
1

Efficient Synthesis of Concentric-Rings
Plane Wave Generators

D. Pinchera, Senior Member, IEEE, M. D. Migliore, Senior Member, IEEE

Abstract—In this paper, we present an efficient method for
synthesizing sparse plane wave generators (PWGs) based concen-
tric ring arrays. In particular, we introduce a novel circularly-
polarized ring source whose field on a near-field surface can be
represented using only three scalar functions. Using this repre-
sentation, we can simplify the synthesis, reducing substantially
its computational complexity, which can be easily handled using
an ordinary office PC. After using the ring sources to identify
the position and excitation of the PWG elements, we can employ
discrete linearly polarized sources as feeds or use different kinds
of radiators. Some numerical simulations validate the proposed
approach, which can obtain planar and volumetric quiet zones
with good polarization purity.

Index Terms—Antenna arrays, Antenna radiation pattern
synthesis, Optimization methods, Sparse array antennas

I. INTRODUCTION

The widespread diffusion of always more complex commu-
nication technology requires sophisticated test equipment to
characterize radiating systems correctly.

In particular, the proper validation of 5G and forthcoming
6G communication systems requires testing the terminals and
base station antennas in conditions very close to the working
ones. Unfortunately, the classical far-field testing of radiating
equipment may require huge anechoic chambers. It is also
possible to employ compact-range test sites, but these systems
are expensive and large and show limited flexibility in the
realization of measurements [1].

A possibility proposed in the last decades is using a Plane
Wave Generator (PWG) [2]. It consists of an antenna array
able to synthesize a plane wave, or a superposition of plane
waves, in a desired region of space, usually referred to as
Quiet Zone (QZ). The size of the PWG is generally slightly
larger than the dimension of the QZ to realize; the performance
achievable by PWGs, as well as their design guidelines and
some useful rules-of-thumb for their dimensioning and syn-
thesis, are discussed in [3].

The advantage of a PWG with respect to concurrent solu-
tions is its compactness. It is also possible to perform complex
tests on antennas: 5G base station testing [4]; ultrawideband
systems [5]; 5G NR testing [6]; measurements in small ane-
choic chambers [7]; emulation of multipath environment [8].
The main disadvantage is their cost, mainly related to the
synthesis of the beamforming network and the number of
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amplifiers/attenuators and phase shifters needed for providing
the correct excitation to the radiators. For this reason, reducing
the number of radiators is one of the critical points in designing
this kind of system. Aperiodic architectures are particularly
advantageous from this point of view: non-regular grids [3],
circular rings [9], sparse arrays [10].

From an engineering perspective, the design of a PWG
shares many points with the problem of antenna array syn-
thesis. Still, it is generally more complex to handle from a
numerical point of view. Even if the single radiators consti-
tuting the PWG work in far-field conditions, the overall PWG
does not work in the same condition: we cannot exploit the
factorization of the radiated field into element factor and array
factor [3]. Moreover, the design of sparse PWGs is challenging
due to the nonlinearity of the radiated field with respect to the
radiators’ position variables.

Moreover, suppose we require excellent polarization purity.
In that case, the number of equations involved in the synthesis
is tripled since the request for a quiet zone with a vertically
polarized field in a specific direction requires that we appro-
priately limit the amplitude of the other two electromagnetic
field components.

This paper proposes an approach for synthesizing PWGs
arranged into rings. In particular, we take advantage of the
fact that we can realize linear polarization as the summation
of two circular polarizations. To this aim, we introduce a very
convenient representation of the radiated field that exploits the
symmetries of circularly polarized ring sources. This way, we
can represent the fields radiated on a surface using only three
scalar functions of a single spatial variable: the synthesis’s
computational complexity becomes similar to sparse linear
array synthesis. We must underline that the proposed circularly
polarized source is only employed as a synthesis tool since we
substitute it with simpler linearly polarized feeds in the final
design. The synthesized PWG will radiate a plane wave with
excellent uniformity and polarization purity within the QZ.

The paper is organized in the following way. We first discuss
the field radiated by a circularly polarized ring source (section
II). Then we use the introduced representation to synthesize
the PWG (section III). More precisely, the synthesis is split
into two steps: we will first identify a set of concentric ring
sources, then we will find the correct number of elemen-
tary sources per ring to radiate the desired field. Examples
of PWGs employing simple linearly polarized sources will
confirm the effectiveness of the proposed procedure (section
IV). Conclusions follow.
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Fig. 1. Scheme of the system: the sources are placed on (x, y) plane (black),
the observation region is the (x′, y′) plane (blue). Subplot a): we have a
single CPES (red) in the origin of axis. Subplot b): we have a CPCRS of
radius q (only 12 CPES are displayed for simplicity).

II. INTRODUCING A SYMMETRICAL SOURCE

The free space wavelength and the corresponding wavenum-
ber will be indicated in the following section with λ and β,
respectively. To simplify the notation, when calculating the
field of elementary sources, we will suppose that the distance
of the observation point from the single elementary source is
always sufficiently large to use the far-field representation for
the radiation of each source [11]. Normal fonts will be used
to represent scalar quantities, and bold fonts will be used to
describe vector quantities.

To simplify the synthesis of the PWG, we will now intro-
duce a Circularly Polarized Elementary Source (CPES), which
is the superposition of two coherent orthogonal elementary
sources of equal amplitude having a phase shift of π/2.
Suppose that the two orthogonal directions of the CPES are
parallel to x and y axes; we will refer to Right-Handed-CPES
if the current of the elementary source is proportional to the
complex vector ir = (iy + jix), and of Left-Handed-CPES
if the current of the elementary source is proportional to the
complex vector i` = (iy − jix).

With reference to Fig.1a, let us consider an RH-CPES
placed in the origin of axes; its radiative field [11] in a point of
polar coordinates (ρ, θ, z) belonging to the observation plane
(x′, y′) can be calculated as:

Ẽ0
(r)

(ρ, θ, z) = αI
λR0

e−jβR0(((iy + jix)× iR0
)× iR0

) (1)

where (ix, iy, iz) are the real Cartesian versors, α is an
inessential constant, I is a complex amplitude factor, R0 =
ρ cos θix + ρ sin θiy + ziz , R0 = |R0| and iR0 = R0/R0

With minor algebra calculations discussed in the appendix,
it turns out to be particularly convenient to represent this field
with respect to the three vectors (ir, i`, iz):

Ẽ0
(r)

(ρ, θ, z) = A0(ρ, z)ir+B0(ρ, z)e−j2θi`+C0(ρ, z)e−jθiz
(2)

where A0(ρ, z), B0(ρ, z) and C0(ρ, z) are three complex
scalar functions independent from θ, providing, respectively,
the complex amplitude of the right-handed, left-handed and
z-component of the field.

This very convenient formulation is also possessed by a
continuous distribution of equal-amplitude CPES along a ring;
we will refer to it in the following as Circularly Polarized
Continuous Ring Source (CPCRS).

Fig. 2. Amplitude (a,c,e) and phase (b,d,f) of the functions A(ρ, z, q),
B(ρ, z, q) and C(ρ, z, q) relative to RH-CPCRS of radius q = 5λ evaluated
on a circular area of maximum radius ρ = 10λ for a distance z = 5λ from
the source’s plane. The amplitudes have been normalized to the maximum
amplitude of A(ρ, z, q).

In particular, with reference to fig.1b, let us evaluate the
radiative field of a Right-Handed CPCRS of radius q centered
in the origin of axes:

E(r)(ρ, θ, z, q) =
∫ 2π

0
Ẽ(r)(ρ, θ, z, q, φ)qdφ (3)

where Ẽ(r)(ρ, θ, z, q, φ) is the field radiated in the point
(ρ, θ, z) by the RH-CPES located in (q, φ, 0):

Ẽ(r)(ρ, θ, z, q, φ) = αI
λRe

−jβR(((iy + jix)× iR)× iR) (4)

where

R = (ρ cos θ − q cosφ)ix + (ρ sin θ − q sinφ)iy + ziz (5)

with R = |R| and iR = R/R.
In the appendix, we demonstrate that we can write the field

radiated by the RH-CPCRS as:

E(r)(ρ, θ, z, q)=A(ρ, z, q)ir +B(ρ, z, q)e−j2θi`

+C(ρ, z, q)e−jθiz (6)

and the field radiated by the LH-CPCRS as:

E(`)(ρ, θ, z, q)=A(ρ, z, q)i` +B(ρ, z, q)e+j2θir

+C(ρ, z, q)e+jθiz (7)

where A(ρ, z, q), B(ρ, z, q) and C(ρ, z, q) are proper scalar
functions, independent from θ, that can be evaluated by means
of numerical integration. In Fig.2, it is possible to see their
behavior for an RH-CPCRS of radius q = 5λ evaluated on an
observation plane with z = 5λ.

It is worth noting that the amplitude of A(ρ, z, q) is stronger
than the amplitude of the other two functions, confirming the
intuitive result that a circularly polarized source radiates a
field prevalently polarized in the same way. Unfortunately, the
field radiated by a single ring presents a significant cross-polar
and z-component, and the field is not sufficiently uniform in
amplitude to generate a plane wave. Still, a proper combination
of rings may be suitable to solve the mentioned task, and this
approach will be exploited in the next section.
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III. SYNTHESIS METHOD

This section will show how we can exploit the circularly
polarized source introduced in the previous section to synthe-
size a PWG. Two sequential steps are involved: first, we will
find a proper set of rings to synthesize the plane wave; second,
we will substitute the continuous rings with discrete sources.

Let us focus on the objective of synthesizing a right-handed
circularly polarized plane wave in a circular region of the
(x′, y′) plane (see Fig.1) employing N concentric rings. We
can translate this problem into finding an optimal value of the
number of rings N , the radii qn and the complex amplitudes
In for the N rings so that for ρ < ρMAX we have:∣∣∣(∑N

n=1 InA(ρ, z, qn)
)
− 1
∣∣∣<εA (8)∣∣∣∑N

n=1 InB(ρ, z, qn)
∣∣∣<εB (9)∣∣∣∑N

n=1 InC(ρ, z, qn)
∣∣∣<εC (10)

where ρMAX is the radius of the region in
which we want to synthesize the plane wave,
(A(ρ, z, qn);B(ρ, z, qn);C(ρ, z, qn)) are the functions
introduced in (6) for the n−th ring of radius qn, and
(εA, εB , εC) are suitable approximation thresholds. It is worth
underlining that the dependence from the θ parameter can be
neglected so that we can deal with a single spatial variable.

A. Finding the continuous rings

We can follow several approaches for finding the number
of rings, their radii, and excitations; since we would like to
reduce the complexity of the PWG, we will aim to minimize
the number of rings. This task shares many similarities with
the sparse array synthesis problem, so we can follow a
compressive sensing inspired approach [12], using the smooth-
reweighted `1 minimization introduced in [13].

To this aim, we will consider a set of ν closely spaced rings
of radii (q1, · · · , qν), and we will collect their excitations in
the column vector I = [I1, · · · , Iν ]. We will also define a
proper set of µ points (ρ1, · · · , ρµ) sampling the radius of
the circular area of diameter 2ρMAX in which we would like
to synthesize the plane wave. We will also introduce three
complex valued (µ × ν) matrices (A,B, C), so that the m,n
elements of these matrices are

Am,n = A(ρm, z, qn) (11)
Bm,n = B(ρm, z, qn) (12)
Cm,n = C(ρm, z, qn). (13)

We can then solve the following smooth-weighted convex
problem iteratively:

minimize ‖W ◦ I‖1 (14)
subject to |AI − 1|∞ ≤ εa (15)

|BI|∞ ≤ εb (16)
|CI|∞ ≤ εc (17)

where W = [w1, · · · , wν ] is the smooth weighting vector
defined in the following, W ◦ I is the Hadamard entrywise

product of the two vectors W and I, ‖ · ‖1 is the `1 norm of
a vector.

As shown in [13], when the weighted minimization problem
(14)-(17) is solved, the excitation vector I will show some
“clusters” of non-null values. Differently from the standard
re-weighted `1 norm minimization [12], we can preserve the
information content of the clusters using a ”smooth” weighting
vector. In particular, we have used:

wn = 1/max(gn, η) (18)

where η is a small positive threshold to prevent too large values
for wn, and gn are the entries of the vector G calculated as

G = |I ′| ∗ D (19)

where I ′ is the excitation vector obtained in the previous
iteration, the convolution “∗” returns only the central part of
it (of the same size as I), and D is a smoothing vector of
positive numbers. For instance, in the numerical examples of
this paper, we have used D = [.25; .5; .99; 1; .99; .5; .25].

The convergence of the proposed method is fast; usually,
after about ten iterations, we can observe no more changes in
I. After the convergence, we can extract the ring radii qn, and
excitations In through a weighted average of the clusters of
non-null value that appear in the excitation vector I [13].

We must underline that in this approach, the number N of
the found CPCRSs is one of the synthesis outputs, so it can
not be determined a-priori. Still, it is possible to repeat the
synthesis with different values of the thresholds (εA, εB , εC)
until we achieve the desired result - higher thresholds usually
result in a lower number of rings, with a larger spacing
between them, to satisfy the synthesis.

The use of higher thresholds (εA, εB , εC) is also a good
workaround to the lack of an explicit constraint on the distance
between the rings. In this way, we accept a lower accuracy
for the generated plane wave, but we can avoid overlapping
radiators.

Another possible workaround to the ring-spacing issue may
be using a different synthesis algorithm for identifying the
CPCRSs, like I-IDEA [14], that allows us to take into account
the spacing constraint explicitly.

Moreover, we may add, if needed, further convex constraints
in the problem defined in (14)-(17); for instance, we may limit
the maximum amplitude of the field in specific regions outside
the QZ. It may also be possible to build a convex constraint
to limit the integral of the power flux in regions out of the
QZ to maximize the power efficiency of the PWG. Since we
found that the achieved field levels were satisfactory, we did
not follow those approaches in the examples of the present
paper.

As a final observation, we have to underline that, in some
cases, the constraint (17) on the z-component in the convex
problem is automatically satisfied because of the relative
weakness of such a field component. In our numerical tests,
we chose to leave that constraint in the convex problem since it
allowed us to maintain the z-component always under control
without significantly influencing the algorithm’s convergence.

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3263011

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4

Fig. 3. Standard deviation of the circularly polarized right-handed component
of the field AM (ρ, θ, z, q) along an observation circle of variable radius ρ,
for a discrete source of M angularly equispaced circularly polarized elements
of radius q = λ at a distance z = 5λ from the source plane. To provide
a fair comparison between different values of M , AM (ρ, θ, z, q) has been
normalized to its maximum value before calculating the standard deviation.

B. Continuous ring discretization

Once we have found the ring radii, we can substitute
the continuous rings with a proper set of discrete circularly
polarized sources.

The fact that we pass from a continuous distribution of
sources to an angularly-equispaced Circularly Polarized Dis-
crete Ring Source (CPDRS) of M CP sources of equal
amplitude will result in a slightly more complex field. For
instance, for an RH-CPDRS, we will have:

Ẽ(r)(ρ, θ, z, q)=AM (ρ, θ, z, q)ir +BM (ρ, θ, z, q)e−j2θi`

+CM (ρ, θ, z, q)e−jθiz (20)

where the scalar functions (AM , BM , CM ) will show some
oscillations with respect of the variable θ with the same
periodicity of the angular spacing between the discrete sources.

It turns out that the amplitude of these oscillations along
the observation ring shows a behavior very similar to the
phenomena of pseudo-grating lobes for ring arrays [15]. In
Fig.3, we analyze the case of a CPDRS of radius q = 5λ and
a variable number M of angularly-equispaced CPES. Apart
from some minor ripples, the standard deviation σA of the
circularly polarized field component AM (ρ, θ, z, q) shows an
increasing behavior with respect to the increase of ρ and a
decreasing behavior with respect to the increase of M .

It is relatively easy to numerically calculate the relationship
between the coordinate of the observation point ρ and the
number of discrete sources M . Again, with reference to the
same CPDRS of radius q = 5λ, in Fig.4, we provide a plot of
the relationship between ρ and M for some values of σA.

Using these curves, we can find the number of discrete
sources Mn (with n ∈ [1, N ]) for each of the N rings that
achieves the desired approximation level up to ρMAX ; as an
example, looking at Fig.4 we can determine that for a source
ring of radius q = λ at a distance z = 5λ from the source plane
we need at least M = 34 discrete sources to obtain a value
of σA < 0.001 for an observation region within ρ <= 8λ.
In this paper, we have chosen to consider as design criteria a
value of σA at least two orders of magnitude lower than the
smallest between the thresholds εA, εB , and εC .

Fig. 4. The relationship between the observation angle ρ, the number of
discrete sources M for some values of σA (the values on the curves) for
a CPDRS of radius q = λ at a distance z = 5λ from the source plane.
To provide a fair comparison between different values of M , AM (ρ, θ, z, q)
has been normalized to its maximum value before calculating the standard
deviation.

C. Achieving a linear polarization

The procedure described before allows the synthesis of the
parameters (qn, In,Mn) for the set of CPDRS relative to the
PWG that generates an RH circularly polarized plane wave
of unit amplitude. The field radiated by this RH-PWG in the
circular QZ area can be written as:

E
(r)
PWG(ρ, θ)=(iy + jix) + err(r)(ρ, θ) (21)

wherein the term err(r)(ρ, θ) is an error term whose magni-
tude depends on the choice of the thresholds εA,εB ,εC , and
σA.

Obviously, because of the symmetry, if instead of RH
sources, we used LH sources with the same radiators’ layout,
the resulting LH-PWG radiates a field:

E
(`)
PWG(ρ, θ)=(iy − jix) + err(`)(ρ, θ) (22)

wherein the term err(`)(ρ, θ) is, again, an error term whose
magnitude depends on the choice of the thresholds εA,εB ,εC ,
and σA.

It is then possible to exploit the linearity of the fields to
obtain the field of a linearly polarized plane wave. Remem-
bering that iy = (ir + i`)/2, we can substitute the CPES of
the RH-PGW and the LH-PWG with iy elementary sources,
obtaining the field of the y−PWG as:

E
(y)
PWG(ρ, θ)=(iy) + (err(r)(ρ, θ) + err(`)(ρ, θ))/2 (23)

The last equation shows that the field in the QZ, apart from an
error term of controllable amplitude, is linearly polarized. This
helpful feature allows us to exploit the circular symmetry of
CPCRS to simplify the PWG synthesis and use simple linear
polarized elementary sources to achieve a linearly polarized
field in the QZ. In the next paragraph, we will use simple linear
polarized elementary sources to synthesize linearly polarized
quiet zones to show this feature.

IV. NUMERICAL EXAMPLES

In this section, we will provide some examples that confirm
the effectiveness of the proposed approach. All the simulations
have been performed for a single frequency, and all the
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Fig. 5. Graphical representation of the evolution of the solution found for
the excitation I of the dense rings. Subplot a): colormap representing the
amplitude in dB of the 12-row matrix collecting the excitation vectors I for
the 12 realized iterations. Subplot b): plot of the amplitude of I and I for the
last iteration. All the amplitudes in the figure are normalized to the maximum
value.

distances are expressed in terms of wavelengths relative to that
frequency. Moreover, we will use two performance indexes, as
suggested in [3], the root mean square error (RMSE) on the
QZ region and the maximum amplitude EMAX of the field
radiated by the PWG on the plane of the QZ calculated as:

EMAX = max
z=z0
||EPWG(x, y, z)||2 ∀(x, y) (24)

where || · ||2 is the `2 norm of the electric field vector and z0 is
the coordinate of the observation plane. It must be noted that
values of EMAX up to 20dB will be considered acceptable
in this section, since we suppose as in [3] that good quality
absorbing panels are employed in the measurement system.
Obviously, as stated before, different choices for the synthesis
may be done in accordance with the particular specifications of
the desired testing system. For the calculations, we have used
Matlab and CVX [16] on an Intel i7 8700k office PC, using
as synthesis parameters η = 10−3 and a spacing δν = λ/50
between the dense radii used to discretize the source.

A. Planar QZ Synthesis

In the first example, we will perform a PWG synthesis using
the same specifications discussed in [10], where the authors
synthesized some planar sparse PWGs able to generate a plane
wave in a circular QZ of a radius of ρMAX = 17λ at a distance
of z = 34λ from the PWG plane. In particular, the “Case
1” PWG employed 1159 radiating elements, placed within a
circular area of 20λ maximum radius, and achieved an RMSE
of 0.0046 and a value of EMAX greater than 20dB.

By using the proposed ring-synthesis approach, using a set
of equispaced rings in the range (1λ; 20λ) and εA = εB =
εC = 0.005 we can obtain a set of N = 17 rings. The
calculation of these rings required 12 iterations in a total time
of fewer than five minutes.

To get a better insight into the algorithm, we can look
at Fig.5a, where we provide the graphical representation of
the evolution of the amplitude of the excitation vector I
in the 12 performed iterations. We can see that the starting
solution (iteration 1) presents 18 “clusters”, i.e., groups of

TABLE I
RING RADII (qn), NUMBER OF ELEMENTS PER RING (Mn) AND RELATIVE

EXCITATION In FOR THE N = 17 RINGS OF THE 662 ELEMENTS PWG.

qn Mn In qn Mn In
1.06 8 0.707e−1.221j 11.74 44 1.130e−1.591j

1.68 12 1.072e−1.894j 13.22 48 2.357e−0.856j

3.07 16 1.292e−1.205j 14.36 50 3.879e−1.226j

3.92 20 1.680e−1.856j 15.40 54 4.522e−1.801j

5.57 26 2.120e−1.368j 16.36 56 3.961e−2.532j

6.88 30 2.209e−1.824j 17.32 58 2.408e3.087j

8.63 34 2.379e−1.281j 18.32 62 0.995e2.609j

9.86 40 2.454e−1.660j 19.28 62 0.263e2.147j

10.84 42 1.336e−2.167j

non-null values for the excitations vector, corresponding to
18 rings. Within a few iterations, the last cluster is gradually
reduced in amplitude; the others are slightly moved from their
initial solution, obtaining the final set of 17 rings (Fig.5b)
and confirming the ring-minimizing behavior of the iterative
algorithm defined in (14)-(17).

Once we have calculated the ring radii, we can obtain
the number of discrete sources Mn for the n−th ring by
selecting the lowest number of sources that guarantees σA <
10−6. Once the values of Mn have been calculated with
the strategy described in section III.B, we can compute the
actual excitation of the radiators belonging to these rings.
Since we have imposed small residual oscillations, we can
accomplish this task by evaluating the fields only for the ρ
variable. All the parameters of the final PWG that account
for an overall number of 662 y−oriented linearly polarized
elementary sources are in table I.

In Fig.6, it is possible to see the plot of the difference
between the field radiated by the PWG and the wanted plane
wave:

∆E(x, y, z) = ‖EPWG(x, y, z)− e−jβziy‖2. (25)

It is evident that the difference between the field radiated by
the PWG and the desired plane wave is very small in the circle
of radius ρMAX , and the polarization purity is excellent. The
achieved RMSE is 0.0045 and a value of EMAX = 14.6dB. It
is worth mentioning that these performance indexes are better
with respect to the layout presented in [10], with a reduction
of the radiators of about 43%.

B. Spherical QZ Synthesis

This second example will show how we can extend the pro-
posed procedure to synthesizing “spherical” QZ. A spherical
QZ is particularly interesting for measuring systems in which
we use the PWG array as the source in a spherical scanning
apparatus, like the one described in [4], [17], [18].

The synthesis of a volumetric QZ is generally more nu-
merically complex than the synthesis of a planar one, so
the calculations involved may be challenging to handle with
ordinary office PCs. Actually, from Fig.6a it is clear that the
QZ extends to a larger volume with respect to the planar region
used in the synthesis. This behavior is a direct consequence
of Huygens’ principle and suggests that for the synthesis of
a plane wave within a volume, we may impose the wanted
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Fig. 6. Difference ∆E(x, y, z) of the field radiated by the 662 elements PWG
and the wanted plane wave: a) the difference is calculated on the x = 0 and
y = 0 planes; b) the difference is calculated on the z = 34λ plane. A dashed
white line shows the circle of radius ρMAX .

conditions on the boundary of the desired QZ - in this case,
the surface of a sphere.

Now, exploiting again the convenient formulation of the
field provided in (6)-(7), we can perform the synthesis im-
posing the field constraints (15)-(17) on one of the meridian
arc of the mentioned spherical surface. This way, we only need
to consider a single spatial variable to perform the synthesis.

To show the effectiveness of this approach, we will consider
the synthesis of a spherical QZ with specifications similar to
the one discussed in [17]. In particular, we will synthesize
a plane wave in a sphere of 36λ diameter, with the center
at a distance of 112λ from the plane of the PWG. It must
be mentioned that the authors of [17] did not explicitly
provide the dimension of the employed circular PWG; from
the photos of the realized system, we have estimated a size of
approximately 42λ diameter at the frequency of 28GHz.

Using the proposed approach and considering a set of
densely equispaced rings in the range (1λ; 21λ) and εA =
εB = εC = 0.01, we can obtain from the smooth weighted
synthesis a set of N = 9 rings. The calculation of these rings
required 10 iterations in a total time of about ten minutes.

Once the ring radii have been obtained, the number of
discrete sources Mn for the n−th ring has been calculated
by selecting the lowest number of sources that guarantees
σA < 10−4. Once the values of Mn have been achieved, it is
possible to compute the actual excitation of the radiators. All
the parameters of the final PWG, which accounts for an over-

TABLE II
RING RADII (qn), NUMBER OF ELEMENTS PER RING (Mn) AND RELATIVE

EXCITATION In FOR THE N = 9 RINGS OF THE 170 ELEMENTS PWG.

qn Mn In qn Mn In
2.16 8 0.630e−2.644j 16.24 22 21.923e−1.860j

3.48 8 10.858e−1.423j 18.26 24 19.060e−2.555j

6.92 14 11.072e−1.784j 20.02 28 12.426e2.894j

10.92 16 13.538e−1.264j 21.00 28 5.096e1.134j

13.99 22 16.600e−1.245j

TABLE III
RING RADII (qn), NUMBER OF ELEMENTS PER RING (Mn) AND RELATIVE

EXCITATION In FOR THE N = 4 RINGS OF THE 54 ELEMENTS PWG.

qn Mn In qn Mn In
1.03 8 0.99e−1.526j 2.84 16 1.037e−2.488j

2.124 14 1.197e−1.588j 3.52 16 0.386e2.982j

all number of 170 y−oriented linearly polarized elementary
sources, are in table II.

In Fig.7, it is possible to see the plot of the difference of
∆E(x, y, z) (25). The difference between the field radiated by
the PWG and the desired plane wave is minimal within the
sphere of radius ρMAX , and we also have an excellent polar-
ization purity. The achieved RMSE evaluated on the QZ sphere
volume is 0.0120, and we have a value of EMAX = 15.4dB
(calculated on the plane parallel to the PWG plane and passing
through the center of the sphere). It is worth mentioning
that the number of radiating elements is almost the same as
the solution proposed in [17] (where the authors employed
172 radiators). The authors of the comparing paper do not
provide the RMSE for that solution, but only the maximum
oscillation of the amplitude and phase on the (y, z)−plane
within the sphere, which are equal to ±0.5dB and ±10◦(deg),
respectively [18]. Our solution achieves a maximum oscillation
of the amplitude and phase of the field on the same plane of
±0.35dB and ±2.9◦(deg), values significantly better than the
comparing solution.

C. Full wave validation

As a final confirmation of the synthesis approach, we have
validated the proposed synthesis approach using a full wave
simulation. To perform the full-wave calculations in a reason-
able time using the available hardware, we have considered a
smaller QZ with respect to previous examples. In particular,
we have required a circular QZ of a radius of ρMAX = 2.5λ
at a distance of z = 5λ from the PWG plane.

By using the proposed ring-synthesis approach, using a set
of equispaced rings in the range (1λ; 4λ) and εA = εB = εC =
0.01 we can obtain a set of N = 4 rings. The calculation of
these rings required 11 iterations in a total time of less than
one minute.

Once we have calculated the ring radii, we can obtain the
number of discrete sources Mn for the n−th ring by selecting
the lowest number of sources that guarantees σA < 10−4.
Once the values of Mn have been calculated, we can com-
pute the actual excitation of the radiators belonging to these
rings. All the parameters of the PWG that account for an
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Fig. 7. Difference ∆E(x, y, z) of the field radiated by the 170 elements PWG
and the wanted plane wave: a) the difference is calculated on the x = 0 and
y = 0 planes; b) the difference is calculated on the z = 112λ plane. A
dashed white line shows the sphere of radius ρMAX ; the red dotted arc is
the meridian arc employed for the synthesis.

Fig. 8. Difference ∆E(x, y, z) of the field radiated by the 52 elements
PWG and the wanted plane wave on the z = 5λ plane: a) PWG made
by y−polarized elementary sources; b) PWG made by rectangular patch
elements. A dashed white line is used to show the circle of radius ρMAX .

overall number of 54 y−oriented linearly polarized elementary
sources are in table III.

In Fig.8a, it is possible to see the plot of the difference
between the field radiated by the PWG made of y−polarized
elementary sources and the wanted plane wave. The difference
between the field radiated by the PWG and the desired plane
wave is very small in the circle of radius 2.5λ. The achieved
RMSE is 0.0099 and a value of EMAX = 0.65dB.

Using the achieved radiators’ coordinates and excitations,
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Fig. 9. Layout of the PWG made of 54 patch antennas working at the
frequency of 3GHz.

we have simulated, at the frequency of 3GHz, an array of
54 rectangular patch elements of 40 × 29.6mm, built on a
1mm thick substrate of Arlon AD250C having a square side
of 800mm with the same relative excitations calculated for
the linearly polarized elementary sources. The patch elements
are excited by 50Ω lumped ports having a distance of 5.9mm
from the center of the patch to resonate at the frequency of
3GHz and to obtain a linearly polarized field in the broadside
direction. A plot of the simulated PWG array is provided in
Fig.9.

In Fig.6b, it is possible to see the plot of the difference
between the field radiated by the patch element PWG and the
wanted plane wave. The difference between the field radiated
by the PWG employing patch antennas and the desired plane
wave is small: the achieved RMSE is 0.0131 and a value of
EMAX = 0.26dB.

The substitution of the elementary source with the patch
antenna has only marginally modified the overall quality of the
synthesized QZ. Using a different type of radiating elements
(with a stronger mutual coupling or a more directive pattern),
it may be possible that the quality of the approximation
in the quiet zone may become unacceptable; in this case,
it is possible to use the measurement or simulation of the
active element pattern, together with convex programming
techniques, to correct the excitations of the radiating elements
slightly.

V. CONCLUSIONS

We have presented a method for the efficient and effective
design of PWGs. The approach is based on using convenient
circularly polarized ring sources, which reduce the computa-
tional complexity of the synthesis problem, which becomes
similar to sparse linear array synthesis. These particular
sources are used only as a device to simplify the design
process, since the final PWG can employ common linearly
polarized feeds.

The examples shown confirm the quality of the approach,
which can provide better overall performance with respect to
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concurrent algorithms or a significant reduction in the number
of radiators needed. We have also verified the technique’s
applicability to realistic radiators through the full-wave simu-
lation of a patch antenna array used as PWG.

In future developments, we plan to work on synthesizing
isophoric PWG so that all the radiating elements can be excited
with the same signal amplitude; we also plan on working on
the maximization of the power transferred to the QZ, as well as
including mutual coupling in the synthesis and implementing
more directive feeds.

APPENDIX

We will now provide some insights into the field radiated
by the CPES.

With reference to (1), we can notice only the term D =
((iy + jix) × iR0) × iR0 depends from θ. With some simple
algebra calculations, we can obtain its explicit form:

D = Dxix +Dyiy +Dziz (26)

with

Dx=(ρ2 cos θ sin θ − jz2 − jρ2 sin2 θ)/(ρ2 + z2) (27)
Dy=(−ρ2 cos2 θ − z2 + jρ2 cos θ sin θ)/(ρ2 + z2) (28)
Dz=(jρze−jθ)/(ρ2 + z2) (29)

Remembering that iy = (ir + i`)/2 and ix = (ir − i`)/(2j)
and substituting these relationships into (26), we can obtain

D =
−z2 − ρ2/2
ρ2 + z2

ir +
−ρ2e−2jθ/2
ρ2 + z2

i` +
jρze−jθ

ρ2 + z2
iz (30)

thus demonstrating that in (2) the RH polarized term is
independent from θ, the LH polarized term contains a factor
e−2jθ, and the z component contains a factor e−jθ.

A representation of the three complex scalar functions
A0(ρ, z), B0(ρ, z) and C0(ρ, z) appearing in (2) on the
observation plane is given in Fig.10.

We obtain a behavior similar to (2) when considering an
LH-CPES, whose field is:

Ẽ0
(l)

(ρ, θ, z) = A0(ρ, z)i`+B0(ρ, z)e+j2θir+C0(ρ, z)e+jθiz.
(31)

Let us now analyze the field radiated by a CPCRS.
With reference to Fig.11a, let us consider the field E1

radiated by an RH-CPCRS of radius q in the point P1 of
coordinates (ρ, θ = 0, z). This field can be decomposed into
its Cartesian coordinates as:

E1=E(r)(ρ, θ = 0, z, q)

=Ex(ρ, z, q)ix + Ey(ρ, z, q)iy + Ez(ρ, z, q)iz (32)

Let us now imagine performing a geometrical rotation of
the RH-CPCRS and the observation plane of an angle θ, as
in Fig.11b, so that we can define a new (u, v, z) coordinate
system:

u = cos θix + sin θiy and v = cos θiy − sin θix (33)

The new position of the point P1 will be marked as P2, and
the value of the field E2 in that point will be

E2 = Exiu + Eyiv + Eziz (34)

Fig. 10. Representation of the field radiated by an RH-CPES on an
observation plane with z = 5λ using the complex functions A0, B0, and
C0. Subplots a)-c)-e) provide the amplitude of the functions; subplots b)-
d)-f) provide the phases. The amplitudes are normalized to the maximum
amplitude of A0.

Fig. 11. Scheme of the representation of the fields in the rotated coordinate
system; only four CPES of the CPCRS are depicted for simplicity. Subplot
a): standard system; subplot b): rotated system.

where the dependence of the complex functions Ex, Ey and
Ez , from the variables (ρ, z, q) will be dropped for easiness
of notation.

Since we are dealing with a CPCRS, it is easy to recognize
that the original ring source of Fig.11a is perfectly identical to
the rotated one, except for a phase factor e−jθ, that takes into
account the rotation of the individual CPESs that constitute
the CPCRS.

According to this observation, we can calculate the field in
the point of coordinates (ρ, θ, z) as:

E(r)(ρ, θ, z, q) = (Exu + Eyv + Eziz) e
−jθ (35)

We can now substitute the complex amplitudes Ex and
Ey with a proper summation of a right-handed circularly
polarized component Er and a left-handed circularly polarized
component E`; remembering the following relationships

Erir + E`i` = Er(iy + jix) + E`(iy − jix) =

= j(Er − E`)ix + (Er − E`)iy = Exix + Eyiy (36)

we can obtain:

E(r)(θ) = (j(Er − E`)u + (Er + E`)v + Eziz) e−jθ (37)
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Substituting (33) into (37), with some simple algebraic ma-
nipulations we find:

E(r)(θ) = Erir + E`i`e
−j2θ + Ezize

−jθ (38)

The last equation demonstrates (7) since it shows that the
right-handed circularly polarized component of the field E(r)

is independent of the angular coordinate θ, while its left-
handed component and its z-component show a phase variation
proportional to −2θ and −θ, respectively.
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