the previous section, the solution of (22) cost is prohibitively large
when the mesh of the structure is very detailed. The compression of the stiffness matrix is
recommended only for large scale problems, otherwise a direct method is preferred. When
working on large scale problems, the compression of such large matrices as a whole is too
expensive, from the computational point of view. Therefore, we are obliged to resort to
recursive approaches, such as the QR-recursive method proposed in the present work.

In iterative methods, the matrix-vector product is the fundamental building block of
the solution, and the QR-recursive method [20,21] is actually a way to evaluate efficiently
the matrix-vector product.

The direct computation of the matrix-vector product Ax (see [29]) is actually too costly,
from the numerical point of view (it costs O

(
N2) operations); QR-based methods [30],

compress the matrix and recast the product evaluation in a cheap cost (which scales O(N))
by the means of separation between the near and far interactions. The near interactions
should be computed without approximation; on the contrary, the far interaction could
be approximated.
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The relevant steps of the QR-recursive algorithm are:

(1) Boxes generation
(2) Definition of DOFs associated to the boxes
(3) Definition of interaction matrix between two boxes
(4) Setting Lnear, Lfar
(5) Overall compressed operator optimization and practical considerations

3.1.1. Boxes Generation

The first step is grouping the mesh “objects” into clusters (boxes). The structure is
recursively generated by subdividing the domain in cubic cells, halving the edge length at
each subdivision. This procedure starts from the smallest cube containing the whole mesh
(b0) and ends when a prescribed minimum number (smin1) of “objects” is left in the box.
The resulting boxes, which should not require further division, are called childless boxes.
In the Appendix A, we report the full algorithm used, and in Figure 3 we show an example
of an application.
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Here, we use the elements as mesh “objects”. Hence, we refer to this method as the
ELEMENT-based method.

As a final remark, we highlight that the shape of the elementary cell, the cube in this
work, has to satisfy the following three properties:

(a) The cell is able to tessellate the 3D space.
(b) The cell can be exactly subdivided in eight smaller replicas.
(c) The cell should present an aspect ratio of the order of unity. In other words, the cell

should not be either flattened or elongated.

These conditions, bring naturally to cubic cells.

3.1.2. Definition of DOFs Associated to the Boxes

Once the boxes are created, we can define the DOFs to insert into the boxes.
Let E and D be defined as

E(b) def
= is the set of the all elements mesh belonging to the box b

D(b) def
= is the set of all DOFs ∈ E(b) (24)

Note that the support of a given DOF ∈ D(b), could not necessarily belong to E(b).
This actually occurs if the DOF lies on the boundary of the box. So, we label the DOFs as
the internal DOF or boundary DOF (see Figure 4).
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3.1.3. Definition of the Interaction Matrix between Two Boxes

Using the definition in (24), we are able to define the interactions matrix between a
field b and source box c.

The matrix interaction, namely Lbc, is defined as

Lbc =
{

L∗ij
}

, i ∈ D(b), j ∈ D(c), (25)

where
L∗ij = ∑

r∈E(b)
∑

s∈E(c)
Li,j,r,s. (26)

The terms Li,j,r,s represent the element–element contribution to the computation of Lij
(see (12)). It is easy to understand that

• L∗ij 6= Lij for each matrix entry of Lbc for which i or j is a boundary DOF.
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This is because some element–element interactions are missing.

• L∗ij = Lij for each matrix entry of Lbc for which both i and j are internal DOFs.

Hence, in the ELEMENT-based approach, the box–box interaction matrix Lbc could
not be a submatrix of the full matrix L (see Figure 4).

Nevertheless, the L matrix will be consistently reconstructed by superposition of all
the Lbc contributions.

3.1.4. Setting Lnear, Lfar

The last step is the identification of the near and far box–box interactions.
For each box–box interaction (namely b, c) in which b is field and c is the source box,

we define:

• Lfar(b)
def
= is the set of sources boxes c, such that the box b is in far zone of the box c.

• Lnear(b)
def
= is the set of sources boxes c, such that the box b is in the near of the box c.

The analytic definition of Lfar(b),Lnear(b) is explained in Appendix B.
In Figure 5, we report the near and far zone generated by box b acting as source.
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Using such a box–box repartition, the L matrix is written as follows:

L = Lnear + Lfar. (27)

Lnear accounts for the box–box interactions, which should be computed exactly without
approximation. There are two kinds of direct interactions:

• When the two boxes are classified as near, hence, they have a large rank and cannot be
efficiently compressed.

• The interactions arising from non-local DOFs. These DOFs could not be compressed
because they are related to nonlocal shape functions.

We call the Ladd matrix the sparse matrix arising from these non-local shape functions
(see [31,32]).

Let Nnbox be defined as the number of the boxes, the Lnear is

Lnear = Ladd +
Nnbox

∑
b=1

Lnear(b)

∑
c=1

Lbc. (28)

Lfar keeps into account the far distance box–box interactions. These kinds of interac-
tions are low rank and, hence, they can be conveniently compressed. The compression
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technique adopted is the modified Gram–Schmidt (MGS [22,33].). This algorithm returns
an approximated QR-MGS factorization for each Lbc.

Lbc ∼= QbcRbc (29)

Hence the matrix Lfar is approximated as follows:

Lfar =
Nnbox

∑
b=1

Lfar(b)

∑
c=1

Lbc ∼=
Nnbox

∑
b=1

Lfar(b)

∑
c=1

QbcRbc. (30)

Doing this way, it is easy to show that both the computational cost and memory
occupation are reduced. Indeed, let us consider two far boxes b and c having m and n
objects, respectively. The matrix without compression (i.e., Lbc) has dimension m × n,
whereas in its compressed matrix Qbc has dimension m× r, and Rbc has dimension r× n,
being r the rank of the interaction. Please note that for far interactions

r << m, n. (31)

Let xc be the vector representing the sources in box c, the direct evaluation of the
product Lbcxc has a computational cost

Cdir = m× n, (32)

whereas its approximated version Qbc
(

Rbcxc

)
costs

Capp = (m + n)× r. (33)

In force of the (31) it results in that for the far interactions Capp � Cdir. This is the
heart of the compression method.

For sake of clarity, in Figure 6 we report the rank distribution of the matrix Lbc, where
b is a given field box and c represents all the other source boxes. As expected, the rank
reduces as distance increases.
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Moreover, we stress that the computational cost of Lbcxc ∼= QbcRbcxc is exactly equal
to the memory required to store the compressed version of the interaction. Hence, all the
considerations done for the memory hold for the computational cost. This is a key feature
of the QR-recursive method.

Using (28) and (30), the dynamic matrix appearing in (23), can be approximated as

A ≈ Aqr = Anear + Afar, (34)

where
Afar = Lfar, (35)

Anear = ∆tRadd + Ladd +
Nnbox

∑
b=1

Lnear(b)

∑
c=1

(
Rbc∆t + Lbc

)
. (36)

where Radd is the matrix R evaluated in the same sparsity pattern as for Ladd.
Moreover, note that the matrix R, being a local sparse matrix, appears only in the

near part.
We should remark that in implementation of CARIDDI code, in order to face huge

cases, the parallelization is fully applied by the means of MPI (Message Passing Interface)
library [34]. Indeed, the computation burden

(i) assembling of Lnear and Lfar
(ii) product evaluation of Aqrx (i.e., pnear = Lnearx, pfar = Lfarx)

Is approximatively equally distributed among processes used in computation.
As a matter of fact, this means that performances of the QR method scale linearly

versus the number of processes used in computation.
Indeed, we will show (see Section 3.2) that the computational cost of the QR-recursive

method, is directly connected to the time required to evaluate the compressed product Aqrx.
In turn, this time, as aforementioned, depends on the memory used. When this memory is
equally redistributed among Np processes, the computation cost is reduced by a factor one
over Np

In the numerical sections, we will report some results about the numerical perfor-
mances of the parallelization [28,35].

3.2. The Preconditioner and the Initial Guess Estimation

As said in previous paragraphs, the QR-recursive method uses an iterative solver for
the solution of the algebraic system, which takes advantage from the compressed version of
the matrix-vector product. In present work, the iterative solver adopted is GMRES [36]. As
it is well known, the main operations required by an iterative solver are: (i) the computation
of the matrix-by-vector product Ax and, (ii) the preconditioning. The computational cost of
an iterative solver, then, is proportional to the number of multiplications required for the
product and to the number of iterations required to achieve convergence, assuming that
the preconditioning has a cheaper evaluation. The role of the preconditioner is to reduce
the number of iterations and, ultimately, the computational cost. In order to understand
how this preconditioner works, we apply the left preconditioner to the first equation in (22).
Assuming for sake of simplicity, the system is without electrodes, we have

P−1AI(k) = P−1
(

LI(k−1) + V(k+1)
S −V(k)

S

)
. (37)

The role of the preconditioner P is to reduce the condition number of the stiffness
matrix P−1A. The “ideal” preconditioner gets this number close to unity and it is a kind
of inverse of A. A critical issue in this framework is the dependence of matrix A on ∆t.
In fast transient analysis, ∆t has to be small enough to model properly the underlying
dynamics. On the other hand, in slow transients ∆t has to be large enough to reduce the
computational cost. Therefore, the dependence of A on ∆t yields the dependence of P on
∆t. Specifically, for small ∆t the preconditioner should be tailored on L, whereas for large
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∆t the preconditioner should be tailored on R, as follows from (23). In all remaining cases
(∆t not too small nor too large) the preconditioner depends on R and L. The appropriate
value of ∆t depends on the underlying dynamics that are caused by the source, i.e., by the
rate of change of VS(t) defined in (16) and appearing in (9).

It should be stressed that a preconditioner based on the L matrix is still an open
problem. From our knowledge and experience any attempt to insert a “light” modified
version of L in the preconditioner poorly fails.

In this work we set P = R. As we have said, R is a sparse, symmetric, and positive
definite matrix. Its factorization and application are numerically very effective [37]:

• The computational cost (memory and time) of the factorization is linear versus the
number of unknowns. Actually, it uses Cholesky decomposition (tailored for sparse
matrix).

• The back/forward substitution (involved in the Cholesky method) is also very cheap.

The R preconditioner is not very effective starting from a null initial value, for the
initial guess of the iterative method.

Extensive numerical experiments performed on typical meshes used in fusion devices,
have shown that, if we use an estimation for the initial value of the iterative solver, the R
preconditioner works quite fine, at least when the time variations are slow. Degradation
of the preconditioner will appear only in limited time slots when abrupt transitions occur.
The simple time estimation scheme that we use for the initial value is

I(k)0 = 2I(k−1) − I(k−2), (38)

where I(k)0 is the initial guess for GMRES at the current instant k and I(k−1) and I(k−2) are
the solutions at one and two previous time steps, respectively.

In the numerical results section, we report the GMRES number of iterations, proving
the efficiency of the proposed strategy.

Note that, being very effective with the preconditioner, the performance of the iterative
solver depends only by the computational cost of the approximated product Aqrx.

3.3. Extension of Compression to Symmetries

In the present work, we introduce a simple approach in order to apply compression
whenever symmetries are present in the structure.

Hereafter we assume that (i) the nuclear fusion reactor is a periodic structure, (ii)
the plasma discharge is axisymmetric, and (iii) the electrodes present on each sector are
driven by the same waveform (see Section 2.3). Assumption (i) is typical in nuclear fusion
machines. Assumptions (ii) and (iii) are not restrictive at all. Indeed, if not satisfied, the
approach proposed in this paper can be extended to these cases by exploiting the framework
of [38]. Hereafter, for the sake of simplicity, we present the compression in the presence of
symmetries, under assumptions (i)–(iii).

To describe the approach, we briefly recall how they are handled in the CARIDDI code.
Two classes of symmetries are handled. One is the symmetry of reflection with respect to a
co-ordinate plane; the other one is the symmetry with respect to a given rotation around
the axis z. The underlying idea, in order implement such a symmetry condition, is based
on two considerations:

1. Reducing the solution domain Vc only to an elementary part of the whole structure.
In the following, this part of the domain is called the main sector.

2. Assuming that basis functions ∇×Ni(r) automatically verify the symmetry condi-
tions, by two suitable operators: reflection and rotation.
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For instance, with reference to a system of rectangular coordinates with unit vectors
^
tx,

^
ty, and

^
nz, with

^
nz perpendicular to the plane of symmetry, we define the following

reflection operator:

Sn =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣, (39)

such that the components of Jk at the reflected point rr = Snr are given by

Ji(rr) = ε Sn Ji(r), (40)

where r = x
^
tx + y

^
ty + z

^
nz is in the integration domain Vc, rr is in the reflected domain, the

3D vectors are represented as column vectors made of their Cartesian components, and ε is
+1 or −1, depending on the type of symmetry. It should be noticed that the continuity of

J · ^
nz has to be assured on the symmetry planes. Therefore, for instance, when applying

a reflection with ε = +1, the condition J× ^
nz = 0 is automatically guaranteed on the

symmetry plane.
Similarly, the rotation of an angle α around the z axis can be represented by the usual

operator of rotation Rα:

Rα =

∣∣∣∣∣∣
cos α − sin α 0
sin α cos α 0

0 0 1

∣∣∣∣∣∣ , (41)

such that the components of Ji at the rotated point rr = Rαr are given by:

Ji(rr) = Rα Ji(r). (42)

Doing it in such a way, the solution in the main sector, along with the operators defined
in (40) and (42), ensures the knowledge of the solution in the rest of the structure (that is in
the whole 360◦ torus).

At this point, the calculation of the coefficients of L, R, and V is straightforward, and
the evaluation of the matrices L, R, V are reduced only to the DOFs in main sector. Indeed,
using a number of symmetries equal to Nsym and a number of rotations equal to Nrot,
they have the following form:

Lij = 2Nα

Nnrot

∑
m=0

Nsym

∑
j=0

µ0
4π

∫
Vc

∫
Vv

∇×Ni(r) ·Rα
m εj Sn

j∇×Nj

(
r
′
)

∣∣r−Rα
mSn

jr′
∣∣ dr′dr , (43)

Rij = −2Nα

∫
Vc
∇×Ni(r) · ×∇×Nj(r) dr, (44)

Vij = −2Nα

∫
Vc
∇×Ni(r) ·

∂

∂t
As(r, t) dr, (45)

where Nα = 2π
α .

Limiting the computation to the main sector has two obvious advantages:

(i) The number of DOFs is reduced by a factor of ntot = Nsym×Nrot. This gives a huge
gain in matrix storing, factorizing, and inverting.

(ii) The integration (43) can be seen as limiting the outer integral defined in (12) only to
the main sector. Clearly, this reduces the matrix L assembly time.

We can summarize the symmetry approach, saying that the matrix L can be seen
as the mutual inductance between DOFs. Without symmetry the field and source DOFs
are the same. Using the symmetry approach, the field DOFs are only in the main sector,
whereas the sources DOFs should be considered distributed all over the 360◦, but they are
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implemented (by the means of the operator (40) and (42)) using only the solution contained
in the main sector. Expanding (43) we have

L = L(1) + L(2) + . . . + L(ntot), (46)

where L(i−th) can be seen as the effect on main sector DOFs due to the DOFs contained in
the i− th source rotated sector.

Now that we have explained how symmetry/rotation are implemented in CARIDDI
code, we are ready to face the symmetry/rotation regarding the compression of the
matrix L.

Let Lbc be the interaction matrix between two far boxes, b (field box) and c (source
box). We denote with m and n the number of DOFs in the field and source box, respectively.
In order to evaluate Lbc, as said before, we need to consider the sources boxes c for all
rotations and symmetry sectors. The resulting matrix will be obtained as superposition of

Lbc = Lbc (1) + Lbc (2) + . . . + Lbc (ntot), (47)

where Lbc (j) with j = 1 to ntot represents the partial contribute of each sector/symmetry.
We have now two ways to apply the compression to Lbc:

(1) Compressing each single interaction matrix Lbc (j) appearing in (47).
(2) Summing the interactions matrices Lbc (j) and after compressing the resulting matrix

Lbc.

In the first approach, being each term Lbc (j) a low rank matrix, we can be applying to
it the QR-MGS factorization. So, we can approximate equation (47) as:

Lbc ≈
ntot

∑
j=1

Qbc(j)Rbc(j), (48)

where Qbc(j) and Rbc(j) have dimensions m× rj, and rj × n, respectively.
Keeping into account the (29), the computational cost (and memory) of the product

Qbc(j)Rbc(j)x, is (m + n)× rj. Hence, the overall cost of the product y = Lbcx is equal to:

c1 =
ntot

∑
j=1

(m + n)× rj = (m + n)× ntot × rm, (49)

where rm = 1
ntot

ntot
∑

j=1
rj is the medium rank.

The second approach is much simpler. The low rank nature of each Lbc (j) implies that
the overall matrix summation Lbc is low rank too. Although, it must be said that its rank
generally could be greater than the Lbc (j) rank in the sum. Hence, in the second proposed
approach, we evaluate directly the QR-MGS factorization:

Lbc ≈ QR. (50)

Its computational cost is:
c2 = (m + n)× rall . (51)

In order to compare the two approaches, we simply compute the ratio between (49)
and (51) and we have

c1
c2

=
ntot × rm

rall
(52)

Extensive numerical experiments carried out on typical cases used in practical fusion
devices, show that rm ≈ rall . So as a matter of fact, c2/c1 results to be of the order of ntot,
and hence, the second approach is to be preferred.
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