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A B S T R A C T   

In years of increasing impact of climate change effects, a reliable characterization of the spatiotemporal 
evolutionary dynamics of evapotranspiration can enable a significant improvement in water resource manage
ment, especially as regards irrigation activities. Sicily, an insular region of Southern Italy, has exceptionally 
valuable agricultural production and high irrigation needs. In this study, the ETo reference evapotranspiration in 
Sicily was first evaluated on the basis of historical and future climate parameters, referring for future values to 
two climate scenarios characterized by different Representative Concentration Pathways: RCP 4.5 and RCP 8.5. 
Then, the Hierarchical algorithm was used to divide Sicily into three homogeneous regions, each characterized 
by specific ETo features. In addition, some Machine Learning (ML) algorithms were used to develop forecasting 
models based on only historical data. Support Vector Regression (SVR) was used to predict the future values of 
Tmin and Tmax, while an ensemble model based on Multilayer Perceptron (MLP) and M5P Regression Tree was 
developed for the ETo forecasting. Predictions made with the ensemble MLP-M5P model were compared with the 
ETo computed for the RCP 4.5 and RCP 8.5 future climate scenarios. During the forecast period, from 2001 to 
2091, evapotranspiration increases were observed for all three clusters. For cluster C1, along the coast, per
centage increases of 7.52%, 14.64% and 10.78%, were computed for RCP 4.5, RCP 8.5, and MLP-M5P, 
respectively, while, for cluster C3, in the inland, percentage increases were higher and equal to 8.12%, 
16.71%, and 14.98%, respectively. The ensemble MLP-M5P model led to intermediate trends between RCP 4.5 
and RCP 8.5, showing a high correlation with the latter (R2 between 0.93 and 0.98). The developed approach, 
based on both clustering and forecasting algorithms, provided a comprehensive analysis of the reference 
evapotranspiration, with the detection of the different homogeneous regions and, at the same time, the evalu
ation of the evapotranspiration trends, both in coastal and inland areas.   

1. Introduction 

Evapotranspiration is one of the main processes in the water cycle 
and its assessment plays an essential role in water resource manage
ment. However, given the complexity involved with direct measure
ment, the estimation of evapotranspiration is commonly based on 
meteorological data, which allows the estimation of the ETo reference 
evapotranspiration. The physical-based Penman-Monteith equation 
(Allen et al., 1998), which combines radiometric and aerodynamic pa
rameters, is recommended by the United Nations Food and Agriculture 
Organization (FAO) for the ETo evaluation in different climates world
wide (Fan et al., 2016). However, climate change is affecting the hy
drological cycle, and its effects will be probably more dangerous for arid 
and semi-arid climates, characterized by low rainfalls and high 

temperatures (Goyal and Gaur, 2022). Therefore, a spatio-temporal 
analysis of the future evapotranspiration trends may be crucial for 
predicting imbalances in regional hydrologic supply and enhancing 
water resources management (Yang et al., 2020). 

The considerable variety of climates worldwide can lead to very 
different ETo trends depending on the local climatic features. Chaouche 
et al. (2010) investigated the spatio-temporal evolution of ETo for a 
Mediterranean climate area of France, showing increasing trends more 
marked close to the coast. Pandey and Khare (2018) and Prăvălie et al. 
(2019) also detected an increasing ETo trend for the humid tropical 
climate of the Narmada River watershed, India, and for the temperate 
continental climate of Romania, respectively. Jerin et al. (2021) inves
tigated the reference evapotranspiration trends for the tropical monsoon 
climate of Bangladesh, showing how, over the period 1980–2015, 
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increasing and decreasing trends can be observed during the monsoon 
and dry periods, respectively. However, the authors highlighted a 
decreasing trend for the annual ETo. Different literature studies show a 
decreasing trend for semi-arid (She et al., 2017; Xu et al., 2018) and arid 
areas of China (Li et al., 2017). However, Fu et al. (2022) investigated 
the terrestrial evapotranspiration trends at China’s land scale showing a 
significant linear increasing trend since 2000 for 87.03% of the study 
area, considering all agricultural regions of China. 

Estimating ETo using the Penman-Monteith equation over large 
areas is often complicated by the lack of sufficiently widespread mea
surement stations for climate variables. This problem can be overcome 
by relying on the results of projects based on the combination of several 
Global Climate Models (GCMs) and Regional Climate Models (RCMs), 
which provide climatic variables in most regions of the world with 
different spatio-temporal resolutions and different climate scenarios. 
These allow an evaluation of present and future evapotranspiration even 
in poorly gauged areas. Examples of these projects are the Coordinated 
Regional Climate Downscaling Experiment (CORDEX, Gutowski et al., 
2016) and Coupled Model Intercomparison Project (CMIP, Eyring et al., 
2016). 

In the last decades, ML-based models proved to be able to provide 
accurate predictions of hydrological variables, including evapotranspi
ration, with the advantage of a high computational speed without the 
need to define analytical relationships between exogenous variables 
(inputs) and targets (Di Nunno and Granata, 2020; Granata and Di 
Nunno, 2021a). Furthermore, in recent years, in order to improve the 
forecasting accuracy of ML algorithms, the research has been oriented 
toward the development of deep learning models (e.g., one-dimensional 
Convolutional Neural Network and Long Short-Term Memory network, 
Chia et al., 2022a, 2022b) and ensemble or hybrid models (Tikhamarine 
et al., 2019; Karbasi et al., 2022; Malik et al., 2022). However, in
vestigations on future evapotranspiration trends through a comparison 
between the ETo evaluated on the basis of future data of the climatic 
variables and the ML approach are, to date, still very little debated. Yin 
et al. (2017) investigated the future variability of ETo using two ML 
Algorithms: Extreme Learning Machine (ELM) and SVR, in a moun
tainous inland watershed in north-west China. The authors considered 
eight GCMs from the CMIP5 under two RCP climate scenarios: RCP 4.5 
and RCP 8.5. They showed how both ELM and SVR methods are char
acterized by good performance in estimating the ETo for the future 
period 2010–2099. Maqsood et al. (2022) investigated the response of 
ETo under three RCP climate scenarios: RCP 2.6, RCP 4.5, and RCP 8.5 
using the second-generation Canadian Earth System Model (CanESM2). 
In particular, the authors estimated ETo for western, central, and eastern 
parts of Prince Edward Island (Canada) using the Hargreaves equation, 
with Tmax and Tmin for three future periods: 2011–2040, 2041–2070 and 
2071–2100. Then, the authors employed three different artificial neural 
networks (ANNs) algorithms: One-Dimensional Convolutional Neural 
Network (1D-CNN), Long-Short Term Memory (LSTM), and MLP, for the 
ETo estimation, showing good accuracy. Kadkhodazadeh et al. (2022) 
analyzed the ETo trends for the period 2021–2050 at nine stations in the 
two basins of Lake Urmia and Sefidrood, Iran. In particular, the authors 
evaluated ETo by the Penman-Monteith equation, based on three 
different CMIP6 global climate models. Then, they carried out an ETo 
modeling implementing six ML algorithms: multiple linear regression 
(MLR), multiple non-linear regression (MNLR), multivariate adaptive 
regression splines (MARS), model tree M5 (M5), random forest (RF), and 
least-squares boost (LSBoost), with promising results. 

A forecast model of the future ETo can be valid for a more or less 
large area, as long as the area is characterized by a certain homogeneity 
of the features affecting the ETo. Homogeneous evapotranspiration re
gions can be identified by means of clustering algorithms. Xing et al. 
(2016) applied the Rotated Empirical Orthogonal Function (REOF) 
clustering method to identify homogenous regions of ETo in China, 
based on the annual ETo times series from 602 stations for the period 
1961–2011. Masanta and Vemavarapu (2020) detected eighteen 

homogeneous ETo regions in India using a fuzzy dynamic clustering 
approach, with climate variables as predictors. Chen et al. (2020) 
applied the K-means clustering algorithm for the ETo analysis in 
Northeast plain, China. The authors used the daily average values of 
maximum and minimum temperature, relative humidity, extraterres
trial radiation, and solar radiation, to group all weather stations with the 
clustering algorithm. Hobeichi et al. (2021) also applied the k-means 
algorithm on a global scale, with the detected clusters that included 
three wet and three dry regimes and provided an approximation of 
Köppen–Geiger climate classes. 

The aim of this study is to provide a characterization of the ETo 
trends in Sicily, Southern Italy, based on a spatio-temporal analysis. A 
step-by-step description of the modeling procedure is provided in Sec
tion 2.7. 

Sicily has exceptionally valuable agricultural production and also 
high irrigation requirements, in the context of scarcity of water re
sources. An accurate assessment of future trends in evapotranspiration is 
crucial to evaluate the impact of climate change on surface water 
availability in Mediterranean climate areas such as Sicily. Liuzzo et al. 
(2015) investigated the effect of climate change on water resource 
availability for a sub-basin of Belice catchment, Sicily, showing how the 
decreasing trends of precipitation involved a decrease in surface and 
groundwater resources, with the latter enhanced by the potential 
evapotranspiration changing. The authors also highlighted the impact 
on the reservoir management for Garcia Lake, Sicily, showing how in the 
future the reservoir will no longer be able to satisfy the water demands. 
This will lead to the need to reduce both agricultural water demand, 
through more efficient irrigation systems, and water leakages, which 
chronically affect water supply systems in southern Italy. Viola et al. 
(2016) also investigated the future evapotranspiration-runoff relation
ship (scenarios RCP 4.5 and RCP 8.5) for one of the largest Sicilian ba
sins, the Imera Meridionale river basin, showing that future 
evapotranspiration changing will lead to a sharp reduction of the runoff 
as the reference evapotranspiration and temperature increase and the 
precipitation reduces. Varotsos et al. (2021) investigated the implication 
of climate change on the agricultural sector of three Mediterranean 
islands: Sicily, Crete and Cyprus, based on the EURO-CORDEX data and 
the two scenarios RCP 4.5 and RCP 8.5. Authors showed marked 
changing in the average, maximum, and minimum temperatures during 
the period 2031 and 2060 with, however, a less pronounced reduction of 
the total precipitation. The authors highlighted the impact of these 
variations on the main crops cultivated in the three islands. In particular, 
the expected warming mostly in spring and summer might expose the 
crops to an adverse impact on the plants’ phenological stages, affecting 
both production and quality. For example, for the olive tree, widespread 
in large areas of Sicily, the temperature increases can lead to positive 
effects on trunk and fruit growth. However, climate change can bring 
also negative impacts on flowering bud differentiation, which requires 
an appropriate low-temperature period, and the increase of olive fly 
infestations, reducing final yield and quality. 

Moreover, future climate projections represent extreme conditions 
corresponding to assumed emission scenarios but conditioned by future 
environmental policies and certainly affected by significant uncertainty. 
Further considerable uncertainty is due to the complexity of global and 
regional models (Yin et al., 2017). In this scenario, the ML-based models, 
which are relatively simple to develop on the basis of historical data 
alone, can provide reliable alternative forecasting tools, which are also 
useful for validating the results of the more complex GCMs and RCMs or 
highlighting their discrepancies. 

A study of the spatio-temporal evolution of regional reference 
evapotranspiration over the long term, based on clustering and ML al
gorithms, with subsequent comparison of the results with extreme 
climate scenarios, is certainly novel compared to the current literature. 
The issue takes on even greater importance for the area investigated in 
this study, Sicily, where climate change can significantly increase the 
risk of desertification. In this context, the clustering results, in addition 
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to allowing the recognition of homogeneous ETo areas, were analyzed in 
context with the agricultural land use to correlate the reference evapo
transpiration with the different crop water demands, allowing the 
identification of the most sensitive areas in terms of potential future 
water deficit. From this point of view, reliable future ETo forecasting is 
crucial. Although the MLP algorithm has recently been applied by 
Maqsood et al. (2022) to investigate the ETo trends under different 
future climate scenarios, the ensemble model based on MLP and M5P 
algorithms for the ETo prediction, besides being a further element of 
novelty, aimed at significantly improving the performance of individual 
algorithms, which are not always able to provide satisfactory pre
dictions, especially for long-term forecast horizons. 

Therefore, this study aims to overcome the limitations of the existing 
literature on the reference evapotranspiration prediction in Sicily, pro
posing a combined clustering-forecasting approach that can provide 
useful information for the present and future management of water re
sources for different purposes. 

2. Materials and methods 

2.1. Study area 

Sicily is the largest island in the Mediterranean Sea and has a typical 
Mediterranean climate, with hot, dry summers and mild, wet winters. 
Moreover, especially along the southwestern coast, the African 

anticyclone brings frequent and marked temperature increases (Bene
detto and Giordano, 2008, Fig. 1a). 

During the winter, the average temperature varies from 4 ◦C in the 
inland province of Enna to 9.7 ◦C and 11.5 ◦C on the west coast of 
Trapani and the northeast coast of Messina, respectively. During the 
summer, the average temperature varies from about 28 ◦C inland to 
about 30◦ along the coast. Rainfall is higher along the east coast, with 
709 mm of annual precipitation in 109 rainy days for Messina, 
compared to the west coast, with 446 mm of annual precipitation in 88 
rainy days in Trapani. In addition, inland areas showed lower annual 
precipitation than the coast, with 358 mm of annual precipitation on 69 
rainy days for the city of Enna. However, annual rainfall is far below the 
national average. 

One of the main economic activities of the region is agriculture, with 
more than 1,600,000 ha of agricultural land, corresponding to about 
64% of Sicily’s total surface. Fig. 1b provides the agricultural land cover 
of Sicily, based on CORINE (Coordination of information on the envi
ronment) Land Cover data for the year 2018, with the 3-level nomen
clature. Fruit trees, which cover 11% of agricultural land, are mostly 
concentrated along the east coast and particularly in the province of 
Catania. Vineyards and olive groves, which cover 9% and 12% of agri
cultural land, respectively, are more widespread along the west coast. 
Permanently irrigated lands, which include greenhouses, cover only 4% 
of the agricultural land and are more widespread in the southeastern 
part of the island. In addition, 48% of agricultural land is represented by 

Fig. 1. Location of the gridded data points in Sicily with: a Digital Elevation Model (DEM) representation, the Empirical Hargreaves coefficient distribution, and an 
indication of the Sicilian Province (a); Agricultural land cover of Sicily (b). 
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non-irrigated arable land, which includes rainfed and sporadically irri
gated land with non-permanent devices. 

In addition to agricultural land use, the factor that plays a key role in 
the management of water resources is the irrigation requirements of 
each crop. These also vary considerably from area to area in Sicily 
depending on the climatic and pedological conditions. Vineyards require 
from 1200 to 1800 m3/ha • year, going from the provinces of Calta
nissetta and Ragusa (south-east) to the province of Palermo (north- 
west), respectively. Great variability is also observed for olive groves, 
which require from about 1200 m3/ha • year for the provinces of Cal
tanissetta, Ragusa, and the northern portion of Trapani (west), to about 
2000 m3/ha • year for the provinces of Catania, Palermo, and the 
southern portion of Trapani. Fruits trees require about 3500 m3/ha •
year for the whole region, with the only exception of the Catania 
province where the greatest presence of orchards is observed, for which 
3800 m3/ha • year are indicated (Regione Sicilia, 2010). 

However, it should be seriously considered that the impacts of 
climate change on the hydrological cycle have been observed in recent 
years, related to rising average temperatures and evapotranspiration 
rates, leading to a significant increase in irrigation demands (Viola et al., 
2014). This, together with the reduced availability of surface water and 
groundwater, is related to the negative rainfall trend, which leads to an 
increased risk of desertification on the island (Liuzzo et al., 2015). 

2.2. Dataset 

Minimum (Tmin) and Maximum (Tmax) temperature grid data from 
the CORDEX project were used in this study. The CORDEX platform was 
developed by the World Climate Research Program (WCRP) with the 
aim of providing high-resolution climate datasets in several locations 
around the world (Gutowski et al., 2016). Specifically, the CORDEX 
experiments consist of simulations representing different future 
socio-economic scenarios based on different combinations of RCMs and 
GCMs. 

The GCM model used was the MOHC-HadGEM2-ES, developed by 
the Met Office Hadley Centre (MOHC) with the HadGEM2 family of 
configurations, including the Earth-System (ES) components like dy
namic vegetation, ocean biology, and atmospheric chemistry. The 
HadGEM2 physical model includes improvements designed to address 
specific systematic errors found in the previous climate configuration, 
HadGEM1, related to continental temperature biases of the northern 
hemisphere and tropical sea surface (The HadGEM2 Development Team, 
2011). The RCM model was the CLMCom-CCLM4–8–17 for the Euro
pean domain (EUR-11, CLMCom, 2017). Since climate features, like 
temperature and rainfall, are highly spatially variable due to the rather 
complex orography of Sicily (Forestieri et al., 2018a; Peres et al., 2020), 
the bias correction included in the GCM model allowed to reduce the 
errors between the observed and simulated hydrological data based on 
CORDEX climate models, as demonstrated in several literature studies in 
other Mediterranean areas (Piani et al., 2010; Dosio, 2016). Forestieri 

Fig. 1. (continued). 
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et al. (2018b) demonstrated the capability of CORDEX models to 
reproduce extreme rainfall measured at different stations in Sicily. Peres 
et al. (2020) also investigated the skill of several EURO-CORDEX RCMs, 
with grid-size of 0.11◦, in reproducing the seasonal temperature and 
precipitation regime for Calabria and Sicily, showing higher perfor
mances for temperature (which is the variable considered in the present 
study) with respect to precipitation. Moreover, the combination of the 
two climate models, regional and global, has recently led to an accurate 
analysis of climate change in eastern Greece and in particular on the 
island of Crete, which has a climate similar to that of Sicily (Markantonis 
et al., 2022). 

Two extreme RCP scenarios, RCP 4.5 and RCP 8.5, were considered 
as climate projections. RCPs are greenhouse gas concentration trajec
tories adopted by the Intergovernmental Panel on Climate Change 
(IPCC). RCP 4.5 is an intermediate scenario with emissions peaking 
around 2040 and declining until 2100. RCP 4.5 can be regarded as the 
most likely scenario, as it considers the exhaustible nature of non- 
renewable fuels (Höök et al., 2010). RCP 8.5 represents the worst-case 
climate change scenario, as it considers an increase in emissions 
throughout the 21st century. 

The spatial resolution of the dataset grid was equal to 0.11◦, with 186 
gridded data points covering the entire island (Fig. 1a). The dataset 
spans from 1951 to 2005 for historical data, and from 2006 to 2100 for 
the RCP scenarios, with a monthly time scale. In addition to Tmin and 
Tmax, the extraterrestrial radiation (Ra) was computed for each gridded 
data point, from 1951 to 2100, expressed as: 

Ra =
24 • 60

π Gscdr[(ωssinφsinδ)+ (cosφcosδsinωs) ] (1)  

where Gsc is the solar constant, dr is the inverse relative distance Earth- 
Sun, ωs is the sunset hour angle, φ is the latitude and δ is the solar 
declination (Zotarelli et al., 2013). 

2.3. Reference evapotranspiration 

In order to calculate the monthly average daily reference evapo
transpiration (ETo), the Hargreaves-Samani (HE) equation was used 
(Hargreaves and Samani, 1985), expressed as: 

ET0 = C • Ra

(
Tmax + Tmin

2
+ 17.8

)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tmax − Tmin

√
(2)  

where C is the empirical Hargreaves coefficient. The main advantage of 
this equation, compared to the more complex Penman-Monteith model, 
is that it only requires extraterrestrial radiation and the time series of the 
minimum and maximum temperature (Di Nunno and Granata, 2020; 
Elbeltagi et al., 2020). However, the accuracy in the estimation of ETo 
depends on the value of the empirical coefficient C, which can vary 
significantly depending on the morphoclimatic characteristics of the 
study area. Mendicino and Senatore (2013) proposed a regionalization 
of the Hargreaves coefficient, with different equations for each subre
gion of Southern Italy. The authors showed how a properly calibrated HS 
equation provides better performances than the original HS. Further
more, in comparison to the well-known FAO Penman-Monteith equa
tion, which however requires several parameters for the ETo calculation, 
the calibrated HS equation led to very close ETo estimation for many 
locations in Southern Italy (including about 40 measurement stations 
located throughout Sicily). For the evaluation of the empirical Har
greaves coefficient C in Sicily, Mendicino and Senatore (2013) proposed 
the following equation: 

C = 1 • 10− 5ΔT2 − 0.0004ΔT + 0.0049 (3)  

where ΔT is the average value, computed for each data point, of the 
difference between Tmax and Tmin. In particular, the calculated value of C 
for the 186 gridded points ranged from 0.0017 and 0.0038, with the 

higher values along the coast, in particular in the south of the region, 
and the lowest values in the south-eastern inland (see Fig. 1a). 

Therefore, the calibrated HS equation was used to evaluate both the 
historical ETo, from 1951 to 2005, and the future ETo for the RCP 4.5 
and RCP 8.5 climate scenarios, from 2006 to 2100, considering the 
individually calculated values of both C and Ra for each grid point. 

2.4. Clustering procedure 

Clustering can be defined as a classification process of a large dataset 
into a smaller number of groups. Therefore, data belonging to the same 
cluster have common characteristics while data belonging to different 
clusters are characterized by some heterogeneity (Barton et al., 2016). 
Recently, the Hierarchical clustering algorithm has found application 
for various hydrological analyses (Aladaileh et al., 2019; Xulu et al., 
2019; Neto et al., 2021). The advantages of hierarchical clustering 
compared to other algorithms, such as k-means, are that the number of 
clusters does not have to be determined prior to clustering and that the 
process can be evaluated with the aid of a dendrogram chart, which can 
be used to better understand the overall picture in which the data are 
clustered (Berhanu et al., 2015). 

The hierarchical clustering algorithm was used to divide the study 
area into homogeneous areas. Several statistical parameters of the time 
series of ETo were preliminary considered as inputs for the clustering 
procedure: the minimum, mean, and maximum values of the ETo 
(EToMin, EToMean, EToMax, respectively), the ETo standard deviation, 
mode, and skewness (ETostd, Etomode, and EToskew, respectively), the 
number of months with ETo between 0 and 1.5 mm/day (ETo0–1.5), 
1.5 mm/day and 3 mm/day (ETo1.5–3.0), 3 mm/day and 4.5 mm/day 
(ETo3.0–4.5), 4.5 mm/day and 6 mm/day (ETo4.5–6.0). All these param
eters were computed on the historical data, to also take into account the 
frequency with which higher or lower values of evapotranspiration were 
observed. 

However, clustering can be adversely affected by the high dimen
sionality of the dataset (Dash and Koot, 2009). Furthermore, the optimal 
number of clusters is also not known a priori. Therefore, in order to 
identify both the input parameters that have the greatest influence on 
the clustering and the optimal number of clusters, a preliminary analysis 
based on the Silhouette technique was performed. Silhouette is a 
well-known technique for the interpretation and validation of coherence 
in clustering applications, which provides a measure of how similar an 
object is to its cluster compared to other clusters (Rousseeuw, 1987; 
Shutaywi and Kachouie, 2021). The silhouette score ranges from − 1, 
which indicates that the clusters are incorrectly assigned, to 1, which 
indicates that clusters are well-distinguished from each other. Score 
values close to 0 indicate that the distance between clusters is not 
significant. 

The clustering process starts by considering each observation as a 
separate cluster. Then, it follows an iterative process based on two main 
steps: (i) the detection of a couple of clusters that are closest and (ii) the 
merge of two clusters based on a linkage criterion. The process stops 
when all the clusters are merged. The distance between two clusters has 
been evaluated through the Manhattan distance, expressed as: 

J(X;V) =
∑c

i=1

∑

kϵi

⃒
⃒
⃒x(i)k − vi

⃒
⃒
⃒ (4)  

where V = {vi | i = 1, …, c} are the centers of the c clusters, x(i)
k is the kth 

data point belonging to the ith cluster, and x(i)
k − vi is the distance between 

each data point and his cluster center vi, with vi computed as: 

vi =

∑Ni

k=1
xk

Ni
, xk ∈ Ai (5)  

where Ai represents the set of Ni points related to the ith cluster. 

F. Di Nunno and F. Granata                                                                                                                                                                                                                 



Agricultural Water Management 280 (2023) 108232

6

Therefore, the Manhattan distance evaluates the distance between two 
points by aggregating the absolute difference in pairs between each 
variable (Callahan and Bridge, 2021). 

Conversely, other distance formulations, such as the Euclidean dis
tance, aggregate the squared difference between each variable. This 
means that, if two data points are similar for most variables but different 
for one of them, the evaluation using Euclidean distance will be overly 
influenced by that single difference. In contrast, the Manhattan distance 
will be more influenced by the similarity of the other variables, being 
more robust and less affected by outliers. 

To evaluate the distance between clusters, the Ward linkage was 
considered, which evaluates the distance between the two clusters as the 
increase in the sum of squares error (SSE) after merging two clusters into 
a single one, expressed as: 

D(r, s) = SSErs − (SSEr − SSEs) (6)  

where D(r, s) is the distance between the clusters r and s. The perfor
mance of the Ward linkage where preliminary compared with other 
linkages: single, complete and average. In particular, the Ward linkage 
led to the most robust results, with the identification of clusters 
consistent with the climatic and morphological features of Sicily. Single, 
complete and average linkage led to anomalous small clusters that are 
not consistent with the characteristics of the island. Therefore, the re
sults of Hierarchical clustering (described in Section 3.1) were obtained 
considering the Manhattan distance combined with the Ward linkage. 

2.5. Machine Learning forecasting algorithms 

Some ML algorithms were used to develop forecasting models. 
Support Vector Regression (SVR) was used for predicting Tmin and Tmax 
in the future period 2006–2100, after using historical CORDEX data of 
the same variables from 1951 to 2005 for training. 

Subsequently, an ensemble model based on MLP and M5P was 
employed for the prediction of ETo in the period 2006–2100. The 
Bayesian Optimization (BO) process was used for the selection of the 
input parameters and ML hyperparameters, and for the evaluation of the 
optimal number of lagged values (Wu et al., 2019). The use of optimi
zation algorithms is widely spread in hydrological applications to 
improve the performance of ML algorithms (Di Nunno et al., 2022). 

In particular, the parameters initially considered for the prediction 
were: Ra, Tmin, and Tmax. The BO algorithm led to a reduction of the 
number of parameters, including only Ra and Tmin. However, a pre
liminary analysis was also performed to assess the impact of Tmax as a 
further input variable for the ETo modeling. This analysis showed an 
anomalous increase in the minimum peaks of ETo, inconsistent with 
both historical data and future scenarios RCP 4.5 and RCP 8.5. 

2.5.1. Support Vector Regression (SVR) 
Support Vector Machine algorithms (SVMs) are supervised ML 

models used for both classification and regression problems (Cortes and 
Vapnik, 1995; Vapnik, 1998; Pham et al., 2022). In the latter case, it is 
generally indicated as Support Vector Regression (SVR). SVR has been 
widely applied in the prediction of hydrological variables, including 
evapotranspiration, allowing the implementation of individual or 
hybrid models with other ML and optimization algorithms (Yin et al., 
2017; Tikhamarine et al., 2020a, 2020b; Chia et al., 2022a, 2022b). 
Moreover, SVR was also successfully applied for long-term temperature 
forecasting (Aghelpour et al., 2019), in agreement with its use in the 
present study. 

SVR algorithm aims to find a function f(x) with a deviation lower 
than a given ε value from the target yi. Based on the training dataset: 
{(xi, yi), i = 1, …, l} ⊂ X × R, where X is the input space, it is necessary to 
solve a constrained convex optimization problem by minimizing the 
Euclidean norm ||w||2. Given a function f(x) = 〈w, x〉 + b, with b ∈ R and 
w ∈ X, the optimization problem can be expressed as: 

minimize :
1
2
‖w‖2

+CSVR

∑l

i=1

(
ξi + ξ∗i

)
(7)  

subject to :
yi − 〈w, xi〉 − b ≤ ε+ ξi
〈w, xi〉 + b − yi ≤ ε+ ξ∗i

(8) 

with both deviation and function flatness depending on the constant 
CSVR > 0. In addition, since often a significant error must be tolerated, 
the slack variables ξi, ξ∗i were introduced in the constraints. The SVR 
effectiveness mainly depends on the kernel function selection. The 
polynomial kernel was considered in this study, which can be expressed 
as: 

k(xi, xj) =
(
1 + xi • xj

)d (9)  

where d is the degree of the polynomial kernel. BO process allowed to 
find the values of the constant CSVR and of the degree d, that led to the 
best predictions: CSVR = 1.8; d = 1.03. In addition, the optimal lagged 
value of the input variables for the prediction was equal to 120 months. 

2.5.2. Multilayer Perceptron (MLP) 
Multilayer Perceptron (MLP) is a feedforward ANN (Rosenblatt, 

1961; Murtagh, 1991) with three types of layers: input, hidden, and 
output. The input layer consists of a set of nodes corresponding to the 
input features. One or more hidden layers contain neurons that process 
the values of the input layer based on a weighted linear sum followed by 
a non-linear activation function. Then, the output layer gets the out
comes from the last hidden layer, providing the predicted values. 
Backpropagation learning algorithm was used for the MLP neurons 
training. In addition, the network optimal structure for the present study 
includes one hidden layer, with a neuron number that was equal to 
(number of input variables + 1)/2, with the Sigmoid activation function. 
The optimal learning and momentum rates of the backpropagation al
gorithm were 0.3 and 0.2, respectively. 

2.5.3. M5P 
The M5P algorithm develops prediction models based on decision 

trees with real numbers as target variables, usually referred to as 
regression trees (Quinlan, 1992). Three types of nodes are included in a 
regression tree: the root node, which include the complete dataset, the 
internal nodes, which define the conditions on the input variables, and 
the leaf nodes, consisting of linear regression models of the target values. 
M5P is based on an iterative process that divides the input dataset into 
subsets, on which the linear regression models are built. The division is 
performed by searching the subsets couples that lead to a maximization 
of the least-squared deviation (LSD) function, with: 

R(t) =
1

N(tn)
∑

i∈t
(yi − ym(tn)) (10)  

where R(tn) is the tn node within variance, N is the subset units’ number, 
yi is the ith target variable value, and ym is the target variable mean. The 
function Ф(sp, tn) to be maximized is expressed as: 

∅
(
sp, tn

)
= R(tn) − pLR(tL) − pRR(tR) (11)  

with pL and pR that represent the portion units allocated to the left node 
tL and right node tR, respectively, and sp that indicate the split value 
(Granata and Di Nunno, 2021b). In addition, the pruning technique is 
employed for the fully developed tree, removing branches with a low 
contribution to the prediction ability. This technique made it possible to 
reduce the tree size and avoid overfitting problems. The optimization 
process showed that the number of instances in a leaf node to get the best 
predictions was 4. 

2.5.4. Ensemble model MLP-M5P 
In order to improve the prediction ability of the individual ML 
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models, the Stacking ML technique was used to build an ensemble model 
based on both MLP and M5P algorithms. Stacking combines multiple 
regression or classification models by means of a meta-classifier (Li 
et al., 2020), which was, for the present study, the Elastic Net algorithm 
(Zou and Hastie, 2005). In particular, the models based on the individual 
ML algorithms were first developed on the training dataset, then, based 
on the outcomes of each individual model, the Elastic Net was employed 
to develop the ensemble model. It should be noted that the parameters 
considered for the individual MLP and M5P algorithms, were the same 
reported in Sections 2.5.2 and 2.5.3. In addition, the number of lagged 
values of input variables (Ra, Tmin, and Tmax) and of ETo was assessed 
based on the BO process, finding an optimal value of 12 months for both 
inputs and target. This means that to make a prediction at time t, the 
values of both input and target parameters from t-12 to t-1 were taken 
into account. 

2.6. Evaluation metrics 

In this study, five different evaluation metrics were used, not 
following the standard approach of comparing predicted and experi
mental values of a given quantity, but comparing the ETo predictions 
obtained from the MLP-M5P hybrid model with those obtainable from 
the climate variables provided by the RCP 4.5 and RCP 8.5 future sce
narios. Specifically, the metrics are the Coefficient of determination 
(R2), which provides an evaluation of the linear correlation between the 
predictions of two models, the Root Mean Square Error (RMSE), which 
provides the root of the total squared difference between the predictions 
of two models normalized by the number of samples, the Mean Absolute 
Error (MAE), equal to the absolute difference between the predictions of 
two models normalized by the number of samples, the Mean Absolute 
Percentage Error (MAPE), equal to the relative difference between the 
predictions of two models normalized by the number of samples, and the 
Mean Directional Accuracy (MDA), that compares the forecast direction 
(upward or downward) of two models, providing the probability that 
they follow the same direction. Evaluation metrics can be expressed as: 

R2 = 1 −

∑n

i=1

(
f t1 − f t2

)2

∑n

i=1

(
f2 − f t2

)2
(12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
f t1 − f t2

)2

n

√
√
√
√
√

(13)  

MAE =

∑n

i=1

⃒
⃒f t1 − f t2

⃒
⃒

n
(14)  

MAPE =

∑n

i=1

⃒
⃒
⃒
f t1 − f t2
f t2

⃒
⃒
⃒

n
(15)  

MDA =

∑n

i=1
1sgn

(
f t1 − f t− 1

1

)
= sgn

(
f t2 − f t− 1

2

)

n
(16)  

where f t
1 and f t

2 are the predicted values of the first and second models at 
time t, f t− 1

1 and f t− 1
2 are the predicted values of the first and second 

models at time t-1, f2 is the averaged value of the prediction for the 
second model, and n is the total amount of forecasting data in the time 
series. 

2.7. Modeling procedure 

The modeling procedure (Fig. 2) consists of the following steps:  

1. Starting from the historical time series of Ra, Tmin, and Tmax 
(1951–2005), the calibrated HS (Eq. 2) was used to calculate ETo;  

2. Based on the values of Tmin and Tmax for the future scenarios RCP 4.5 
and RCP 8.5 (2006–2100) and on Ra, the HS equation (Eq. 2) was 
used to calculate the future values of ETo;  

3. The statistical parameters of interest of the ETo historical time series 
(1951–2005) were calculated for each data point;  

4. Based on the parameters assessed at Point 3, the homogenous ETo 
regions were detected by means of Hierarchical clustering;  

5. Future values of Tmin and Tmax were predicted by means of the SVR 
algorithm. In particular, the forecasting models were trained 
considering only the historical data (1951–2005) of Tmin and Tmax, 
respectively, and used for predictions in the future period 
(2006–2100);  

6. The mean values of Ra, Tmin, Tmax, and historical ETo (Point 1) were 
calculated for each detected cluster (Point 4), including both his
torical data and prediction performed with the SVR algorithm for 
Tmin and Tmax (Point 5);  

7. The mean value of ETo for the future scenarios RCP 4.5 and RCP 8.5 
(Point 5) were calculated for each cluster (Point 4);  

8. Prediction of ETo based on the ensemble MLP-M5P model, with the 
mean value of Ra, Tmin and Tmax and historical ETo (Point 6) as input 
parameters and the BO algorithm for the input selection;  

9. Comparison, for each cluster (Point 4), of the ETo predicted by 
means of the ensemble MLP-M5P model (Point 8) with the ETo of the 
future scenarios RCP 4.5 and RCP 8.5 (Point 7). 

The proposed approach provided a spatio-temporal characterization 
of ETo based on the detection of homogeneous regions and the predic
tion of the future ETo, with a comparison with different climate 
scenarios. 

Fig. 2. Flowchart of the modeling procedure.  
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3. Results 

3.1. Clustering 

The optimization of the number of clusters and of the proper subset 
of input variables was performed based on the Silhouette technique (see 
Section 2.4). As shown in Table 1, the best mean Silhouette score, equal 
to 0.412, was obtained for a number of clusters equal to 3 and assuming 
seven input variables: EToMin EToMean EToMax, ETo0–1.5, ETo1.5–3.0, 
ETo3.0–4.5, ETo4.5–6.0. In addition, Table 2 reports the mean values of ETo 
statistics for the three clusters. Fig. 3 provides the Silhouette scores for 
all data points related to the three clusters. In addition, Fig. 4 provides a 
representation of the ETo clustering of Sicily obtained using the Inverse 
Distance Weighting (IDW) method as a spatial interpolation technique 
(Topçu et al., 2022), with the dendrogram diagram obtained from the 
Hierarchical clustering. 

Cluster C1 includes mainly the eastern, western, and southern coastal 
areas, showing silhouette peaks of about 0.6 for the data points P182 
and P185 located in the north-east of the island near the Strait of Mes
sina, P1 in the north-west close to Trapani, and P37 in the south-west at 
the Platani river mouth nature reserve in Agrigento province. In 
contrast, the data points that show the lowest Silhouette, close to 0.01, 
are generally located on the border with cluster C2, showing a lower 
degree of belonging to cluster C1. In particular, P105 is located in the 
southeast at “Marina di Acate” (Ragusa province), while P38 is located 
at Capo Gallo Natural Reserve (Palermo province), surrounded by points 
belonging to cluster C2. 

Cluster C2 includes the coastal portion of the island to the north, on 
the Tyrrhenian Sea, as well as the inland to the southeast and northwest. 
The highest Silhouette scores, of about 0.58, were computed for data 
points P18 and P19, along the coast and inland of the Gulf of Cas
tellammare in the north-west (Trapani province), and for P150 in the 
inland of the Syracuse province in the south-east. The lower Silhouette 
score, close to 0.01 was computed for data point P122, in the inland of 
Catania Province in the east of the island, surrounded by points 
belonging to cluster C3. 

Cluster C3 mainly covers the inland of Sicily in its central and eastern 
parts. Overall, the highest Silhouette score was computed for C3, with 
values of about 0.63 for data points P57, P81, and P73, located in the 
inland Agrigento and Caltanissetta provinces. The lower Silhouette 
score, close to 0.1, was instead computed for P68, located in the south of 
the island, close to the coast, and surrounded by both clusters C1 and C2. 

Overall, cluster C1, covering mainly the coasts of Sicily, showed 
higher values of EToMin, EToMean, and EToMax compared to clusters C2 
and C3, with also a higher frequency of months with intermediate ETo, 
between 1.5 and 3.0 mm/day (ETo1.5–3.0), between 3.0 and 4.5 mm/day 
(ETo3.0–4.5) and greater than 4.5 mm/day (ETo4.5–6.0). In addition, C1 
showed higher skewness (EToskew), indicating a greater positive asym
metry compared to the other clusters. Otherwise, cluster C3, which 
covers inland Sicily, showed lower values of EToMin EToMean and EToMax 
with a higher frequency of months with a low ETo between 0 and 
1.5 mm (ETo0–1.5). Cluster C2 showed intermediate values of the ETo 
statistics, compared to C1 and C3 with, however, the lower EToskew, 
indicating a more symmetric ETo distribution compared to C1 and C3, 
and the lower number of an intermediate ETo range between 1.5 and 
3.0 mm/day (ETo1.5–3.0). 

It should also be noted that, although no geomorphological variables 
have been introduced in the clustering, the ETo statistics implicitly take 
them into account. For example, Cluster C3, which is representative of 
the inland, extends as far as the sea both to the north-west, with the 
Madonie and Nebrodi mountain ranges (elevation up to 1800 m.a.s.l., 
see Fig. 1a), and to the west, with the volcano Etna (elevation up to 
3300 m.a.s.l.). This indicates how the clusters consider not only the 
distance from the sea but also the morphology of the territory. 

Overall, the cluster analysis provided important insights into the 
heterogeneity of ETo, both in terms of magnitude and variation, across 
Sicily. At the same time, clustering has led to the identification of sub- 
regions with well-defined ETo characteristics within Sicily, which can 
be useful for the analysis of future ETo trends on larger scales, as well as 
providing useful hydrological and agronomic information for non- 
instrumented areas. 

The agricultural land use for the three clusters was also assessed 
(Fig. 5). Cluster C1 showed the highest percentage of permanently 
irrigated land (2.1.2), accounting for 6% of the cluster surface. This type 
of land cover usually entails a high irrigation requirement, as it includes: 
irrigated arable crops, which require approximately 3600 m3/ha • year 
in Sicily, horticultural crops, between 4000 and 6000 m3/ha • year, and 
greenhouse crops, which are particularly widespread along the coasts 
for the production of vegetables, which have the highest irrigation 
requirement of 12000 m3/ha • year. C1 showed also a higher percentage 
of vineyards (20%, 2.2.1) and olive groves (18%, 2.2.3), which involve 
irrigation demand between 1200 and 2000 m3/ha • year (see also Sec
tion 2.1). Cluster C2 showed instead a higher percentage of fruit trees 
(16%, 2.2.2) and a slightly lower percentage of olive groves (17%, 
2.2.3), compared to cluster C1. Fruit trees had higher water demands 
compared to vineyards and olive groves, with values between 3500 and 
3800 m3/ha • year. Cluster C3 showed a higher percentage of agricul
tural land with low water demands, non-irrigated arable land (50%, 
2.2.1), other permanent crops (6%, 2.2.4), which are mainly represented 
by the eucalyptus trees typical of the Sicilian inland, and pastures (8%, 
2.3.1). 

Overall, although clusters C2 and C3 have larger agricultural sur
faces, cluster C1 includes the agricultural land showed a greater con
centration of agricultural land with higher water demand. Considering 
that C1 is also the cluster that showed the higher values of EToMin, 
EToMean, and EToMax compared to C2 and C3, the risk of a water deficit 
for the coastal areas of Sicily could become increasingly marked in the 
future. 

3.2. ETo analysis for the different clusters 

The ETo mean value predictions performed using the MLP-M5P 
ensemble model for each cluster were compared to the ETo values 
estimated for the RCP 4.5 and RCP 8.5 future scenarios. Cluster C1 
showed a historical peak of 5.95 mm/day (Fig. 6a), with a 10-year 
average ETo showing very little change from 1951 to 1991, rising 
from 2.99 mm/day to 3.02 mm/day, with a lower peak in 1961 of 
2.94 mm/day (Fig. 6c). Over the forecast period (Fig. 6b), a significant 

Table 1 
Mean Silhouette scores for different number of clusters and subsets of input 
variables (in bold the best value).  

Input variables Number of Clusters 

2 3 4 5 6 7 8 

EToMin, 
EToMean, 
EToMax, 
ETostd, 
ETomode, 
EToskew, 
ETo0–1.5, 
ETo1.5–3.0, 
ETo3.0–4.5, 
ETo4.5–6.0  

0.403  0.385  0.294  0.32  0.291  0.262  0.284 

EToMin, 
EToMean, 
EToMax, 
ETo0–1.5, 
ETo1.5–3.0, 
ETo3.0–4.5, 
ETo4.5–6.0  

0.401  0.412  0.361  0.379  0.383  0.334  0.348 

EToMin, 
EToMean, 
EToMax  

0.406  0.389  0.289  0.319  0.293  0.274  0.295  
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increase in ETo was observed for both extreme scenarios and the MLP- 
M5P ensemble model. The highest predicted peak value with MLP- 
M5P was 6.50 mm/day, while RCP 4.5 and RCP 8.5 showed peak ETo 
values of 6.88 and 6.94 mm/day, respectively. Furthermore, from 2001 
to 2041, the mean ETo value on a 10-year scale increased from 
3.07 mm/day to 3.18 mm/day for RCP 4.5, with an increase of 3.62%; 
from 3.05 mm/day to 3.21 mm/day for RCP 8.5, with an increase of 
5.32%; and from 3.06 mm/day to 3.20 mm/day for MLP-M5P, with an 
increase of 4.34%. In addition, from 2041 to 2091, a further increase 
was observed, with ETo values that reached 3.30 mm/day for RCP 4.5 
(an increase of 3.76%), 3.49 mm/day for RCP 8.5 (an increase of 
8.85%), and 3.38 mm/day for MLP-M5P (an increase of 6.17%). The 
overall increases during the forecast period, from 2001 to 2091, were 

7.52% for RCP 4.5, 14.64% for RCP 8.5%, and 10.78% for MLP-M5P 
(Fig. 6c). Thus, the ensemble model resulted in intermediate predicted 
values between the two extreme scenarios, with RCP 8.5 leading to 
significantly larger increases in the period 2041–2091 than RCP 4.5. The 
evaluation metrics (Table 3) also showed high agreement between RCP 
4.5 and MLP-M5P (R2 = 0.97, RMSE = 0.28 mm/day, MDA = 99.11%) 
and RCP 8.5 and MLP-M5P (R2 = 0.97, RMSE = 0.27 mm/day, MDA =
98.40%). 

Cluster C2 was characterized by a historical ETo peak of 5.76 mm/ 
day (Fig. 7a), lower than those estimated for Cluster C1, with also a 
small change in the mean ETo on a 10-year scale from 2.85 mm/day in 
1951–2.87 mm/day in 1991, with a low peak in 1961 (as observed for 
Cluster C1) of 2.79 mm/day (Fig. 7c). The forecast period (Fig. 7b) 

Table 2 
Mean values of ETo statistics, in mm/day, for the different clusters.  

Cluster EToMin EToMean EToMax ETostd ETomode EToskew ETo0–1.5 ETo1.5–3.0 ETo3.0–4.5 ETo4.5–6.0 

C1  0.88  2.99  6.17  1.58  2.67  0.61  173.20  169.95  156.93  153.56 
C2  0.70  2.85  5.85  1.58  2.57  0.53  208.31  145.62  152.47  152.86 
C3  0.57  2.69  5.75  1.57  2.39  0.58  218.93  156.59  149.64  134.84  

Fig. 3. Silhouette scores for the three clusters.  
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showed a significant ETo increase with peaks of 6.66 mm/day, 
6.67 mm/day, and 6.29 mm/day, for RCP 4.5, RCP 8.5, and MLP-M5P, 
respectively. Furthermore, the mean ETo on a 10-year scale showed 
percentage increases of 2.97%, 5.49%, and 5.97% for RCP 4.5, RCP 8.5, 
and MLP-M5P, respectively, over the period 2001–2041, while for the 
period 2041–2091, the percentage increases were 4.36%, 9.13%, and 
8.30%, respectively. Overall, the increases over the forecast period, 
between 2001 and 2091, were 7.46%, 15.12%, and 14.77% for RCP 4.5, 
RCP 8.5, and MLP-M5P, respectively (Fig. 7c). Therefore, the ensemble 
model resulted in future predictions close to RCP 8.5, which is the most 
extreme scenario. 

The assessment metrics were still high but lower than in cluster C1 
with R2 being 0.96 for both RCP 4.5 and MLP-M5P, and RCP 8.5 and 
MLP-M5P, RMSE between 0.31 mm/day (RCP 4.5 and MLP-M5P) and 
0.35 mm/day (RCP 8.5 and MLP-M5P) and an MDA between 97.16% 
(RCP 4.5 and MLP-M5P) and 97.51% (RCP 8.5 and MLP-M5P). 

Cluster C3 showed a lower historical ETo peak compared to C1 and 
C2, equal to 5.70 mm/day (Fig. 8a). However, significant changes in the 
mean ETo on a 10-year scale were also assessed. From 1951–1961, a 
reduction in ETo was estimated from 2.69 mm/day to 2.62 mm/day. 
The highest peak of 2.72 mm/day, was computed for 1981, with the 
lowest ETo equal to 2.70 mm/day in 1991 (Fig. 8c). 

Fig. 4. ETo clustering of Sicily, with the dendrogram diagram.  

Fig. 5. Pie charts of the agricultural land cover for the three clusters.  
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However, the forecast period (Fig. 8b) showed an increase in ETo 
with peaks of 6.56 mm/day (RCP 4.5), 6.60 mm/day (RCP 8.5), and 
6.29 mm/day (MLP-M5P). Furthermore, from 2001 to 2041, the 10-year 
average ETo showed increases of 3.27%, 5.97%, and 6.47% for RCP 4.5, 
RCP 8.5, and MLP-M5P, respectively, while over the period 2041–2091, 
the increases were 4.70%, 10.13%, and 7.99%, respectively. Overall, the 
increases over the entire forecast period, between 2001 and 2091, were 
8.12%, 16.71%, and 14.98% for RCP 4.5, RCP 8.5 and MLP-M5P, 
respectively (Fig. 8c). Thus, C3 showed the lowest ETo values and the 

highest percentage increases compared to C1 and C2. In addition, as 
with cluster C2, the ensemble model resulted in ETo predictions and 
trends closer to RCP 8.5 than RCP 4.5. 

The evaluation metrics values were in line with those computed for 
cluster C2, with R2 being 0.96 for both RCP 4.5 and MLP-M5P, and RCP 
8.5 and MLP-M5P, RMSE between 0.33 mm/day (RCP 4.5 and MLP- 
M5P) and 0.35 mm/day (RCP 8.5 and MLP-M5P) and an MDA be
tween 96.63% (RCP 4.5 and MLP-M5P) and 96.71% (RCP 8.5 and MLP- 
M5P). Overall, the metrics were in line with a recent literature study. 
Maqsood et al. (2022), who investigated the future ETo under different 
RCP climate scenarios for Prince Edward Island (Canada), compared the 
ETo evaluated with the HS equation with that evaluated with three al
gorithms, 1D-CNN, LSTM, and MLP, and obtained values of R2 between 
0.92 and 0.96 and RMSE between 0.26 and 0.36, comparable to the 
metrics estimated in this study. 

Fig. 9 shows maps of the mean ETo (obtained using the IDW method) 
for two historical decades: one further back in time, between 1951 and 
1960, and one more recent, between 1991 and 2000. In addition, two 
future decades were also represented for both RCP 4.5 and RCP 8.5 
climate scenarios and for the MLP-M5P ensemble model: one for an 
intermediate time horizon, between 2041 and 2050, and one for the 
more distant time horizon, between 2091 and 2100. For all decades, in 
agreement with the previous ETo analysis for the different clusters, the 
highest and lowest values of ETo were calculated for clusters C1 and C3, 
respectively. 

In the decade 1951–1960, lower average ETo values of 3 mm/day, 
2.85 mm/day, and 2.69 mm/day were observed for clusters C1, C2, and 
C3, respectively. A slight increase was observed in the decade 

Fig. 6. Clusters C1: historical mean ETo (a); predicted mean ETo (b); mean ETo on a ten-year scale (c).  

Table 3 
Evaluation metrics for the different clusters.  

Cluster Evaluation 
metrics 

RCP 4.5 – MLP-M5P RCP 8.5 – MLP-M5P 

C1 R2  0.97  0.97 
RMSE (mm/day)  0.28  0.27 
MAE (mm/day)  0.19  0.20 
MAPE (%)  5.92  6.15 
MDA (%)  99.11  98.40 

C2 R2  0.96  0.96 
RMSE (mm/day)  0.31  0.35 
MAE (mm/day)  0.22  0.25 
MAPE (%)  7.58  8.14 
MDA (%)  97.16  97.51 

C3 R2  0.96  0.96 
RMSE (mm/day)  0.33  0.35 
MAE (mm/day)  0.24  0.26 
MAPE (%)  8.60  9.29 
MDA (%)  96.63  96.71  
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1991–2000, with 3.02 mm/day, 2.87 mm/day and 2.71 mm/day for C1, 
C2 and C3, respectively. However, a significant increase can be observed 
during the forecast period for both climate scenarios and the ensemble 
model. The decade 2041–2050 showed average ETo values ranging from 
2.97 mm/day (C3) to 3.19 mm/day (C1) for the ensemble model, almost 
in line with those for RCP 8.5, which range from 2.92 mm/day (C3) to 
3.21 mm/day (C1). However, for the last decade, 2091–2100, the RCP 
8.5 resulted in ETo values ranging from 3.21 mm/day (C3) to 3.49 mm/ 
day (C1), which were higher than those calculated for the ensemble 
model, ranging from 3.21 mm/day (C3) to 3.39 mm/day (C1), while 
RCP 4.5 resulted in lower ETo values, ranging from 3.02 mm/day (C3) 
to 3.30 mm/day (C1). 

3.3. ETo analysis for reference data points 

An additional insight of this study was to analyze the predictions of 
the MLP-M5P ensemble model for both high and low silhouette score 
data points. For this purpose, 6 data points were chosen, 2 for each 
cluster. Indeed, while a high Silhouette score value indicates a strong 
belonging to a given subregion of Sicily, a low Silhouette score may 
represent a borderline situation with ETo trends that may differ from the 
typical ones observed for each cluster. Figs. 10 and 11 show the average 
ETo on a 10-year scale for selected data points. Further insight into the 
comparison between ensemble models and climate scenarios was pro
vided by examining the box plots for the highest and lowest Silhouette 
data points (Fig. 12), showing the residuals, expressed as the difference 
between predictions of each model with the others. Each box plot’s 
lower and upper extremes indicate the 1st quartile (25th percentile) and 
the 3rd quartile (75th percentile), respectively. The whiskers extend 

from the box bottom to the smallest non-outlier and from the box top to 
the highest non-outlier. 

The 10-year average ETo for the data points with the highest 
Silhouette score showed an increasing trend for each cluster, with MLP- 
M5P leading to predicted values between RCP 4.5 and RCP 8.5. How
ever, during the last investigated decades, approximately from 2071 
onwards, MLP-M5P led to predictions closer to, but still slightly lower 
than, RCP 8.5 (Fig. 10). The evaluation metrics for the highest Silhouette 
data points (Table 4) show a lower agreement between climate scenarios 
and the ensemble model for data point P182 (cluster C1), with R2 values 
equal to 0.93 for both RCP 4.5 and MLP-M5P, and RCP 8.5 and MLP- 
M5P, RMSE between 0.40 mm/day (RCP 4.5 and MLP-M5P) and 
0.47 mm/day (RCP 8.5 and MLP-M5P) and an MDA between 90.41% 
(RCP 8.5 and MLP-M5P) and 90.94% (RCP 4.5 and MLP-M5P). Instead, 
data points P150 (cluster C2) and P57 (cluster C3) show metrics in line 
with those computed for their clusters (Table 3) with R2 values between 
0.96 (cluster C3, RCP 4.5 and MLP-M5P) and 0.97 (cluster C2, RCP 4.5 
and MLP-M5P and RCP 8.5 and MLP-M5P, cluster C3, RCP 8.5 and MLP- 
M5P). This evidence was also confirmed by the box plots (Fig. 12) that 
showed relatively higher residuals for cluster C1 compared to clusters 
C2 and C3. However, boxes showed a narrow and symmetrical shape, 
ranging from − 0.5 mm/day to 0.5 mm/day with the center close to 
0 for all clusters. 

For the lowest Silhouette data points, MLP-M5P led to predictions in 
line with RCP 4.5, with the extreme scenario RCP 8.5 showing far more 
significant increases than RCP 4.5 and MLP-M5P (Fig. 11). Furthermore, 
looking at the data points for clusters C2 and C3, the borderline nature of 
these points can be noted. In particular, point P68 (Cluster C3) showed 
higher ETo averages during the historical period than those observed for 

Fig. 7. Clusters C2: historical ETo (a); predicted ETo (b); mean ETo on a ten-year scale (c).  

F. Di Nunno and F. Granata                                                                                                                                                                                                                 



Agricultural Water Management 280 (2023) 108232

13

point P122 (Cluster C2). This result disagrees with the evidence from 
clustering analysis and the data points with high Silhouette. This can be 
explained by the greater proximity to the coastline of point P68 
compared to point P122, which led to a higher EToMean for P68. How
ever, the other statistical parameters (e.g., ETo0–1.5, ETo1.5–3.0 ETo3.0–4.5 
and ETo4.5–6.0), confirmed the belonging of points P122 and P68 to 
clusters C2 and C3, respectively. 

Evaluation metrics for the lowest Silhouette score data points 
(Table 5) showed a high agreement between RCP 4.5, RCP 8.5, and MLP- 
M5P with R2 values between 0.97 (cluster C1, RCP 8.5 – MLP-M5P, 
cluster C2, RCP 4.5 – MLP-M5P, cluster C3, RCP 4.5 – MLP-M5P, and 
cluster C3, RCP 8.5 – MLP-M5P) and 0.98 (cluster C1, RCP 4.5 – MLP- 
M5P, and cluster C2, RCP 8.5 – MLP-M5P), RMSE between 0.25 mm/ 
day (cluster C1, RCP 8.5 – MLP-M5P) and 0.32 mm/day (cluster C3, RCP 
8.5 – MLP-M5P), and MDA between 96.71% (cluster C1, RCP 4.5 – MLP- 
M5P) and 97.69% (cluster C2, RCP 8.5 – MLP-M5P). The high agreement 
between climate scenarios and the ensemble model was also confirmed 
by the box plots that appeared narrower compared to the box plots 
related to points with high Silhouette scores (Fig. 12). 

Overall, the evaluation metrics calculated for low Silhouette data 
points were in line with or even higher than those calculated for high. 
On the one hand, this result confirms the tendency of the ensemble 
model to provide forecasts in line with future scenarios for points 
characterized by more certain and uncertain inclusion in clusters. On the 
other hand, a slightly lower ETo difference was observed between the 
RCP 4.5 and RCP 8.5 future climate scenarios for lower Silhouette data 
points compared to those with higher Silhouette. This feature is partic
ularly evident when comparing high and low Silhouette data points for 

cluster C1, for which a marked difference in ETo was observed between 
RCP 4.5 and RCP 8.5. Consequently, the ensemble model, which led to 
intermediate scenarios between RCP 4.5 and RCP 8.5, showed slightly 
worse metrics for high Silhouette data points. However, the differences 
between low and high Silhouette data points were less marked for 
Cluster C2 and even less so for Cluster C3, highlighting a lower vari
ability of ETo, with the future climate scenarios, for the inland of Sicily 
(C3 also showed the lower values of ETostd and EToskew). 

Overall, increasing ETo values were observed for both future climate 
scenarios RCP 4.5 and RCP 8.5 and based on the MLP-M5P model pre
dictions. From this perspective, increasingly careful management of 
water resources is crucial, in order to avoid severe water deficits espe
cially during the irrigation seasons. Therefore, an accurate prediction of 
hydrological and agronomic variables will have to be combined with an 
optimization of the irrigation systems and strategies, which are often 
obsolete in Southern Italy (Giuliani et al., 2019). Consequently, the 
promotion of localized irrigation techniques (e.g., micro-irrigation and 
drip irrigation systems) in the context of the current climate change 
scenario, together with agricultural reuse strategies of treated waste
water (Aiello et al., 2007; Ventura et al., 2019), could have a great future 
impact on both actual evapotranspiration and management of surface 
and groundwater resources (Pool et al., 2021; Vanella et al., 2021). 

However, it must be pointed out that this study only focuses on a 
region with a Mediterranean climate. In order to overcome this limita
tion, it will be interesting in future studies to test the developed 
approach for the long-term prediction of reference evapotranspiration in 
different climates, where larger or smaller variations in evapotranspi
ration can be observed over the seasons. 

Fig. 8. Clusters C3: historical ETo (a); predicted ETo (b); mean ETo on a ten-year scale (c).  
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Fig. 9. ETo maps of Sicily, periods: 1951–1960; 1991–2000; 2041–2050; 2091–2100.  

Fig. 10. Mean ETo on a ten-year scale for high Silhouette data points, with clusters: C1 (a); C2 (b); C3 (c).  
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In addition, the combination of the MOHC-HadGEM2-ES, as GCM, 
and CLMCom-CCLM4–8–17, as RCM, was considered in this study. A 
comparison with other regional and global climate models could be 
considered in future research. 

A further interesting future application of the implemented meth
odology could concern the assessment of crop evapotranspiration, 

taking into account the typical crops with both high and low water de
mands. This would also help to better highlight similarities and differ
ences in reference and crop evapotranspiration trends for a given area of 
investigation. From this perspective, different ML or deep-learning al
gorithms could be included in the forecast procedure in order to improve 
the reliability of the evapotranspiration prediction. Furthermore, 

Fig. 11. Mean ETo on a ten-year scale for low Silhouette data points, with clusters: C1 (a); C2 (b); C3 (c).  

Fig. 12. Box plots of residuals for high and low Silhouette data points, with clusters: C1 (a); C2 (b); C3 (c).  

Table 4 
Evaluation metrics for high Silhouette data points.  

Cluster Evaluation 
metrics 

RCP 4.5 – MLP-M5P RCP 8.5 – MLP-M5P 

C1 R2  0.93  0.93 
RMSE (mm/day)  0.40  0.47 
MAE (mm/day)  0.28  0.33 
MAPE (%)  8.32  9.35 
MDA (%)  90.94  90.41 

C2 R2  0.97  0.97 
RMSE (mm/day)  0.34  0.31 
MAE (mm/day)  0.24  0.23 
MAPE (%)  8.39  8.07 
MDA (%)  97.34  97.34 

C3 R2  0.96  0.97 
RMSE (mm/day)  0.34  0.33 
MAE (mm/day)  0.24  0.24 
MAPE (%)  9.06  9.06 
MDA (%)  96.54  96.89  

Table 5 
Evaluation metrics for low Silhouette data points.  

Cluster Evaluation 
metrics 

RCP 4.5 – MLP-M5P RCP 8.5 – MLP-M5P 

C1 R2  0.98  0.97 
RMSE (mm/day)  0.30  0.25 
MAE (mm/day)  0.21  0.19 
MAPE (%)  6.69  6.33 
MDA (%)  96.71  97.16 

C2 R2  0.97  0.98 
RMSE (mm/day)  0.30  0.27 
MAE (mm/day)  0.22  0.21 
MAPE (%)  7.91  8.13 
MDA (%)  97.25  97.69 

C3 R2  0.97  0.97 
RMSE (mm/day)  0.31  0.32 
MAE (mm/day)  0.22  0.25 
MAPE (%)  8.02  9.75 
MDA (%)  97.07  97.07  
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different clustering algorithms, in addition to the Hierarchical one, 
could be tested to improve the identification of homogeneous regions 
based on reference and crop evapotranspiration features. 

Finally, although the calibrated Hargreaves-Samani equation has 
proven to be reliable in the assessment of ETo, for well-instrumented 
study areas and, more generally, for areas where an appropriate cali
bration of the empirical Hargreaves coefficient is not available, it might 
be interesting to test the developed approach to investigate the spatio- 
temporal variability of the reference evapotranspiration using the 
Penman-Monteith equation for the ETo evaluation. 

4. Conclusion 

This study provided an extensive spatio-temporal analysis of the 
evolutionary trends of reference evapotranspiration in Sicily. ETo was 
first assessed with the Hargreaves-Samani equation, calibrated for the 
study area, based on historical data and two future climate scenarios: 
RCP 4.5 and RCP 8.5. The Hierarchical algorithm was used to divide 
Sicily into three homogeneous regions, each characterized by specific 
evapotranspiration features. Support Vector Regression was used to 
forecast Tmin and Tmax for the period 2006–2100, while an ensemble 
model based on MLP and M5P was developed for the ETo prediction in 
the same period. Then the ETo calculated with the HS equation for the 
RCP 4.5 and RCP 8.5 future climate scenarios were compared with the 
forecasting performed with the ensemble MLP-M5P model. 

An increasing ETo trend was observed for all three clusters, with the 
highest values predicted for cluster C1, along the coast, and an overall 
increase from 2001 to 2091 of 7.52% for RCP 4.5, 14.64% for RCP 8.5%, 
and 10.78% for MLP-M5P. The lowest values were instead estimated for 
cluster C3 which, however, was characterized by the highest percentage 
increases of ETo during the forecast period, amounting to 8.12%, 
16.71%, and 14.98% for RCP 4.5, RCP 8.5, and MLP-M5P, respectively. 
The cluster analysis also showed a higher concentration of agricultural 
land with higher water demand along the coast, particularly for Cluster 
C1, which also showed the highest ETo values. This outcome suggests an 
increased risk of water deficit for the coastal areas of Sicily in the future. 

The MLP-M5P ensemble model resulted in future ETo values inter
mediate between climate scenarios RCP 4.5 and RCP 8.5, with the latter 
showing the highest values of ETo in all clusters. 

Overall, the MLP-M5P ensemble model, trained on the basis of the 
historical data of both ETo and temperatures, resulted in intermediate 
trends between RCP 4.5 and RCP 8.5 climate scenarios, proving to be 
particularly suitable for evapotranspiration predictions in both coastal 
and inland areas. The developed approach, based on the combination of 
clustering and forecasting algorithms, provides a concise and reliable 
assessment of ETo trends, and identifies different homogeneous regions. 
As the methodology requires a limited number of climate variables, it 
can be a powerful tool for improving future water resource management 
planning. 
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