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Abstract— Thickness measurements of metallic plates are
mandatory in many industrial scenarios. Methods based on
eddy-current testing (ECT) are ideal for fast and accurate online
contactless thickness measurements, making them very attractive
in the Industry 4.0 scenario. This contribution is focused on a
specific and robust ECT technique proposed in the past by the
scientific community. The main limitation is its applicability to
thin materials only, where the thickness of the material is much
smaller than the overall size of the ECT probe. Extending the
range of applicability to thicker materials introduces a progres-
sive and severe degradation of the measurement accuracy. In this
article, we analyze the theoretical foundation of this method
with an entirely original approach based on the celebrated
Buckingham π theorem. In doing this, we draw the complete
theoretical picture of the method, providing a simple, clear,
and rigorous view of its performance and intrinsic limitations.
Moreover, we propose two solutions, one analytical and the other
iterative, to accurately estimate the thickness of the materials
from thin to thick values. Finally, a numerical analysis combined
with an experimental campaign confirms the effectiveness of the
proposed solutions, making the method suitable for industrial
and other applications.

Index Terms— Eddy-current testing (ECT), nondestructive
evaluation (NDE), nondestructive testing (NDT), optimization
algorithm, thickness measurement.

I. INTRODUCTION

ACCURATE, low-cost, online, and real-time thickness
monitoring of metallic structures is a key issue in many
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production and diagnostic applications. With regard to the pro-
duction perspective, the need for accurate online and real-time
thickness monitoring is a well-known issue since the final
thickness may be different from the expected one, as in the
case of welding or mechanical processing. This difference
makes it possible to assess the quality of the process and the
durability of the material. As for the diagnostic applications,
in many practical situations, it is important to evaluate the
effects of aging due to environmental and operating condi-
tions, especially when the metallic structures are involved in
safety features or are adopted in critical applications. In these
contexts, thickness measurements are employed to forecast
operating safety for future use and can guide modern diagnos-
tics and predictive maintenance processes, thereby minimizing
critical and/or catastrophic failures and related economic and
social impacts. In all these applications, the availability of
accurate online and real-time monitoring is key for ensuring
the timeliness of actions.

Industrial thickness measurement for quality control is com-
monly viewed as a well-assessed problem, thanks to the avail-
ability on the market of accurate measurement instruments
based on such technologies as ultrasound [1], lasers [2], and
mechanical and touching probes [3]. All these technologies
present drawbacks that prevent their use in distributed low-
cost, online, and real-time monitoring. For example, solutions
based on touching probes are very accurate but require long
measurement times. Those based on laser devices call for very
high costs, whereas ultrasound technologies require coupling
materials whose cleaning increases time and costs. All these
drawbacks limit the widespread use of these measurement
technologies in modern industrial scenarios where time and
cost impose dramatic constraints [4].

Thus, despite the availability of several highly accurate
measuring instruments based on the aforementioned technolo-
gies, the search for new, accurate, fast, cheap, distributed,
online, and real-time measurement methods, technologies, and
instruments remains an open issue that is being addressed
by numerous researchers around the world [5], [6]. In this
framework, several research groups are investigating the pos-
sibility offered by eddy-current testing (ECT) techniques [7],
which typically assure low costs, simple probes, and ease of
realization for online, real-time, and distributed measurement
systems.

Several ECT techniques for measuring the thickness of the
metallic plates can be found in the literature, most of which
rely on multifrequency (MF) and pulsed eddy-current (PEC)
methods.
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Within the framework of MF methods, the plate thickness
has been estimated by measuring the phase of the complex
inductance [8] or through phase analysis of the normalized
impedance [9]. Other methods have processed the amplitude
of the resistive component of the normalized impedance as a
function of the frequency [10]. In this setting, improvements
have been achieved in measurement times [11] and robustness
to liftoff variations [12], [13].

Regarding the PEC, several studies have proposed the
estimation of the thicknesses of conductive samples with
proper accuracy and robustness to liftoff variations [14], [15],
[16], [17]. Moreover, in [18], MF or PEC are combined
for thickness estimation through high-precision measurement
using a genetic algorithm-based approach.

The method proposed in this contribution is rooted in the
work by Yin and Peyton [10], where they proposed an MF
method for thickness measurement of nonmagnetic metallic
plates, yielding an accuracy compatible with industrial produc-
tion standards [19]. The method in [10] is highly efficient, but
it relies on the constancy of a certain parameter (α0 in [10]).
Unfortunately, as discussed in Section III, this parameter is
highly dependent on the thickness of the specimen, and it can
be maintained constantly only asymptotically for thicknesses
much smaller than the size of the probe. This makes the
method impractical for thick specimens or in the presence of
curved surfaces. For instance, in the latter case, there are two
conflicting constraints: 1) the probe has to be much larger than
the thickness of the specimen and 2) the probe has to be much
smaller than the curvature of the specimen, to approximate the
surface of the specimen by means of its tangent plane, in a
neighborhood of the probe itself.

The aim of this article is to provide a deep, complete, and
more general theoretical framework for the method proposed
in [10], allowing it to be extended to a broader class of thick-
ness measurements. From the technical perspective, we prove
that the critical constant parameter α0 has to be replaced by a
new function α = α(1), which depends on the thickness 1.
With this “minimal” modification, we extend the method’s
range of applicability while identifying its underlying physical
limits.

Moreover, the properties of the new function α(·) are
efficiently studied through an entirely original approach
based on the celebrated Buckingham π theorem, applied
for the very first time in the framework of nondestructive
testing.

In addition to the study of theoretical fundamentals, we
propose two different algorithms for performing thickness
measurement. The first algorithm is iterative and is con-
ceived for applications where the unknown thickness ranges
from 0 up to the theoretical limit of the method. This
approach requires the knowledge of the function α(·), for
a given probe. The second algorithm is based on a poly-
nomial approximation of α(·) and provides the thickness as
the solution of an algebraic equation of the same degree
as the approximating polynomial. Computationally, this is
extremely efficient when the polynomial approximation is up
to the third order since the related algebraic equation can
be quickly solved in closed form. A higher computational

cost is required when increasing the degree of the polynomial
approximation.

The resulting measurement method is very efficient in terms
of measurement and computational times, and suitable for
low-cost measurement architectures, thus ensuring the possi-
bility to get online and real-time measurement instruments for
industrial needs.

The article is organized as follows. A short description
of the method proposed in [10] is presented in Section II.
Then, in Section III, the theoretical foundation of the proposed
approach is provided. In this section, we give the fundamental
thickness equation (FTE), replacing that given in [10]. The
FTE is exact, rather than being valid only in the limit of
“small” thicknesses, and the results of [10] can be derived
as the limit of the FTE when the thickness approaches 0.
Moreover, an in-depth analysis of the structure of the FTE and
the global behavior of function α(·) is provided. In Section IV,
the intrinsic physical limit of the method is derived. Specifi-
cally, it is proved that, for a given probe, the thickness can be
estimated (existence, uniqueness, and stability of the solution)
up to a certain Critical Thickness 1c. In Section V, the
proposed iterative and analytical approaches to estimate the
thickness by solving the FTE are described. The experimental
setup and case studies are described in Section VI, whereas
the related experimental results are presented and discussed in
Section VII. Finally, conclusions are given in Section VIII.

II. THEORETICAL FRAMEWORK OF THICKNESS
ESTIMATION USING ECT

The ECT principle is based on the interaction between a
time-varying magnetic flux density and a conducting material.
By supplying an alternating current to an excitation coil,
eddy currents are induced in the plate being tested, which
generates a reaction magnetic flux density. This reaction field
can be measured through the same excitation coil or a different
sensing coil or a field sensor. The reaction field depends on
the characteristics of the tested material [7]. ECT techniques
can be used to measure specimen’s electromagnetic properties
(electrical conductivity and magnetic permeability, if any) [5],
[20], to detect superficial or subsuperficial defects [21], [22],
[23], and to measure the thickness of the metallic plates [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

In this work, we focus on the method proposed by Yin and
Peyton [10] aiming to estimate the thickness of a conducting
plate by measuring the mutual impedance for a probe com-
prised of two coils at different frequencies.

Specifically, the key quantity is the variation in the resis-
tance of the mutual impedance 1R, normalized to the angular
frequency ω

1R(ω)

ω
= − Re

{
Ż P

m(ω) − Ż A
m(ω)

ω

}
(1)

where Ż P
m(ω) is the mutual impedance measured on the plate

and Ż A
m(ω) is the mutual impedance measured in the air.

According to [10], the thickness 1 of the plate is related
to the angular frequency ωmin, where 1R(ω)/ω achieves its
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Fig. 1. 1R/ω ratio as a function of ω. Here, σ = 18.8 MS/m, and the probe
is described in Section VI.

minimum value as follows:

1 =
2α0

σµ0ωmin
(2)

where σ is the electrical conductivity of the plate, µ0 is the
free-space magnetic permeability, and, as stated by [10], α0 is
a proper constant related to the geometry of the probe, liftoff,
and tilting.

For example, Fig. 1 shows how the 1R(ω)/ω ratio achieves
a minimum, as a function of the angular frequency ω.
As expected from (2), ωmin decreases with the thickness 1.

III. FUNDAMENTAL THICKNESS EQUATION

Equation (2) is obtained by means of a stationary-phase
approach applied to the analytical solution for the eddy-current
problem in a plate (see [10]), via the celebrated Dodd and
Deeds approach [24]. This approximation is valid as long as

α01 ≪ 1 (3)

a condition that is met when the probe coil diameter is much
larger than 1, as stated in [10]. This condition makes it
necessary to change the size of the probe when measuring
plates of different thicknesses. Moreover, it is an issue when
measuring the thickness of the thick plates. This requires a
large coil, resulting in encumbrance and other problems.

To overcome the intrinsic limits of (2), here, we derive a new
thickness estimation equation, the FTE, with a completely new
and original approach based on the celebrated Buckingham
π theorem, which is applied for the very first time in the
framework of Nondestructive Testing. This new relationship,
the FTE, considers all the relevant physics without any approx-
imation, overcoming all the limits of the former. It only
requires the knowledge of a function that can be easily
evaluated once and for all through numerical simulations or
experimental measurements.

Hereafter, we define δmin as the skin depth in the conducting
material evaluated at the angular frequency ωmin

δmin =

√
2

σµ0ωmin
. (4)

We have the following theorems, based on the results of
Appendix A.

Theorem 1: Given the geometry of the probe described by
the array of parameters p, the probe liftoff l0, and the tilting θ

of the probe with respect to the plate, the thickness 1 satisfies
the following equation:

ωminσµ0 D2
= h

(
1

D
,

l0

D
, θ, p

)
(5)

where D is the size of the probe and h(·) a proper function.
We call (5) the FTE.
Remark 1: The FTE (5) involves function h(·), which can

be evaluated numerically. Specifically, given the probe geom-
etry (p and D), the liftoff l0, and the tilting θ , function h(·)

depends only on thickness 1, and it may be precomputed and
stored.

Remark 2: It is worth noting that the FTE (5) could be
derived directly from the Dodd and Deeds analytical rep-
resentation, but dealing with that analytical representation
is somewhat involved. Moreover, the method proposed to
derive (5) is completely general, independent of the underlying
geometry, and it can be applied without major changes to other
geometrical configurations, such as pipes.

Theorem 1 is complemented by the following results con-
cerning the asymptotic behavior for 1/D → 0+ and for
1/D → +∞.

Theorem 2: Given the geometry of the probe described
by the array of parameters p, the probe liftoff l0, and the
tilting θ of the probe with respect to the plate, ωmin satisfies
the following relationships:

ωminσµ0 D1 ∼ h0

(
l0

D
, θ, p

)
, for 1/D → 0+ (6)

ωminσµ0 D2
∼ h∞

(
l0

D
, θ, p

)
, for 1/D → +∞ (7)

where D is the size of the probe, and h0(·) and h∞(·) are the
proper functions.

The proofs of Theorems 1 and 2 are given in Appendix B.
The connection between Theorems 1 and 2 and (2) is

obtained by multiplying both sides of (5) by 1, which gives

1 = δ2
minα(1) (8)

where

α(1) =
1

2D2 h
(

1

D
,

l0

D
, θ, p

)
. (9)

Hereafter, for the sake of simplicity, it is understood that
α(·) depends on 1, D, p, l0, and θ . Equation (8) is simply (5)
cast in a form close to (2). It replaces and generalizes (2).

Theorem 2 can be “translated” in terms of the function α(·).
Specifically, (6) combined with (8) gives

α(1) ∼
1

2D
h0

(
l0

D
, θ, p

)
, for 1/D → 0+ (10)

and, similarly, (7) gives

α(1) ∼
1

2D2 h∞

(
l0

D
, θ, p

)
, for 1/D → +∞. (11)

Equation (10) implies that α(1) approaches a constant limit
for small 1. This proves that (2) corresponds to (8) in the limit
for 1 ≪ D. Equation (11) implies that α(1) is proportional
to 1, for large 1.
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Fig. 2. Complete behavior of α(1) for the probe of Section VI (blue line),
together with its constant approximation (α0 = 126.28 m−1) valid for small
1/D (black line).

Fig. 2 shows the complete behavior of α(1) for a range
of thicknesses of interest from 0.01 up to 25 mm, together
with its constant approximation for 1 ≪ D. It is fairly
evident that α(·) cannot be retained constant with respect to
the thickness 1.

Moreover, it is worth noting that α(·) does not depend on
the electrical conductivity, as it clearly follows from (9).

Function α(·) represents the “signature” of a given probe
for a given liftoff and tilting. To compute it numerically,
we express α(1) as

α(1) =
σµ0ωmin1

2
. (12)

Then, we numerically evaluate ωmin for different values
of 1 and/or electrical conductivities σ , and plug these val-
ues into (12). In this article, the analysis was carried out
numerically, by means of the well-known Dodd and Deeds
semianalytical model [24].

Remark 3: It is worth noting that the FTE (5) or (8) allows
a clear factorization of the effects due to the geometry and the
material. Specifically, h(·) and α(·) account for the geometry
of the problem, whereas δmin accounts for the material proper-
ties (σ and µ0), other than the angular frequency ωmin where
the minimum is achieved.

Remark 4: Equation (8) can be written as

ωmin =
α(1)

2µ0σ1
. (13)

Equation (13), combined with Fig. 2 and the asymptotic
behaviors of (10) and (11), shows that ωmin is inversely
proportional to the unknown thickness 1 for 1/D ≪ 1; then,
ωmin decreases with 1 at a decreasing rate until it becomes
constant for 1/D ≫ 1. Moreover, if it is known a priori
that the unknown thickness is in the range [11, 12], then
the proper frequency range for collecting the measurements
is [ω1, ω2], where ωk = α(1k)/(2µ0σ1k).

IV. INTRINSIC LIMITS OF THE METHOD:
THE CRITICAL THICKNESS

The enhanced equation (8) makes it possible to evaluate the
limits of applicability of the proposed method.

To this purpose, we observe that solving (8) entails finding
the intersection in the (1, α) plane between the straight line
1/δ2

min and the function α(1).

Fig. 3. (a) Geometrical definition of the critical thickness 1c . (b) At any
higher slope (δmin < δc) of the straight line, we have only one intersection in
the interval [0, 1c].

When the straight line is tangential to the graph of the
function α(1) [see Fig. 3(a)], the abscissa of the tangent point
defines a thickness value, termed the critical thickness 1c, and
the skin-depth (δmin) for the tangent line is termed the critical
skin-depth or, in short, δc.

In general, (8) admits a solution if and only if the slope of
the straight line 1/δ2

min is higher than that of the tangent line,
i.e., if and only if δmin < δc. In this case, the method gives
multiple solutions [1P and 1S shown Fig. 3(b)]. However,
by restricting the method to the interval (0, 1c), the unique-
ness of the solution is restored.

The critical thickness 1c is an important parameter because
it represents the upper limit of applicability of the method.
1c depends on the function α(·), which, in turns, depends
on the probe. 1c can be used to properly select the probe,
according to the range of thicknesses of interest.

Connected to the critical length 1c is the concept of critical
angular frequency ωc, which is defined as

ωc =
α(1c)

2µ0σ1c
. (14)

The critical angular frequency ωc represents the smallest
angular frequency, where 1R(ω)/ω may achieve its minimum.
This value can be chosen to set the lower limit of the frequency
range where the measurements need to be collected.

V. PROPOSED APPROACHES

In this section, we propose two algorithms to solve the
FTE (8). This procedure has been developed in order to make
the approach suitable for an industrial environment, where
automated measurements with minimal a priori knowledge of
the nominal thickness of the metal plates are required.

Both algorithms are based on a preliminary evaluation of
the function α(·) in the range of thicknesses of interest, for
the given geometry of the probe, liftoff, and tilting. This
preliminary evaluation, made once for all, can be carried out
through an experimental, numerical, or mixed procedure
(i.e., considering both experimental and numerical
points).

The first algorithm to solve (8) is iterative, and the second
is analytical.
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Fig. 4. Evidence of the convergence of the iterative solution. For any initial
point smaller than the second roots 1s , the algorithm converges to the primary
root 1p < 1c . After 1s , the iterative scheme does not converge. Since the
value of 1sn is not known, the iteration is initialized with 11 < 1c .

A. Iterative Approach

In this section, we propose an iterative approach to obtain
the proper value of the unknown thickness 1, taking into
account the FTE (8), where α(1) was introduced. As men-
tioned above, α(·) is assumed to be available in the range of
interest.

The estimated thickness via the iterative method is obtained
by the following steps.

1) Measurement: Measure ωmin, the angular frequency,
where 1R(ω)/ω achieves its minimum.

2) Initialization: Compute δmin according to (4), set i = 1,
and select an arbitrary 11 in the interval (0, 1c).

3) Update of 1: Update 1 as

1(i+1) = δ2
min α(1i ). (15)

4) Stopping Criterion: If |1(i+1) − 1(i)| < e, set 1 =

1(i+1) and exit. Otherwise, set i = i + 1 and go to
Step 3.

In Step 4, e > 0 is an absolute error tolerance used for the
stopping criterion.

The algorithm described in Steps 1–4 is simply a fixed-point
method to solve the fixed-point equation (8). Moreover, it
converges to the proper solution, regardless of the choice of
initial point 11 ∈ (0, 1c), as shown in Fig. 4 and discussed
in Appendix C.

A few iterations are usually required to achieve a proper
convergence. For example, considering the test conditions
defined in Section III (1min = 0.1 mm and 1max = 7 mm) and
assuming an unknown thickness of 2 mm and a threshold e
equal to 15 µm, Fig. 5 shows that the correct evaluation of the
thickness is achieved in three steps only. In particular, starting
from an initial error on the thickness estimate of 11.80%, the
iterative solution is reduced to 0.78% in just three steps.

In short, including this iterative solution in the proposed
ECT-based thickness measurement method enables a consid-
erable improvement in the accuracy of the final thickness
measurement for a minimal computational effort. In fact,
the time taken by the iterative solution can be considered
negligible since it is dependent on only a few accesses to a
lookup table/interpolation rule generating the values of α(·).

B. Analytical Approach

In this section, the proposed analytical approach is
described. It is based on a polynomial approximation of the

Fig. 5. Plot of the percentage relative error on the estimate of the thickness,
as a function of the number of iterations.

function α(·), the latter assumed to be known, as mentioned
above. The minimum number of samples of α(·) required to
calculate the polynomial coefficients depends on the degree of
polynomial approximation.

In analytical terms, we have

α(1) ≈

N∑
i=0

ci · (1 − 10)
i (16)

where ci s are the polynomial coefficients and 10 is the point
of expansion of this approximation. When N = 0 and 10 = 0,
we have the approximation underlying (2) It is worth noting
that Approximation (16) makes the FTE (8) an algebraic
equation.

The estimated thickness via the analytical method is
obtained through the following steps.

1) Measurement: Measure ωmin, the angular frequency
where 1R(ω)/ω achieves its minimum.

2) Initialization: Compute δmin according to (4).
3) Computation of 1: Solve

1 = δ2
min

N∑
i=0

ci · (1 − 10)
i . (17)

It is worth noting that algebraic equation (17) can be solved
in real time with today’s computational resources.

A very useful and interesting case is that of N = 2. In this
case, (17) for 10 = 0 reduces to

1

δ2
min

= c0 + c1 · 1 + c2 · 12. (18)

The analytical solution of (18) is

1 =
−

(
c1 − δ−2

min

)
−

√(
c1 − δ−2

min

)2
− 4c0c2

2c2
(19)

where the sign of the square root is chosen to have the phys-
ically admissible solution, which is smaller than 1c. More-
over, a simple calculation carried out under this second-order
approximation gives 1c = (c0/c2)

1/2.
From a general perspective, it is necessary to choose the

degree N of the interpolant based on a compromise between
the ease in computing the solution of (17) and the residual
error in approximation (16). To this purpose, it is useful to
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TABLE I
RMSE VALUES OBTAINED WITH THE CONSIDERED THICKNESS RANGE

VERSUS DIFFERENT DEGREES OF THE INTERPOLATING POLYNOMIAL

Fig. 6. Block diagram of the adopted measurement setup.

compute the approximation errors in terms of the root-mean-
square error (RMSE) defined as

RMSE =

√∑K
i=1

[
α̂(1i ) − α(1i )

]2

K
(20)

where α̂(·) is the approximating polynomial, 1i is the i th
sampling point, and K is the total number of samples.

Table I reports the RMSE for different values of the order of
the polynomial approximation N , for the same case described
above. It is worth noting that for N = 4 (the fourth-
order polynomial), the RMSE reaches its plateau, where the
approximation error is not larger than the numerical errors
in computing the function α(·). A higher order polynomial
would not improve the overall accuracy, despite requiring a
higher computational cost.

As a final comment, we highlight that approximation (16)
is very interesting when the function α(·) is acquired exper-
imentally. Indeed, the ci s in expansion (16) can be found
via a minimum set of N + 1 measurements, carried out on
plates of known thickness and electrical properties. Moreover,
this experimental characterization does not require the exact
knowledge of the probe geometry, thus making this approach
the only option when the function α(·) cannot be computed
numerically because of the lack of knowledge of the probe or
uncertain parameters.

VI. EXPERIMENTAL SETUP AND CASE STUDIES

A schematic block diagram of the measurement setup is
shown in Fig. 6. The experimental setup comprises the fol-
lowing components: an eddy-current probe (ECP), a waveform
generator, a data acquisition board, a current probe, and two

Fig. 7. ECP geometry. The coil windings (blue) together with the plastic
holder (yellow).

TABLE II
GEOMETRIC PARAMETERS OF THE ADOPTED ECP

TABLE III
CHARACTERISTICS OF THE CONSIDERED CASE STUDIES

signal amplifiers. The ECP consists of two coaxial coils, the
upper coil used as the transmitting coil (Tx) and the lower
coil as the receiving coil (Rx). The coils’ geometry is shown
in detail in Fig. 7; their dimensions are given in Table II.
A Waveform Generator Agilent 33120A is used to provide
the excitation current to the Tx. The excitation current has
been sensed by means of a current probe Tektronix TCP202A,
and both the sensed excitation current and the induced voltage
on the receiving coil Rx were conditioned using two SR560
Stanford Research System low-noise amplifiers, which amplify
and filter the signals. An Acquisition board TIE-PIE Engineer-
ing Handyscope HS5-540XMS-W5(TM) is used to acquire
both the conditioned signals with a sampling frequency of
1000 times the frequency of the exciting signal and 14 bits
of resolution. The tests were carried out by feeding the
exciting coil with a sinusoidal frequency-swept signal. The
range of frequencies of interest was from 200 to 3 kHz, with
a resolution of 2 Hz and with a root mean square current value
of 135 mA. The Management and Processing unit includes an
MATLAB algorithm running on a dual-core PC for processing
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TABLE IV
COMPARISON BETWEEN THE THICKNESSES OBTAINED BY USING THE TRUE VALUE OF α(1),

THE α0 VALUE REFERRED TO 1REF , AND THE TWO PROPOSED SOLUTIONS

the acquired data, managing both the waveform generator and
the acquisition board TIE-PIE.

The experimental tests were carried out considering six
reference aluminum plates, whose nominal thickness values,
electrical conductivities, and dimensions are given in Table III.
A 2024T3 aluminum plate with a thickness of 2.003 mm and
five EN AW-1050A aluminum plates with different thicknesses
from 0.5 to 4 mm have been considered in this study.

VII. EXPERIMENTAL RESULTS

In this section, the experimental results achieved by using
the proposed approach are presented and discussed.

The experimental campaign was carried out using the mea-
surement setup, the sample plates, and the frequency-swept
excitation described in Section VI. The aim was to analyze
the accuracy of the proposed methods based on the FTE (8).

The experimental results have been organized in terms of
comparison between the following strategies.

(1) estimating 1 assuming the a priori knowledge of α(·),
evaluated at 1.

(2) estimating 1 through the approach of [10].
(3) estimating 1 through the iterative approach with

e = 15 µ m.
(4) estimating 1 through the analytical approach with a

second-degree polynomial.
(5) estimating 1 through the analytical approach with a

fourth-degree polynomial.
Approach 1) corresponds to a thought experiment since it
requires the knowledge of α(·) at the unknown thickness value,
which is not available in a practical setting. However, this
approach gives the best accuracy that can be achieved. Indeed,
the errors are only due to the uncertainty in the experimental
setup and to the accuracy in computing α(·). The value of
1 used in evaluating function α(·) at the right-hand side of (8)
is that of the nominal thickness shown in Table III.

Thickness estimation performance has been compared in
terms of the relative thickness error (RTE), defined as

RTE =
1e − 1a

1a
· 100 (21)

where 1a is the actual thickness of the sample and 1e is
the estimated thickness. Table IV summarizes the obtained
experimental results for the configurations of Table III.

As expected, the smallest RTEs were observed by adopting
approach 1), with RTEs lower than 1% except for the sample

with a thickness of 0.469 mm, for which an RTE of 1.35%
was found. For the original approach of [10], based on (2),
the RTE significantly worsened, rising to 14%. The smallest
error (2.68%) is obtained for a thickness equal to 1 mm. The
new approaches of Section V, namely 3)-5), yield an excellent
performance. Indeed, the RTEs are always lower than 2.5%
and, in several cases, are comparable with the “ideal” values
obtained by using the a priori knowledge of α(·), i.e., the
thought experiment.

VIII. CONCLUSION

This article proposes a novel measurement method for the
estimation of the thickness of the metallic plates. The method
is specifically designed for accurate, online, and real-time
applications.

The theory underlying the proposed method explains
the transfer characteristic, i.e., the relationship between the
measured quantity ωmin and the unknown thickness 1, for
arbitrary thicknesses 0 < 1 < +∞. This theory has been
derived with an entirely new approach based on the celebrated
Buckingham π theorem, here applied for the very first time
in the framework of nondestructive testing. A strength of the
proposed approach based on the Buckingham π theorem is
that it can be easily extended to other geometries, different
from the planar ones.

The complete knowledge of the transfer characteristic made
it possible to find the physical limit of the probe, namely,
the critical thickness 1c: the measurement of any thickness
smaller than 1c can be carried out safely, i.e., the solution of
the FTE (8) exists, is unique, and depends continuously on
the data.

Complementary to the theory, this contribution proposes two
algorithms for estimating the unknown thickness. The first
approach is based on an iterative method (fixed point method)
for which a proof of its convergence has been provided. The
second approach is an analytical method, where the thickness
is found as the solution of an algebraic equation, and is based
on a local (polynomial) approximation of function α(·). From
a general perspective, the iterative approach may be preferred
for applications where the probe is used on the full range,
from 0 to the critical thickness 1c, whereas the analytical
approach may be preferred when the target thicknesses vary
in a local neighborhood where the polynomial approximation
can be made accurate with only a few terms.
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The experimental results confirmed the accuracy of the
proposed approaches, with relative errors lower than 2.5%,
and comparable with the ideal ones, that can be obtained
in a thought experiment exploiting the knowledge of the
“unknown” thickness.

Finally, future work will comprise the extension of the
Buckingham π theorem to structures made by multiple layers
or problems where the liftoff is uncertain.

APPENDIX

A. Dimensional Analysis

In this Appendix, we derive the functional relationships
between 1Ż = Ż A

m − Ż P
m and the problem parameters.

The starting point is that 1Ż depends on the following
quantities.

1) the angular frequency of the excitation signal ω.
2) the physical properties of the plate σ and µ0.
3) the thickness of the plate 1.
4) the normalized geometry of the probe p.
5) the overall size of the probe D.
6) the liftoff l0 and the tilting θ .

Here, D is a length giving the overall size of the probe and p is
a vector containing all the geometric parameters of the probe,
but where lengths are normalized to probe size D. In our case
(see Table II), we have

p =

[
ri

D
,

re

D
,

hu

D
,

hd

D
,
1h
D

, N1, N2

]
. (22)

Parameter D can be chosen arbitrarily, as long as it rep-
resents the linear size of the probe. For instance, D can be
chosen as the external diameter of the coils, i.e., D = 2re.
Finally, l0 and θ are the distance and the inclination of the
probe to the plate, respectively.

In mathematical terms, we have

1Ż = Ż A
m − Ż P

m = g(ω, σ, µ0, 1, l0, θ, D, p) (23)

where g is a proper complex function.
To analyze the “essential” dependencies among the vari-

ables involved in (23), we use the celebrated Buckingham π

theorem [25]. The latter formalizes the concept that the laws
of physics are independent of the measurement units. These
fundamental results in the field of dimensional analysis have
been successfully used in various areas such as [26], [27],
[28], and [29]. To the best of our knowledge, this is the first
application of dimensional analysis in the framework of NDT.

In order to apply the Buckingham π theorem, it is necessary
to choose: 1) the fundamental dimensions and 2) the repeating
variables (see [25] for definitions and details). In our case,
length, time, and impedance were chosen as fundamental
dimensions, and µ0, ω, and D as repeating variables. Then,
the Buckingham π theorem allows (23) to be cast in a
dimensionless form as

1Ż
ωµ0 D

= f
(

ωσµ0 D2,
1

D
,

l0

D
, θ, p

)
(24)

where f is a proper function.

Fig. 8. Plate for small 1, together with the orientation of the normal vector
and the definition of regions 1 and 2.

With a similar approach, the Buckingham π theorem makes
it possible to find the limiting behavior of (24) for 1 ≪ D.
Indeed, in this case (thin shell limit), the conducting material
behaves as a planar surface S where the following jump
condition holds (see Fig. 8):

n̂ × (H1 − H2) = σ1(n̂ × E) × n̂, on S. (25)

This implies that, for small 1, the electromagnetic field
depends on the σ1 product, rather than on σ and 1 separately.
Therefore, (23) is replaced by

1Ż ∼ g0(ω, σ1,µ0, l0, θ, D, p) (26)

which, in dimensionless form, can be cast as

1Ż
ωµ0 D

∼ f0

(
ωµ0 Dσ1,

l0

D
, θ, p

)
(27)

where both g0 and f0 are proper functions.
To complete the analysis, we discuss the case 1 ≫ D.

In this case, 1Ż does not depend on 1, because the probe is
“unable” to interact with the bottom of the plate. Therefore,
(24) can be replaced by

1Ż
ωµ0 D

∼ f∞

(
ωσµ0 D2,

l0

D
, θ, p

)
(28)

where f∞ is the limit of f for 1/D → +∞.

B. Proofs of Theorems 1 and 2

Proof: The starting point is the dimensionless equa-
tion (24) for 1Ż derived in Appendix A. Specifically, its real
part gives

1R
ωµ0 D

= fR

(
ωσµ0 D2,

1

D
,

l0

D
, θ, p

)
(29)

where fR(·) = Re{ f (·)}.
When the left-hand side of (29) achieves its minimum,

we have

∂ fR

∂a1

(
ωminσµ0 D2,

1

D
,

l0

D
, θ, p

)
= 0 (30)

where ∂/∂a1 represents the partial derivative with respect to
the first argument of the function fR .

Assuming that (30) can be solved with respect to its first
argument, (5) follows, where h(·) is a proper function.

Proof: The proof of (6) and (7) follows that of Theorem 1,
but starting from (27) and (28), respectively.
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C. Convergence of the Iterative Method

To prove this result, we first observe that solving (8) for
1 corresponds to solving a fixed-point problem, i.e., a problem
of the type

1 = f (1 (31)

for f (1) = δ2
min α(1).

Then, the iterative method of Section V-A is convergent
because: 1) the function f (·) is a contraction1 and 2) the
interval [0, 1∗

] with 1∗ < 1c is a complete metric space.
Indeed, under these two conditions, we can invoke the Banach
fixed-point theorem [30], which guarantees the existence and
uniqueness of the solution 1 of (31) and provides a construc-
tive method to find 1 as the limit for n → +∞ of the sequence
1n+1 = f (1n) for n ∈ N, being 11 ∈ [0, 1∗

].
Since condition 2) is well known, here, we prove condi-

tion 1) only. Specifically, we have the following Proposition.
Proposition 1: f (·) is a contraction in [0, 1∗

], where
0 < 1∗ < 1c.

Proof: A sufficient condition for f (·) to be a contraction
is proving that its first derivative is smaller than unity in the
reference interval [0, 1∗

].
In our case, we notice that (see Fig. 3) α′ is mono-

tonically increasing and, that, α′(1c) = 1/δ2
min. Therefore,

α′(x) ≤ α′(1∗) < 1/δ2
min for x ≤ 1∗ < 1c. Consequently,

0 ≤ f ′(x) ≤ f ′(1∗) < 1.
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