
Doctoral Thesis

Design of Efficient Symmetric-Key
Cryptographic Algorithms

by
Kosei Sakamoto

March 2023

Graduate School of Applied Informatics
University of Hyogo

Abstract

Cryptography plays a crucial role in the modern internet communi-
cation system. Especially, thanks to the development of communication
technology, we can see variety of its applications everywhere, and the
importance of cryptography is getting more and more enhanced. The
main role of cryptography, especially symmetric-key cryptography which
is treated in this thesis, is to provide data confidentiality and integrity by
a block cipher, stream cipher, hash function, message authenticated codes
and authenticated encryption scheme.

With the rapid development of communication technology for a latest
few decades, such symmetric-key cryptographic algorithms need to meet
not only the security requirement but also implementation requirement on
resource-constrained devices such as RFIDs and medical devices. Studying
on such resource-constrained algorithms is called lightweight cryptography,
and have get the most attention in the field of symmetric-key cryptography
for the latest decade. Another area of interest is designing ultra-high
throughput cryptographic algorithms for the rapid advancement of mobile
communication systems like 5G and beyond 5G. In these systems, it is
necessary to design ultra-high throughput and high-security cryptographic
algorithms due to the increasing of the data transmission speed.

This thesis is dedicated to the design of symmetric-key cryptographic
algorithms, including a lightweight block cipher, lightweight tweakable
block cipher, block cipher-based low-katency pseudo-random function,
and ultra-high throughput uthenticated encryption with associated data
scheme. Specifically, we introduce four algorithms: a tweakable block
cipher Tweakable TWINE, lightweight block cipher WARP, lightweight PRP
Orthros, and an ultra-high throughput AEAD Rocca and investigate how
to design them along with the background of why these new algorithms is
necessary.

Table of Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 Applications and Requirements of Efficient and Lightweight Crypto-

graphic Algorithms . 2

1.2 Our Contribution and Outline . 3

2 Symmetric-Key Cryptography 6

2.1 Block Cipher . 6

2.1.1 Modern Block Cipher Construction 7

2.1.2 Tweakable Block Cipher . 11

2.2 Authenticated Encryption . 12

2.2.1 Construction of a Sponge-Based AEAD 13

2.3 Cryptanalysis of Symmetric-Key Cryptographic Algorithms 14

2.3.1 Attack Models . 15

2.3.2 Goal of Attack . 16

2.3.3 Cryptanalysis Techniques . 18

3 MILP-Aided Security Evaluation 26

3.1 Security Evaluation of Differential/Linear Cryptanalysis 27

3.1.1 Constraints . 27

3.1.2 Objective Function . 31

3.2 Security Evaluation of Impossible differential Cryptanalysis 31

3.3 Security Evaluation of Integral Cryptanalysis 32

3.3.1 Constraints . 33

3.3.2 Objective Function . 34

4 Tweakable TWINE: Building a Tweakable Block Cipher on Generalized Feistel

Structure 35

4.1 Introduction . 35

4.1.1 Organization of this section . 37

4.2 Specification . 37

4.2.1 Notation . 37

4.2.2 Data Processing Part . 38

i

4.2.3 Tweak Scheduling Function . 39

4.2.4 Key Scheduling Function . 40

4.2.5 Test Vectors . 40

4.3 Design Rational . 42

4.3.1 Design Goals . 42

4.3.2 How to Design Permutation-Based Tweak Scheduling Function 43

4.3.3 Reducing Candidates . 44

4.4 Security Evaluation . 46

4.4.1 Differential/Linear Attack . 46

4.4.2 Impossible Differential Attack . 47

4.4.3 Integral Attack . 48

4.5 Hardware Implementation Results . 48

4.6 Conclusion . 49

5 WARP : Revisiting GFN for Lightweight 128-Bit Block Cipher 51

5.1 Introduction . 51

5.2 Specification . 54

5.3 Design Rationale . 56

5.3.1 Branch Size and Permutation . 56

5.3.2 S-box . 57

5.3.3 Key Schedule . 57

5.3.4 Round Constants . 58

5.4 Security Evaluation . 58

5.4.1 Differential/Linear Attack . 58

5.4.2 Impossible Differential Attack . 59

5.4.3 Integral Attack . 59

5.4.4 Meet-in-the Middle Attack . 60

5.4.5 Invariant Subspace Attack . 60

5.5 Hardware Performance . 61

5.5.1 Nibble Serial Architecture . 61

5.5.2 Performance Results . 63

5.5.3 Round Based and Round Unrolled Designs 63

5.5.4 More Details about Hardware Implementations 64

5.6 Software Performance . 68

ii

5.6.1 On 8-bit AVR Microcontrollers . 68

5.7 On High-end Processors . 68

5.7.1 More Details of Software Implementations 69

5.8 Conclusion . 71

6 Orthros: A Low-Latency PRF 74

6.1 Introduction . 74

6.1.1 Low-Latency Encryption . 74

6.1.2 Our Design . 75

6.2 Specification . 76

6.2.1 Key Scheduling Function . 76

6.2.2 Round Function of Branch1 and Branch2 77

6.2.3 Test Vectors . 80

6.3 Design Rationale . 80

6.3.1 General Construction . 80

6.3.2 Toy Ciphers . 84

6.3.3 Linear Layer . 87

6.3.4 S-box . 92

6.3.5 Key Scheduling Function . 93

6.4 Security Evaluation . 93

6.4.1 Differential/Linear Attack . 93

6.4.2 Impossible Differential Attack . 94

6.4.3 Integral Attack . 97

6.4.4 Invariant Subspace Attack . 100

6.4.5 Meet-in-the-Middle Attack . 100

6.4.6 Yoyo and Mixture-Differential Attacks 101

6.4.7 Difficulty of Key-Recovery Attacks 101

6.5 Hardware Evaluation . 102

6.6 Conclusions . 108

7 Rocca: An Efficient AES-Based Encryption Scheme for Beyond 5G 109

7.1 Introduction . 109

7.1.1 Background . 109

7.1.2 Our Design . 110

7.1.3 Organization . 111

iii

7.2 Preliminaries . 111

7.2.1 Notations . 111

7.2.2 The Round Update Function . 112

7.2.3 Specification of Rocca . 113

7.3 Design Rationale . 116

7.3.1 General Construction . 116

7.3.2 Criteria for Performance and Security 119

7.3.3 Finding Efficient Structures . 121

7.3.4 Loading the Nonce and Key . 122

7.3.5 Generating the Ciphertext Blocks . 123

7.4 Security Evaluation . 124

7.4.1 Differential Attack . 124

7.4.2 Forgery Attack . 124

7.4.3 Integral Attack . 125

7.4.4 State-recovery Attack . 126

7.4.5 The Linear Bias . 127

7.4.6 The State-recovery Attack Using the Decryption Oracle 128

7.4.7 Other Attacks . 128

7.4.8 No Claims . 128

7.5 Software Implementation . 128

7.5.1 Software Implementation Results on Other CPUs 129

7.6 Conclusions . 132

8 Conclusions 133

Acknowledgements 134

References 135

iv

List of Figures

2.1 Overview of a block cipher. 7

2.2 Overview of an iterated block cipher. R denotes one round of the round

function. 8

2.3 Overview of Feistel network. 10

2.4 Construction of type-2 generalized Feistel network. 10

2.5 Overview of a tweakable block cipher. 11

2.6 Overview of an AEAD. 13

2.7 Duplex sponge encryption. 14

2.8 Sponge-based stream cipher. 14

2.9 Sponge-based AEAD. 14

2.10 Entire encryption/decryption process of AEGIS, Tiaoxin, and Rocca. 15

2.11 DR2 = 5 on type-2 GFN. Red lines mean to be affected by the input difference

of x2. 22

4.1 Overview of Tweakable TWINE . 37

4.2 Encryption and decryption of Tweakable TWINE 38

4.3 S-box S and nibble shuffle π . 39

4.4 Tweak scheduling function of Tweakable TWINE 39

4.5 Key schedules of Tweakable TWINE, for 80-bit and 128-bit keys. S-box S is

the same as Fig. 4.2, and key schedule constants, CONi, are described in the

bottom. 41

4.6 Permutaion-based tweak scheduling function 43

4.7 Permutation of d = 4 . 44

4.8 Positions for tweak inputs . 44

4.9 18-round impossible differential characteristic 47

4.10 18-round integral characteristic . 48

5.1 Round Function of WARP. 54

5.2 Encryption algorithm of WARP. 55

5.3 General LBlock-like round function. 58

5.4 Equivalent round function of WARP in LBlock-like structure. 58

5.5 Alternative definition of Round Function . 61

5.6 Nibble serial architecture for WARP. The filter that feeds the permuted

roundkey is omitted in the diagram. 62

v

5.7 Breakdown of component-wise area figures for 3 versions of WARP. Nibble

and Bit-serial circuits require lesser scan flip-flops which require more area . 65

5.8 Nibble to bit serial transformations . 65

5.9 Sketch of the 3 share nibble serial architecture for WARP 67

5.10 Software performance of WARP, SIMON and SKINNY on the same processor. 71

5.12 Another equivalent form using four permutations for round functions and

eight permutations for round keys (omitted addition round constants) 73

6.1 Overview of Orthros. 77

6.2 Algorithms of KSF1 and KSF2. 78

6.3 The round function of Branch1 and Branch2 in the first 4 rounds. 79

6.4 The round function of Branch1 and Branch2 in the last 8 rounds. The nibble

permutation and the matrix multiplication in the last round will be omitted. 80

6.5 Algorithms of Branch1 and Branch2, where N ∈ {1, 2}. 81

6.6 Processing algorithm of Orthros. 82

6.7 (Left) The toy cipher using a single branch and (Right) that using double

branches, where WK and RK are the whitening key and round key, respectively. 84

6.8 4-GFS. Dotted lines denote (random) round keys. 86

6.9 Transition of a state after applying Pbk1. 89

6.10 The 4 active bits after the bit permutation in the first round, as marked in red. 91

6.11 The 12 active nibbles after MatrixMul in the first round, marked in red. . . . 91

6.12 The 48 active bits after bit permutation in the second round, marked in red. 91

6.13 The active nibbles after bit permutation in the second round, marked in red. 91

7.1 Illustration of the round function . 112

7.2 The procedure of Rocca . 114

7.3 The process of aesenc for Intel Ice-lake. 117

7.4 The general construction considered of the round function in [103]. Dash

lines mean that it can be possible to be absent or present in the design. . . . 118

7.5 General construction of the round function. Dash lines mean that it can be

possible to be absent or present in the design. 118

7.6 The round function whose # of blocks is 8. 119

7.7 The round function whose # of blocks is 9. 120

7.8 The round function whose # of blocks is 10. 120

vi

List of Tables

4.1 Permutation in the tweak scheduling function πt 40

4.2 The number of active S-box of each round for 32 tweak scheduling functions

with d = 6 that achieve 32 active Sbox in 19 rounds. 45

4.3 Lower bound on the number of differentially and linearly active S-boxes in

each model . 47

4.4 Hardware results for round-based, enc-only implementations. 49

4.5 Hardware results for multi-round, enc-only implementation of T-TWINE-80.

(Top) ASIC (Yosys with osu018 stdcells.lib) (Bottom) FPGA (Intel/Al-

tera 10CL120YF780I7G, Quartus 18.1) . 50

5.1 4-bit S-box S. 54

5.2 Shuffle π on 32 nibbles. 54

5.3 Round constants (listed in hexadecimal). 55

5.4 Test vectors. 56

5.5 Four equivalent classes of 32-branch permutations with 9-round full diffusion [73]. 57

5.6 Lower bounds on the number of Active S-boxes for WARP and four permuta-

tions of π′
0(x), π′

1(x), π′
2(x), and π′

3(x) . 57

5.7 The lower bound for the number of differentially and linearly active S-boxes

in the single-key setting. 59

5.8 Comparison of performance metrics for serial implementations synthesized

with STM 90nm Standard cell library. Figures separated by / indicate

corresponding metrics for encryption/decryption. *Synthesized with the IBM

130 nm process/Power at 100 KHz . 63

5.9 Comparison of performance metrics for round based implementations synthe-

sized with STM 90nm Standard cell library (1R, 2R, 4R refer to 1, 2, and 4

round unrolled circuits). 64

5.10 Comparison of performance metrics for serial implementations synthesized

with STM 90nm Standard cell library. (RB denotes round based circuit,

3s, 4s denotes circuits with 3, 4 shares respectively) *Synthesized with the

UMC 180nm process/Power at 100 KHz. **Synthesized with the IBM 130nm

process/Power at 100 KHz . 67

5.11 Different performance characteristics of WARP on 8-bit AVR 69

5.12 Performance of block ciphers (128-bit block and 128-bit key) on 8-bit AVR . 70

vii

5.13 Software performance profile of WARP with various message length (including

the time took by packing/unpacking messages) 71

6.1 S-box in Branch1 and Branch2. 77

6.2 Specification of the round constants RC1
r and RC2

r 79

6.3 Bit permutation PbkN for key scheduling KSFN , where N ∈ {1, 2}. 82

6.4 Bit permutation PbrN for round function BranchN , where N ∈ {1, 2}. 83

6.5 Nibble permutation PnN for round function BranchN , where N ∈ {1, 2}. . . 83

6.6 Test vectors for Orthros in hex. 84

6.7 The maximal differential probability of SPN-based toy ciphers. 85

6.8 The maximal differential probability for each GFS-based construction. 86

6.9 The upper bound of the number of active bits after each operation. 88

6.10 Comparison of lower bounds of the number of active S-boxes. 92

6.11 Comparison of S-boxes. 93

6.12 The lower bounds of the number of active S-boxes in the single-key setting. 94

6.13 The differential distribution table of S-box. 95

6.14 The propagation of the division property for the S-box. 98

6.15 The mapping of the binary matrix. 98

6.16 The propagation of the division property for the binary matrix. 99

6.17 Results for the STM 90nm library. Power measured at 10 MHz. ∗The core

implementation of the underlying permutations in these constructions were

taken from [35,64] . 104

6.18 Results for the Nangate 15nm library. Power measured at 10 MHz. 105

6.19 Results for the TSMC 90nm library. Power measured at 10 MHz. 106

6.20 Results for the Nangate 45nm library. Power measured at 10 MHz. 107

7.1 Test vectors. 116

7.2 Latency and throughput of aesenc for some architectures by Intel and AMD

referred by [148]. 117

7.3 Comparison of the performance of the round function having different number

of blocks at the same rate. 120

7.4 Round functions of AEGIS family and Tiaoxin-346 121

7.5 Candidates of round functions which we search. 122

7.6 Speed (in cycles / Byte) of round functions of Rocca, AEGIS-128, AEGIS-

128L, AEGIS-256, Tiaxion-346, and JN16 (not include a generation part of a

ciphertext). 122

viii

7.7 The lower bound for the number of active S-boxes in the initialization phase

where ASsk and ASrk mean an active S-box in the single-key setting and in

the related-key setting, respectively. 124

7.8 Performance Evaluation . 129

7.9 Performance on Intel(R) Core(TM) i9-12900K CPU with 64 GB RAMs. . . . 130

7.10 Performance on Intel(R) Core(TM) i9-11900 CPU@2.50GHz with 64 GB RAMs.130

7.11 Performance on Intel(R) Core(TM) i9-10910 CPU@3.60GHz with 64 GB RAMs.130

7.12 Performance on Apple M1 . 131

7.13 Performance on Apple A15 Bionic . 131

7.14 Performance on Qualcomm Snapdragon 888 131

ix

1 Introduction

Cryptography is a mathematical science aiming at realizing secure communication systems. Its

study has a long history, dating back over 4000 years, and has resulted in the development of

numerous cryptographic algorithms. These algorithms can be divided into modern ciphers and

other types. The distinguishing characteristic of modern ciphers is that their encryption and de-

cryption algorithms are made public, while the algorithms used by other types of ciphers are not.

This criterion was used in the selection of the Data Encryption Standard (DES), a former Amer-

ican standard block cipher, and remains a fundamental requirement for modern cipher design.

The study of modern cryptography has undergone significant advancement, thanks to the tireless

efforts of numerous cryptographers.

Cryptography has played a vital role in modern internet communication society, and we can

see its technology in a wide range of devices and systems, including smartphones, personal com-

puters, and cloud servers to name a few. Thus, studying modern cryptography is essential to

maintain and progress the security of our internet society. The primary role of modern crypto-

graphic technology is to provide not only confidentiality but also integrity and authenticity.

Confidentiality An unauthorized third party must not be able to obtain any knowledge of the

original content of the communication by intercepting the messages during transmission. In

addition, stored data must be protected from unauthorized access.

Integrity The recipient must be able to verify that the content of the transmitted information

was not modified during transmission.

Authenticity The recipient must be able to verify the origin of the message, ensuring that it

was indeed sent by the expected sender.

In general, we can roughly classify the study of cryptography into design and cryptanalysis. In

the field of symmetric-key cryptography, researchers typically approach it from both design and

cryptanalysis perspectives and strive to advance both areas by sharing insights with one another.

In this thesis, we primarily focus on the design of symmetric-key cryptography.

1.1 Motivation and Background

The rapid development of communication technology has made cryptography increasingly im-

portant in a variety of fields, including automotive communication, RFID, and industrial control

networks to name a few. This rapid development brought about some new interests in the field of

symmetric-key cryptography.

1

Over the past decade, a major area of focus in the field of symmetric-key cryptography has

been the design of efficient cryptographic algorithms that meet certain constraints, such as circuit

area, memory, energy, and latency. This research area is known as ”lightweight cryptography,”

and ”lightweight cryptographic algorithms” are in high demand across a range of industries, in-

cluding automotive communication, RFID, and industrial control networks to name a few. In

fact, the National Institute of Standards and Technology (NIST) has initiated the standardization

of lightweight cryptographic algorithms (LWC) since 20181, as a concern that the current stan-

dard block cipher AES cannot meet the requirement in some applications has come up. This

standardization process is open, meaning that a standard lightweight cryptographic algorithm will

be selected from among many candidates submitted by cryptographic researchers worldwide sim-

ilar to the standardization process of AES and SHA3. As of November 2022, the process has

progressed to Round 3 (the final round), and 10 out of 57 submissions have been selected as final-

round candidates. Since going forward the limits of lightweight cryptography for both industry

and academia is valuable and important, many researchers dedicate significant effort to this area.

Another area of interest in this field is the design of ultra-efficient symmetric-key crypto-

graphic algorithms that take full advantage of the functions provided by modern popular de-

vices, such as SIMD instructions and AES new instruction sets (AES-NI). Fifth-generation mo-

bile communication systems (5G) and beyond systems, called beyond 5G or 6G, can achieve

ultra-high-speed data transmission, with the 6G system expected to achieve speeds exceeding 100

Gbps [117]. To prevent cryptographic algorithms from becoming a bottleneck in achieving such

ultra-high speeds, it is crucial that the cryptographic algorithms used in these systems also be able

to perform encryption and decryption at speeds exceeding 100 Gbps on a pure software environ-

ment. However, the current standard symmetric-key cryptographic algorithms for the 4G system

only achieve speeds of 30 Gbps [178], falling short of the requirements for beyond 5G systems.

Additionally, these systems must also have a key length of at least 256 bits to ensure sufficient

security against quantum computers. In general, performance and security are the relation of

trade-off in symmetric-key cryptographic algorithms, making it a challenging task for algorithm

designers to enhance both simultaneously.

1.1.1 Applications and Requirements of Efficient and Lightweight Crypto-
graphic Algorithms

As mentioned before, with the recent rapid development of communication technology, various

applications that require such as ultra-low latency and high throughput are coming up. In addition,

1https://csrc.nist.gov/Projects/lightweight-cryptography

2

the recent IoT devices have strict resource restrictions for hardware area and memory size, and

it makes the resource that cryptographic algorithms can utilize really few in those devices. We

here give some of their applications and their requirements for symmetric-key cryptographic al-

gorithms as examples. While there are many other applications that have other restrictions about,

such as memory and energy, we here focus on applications that have requirements about hardware

area, latency, and high throughput all of which are treated in this thesis.

Small hardware area One of the most famous applications that requires a small hardware

area is RFID. RFID is primarily used for uniquely identifying an object, animal, or per-

son through wireless communication and is utilized in a variety of settings, such as un-

manned cash registers and IC cards. In fact, the designer of the first lightweight block

cipher PRESENT mentioned that AES is not suitable for using in RFID tags and sensor

networks in their paper [51], and this is one of motivations that they proposed PRESENT.

According to some works [156, 172], the cryptographic system in RFID should be realized

with a circuit of 3000-4000 Gate Equivalents (GEs) or less.

Low latency There are many applications requiring a quick response, such as encryption of

memory bus, storage systems, and automotive communication. In particular, it is said that

several technologies realized in beyond 5G system, such as edge computing, require a cryp-

tographic system with an encryption/decryption process of less than 1ns at most. As the

current de facto standard block cipher AES is hard to achieve its latency of less than 1.5

ns [8], the new symmetric-key cryptographic algorithm is essential.

High throughput The upcoming beyond 5G system is expected to achieve ultra-high data

transmission speeds for a range of applications. For instance, multi-sensory XR requires 20

times the data transmission speed of the 5G system (100 - 400 Gbps), and real-time remote

applications such as telesurgery and ultra-high quality holograms require data transmission

speeds of 0.5 - 1 Tbps. As the current standard symmetric-key cryptographic algorithms for

the 5G system only achieve around 50 Gbps of encryption/decryption speed, it is clear that

a new ultra-high throughput cryptographic algorithm is necessary.

1.2 Our Contribution and Outline

In this thesis, we present strategies for designing efficient symmetric-key cryptographic algo-

rithms. Our focus is on the design of block ciphers, a dedicated AEAD, and the introduction

of strategies for designing efficient symmetric-key algorithms. Before providing the main parts,

we provide definitions, security requirements, and cryptanalysis techniques for symmetric-key

3

cryptographic algorithms. Additionally, we present an automatic security evaluation method with

Mixed Integer Linear Programming (MILP). The main part of this thesis consists of four sections:

design of a tweakable lightweight block cipher Tweakable TWINE [155], lightweight block cipher

WARP [10], block cipher-based low-latency pseudo-random function Orthros [18], and ultra-high

throughput encryption with associated data (AEAD) scheme Rocca [154]. The details of these

main sections are as follows:

Section 4 We first introduce the lightweight tweakable block cipher Tweakable TWINE, which

aims to minimize hardware circuit area. A tweakable block cipher is a variant of a block

cipher, a symmetric-key cryptographic algorithm, that has an additional public input called

a ”tweak.” The key feature and difference of a tweakable block cipher from an ordinary

block cipher is that the attacker can know and control the tweak during the attack process,

as the tweak is a public input. As a result, designers of a tweakable block cipher must

take this attack scenario into consideration. Generally, this extra input weakens the cipher

and presents a greater challenge for the designers to evaluate its security. In Sect. 4, we

demonstrate how to build a new tweakable block cipher on an existing block cipher with

the proposal of Tweakable TWINE. As an initial security evaluation for Tweakable TWINE,

we evaluate its security against differential, linear, integral, and impossible differential at-

tacks, which are the prime attacks against symmetric-key cryptographic algorithms and are

commonly used as initial security evaluations when designing a new cipher. In terms of

hardware implementation results, Tweakable TWINE performs competitively in terms of

hardware circuit area, as measured by gate equivalent (GE), compared to other tweakable

and ordinary block ciphers.

Section 5 As another lightweight block cipher targeting low hardware implementation area, we

introduce a 128-bit lightweight block cipher WARP. WARP is based on the Feistel structure,

one of the prime constructions for block ciphers. The main challenge in designing WARP

is selecting a good permutation in a linear layer from numerous candidates. Since WARP is

designed as a nibble operation-oriented cipher, with all operations following a nibble-wise

operation, we must choose a good permutation from (16!)2 candidates, which is discussed

more detailly in Sect 5. To address this challenge, we convert the general construction of

WARP into a Lblock-like construction that is equivalent in terms of security. This conversion

significantly reduces the number of permutation candidates from (16!)2 to 8!, allowing us

to find the best one among them. The initial security evaluation for WARP is similar to that

of Tweakable TWINE, with the addition of evaluations against invariant and meet-in-the-

4

middle attacks. In terms of hardware implementation results, WARP achieves the smallest

hardware circuit area among all 128-bit block ciphers, with a hardware circuit area of fewer

than 1000 GEs for the first time.

Section 6 In addition to designing a cipher with a low hardware implementation area, it is also

interesting to explore how low-latency a cipher can be developed. To this end, we introduce

a low-latency pseudo-random function (PRF) called Orthros. A distinctive feature of Or-

thros is that it does not have a decryption procedure, which this type of cipher is referred to

as PRF. This feature is derived from Orthros being based on a two-branch construction, in

which the branches are relatively weak pseudo-random permutations (PRPs) and the output

is calculated by XORing the outputs of the two branches. With this two-branch construction,

Orthros achieves the lowest latency among other ciphers. A major challenge in designing

Orthros is the selection of a good permutation, as well as in WARP. The primary difference

between the two is the number of candidate permutations and the approach used to find a

suitable one. For Orthros, which is a bit-oriented cipher with a 128-bit block, the number

of candidate permutations is 128!. To reduce the search space, we employ a two-step ap-

proach. We provide the detailed method for finding a good permutation in Orthros-type

ciphers through an explanation of Orthros.

Section 7 Lastly, we present Rocca, an ultra high-throughput authenticated encryption with as-

sociated data (AEAD) scheme. Rocca is designed for beyond 5G applications and includes

a 256-bit key to protect against attacks by quantum computers. Unlike the previously men-

tioned block ciphers, which only provide confidentiality, Rocca is an AEAD that ensures

both confidentiality and integrity. The main feature of Rocca is the use of a sponge-based

round function to achieve ultra-high throughput. Additionally, Rocca takes full advantage of

SIMD instructions and AES-NI, which allow for efficient execution of basic operations like

XOR and multiplication, as well as an AES round function, on a pure software environment.

As a result, Rocca achieves over 200 Gbps on the latest CPU, meeting the requirements for

beyond 5G in terms of both performance and security, throughput of over 100 Gbps and sup-

port for a 256-bit key. Note that Rocca is the first dedicated symmetric-key cryptographic

algorithm meeting these requirements for beyond 5G.

5

2 Symmetric-Key Cryptography

Symmetric-key cryptography plays a crucial role in contemporary internet communication sys-

tems. One of the defining features of symmetric-key cryptographic algorithms is their use of

identical secret keys for both encryption and decryption processes, meaning that two parties must

previously share a secret key in order to securely communicate. Contrastingly, public-key cryp-

tography (or asymmetric cryptography) does not require the pre-sharing of secret information. In

symmetric-key cryptography, the unencrypted (original) information is referred to as plaintext,

and the encrypted information that is transmitted through public channels such as the internet is

referred to as ciphertext. If a plaintext M is encrypted using a secret key K, the resulting ci-

phertext C can be decrypted back into the original plaintext P using the same secret key K, as

follows:

C = Enc(K, M), M = Dec(K, C),

where Enc() and Dec() denote the encryption and decryption algorithms, respectively.

Generally, symmetric-key cryptography encompasses a range of algorithms including block

ciphers, stream ciphers, hash functions, message authenticated codes (MAC), and authenticated

encryption with associated data (AEAD). Among them, we deal with block ciphers and AEADs

in this thesis.

2.1 Block Cipher

A block cipher is utilized to ensure data confidentiality. As can be seen in the name of “block

cipher”, a block cipher converts a plaintext of a certain length, referred to as a block, typically 64

or 128 bits in many block ciphers, into a ciphertext of the same length using a secret key. Fig 2.1

illustrates an overview of a block cipher. More formally, it can be defined as follows:

Definition 1 Block cipher: An n-bit block cipher EK with a k-bit secret key K ∈ F
k
2 is a keyed

function:

EK : Fn
2 × F

k
2 → F

n
2 ,

{M, K} → C,

where M ∈ F
n
2 , C ∈ F

n
2 denote a plaintext and ciphertext, respectively. The inverse function of

EK is expressed as E−1
K if a block cipher is inversible.

Most block ciphers have a corresponding decryption procedure, making them bijective func-

tions. Since these block ciphers can be viewed as deterministic permutations that depend on a

6

EK E
−1
K

M

C

K

C

M

K

n

n

k

n

n

k

Encryption Decryption

Figure 2.1: Overview of a block cipher.

secret key, they are known as pseudo-random permutations (PRP). On the other hand, some block

ciphers do not have a decryption procedure and are therefore not bijective functions. In this case,

these ciphers are referred to as pseudo-random functions (PRF).

2.1.1 Modern Block Cipher Construction

The design concept of symmetric-key cryptographic algorithms is grounded in the principles of

confusion and diffusion, as introduced by Shannon and abstracted by Massey [122, 159]:

Confusion The statistical properties of the ciphertext should depend on the statistical properties

of the plaintext in a way that is too complex for an attacker to distinguish.

Diffusion Each bit of the plaintext and each bit of the secret key should influence as many bits

of the ciphertext as possible.

Generally, a block cipher can be divided into a data processing part and a key scheduling part.

The key scheduling part expands a given secret key, also known as a master key, into several round

keys which are inserted one by one throughout the cipher. The data processing part uses the round

keys generated by the key scheduling part to encrypt a given plaintext and produce a ciphertext.

Almost all modern block ciphers have an iterated construction, meaning that the data processing

part is composed of a simple function called a round function, which is called multiple times in

the data processing part.

Definition 2 Iterated block cipher: A block cipher constructed as an iterated construction

is referred to as an iterated block cipher. The data processing part of an iterated block cipher Ed

7

can be expressed as follows:

Ed(·) = fr(·) ◦ · · · ◦ f2(·) ◦ f1(·),

where fi and rki denote the i-th round function and the round keys.

A round function usually consists of very simple mathematical operations, such as an XOR,

AND, modular addition, and look-up table called S-box. Fig. 2.2 illustrates the overview of an

iterated block cipher.

Data processing part

Key scheduling part

R R R R

K

P C

Figure 2.2: Overview of an iterated block cipher. R denotes one round of the round
function.

It should be mentioned that some block ciphers do not consist of a single round function

in their data processing part, but rather a few similar round functions. Strictly speaking, these

ciphers are not iterated ciphers, but in the context of symmetric-key cryptography, they can be

also considered as iterated block ciphers.

As popular structures of a block cipher, there are three ones called Substitution Permutation

Network (SPN), Feistel network, and And rotation XOR (ARX). The SPN and Feistel structures

will be discussed in the next section.

2.1.1.1 Substitution Permutation Network The fundamental idea behind this type

of construction can be traced back to Shannon’s cipher design principle [159], in which a block

cipher is constructed by substitution and diffusion layers. With this idea, the round function in

SPN-based block ciphers consists of a key mixing, diffusion layer, and substitution layer.

Definition 3 Substitution permutation network (SPN): A substitution permutation net-

work is a structure for block ciphers that is based on a series of key mixing layers, substitution

layers, and diffusion layers.

8

Key mixing

Substitution layer

Confusion layer

(a) Overview of an SPN-based
block cipher

S S SS

Matrix multplication

Key XORing

(b) The detailed construction of
an SPN-based block cipher

Key mixing is often realized through an XOR operation in modern ciphers. The diffusion layer is

implemented through simple linear operations such as XOR, permutation, and matrix multiplica-

tion. The substitution layer is typically implemented using a substitution box (S-box), which is a

look-up table. Many modern SPN-based block ciphers apply these operations on a word-by-word

basis (nibble-wise, byte-wise), and these operations are typically performed in parallel. Fig.2.3a

and 2.3b provide an overview and detailed depiction of SPN-based ciphers.

Many SPN-based block ciphers follow this design strategy. One of the most notable examples

is the Advanced Encryption Standard (AES) [67], which is the standard block cipher algorithm

of the United States. In this thesis, we introduce a low-latency pseudo-random function (PRF)

Orthros [18], as an SPN-based block cipher.

2.1.1.2 Feistel Network In Feistel network-based block ciphers (referred to as Feistel-

based block ciphers in this thesis), the basic operations applied are the same as those in an SPN-

based block cipher, such as XOR, permutation, matrix multiplication, and S-boxes. The main

difference from SPN is the way these basic operations are applied to the plaintext (internal state).

In the case of a Feistel network, the plaintext is first divided into two internal states, and these

states are alternately applied to linear and non-linear operations in each round.

Definition 4 Feistel network: A Feistel network is a structure for block ciphers that divides a

plaintext M into two states, denoted M = Li||Ri, where i denotes the round number. The divided

states Li and Ri are alternatively applied to a cryptographic function Fc in each round as follows:

Ri+1 = Li,

Li+1 = Fc(Ri, rki) ⊕ Li

where rki denotes the round key in the ith round.

9

Fig. 2.3 illustrates the overview of Feistel network.

Fc

Ri+1Li+1

Li Ri

rki

Figure 2.3: Overview of Feistel network.

Like SPN-based block ciphers, most Feistel-based block ciphers also apply basic operations

in parallel on a nibble and byte-wise basis. Fig. 2.4 shows the detailed construction of a type-2

generalized Feistel network, a popular variant of the Feistel network, as an example of the parallel

application of basic operations.

S

S

S

RiLi

Ri+1Li+1

rki

Figure 2.4: Construction of type-2 generalized Feistel network.

It is clear that the number of rounds for Feistel-based block ciphers tends to be larger than

that of SPN-based block ciphers, as the internal state in a Feistel network is encrypted half by half

in each round. However, Feistel-based block ciphers have merit in terms of hardware implemen-

tation that Feistel-based block ciphers only require an encryption circuit for both encryption and

decryption procedures in hardware implementation, while SPN-based block ciphers require both

encryption and decryption circuits individually.

10

There are fewer Feistel-based block ciphers compared to SPN-based block ciphers. However,

several important block ciphers are based on the Feistel network, such as the Data Encryption

Standard (DES) [48], the previous standard block cipher algorithm of the United States. In this

thesis, we introduce two Feistel-based block ciphers: Tweakable TWINE [155] and WARP [10].

Note that Tweakable TWINE is not a typical block cipher, but a ”tweakable block cipher” that will

be described in the next section.

2.1.2 Tweakable Block Cipher

A tweakable block cipher (TBC) is a variant of a block cipher, which has an extra input called

tweak. The primary purpose of introducing a TBC is to provide beyond-birthday bound secu-

rity [62]. The formal concept of a TBC was introduced by Rivest and Wagner [118]. We give the

definition of a TBC as follows:

Definition 5 Tweakable block cipher: An n-bit tweakable block cipher ET with a k-bit secret

key K ∈ F
k
2 and a t-bit tweak T ∈ F

t
2, which a tweak is a public value, is a cryptographic function

as follows:

ET : Fn
2 × F

k
2 × F

t
2 → F

n
2

{M, K, T} → C,

where M ∈ F
n
2 and C ∈ F

n
2 denote a plaintext and ciphertext, respectively. The inverse function

of ET is expressed as E−1
T .

Fig 2.5 illustrates the overview of a tweakable block cipher.

EK E
−1
K

M

C

K

C

M

K

n

n

k

n

n

k

Encryption Decryption

T T
t t

Figure 2.5: Overview of a tweakable block cipher.

One drawback of a TBC is that tweak can be leveraged for cryptoanalysis because a tweak

is public. Consequently, the designers of TBCs must consider the possibility of an attacker lever-

aging a tweak. Despite numerous studies on block cipher-based TBCs [57, 104, 115, 130], there

11

remains a significant efficiency gap between ordinary block ciphers and TBCs. Nevertheless,

TBCs remain popular due to their ability to provide beyond-birthday bound security, and one

of the finalists in the NIST LWC competition Romulus [100] employs a tweakable block cipher

SKINNY [26] as its underlying primitive. In this thesis, we will introduce a tweakable block cipher

Tweakable TWINE [155].

2.2 Authenticated Encryption

Authenticated encryption (AE) scheme ensures both data confidentiality and integrity, while a

block cipher only ensures data confidentiality. In general, AE schemes take an unrestricted plain-

text, a secret key, and a nonce (a randomly generated value) as inputs, and produce a ciphertext of

the same size as the plaintext along with a tag that is used to verify the integrity of the plaintext.

The tag is dependent on the plaintext, meaning it is a unique value for a given secret key, plaintext,

and nonce.

Authenticated encryption with associated data (AEAD) is a variant of AE that has an addi-

tional input called associated data. Associated data is not encrypted, unlike plaintext, but is used

in generating the tag, that is, a value of the tag is unique for a plaintext, associated data, secret

key, and nonce. This thesis focuses on AEAD, and thus we provide the following definition:

Definition 6 Authenticated encryption with associated data (AEAD): An authen-

ticated encryption function EAE is a cryptographic function that takes a k-bit secret key K, an

n-bit nonce N , a plaintext M with arbitrary size p, and associated data A with arbitrary size a as

inputs, and produces a ciphertext C with the same size as the plaintext and a t-bit authentication

tag T :

EAE : Fk
2 × F

n
2 × F

p
2 × F

a
2 → F

p
2 × F

t
2

{K, N, M, A} → {C, T},

Note that associated data A is not encrypted during the encryption process. The inverse function

DAE is defined as follows:

DAE : Fk
2 × F

n
2 × F

p
2 × F

a
2 × F

t
2 → F

p
2 ∪ {⊥},

{K, N, C, A, T} → M or ⊥,

where ⊥ denotes an error for all other inputs.

As can be seen in this definition, the integrity of the data can be verified as the owner of the

secret key K is the only person who can generate a correct tag T . Fig.2.9 shows an overview of

AEAD and secret key confidentiality.

12

EAE

Encryption
Decryption

DAE

p

t

M N

k
K

C M

p

T

K
k

T
t

or ⊥

p

A

a n

&

Verification

p

C NA

a n

Figure 2.6: Overview of an AEAD.

Currently, there are two popular methods for constructing an AEAD. One approach involves

using a block cipher with an additional outer function to provide data confidentiality, i.e., using

a block cipher to provide data confidentiality and an additional outer function to provide data

integrity. This is the most popular approach since these schemes can claim their security in the

context of provable security under a secure block cipher and stream cipher. AES-GCM [1] and

ChaCha20-Poly1305 [138] are well-known AEADs followed this approach.

Another approach is to design a dedicated AEAD from scratch. In this approach, it is not

possible to claim security in the context of provable security. However, these dedicated AEADs

can be much more efficient than the previously mentioned AEADs. In fact, several dedicated

AEADs submitted to the CAESAR competition2 demonstrate impressive throughput for their en-

cryption/decryption process, such as AEGIS, the final portfolio for high-performance applications,

and Tiaoxin. This thesis introduces an AEAD called Rocca, which follows this approach. The

basic construction of this type of AEAD is explained in the next section.

2.2.1 Construction of a Sponge-Based AEAD

Sponge-based AEADs have a large-state permutation as its core component. The idea behind this

construction was introduced by Bertoni et al. [37] as the form of a duplex sponge encryption

shown in Fig. 2.7. The basic construction of ultra-high throughput dedicated AEADs such as

AEGIS, Tiaoxin, and Rocca can be seen as a combination of a duplex sponge encryption and a

sponge-based stream cipher introduced by Bertoniet al. [36] as shown in Fig. 2.8. The advantage

of this construction is that it allows for simultaneous absorbing of a plaintext and squeezing of

ciphertext. It leads to faster encryption/decryption procedures compared to constructions that

divide the process into separate absorbing and squeezing phases. We show this sponge-based

2https://competitions.cr.yp.to/caesar.html

13

AEAD construction in Fig. 2.9.

P

K

N

C0M0

P

C2M1

P P

Ml

Cl

Figure 2.7: Duplex sponge encryption.

M0

C0

P

K

N

M1

C1

P

M2

C2

P P

Ml

Cl

Cl

Figure 2.8: Sponge-based stream cipher.

P

K

N

C0

M0

PP

Cl

Ml

P

T

Figure 2.9: Sponge-based AEAD.

The encryption/decryption process of AEGIS, Tiaoxin, and Rocca consists of four phases:

initialization, processing the associated data, encryption, and finalization as shown in Fig. 2.10.

The core permutation P is initialized in the initialization phase, and the associated data is absorbed

in the processing the associated data phase. Ciphertext blocks are then generated by absorbing

message blocks, and the tag is generated in the finalization phase.

2.3 Cryptanalysis of Symmetric-Key Cryptographic Algorithms

Cryptanalysis aims at not only breaking symmetric-key cryptographic algorithms, but also eval-

uating their security. Over the past few decades, various cryptanalysis techniques have been

developed and have played a significant role in shaping design strategies.

Cryptanalysis to modern symmetric-key cryptographic algorithms such as block ciphers, stream

ciphers, and AEADs can be used to estimate their security margin by evaluating the gap between

14

P P P P P P P P P

AD0 ADl

C0 Cl

M0 M1 Ml T

K

N

Initialization Processing the associated data Encryption Finalization

Figure 2.10: Entire encryption/decryption process of AEGIS, Tiaoxin, and Rocca.

the full number of rounds and the number of rounds that can be attacked. For example, the current

best attack against AES-128, which has 10 rounds as the full number of rounds, can attack the

7-round reduced AES-128 [142], indicating a security margin of 3 rounds for AES-128. Once an

attack is able to reach the full number of rounds, the cipher is considered fully broken. Evaluating

the security margin is important for designers in determining security claims for their ciphers and

in estimating the current level of security of a cipher.

Currently, there are various cryptanalysis techniques that can be generally classified into

generic attacks and dedicated attacks that exploit specific structural properties of algorithms. A

generic attack is an inevitable attack for all symmetric-key cryptographic algorithms, such as brute

force attack, which tries all key candidates and find a correct one. Therefore, the efficiency of

dedicated attacks is evaluated by comparing with a generic attack, and the dedicated attack regards

as success if the efficiency outperforms that of a generic attack. Therefore, a secure symmetric-

key cryptographic algorithm must be resistant to all attack vectors except for generic attacks. In

the following sections, we will describe the goals of attacks, attack models, and several popular

cryptanalysis techniques.

2.3.1 Attack Models

There are several attack models that are classified based on the level of knowledge and capabilities

of the attacker.

Ciphertext-only attack In this type of attack, the attacker only has access to the ciphertext

produced by the encryption system. It is assumed that the ciphertext is uniformly random,

given that the plaintext is also uniformly random.

Known plaintext attack In this type of attack, the attacker has access to pairs of plaintext

and corresponding ciphertext. It is important to note that the attacker does not have control

over the plaintext.

15

Chosen plaintext/ciphertext attack In this type of attack, the attacker has access to an

encryption/decryption system and can choose the plaintext/ciphertext to be encrypted/de-

crypted. This means that the attacker can obtain pairs of arbitrarily chosen plaintext/cipher-

text and the corresponding ciphertext/plaintext.

Adaptively chosen plaintext/ciphertext attack This type of attack is similar to the cho-

sen plaintext/ciphertext attack, with the added capability for the attacker to obtain pairs of

arbitrarily chosen plaintext/ciphertext and the corresponding ciphertext/plaintext even after

the chosen plaintext/ciphertext has been encrypted/decrypted by the system.

In general, the attack models become increasingly advantageous for the attacker as they

progress in the above list. In symmetric-key cryptography, symmetric-key cryptographic algo-

rithms must be resistant to all known attack vectors in all of the above attack models.

2.3.2 Goal of Attack

The primary goal of attacks on symmetric-key cryptographic algorithms is to recover the secret

key. However, the specific goals of an attack may vary depending on the variant of the symmetric-

key cryptographic algorithm. In this section, we will discuss the goals of attacks on block ciphers

and AEADs separately.

2.3.2.1 For Block Ciphers According to Kerckhoffs’s principle [107], block ciphers

should be resistant to any attack vector even if the encryption/decryption algorithm is public.

In this context, the goal of attacks on block ciphers are as follows:

Key recovery attack Let k denote the size of the secret key. The attacker aims to recover the

secret key from the key space 2k. Once the secret key has been recovered, the attacker can

access the plaintext and internal states of the block cipher.

Distinguishing attack Let k and n denote the size of the secret key and block, respectively.

The attacker aims to distinguish the block cipher, which is a set of 2k n-bit permutations

without any knowledge of a secret key, from a random permutation, which is a set of 2n!

n-bit permutations.

A secure block cipher should be resistant to both key recovery and distinguishing attacks within

a practical time, assuming that the encryption/decryption algorithm is public. A block cipher

is considered secure if there is no effective way with a fewer cost than an exhaustive search to

recover the secret key or distinguish it from a random permutation. It should be mentioned that a

16

distinguishing attack does not directly lead to the recovery of the secret key. However, the success

of a distinguishing attack implies that a block cipher has a non-randomness property (such a non-

randomness property called distinguisher), and it may lead to the success of a key recovery attack

in the end. In many cases, a key recovery attack is built on a certain distinguisher by extending

the number of attacked rounds.

Since evaluating the longest round of distinguishers for any attack vector is a general approach

to estimating the security of a new block cipher design, we focus on distinguishing attacks in this

thesis.

2.3.2.2 For AEAD The primary purpose of attacks on AEADs is to violate data confiden-

tiality and integrity. As mentioned in Section 2.2, block-cipher-based AEADs can claim their

security followed by provable security, while dedicated AEADs, such as sponge-based AEADs,

are hard to claim it on provable security. Therefore, these AEADs typically provide their security

through a detailed analysis of existing attack vectors. In terms of data confidentiality, the secu-

rity of sponge-based AEADs relies on the randomness of the keystream (output). To ensure data

integrity, these AEADs must resist forgery attacks in which the attacker attempts to create a coun-

terfeit authentication tag or a valid message with an original authentication tag. Before outlining

the goal of attacks, we first provide the common requirement for the use of sponge-based AEADs.

Definition 7 Nonce respecting: A nonce or IV is used only once to protect a message and

associated data, meaning that the same pair of a nonce and secret key cannot be used to encrypt

two different pairs of message and associated data.

In the nonce-respecting setting, the attacker is only able to query a single ciphertext that

corresponds to a chosen message with the same nonce. This means that the majority of queries in

the attack procedure are for chosen ciphertexts.

Key recovery attack The attacker recovers a secret key of size k selected from any choice

in the key space 2k. Once a secret key is recovered, the attacker can do anything, such as

recover plaintexts and internal states. This attack directly violates both data confidentiality

and integrity.

State recovery attack The attacker recovers an internal state. In sponge-based AEADs, the

permutation is often constructed with simple operations to maintain efficiency, and therefore

an attacker may be able to recover the secret key by computing the inverse permutation once

the internal state has been recovered. Hence, the success of the state recovery attack leads

to violating both data confidentiality and integrity.

17

Distinguishing attack The attacker distinguishes the output from a random output in an en-

cryption phase. It aims to violate a pseudo-randomness of an output, which leads to recover

a plaintext.

Forgery attack The attacker produces a quartet of a ciphertext C, nonce N , associated data

A, and authentication tag T that the decrytion oracle does not return ⊥, with no encryption

request of the same {N, A} corresponding {C, T}. the success of the forgery attack leads

to violating data integrity. Many AEADs assume that the attacker can produce the pair of

a message and tag for any given message with a nonce-respecting setting. This type of

forgery is called universal forgery.

A secure AEAD needs to resist these attacks with the assumption that an encryption/decryption

algorithm is public as well as the case of a block cipher. An AEAD can be considered secure

if there is no method for recovering the secret key or internal state except through an exhaustive

search, and if a forgery attack requires a number of decryption queries greater than the security

claim for such an attack.

2.3.3 Cryptanalysis Techniques

Currently, there are several techniques to analyze symmetric-key cryptographic algorithms. In

this section, we introduce several techniques related to this thesis.

2.3.3.1 Differential Cryptanalysis The differential cryptanalysis is a chosen plaintext

attack proposed by Biham and Shamir [43]. Nowadays, the differential cryptanalysis is the one of

most popular and powerful cryptanalysis techniques available for symmetric-key cryptographic

algorithms. The current American standard block cipher AES [5] was designed to have resistance

against the differential cryptanalysis (and linear cryptanalysis), and all modern symmetric-key

cryptographic algorithms not only block ciphers follow this principle. The idea of this technique

is to exploit the difference between the pair of two plaintexts and the difference between the

pair of the corresponding two ciphertexts. More specifically, in the differential cryptanalysis,

the attacker attempts to find a pair of input and output differences with a high probability, i.e.,

EK(ΔM) = ΔC, (ΔC = C ⊕ C ′, ΔM = M ⊕ M ′) occurs with high probability on symmetric-

key primitives Ek, where (M, M ′) and (C ′, C) denote a pair of plaintexts and ciphertexts, respec-

tively. A pair of input and output differences (ΔM, ΔC) is called a differential in the context

of the differential cryptanalysis. The probability of a differential, which is called a differential

probability, is calculated by investigating all pairs of plaintext following ΔM = M ⊕ M ′ on EK .

We define a differential and its probability on a symmetric-key primitive EK as follows.

18

Definition 8 Differential A differential is a pair of input and output differences. The probability

of a differential (ΔP, ΔC) is calculated as follows:

DP(ΔM
EK−−→ ΔC) = #{x ∈ F

n
2 |EK(M) ⊕ EK(M ⊕ ΔM) = ΔC}

2n
,

where M and n denote chosen from a uniformly distributed random variable and the size of block,

respectively.

In an ideal block cipher, the differential probability for any differential has to be 2−n. There-

fore, the attacker succeeds in the distinguishing attack if she obtains the differential with a proba-

bility more than 2−n.

Generally, calculating the exact differential probability is computationally infeasible in most

symmetric-key primitives. Therefore, a differential characteristic is usually employed to estimate

a differential probability. Let EK be a r-round iterated block cipher as EK(·) = fr(·) ◦ fr−1(·) ◦
· · · ◦ f1(·). A differential characteristic can be defined as a sequence of differences over all rounds

in EK , and its probability can be estimated as a product of differential probabilities of each round

under the well-known Markov cipher assumption.

Definition 9 Markov cipher [113] An iterated cipher with round function xo = FR(xi, rk),

where x and k denote the internal state and round key respectively, is a markov cipher if there

is a group operation ⊕ for differences such that for all choices of α and β (α �= e, β �= e),

DP (Δxo = β|Δxi = α, xi = γ) is independent of γ, where a round key is uniformly random.

We give the definition of a differential characteristic and its probability on a block cipher EK

as follows.

Definition 10 Differential characteristic A differential characteristic is a sequence of differ-

ences over all rounds in a block cipher EK as follows:

C = (c0
f1−→ c1

f2−→ · · · fr−→ cr) := (c0, c1, · · · , cr),

where (c0, c1, · · · , cr) denotes differences of the output of each round, i.e., c0 and cr denote

differences of plaintext and ciphertext, respectively. The probability of a differential characteristic

C is estimated as follows:

DP(C) =
r∏

i=1
DP(ci−1

fi−→ ci).

From the perspective of the designer, it is sufficient to ensure that the upper bound of DP (C)

is achieved, rather than finding the optimal differential characteristic.

19

Since the probabilistic operations in symmetric-key primitives are generally an S-box and

modular addition, and this thesis focuses on S-box-based primitives, we can estimate the max-

imum differential probability for a differential characteristic by counting the number of active

S-boxes (AS), which is an S-box with a non-zero input difference. Let DPs be the maximum dif-

ferential probability of an S-box. We can estimate the upper bound of DP (C) by the lower bound

for the number of AS, i.e., 2−(DPs×#AS) ≤ 2−n is sufficient to resist against the distinguishing

attack for any input (plaintext) difference.

Nowadays, it is common to use automatic search tools based on MILP, SAT/SMT, and CP to

evaluate the optimal differential characteristic and the lower bound for the number of AS. In this

thesis, we employ a MILP-based automatic search method described in Section 3.

2.3.3.2 Linear Cryptanalysis The linear cryptanalysis is a known plaintext attack pro-

posed by Matsui [123]. With the linear cryptanalysis, Matsui broke the previous American stan-

dard block cipher DES, this cryptanalysis technique is considered to the two prime cryptanalysis

techniques available for symmetric-key cryptographic algorithms as well as the differential crypt-

analysis. The idea of this technique is to approximate the output Boolean function of symmetric-

key primitives into one’s input Boolean function as a probabilistic equation. More specifically,

the attacker attempts to express the relation of the plaintext M , ciphertext C, and secret key K

as a probabilistic equation, i.e., Γα(M) ⊕ Γβ(C) = Γγ(K) where Γα, Γβ , and Γγ are called the

liner masks. In many cases, we can see Γγ(K) as a constant value c ∈ F2 since a secret is usually

assumed as a fixed value. Hence, the main aim is to find Γα and Γβ to satisfy Γα(M)⊕Γβ(C) = c

with a high probability. This probability is called an absolute linear bias and defined as follows.

Definition 11 Absolute linear bias An absolute linear bias with an input linear mask Γα and

output linear mask Γβ on an n-bit block symmetric-key primitive EK is calculated as follows:

LP(Γα
EK−−→ Γβ) =

(
2#{M ∈ F

n
2 |Γα(M) = Γβ(C)}

2n
− 1

)2

In an ideal n-bit block symmetric-key primitive, an absolute linear bias for any input and

output mask has to be 2−n. Therefore, the attacker succeeds in the distinguishing attack if she

obtains the pair of input and output masks with an absolute linear bias more than 2−n.

Generally calculating the exact absolute linear bias is computationally infeasible in most

symmetric-key primitives. Therefore, a linear characteristics is usually employed to estimate

an absolute linear bias, as well as the differential cryptanalysis. A linear characteristic can be

defined as a sequence of the pair of input and output linear masks of each round in EK , and its

absolute linear bias can be estimated as a product of absolute linear biases of the pairs of each

20

round under Markov cipher assumption. The definition of a linear characteristic on a r-round

iterated symmetric-key primitive EK(·) = fr(·) ◦ fr−1(·) ◦ · · · ◦ f1(·) is given as follows.

Definition 12 Linear characteristic A linear characteristic is a sequence of the pair of an

input and output linear masks over all rounds in a block cipher EK as follows:

Cl = (cl0
f1−→ cl1

f2−→ · · · fr−→ clr) := (cl0, cl1, · · · , clr),

where (cl0, cl1, · · · , clr) denotes linear masks of the output of each round, i.e., cl0 and clr denote

linear masks of plaintext and ciphertext, respectively. The absolute linear bias of a linear charac-

teristic Cl is estimated as follows:

LP(Cl) =
r∏

i=1
LP(cli−1

fi−→ cli).

the perspective of the designer, it is also enough to guarantee the upper bound of LP (Cl).

Therefore, the active S-box-based evaluation is sufficient for the designer as well as in the case of

the differential cryptanalysis. Let LPs be the maximum absolute linear bias of an S-box. We can

estimate the upper bound of LP (Cl) by the lower bound for # AS, i.e., 2−(LPs×#AS) ≤ 2−n is

sufficient to resist against the distinguishing attack for any input and output linear mask. This can

be efficiently evaluated by automatic search tools as that of the differential cryptanalysis.

2.3.3.3 Impossible Differential Cryptanalysis The impossible differential cryptanal-

ysis is a chosen plaintext attack proposed by Biham et al. [41]. It is generally known that this

cryptanalysis technique is one of the most powerful attacks to Feistel-based block ciphers. The

main concept of the impossible differential cryptanalysis is to exploit a propagation property of

the difference like the differential cryptanalysis. However, the differential cryptanalysis aims to

find a pair (ΔM, ΔC) which ΔM reaches ΔC with as high a probability as possible, while the im-

possible differential cryptanalysis aims to find a pair of input and output differences (ΔM, ΔC)

which ΔM never reaches ΔC after several rounds. Such differences are called the impossible

differential distinguisher, and the attacker succeeds in the distinguishing attack if she obtain the

impossible differential distinguishers.

Generally, the maximum number of rounds that the impossible differential distinguishers exist,

the longest impossible differential distinguisher, can be roughly estimated by a diffusion property,

which is one of the most important property when the designer design a new symmetric-key

primitives.

Diffusion property A diffusion property is generally evaluated by the number of rounds to

achieve full diffusion, which means that an input of any branch (bit) affects the outputs of

21

all branches (bits). To define the number of rounds to achieve the full diffusion, we define

the number of rounds to achieve ”diffusion” DRn which means the number of rounds that

the input of n-th branch affects the outputs of all branches. Fig 2.11 shows an example of

the case of satisfying DR2 = 5 on type-2 GFN. Let DRmax be the number of rounds to

F F F F

x0 x1 x2 x3 x4 x5 x6 x7

F F F F

F F F F

F F F F

F F F F

Figure 2.11: DR2 = 5 on type-2 GFN. Red lines mean to be affected by the input
difference of x2.

achieve the full diffusion with the k-branch GFN. DRmax is defined as,

DRmax = max
x=0,...,k−1

DRx.

Generally, we evaluate DRmax from both encryption and decryption sides.

Roughly speaking, we can estimate the longest impossible differential distinguisher by a sum

of DRmax of encryption and decryption directions. Therefore, the resistance against impossible

differential attacks is getting stronger as the diffusion property is getting better.

2.3.3.4 Integral Cryptanalysis The integral cryptanalysis is a chosen plaintext attack

proposed by Daemen et al. [63]. This cryptanalysis technique was first proposed as a dedicated

attack to a block cipher Square, and then it was formalized to the integral propert by Knudsen and

Wagner [110]. In the integral property, a set of plaintexts (also ciphertexts, and internal states) is

divided into four property as follows:

ALL (A) The set contains all possible taken values the same number of times.

22

BALANCE (B) The XOR of all values in the set is zero.

CONSTANT (C) All values in the set are equal.

UNKNOWN (U) Each value in the set is random.

In an ideal symmetric-key primitive, any set of ciphertexts has to be U. Hence, the attacker suc-

ceeds the distinguishing attack if she find B in the set of certain ciphertexts.

At EUROCRYPT 2015, Todo further generalized the integral property into the division prop-

erty [170] that can exploit the hidden feature between A and B. To give the definition of the

division property, we first define the bit-product functions as follows.

Definition 13 Bit-product function For any u ∈ F
n
2 , let πu(x) be a function from F

n
2 to F2.

For any x ∈ F
n
2 , define πu(x) as follows:

πu(x) =
n−1∏
i=0

x[i]u[i].

Let πu be a function from (Fn0
2 × F

n1
2 × . . . × F

nm−1
2) to F

2 for all u ∈ F
n
2 . For any u =

(u0, u1, . . . , um−1),x = (x0, x1, . . . , xm−1), define πu(x) as follows.

πu(x) =
m−1∏
i=0

πui(xi).

The division property is defined as follows with the bit-product function.

Definition 14 Division property Let X be a multiset whose elements take a value of (Fn1
2 ×

F
n2
2 × . . . ×F

nm
2). When the multiset X has the division property Dn1,...,nm

K
, where K denotes a set

of m-dimensional vectors whose i-th element takes 0 and ni, it fulfills the following conditions.

⊕
x∈X

πu(x) =

⎧⎪⎨
⎪⎩

unknown if there existk ∈ K s.t wt(u)
 k,

0 otherwise.

wt(u) is the Hamming weight of u. If there exist k ∈ K and k′ ∈ K satisfying k
 k′ in the

division property Dn1,...,nm

K
, k can be removed from K because it is redundant.

For a better understanding, we give several propagation rules of the division property over

basic operations related to this thesis.

Lemma 1 XOR Let (x0,x1) ∈ (Fn
2 × F

n
2) and y be the input and output of an XOR operation,

respectively, i.e., y = x0 ⊕ x1. When the division property of the set of the input X is Dn,n
K

,

23

the division property Dn
k′ ,which the division property of the set of the output Y, is calculated as

follows:

k′ = min
(k1,k2)∈K

{k1 + k2},

where k′ ≤ n.

Lemma 2 COPY (forked branch) Let x ∈ F
n
2 and (y0,y1) ∈ (Fn

2 × F
n
2) be the input and

output of a copy operation, respectively, i.e., (y0,y1) = (x,x). When the division property of the

set of the input X is Dn
K

, the division property Dn,n
K′ ,which the division property of the set of the

output Y, is calculated as follows:

K
′ = K

′ ∪ (k − i, i), ∀ i (0 ≤ i ≤ k).

Lemma 3 Parallel application of S-boxes Suppose the size and the algebraic degree of

i-th S-box are ni and di, respectively. When the division property of the set of the input X ∈
(Fn1

2 × F
n2
2 × · · · × F

nm
2) is Dn1,n2,...,nm

K
, the division property of the set of the output Dn1,n2,...,nm

K′

is calculated as follows:

K
′ = K

′ ∪ (�k1

d1
, �k2

d2
, . . . , �km

dm
),

where (k1, k2, . . . , km) ∈ K. Note that the output division property of the i-th S-box is equal to

the input division property if and only if the i-th S-box is bijective and the input division property

is Dni
ni

.

With these propagation rules, we can view the division property in the output (ciphertext) that

comes from the division property in the input (plaintext). When there is no division property

Dn1,n2,...,nm

K′ of the set of output Y, which satisfies ki = 1, kj = 0(∀j, j �= i), it means that i-th

part has balance property. In general, the resistance against integral attacks is getting stronger

as the diffusion property is getting better as well as in the case of the impossible differential

cryptanalysis.

2.3.3.5 Internal Collision Based Forgery For sponge-based AEADs, the main threat

to violate data integrity is the internal collision based forgery. The designer of a sponge-based

AEAD has to design its round function with the resistance against this attack.

Let the encryption phase of a sponge-based AEAD be Fk = fr ◦ fr−1 ◦ · · · ◦ f1 where fi

denotes the i-th round round function. The internal collision happens in the output of the t-th

round if ft(m0,t) ◦ ft−1(m0,t−1) ◦ · · · ◦ f1(m0,1) = ft(m1,t) ◦ ft−1(m1,t−1) ◦ · · · ◦ f1(m1,1)

24

where Mi = (mi,1, mi,2, . . . mi,t) denotes a message. In other words, it can be viewed as

ft(Δmt) ◦ ft−1(Δmt−1) ◦ · · · ◦ f1(Δm1) = 0 where M0 ⊕ M1 = ΔM = (Δm1, Δm2, . . . Δmt).

Since the finalization phase does not accept any input, the attacker can produce the valid pair of

the ciphertext and authentication tag without knowledge of a secret key if she finds the internal

collision.

When the tag length is lt bits, the probability that the attacker coincidentally produces a valid

pair is 2−lt . Therefore, the attacker succeeds in a forgery attack if they are able to produce such a

valid pair with a probability greater than 2−lt .

In an internal collision-based forgery, the success probability is equal to the probability of an

internal collision occurring. This probability can be expressed as the differential probability of

the differential propagation that non-active first round internal state differences reach non-active

last round internal state differences in the encryption phase.

More specifically, the attacker attempts to find a differential propagation with a high proba-

bility in the encryption phase, given that all first round state differences and the output of the last

round state differences are set to zero. The security evaluation of this attack can be conducted

using the same method as differential cryptanalysis, with the aid of automatic search tools.

25

3 MILP-Aided Security Evaluation

Mixed Integer Linear Programming (MILP) is one of the algorithms for efficiently solving an

optimization problem. An MILP model M is constructed by variables Mvar, constraints Mcon,

and the objective function Mobj . We can obtain the optimized solution by giving an MILP model

to an MILP solver. We here give a brief example of an MILP as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mvar ← x, y, z,

Mcon ← x + 2y + 3z ≤ 4, x + y ≤ 1,

Mobj ← Maximize(x + y + 2z).

This example shows an optimization problem while we can also solve a feasibility problem, the

problem to judge if there is a solution satisfying all constraints, by removing the objective func-

tion.3 If a given MILP model has at least one solution, a solver returns one solution among all of

them, and if there is no solution, a solver returns ”infeasible”.

Nowadays, many automatic security evaluation tools with an MILP have been proposed for

the latest decade, since then Mouha et al.proposed the first automatic security evaluation method

of differential/linear cryptanalysis by an MILP. The advancement of automatic tools has enabled

us to evaluate security against a wide range of attack vectors, including differential, linear, in-

tegral, and impossible differential cryptanalysis. These tools offer several benefits compared to

traditional heuristic evaluation methods, most notably a reduction in evaluation runtime. Through

the use of MILP methods, we are able to perform complex security evaluations in a practical time,

something that is not possible with conventional methods. The development of automatic eval-

uation methods utilizing mathematical solvers has greatly impacted the field of symmetric-key

cryptography.

To utilize an MILP in security evaluation, we need to translate the propagation of a difference,

linear mask, and division property over all operations in algorithms into linear inequalities and

incorporate them into the MILP model as constraints. The objective function is then set and the

MILP solver is ready to perform the evaluation. In the remainder of this section, we elaborate on

how to construct MILP models for evaluating security against specific cryptanalysis techniques. In

this thesis, we employ Gurobi optimization solver as our MILP solver for all security evaluations.

3As one of the method to efficiently solve a kind of a feasibility problem, Boolean satisfiability prob-
lem(SAT) is often mentioned, which is another popular automatic evaluation method in the field of
symmetric-key cryptography.

26

3.1 Security Evaluation of Differential/Linear Cryptanalysis

It is known that the differential and linear cryptanalysis have duality results [56], meaning that we

can use a nearly identical approach to construct an MILP model for evaluating security against

both types of attacks. Therefore, we present both MILP models in comparison.

Before delving into the specific models, we first introduce the concept of a truncated differ-

ence/linear mask. To evaluate security against differential/linear cryptanalysis, it is necessary

to ensure that there are no differential/linear characteristics with a probability greater than 2−n,

where n is the block size or claimed security level. In a known/chosen plaintext scenario, an at-

tacker can construct an arbitrary difference/linear mask in the plaintext. As a result, the designer

must find the differential/linear characteristic with the highest probability under any possible plain-

text difference/linear mask. This can be computationally infeasible, particularly for block sizes

larger than 32 bits, as the plaintext space exceeds 232 − 1. To address this issue, designers often

utilize a truncated difference/linear mask, in which a difference/linear mask is treated in units such

as nibbles or bytes rather than bits. An example of a 4-bit (nibble-wise) truncated difference/linear

mask is as follows:

Δx =

⎧⎪⎪⎨
⎪⎪⎩

0 if (Δx0, Δx1, Δx2, Δx3) = (0, 0, 0, 0),

1 otherwise.

Γx =

⎧⎪⎪⎨
⎪⎪⎩

0 if (Γx0, Γx1, Γx2, Γx3) = (0, 0, 0, 0),

1 otherwise.

An 8-bit (byte-wise) truncated version can be represented by extending the above equations. Many

designs are implemented as word-oriented designs, meaning that all operations in a design are per-

formed in a word-wise manner, to facilitate security evaluation with a truncated difference/linear

mask.

In the following sections, we describe the method for modeling the security evaluation of

differential/linear cryptanalysis as proposed by Mouha et al. [133] and Sun et al. [165].

3.1.1 Constraints

As constraints in an MILP model, we must generate linear inequalities that describe the transi-

tions of differences/linear masks over an algorithm. We can decompose the entire transition into

operation-specific propagation rules. We can then express an entire transition over an algorithm

as a set of linear inequalities of these operations. In this section, we introduce the propagation

rules for an XOR, COPY, and S-box operations.

27

Lemma 4 XOR (differential) Let (x0, x1) and y be inputs and output differences of an XOR

operation, i.e., x0 ⊕ x1 = y. Linear inequalities of a bit-wise differential propagation and its

variables can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mvar ← x0.x1, as binary,

Mcon ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 + x1 + y = 2d,

d ≥ x0,

d ≥ x1,

d ≥ y,

where d ∈ F2 is a dummy variable. Besides, linear inequalities of a word-wise differential propa-

gation and its variables can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mvar ← x0, x1, as binary,

Mcon ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x0 + x1 + y ≥ 0,

x0 − x1 + y ≥ 0,

x0 + x1 − y ≥ 0.

Lemma 5 XOR (linear mask) Let (x0, x1) and y be inputs and output linear masks of an

XOR operation, i.e., x0 ⊕ x1 = y. Linear inequalities of both bit and word-wise linear mask

propagation and their variables can be expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

Mvar ← x0, x1, as binary,

Mcon ← x0 = x1 = y.

Lemma 6 COPY (differential) Let x and (y0, y1) be the input and outputs of a COPY opera-

tion, i.e., (y0, y1) = (x, x). Linear inequalities of both bit and word-wise differential propagation

and their variables can be expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

Mvar ← x0, x1, as binary,

Mcon ← x0 = x1 = y.

Lemma 7 COPY (linear mask) Let x and (y0, y1) be the input and outputs of a COPY

operation, i.e., (y0, y1) = (x, x). Linear inequalities of a bit-wise linear mask propagation and its

28

variables can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mvar ← x0.x1, as binary,

Mcon ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 + x1 + y = 2d,

d ≥ x0,

d ≥ x1,

d ≥ y,

where d ∈ F2 is a dummy variable. Besides, linear inequalities of a word-wise linear mask

propagation and its variables can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mvar ← x0, x1, as binary,

Mcon ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x0 + x1 + y ≥ 0,

x0 − x1 + y ≥ 0,

x0 + x1 − y ≥ 0.

For an S-box operation, H-representation of convex hull [165] and logical condition model [4]

are known as the method to model the propagation. In this thesis, we employ a logical condition

model. Since a bit-wise model for an S-box operation is very complex compared to the other

models, we describe a bit and word-wise model individually.

Lemma 8 S-box (bit-wise differential) Let a = (a0, a1, . . . , ai−1) and b = (b0, b1, . . . , bi−1)

be the input and output differences of an i-bit S-box, respectively. Additionally, we must intro-

duce additional Boolean variables s to judge whether an S-box corresponding to a differential

propagation is active or not. With these Boolean variables, we construct the following Boolean

formula:

f(a, b, s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if a(�= 0) S−box→ b is valid with s = 1 or a(= 0) S−box→ b is valid with s = 0,

0 otherwise.

Then, we extract a set A, which contains all vectors satisfying f(x,y, z) = 0 as follows:

A = {(x,y, z) ∈ F
2i+1
2 | f(x,y, z) = 0},

where x = (x0, x1, . . . , xi−1) and y = (y0, y1, . . . , yi−1). Because A is a set of invalid patterns

in a model of an S-box, we ban these patterns by the following clauses:

i−1∨
c=0

(ac ⊕ xc) ∨
i−1∨
d=0

(bd ⊕ yd) ∨ (s ⊕ z) = 1, (x,y, z) ∈ A.

29

The remaining vectors that are identical to A are a set of valid patterns. Therefore, these clauses

extract the differential propagation with the status of an i-bit S-box. Note that the solution space

of |A| clauses about (a, b, s) in Eq. (3.2) is identical to that of the following Boolean function:

g(a, b, s) =
|A|−1∧
η=0

(
i−1∨
c=0

(ac ⊕ xη
c) ∨

i−1∨
d=0

(bd ⊕ yη
d) ∨ (s ⊕ zη)

)
= 1.

This Boolean function is equivalent to

g(a, b, s) =
∧

(x,y,z)∈F
2i+1
2

(
g(x,y, z) ∨

i−1∨
c=0

(ac ⊕ xη
c) ∨

i−1∨
d=0

(bd ⊕ yη
d) ∨ (s ⊕ zη)

)
.

This equation is called the product-of-sum of g. The issue of reducing the number of clauses in g

is turned into the issue of simplifying the product-of-sum representation of the Boolean function.

Owing to previous works [120,163,164], we know that this can be solved by the Quine-McCluskey

algorithm [125,145,146] with the minimum expression. When this problem is relatively small, we

can solve it by software, such as Logic Friday4, although it is NP-complex. After applying Quine-

McCluskey algorithm, we can obtain some Boolean clauses to express the differential propagation

over an i-bit S-box. These clauses can be easily converted into the same number of linear inequal-

ities, namely, every clause can be converted into one linear inequality. For example, when one of

clauses is (x0 ∨ x2 ∨ x3 ∨ y1 ∨ y2), it can be converted into x0 + x2 + (1 − x3) + (1 − y1) + y2 ≥ 1.

Therefore, linear inequalities of a bit-wise differential propagation and its variables can be ex-

pressed as follows:

Mvar ← (a0, a1, . . . , ai−1, b0, b1, . . . , bi−1, s),

Mcon ← min (g(a, b, s)) .

Lemma 9 S-box (word-wise differential) Let a and b be the input and output of an S-box,

i.e., x
S−box−−−−→ y. Liner inequalities of a word-wise differential propagation and its variables can

be expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

Mvar ← x, y, as binary,

Mcon ← x = y.

Since the propagation of a linear mask through an S-box can be represented by linear inequal-

ities in the same manner as differential propagation, we will not further discuss it.

4http://www.sontrak.com/

30

3.1.2 Objective Function

As described in Sect. 2.3.3.1 and 2.3.3.2, the security evaluation against the differential/linear

cryptanalysis is often assessed by the number of active S-boxes (# AS). In the AS-based evaluation,

the designer need to guarantee that the lower bound for the number of active S-boxes outnumbers

a certain bound to resist these attacks. Hence, we can directly obtain the lower bound for the

number of active S-boxes by minimizing the number of active S-boxes as the objective function.

In a bit-wise model, we give an MILP model the following objective function:

r∑
i=1

n−1∑
j=0

si,j ,

where r, n, and si,j denote the number of rounds, the number of S-boxes in a round, and Boolean

variables to judge whether an S-box corresponding to a differential propagation is active or not in

Lemma 8, respectively.

In a word-wise model, we can tell whether an S-box is active or not by seeing the status of the

input variable of an S-box. If it is active (=1), an S-box is active. Otherwise, an S-box is inactive.

Therefore, we give an MILP model the following objective function.

r∑
i=1

n−1∑
j=0

xi,j ,

where xi,j denotes the input variable of each S-box.

Now, we are ready to conduct the AS-based security evaluation. By giving the constructed

MILP model (Mvar, Mcon, Mobj) to an MILP solver and minimizing the objective function, we

can obtain the lower bound for the number of active S-boxes and evaluate a resistance against the

differential/linear cryptanalysis.

Note that we can evaluate the security against the internal collision based forgery by the same

method as that of the differential cryptanalysis because it is also evaluated by active S-box based

evaluation.

3.2 Security Evaluation of Impossible differential Cryptanalysis

To assess resistance to impossible differential cryptanalysis, it is necessary to evaluate the longest-

round impossible differential distinguisher. When constructing the MILP model to evaluate secu-

rity against this type of attack, we can reuse the same variables and constraints as in the MILP

model to evaluate security against the differential cryptanalysis, as this attack involves tracing

differential propagation over the entire algorithm. However, the MILP model for impossible dif-

ferential cryptanalysis differs in that it is a feasibility problem rather than an optimization problem,

meaning that it does not have an objective function.

31

Instead of giving the objective function, we fix the input (plaintext) and output (ciphertext)

differences and check whether an MILP model has a solution or not. If an MILP model has a

solution (feasible), it indicates that there exists a transition from the fixed plaintext differences to

the fixed ciphertext differences, and therefore there are no impossible differential distinguishers

for the given input and output differences. The longest impossible differential distinguisher can

be evaluated by conducting this process for all combinations of input and output differences.

3.3 Security Evaluation of Integral Cryptanalysis

It is know that the most efficient approach to evaluate the longest integral distinguisher is to

investigate it by the division property. As a method to efficiently evaluate the division property,

Xiang et al. proposed how to evaluate the division property with the division trail by a MILP,

which allows us to illustrate the propagation of the division property and makes the evaluation

much easier [177]. The division trail is defined as follows.

Definition 15 Division trail Let fr denote the round function of an iterated block cipher. As-

sume the input multiset to the block cipher has initial division property Dn,m
k , and denote the

division property after i-round propagation through fr by Dn,m
Ki

. Thus, we have the following

chain of division property propagations:

{k} def= K0
fr→ K1

fr→ K2
fr→ · · · .

Moreover, for any vector k∗
i in Ki(i ≥ 1), there must exist an vector k∗

i−1 in Ki−1 such that k∗
i−1

can propagate to k∗
i by division property propagation rules. Furthermore, for (k0,k1, . . . ,kr) ∈

K0 ×K1 × . . . ×Kr, if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr)

an r-round division trail.

Proposition 1 Denote the division property of input multiset to an iterated block cipher by Dn,m
k ,

let fr be the round function. Denote

{k} def= K0
fr→ K1

fr→ K2
fr→ · · · fr→ Kr.

the r-round division property propagation. Thus, the set of the last vectors of all r-round division

trails which start with k is equal to Kr.

If any vector of Kr that is derived from the division property DK0 of input multiset is always

less than or equal to ”1”, it means that there is no integral distinguisher at r rounds.

32

3.3.1 Constraints

To catch the division trail by an MILP, we need to convert the propagation of the division property

into linear inequalities and give them to an MILP model as constraints. It can be decomposed

operation by operation as well as that of the differential/linear cryptanalysis. Hence, we describe

how to convert the propagation of the division property over an XOR, COPY, S-box operations.

Lemma 10 XOR Let (x0,x1) ∈ (Fn
2 × F

n
2) and y be the input and output of an XOR operation,

respectively, i.e., y = x0 ⊕ x1. When the division property of the set of the input X is Dn,n
K

, by

Lemma 1, we kwon that the division property Dn
k′ , which the division property of the set of the

output Y, is calculated by k′ = min
(k1,k2)∈K

{k1 + k2} where k′ ≤ n. Therefore, linear inequalities of

the propagation of the division property and its variables can be expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

Mvar ← k1, k2, k′ as integer (0 ≤ k1, k2, k′ ≤ n),

Mcon ← k1 + k2 = k′.

Lemma 11 COPY (forked branch) Let x ∈ F
n
2 and (y0,y1) ∈ (Fn

2 × F
n
2) be the input and

output of a copy operation, respectively, i.e., (y0,y1) = (x,x). When the division property of

the set of the input X is Dn
K

, by Lemma 2, we know that the division property Dn,n
K′ , which the

division property of the set of the output Y, is calculated by K
′ = K

′ ∪ (k − i, i), ∀ i (0 ≤ i ≤ k).

Therefore, linear inequalities of the propagation of the division property and its variables can be

expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

Mvar ← k, k′
1, k′

2 as integer (0 ≤ k, k′
1, k′

2 ≤ n), (k′
1, k′

2) ∈ K
′,

Mcon ← k′
1 + k′

2 = k.

Lemma 12 S-box Suppose the size and the algebraic degree of i-th S-box are ni and di, respec-

tively. When the division property of the set of the input X ∈ (Fn1
2 ×F

n2
2 ×· · ·×F

nm
2) is Dn1,n2,...,nm

K
,

by Lemma 3, we know that the division property of the set of the output Dn1,n2,...,nm

K′ is calculated

by K
′ = K

′ ∪ (�k1
d1

, �k2
d2

, . . . , �km

dm
), where (k1, k2, . . . , km) ∈ K, and the output division prop-

erty of the i-th S-box is equal to the input division property if and only if the i-th S-box is bijective

and the input division property is Dni
ni

. Therefore, linear inequalities of the propagation of the

division property and its variables over single ni-bit S-box can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mvar ← ki, k′
i as integer (0 ≤ ki, k′

i ≤ ni), k′
i ∈ K

′,

Mcon ←

⎧⎪⎪⎨
⎪⎪⎩

k′
i = ki

di
,

k′
i ≥ niki − ni(ni − 1).

33

3.3.2 Objective Function

Evaluating security against integral cryptanalysis is similar to evaluating security against impos-

sible differential cryptanalysis in that it involves a feasibility problem rather than an optimization

problem. Therefore, no objective function is given to an MILP model. In this context, the focus is

on determining whether there exists a division trail from a given input division property to the out-

put divsion property Dn
1 , where n is the block size. If such a trail exists, it means that there are no

integral distinguishers. Generally, the designer need to evaluate its securit under the assumption

of the attacker’s potential ability to make full use of their resources. Therefore, the designer needs

to evaluate an MILP model whose the input (plaintext) and output (ciphertext) division property

are Dn
n−1 and Dn

1 , respectively.

34

4 Tweakable TWINE: Building a Tweakable Block Cipher
on Generalized Feistel Structure

Tweakable block cipher (TBC) is an extension of conventional block cipher. In this section, we

study how to build a TBC based on generalized Feistel structure (GFS), a classical block cipher

construction. While known dedicated TBC proposals are based on substitution-permutation net-

work (SPN), GFS has not been used for building TBC. In particular, we take 64-bit GFS block

cipher TWINE and try to make it tweakable with a minimum change. To find a best one from a

large number of candidates, we performed a comprehensive search with a help of mixed integer

linear programming (MILP) solver. As a result, our proposal Tweakable TWINE is quite efficient,

has the same number of rounds as TWINE with extremely simple tweak schedule.

4.1 Introduction

4.1.0.1 Tweakable Block Cipher. Tweakable block cipher (TBC) is an extension of a

conventional block cipher. An encryption of TBC is a function takes a public input called tweak T

in addition to key K and plaintext M , and the pair (K, T) specifies the permutation over the mes-

sage space. Since its inception by Liskov et al. [118] TBC has been extensively studied, and now

it is widely acknowledged as a powerful primitive to build efficient and highly-secure symmetric-

key modes of operations. For example, the seminal OCB authenticated encryption [112,149,150]

scheme can be seen as a mode of TBC with TBC instantiated as a block cipher mode called

XEX [149].

As proposed by Liskov et al., TBCs can be built on block ciphers. Typical examples are LRW

and XEX modes of operations. They are efficient, as it requires few block cipher calls for one

TBC encryption/decryption. For security, they have provable security guarantee up to around

2n/2 queries for TBC of n-bit block. Unfortunately, this level of security is not always enough,

in particular when a TBC is used by modes of operation achieving “beyond-the-birthday-bound”

(BBB) security. Some modes of operations to achieve BBB security have been proposed [114,

116, 173], however, they are usually much more costlier than the simple LRW/XEX.

Another approach, which is our focus, is a dedicated construction. To our knowledge the

earliest proposal is HPC (where tweak is called “spice”) proposed for AES competition [147]. In

recent years, dedicated TBCs are becoming popular, such as Threefish [136], Deoxys-BC [106],

SKINNY [27] and QARMA [9]. One strong advantage of dedicated construction is one can

expect the full security when properly designed. While dedicated TBCs are possible in principle,

by somehow absorbing tweak in the ordinary block cipher structures such as SPN or Feistel, but

35

the challenge is how to make it efficient, in a small number of rounds, while keeping the sufficient

security. Tweakey framework [105] is one prominent methodology to SPN-based dedicated TBCs,

and elastic-tweak framework [57] is proposed as a methodology to build TBCs having short-tweak

based on SPN-based block cipher. However, in general, the constructions of TBCs are far less

studied than those for block ciphers or fixed-key permutations.

4.1.0.2 Building TBC on GFS. In this section, we study how to build a TBC on general-

ized Feistel structure (GFS) [140, 179], one of the classical structures for block ciphers. GFS has

been adopted by a number of block cipher proposals [94, 168]. However, it has never been used

to build a TBC, to the best of our knowledge. Goldenberg et al. [84] and Mitsuda and Iwata [131]

studied GFS-based TBC constructions from the viewpoint of provable security, where the round

functions are instantiated by a pseudo-random functions (PRFs) and the focus is to evaluate a

pseudo-random permutation (PRP) security of GFS. While these results give us a baseline, they

tell little about the design and security of concrete TBCs. GFS has a large freedom regarding the

choice of sub-block permutation. Suzaki and Minematsu [167] showed a comprehensive study on

the effect of permutation, including the diffusion, the number of differential/linear active S-boxes,

etc. Subsequently Suzaki et al. proposed 64-bit block cipher TWINE [168]. It uses a permutation

over 16 nibbles selected from the result of [167] for achieving the best characteristics.

To build a TBC on GFS, we set our primary goal to reduce the cost of design, security eval-

uation, and implementation. Consequently, we choose to reuse TWINE as much as possible. We

design an extremely simple tweak scheduling based on SKINNY’s tweakey schedule [27] and at-

tach it to TWINE. This reusing approach to dedicated TBC is useful for both designers and users,

and we think our approach itself has some novelties (of course, some of the aforementioned work

convert a block cipher into a TBC, but they are provably secure constructions). We evaluated lin-

ear/differential/impossible/integral characteristics for single-key, related-key and chosen-tweak

setting. For finding the best parameter of tweak schedule against these attacks, we extensively

used Mixed Integer Linear Programming (MILP) solver, which is now quite common for design-

ing ciphers. With these efforts, our proposal, called Tweakable TWINE (or T-TWINE), becomes

quite efficient : it has 64-bit tweak (the same as the block size) and has the same number of 36

rounds as the original. Key schedule and tweak schedule are independent, which will be useful

for some use cases, e.g, when a key is hardwired. Tweakable TWINE is obtained by adding few

nibble XORs to TWINE, therefore the hardware cost is essentially the same as TWINE except the

registers for tweak. We also show basic hardware implementation results to verify this claim.

36

�� �� �� ��

�� �� �� �	

�
 �� ��� ���

��� ��� ��� ���

�� �� � ��

��� ��� ��� ���

��� ��� �� ��

�� �� �� ��

TWINE round function

TWINE key schedule

��

�� ��

��

������

	�

��

������

tweak
schedule
input

key
schedule
input

round input

tweak
schedule
output

key
schedule
output

round output

�
�

��

��

� � � ��� � �

����
��

������

Figure 4.1: Overview of Tweakable TWINE

4.1.1 Organization of this section

we first show our design rational and how to build a tweak scheduling function of Tweakable

TWINE at section 4.3. At section 4.2 we present our proposal Tweakable TWINE. Section 4.4

shows the security evaluation on our proposal. We present hardware implementation results at

Section 4.5, and conclude at Section 4.6.

4.2 Specification

Tweakable TWINE is based on TWINE [168], which is a 64-bit block cipher supporting two

key lengths of 80 bits and 128 bits. Tweakable TWINE takes a 64-bit tweak value T as an

additional input, and consists of a data processing part, a key scheduling function and a tweak

scheduling function. The data processing part and the key scheduling function are the same as

those of TWINE except additional inputs of tweaks in the data processing part. We, hereafter, refer

Tweakable TWINE [168] with an 80-bit key and a 128-bit key to T-TWINE-80 and T-TWINE-128,

respectively.

4.2.1 Notation

A bitwise exclusive-OR is denoted by ⊕. For binary strings, x and y, x||y denotes their concatena-

tion. Let |x| denote the bit length of x. If |x| = m, we may write x(m) to emphasize its bit length.

If |x| = 4c for a positive integer c, we write x → (k0||k1|| · · · ||kc−1), where |ki| = 4, is the

partition operation into the 4-bit sub-blocks. The opposite operation, (k0||k1|| · · · ||kc−1) → x, is

37

similarly defined. The partition operation may be implicit, i.e., we may simply write xi to denote

the i-th 4-bit subsequence for any 4c-bit string x.

Algorithm Enc(P(64), RK(32×36), RT(24×36), C(64))

1. X1
0(4)‖X1

1(4)‖ · · · ‖X1
15(4) ← P

2. RK1
(32)‖RK2

(32)‖ · · · ‖RK36
(32) ← RK(32×36)

3. RT 1
(24)‖RT 2

(24)‖ · · · ‖RT 36
(24) ← RT(24×36)

4. for i = 1 to 36 do
RKi

0(4)‖ · · · ‖RKi
7(4) ← RKi

(32), RT i
0(4)‖ · · · ‖RT i

5(4) ←
RT i

(24)
Xi

1 ← S(Xi
0 ⊕ RKi

0 ⊕ RT i
5) ⊕ Xi

1, Xi
3 ← S(Xi

2 ⊕ RKi
1 ⊕

RT i
4) ⊕ Xi

3,
Xi

5 ← S(Xi
4 ⊕RKi

2)⊕Xi
5, Xi

7 ← S(Xi
6 ⊕RKi

3 ⊕RT i
3)⊕

Xi
7,

Xi
9 ← S(Xi

8 ⊕RKi
4 ⊕RT i

2)⊕Xi
9, Xi

11 ← S(Xi
10 ⊕RKi

5 ⊕
RT i

1) ⊕ Xi
11,

Xi
13 ← S(Xi

12 ⊕ RKi
6) ⊕ Xi

13, Xi
15 ← S(Xi

14 ⊕ RKi
7 ⊕

RT i
0) ⊕ Xi

15,
If i ≤ 35 for h = 0 to 15 do Xi+1

π[h] ← Xi
h

5. C ← X36
0 ‖X36

1 ‖ · · · ‖X36
15

Algorithm Dec(C(64), RK(32×36), RT(24×36), P(64))

1. X36
0(4)‖X36

1(4)‖ · · · ‖X36
15(4) ← C

2. RK1
(32)‖ · · · ‖RK36

(32) ← RK(32×36)

3. RT 1
(24)‖RT 2

(24)‖ · · · ‖RT 36
(24) ← RT(24×36)

4. for i = 36 down to 1 do
RKi

0(4)‖RKi
1(4)‖ · · · ‖RKi

7(4) ← RKi
(32),

RT i
0(4)‖ · · · ‖RT i

5(4) ← RT i
(24)

Xi
1 ← S(Xi

0 ⊕ RKi
0 ⊕ RT i

5) ⊕ Xi
1, Xi

3 ←
S(Xi

2 ⊕ RKi
1 ⊕ RT i

4) ⊕ Xi
3,

Xi
5 ← S(Xi

4 ⊕RKi
2)⊕Xi

5, Xi
7 ← S(Xi

6 ⊕RKi
3 ⊕RT i

3)⊕
Xi

7,
Xi

9 ← S(Xi
8 ⊕ RKi

4 ⊕ RT i
2) ⊕ Xi

9, Xi
11 ←

S(Xi
10 ⊕ RKi

5 ⊕ RT i
1) ⊕ Xi

11,
Xi

13 ← S(Xi
12 ⊕ RKi

6) ⊕ Xi
13, Xi

15 ← S(Xi
14 ⊕ RKi

7 ⊕
RT i

0) ⊕ Xi
15,

If i ≥ 2 for h = 0 to 15 do Xi−1
π−1[h] ← Xi

h

5. P ← X1
0 ‖X1

1 ‖ · · · ‖X1
15

Figure 4.2: Encryption and decryption of Tweakable TWINE

4.2.2 Data Processing Part

The data processing part is based on a variant of Type-2 GFS with 16 4-bit nibbles [167]. The

round function consists of a 4-bit S-box S, a round-key XOR, a round-tweak XOR and a nibble

shuffle operation π, which permutes 16 nibbles as shown in Fig. 4.3. The S-box S and the nibble

38

shuffle operation π are described in Fig. 4.3. The number of rounds for both of T-TWINE-80 and

T-TWINE-128 is 36, where the nibble shuffle operation in the last round is omitted.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

Figure 4.3: S-box S and nibble shuffle π

For i = 1, . . . , 36, i-th round uses a 32-bit (8 nibbles) round key RKi, which is derived

from the secret key K(n) with n ∈ {80, 128}, using the key scheduling function, and i-th round

also uses a 24-bit (6 nibbles) round tweak RT i, which is derived from the 64-bit tweak T using

the tweak scheduling function. The detailed algorithm of encryption and decryption is given as

Fig.4.2.

4.2.3 Tweak Scheduling Function

The tweak scheduling function produces RT(24×36) from the 64-bit tweak T . It is a permutation-

based function as shown in Fig. 4.1. In each round, all nibbles are shifted by 6 nibbles, and 6

nibbles which are inserted to a round function are shuffled using a 6-nibble permutation. The

Permutation in the tweak scheduling function πt is shown in Table 4.1. The detailed algorithm is

given as Fig. 4.4.

Algorithm TweakScheduling(T(64), RT(24×36))

1. t1
0(4)‖t1

1(4)‖ · · · ‖t1
16(4) ← T

2. for i = 1 to 36 do
RT r

(24) ← ti
0‖ti

1‖ti
2‖ti

3‖ti
4‖ti

5‖
for h = 0 to 15 do ti+1

πt[h] ← ti
h

3. RK(24×36) ← RT 1‖RT 2‖ · · · ‖RT 36

Figure 4.4: Tweak scheduling function of Tweakable TWINE

39

Table 4.1: Permutation in the tweak scheduling function πt

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πt[h] 11 10 13 14 12 15 0 1 2 3 4 5 6 7 8 9

4.2.4 Key Scheduling Function

The key schedule produces RK(32×36) from the secret key, K(n), for n ∈ {80, 128}. It is a variant

of GFS with few S-boxes, which is the same as one used at the data processing. The 80-bit key

schedule uses 6-bit round constants, CONi
(6) = CONi

H(3)‖CONi
L(3) for i = 1 to 35.

The 80-bit and 128-bit key schedules are shown in Fig. 4.5. Here, Rotz(x) means z-bit left

cyclic shift of x. We note that CONi corresponds to zi in GF(26) with primitive polynomial

z6 + z + 1.

4.2.5 Test Vectors

We give test vectors of T-TWINE for each key length. The data are represented in hexadecimal

form.

A. T-TWINE-80

Plaintext : 0123456789abcdef

Key : 00112233445566778899

Tweak : fedcba9876543210

Ciphertext : fbb33219433a42f2

B. T-TWINE-128

Plaintext : 0123456789abcdef

Key : 00112233445566778899aabbccddeeff

Tweak : fedcba9876543210

Ciphertext : ce9e755fffeca2f8

40

Algorithm KeySchedule − 80(K(80), RK(32×36))

1. WK0(4)‖WK1(4)‖ · · · ‖WK19(4) ← K

2. for r = 1 to 35 do
3. RKr

(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

4. WK1 ← WK1 ⊕ S(WK0)
5. WK4 ← WK4 ⊕ S(WK16)
6. WK7 ← WK7 ⊕ 0‖CONr

H

7. WK19 ← WK19 ⊕ 0‖CONr
L

8. WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
9. WK0‖ · · · ‖WK19 ← Rot16(WK0‖ · · · ‖WK19)

10. RK36
(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

11. RK ← RK1‖RK2‖ · · · ‖RK36

Algorithm KeySchedule − 128(K(128), RK(32×36))

1. WK0(4)‖WK1(4)‖ · · · ‖WK31(4) ← K

2. For r = 1 to 35 do
3. RKr

(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

4. WK1 ← WK1 ⊕ S(WK0)
5. WK4 ← WK4 ⊕ S(WK16)
6. WK23 ← WK23 ⊕ S(WK30)
7. WK7 ← WK7 ⊕ 0‖CONr

H

8. WK19 ← WK19 ⊕ 0‖CONr
L

9. WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
10. WK0‖ · · · ‖WK31 ← Rot16(WK0‖ · · · ‖WK31)
11. RK36

(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

12. RK(32×36) ← RK1‖RK2‖ · · · ‖RK36

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24

Figure 4.5: Key schedules of Tweakable TWINE, for 80-bit and 128-bit keys. S-box S is
the same as Fig. 4.2, and key schedule constants, CONi, are described in the bottom.

41

4.3 Design Rational

In this section, we describe design goals of Tweakable TWINE, and explain how to design the

tweak key scheduling function and choose its parameters. Then we show how to reduce the target

candidates by the upper bounds of the minimal number of active S-boxes for each number of

inserted tweaks to efficiently search the promising constructions.

4.3.1 Design Goals

Our primal motivation is to build a dedicated TBC on GFN, which is one of the classical structures

for block ciphers. To minimize design and evaluation costs, we decide to choose a lightweight

block cipher TWINE, which is based on GFN, as an underlying cipher. Then we are able to

focus on how to design a tweak scheduling function, and to add it to TWINE. Our design goals of

Tweakable TWINE are as follow.

1. Reuse the core of original TWINE.

2. Minimize additional H/W cost, especially area.

3. Keep a nice S/W performance of TWINE by SIMD instructions.

4. Minimize additional rounds to keep throughput of TWINE as possible.

Following the requirement 1, we choose a tweak scheduling function that is independent from

the key scheduling function unlike the tweakey framework of SKINNY [27] so that Tweakable

TWINE is realized by only adding the new tweak scheduling function to TWINE in software and

hardware. Besides, the security in the single-key setting and the related-key setting is reduced to

that of TWINE. Thus, we can focus on only the security evaluation in the chosen-tweak setting

where the adversary can control of the value of a tweak for Tweakable TWINE because the security

in the single-key setting for TWINE is well studied by many researchers.

Following the requirements 2 and 3, we choose a permutation-based tweak scheduling func-

tion that outputs d nibble out of 16 nibbles as round tweak nibbles and permutes 16 nibbles in

each round as shown in Fig 4.6. While the independence of key and tweak schedule differs from

Tweakey framework, our tweak scheduling function itself has a similarity to tweakey scheduling

of SKINNY. We further simplify it by removing nibble LFSRs and observe no noticeable security

loss. It is well known that the H/W cost (esp. gate size) of the permutation-based scheduling is

very small as shuffle layers are implemented by cost-free wire operations in hardware. In software,

such shuffle operations are executed by shuffle instructions of SIMD.

42

��
�

��
�

��
�

��
�

��
�

��
�

�	
�

�

�

��
�

��
�

���
�

���
�

���
�

���
�

���
�

���
�

TWINE round function

TWINE key schedule

��

�� ��

��

������

	�

��

������

tweak
schedule
input

key
schedule
input

round input

tweak
schedule
output

key
schedule
output

round output

�

��

��
��

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

��
���

��
���

��
���

��
���

��
���

��
���

Figure 4.6: Permutaion-based tweak scheduling function

4.3.2 How to Design Permutation-Based Tweak Scheduling Function

To achieve the requirement 4, we properly design the permutation-based scheduling function.

Specifically, we need to carefully choose the patterns of the permutation and the locations where

tweak nibbles are inserted in the round function, and the number of tweak nibbles to be inputted

to each round. As a criteria for finding the best tweak scheduling function, we use the number of

differentially active S-boxes.

4.3.2.1 Position of Tweak inputs in the Round Function. In each round function,

we add d nibble-wise tweak inputs before S-boxes as shown in Fig. 4.8. Thus, the number of

candidates of the positions of round tweak inputs is estimated as
(8

d

)
.

4.3.2.2 Permutation. Since the number of possible 16-nibble permutations is 16! ≈ 244,

it is computationally infeasible to evaluate the number of active S-boxes for all permutations. To

reduce the search space, we choose the SKINNY-type scheduling function [27] such that in each

round, d nibbles which are inserted to a round function are shuffled and all nibbles are shifted by

d nibbles as shown in Fig. 4.7, because the SKINNY-type permutation guarantees that each nibble

is included in every �16/d round. Since the number of position of tweak inputs is 8, the total

number of candidates of this-type permutation is estimated as
∑8

d=1(d!)

An example of d = 4 is given as follows. In the figure, we first shuffle the first four nibbles

and then shift all 16 nibbles by 4.

P4 : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 3, 1, 0, 2)

43

�� �� �� ��

�� �� �� �	

�
 �� ��� ���

��� ��� ��� ���

�� �� �� �	

�
 �� ��� ���

��� ��� ��� ���

�� �� �� ��

�� ��

tweak
schedule
input

tweak
schedule
output��

Figure 4.7: Permutation of d = 4

� � � ��� � �

���������� ����� ����� ����� ����� ����� �����

��
�

��
�	

�

�	

��
�	

�

�
��
�

��
�
�
�

��
�
��
�

��
�
��
�

��
�
�
�
� �

�
�
�
�

�
�
� �

�
�
�
�

��
�	

�
�	

��
�	

��
�	

��
�	

��
�	

��
�	

�
�
�	

�

�	

�
�
�	

�
�
�	

�

�	

�
�
�	

��
�

���
�

�

Figure 4.8: Positions for tweak inputs

Therefore, the total number of target tweak scheduling functions to be evaluated is estimated

as

8∑
d=1

(d! ×
(

8
d

)
) ≈ 216.74.

For these all candidates, we have evaluated the lower bounds on the number of active S-boxes in

each round by the MILP-aided automatic search algorithm (See Section 4.4.1 for details).

4.3.3 Reducing Candidates

Before the evaluation of the minimal number of active S-boxes for all candidates, we show the

proposition regarding the upper bound of the minimal number of active S-box for the candidates

of each number of the inserted tweaks.

Proposition 2 For the number of the inserted tweaks is d, the upper bound of the minimal number

of active S-boxes over r rounds is r × (8 − d) in the nibble-wise truncated differential evaluation.

Proof 1 Considering the case where the all input tweak differences and plaintext differences are

active, all states of differences in the tweak schedule function is active because the tweak schedule

function consists of only nibble-wise permutation. In the round function, the S-box in which a

tweak is inserted before f function can be inactive, and the S-box in which a tweak is not inserted

is always active over all rounds. Therefore, the minimal number of active S-boxes is (8 − d) per 1

round. Thus, for the number of the inserted tweak is d, the upper bound of the minimal number of

active S-boxes over r rounds is r × (8 − d) in the nibble-wise truncated differential evaluation. �

44

From Proposition 2, when d = 8, those candidates do never achieve 32 active S-boxes. When

d = 7 , those candidates require at least 32 rounds to achieve 32 active S-boxes. From the above,

we first evaluated the minimal number of active S-boxes for the candidates for d = 1 to 6. As a

result, when d = 6, we found 32 constructions which achieve 32 active S-boxes over 19 rounds,

and it is the smallest round number to achieve 32 active S-boxes in all candidate (see Table 4.2).

When d = 8 and d = 7, there is no candidates which achieve 32 active S-boxes over 19 rounds.

Therefore, we do not have to evaluate those candidates, and the candidates that we have to evaluate

the number of active S-boxes are reduced to 214.82 from 216.74.

Among 32 candidates for d = 6, we chose the one having more active S-boxes of than the

others in each round (1 in Table 4.2).

Table 4.2: The number of active S-box of each round for 32 tweak scheduling functions
with d = 6 that achieve 32 active Sbox in 19 rounds.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 0 0 2 3 4 6 8 10 12 15 18 21 23 25 28 30 32 34
2 0 0 0 0 1 2 3 4 7 9 11 13 16 20 21 24 27 29 32 34
3 0 0 0 0 1 2 4 5 6 8 10 12 15 18 22 24 26 28 32 33
4 0 0 0 0 1 3 4 5 6 7 8 10 12 14 18 23 27 29 32 34
5 0 0 0 0 1 2 3 5 7 8 9 12 16 17 20 22 24 27 32 33
6 0 0 0 0 2 2 4 5 6 8 11 15 17 20 22 24 26 29 32 34
7 0 0 0 0 2 3 4 6 8 9 11 13 15 18 21 24 26 30 32 34
8 0 0 0 0 1 2 4 6 8 10 12 14 16 19 21 23 26 28 32 33
9 0 0 0 0 1 2 3 5 8 10 13 15 17 18 22 24 26 29 32 33
10 0 0 0 0 1 3 4 5 7 9 11 14 17 20 22 23 25 28 32 34
11 0 0 0 0 2 3 5 6 7 8 10 13 16 19 23 25 27 29 32 33
12 0 0 0 0 1 2 3 5 7 10 12 15 16 19 22 25 27 30 32 33
13 0 0 0 0 1 3 4 6 7 9 11 14 16 19 22 23 27 29 32 33
14 0 0 0 0 1 2 3 5 7 9 12 14 17 20 22 25 26 30 32 33
15 0 0 0 0 2 3 4 6 7 9 11 13 15 18 21 25 26 29 32 34
16 0 0 0 0 2 3 3 6 8 10 12 14 17 19 21 25 28 29 32 34
17 0 0 0 0 1 2 4 5 7 8 10 12 15 17 20 23 26 29 32 34
18 0 0 0 0 1 2 3 5 6 8 11 14 16 18 21 24 27 29 32 34
19 0 0 0 0 1 3 4 5 6 9 12 15 16 19 22 24 27 30 32 34
20 0 0 0 0 1 3 5 6 7 8 10 12 15 18 21 24 26 29 32 33
21 0 0 0 0 1 2 3 5 6 8 10 12 15 19 21 24 26 29 32 33
22 0 0 0 1 1 3 4 6 8 10 11 13 15 16 20 24 26 29 32 33
23 0 0 0 1 1 2 3 5 6 8 11 13 15 19 22 24 26 30 32 33
24 0 0 0 0 1 2 4 5 7 9 11 13 16 18 21 23 26 29 32 33
25 0 0 0 0 1 3 4 5 6 8 11 15 18 21 22 25 27 29 32 34
26 0 0 0 0 1 2 3 5 6 9 11 14 17 20 23 24 27 29 32 33
27 0 0 0 0 1 2 3 5 7 9 12 15 17 19 22 24 27 29 32 33
28 0 0 0 0 2 3 4 5 6 9 11 13 16 19 20 23 26 29 32 34
29 0 0 0 0 1 3 4 6 8 10 11 13 16 18 20 23 26 29 32 34
30 0 0 0 0 2 2 2 5 6 7 9 11 15 18 22 25 27 30 32 33
31 0 0 0 0 1 2 3 5 6 7 9 12 16 18 22 24 27 29 32 34
32 0 0 0 1 1 2 3 4 6 8 11 14 15 17 20 23 26 29 32 34

45

4.4 Security Evaluation

As mentioned in Section 4.3, the security of Tweakable TWINE in the single-key and related-key

settings is reduced to that of TWINE. This section focuses on the security of Tweakable TWINE in

the chosen-tweak setting where the adversary fully controls values of a 64-bit tweak. Specifically,

we evaluate the security of Tweakable TWINE against differential, linear, impossible differential,

and integral attacks by Mixed-Integer Linear Programming (MILP) in the chosen-tweak setting.

Our evaluation uses Gurobi Optimizer [97] as an MILP solver.

Tweakable TWINE claims single-key, related-key, and chosen-tweak security and does not

claim chosen-tweak-and-related-key security where the adversary can control both of values of

tweaks and key relations as it is not relevant in our target application.

4.4.1 Differential/Linear Attack

Differential and linear attacks were proposed by Biham et al. [44] and Matsui [124], respectively.

To evaluate the security against differential and linear attacks, we obtain the lower bound on the

number of differentially and linearly active S-boxes by the MILP-aided automatic search method,

which is proposed by Mouha et al [133]. Since Tweakable TWINE is based on nibble-wise

operations, we evaluate all nibble-wise differential and linear trails.

Table 4.3 shows our search results up to 25 rounds in each setting, where ASD
SK , ASD

RK80 ,

ASD
RK128 , ASD

CT , ASD
CT RK80 and ASD

CT RK128 , and ASL
CT are the number of differentially active

S-boxes in the single-key setting, the related-key setting (80-bit key), the related-key setting (128-

bit key), the chosen-tweak setting, the chosen-tweak-and-related-key setting (80-bit key) and the

chosen-tweak-and-related-key settings (128-bit key), respectively, and ASL
CT denotes the number

of linearly active S-boxes in the chosen-tweak setting.

Since the maximum differential and linear probability of the S-box is 2−2, 32 active S-boxes

(2−2·32 = 2−64) are sufficient to guarantee the security against differential and linear attacks. In

the chosen-tweak setting, T-TWINE-80 and T-TWINE-128 has at least 32 active S-boxes in 19

rounds. Note that the linear mask in the round function is not canceled by the input linear mask

from the tweak schedule. Thus ASL
CT in the chosen tweak setting is the same as the number

of active S-boxes in the single-key setting. Therefore, we expect that the full-round Tweakable

TWINE has enough immunity against differential and linear attacks in the chosen-tweak setting.

In the chosen-tweak-and-related-key setting, 25 rounds are required to achieve 32 active S-

boxes for T-TWINE-80 and T-TWINE-128. Although we do not claim the chosen-tweak-and-

related-key security, if it is needed, for the reason that the number of rounds to achieve 32 active

S-boxes increase 6 rounds from the chosen-tweak setting, we recommend to add 6 more rounds.

46

Table 4.3: Lower bound on the number of differentially and linearly active S-boxes in
each model

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ASD

SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 - - - - - - - - - -
ASD

RK80 0 0 0 0 0 1 3 5 6 8 10 13 16 18 21 23 25 28 32 35 - - - - -
ASD

RK128 0 0 0 0 0 1 2 3 4 6 8 10 14 18 20 21 24 26 28 33 - - - - -
ASD

CT 0 0 0 0 2 3 4 6 8 10 12 15 18 21 23 25 28 30 32 34 - - - - -
ASD

CT RK80 0 0 0 0 0 0 0 1 3 4 6 9 11 13 15 18 19 21 23 24 25 27 29 30 32
ASD

CT RK128 0 0 0 0 0 0 1 2 3 5 7 8 10 12 14 15 17 19 21 23 25 27 29 31 32
ASL

CT 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 - - - - - - - - - -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 R 0 1 1 R 0 1 R R R R

R R R R R R 1 R 1 R R R 1 R R R

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

contradiction

Round function

Tweak schedule function1R

2R

3R

8R

8R

18R

17R

16R

1R

2R

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7R

9R

17R

18R

19R

Encryption side

Decryption side

<

<

<

<

<

<

<

0 1 R: Non-active : Active : Random

Figure 4.9: 18-round impossible differential characteristic

4.4.2 Impossible Differential Attack

Generally, the cryptanalysis with impossible differentials, which is proposed by Biham et al. [42],
is one of the most powerful attacks against Feistel and GFS-based ciphers. By the miss-in-the-
middle approach, we search the impossible differential characteristics in which there are up to
two active nibbles in the 16 tweak nibbles and 16 plaintext nibbles, and up to two active nibbles

47

in 16 ciphertext nibbles at the decryption side. Therefore, we explore the following space.

{
(16

1

)
×
(16

1

)
} + {(

(32
2

)
−
(16

2

)
) ×

(16
2

)
} + {(

(32
2

)
−
(16

2

)
) ×

(16
1

)
} + {

(16
1

)
×
(16

2

)
} ≈ 215.70.

As a result, we find an 18-round impossible differential characteristic in the chosen tweak setting

as shown in Fig. 4.9. We remark that we do not have to search the input patterns with all active

nibble in the 16 plaintext nibbles (and no active nibble in the tweak) because they already have

been studied by the original paper of TWINE, showing 64 instances of 14-round characteristic as

the longest possible ones among them, in the single-key setting. Due to the structure of Tweakable
TWINE, this result is directly applicable to ours. Thus, by controlling tweak inputs, the adversary

can improve an impossible differential characteristic by 4 rounds. Since we have 36 rounds, we

expect that the full-round Tweakable TWINE has enough immunity against impossible differential

attacks.

4.4.3 Integral Attack

The integral attack was first proposed by Daemen et al [63], and then it was formalized by Knudsen

and Wagner [110]. After that, it is generalized to the division property by Todo [170], and is

defined as follows.

ALL (A) The set contains all possible taken values the same number of times.

CONSTANT (C) All values in the set are equal.

BALANCE (B) The XOR of all values in the set is zero.

UNKNOWN (U) Each value in the set is random.

To evaluate the nibble-based division property, we use an MILP-aided automatic search method

which is proposed by Xiang et al. [177], which enable us to efficiently explore the propagation

of the division property in the chosen tweak setting. In our evaluation, the division property of

tweak is fixed to all A and division property of plaintext is freely chosen from 216 − 1 nibble-wise

candidates, and the division property of plaintext is fixed to all C and division property of tweak

is freely chosen from 216 nibble-wise candidates. Therefore, the total number of the explored

candidates is 217 − 1.

As a result, we find the 18-round integral distinguisher in the chosen tweak setting as shown

in Fig. 4.10. Thus, we expect that the full-round Tweakable TWINE has enough immunity against

integral attack in the chosen plaintext setting and chosen tweak setting.

� � � � � � � � � � � � � � � �

� ℬ � ℬ � � � � � � � � � � � �

18R
Plaintext

Tweak

� � ℬ �ALL CONSTANT BALANCE UNKNOWN

� � � � � � � � � � � � � � � �

Figure 4.10: 18-round integral characteristic

4.5 Hardware Implementation Results

We evaluated ASIC implementation of Tweakable TWINE and compared it with TWINE. See

Table 4.4. We used Yosys ver. 0.75 with osu018 stdcells.lib process library. This process

5http://www.clifford.at/yosys/

48

Table 4.4: Hardware results for round-based, enc-only implementations.

TBC Yosys (GE) Known results (GE) Library used by Known results
T-TWINE-80 2180 – –
SKINNY-64-128 – 1696 [27] UMCL18G212T3 standard cell library
CRAFT-128 – 1193 [29] 130nm standard cell library

BC Yosys (GE) Known results (GE) Library used by Known results
TWINE-80 1627 1503 [168] 90nm standard cell library
PRESENT-80 1841 1570 [168] 90nm standard cell library
LED-80 3029 1040 [90] UMCL18G212T3 standard cell library

library is comparable to TSMC 0.18 um. To see the validity of the tool, we also list some known

results. We warn that this consists of several different synthesis environments. Unfortunately, we

were not able to compile Tweakable TWINE using tools other than Yosis. We emphasize that,

unlike the results of [168], we did not use Scan FF for registers which will reduce total GE counts

if available.

The difference between TWINE-80 and T-TWINE-80 are around 550 GEs. Our library has 4

GEs for 1-bit DFF and 3-1 MUX, and 2.3 GEs for 1-bit XOR, thus an implementation of tweak

schedule needs 64-bit DFF and 64-bit 3-1 MUX, and 24-bit XOR which amounts to 567 GEs.

Thus the difference in size is almost from the additional tweak schedule function.

The results of Table 4.4 imply that T-TWINE-80 requires more GEs than the other tweakable

block ciphers listed in the table. However, we focus on how to build a TBC on TWINE while

minimizing the additional cost and keeping the security, which is basically a different goal from

building a small TBC from scratch (even though TWINE has an excellent hardware performance).

Regarding our goal, and that the additional cost is close to be what we can do, we consider that

the hardware performance of T-TWINE-80 is reasonably good.

We also evaluated multi-round implementations of T-TWINE-80 as shown in Table 4.5. The

fact that Tweakable TWINE has 36 rounds enables a very flexible choice for multi-round imple-

mentations with small overhead, which is a property inherited from the original.

4.6 Conclusion

With a motivation of designing a tweakable block cipher based on generalized Feistel structure, we

have presented Tweakable TWINE, a tweakable variant of lightweight block cipher TWINE. Our

primary design goal is to build a TBC with minimum cost for both design and implementation,

so we use TWINE as is and attach an extremely lightweight tweak schedule to it. The design

challenge was how to find the best tweak schedule in terms of security and efficiency, and we

extensively used Mixed integer linear programming (MILP) solver for this purpose. Consequently,

Tweakable TWINE maintains TWINE’s efficiency by keeping the same number of rounds, with

very little (almost unavoidable) overhead due to the existence of tweak. One of the possible future

directions is to apply the same methodology to other block ciphers, and see how efficiently we can

turn them into tweakable block ciphers.

49

Table 4.5: Hardware results for multi-round, enc-only implementation of T-TWINE-
80. (Top) ASIC (Yosys with osu018 stdcells.lib) (Bottom) FPGA (Intel/Altera
10CL120YF780I7G, Quartus 18.1)

rnd/clk Size (GE) critical path (ps)
1 2180 1077.46
2 2752 1907.98
3 3300 3048.44
4 3793 3717.95
6 4559 5483.03
9 6368 8369.95
12 8795 9947.94
18 20789 13095.40
36 40850 26254.36

rnd/clk Size (LE) Fmax (MHz) critical path (ns)
1 325 343.88 2.9
2 442 244.68 4.1
3 534 158.91 6.3
4 618 124.63 8.0
6 835 85.22 11.7
9 1147 62.50 16.0
12 1449 46.78 21.4
18 2059 31.81 31.4
36 4072 13.12 76.2

50

5 WARP : Revisiting GFN for Lightweight 128-Bit Block
Cipher

In this section, we present WARP, a lightweight 128-bit block cipher with a 128-bit key. It aims at

small-footprint circuit in the field of 128-bit block ciphers, possibly for a unified encryption and

decryption functionality. The overall structure of WARP is a variant of 32-nibble Type-2 Gener-

alized Feistel Network (GFN), with a permutation over nibbles designed to optimize the security

and efficiency. We conduct a thorough security analysis and report comprehensive hardware and

software implementation results. Our hardware results show that WARP is the smallest 128-bit

block cipher for most of typical hardware implementation strategies. A serialized circuit of WARP
achieves around 800 Gate Equivalents (GEs), which is much smaller than previous state-of-the-art

implementations of lightweight 128-bit ciphers (they need more than 1, 000 GEs). While our pri-

mary metric is hardware size, WARP also enjoys several other features, most notably low energy

consumption. This is somewhat surprising, since GFN generally needs more rounds than substi-

tution permutation network (SPN), and thus GFN has been considered to be less advantageous

in this regard. We show a multi-round implementation of WARP is quite low-energy. Moreover,

WARP also performs well on software: our SIMD implementation is quite competitive to known

hardware-oriented 128-bit lightweight ciphers for long input, and even much better for small inputs

due to the small number of parallel blocks. On 8-bit microcontrollers, the results of our assembly

implementations show that WARP is flexible to achieve various performance characteristics.

5.1 Introduction

5.1.0.1 Lightweight Block Cipher. Due to the increasing need for encryption and authen-

tication on constrained devices, lightweight cryptography has grown to be one of the central topics

in symmetric-key cryptography. Among various symmetric-key primitives, the development of

lightweight block cipher probably has the longest history. As demonstrated by PRESENT [52],

the first generation of lightweight block ciphers, such as KATAN [71], PRINTCIPHER [109] or

LED [90], mainly focused on hardware footprint in the standard, round-based constructions. The

block size is typically 64 bits or even smaller to reduce the size. Combined with hardware-oriented

components (such as a 4-bit S-box and a bit permutation), they achieved a very small hardware

footprint compared to the standard AES. Although small-footprint serial AES implementations are

possible [15, 132], there is still a gap between what can be done with lightweight block ciphers.

The second generation ciphers aimed at various goals, such as low-latency (PRINCE [53] and

QARMA [9]) or low-energy consumption (Midori [11]) or side-channel/fault attack resistance (LS-

designs [86], CRAFT [30]), while mostly trying to achieve an equivalent hardware footprint of the

first generation ciphers.

5.1.0.2 Importance of 128-bit Cipher. In this section, we focus on lightweight block

ciphers with 128-bit block size and 128-bit key. The usefulness of such a primitive is obvious as

it can be used as a direct replacement of AES (more precisely AES-128), without changing the
mode of operation. Most of the popular block cipher modes currently used with AES, such as

GCM, have birthday bound security, meaning that O(264) input blocks are sufficient to break the

scheme. This also implies a certain limitation on 64-bit block ciphers. It is clear that 64-bit block

ciphers have been playing the central role in the development of lightweight cryptography. Having

said that, birthday attacks with O(232) data complexity can be a real threat6. To thwart them, keys

6Alternatively, we could use beyond-birthday-bound (BBB) secure modes, however they are generally
more complex than the birthday-secure ones, and using complex modes may nullify the merit of using
lightweight primitive.

51

must be renewed very frequently, however this is not trivial in practice (e.g, Sweet32 [39]).

Tweakable block cipher (TBC) of 64-bit block size, such as SKINNY, is another promising

way to prevent the birthday attacks of O(232) complexity. It still requires a change of outer modes

(though BBB secure modes for TBCs are typically simpler than those for block ciphers) and hence,

it generally does not realize a direct replacement of AES.

Consequently, we think lightweight 128-bit block ciphers have their own value. In fact, re-

placements of AES by lightweight 128-bit ciphers often occur in the development of lightweight

authenticated encryption (AE) schemes. For example, COFB [58] and SUNDAE [12] are mod-

ern block cipher-based AE modes that were initially specified with AES. Later they were sub-

mitted [13, 17] to the ongoing NIST lightweight cryptography project7 with a 128-bit-block ver-

sion of GIFT, a family of lightweight block ciphers proposed by Banik et al. [20]. Both submis-

sions [13, 17] are included in the second-round candidates.

As a lightweight replacement of AES, the size of unified encryption and decryption (ED)

circuit is important, since some standard/popular block cipher modes, e.g. CBC, OCB [112]

and XTS [96], need a block cipher decryption (inverse) circuit as well as an encryption circuit.

Besides, when a block cipher is implemented as a co-processor of general-purpose CPUs, we

naturally expect the support of both encryption and decryption, as the co-processor is agnostic to

the operating modes. Needless to say, an encryption-only circuit is generally smaller and enough

for implementing “inverse-free” modes such as CTR or GCM. From these observations, we set our

primary goal to build a lightweight 128-bit block cipher that is significantly smaller than prior arts

for both encryption-only and unified ED circuits.

5.1.0.3 Our Design. When we look at the current list of lightweight block ciphers, the

majorities are Substitution-Permutation Network (SPN) ciphers, such as [27,52,53,90]. However,

an SPN is inherently not perfect to our goal, because the decryption circuit generally needs to invert

the confusion and diffusion layers. Despite the great research effort on concrete SPN designs using

involutory S-boxes and MDS matrices, such as NOEKEON [66], Midori, and QARMA, designing

an ultimately lightweight SPN cipher with fully involutory components still seems challenging,

when unified ED circuit is a primary target. In particular, if we adopt a serialized datapath, we

need recursively defined MDS matrices to be efficient with respect to area [90]. However, it is

well known that in fields of characteristic 2, such an MDS matrix can never be involutory [91].

A potential alternative is Generalized Feistel Network (GFN) [140, 180], because it is in-

volutory in nature. The classical Type-2 GFN [180] has been adapted by many ciphers, such

as HIGHT [94], CLEFIA [162], and Piccolo [161]. However it has a slow diffusion, which is

problematic when the number of sub-blocks (branches) is large. Suzaki and Minematsu [167]

(hereafter SM10) proposed a way to greatly improve the diffusion of GFN by just changing the

permutation of branches from the rotation originally used by Type-2 GFN. They also showed r-

branch permutations achieving the fastest diffusion up to r = 16. Indeed, TWINE [168] and

LBlock [176] are 64-bit block, 16-branch GFN ciphers that can be seen as concrete instantiations

of SM10. It is interesting to note that, GFN ciphers of larger-than-16 branches have been actively

studied from the viewpoint of permutation design (see below), however no concrete, purely GFN-

based block ciphers have been proposed, to the best of our knowledge8. In this section, we revisit

GFN to investigate if it fulfills our needs. Specifically, we extend the idea of SM10 to build a

128-bit, 32-branch (nibble) GFN cipher with 128-bit key, named WARP9. As observed by SM10,

one can achieve the diffusion round (the number of rounds needed for diffusing any input differ-

7https://csrc.nist.gov/Projects/lightweight-cryptography
8Liliput [33] is a 128-bit TBC built on a variant of GFN (EGFN [34]). It has a different linear layer

structure from GFN and has 16 branches.
9The name comes from the resemblance of the cipher structure to strings in a loom.

52

ence to the whole output) as low as 2 log2 r, which implies that a good 128-bit, 32-nibble GFN

cipher may only need two more rounds from the case of 64-bit, 16-nibble GFN ciphers. The big

challenge is to determine a 32-branch permutation. The diffusion property of r-branch permuta-

tions for r > 16 has been recently studied, and made a significant progress since SM10 [55, 73].

However, these studies do not give a direct answer to us, as we need a permutation having not only

a fast full diffusion but also a high immunity against known attacks (differential/linear/impossible

differential/integral/division etc). Because an exhaustive search over all 32-branch permutations

is computationally infeasible, we define a subset of permutations that are suitable to serial circuits

and search over it with an Mixed Integer Linear Programming (MILP) solver, based on the de-

velopment of MILP-aided security evaluation initiated by Mouha et al. [133]. Notably, we found

that the 32-branch permutations with 9-round full diffusion (which is 1 round smaller than what

SM10 showed) by Derbez et al. [73] are not suitable because the number of active S-box grows

very slowly. Our permutation has 10-round full diffusion, however performs much better in terms

of the number of active S-boxes (see Sect. 5.3.1).

We adopt an S-box of Midori for its small delay and area. It is also very efficient for threshold

implementations which is very important when side-channel attacks are possible.

The key schedule of WARP is ultimately simple: the 128-bit key is divided into two 64-

bit halves and they are alternately used, i.e. the parity of the round number determines which

half is used. This removes a need of additional register. Such permutation-based key scheduling

schemes have been employed by a number of recent block ciphers, e.g, LED [90], Piccolo [161]

and CRAFT [30] as well as stream ciphers [19, 128]. In addition, every sub-key is XORed after

S-box is applied to avoid the complement property of Feistel-Type Structures [50], following the

idea of Piccolo [161].

5.1.0.4 Implementation Results. Combining these components, we achieved 763 GE

for the bit-serial encryption-only circuit, which is, to our knowledge, the lowest number of 128-

bit block cipher hardware implementation to date. Moreover, due to the low-energy and low-

delay S-box, the 2-round unrolled implementation of WARP achieved significantly better energy

consumption as compared to Midori, which is the current state-of-the-art design as a 128-bit low-

energy cipher. For the unrolled (Enc-only) implementations, WARP is smaller than QARMA,

while keeping relatively small delay, around 1.6 of QARMA-12811. We also conducted threshold

implementations of WARP for protection against first-order side-channel attacks. The results are

quite impressive (Table 5.10 at Sect. 5.5.4). All in all, WARP has pretty good performance for

multiple hardware metrics not only in size.

For software metrics on microcontrollers, the design of WARP makes it flexible to make dif-

ferent trade-offs. We report performance characteristics of our assembly implementations on 8-bit

AVR following various methods. The results show that, for WARP, it is possible to achieve com-

petitively small code size and extremely low RAM consumption, with acceptable execution time.

Finally, thanks to the software-friendly structure of GFN, we report a very efficient software

implementation of WARP on modern high-end CPUs equipped with SIMD instructions. Un-

like known bitslice implementation of recent lightweight ciphers, which need many block to be

processed in parallel, we use a vector permutation (vperm) instruction, in a similar manner to

TWINE [32]. This allows us to work with small (or no) parallelism. Surprisingly, the results

on modern Intel processors are very competitive to the bitslice implementations of several state-

of-the-art lightweight ciphers (GIFT, SKINNY and SIMON [24]). This gives another advantage

to WARP when the operating mode is serial, say CBC-MAC or lightweight, serial authenticated

encryption mode such as CLOC [101], SAEB [134], or COFB [58].

53

F F F F F F F F F F F F F F F F

0 1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 31

RCr

0 RCr

1

F

K
(r−1)mod2
i

X2i,2i+1

Figure 5.1: Round Function of WARP.

Table 5.1: 4-bit S-box S.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

5.1.0.5 Organization. This section is organized as follows. We first present the specifica-

tion of our cipher at Section 5.2. We provide our design rationale, such as 32-branch permutation

and S-box, at Section 5.3. Section 5.4 describes the details of security evaluations against major

cryptanalysis methods. Section 5.5 and Section 5.6 provide our hardware and software implemen-

tations. Finally, we conclude at Section 5.8.

5.2 Specification

WARP is a 128-bit block cipher with a 128-bit key. The general structure of WARP is a variant

of the 32-branch Type-2 GFN. A 128-bit plaintext M and a ciphertext C are loaded into a 128-bit

internal state in encryption and decryption processes, respectively. The internal state is expressed

as 32 nibbles, X = X0 ‖ X1 ‖ . . . ‖ X31, where Xi ∈ {0, 1}4. A 128-bit secret key K is denoted

as two 64-bit keys K0 and K1, i.e. K = K0||K1, where Ki ∈ {0, 1}64. K0 and K1 are

also expressed as 16 nibbles, K0 = K0
0 ‖ K0

1 ‖ . . . ‖ K0
15, where K0

i ∈ {0, 1}4, and K1 =
K1

0 ‖ K1
1 ‖ . . . ‖ K1

15, where K1
i ∈ {0, 1}4, respectively.

5.2.0.1 Round Function. The round function of WARP consists of a 4-bit S-box S :
{0, 1}4 → {0, 1}4, a nibble XOR : {0, 1}4 × {0, 1}4 → {0, 1}4, and a shuffle operation π :
{0, . . . , 31} → {0, . . . , 31} applied to 32 nibbles. The round function applies a non-linear unit

transformation involving a single S evaluation and round-key addition for each of two consecutive

nibbles, adds a round constant, and applies π to all 32 nibbles. See Fig. 5.1. The S-box S is

described in Table 5.1. The shuffle π and its inverse π−1 are described in Table 5.2.

5.2.0.2 Encryption and Decryption. The number of rounds of WARP is 41, where the

nibble shuffle operation π in the last round is omitted. For i = 1, . . . , 41, the i-th round uses a

Table 5.2: Shuffle π on 32 nibbles.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

π−1(x) 11 4 9 10 13 22 1 30 7 28 15 24 5 18 3 16
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26
π−1(x) 27 20 25 26 29 6 17 14 23 12 31 8 21 2 19 0

54

Table 5.3: Round constants (listed in hexadecimal).

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RCr

0 0 0 1 3 7 f f f e d a 5 a 5 b 6 c 9 3 6
RCr

1 4 c c c c c 8 4 8 4 8 4 c 8 0 4 c 8 4 c
r 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

RCr
0 d b 7 e d b 6 d a 4 9 2 4 9 3 7 e c 8 1 2

RCr
1 c 8 4 c 8 4 8 0 4 8 0 4 c c 8 0 0 4 8 4 c

64-bit (16 nibbles) round key RKi. Then, an i-th round key RKi is given as RKi = K(i−1) mod 2.

The encryption algorithm of WARP is given in Fig. 5.2. The decryption algorithm is omitted

here. It is obtained by just changing π to its inverse π−1.

WARP uses LFSR-based round constants. A state of 6-bit LFSR is written as (�5, �4, �3, �2, �1, �0)
and is initialized to 000001. It is updated in each round as

(�5, �4, �3, �2, �1, �0) ← (�4, �3, �2, �1, �0, �0 ⊕ �5).

Using this LFSR, we define two nibbles RC0 = (�5, �4, �3, �2) and RC1 = (�1, �0, 0, 0). RC0 and

RC1 are xored to the first and third nibbles of the state (note that the numbering of the nibbles

is from 0 to 31) after the X2i+1 ← S(X2i) ⊕ K
(r−1) mod 2
i ⊕ X2i+1 operation. Let RCr

0 and

RCr
1 be the r-th round constants. For completeness, we list (RCr

0 , RCr
1) for all r = 1, . . . , 41 in

Table 5.3.

Algorithm Encryption(K, M)

1. (K0
0 ‖ K0

1 ‖ . . . ‖ K0
15, K1

0 ‖ K1
1 ‖ . . . ‖ K1

15) ← K
2. X0 ‖ X1 ‖ . . . ‖ X31 ← M
3. for r = 1 to 40 do
4. for i = 0 to 15 do
5. X2i+1 ← S(X2i) ⊕ K

(r−1) mod 2
i ⊕ X2i+1

6. end for
7. X1 ← X1 ⊕ RCr

0 , X3 ← X3 ⊕ RCr
1

8. X ′
0 ‖ X ′

1 ‖ . . . ‖ X ′
31 ← X0 ‖ X1 ‖ . . . ‖ X31

9. for i = 0 to 31 do
10. Xπ[j] ← X ′

j

11. end for
12. end for
13. for i = 0 to 15 do
14. X2i+1 ← S(X2i) ⊕ K0

i ⊕ X2i+1
15. end for
16. X1 ← X1 ⊕ RC41

0 , X3 ← X3 ⊕ RC41
1

17. C ← X0 ‖ X1 ‖ . . . ‖ X31
18. return C

Figure 5.2: Encryption algorithm of WARP.

5.2.0.3 Claimed Security WARP claims single-key security, and does not claim any se-

curity in related-key and known/chosen-key settings.

55

5.2.0.4 Test Vector Table 5.4 shows the test vectors of WARP.

Table 5.4: Test vectors.

B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
K 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
M 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
C 2 4 C E 0 A 8 E F D 9 F 3 2 D E 5 2 9 D 5 F D F 4 5 7 0 3 A 8 D
K 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
M 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 A A B B C C D D E E F F
C 9 2 3 C 6 4 F 9 2 8 2 7 E E 6 2 B 9 6 6 7 D D 2 5 4 8 F B 1 2 C
K 0 A C D 0 2 2 F 6 8 0 A 5 4 7 F E E 0 3 C 0 8 6 7 B 0 9 E 3 D 7
M A F 6 C D D 9 0 F C 5 A 6 E A A 8 9 7 B C D 1 2 0 8 D 3 9 1 E 1
C 6 1 2 3 9 9 5 F 1 9 2 4 D 3 1 4 2 5 6 4 1 A C D D 0 5 8 D D 4 6
B: Branch Index K: Master key M: Plaintext C: Ciphertext

5.3 Design Rationale

As described, the goal of WARP is a 128-bit block cipher enabling small hardware implementation,

both for encryption-only and unified ED circuits, and both for round-based and serial architectures.

We detail the rational of our design choice for each component of GFN below.

5.3.1 Branch Size and Permutation

We choose to use 32-nibble GFN with a 4-bit S-box, instead of 16-byte GFN with an 8-bit S-box.

Although the latter option allows to reuse most of the known design/cryptanalytic results on 16-

branch GFN (SM10, TWINE or LBlock and their cryptanalysis such as [49]), 8-bit S-box is much

inferior to 4-bit S-box in terms of size/delay/energy.

We need a r = 32-branch permutation that is good in terms of diffusion round and resistance

to the major attacks, such as differential and linear attacks. Despite the recent research on many-

branch GFN [34,55,167], this remains a hard problem, simply because the number of permutation

quickly grows (r!). When r = 2s, SM10 shows an r-branch permutation of diffusion round being

2s based on de Bruijin graph, however, according to our random search, there is a huge number of

32-branch permutations having diffusion round of 2 log2 32 = 10. Besides, the differential/linear

Active S-box (AS-box) counts are very different among them, which suggests that we need another

criteria before searching.

After some experiments, we limit ourselves to permutations allowing efficient serial hardware

implementations, which is our main focus (See Section 5.5 for hardware implementation). In

more detail, we searched all permutations of LBlock-like structure that consists of one 16-branch

permutation composed of two identical 8-branch permutations, and one rotation on 16 branches

with an amount of rotation from 0 to 15 nibbles as shown in Fig. 5.3. The resulting search space

has size 8! × 16 ≈ 219.3. The search over this space found 152 candidates of diffusion round

10. We conducted MILP-based differential AS-box counting for them. This evaluation requires

about 2 days on computer equipped with 44 cores and 64 GB RAM.s Among them, 21 candidates

achieved AS-box of ≥ 64 (which is needed for security) at 19 rounds (and no candidates achieved

it at 18 rounds), and 8 out of 21 achieved AS-box of 66, which was the largest among them. These

8 permutations are not isomorphic, however as far as we investigated, the attack characteristics

for other attacks (linear AS-box, impossible differential characteristics etc) are identical for all of

them.

Our investigation implies that they are equivalently secure in practice. Moreover, there is no

difference from the implementation aspects too. Thus, we arbitrarily chose one among them. A

LBlock-like equivalent round function of WARP is shown in Figure 5.4.

56

Table 5.5: Four equivalent classes of 32-branch permutations with 9-round full diffu-
sion [73].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π′

0(x) 3 4 5 12 7 24 9 20 11 2 1 26 15 8 17 30
π′

1(x) 3 10 5 12 7 26 9 20 11 8 1 24 15 18 17 30
π′

2(x) 3 4 5 2 7 24 9 16 11 14 1 28 15 10 17 8
π′

3(x) 3 14 5 12 7 28 9 18 11 22 1 30 15 2 17 24
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π′
0(x) 19 14 21 18 23 28 13 10 27 16 29 6 25 22 31 0

π′
1(x) 19 4 21 2 23 28 13 14 27 22 29 6 25 16 31 0

π′
2(x) 19 26 21 22 23 20 13 30 27 18 25 6 31 12 29 0

π′
3(x) 13 4 21 26 23 10 19 8 27 20 25 16 29 6 31 0

Recently, Derbez et. al [73] showed four equivalent classes of 32-branch permutations achiev-

ing full diffusion after 9 rounds, while WARP requires 10 rounds. However, our MILP-based

evaluation revealed that the number of active S-boxes of these grows much slower than ours. In-

deed, these require at least 32 rounds for achieving AS-box of ≥ 64. Since WARP achieves it

with only 19 rounds, the permutation of WARP is better than them as a 32-branch permutation.

Table 5.5 shows four equivalent classes of 32-branch permutations of π′
0(x), π′

1(x), π′
2(x), and

π′
3(x) achieving 9-round full diffusion found by Derbez et. al [73]. Table 5.6 is a comparison of

lower bounds on the number of active S-boxes for WARP and four permutations by our MILP-

based Active S-boxes counting. As shown in Table 5.6, the number of active S-boxes of π′
0(x),

π′
1(x), π′

2(x), and π′
3(x) grows much slower than WARP. Specifically, π′

0(x), π′
1(x) and π′

2(x),

π′
3(x) require at least 32 and 48 rounds for achieving AS-box of ≥ 64, respectively.

Table 5.6: Lower bounds on the number of Active S-boxes for WARP and four permuta-
tions of π′

0(x), π′
1(x), π′

2(x), and π′
3(x)

of rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
WARP 0 1 2 3 4 6 8 11 14 17 22 28 34 40 47 52 57 61 66

π′
0(x) [73] 0 1 2 3 4 6 8 11 14 19 22 24 26 28 30 32 34 36 38

π′
1(x) [73] 0 1 2 3 4 6 8 11 14 19 22 24 26 28 30 32 34 36 38

π′
2(x) [73] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24

π′
3(x) [73] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24

5.3.2 S-box

According to [11], the small path delay and the small gate area lead to low-energy implementation.

We searched a small-delay and lightweight 4-bit S-box which fulfills the following requirements:

(1) the maximal probability of a differential is 2−2, (2) the maximal absolute bias of a linear

approximation is 2−2 and (3) preferably belonging one of the 30 cubic classes (as given in [46])

that allows decomposition into two quadratic s-boxes, so that it can be used to implement a 1st

order threshold implementation with 3 shares. This helps us have a very lightweight threshold

circuit as well. As a result, we decide to use S-box of Midori (Sb0). Note that other S-boxes used

in low-latency ciphers such as PRINCE and QARMA do not satisfy the requirement (3).

5.3.3 Key Schedule

The key schedule uses alternately the upper and lower half of the 128-bit key in alternate rounds.

This requires only a multiplexer to filter appropriate portions of the round key in each round. As

already outlined in [11,29], an elaborate key schedule function requires a register element to store

and update the key, which is costly in terms of area and energy consumption. Moreover, a simple

57

X2i X2i+1

P

P

R

R : 16-branch Left-shift Rotation

P : 8-branch Permutation

Figure 5.3: General LBlock-like round
function.

X2i X2i+1

Figure 5.4: Equivalent round function
of WARP in LBlock-like structure.

key schedule is particularly beneficial to unified ED circuits, because additional hardware is not

required to construct an inverse key schedule function. A key alternating cipher like WARP with

odd number of rounds, uses the same upper half of the key in the first and the last encryption round

(and indeed in all odd rounds) which implies that the decryption routine would also use the upper

half of the key in the first, last and all odd rounds. Thus, the order of upper/lower half of keys

used in successive rounds is exactly the same for encryption and decryption, thus no additional

overhead is imposed to implement decryption alongside the encryption in hardware. In addition,

the key XOR operation is applied after the S-box to avoid the complement property of Feistel-Type

Structures [50], following the idea of Piccolo [161].

5.3.4 Round Constants

We use LFSR-based round constants as it is simple and efficient to implement in hardware. We use

6-bit LFSR with a primitive connection polynomial, which has a period of 63, and hence sufficient

to cover 41 rounds used in WARP.

5.4 Security Evaluation

We evaluate the security of WARP against differential, linear, integral, impossible differential,

invariant and meet-in-the-middle attacks. Among them, the 21-round impossible differential attack

is considered to be the most efficient for WARP. In our evaluation, we do not expect an effective

key-recovery attack on up to 32 rounds of WARP by using this 21-round impossible differential

distinguisher or even using other ones. Consequently, we conclude that the full-round of WARP is

expected to be resistant to those attacks. The detailed evaluation results will be given as follows.

5.4.1 Differential/Linear Attack

Differential cryptanalsis [45] and linear cryptanalsis [124] are among the most powerful tech-

niques available for block ciphers. To evaluate the security against differential and linear attacks,

we compute the lower bound for the number of differentially and linearly active S-boxes with

a MILP-aided automatic search method, which was proposed by Mouha et al. [133]. We use

Gurobi [97] as the solver and search for all nibble-wise truncated differential and linear character-

istics.

58

Table 5.7 shows the minimum number of differentially and linearly active S-boxes for up to

19 rounds in the single-key setting, where ASD and ASL denote the number of differentially and

linearly active S-boxes, respectively. It can be observed from Table 5.7 that WARP has more than

64 active S-boxes after 19 rounds. Since the maximum differential probability and absolute linear

bias of the S-box of WARP are both 2−2 and the nibble-wise full diffusion requires 10 rounds, even

with a 19-round differential distinguisher, we expect that an effective key-recovery attack cannot

reach up to 19 + 12 = 31 rounds. In a word, the full-round WARP is secure against differential

and linear attacks.

Table 5.7: The lower bound for the number of differentially and linearly active S-boxes in
the single-key setting.

#Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ASD/ASL 0 1 2 3 4 6 8 11 14 17 22 28 34 40 47 52 57 61 66

5.4.2 Impossible Differential Attack

Generally, an impossible differential attack [42] is one of the most powerful attacks against Feistel-

type ciphers. The impossible differential attack exploits a pair of input-output difference denoted

by Δin and Δout such that Δin will never reach Δout after several rounds.

As mentioned in Section 5.3, WARP achieves the full diffusion after 10 rounds at both the

encryption and decryption sides in nibble-wise. Based on a more detailed investigation, we found

that the full diffusion requires 12 rounds at both the encryption and decryption sides in bit-wise.

Hence, there should be no probability-1 bit-wise impossible differential over 24 rounds.

In order to obtain the longest impossible differential distinguisher, we utilize an impossible

differential search tool based on MILP designed by Sasaki and Todo [158]. Specifically, we eval-

uate the search space such that the plaintext difference and ciphertext difference activate only one

bit, respectively. To model the propagation of differences through the 4-bit S-box, we take into

account the differential distribution table for the 4-bit S-box. Based on the method as proposed

in [166], it can be modeled with the linear inequalities.

As a result, we find the following 21-round impossible differential distinguisher.

(0000000000001000
00)

21 rounds−−−−−−→ (0010000000000000000000
00)

According to Boura et al’s work [54] in ASIACRYPT 2014 and the corresponding interpre-

tation [72] by Derbez in FSE 2016, when extending the 21-round impossible differential distin-

guisher for 10 rounds, the required time complexity of the key-recovery attack is almost close to

a pure exhaustive key search. Therefore, we do not expect an effective key-recovery attack on up

to 32 rounds of WARP by using this 21-round impossible differential distinguisher. In a word, we

expect that the full-round WARP is secure against the impossible differential attack.

5.4.3 Integral Attack

The integral attack was first proposed by Daemen et al. [63] and it was later formalized to the

integral property by Knudsen and Wagner [110]. We define the four states for a set of 2n n-bit

cell: A: if ∀i, j i �= j ⇔ xi �= xj , C: if ∀i, j i �= j ⇔ xi = xj , B:
⊕2n−1

i xi, and U: Other. The

59

integral attack was further generalized to the division property by Todo [170], which can exploit

the hidden feature between A and B states.

To evaluate the nibble-based division property, we use a MILP-aided automatic search method

proposed by Xiang et al. [177], which enables us to efficiently explore the propagation of the

division property. Specifically, we evaluate all the cases where 1, 2, 3 nibbles out of 32 nibbles are

C and the others are all A in plaintexts. Thus, we need to evaluate 223.2
(
=
(32

1
)

+
(32

2
)

+
(32

3
))

nibble-wise patterns.

In this way, we find the following 20-round integral distinguisher.

(AAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAA)
20 rounds−−−−−−→ (UUUBUBUUUUUUUUUBUUUUUUUUUUUUUBUU)

However, due to the high data complexity of this integral distinguisher, one can extend only 1

round to achieve a key-recovery attack and its time complexity is almost close to an exhaustive key

search. One may find an integral distinguisher by using a lower data complexity, but the number of

rounds will be reduced. Considering that the nibble-wise full diffusion requires 10 rounds and that

a common integral distinguisher covering larger rounds always requires a higher data complexity,

we expect that the full-round WARP is secure against integral attacks.

5.4.4 Meet-in-the Middle Attack

We evaluate the security against the meet-in-the-middle attack following the method appeared in

the self-evaluation of Midori [11] and CRAFT [30]. The 10-round full diffusion property guaran-

tees that any inserted key-bit non-linearly affects all branches after the 10 rounds in the forward

and the backward directions, respectively. Thus, the possible number of rounds used for the partial

matching (PM) [157] is estimated as 19 (= (10 − 1) + (10 − 1) + 1). The condition for the initial

structure (IS) [157] is that key differential trails in the forward direction and those in the backward

direction do not share active non-linear components. For WARP, since any key differential affects

all 16 S-boxes after at least 10 rounds in the forward and the backward directions, there is no such

differential which shares active S-box in more than 10 rounds. Thus, the number of rounds used

for IS is upper bounded by 9. Assuming that the splice-and-cut technique allows an attacker to

add more 3 rounds in the worst case, at most 32-round (19 + 10 + 3) MitM attack may be feasible.

However, because of the iterated key insertions of K0 and K1 for every two round, we consider

that it is difficult to mount a 32-round attack on WARP.

5.4.5 Invariant Subspace Attack

We use LFSR-based round constants in each round. Following the notions presented in [25], we

first tried to find the smallest L-invariant subspace that contains all roundkey differences. Here, L
denotes the transformation that describes the linear layer in WARP. Since WARP adds two key

halves in an alternating fashion, the master keys repeat every other round, the set of roundkey

differences in the even/odd rounds are given by

Deven = {RCr ⊕ RCr+2 : i ∈ {0, 2, . . .}}, Dodd = {RCr ⊕ RCr+2 : i ∈ {1, 3, . . .}},

where RCr is the 128-bit vector defined as (04 ‖ RCr
0 ‖ 04 ‖ RCr

1 ‖ 0112). Denoting D = Deven ∪
Dodd, we try to find WL(D), which denotes the smallest L-invariant subspace containing D. We

found that WL(D) is a subspace of dimension 124, which does not automatically guarantee resis-

tance to subspace attacks. As the invariant attack applies only if there is a non-trivial invariant g
for the S-box layer such that WL(D) ⊂ LS(g), where LS(g) is the subspace of all linear struc-

tures of the function g. We ran Algorithm 1 of [25] on Z = WL(D) first to see if S(Z) hits all

60

the cosets of Z. Experimentally we found that it does indeed, leading us to conclude that g is the

constant function which guarantees security against subspace attacks.

5.5 Hardware Performance

One of the principal objectives for our design was efficiency in constrained platforms with respect

to multiple metrics of lightweight cryptography. Hence we looked at area, energy and latency

which are widely acknowledged to be factors that determine the quality of a design. We first

convert the round function to an LBlock-type architecture that helps us construct an efficient se-

rial hardware architecture for WARP. Consider a 2-branch Feistel network, with a 128-bit block

composed of Xa||Xb (each of 64 bits). Further let Xa[i], Xb[i], K[i], ∀ i ∈ [0, 15] denote the

individual nibbles of the branches, and the roundkey respectively. Then the LBlock-type function

defined below in Fig 5.5, can also be used to define the specifications of WARP.

Round Function(Xa, Xb, K)
for i = 0 to 15 do

T [π[i]] ← S(Xa[i]) ⊕ K[π[i]], -- Sbox, shuffle left branch,addkey
U [i] ← Xb[6 + i mod 16], -- Rotate 6 nibbles (right branch)

for i = 0 to 15 do
U [i] ← U [i] ⊕ T [i], -- Add left, right branches

U [0] ← U [0] ⊕ RC0, U [1] ← U [1] ⊕ RC1 -- Round const add
for i = 0 to 15 do

Xb[i] ← Xa[i], Xa[i] ← U [i] -- Swap left, right branches

Figure 5.5: Alternative definition of Round Function

In this definition, π is a permutation which maps i to the i-th element of the following set:

{3, 7, 6, 4, 1, 0, 2, 5, 11, 15, 14, 12, 9, 8, 10, 13}. It is elementary to show that the encryption routine

defined by 41 iterations of the round function in Fig 5.5 (with the left-right swap omitted in the

last round) is equivalent to the definition of the encryption algorithm of WARP up to a shuffle of

nibbles.

5.5.1 Nibble Serial Architecture

Figure 5.6 shows the architecture for WARP. Each storage element colored yellow/white in the fig-

ure is a 4-bit scan/normal flip-flop respectively. Apart from 4-bit xor gates required for round key

addition, left-right branch addition, and round-constant addition, we have used a few multiplexers

to manoeuvre data through the circuit. The circuit uses only one S-box, and in addition we have a

key-multiplexer that filters roundkey nibbles from the 128-bit master key (which is not shown in

the figure for space constraints). The circuit computes one round function of WARP in 48 cycles.

Following is the cycle-by-cycle description of the circuit operations.

Cycle 0-31: In the first 32 cycles, the plaintext nibbles are loaded on to the state register. After

this, the round counter resets to 0, and the following operations are repeated 41 times.

Cycle 0-15: Before this set of cycles start, the left branch of the state, resides in the storage

elements marked 37 to 20, and the right branch in those marked 17 to 00, as shown in Figure

5.6. In 17 to 00, we need to rotate the right branch by 6 nibbles. This is done as follows: a

circular shift is performed for 16 cycles, which is somehow arrested for 10 cycles, to achieve

the equivalent functionality of 6 nibble rotation. The 16 nibble flip-flops are divided into 3

groups of 10, 1, 5 (00 to 11, 12 and 13 to 17). An internal circular rotation of nibbles takes

61

00 01 02 03 04 05 06 07

1716151413121110

2726252423222120

3736353433323130

� � � � � � �

� � � � � � �

�

Permutation Permutation−1 Rotate

⊕

⊕

Sbox

�

�

� �

⊕

RCon

Round Key

�

�

Plaintext

4

�

Ciphertext

AddC

Figure 5.6: Nibble serial architecture for WARP. The filter that feeds the permuted
roundkey is omitted in the diagram.

place for 10 cycles within each group. Since 10, 1 and 5 are divisors of 10, this rotation

effectively executes the identity transformation on the right branch. Thereafter, a normal

circular rotation over the entire set of 16 nibbles (00 to 17) occurs for the next 6 cycles, thus

achieving the required functionality.

In the upper half, the shuffling denoted by the permutation π is performed on the left branch

(note that the order of shuffle and addkey/sbox is interchangeable). We further take ad-

vantage of the fact that π can be defined in terms of the 8-element permutation function

π′ = {3, 7, 6, 4, 1, 0, 2, 5} over [0, 7] and [8, 15] (i.e. π[i] = π′[i] if i < 8 and 8 + π′[i − 8]
otherwise). This being so, only the nibbles marked 20 − 27 need to be scan flip-flops. We

perform a circular motion over the left branch nibbles (20 to 37) for these 16 cycles (AddC
is set to 0 for this purpose), with the select signal controlling the scan flip-flops being SET
at cycles 7 and 15. At cycle 7, the most significant nibbles of the left branch reside at the

flip-flops marked 26 to 20 and 37. When the scan flip-flops are SET during this cycle, the

wiring ensures that at cycle 8, these nibbles are shuffled by π′ and stored in 27 to 20. A

similar logic applies to the shuffle in cycle 15. At this cycle, the least significant nibbles of

the left branch reside at the flip-flops marked 26 to 20 and 37. The SET signal of the scan

flip-flops in this cycle ensures shuffling by π′ in the next cycle.

Cycle 16-31: The left branch nibbles are driven out of 37 input to the S-box and then xored with

the corresponding key nibble. The output is added with the right branch nibbles which are

driven out of 17. The nibbles driven out from 37 are driven back into 20 (thereby causing a

circular shift of 16 nibbles which is essentially the identity function). The output of the final

xor is driven into 00. Thus after cycle 31, the lower flip-flops (17 to 00) thus contain the

output of the round function. The upper flip-flops (37 to 20) continue to hold the left branch

of the current round (however the nibbles are shuffled with the permutation π executed in

cycles 0 to 15).

Cycle 32-47: We need to undo the shuffling of the left branch and then swap the 2 branches.

This is done serially over 16 cycles, by a circular rotation over the 32 flip-flop nibbles (37 to

00). The nibbles driven out of 17 are driven into 20, and thus after this set of 16 cycles, the

flip-flops in the upper half (37 to 20) will contain the round function output. The nibbles out

of 37 are driven into 00 and it is here that the π−1 is performed to undo the shuffle. Note that

62

Table 5.8: Comparison of performance metrics for serial implementations synthesized
with STM 90nm Standard cell library. Figures separated by / indicate corresponding
metrics for encryption/decryption. *Synthesized with the IBM 130 nm process/Power at
100 KHz

Degree of Area Delay Cycles TPMAX Power (μW) Energy
Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

GIFT-128-128 4/32 1455 2.25 714 76.0 61.7 4.40
GIFT-128-128 1 1213 2.46 6528 7.6 40.3 26.30
SKINNY-128-128 8 1638 1.95 840 74.5 79.1 6.64
SKINNY-128-128 1 1110 0.81 6976 21.6 53.8 37.53
SIMON 128/128 1 1077 1.17 4480 23.3 60.5 27.10
Midori 128 (E) 8 1308 4.94 415 62.4 54.4 2.26
Midori 128 (ED) 8 1401 6.08 415/463 50.7/45.5 54.6 2.27/2.53
AES 128 (ED) 8 2060 5.79 246/326 85.7/64.7 129.7 3.19/4.23
AES 128 (E) [102] * 1 1560 - 1776 - 0.823 14.61
AES 128 (ED) [102]* 1 1738 - 1776/2512 - 0.852 14.61/15.13
WARP (E) 4 871 2.97 2032 20.2 33.2 6.76
WARP (E) 1 763 2.01 8128 7.5 28.4 23.04
WARP (ED) 4 925 2.58 2032 23.3 34.6 7.03
WARP (ED) 1 806 2.13 8128 7.1 29.0 23.59

in the bottommost row, the scan flip-flops are wired to perform π−1. The select signals are

SET in cycles 40 and 47 to perform π′−1 over the lower and upper set of 8 nibbles exactly

as in cycles 16-31. This not only moves the left branch nibbles to the lower flip-flops but

also undoes the shuffle performed in cycles 0-15, and so we are ready to perform the next

round computations. Note that the round constants are added to the register 17 in cycles 32

and 33. This completes the round function. Note that since the left-right swap is omitted in

the last round, the ciphertext is output from the flip-flop marked 17 rather than 37.

More circuit details of bit-serial and unified architecture for encryption and decryption are

presented in Sect. 5.5.4.

5.5.2 Performance Results

In Table 5.8, we compare the hardware performances of the serial implementations of WARP with

other lightweight ciphers, with 128-bit block size and providing 128-bit security. Unless otherwise

specified, for all the designs in the table, the following design flow was adhered to. The ciphers

were first implemented in VHDL and a functional simulation was done using the Mentorgraphics
Modelsim software. Thereafter the design was synthesized using the Standard cell library of the

STM 90nm CMOS logic process (CORE90GPHVT v 2.1.a) with the Synopsys Design Compiler,

with the compiler flag set to compile ultra. A timing simulation was done on the synthesized

netlist with 1000 test vectors. The switching activity of each gate of the circuit was collected

while running post-synthesis simulation. The average power was obtained using Synopsys Power

Compiler, using the back annotated switching activity.

Serial implementations are deployed when area is one of the primary metrics to be optimized.

As can be seen from Table 5.8, WARP performs well as far as area is concerned, when compared

with other ciphers with similar security level. As in [11, 29], we used multiplexers to filter round

keys, instead of a register, which saves us 100 to 150 GE of silicon area. The encrypt-only (E)

bit-serial version of WARP occupies only 763 GE which is the lowest reported at this security

level. Note that for a fair comparison, all the designs in Tables 5.8, 5.9 were implemented from

scratch except the ones marked by an asterisk.

5.5.3 Round Based and Round Unrolled Designs

While serial implementations are useful to construct low area architectures, round based and round

unrolled architectures offer a lot of benefits such as good energy performances, in addition with

63

Table 5.9: Comparison of performance metrics for round based implementations synthe-
sized with STM 90nm Standard cell library (1R, 2R, 4R refer to 1, 2, and 4 round unrolled
circuits).

Area Delay Cycles TPMAX TPMAX/Area Power (μW) Energy
(GE) (ns) (GBit/s) MBit/(s·GE) (@10MHz) (pJ)

GIFT-128-128 1997 1.85 41 1.611 0.826 116.6 478.1
SKINNY-128-128 2104 1.85 41 1.611 0.784 132.5 543.3
SIMON 128/128 2064 1.87 69 0.937 0.465 105.6 728.6
Midori 128(E) 2522 2.25 21 2.649 1.076 89.2 187.3
Midori 128(ED) 3661 2.44 21 2.443 0.683 108.7 228.3
AES 128 7215 3.83 11 3.113 0.442 730.3 803.3
WARP (1R) (E) 1187 2.05 42 1.418 1.223 55.5 233.2
WARP (1R) (ED) 1390 1.74 42 1.671 1.231 59.5 250.0
WARP (2R) (E) 1456 1.95 22 2.911 2.047 58.4 128.5
WARP (2R) (ED) 1824 2.67 22 2.126 1.193 69.9 153.7
WARP (4R) (E) 2223 3.25 12 3.334 1.536 117.5 141.0
WARP (4R) (ED) 3075 3.93 12 2.758 0.918 177.4 212.9

reasonably good area and throughput performances. In [14], the authors studied a number of block

ciphers and came to the conclusion that round based or 2-round unrolled implementations tend to

be the most energy efficient configurations for block ciphers.

For WARP, the round based configuration would need to filter the upper or the lower key

half in successive rounds. Thus a multiplexer is necessary for this filtering. In contrast a 2-round

unrolled configuration performs 2 round function computations in a single clock cycle. Such a

configuration would have circuits for 2 round functions placed serially one after the other. This

obviates the use of a multiplexer to filter any round keys, as it is clear that the first round function

block can simply use the upper key half and the second block can similarly use the lower half.

Thus a 2-round unrolled circuit would consume proportionately lesser resources than a round

based circuit both in terms of area and energy. Similar arguments can be made about odd and

even round unrolled circuits for WARP. We experimented with 3 configurations for WARP: the

round based, the 2 round and the 4 round unrolled circuits. The simulation results along with a

comparison with other lightweight block ciphers is presented in Table 5.9. Indeed, in terms of

energy, the 2-round unrolled configuration is the best and is around 30% better with respect to the

one round configuration of Midori 128, a block cipher, which is the most energy efficient block

cipher reported in literature. Note that WARP has odd number of rounds: this means that any

even round unrolled implementation will do some redundant computation in the final cycle. For

example, a 2-round unrolled implementation will need to operate 21 cycles, to execute 41 round

functions: the final cycle performs one additional round function. This amounts to wastage of

energy in the final cycle: however this is a small fraction of the total energy consumed (for WARP
it is less than 1% of the total energy consumed). Figure 5.7 further shows a breakdown of area

occupied by the corresponding components of the circuit. Sect. 5.5.4 also describes a 1st order

threshold implementation of the WARP circuit.

5.5.4 More Details about Hardware Implementations

5.5.4.1 Bit Serial Architecture The nibble serial architecture can be converted to a bit

serial architecture, with some simple circuit-level transformations. The first is explained in Figure

5.8.

Any nibblewise scan flip-flop can be serialized as shown in Figure 5.8, so that only one scan

flip-flop per nibble is utilized. Whereas in the nibble serial architecture, the circuit can transfer

one of the 2 nibble signals in one clock cycle, the same can be done over 4 cycles in the bit-

serial architecture. Thus the bit-serial circuit can perform the same set of round operations in

48 × 4 = 192 cycles, in 3 sets of 64 cycle operations as in the nibble serial circuit. We save

18 × 3 = 54 scan flip-flops in the bit-serial architecture, and also 4-bit xor gates and multiplexers

64

Round Based (1187 GE) Nibble Serial (871 GE) Bit Serial (763 GE)

State Register - 670 GE

S-box - 156 GE

Control System/other gates - 20 GE

64-bit 3-Xor gate -200 GE

64-bit Multiplexer - 140 GE

Key Filter - 277 GE

State Register - 543 GE

S-box - 10 GE

Control System/other gates - 40 GE

Key Filter - 277 GE

State Register - 451 GE

S-box - 10 GE

Control System/other gates - 25 GE

56.4%

13.2%
1.7%

16.9%

11.8%

31.8%

62.4%

1.2%4.6%

36.3%

59.1%

1.3%3.3%

Figure 5.7: Breakdown of component-wise area figures for 3 versions of WARP. Nibble
and Bit-serial circuits require lesser scan flip-flops which require more area

a0
b0

a1
b1

a2
b2

a3
b3

ai
bi

∀i ∈ [0, 3]

C0

C1

C2

C3

C0 C1 C2 C3

Figure 5.8: Nibble to bit serial transformations
can be replaced with corresponding single bit gates.

5.5.4.2 Unified Circuit for Encryption and Decryption Implementing the function-

alities of encryption and decryption (ED) on the same circuit can be beneficial in some instances.

Various modes of operations like CBC, XTS, OCB and COLM [6], that use block ciphers as the

underlying primitive, require access to both its encryption and decryption functionalities. Thus

it is useful to have an implementation that achieves both functionalities of a block cipher with

minimal overhead. There are several features in the Feistel network structure, that make it easier

to construct the ED architecture. Some of them are as follows:

1. SPN structures generally require involutive S-boxes to ensure efficient ED implementation

[11,29]. If not, they require the circuits for the forward and inverse S-box to be implemented

together, which increases area [16]. However the inverse round function in Feistel networks

can be described with the forward S-box only. This gives us more freedom to search for

S-boxes with lightweight characteristics.

2. Some SPN block ciphers, e.g., [29] require the decryption key to be equal to L · K, where

L denotes the matrix that forms the linear layer of the cipher. Thus additional circuit for

matrix multiplication is required. Also a multiplexer is required to filter these keys for

encryption/decryption. In the architecture for WARP, this is not necessary.

3. Let FK denote the function that performs S-box function and the roundkey addition on the

left branch. Then by slight abuse of notation we can write the round function as

Ya = P (FK(Xa)) ⊕ (Xb ≪ 6), Yb = Xa (5.1)

where P is the function that performs the nibblewise shuffle of the left branch by moving the

i − th nibble to π[i]. Then it is easy to see that the inverse round function is Xa = Yb, Xb =
(P (FK(Yb)) ⊕ (Ya)) ≫ 6. However we do omit the left-right swap in the last round, and

65

as a result, decryption can be computed by iterating the following round function 40 times,

followed by a “swapless” final round:

Xa = (P (FK(Ya)) ⊕ (Yb)) ≫ 6, Xb = Ya. (5.2)

Equations (5.1) and (5.2) are similar except that in encryption, the right branch is left rotated

by 6 nibbles before addition, whereas in decryption, rotation done is after xoring left and

right branches, this time by 6 nibbles towards the right. Since WARP uses each half of the

master key in alternate rounds for key addition, it has been designed to have odd number of

rounds. This means the first and last round encryption keys are the same, which implies that

the encryption and decryption uses the left and right halves of the key in the same order.

Thus the only real overhead in the ED circuit for WARP is to accommodate left and right

rotation by six nibbles in different times of the decryption cycle, and arrange for round constants

to be generated in the reverse direction, which only requires some strategically placed multiplexers

to accommodate the timing of these operations in the decryption cycle.

In essence, one approach would be to not rotate the right branch during cycles 0 to 15, and do

rotation only during cycles 31 to 47 when the xoring of right and left branches has been completed.

However, this approach is slightly problematic to adopt, as cycles 31 to 47 are used to not only

swap left and right branches but also to apply π−1 to the left branch as it is being moved to bottom

rows of flip-flops. In such a situation the bottom rows cannot accommodate two different types of

permutation operations at the same time.

As a result, we need to exercise some fine-grained control over the ED circuit. For decryption,

we rotate the right branch by 10 nibbles left in cycles 0-15 (same as 6 nibbles right rotation),

although this rotation is not required as per Equation (5.2). Thus to maintain functionality, in

cycles 16-31, we drive nibbles out through register 11 to do xor between left and right branches

(this was done through flip-flop 17 during encryption). After xor, the incoming nibbles are driven

in through flip-flop 12 (this was done through 00 during encryption). This method has the added

advantage that after round 31, the flip-flops 17 − 00 already contain (P (FK(Ya)) ⊕ (Yb)) ≫ 6.

This allows us to have the decryption operations in cycles 32-47 exactly the same in encryption.

For completeness, we discuss two more issues. First, for decryption we choose, cycles 0

and 1 for round constant addition, as this operation has to precede the non-linear operations. To

rotate left by 10 nibbles, we need to freeze rotation for 6 cycles. Like in encryption, we divide

the bottom row into groups of 6, 6, 2, 2 flip-flops and do internal rotation in these for 6 cycles.

To accommodate this operation we need to replace 3 normal flip-flop nibbles with scan flip-flop

nibbles.

5.5.4.3 Threshold Implementations The s-box belongs to the cubic class C266 as per

the classification in [46] and as such it can be decomposed into 2 quadratic s-boxes F ◦ G, where

G = [0, f, 6, 1, 3, 8, d, e, 4, b, 2, 5, 7, c, 9, a],
F = [c, 3, 1, e, 8, 5, d, 0, b, 4, 6, 9, 2, f, 7, a]

Since a minimum of d+1 shares are required to implement the 1st order threshold implementation

(TI) of a degree d s-box, we can thus implement a 3 share 1st-order TI in the manner shown

in [143]. The idea is to implement the TI of G and F separated by a register bank in between,

which suppresses the glitches produced by the TI of G.

Since the s-box has degree 3, a straightforward 4-share TI can also be implemented using

a direct sharing approach. With regards to circuit architecture, the 4 share versions would only

consist of 4 copies of the unshared circuit combined through a shared s-box. The 3-share circuit

is slightly complicated owing to the fact that the shared G, F functions have to be executed one

66

Table 5.10: Comparison of performance metrics for serial implementations synthesized
with STM 90nm Standard cell library. (RB denotes round based circuit, 3s, 4s denotes
circuits with 3, 4 shares respectively) *Synthesized with the UMC 180nm process/Power
at 100 KHz. **Synthesized with the IBM 130nm process/Power at 100 KHz

Degree of Area Delay Cycles TPMAX Power (μW) Energy
Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

PRESENT-80 (3s)∗ [143] 4 2282 - 547 - 5.1 28.16
SKINNY-128-128∗∗ (3s) [28] 8 3780 1.63 872 90.0 - -
WARP (3s) 4 2288 3.11 2032 19.3 99.9 20.29
WARP (3s) 1 1964 2.54 8128 5.9 87.0 70.72
WARP (3s) RB 6033 2.73 83 545.3 232.5 1.93
WARP (4s) 4 3363 3.12 2032 19.3 145.7 29.61
WARP (4s) 1 3060 3.26 8128 4.6 136.6 111.03
WARP (4s) RB 15761 3.38 42 880.9 703.3 2.95

after the other. We implemented it in the manner shown in Figure 5.9. In the unprotected circuit

described earlier, the S-box layer is computed in cycles 16 to 31. And so in the shared circuit, we

implement the shared function G in cycles 15 to 30 and the shared function F in cycles 16 to 31.

However this creates another problem, as the entire left branch is overwritten by the output of the

shared G layer before being fed back into register 20. Since the current left branch is required to

serve the role of the right branch in the subsequent round, we need to invert the G layer before we

proceed to the next round. This is done by implementing a shared implementation of the quadratic

s-box G−1 between registers 20 and 21, which is operated from cycles 17 to 32.

00 01 02 03 04 05 06 07

1716151413121110

2726252423222120

3736353433323130

� � � � � � �

� � � � � � �

Permutation Permutation−1 Rotate

⊕

⊕

F

�

� �

⊕

RCon

Round Key

�

�

Plaintext

�

Ciphertext

AddC

G

G−1

�

�

Figure 5.9: Sketch of the 3 share nibble serial architecture for WARP

Table 5.10 shows the performance results for the 3-share and 4-share implementations of

WARP. The smallest 3-share implementation stands at 1964 GE which is smaller than known

implementations of SKINNY and PRESENT (although these are computed at different level of

serialization).

67

5.6 Software Performance

5.6.1 On 8-bit AVR Microcontrollers

The design of WARP makes it flexible to make trade-offs to achieve various performance charac-

teristics on 8-bit AVR. Applying different implementation choices results in different trade-offs

between ROM, RAM, and execution time. Sect. 5.7.1.1 presents the details of our implemen-

tations. Table 5.11 and 5.12 summarizes the results and comparison with available results of

existing designs with same parameters. It can be seen, on one end of the spectrum, WARP con-

sumes minimized RAM and competitively low ROM; On the other end, it achieves relatively good

performance regarding CPU cycles without consuming too much ROM. Compared with other ci-

phers, there are two characters on the architecture of WARP, which are the almost self-reciprocal

structure and the extreme simplicity of the key schedule. These two characters make the code

size competitively small when all encryption, decryption, and key-schedule are required to be im-

plemented. The lower level choices on the nibble-oriented operations make it flexible to make

trade-offs.

5.7 On High-end Processors

The nibble-orientate character of WARP enables implementations of it fit neatly with a Single

Instruction Multiple Data (SIMD) instruction commonly seen on modern CPUs. This SIMD in-

struction performs a vector permutation providing a look up table representation of the permutation

offsets, which are called Vector Permutation Instruction (VPI) [168]. Examples of CPUs equipped

with VPIs includes Motorola AltiVec (the vperm), Intel and AMD x86-64 (the (v)pshufb), and

ARM NEON (the vtbl). Concretely, take (v)pshufb that is avaiable on Intel and AMD x86-64

CPUs and was used in our implementations, as an example, denote the source operands by a and

b hold in two 128-bit registers, and let the destination operand be c. The resulted value c[i] in the

i-th byte position of c will equal a[b[i]] for 0 ≤ i < 16 if the most significant bit of b[i] is not equal

to 1, and 0 otherwise. The byte b[i] in b encodes the index of the byte in a that will be moved into

c[i]. Thus, only the lower 4 bits of b[i] are used to encoding the index. For Intel and AMD x86-64

CPUs, the concrete VPI is named (v)pshufb (which were used in our implementations). Both

the parallel 4-bit S-box and the nibble shuffle operation can be implemented using (v)pshufb.

The difference lies in that for the former, the inputs to the S-boxes act as the index, whereas for

the latter, the table representation of the permutation act as the index. Thus, the round function

of WARP can be fully implemented using a few (v)pxor and (v)pshufb. In Sect. 5.7.1.2, we

present the details of our implementations of WARP using SIMD instructions on x64 CPUs. Our

benchmark results of WARP, together with that of two ciphers that are also designed targeted at

hardware, i.e., SIMON and SKINNY, are reported in Figure 5.10.

The software performance of WARP on high-end processors has the following advantages.

First, apart from mode of operations that can be parallelized, for those that cannot, WARP also

provides competitive performance, because the single-block implementation of WARP can be very

fast. Besides, for those modes that can be parallelized, the latency of WARP can be very small,

because the required number of message blocks to achieve the optimal performance is relatively

small. Second, in the scenario where a server communicates with many sensors using different

keys, WARP can be very fast, because there is no heavy key schedule.

The source codes for our software implementations can be found via https://github.com/
WARP-Block-Cipher/Software.

68

Table 5.11: Different performance characteristics of WARP on 8-bit AVR

Unroll Features Function ROM [B] RAM [B] Time [cyc.] Speed [cpB]

One-
Round

One-Sbox ROM
ENC (908 - 46) 862 (160 - 160) 0 56408 440.69
DEC (914 - 46) 868 (160 - 160) 0 56762 443.45
ENC+DEC (996 - 46) 950 (160 - 160) 0 113170 884.14

One-Sbox
RAM

ENC (956 - 46) 910 (176 - 160) 16 50554 394.95
DEC (962 - 46) 916 (176 - 160) 16 50908 397.72
ENC+DEC (1044 - 46) 998 (176 - 160) 16 101462 792.67

Two-Sbox
ROM

ENC (1084 - 46) 1038 (160 - 160) 0 40664 317.69
DEC (1090 - 46) 1044 (160 - 160) 0 41018 320.45
ENC+DEC (1172 - 46) 1126 (160 - 160) 0 81682 638.14

Two-
Round

Two-Sbox
ROM

ENC (1404 - 46) 1358 (160 - 160) 0 36504 285.19
DEC (1406 - 46) 1360 (160 - 160) 0 36506 285.20
ENC+DEC (1516 - 46) 1470 (160 - 160) 0 73010 570.39

Two-Sbox
RAM

ENC (1264 - 46) 1218 (416 - 160) 256 34348 268.34
DEC (1266 - 46) 1220 (416 - 160) 256 34350 268.36
ENC+DEC (1376 - 46) 1330 (416 - 160) 256 68698 536.70

5.7.1 More Details of Software Implementations

5.7.1.1 Details of Software Implementations on 8-bit AVR In this section, we

report various performance of our software implementations of WARP on Atmel 8-bit AVR. The

implementations were written in assembly and compiled using AVR macro assembler 2.2.7 in

Atmel Studio 7.0. The considered performance metrics include the code sizes (ROM), RAM

usage, and execution time (CPU cycles), which were also measured using Atmel Studio 7.0. All

implementations followed the equivalent LBlock-type structure (see Figure 5.4 and 5.11b). For

detailed implementation, we considered the following choices:

1. One-round or two-round unrolling: combining two rounds can save the shuffle operation

between left and right branches, trading ROM for CPU cycles. Note that the nibble-shuffle

π on the left branch requires no additional procedure when hard-coding the correspondence

between the XORed nibbles.

2. One-S-box or two-S-box combining: combining two 4-bit S-boxes to an 8-bit can reduce

times of memory accesses, trading ROM or RAM for CPU cycles.

3. Storing the look up table (LUT) of the S-box in RAM or ROM: storing the LUT in ROM

can minimize the consumption of RAM; the downside is on the one extra CPU cycle per

memory access.

Applying different choices results in different trade-offs between ROM, RAM, and execution time.

Table 5.11 summarizes the evaluation results of our various implementations; Table 5.12 presents

two representative results together with the available results of other block-ciphers (with 128-bit

block and key) for comparison. It can be seen that, on one end of the spectrum, the implementation

of WARP can consume minimized RAM (excluding the scenario-specific RAM data, such as data

to be encrypted, master keys, and initialization vectors.) and competitively low ROM. On the other

end of the spectrum, the implementation can achieve relatively good performance regarding CPU

cycles without consuming too much ROM. Compared with other ciphers, there are two characters

on the architecture of WARP, which are the almost self-reciprocal structure and the extreme sim-

plicity of the key schedule. These two characters make the code size competitively small when all

encryption, decryption, and key-schedule are required to be implemented. The lower level choices

on the nibble-oriented operations make it flexible to make trade-offs.

5.7.1.2 Details of Software Implementations on x64 CPUs We implemented

the serial processing of message block using 128-bit registers, the parallel processing of double

or more blocks using 256-bit registers. Because of the byte-orientate character of the (v)pshufb

69

Table 5.12: Performance of block ciphers (128-bit block and 128-bit key) on 8-bit AVR

Cipher Block [b] Key [b] ROM [B] RAM [B] Time [cyc.]

AES 128 128 3000 (406 - 160) 246 58973
LEA 128 128 1650 (629 - 160) 469 61755
SKINNY 128 128 1124 (545 - 160) 385 77451
SPARX 128 128 1726 (751 - 160) 591 84390
WARP [1R] 128 128 1126 (160 - 160) 0 81682
WARP [2R] 128 128 1330 (416 - 160) 256 68698

The target device is ATmega128; The scenario is encryption/decryption of 128 bytes of data in CBC mode [75].
For ROM, that consumed by the main function for initializing data and calling the enc/dec functions are
subtracted. For RAM, that required for storing the data to be processed, the master key, and the initialization
vector are subtracted. WARP [1R] is for the one-round-based implementation storing the LUT of two-S-box in
ROM. WARP [2R] is for the two-round-unrolled implementation storing the LUT of two-S-box in RAM. Results of
other ciphers are from https://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results.

instruction, in each byte of the 128- or 256-bit registers, only the lower 4 bits are used. Half of the

32 branches of one (resp. two) block are stored within one 128-bit (resp. 256-bit) register.

The detailed implementation choices we considered are as follows.

1. Using equivalent form: similar to TWINE [168], it is possible to transform WARP into an

equivalent form (see Figure 5.12), in which only half branches go through a nibble shuffle

in each round10. We denote a shuffle of 16 nibbles by “half shuffle”. Four different half

shuffles are required for round functions because the shuffle parameters form a loop every

four encryption rounds. Additionally, eight different shuffles are required to get equivalent

round keys because the shuffle parameters for round keys form a loop every eight rounds.

Details of the shuffle parameters can be seen in Figure 5.12.

2. Using three-operand instructions in AVX2: The two-operand instruction, pshufb in SSSE3,

performs in-place shuffles and thus, original data in the first operand will be destroyed.

Whereas, the three-operand instruction vpshufb, keeps the source data, and stores the re-

sult in a third register. To implement parallel S-boxes using pshufb/vpshufb, the table

representation of the S-box must be in the first source operand. Using pshufb, this table

representation will be replaced by the result, thus inevitably requires reloading; Whereas,

using vpshufb, it will not be destroyed and thus avoid the frequent reloading.

3. Taking advantage of the pipelined execution unit on modern CPUs: in our implementa-

tion, we provide additional options on parallelism (besides the double-block parallelism) –

compute an atomic instruction (e.g., vpxor for round key addition) on quadruple/octuple

data blocks, and only then continue to computing the subsequent atomic instruction on for

quadruple/octuple data blocks. This is because, on modern CPUs, the hardware that sup-

port the SIMD instructions is pipelined, which allows independent SIMD instructions to

be dispatched before the completion of one instruction. By experiment, processing quadru-

ple/octuple blocks using two/four AVX2 instructions on 256-bit registers achieves more

performance benefit.

Different processors and different methods for the measurement may cause non-negligible influ-

ence on the results, which eventually makes it difficult to do a fair comparison. Considering this,

we chose two ciphers, i.e., SKINNY and SIMON, to do benchmarks on the same processor using the

same method. Note that these two ciphers are also designed targeted at hardware and at the same

time, have competitive software performance; besides, their optimized source codes are publicly

available. Our benchmark results are reported in Figure 5.10. For WARP, we also provide more

detailed performance evolution with the length of the messages in Table 5.13.

10Although a swap is also required between half branches and another half at the end of each round, it
can be skipped by variable renaming and unrolling even rounds.

70

Table 5.13: Software performance profile of WARP with various message length (including
the time took by packing/unpacking messages)

|M |
(bytes)

Haswell
(Parallelization)

Skylake
(Parallelization)

1 2 4 8 1 2 4 8

16 11.20 11.18 11.24 11.21 8.41 8.87 9.00 9.14
32 8.71 5.68 5.65 5.67 8.15 4.60 4.52 4.60
64 8.61 4.48 3.01 2.93 8.15 4.25 2.78 2.81

128 8.55 4.40 2.81 2.81 8.18 4.16 2.71 2.72
256 8.51 4.38 2.79 2.72 8.20 4.17 2.72 2.69
512 8.50 4.36 2.77 2.70 8.18 4.12 2.70 2.67

1024 8.50 4.36 2.76 2.67 8.18 4.09 2.71 2.67
2048 8.50 4.36 2.77 2.67 8.17 4.08 2.71 2.67
4096 8.56 4.43 2.76 2.67 8.17 4.08 2.71 2.66

16 32 64 128 256 512 1024 2048 4096

|M | (Bytes)

5

10

15

20

25

30

35

cy
cl
es
/b

y
te

12.65

6.42

3.17 2.92 2.77
2.73 2.69 2.69

2.69

33.73

22.37

11.17

7.04
5.09 4.58

3.16 2.69
2.43

7.97
5.63

4.48

ECB with single KS

16 32 64 128 256 512 1024 2048 4096

|M | (Bytes)

5

10

15

20
cy
cl
es
/b

y
te

9.14

4.6

2.81 2.72
2.69 2.67

2.67 2.67 2.66

20.36

15.32

7.66

5.27
4.16 4.12

2.21 2.2 2.17

3.27 3.28 3.27

ECB without KS

Ciphers (128-bit block and 128-bit key):

WARP

SIMON

SKINNY

Source code for SKINNY and SIMON (versions with 128-bit block and 128-bit key) were adapted from [111, 174].
Because that of SKINNY only support 64-block parallel processing, results for short message are not available.
We used GNU g++ 5.5.0 with -O3 -mavx2 options to compile. The processor is Intel(R) Core(TM) i7-6700
(Skylake). We turned off hyper-threading and disabled Turbo Boost. The timing method used was that in
http://github.com/BrianGladman/AES. The instruction is rdtsc. We used time enc16() evaluating the average
time using 10000 samples of messages of a particular length.

Figure 5.10: Software performance of WARP, SIMON and SKINNY on the same processor.

5.7.1.3 The Equivalent Forms Used in Software Implementations Figure 5.11b

shows an equivalent form of WARP in LBlock-like structure used in our implementations for

8-bit AVR. Figure 5.12 shows the equivalent form of WARP used in our SIMD implementations.

5.8 Conclusion

We have presented a 128-bit lightweight block cipher WARP. The design of WARP is based on a

variant of Type-2 GFN, combined with an improved shuffle over 32 nibbles to boost the diffusion.

The primary goal is to achieve a small-footprint 128-bit block cipher, both for encryption-only

and unified ED circuits. This has been achieved by carefully choosing the components of GFN.

We provided a comprehensive hardware implementation results. They show that WARP is the

smallest 128-bit block cipher in the most of typical implementation strategies. Moreover, WARP
is very competitive in energy-efficient implementation. Besides, the software of WARP on 8-bit

microcontrollers can achieve competitively small code size and extremely low RAM consumption,

with acceptable execution time. Finally, WARP is very efficient on software implementation using

SIMD on high-end processors. Indeed, our experimental results suggest that, for relatively short

inputs, WARP is faster than other hardware-oriented lightweight ciphers, which is a desirable

feature when the block cipher is operated in a serial mode.

71

Plaintext

F

Pl Pr

F

Pl Pr

F

Pl Pr

F

Pl Pr

F

Ciphertext

10
iteration

s

Pl 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

Pr 15 14 0 10 13 1 12 11 7 6 8 2 5 9 4 3

(a) An equivalent form by
separating even and odd nibbles
to left and right half branches

Plaintext

PIl PIr

F
π

R

F
π

R

F
π

R

F
π

R

F
π

R

POl

Ciphertext

10
iteration

s

π 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

R 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9

PIl 5 4 6 0 3 7 2 1 13 12 14 8 11 15 10 9

PIr 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5

POl 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

(b) An equivalent form in
LBlock-like structure

Figure 5.11: Equivalent forms of WARP

72

Plaintext

F0

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P1

F1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P2

F2

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P3

F3

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P4

F4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P1

F5

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P2

F6

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P3

F7

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P4

F0

Ciphertext

5
iteration

s

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

K1

PK1

P1 15 8 9 14 5 2 11 12 7 0 1 6 13 10 3 4

P2 14 15 0 5 3 10 4 9 6 7 8 13 11 2 12 1

P3 5 6 1 10 11 0 7 4 13 14 9 2 3 8 15 12

P4 6 0 12 13 10 9 15 11 14 8 4 5 2 1 7 3

PK1 2 5 11 15 14 12 9 8 10 13 3 7 6 4 1 0

PK2 11 12 7 0 1 6 13 10 3 4 15 8 9 14 5 2

PK3 7 6 8 2 5 9 4 3 15 14 0 10 13 1 12 11

PK4 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

PK5 10 13 3 7 6 4 1 0 2 5 11 15 14 12 9 8

PK6 3 4 15 8 9 14 5 2 11 12 7 0 1 6 13 10

PK7 15 14 0 10 13 1 12 11 7 6 8 2 5 9 4 3

PK0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.12: Another equivalent form using four permutations for round functions and
eight permutations for round keys (omitted addition round constants)

73

6 Orthros: A Low-Latency PRF

We present Orthros, a 128-bit block pseudorandom function. It is designed with primary focus

on latency of fully unrolled circuits. For this purpose, we adopt a parallel structure comprising

two keyed permutations. The round function of each permutation is similar to Midori, a low-

energy block cipher, however we thoroughly revise it to reduce latency, and introduce different

rounds to significantly improve cryptographic strength in a small number of rounds. We provide

a comprehensive, dedicated security analysis. For hardware implementation, Orthros achieves

the lowest latency among the state-of-the-art low-latency primitives. For example, using the STM

90nm library, Orthros achieves a minimum latency of around 2.4 ns, while other constructions

like PRINCE, Midori-128 and QARMA9-128-σ0 achieve 2.56 ns, 4.10 ns, 4.38 ns respectively.

6.1 Introduction

6.1.1 Low-Latency Encryption

Lightweight cryptography is a subfield of symmetric-key cryptography to study cryptographic

core functions usable under strong resource constraints. Hardware circuit size is a typical met-

ric, and there are numerous proposals such as GIFT [20], KATAN [71], LED [90], Piccolo [161],

PRESENT [52], and SIMON [24] particularly perform well on this metric. Some other metrics

exist, and among them, latency has been increasingly receiving attention. Latency affects the re-

sponse time of encryption or authentication, and a small latency is highly desirable for applications

that require instant response, such as encryption of memory bus, storage systems, automotive com-

munication and industrial control network. Gaining throughput is generally possible with common

signal processing techniques (pipelining and parallel processing), while achieving a low latency

remains a challenge [108].

To our knowledge, the first lightweight block cipher with explicit focus on latency is PRINCE
proposed by Borghoff et al. [53]. PRINCE is a 64-bit block cipher comprising multiple round

functions to significantly reduce the number of rounds while keeping a moderate complexity of

each round. Another proposal is QARMA proposed by Avanzi [9], which is a family of low-latency

tweakable block ciphers (TBCs) [118]. It adopts the design strategy of PRINCE. Mantis [27] is

another family of low-latency TBCs. Midori is a family of block ciphers proposed by Banik et

al. [11]. It primary aims to reduce energy, however its latency is also quite small.

The current work on low-latency encryption focused on invertible primitives, i.e., (tweakable)

block ciphers. We started with a question whether this is an exclusive approach – namely, whether

we can do better by not requiring an invertible primitive. Motivated by this question, we initiated

a study on designing low-latency (non-invertible) pseudorandom function (PRF) consisting of

parallel keyed permutations. We study a sum of two block ciphers denoted as C = EK(M) ⊕
E′

K(M), where E, E′ : K × M → M are different n-bit block ciphers with a key space K and a

message space M = {0, 1}n. Since E and E′ can be computed in parallel, the critical path length

of a fully unrolled circuit is a maximum of them instead of the sum. The resulting function has

n-bit block and is not invertible in general.

The sum of permutations is indeed not new and it has been adopted in the designs of RIPEMD-

160 [76] and Grøstl [83]. In addition, the sum of permutations has also been extensively studied in

the context of provable security (see Section 6.3.1). In particular, the result of Dai et al. [70] sug-

gests that it can ideally achieve n-bit PRF security, i.e., indistinguishable from a truly random func-

tion with O(2n) complexity. However this requires that EK and E′
K behave as computationally-

secure block ciphers, more formally, (computationally-)independent pseudorandom permutations
(PRPs). Instead of requiring this, we explore the setting that E and E′ are rather weak as a stand-

alone block cipher, using a small number of very simple rounds. The point is that the outputs of

74

E and E′ are never given in clear, hence we can hope that both can cover each weakness, and

consequently the sum of them can tolerate dedicated attacks as a PRF.

6.1.2 Our Design

Based on the aforementioned considerations, we present Orthros, which is a 128-bit block pseu-

dorandom function (PRF) with a 128-bit key. The overall structure of Orthros is a sum of two

SPN-type keyed permutations called Branch1 and Branch2. The round functions of Orthros are

based on Midori. It is already suitable to low-latency ciphers, however we performed a thorough

study on it and showed that we can further improve latency by adopting new permutation layers

and S-boxes.

In particular, we propose a hybrid use of bit and nibble permutations i.e., a bit permutation is

used for some rounds and a nibble permutation for the rest, while Midori-128 [11] uses a single lin-

ear layer including both of a bit permutation and a nibble permutation. Consequently, each branch

of Orthros achieves the 2.5-round full diffusion and attains 64 active S-boxes over 10 rounds, while

Midori-128 requires 3 rounds for the full diffusion and 13 rounds for 64 active S-boxes. In addition,

the whole Orthros has more than 64 active S-boxes over only 5 rounds. Importantly, this change

of linear layers does not require any additional hardware cost in an unrolled implementation.

For PRF, we do not need an involutory S-box unlike Midori and QARMA. This allows us to

develop a new 4-bit S-box that offers about twice smaller delay than that of Midori-128 [11] (see

Table 6.11 of Page 14).

Since we do not rely on provable security of Sum of Permutations, we carried out an extensive

security analysis on not only the components of Branch1 and Branch2 but also the whole Orthros.

6.1.2.1 Motivation for using 128-bit PRF. The lack of invertibility limits applications.

For example the classical CBC and XTS (a storage encryption mode) [79] require the decryption

routine of a block cipher. However, many popular modes, e.g, CTR, CMAC [78] and GCM [139],

do not require the decryption routine (this property is also called inverse-freeness). For these

modes Orthros can be used as the cryptographic core. For examples of applications that require

low latency, ARM’s pointer authentication code (PAC) uses QARMA [144]. PAC is a MAC for

the pointer value and the memory context and it is derived by truncating the output of QARMA
in an ECB-like mode. The length of PAC ranges from 11 to 31 bits or 3 to 23 bits, depending on

a processor feature [144]. The PAC is inserted into a reserved space of the original 64-bit pointer

containing the address. This mode is inverse-free, even though QARMA is an invertible primitive.

As another example we consider memory protection schemes based on (a MAC variant of)

Merkle Tree. They often use a black-box PRF as a MAC function (e.g, [92]), and a concrete

memory encryption scheme inside Intel’s SGX [88] adopts inverse-free modes, namely variants

of GMAC and GCM. A notable benefit of using a dedicated PRF instead of a PRP is that it can

provide a stronger, beyond-birthday-bound (BBB) security depending on the mode. As observed

by [127], by changing the component of GCM or CTR from a PRP to a PRF, the provable security

immediately improves from n/2 to n bits. In such a case, there is a strong incentive to use a PRF

from the security perspective.

If we compare our proposal with PRINCE, the larger input and output extend possible applica-

tions. In fact, the first example of PAC requires input larger than 64 bits while not exceeding 128

bits. This excludes the application of PRINCE [144, Page 6 (Cryptography)] and makes Orthros
usable. In the latter example of tree-based memory protection, a GCM-like authenticated encryp-

tion mode with PRINCE will only have 32-bit security while Orthros ensures 128-bit security as

described above. We note that the output size is also crucial for 128-bit security in this case, since

we need 128 bits of pseudorandom sequence to mask 128-bit universal hash function output.

75

6.1.2.2 Implementations. We implemented Orthros in four different standard cell li-

braries along with 2 other constructions Midori-128 and QARMA9-128-σ0 that have a block size

of 128 bits and offer at least 128 bits of security. Across all libraries, Orthros performs around 40

% better than the above designs with respect to a) the absolute delay between input/output ports

and also b) the delay when the circuits are restricted to a certain area/power budget. We even

found that Orthros performs marginally better than PRINCE (which has a blocksize of 64 bits and

offers (127 - d) bits of security give 2d plaintext /ciphertext pairs) with respect to the total circuit

delay across all libraries. All our implementations are publicly available11.

6.1.2.3 Related Work. Mennink and Neves [127] proposed a generalized EDMD mode [126]

and an instantiation of it by a pair of reduced-round block ciphers, E and E′. The resulting scheme

is a PRF of nearly n-bit security [126] if E and E′ are PRPs. In [127] they proposed an instanti-

ation based on reduced-round AES, called AES-PRF. It has been analyzed by Derbez et al. [74].

Although a conceptual similarity to us, the generalized EDMD is not suitable for low-latency

PRF because it is serial. Besides, they did not consider to use dedicated round functions. In a

broader context, reduced-round version of a standard block cipher has been used to build a wide

variety of cryptographic functions. Most notably for AES, there are examples such as a MAC func-

tion [68, 69], a stream cipher [47], a hash function [89], an authenticated encryption scheme [93],

and a tweakable block cipher [21] to name a few.

From the provable security perspective, the n-bit security of sum of two PRPs has been

proved [70] as described. Chen et al. [59] studied the sum of Even-Mansour ciphers and proved

its tight security of 2n/3-bit.

6.2 Specification

Orthros is a 128-bit pseudorandom function (PRF) with a 128-bit key, the overview of which is

illustrated in Fig 6.1. On the whole, Orthros consists of two SPN-based 128-bit keyed permuta-

tions called Branch1 and Branch2, each composed of an S-layer, P-layer, the round-key addition

and the constant addition. The S-layer is the parallel application of a 4-bit S-box and the P-layer

is a linear transform (bit or nibble permutation, followed by a matrix multiplication). Moreover,

two key scheduling functions called KSF1 and KSF2 based on two different bit permutations are

exploited in Branch1 and Branch2, respectively.

In Orthros, a 128-bit plaintext M12 is first copied to two 128-bit internal states X1 and X2.

Then X1 and X2 are respectively given to Branch1 and Branch2. The 128-bit ciphertext C is an

XOR of the outputs of Branch1 and Branch2. More details will be given in the following.

6.2.1 Key Scheduling Function

Orthros adopts two bit-permutation-based key scheduling functions called KSF1 and KSF2, which

are used to generate RK1
r and RK2

r (0 ≤ r ≤ 12) from the same 128-bit key K for Branch1 and

Branch2, respectively. The whitening keys are RK1
0 and RK2

0 , which will be first XORed with

X1 and X2, respectively. RK1
r and RK2

r (1 ≤ r ≤ 12) are the round keys used in the r-th round

of Branch1 and Branch2, respectively. The algorithms of KSF1 and KSF2 are shown in Fig 6.2.

The bit-permutation Pbk1 and Pbk2 used in KSF1 and KSF2 are shown in Table 6.3.

In Fig 6.2, when K and RKj
r are expressed in bit level, we have RKj

r = (rkj
r,0, rkj

r,1 · · · rkj
r,127)

and K = (k0, k1 · · · k127), where rkj
r,i, ki ∈ F2 (0 ≤ i ≤ 127, j ∈ {1, 2}). In addition, rkj

r,0 and

k0 are the most significant bit of RKj
r and K, respectively.

11https://github.com/subhadeep-banik/orthros
12For convenience, we may call an input (an output) of Orthros a plaintext (a ciphertext), although it is

not a block cipher.

76

Branch1 Branch2

Plaintext M

Ciphertext C

128 bit

128 bit

Key K

128 bit 128 bit

Key K

Figure 6.1: Overview of Orthros.

6.2.2 Round Function of Branch1 and Branch2

In this section, we present the details of Branch1 and Branch2, each of which is a 128-bit keyed

permutation consisting of 12 rounds. The round keys (and whitening keys) (RK1
r , RK2

r) are first

generated by KSF1 and KSF2. After adding the whitening keys, the 128-bit input will be processed

via Branch1 and Branch2 as follows.

For the first 4 rounds of Branch1 and Branch2, the round function R is described as

R = AddConstant ◦ AddRoundKey ◦ matrixMul ◦ bit-permutation ◦ S-box,

where AddConstant and AddRoundKey represent the constant addition operation and the round

key addition operation, respectively.

For the following 7 rounds, the round function R′ is described as

R′ = AddConstant ◦ AddRoundKey ◦ matrixMul ◦ nibble-permutation ◦ S-box.

The sequence of operations in the last round is AddConstant ◦ AddRoundKey ◦ S-box. As de-

scribed, the 128-bit outputs of Branch1 and Branch2 are XORed to generate the 128-bit ciphertext.

Each component in the round function of Branch1 and Branch2 is described as follows.

S-box (S-box). A 4-bit S-box will be applied to each nibbles in parallel for Branch1 and

Branch2. The specification of the 4-bit S-box is displayed in Table 6.1.

Table 6.1: S-box in Branch1 and Branch2.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

Permutation (bit-permutation, nibble-permutation). For the first 4 rounds of Branch1
and Branch2, Pbr1 and Pbr2 will be used respectively. From the 5th round to the 11th round,

the nibble permutations Pn1 and Pn2 will be adopted in each branch respectively. The de-

tails of the permutation PbrN and PnN , where N ∈ {1, 2}, are shown in Table 6.4 and

Table 6.5, respectively.

77

Algorithm KSF1(K)

1. (k0 ‖ k1 ‖ · · · ‖ k127) ← K

2. for r = 0 to 12 do
3. (rk1

r,0 ‖ rk1
r,1 ‖ · · · ‖ rk1

r,127) ← RK1
r

4. if r = 0 then
5. for i = 0 to 127 do
6. rk1

0,Pbk1(i) ← ki

7. end for
8. else
9. rk1

r,Pbk1(i) ← rk1
r−1,i

10. end if
11. end for
12. for r = 0 to 12 do
13. RK1

r ← (rk1
r,0 ‖ rk1

r,1 ‖ · · · ‖ rk1
r,127)

14. end for
15. return (RK1

0 , RK1
1 , · · · RK1

12)

Algorithm KSF2(K)

1. (k0 ‖ k1 ‖ · · · ‖ k127) ← K

2. for r = 0 to 12 do
3. (rk2

r,0 ‖ rk2
r,1 ‖ · · · ‖ rk2

r,127) ← RK2
r

4. if r = 0 then
5. for i = 0 to 127 do
6. rk2

0,Pbk2(i) ← ki

7. end for
8. else
9. rk2

r,Pbk2(i) ← rk2
r−1,i

10. end if
11. end for
12. for r = 0 to 12 do
13. RK2

r ← (rk2
r,0 ‖ rk2

r,1 ‖ · · · ‖ rk2
r,127)

14. end for
15. return (RK2

0 , RK2
1 , · · · RK2

12)

Figure 6.2: Algorithms of KSF1 and KSF2.

Matrix Multiplication (matrixMul). Let Mb be 4 × 4 matrix over nibbles defined as

Mb =

⎛
⎜⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎠ .

Four nibbles (a0, a1, a2, a3) will be updated as follows:

(a0, a1, a2, a3)T ← Mb · (a0, a1, a2, a3)T ,

where (a0, a1, a2, a3)T denotes a transposition. Specifically,

a0 = a1 ⊕ a2 ⊕ a3,

a1 = a0 ⊕ a2 ⊕ a3,

a2 = a0 ⊕ a1 ⊕ a3,

a3 = a0 ⊕ a1 ⊕ a2.

AddRoundKey (AddRoundKey). In the r-th round, the internal states in Branch1 and Branch2
will be xored with the corresponding round key RK1

r and RK2
r , respectively.

AddConstant (AddConstant). The internal state will be xored with the corresponding round

constant in each branch. The specification of the round constants is displayed in Table 6.2,

where RC1
r and RC2

r represent the round constant used in the r-th round of Branch1 and

Branch2, respectively.

6.2.2.1 Round Constants. In a similar manner to PRINCE, the round constants are de-

rived from the fraction part of π = 3.1415926.... Specifically, if the fraction part of π =
3.1415926... is expressed in binary string, it will be 00010100000101011001.... By shifting

left the binary string by 3 bits, we obtain a binary string 1010 0000 1010 1100 1..., which

corresponds to a nibble string 0xa, 0x0, 0xa, 0xc, and so on.

78

Table 6.2: Specification of the round constants RC1
r and RC2

r .

Branch1
Round Number r RC1

r

1 0xa0ac9329ac4bc991c2313219c193ca81
2 0x4420cb8b49cc9ba882c104ba4a22c918
3 0x3c0b2031431044cc31401a4129a108b8
4 0x33cc10a4043289941183323849c22304
5 0xaa82c1118b929aca0409424088ba2814
6 0x2081380c9c290882aacb223114a44aa4
7 0x981c0cb22144084bab32c99a2309423a
8 0xb24119bc33c18b2938900c848a2b242b
9 0x3491a301a430822a1933241099c9b039
10 0x301248a0939b922c380330318aac40ba
11 0x440a904904b141492a048b8a9b21b3c4
12 0x92c81b00089982982a44102332909c20

Branch2
Round Number r RC2

r

1 0xa34a8ca0a88b04a1982b9381b2bacac8
2 0xca98490c308b9c0c99308bc988288c2a
3 0x403a2311bccb13a4ab39a8c42ba93924
4 0x48913c9c0c1808ca4894c19b399b1220
5 0x32b3218430109ca4a31ca91239b8c838
6 0x10bcc304a1b813b829c90b8bb1498bb3
7 0xa91c233a40c233b34a028990002b4093
8 0x8a2931ab0413bc2bb89a13abbc4b048b
9 0x9b1b8bc390a342204809124a9a180a32
10 0xa4ac29b88283c913cb4492c491aa100c
11 0xcab089094810cb043201a20c0acc09b1
12 0x4bba3b8984cb028c3839089a4cccccc1

S S

Mb Mb Mb Mb Mb Mb Mb Mb

Permutation (Pbr1, Pbr2)

4 bit

1 bit

X
1,2

0
X

1,2

1
X

1,2

2
X

1,2

3
X

1,2

4
X

1,2

5
X

1,2

6
X

1,2

7
X

1,2

8
X

1,2

9
X

1,2

10
X

1,2

11
X

1,2

12
X

1,2

13
X

1,2

14
X

1,2

15
X

1,2

16
X

1,2

17
X

1,2

18
X

1,2

19
X

1,2

20
X

1,2

21
X

1,2

22
X

1,2

23
X

1,2

24
X

1,2

25
X

1,2

26
X

1,2

27
X

1,2

28
X

1,2

29
X

1,2

30
X

1,2

31

RK1,2

r

4 bit

RC1,2

r

Figure 6.3: The round function of Branch1 and Branch2 in the first 4 rounds.

79

S S

Mb Mb Mb Mb Mb Mb Mb Mb

Permutation (Pn1, Pn2)

RK1,2

r

4 bit

4 bit

4 bit

X
1,2

0
X

1,2

1
X

1,2

2
X

1,2

3
X

1,2

4
X

1,2

5
X

1,2

6
X

1,2

7
X

1,2

8
X

1,2

9
X

1,2

10
X

1,2

11
X

1,2

12
X

1,2

13
X

1,2

14
X

1,2

15
X

1,2

16
X

1,2

17
X

1,2

18
X

1,2

19
X

1,2

20
X

1,2

21
X

1,2

22
X

1,2

23
X

1,2

24
X

1,2

25
X

1,2

26
X

1,2

27
X

1,2

28
X

1,2

29
X

1,2

30
X

1,2

31

RC1,2

r

Figure 6.4: The round function of Branch1 and Branch2 in the last 8 rounds. The nibble
permutation and the matrix multiplication in the last round will be omitted.

6.2.2.2 Illustration of Round Function. The illustration of the round function in the

first 4 rounds of Branch1 and Branch2 is shown in Fig 6.3. The illustration of the round function

in the last 8 rounds is shown in Fig 6.4.

6.2.2.3 Pseudocode. The algorithms of Branch1 and Branch2 are shown in Fig 6.5. In the

pseudocode, when the 128-bit internal state is expressed in bits, we have X = (x0, x1, · · · x127)
and x0 is the most significant bit of X . When the 128-bit internal state is expressed in nibbles, we

have X = (X0, X1, . . . , X31) and X0 is the most significant nibble of X . For the constant addition,

the 128-bit round constant RCj
r is expressed in nibbles as RCj

r = (RCj
r,0, RCj

r,1, · · · , RCj
r,31), for

1 ≤ r ≤ 12 and 1 ≤ j ≤ 2, where j denotes the index of Branch. Similarly for the round-key addi-

tion, the 128-bit round key RKj
r is expressed in nibbles as RKj

r = (RKj
r,0, RKj

r,1, . . . , RKj
r,31),

for 1 ≤ r ≤ 12 and 1 ≤ j ≤ 2.

6.2.2.4 Processing. The 128-bit ciphertext C is generated by XORing the output of Branch1
and Branch2. The processing algorithm of Orthros is shown in Fig 6.6.

6.2.2.5 Claimed Security. Orthros claims single-key security, and does not claim any

security in related-key and known/chosen-key settings.

6.2.3 Test Vectors

Table 6.6 presents two test vectors for Orthros.

6.3 Design Rationale

6.3.1 General Construction

As described in introduction, the overall structure of Orthros is a sum of two keyed permutations.

This structure and its variant has been extensively studied in the literature [31,59,70,99,121,141].

In particular, if two keyed permutations of Orthros (Branch1 and Branch2) were independent

PRPs, we could claim n-bit provable security – more specifically the PRF advantage of (q/2n)1.5+
2ε(q, t + O(q)) for n = 128 and q adaptive queries and time complexity t, where ε(q, t) denotes

the PRP advantages of Branch1 and Branch2 with q queries and t time [70]. However, this means

that either Branch1 or Branch2 could be already usable as a low-latency PRP, implying that they

should have a sufficient amount of security margins against known cryptanalysis. Since each

Branch never gives its outputs in clear, we expect that a pair of weak permutations can suffice to

have a desired, n-bit secure PRF. Generally this approach is described as “prove-then-prune” [93].

This means that the provable security reduction does not hold anymore, and an implication of the

80

Algorithm BranchN(K, X)

1. (RKN
0 ‖ RKN

1 ‖ . . . ‖ RKN
12) ← KSFN(K)

2. X ← X ⊕ RKN
0

3. (X0 ‖ X1 ‖ . . . ‖ X31) ← X

4. for r = 1 to 11 do
5. (RCN

r,0 ‖ RCN
r,1 ‖ . . . ‖ RCN

r,31) ← RCN
r

6. (RKN
r,0 ‖ RKN

r,1 ‖ . . . ‖ RKN
r,31) ← RKN

r

7. for i = 0 to 31 do
8. Xi ← S(Xi)
9. end for

10. if r < 5 then
11. for i = 0 to 31 do
12. (x4i ‖ x4i+1 ‖ x4i+2 ‖ x4i+3) ← Xi

13. end for
14. (x′

0, x′
1, . . . , x′

127) ← (x0, x1, . . . , x127)
15. for i = 0 to 127 do
16. xPbrN (i) ← x′

i

17. end for
18. for i = 0 to 31 do
19. Xi ← (x4i ‖ x4i+1 ‖ x4i+2 ‖ x4i+3)
20. end for
21. else
22. (X ′

0, X ′
1, . . . , X ′

31) ← (X0, X1, . . . , X31)
23. for i = 0 to 31 do
24. XPnN (i) ← X ′

i

25. end for
26. end if
27. for i = 0 to 7 do
28. (X4i, X4i+1, X4i+2, X4i+3)T ← Mb · (X4i, X4i+1, X4i+2, X4i+3)T

29. end for
30. for i = 0 to 31 do
31. Xi ← Xi ⊕ RKN

r,i ⊕ RCN
r,i

32. end for
33. end for
34. for i = 0 to 31 do
35. Xi ← S(Xi)
36. end for
37. (RCN

12,0 ‖ RCN
12,1 ‖ . . . ‖ RCN

12,31) ← RCN
12

38. (RKN
12,0 ‖ RKN

12,1 ‖ . . . ‖ RKN
12,31) ← RKN

12

39. for i = 0 to 31 do
40. Xi ← Xi ⊕ RKN

12,i ⊕ RCN
12,i

41. end for
42. Y ← (X0 ‖ X1 ‖ . . . ‖ X31)
43. return Y

Figure 6.5: Algorithms of Branch1 and Branch2, where N ∈ {1, 2}.

81

Algorithm Orthros(K, M)

1. X1 ← M , X2 ← M

2. Y 1 ← Branch1(K, X1), Y 2 ← Branch2(K, X2)

3. C ← Y 1 ⊕ Y 2

4. return C

Figure 6.6: Processing algorithm of Orthros.

Table 6.3: Bit permutation PbkN for key scheduling KSFN , where N ∈ {1, 2}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbk1(x) 0 53 87 73 22 95 99 48 61 36 108 1 24 67 119 93
Pbk2(x) 76 30 53 35 31 46 2 79 11 125 110 87 39 91 14 101

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbk1(x) 54 103 69 112 16 111 94 122 31 66 33 83 47 3 65 62
Pbk2(x) 97 118 36 48 29 80 57 115 49 18 74 85 61 82 105 126

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbk1(x) 123 9 101 19 5 58 89 37 38 51 28 106 82 76 121 4
Pbk2(x) 70 12 47 111 51 17 66 1 60 96 116 71 81 114 104 15

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbk1(x) 70 7 42 92 104 80 45 75 114 17 2 97 46 107 63 18
Pbk2(x) 42 124 100 4 113 44 75 89 23 0 84 107 32 26 88 8

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbk1(x) 109 15 127 43 13 59 29 125 77 11 50 30 12 90 118 64
Pbk2(x) 69 121 38 94 37 86 54 21 62 123 41 10 16 95 117 65

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbk1(x) 20 35 57 10 124 56 68 91 116 21 84 98 52 81 126 34
Pbk2(x) 45 50 72 20 109 58 7 67 108 28 3 55 92 103 24 5

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbk1(x) 105 27 120 74 6 85 40 72 113 41 23 49 79 55 102 8
Pbk2(x) 77 9 27 102 122 6 106 22 99 34 90 56 43 83 120 64

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbk1(x) 117 39 88 26 25 110 14 32 115 100 86 71 78 44 96 60
Pbk2(x) 78 59 119 93 40 98 52 68 112 33 63 25 19 73 127 13

82

Table 6.4: Bit permutation PbrN for round function BranchN , where N ∈ {1, 2}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbr1(x) 6 46 62 126 70 52 28 14 36 125 72 83 106 95 4 35
Pbr2(x) 20 122 74 62 119 35 15 66 9 85 32 117 21 83 127 106

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbr1(x) 25 41 10 76 87 74 120 42 88 21 11 67 64 38 112 50
Pbr2(x) 11 98 115 59 71 90 56 26 2 44 103 121 114 107 68 16

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbr1(x) 85 109 24 65 99 0 49 37 8 66 114 47 127 100 56 40
Pbr2(x) 84 1 102 33 80 52 76 36 27 94 37 55 82 12 112 64

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbr1(x) 13 117 78 86 92 58 124 101 55 89 97 9 18 116 59 15
Pbr2(x) 105 14 91 17 108 124 6 93 29 86 123 79 72 53 19 99

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbr1(x) 20 45 75 2 77 27 1 60 115 107 26 69 119 3 84 51
Pbr2(x) 50 18 81 73 67 88 4 61 111 49 24 45 57 78 100 22

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbr1(x) 123 110 31 82 113 53 81 102 63 118 93 12 30 94 108 32
Pbr2(x) 110 47 116 54 60 70 97 39 3 41 48 96 23 42 113 87

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbr1(x) 5 111 29 43 91 19 79 33 73 44 98 48 22 61 68 105
Pbr2(x) 126 13 31 40 51 25 65 125 8 101 118 28 38 89 5 104

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbr1(x) 34 71 54 104 17 57 80 103 96 121 23 39 122 90 7 16
Pbr2(x) 109 120 69 43 7 77 58 34 10 63 30 95 75 46 0 92

Table 6.5: Nibble permutation PnN for round function BranchN , where N ∈ {1, 2}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pn1(x) 10 27 5 1 30 23 16 13 21 31 6 14 0 25 11 18
Pn2(x) 26 13 7 11 29 0 17 21 23 5 18 25 12 10 28 2

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pn1(x) 15 28 19 24 7 8 22 3 4 29 9 2 26 20 12 17
Pn2(x) 14 19 24 22 1 8 4 31 15 6 27 9 16 30 20 3

83

Table 6.6: Test vectors for Orthros in hex.

Plaintext 00000000000000000000000000000000
Key 00000000000000000000000000000000
Ciphertext 6060acb118f411e434ba4e01984de0de

Plaintext a947436710924ccd47f2d571deea8f05
Key 4a2be60e3db6abe0c03eaec66fd05d0c
Ciphertext e4cec0d077a3401d8c4d07b6d5196e5f

Branch

RK
WK

P C

Branch

RK0

WK0

P C

Branch

WK1

RK1

Figure 6.7: (Left) The toy cipher using a single branch and (Right) that using double
branches, where WK and RK are the whitening key and round key, respectively.

security bound is more or less fuzzy and depends on the scheme. In our analysis we did not find a

full-round attack against Branch1 and Branch2 as a PRP, however they have rather slim margins

as a standalone block cipher. Therefore, we bolster our security claim with an extensive security

analysis on the whole construction.

We note that realizing Branch1 and Branch2 as Even-Mansour ciphers [82] can reduce the

circuit size thanks to the absence of key schedule. However, it can provide 2n/3-bit PRF security

at best, as proved by Chen et al. [59]. Instead, we adopt bit permutation-based key scheduling

functions for its hardware friendliness.

In order to investigate the initial security of the sum of permutations from the perspective of

cryptanalysis, we compare in the next section the differential and linear behaviour for two toy

ciphers adopting single branch and double branches, respectively. However, it should be empha-

sized that the security of Orthros never relies on our experiments on the toy ciphers but rather a

comprehensive study of Orthros, as will be detailed in Section 6.4.

6.3.2 Toy Ciphers

The unique feature of our design is the use of two parallel branches (effectively block ciphers). In

order to investigate the generic security of this design, we introduce two toy ciphers using single

branch and double branches as shown in Fig. 6.7. We focus on the maximal differential probability

(MDP) [44] and linear bias [124] as they are two of the most fundamental security metrics. For

the underlying branches, we consider both SPN and Feistel structures.

6.3.2.1 Experiments for a SPN-based toy cipher. First, we consider the case of

SPN with 16-bit internal state and 16-bit round key. The basic design of this SPN-based toy

cipher is similar to Midori. For our SPN-based toy cipher, the round function is composed of

the following operations: S-box, Shuffle, Mix and AK. The state is organized as a 4 × 4 two-

dimensional Boolean array A. The (4j + i)-th bit of the internal state is placed at A[i][j] (0 ≤
i ≤ 3, 0 ≤ j ≤ 3). For the S-box, each column A[·][j] (0 ≤ j ≤ 3) is viewed as a 4-bit value

84

x = 8 · A[3][j] + 4 · A[2][j] + 2 · A[1][j] + A[0][j] and the internal state is updated as A[·][j]=S-
box(A[·][j]). The S-box is the same with that used in Orthros. For the Shuffle operation, the state

is reorganized as A[i][j] = A[i′][j′] (0 ≤ i ≤ 3, 0 ≤ j ≤ 3), where 4j′ + i′ = SF[4j + i] and the

array SF is defined as

SF[16] = [0, 10, 5, 15, 14, 4, 11, 1, 9, 3, 12, 6, 7, 13, 2, 8].

For the Mix operation, each column is updated by multiplying the binary matrix Mb, i.e.,

(A[0][j], A[1][j], A[2][j], A[3][j])T = Mb · (A[0][j], A[1][j], A[2][j], A[3][j])T (0 ≤ j ≤ 3). For the

AK operation, a random 16-bit round key will be XORed with the 16-bit internal state. Since the

construction of the underlying block cipher used in Orthros is somewhat similar to that of Midori,
we adopt the same Shuffle and Mix operations as in Midori for the toy cipher in order to construct

a 16-bit toy cipher.

To compute MDP over a certain number of rounds for each construction, we first generate

a random value for the round keys. Then, the whole block cipher can be viewed as a large 16-

bit S-box. By exhausting all possible 216 × (216 − 1)/2 input pairs, we count the number of

occurrences for each possible output difference and obtain the maximum frequency of the output

difference, which we denote by CNT0. In this way, MDP is calculated as CNT0/216. With this

method, we carried out 100 experiments and compute MDP for each experiments, and take the

maximum for all experiments. The results are displayed in Table 6.7. Table 6.7 shows that the

maximal value becomes stable after about 4 rounds in the construction using double branches. For

the construction using a single branch, it becomes stable in about 5 rounds.

Table 6.7: The maximal differential probability of SPN-based toy ciphers.

Rounds
Max Pro. Single Branch Double Branches

1 2−3 2−1

2 2−8 2−6

3 2−8 2−5.7

4 2−11.3 2−12.3

5 2−12.5 2−12.5

6 2−12.5 2−12.5

7 2−12.5 2−12.5

8 2−12.5 2−12.5

6.3.2.2 Experiments for a Feistel-based toy cipher. For the case of Feistel-based

cipher, we consider 4-GFS (generalized Feistel structure with 4 sub-blocks), as shown in Fig. 6.8.

The round function consists of two parallel 4-bit S-boxes with random round keys, where the

S-box is the same with that used in Orthros. We carried out 100 experiments and compute the

maximum of the MDP for all experiments, for both the constructions using a single branch and

double branches. The corresponding results are displayed in Table 6.8. It shows that the maximal

value becomes stable after about 7 rounds in the construction using double branches. For the

construction using single branch, it becomes stable in about 10 rounds.

6.3.2.3 Experiments on linear masks. Similar experiments have also been performed to

evaluate the maximal linear bias for the toy ciphers. Due to the high time complexity to accurately

compute the maximal linear bias, we turn to calculating it in a probabilistic way. Specifically, we

85

S S

Figure 6.8: 4-GFS. Dotted lines denote (random) round keys.

Table 6.8: The maximal differential probability for each GFS-based construction.

Rounds
Max Pro.

Single Branch Double Branches

1 2−1 2−1

2 2−3 2−1

3 2−5 2−1

4 2−7 2−5.4

5 2−7 2−7.3

6 2−9.6 2−11.1

7 2−9.4 2−12.5

8 2−11 2−12.5

9 2−12 2−12.5

10 2−12.5 2−12.5

11 2−12.5 2−12.5

12 2−12.5 2−12.5

86

randomly choose some input and output masks and select the maximal linear bias from them. For

the SPN-based toy cipher, it is found that the maximal linear bias (2−6.4) becomes stable after 4

rounds if using a single branch, while it becomes stable in 3 rounds for double branches. For the

GFS-based toy cipher, the maximal linear bias (2−6.4) becomes stable in 9 rounds and 6 rounds

for a single branch and double branches, respectively.

6.3.2.4 Summary. In our experiments, both the maximal differential probability and linear

bias of the double branches reach a stable value in a smaller number of rounds than that of the

single branch. Of course the scale of experiment is limited and a more theoretical support should

be desired. However, these results suggest that the double branch enhances the security of the

single branch. We also emphasize that the security of Orthros is never ensured based on such a

simple simulation. Instead, a comprehensive study is performed.

6.3.3 Linear Layer

As underlying matrices in the linear layer, we adopt 4 × 4 almost MDS binary matrix used in

Midori [11], whose delay is much smaller than MDS matrices. However, as discussed in [11], its

diffusion speed is slower and the lower bounds of the number of active S-boxes in each round

is smaller than those of ciphers employing MDS matrices due to its lower branch number. To

improve the diffusion speed and to increase active S-boxes in each round, we utilize bit and nib-

ble permutations in a hybrid manner. We will see that this enables to guarantee security with a

relatively small number of rounds.

Midori-128 [11] also adopted a bit and a nibble permutations, however, our design is more

efficient in term of the diffusion speed and the number of active S-boxes while keeping the same

hardware cost in an unrolled implementation. Specifically, we adopt two different linear layers

that consists of a bit permutation and a nibble permutation, i.e., a bit permutation is used for some

rounds and a nibble permutation for the rest, while Midori-128 [11] uses a single linear layer

including both of a bit permutation and a nibble permutation. Importantly, this change of linear

layers does not require any additional hardware cost in an unrolled implementation, as observed

by [53].

6.3.3.1 Bit Permutation vs Nibble Permutation. To see the advantage of our hybrid

use of bit and nibble permutations over the consistent use of a bit or a nibble permutation, we

compare the diffusion effect and the lower bound of the number of active S-boxes of two different

128-bit block SPN structures, which we call SPN-B and SPN-N. Here, SPN-B (SPN-N) consis-

tently uses a bit (nibble) permutation. Both use the same 4-bit S-box and the matrix as those used

in a branch of Orthros. In addition, we used the full-diffusion property of S-box when evaluating

the diffusion effect.

6.3.3.2 Diffusion. To evaluate the minimum number of rounds that achieves the full diffu-

sion for each SPN-B and SPN-N, we look into the propagation of one active input bit and count the

upper bounds of the number of active bits through each operation. Here, we only need to consider

the number of active bits after S-box and matrixMul as the remaining operations do not affect its

value. The upper bounds of the number of active bits after each operation over some rounds are

shown in Table 6.9.

According to Table 6.9, SPN-B and SPN-N require at least 2.5 rounds (2 rounds plus S-box)

and 4 rounds, respectively, i.e., the optimal numbers of rounds for the full diffusion of SPN-B
and SPN-N are estimated as 2.5 and 4 rounds, respectively. We conclude that there is a clear gap

between bit permutations and nibble permutations in terms of the diffusion. Note that a class of

87

Table 6.9: The upper bound of the number of active bits after each operation.

Round Operation Structures

SPN-B SPN-N

- Input 1 1

1 S-box 4 4
matrixMul 12 12

2 S-box 48 12
matrixMul 120 36

3 S-box 128 36
matrixMul 128 100

4 S-box 128 100
matrixMul 128 128

bit permutations covers all nibble permutations. Thus, to achieve the 2.5-round full diffusion, we

need to find a class of bit permutations that are not included in a class of nibble permutations.

6.3.3.3 Active S-box. Mixed Integer Linear Programming (MILP) is used to obtain the

lower bound of the number of active S-boxes in each round. Unfortunately, it is computationally

infeasible to estimate the lower bound of the number of active S-boxes of SPN-B, except for

a very small number of rounds, due to the large search space of 128-bit bitwise differential and

linear trails. This problem about the use of bit permutation was also pointed out by the designers of

QARMA-128 [9]. As a consequence, QARMA-128 does not claim a lower bound of active S-boxes.

Indeed, it was infeasible to compute a lower bound of the number of active S-boxes for more than

5 rounds for SPN-B, even with a computer equipped with 48 cores and 256 GB RAM. Therefore,

SPN-B can only guarantee a very small number of active S-boxes for a moderately large number

of rounds (say 10), since we have to combine the bounds obtained for a small number of rounds,

which generally yields a loose bound. For example, the lower bound for 8 rounds is obtained by

the sum of the bounds for 4 rounds. In our experiment, the best lower bound for 4 rounds is 16,

therefore the obtained bound for 8 rounds is only 32.

On the other hand, for SPN-N, it is feasible to obtain a tight lower bound of the number of

active S-boxes up to 8 rounds, using the aforementioned 48-core computer. The evaluation of

one candidate requires about 2 days by the same computer. As a result, we found a class of

nibble permutations that attain 60 active S-boxes over 8 rounds. We will explain the details in the

following section.

6.3.3.4 Conclusion. Based on the above discussions, we conclude that a structure employ-

ing a single permutation cannot achieve a fast full diffusion and a guaranteed large number of

active S-boxes simultaneously. Hence, we decided to use a bit permutation for the first few rounds,

and use a nibble permutation for the rest of the rounds. Consequently, Orthros reaches the full

diffusion after first 2.5 rounds and guarantees more than 64 active S-boxes over 10 rounds.

6.3.3.5 Finding Optimal Bit Permutations for Diffusion. We take a two-step

approach to find a class of bit permutations that achieves 2.5-round full diffusion for SPN-B,

which turns out to be optimal. Let S denote the 128-bit internal state S of SPN-B. It is also

88

viewed as a 4 × 8 two-dimensional nibble array:

S =

⎡
⎢⎢⎢⎣

S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

⎤
⎥⎥⎥⎦ ,

where Si (0 ≤ i ≤ 31) is a 4-bit value defined as

Si = [s4i, s4i+1, s4i+2, s4i+3]T .

Note that S can also be viewed as a 16×8 two-dimensional binary array by seeing each column of

S as a 16-bit sequence. Hereafter, bit-cell means a binary cell in the 16 × 8 array and nibble-cell
means a nibble cell in the 4 × 8 array, that is, Si.

We first try to reduce the search space of target 128-bit permutations as it is computationally

infeasible to test all possible 2716.16(= 128!) candidates. Specifically, we focus on a class satisfy-

ing Condition 1 to efficiently find the class of bit permutations having the 2.5 rounds full diffusion

property.

Condition 1 For any nibble-cell Si (0 ≤ i ≤ 31), the corresponding 4 bits, s4i, s4i+1, s4i+2, s4i+3,
are mapped to the bit-cells in different columns after applying the bit permutation.

Detailed description of Condition 1 Fig 6.9 shows the transition of the state after apply-

ing Pbk1, which satisfies Condition 1. The state is represented as a 16×8 bit array, where S0,

S1, S2, S3 are nibbles consisting of the first state column. Let us focus on the leftmost col-

umn. After applying a bit-permutation satisfying Condition 1, for 0 ≤ i ≤ 3, Fig 6.9 shows

that the 4 bits of Si are mapped to different columns. The same applies to the remaining 7
columns.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pbk1=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S0 = (s0, s1, s2, s3)T S1 = (s4, s5, s6, s7)T S2 = (s8, s9, s10, s11)T S3 = (s12, s13, s14, s15)T

Figure 6.9: Transition of a state after applying Pbk1.

Condition 1 can be justified as follows. If a bit permutation satisfies Condition 1, for the 4

output bits of each S-box, they will be mapped to 4 different groups of inputs to the binary matrix.

Observe that in the MatrixMul operation, the binary matrix Mb is independently applied to 8

different groups of inputs, each of which consists of 4 consecutive nibbles. This is expected to be

89

a key feature for the fast diffusion since 1 input active bit is expanded to 4 active bits via the S-

box, and the 4 active bits are subsequently expanded to 12 active bits after the bit permutation and

MatrixMul operations. This matches the upper bound of the number of active bits after one-round

permutation, as shown in Table 6.9.

In the class of the bit permutations satisfying Condition 1, we obtain the following sufficient

condition for the 2.5-round full diffusion. It should be emphasized that for each active bit in

the nibble-cell Si (0 ≤ i ≤ 31), after applying the S-box and the bit permutation satisfying

Condition 1, there will exist 4 different groups of inputs to the binary matrix, each of which will

contain exactly one active nibble. Therefore, after matrixMul there will be 12 active nibbles. We

add the following condition on these 12 active nibbles.

Condition 2 After applying the bit permutation, in each column of the 4 × 8 array, there exist at
least 2 nibble-cells containing the bits coming from those in the active 12 nibbles.

Detailed description of Condition 2 For each active bit in the nibble cell Si (0 ≤ i ≤ 31)
in the input, after applying the S-box and the bit permutation satisfying Condition 1, there

will exist 4 different groups of inputs to the binary matrix, each of which will contain exactly

one active nibble, as shown in Fig. 6.10. Therefore, there will be 12 active nibbles after

MatrixMul in the first round, which will activate 12 nibbles located in the same positions

in the second round after S-box operation, as depicted in Fig. 6.11. Therefore, there are 12

nibbles (48 bits in total) in the state after the S-box (with full-diffusion property) operation

in the second round, independent of the value of the one active bit in the input to the first

round. After applying a permutation satisfying Condition 2 for these 48 bits, in each column

of the 4 × 8 array, there exist at least 2 nibble cells containing the bits coming from these 48

bits, as shown in Fig. 6.12 for bit level and in Fig. 6.13 for nibble level. In other words, after

applying the bit permutation satisfying Condition 2 in the second round, in each column of

the nibble array, there are at least 2 nibbles dependent of the one active bit in the input to the

first round. When the MatrixMul operation is further applied to each column of the 4 × 8
nibble array, the values of all the four nibbles in each column will therefore dependent of

the one active bit in the input to the first round. However, it cannot be guaranteed that the

value of each bit will be dependent of the one active bit. Thus, after further applying the

S-box with a full-diffusion property in the third round, all 128 bits become dependent of the

one active bit. This means that the full diffusion is achieved by 2.5 rounds.

An example to explain the 2.5-round diffusion can be referred to Fig. 6.10, 6.11, 6.12, and

Fig. 6.13.

The above description is sufficient for the 2.5 round full diffusion in the class of the bit permuta-

tions satisfying Condition 1.

Bit permutations of Table 6.4 used in Branch1 and Branch2 satisfy both Condition 1 and 2,

respectively, i.e. attain 2.5-round full diffusion.

6.3.3.6 Finding Good Nibble Permutation for Active S-boxes. As in the case

of bit permutations, we take the following two-step approach to find nibble permutations that

can activate as many S-boxes as possible over a certain number of rounds, which is expected to

outperform that used in Midori-128. To explain our approach, we use the same 4 × 8 array to

express the 128-bit state as above.

In the first step, we reduce the search space by focusing on the class of nibble permutations

satisfying Condition 3 since it is computationally infeasible to estimate the lower bound of the

number of active S-boxes for all possible 2117.66(= 32!) permutations. Condition 3 is chosen to

achieve fast diffusion for differences and linear masks.

90

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pbk1=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S0 = (s0, s1, s2, s3)T

Figure 6.10: The 4 active bits after the bit permutation in the first round, as marked in
red.

⎡
⎢⎢⎣

S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

⎤
⎥⎥⎦

Figure 6.11: The 12 active nibbles after MatrixMul in the first round, marked in red.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pbk1=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6.12: The 48 active bits after bit permutation in the second round, marked in red.

⎡
⎢⎢⎣

S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

⎤
⎥⎥⎦

Figure 6.13: The active nibbles after bit permutation in the second round, marked in red.

91

Table 6.10: Comparison of lower bounds of the number of active S-boxes.

Target 4 5 6 7 8
Midori-128 [11] 16 20 30 35 38

Our nibble permutation 16 25 36 51 60

Condition 3 For each column (S4i, S4i+1, S4i+2, S4i+3) in the 4 × 8 array, after applying the
nibble permutation, they will be mapped to four nibble-cells in different columns.

In the second step, we first randomly choose 7,000 nibble permutations satisfying Condition 3.

Then, we compute the lower bound of the number of active S-boxes after 5, 6, 7 and 8 rounds for

these nibble permutations. To efficiently find good permutations among these nibble permutations,

we first find a class of nibble permutations that have the best lower bound after 5 rounds. Then, we

focus on this class and evaluate the lower bound of the number of active S-boxes after 6 rounds,

which will be repeated until the 8th round.

As a result, we find three nibble permutations that can achieve 60 active S-boxes over 8 rounds.

Table 6.10 shows the comparison of the lower bound of the number of active S-boxes for Midori-
128 and our structure. Compared with Midori-128, our nibble permutations guarantee a much

larger number of active S-boxes after 6 rounds, about a factor of 1.5.

6.3.3.7 Hybrid Use of Bit and Nibble Permutations. Consequently, we obtain

a set of bit and nibble permutations. For Orthros, we pick a bit and nibble permutations from

the set, and use the bit permutation for the first 4 rounds, in order to achieve a fast full diffusion.

Specifically, it achieves full diffusion in 2.5 rounds, while Midori-128 requires 3 rounds. For the

rest of 8 rounds we used the nibble permutation to guarantee a large number of active S-boxes.

Indeed, 10 rounds of Orthros starting from the 3rd round, i.e., the 3rd to the 12th round, achieve

64 active S-boxes. We note that Midori-128 needs 13 rounds to obtain 64 active S-boxes, thus the

gain is 3 rounds.

6.3.4 S-box

We search a small-delay and lightweight 4-bit S-box which fulfills the following requirements:

(1) the maximal probability of a differential is 2−2, (2) the maximal absolute bias of a linear

approximation is 2−2 and (3) full diffusion, i.e., any input bit difference diffuses to all output bits.

We use a metric called depth [11] to estimate the path delay of S-boxes.

Definition 16 (depth): The depth is defined as the sum of the sequential path delays of basic
operations, namely AND, OR, NAND, NOR and NOT.

Following the assumption of [11], our search assumes that depths of XOR, AND/OR, NAND/NOR,

and NOT are weighted as 2, 1.5, 1 and 0.5, respectively, and the required gates of NOT, NAND/NOR,

AND/OR and XOR/XNOR are estimated as 0.5, 1, 1.5 and 2 Gate Equivalents (GEs), respectively. We

search over the set of all 4-bit S-boxes, whose size is 244.3, sort them in order of small depth, and

check whether they satisfy our security requirements.

We remark that our construction does not require the involution property of S-box unlike

Midori’s Sb1. It allows us to expand the number of possible candidates from 225.5 (the number

of all involution 4-bit S-boxes) to 244.3. As a result, we found an S-box (see Table 6.1) whose

depth and gate size are the lowest and the smallest in our search. Specifically, the depth is 3.5 and

the area is 20 GE under the aforementioned assumption of [11]. The S-box can be expressed as

92

Table 6.11: Comparison of S-boxes.

Orthros Midori [11] QARMA [9] PRINCE [53]
S Sb1 σ0 σ1 σ2 σ−1

2 S S−1

Area Optimized
Area [GE] 10.7 12.0 11.0 12.2 15.7 15.5 12.2 15.5
Delay [ps] 285.7 367.2 380.6 412.3 328.3 531.3 341.9 390.7

Delay Optimized
Area [GE] 40.4 32.2 43.2 36.4 40.2 65.4 51.1 41.2
Delay [ps] 37.2 71.1 39.2 89.3 58.6 53.3 52.7 80.6

Full diffusion Yes Yes No Yes Yes Yes Yes Yes
Involution No Yes Yes Yes No No No No

follows, where inputs and outputs are defined as {x0, x1, x2, x3} and {y0, y1, y2, y3}, and x3 and

y3 are the most significant bits.

y0 =
(
(x0 NOR x3) AND x1

)
NOR

(
(x1 NAND x2) AND x0

)
y1 =

(
(x1 NOR x2) OR x0

)
NAND

(
(x0 NAND x3) OR x2

)
y2 =

(
(x1 OR x3) NAND x2

)
NAND (x0 NAND x1)

y3 =
(
(x1 NAND x2) NAND x3

)
NAND

(
(x0 NAND x2) OR x3

)

Compared to the S-box of Midori-128, the depth and area can be reduced to 3.5 and 10.7 GE

from 4 and 12 GE, respectively, when synthesized with the standard cell library of the STM 90nm

CMOS logic process (as shown in Table 6.11) with area optimization. The table also shows de-

tailed comparisons with S-boxes of the QARMA and PRINCE family when the circuit is optimized

with respect to area as well as delay. The S-box of Orthros performs well when optimized across

both metrics. Note that σ0 does not have the full diffusion property.

6.3.5 Key Scheduling Function

To minimize the hardware cost, key scheduling functions of Orthros are realized by only bit

permutations, whose hardware overhead, such as area and delay, is essentially free. We use a class

of bit permutations that satisfy both Condition 1 and 2 in the key scheduling functions of Branch1
and Branch2 as shown in Table 6.3, although it cannot guarantee the full diffusion property as there

is no S-box and Matrix in the key scheduling functions. One reason to introduce two different key

scheduling functions for each branch is to increase the hardness of the key-recovery attack, as will

be discussed in the next section.

6.4 Security Evaluation

6.4.1 Differential/Linear Attack

To evaluate the resistance against differential attacks and linear attacks, one way is to obtain the

lower bound of the number of differentially and linearly active S-boxes in each round, which can

be efficiently computed with a MILP-based method [133]. In the following, we will present lower

bounds of the number of differentially and linearly active S-boxes for Branch1, Branch2 and the

whole Orthros. Since the maximal differential and linear probability of the S-box is 2−2, it is

sufficient to guarantee the security against differential attacks and linear attacks if there are 64

93

active S-boxes, as it gives 2−2×64 = 2−128 as an estimate of a differential probability. In our

evaluation, we only consider the single-key setting.

As discussed in Section 6.3.3, we observed that it is computationally infeasible to obtain a

lower bound for more than 5 rounds starting from the first round of Branch1, Branch2 and Orthros,
even with a computer equipped with 48 cores and 256 GB RAM. The search space of 128-bit

bitwise differential and linear trails for the first 4 rounds is huge. On the other hand, for the last

8 rounds of Branch1 and Branch2 starting from the 5th round, where the nibble permutation is

adopted, we can obtain tight lower bounds of the number of active S-boxes for the nibble-wise

differential and linear trails. In addition, we can obtain tight lower bounds of the number of active

S-boxes of 5 rounds of Orthros starting from the 5th round, i.e., 5 to 9 rounds.

In our evaluation, each of Branch1, Branch2 and Orthros is first divided into two parts, i.e.,

the first 4 rounds and the remaining 8 rounds. We compute a lower bound of the number of active

S-boxes for each part. The lower bound of Orthros is obtained by the sum of those of Branch1
and Branch2.

The corresponding results are displayed in Table 6.12. Table 6.12 shows that there are at

least 68 active S-boxes in 5 rounds of Orthros starting from the 5th round, i.e., 5 to 9 rounds.

In addition, the last 10 rounds of Branch1 and Branch2 including 2 bit-permutation rounds and

8 nibble-permutation rounds, i.e., 3 to 12 rounds, have at least 64(= 4 + 60) active S-boxes.

Although we do not claim any security for Branch1 and Branch2 as a full-fledged block cipher,

each has a sufficient number of active S-boxes in the full 12 rounds.

Table 6.12: The lower bounds of the number of active S-boxes in the single-key setting.

Construction bit/nibble Rounds

1 2 3 4 5 6 7 8 9 10 11 12
Orthros (the first 4 rounds) bit 2 8 12 16 - - - - - - - -
Orthros (from the 5th round) nibble - - - - 2 8 20 40 68 72 101 120
Branch1 (the first 4 rounds) bit 1 4 6 8 - - - - - - - -
Branch2 (the first 4 rounds) bit 1 4 5 8 - - - - - - - -
Branch1 (from the 5th round) nibble - - - - 1 4 7 16 25 36 50 60
Branch2 (from the 5th round) nibble - - - - 1 4 7 16 25 36 51 60

It should be emphasized that the lower bounds of Orthros in Table 6.12 are not tight i.e.,

actually the full rounds of Orthros includes more active S-boxes. This is because the number of

active S-boxes of Orthros after 10 rounds is computed as the sum of those of Branch1 and Branch2.

Besides, those of first 4 rounds and the last 8 rounds are independently obtained. Thus, we expect

that the full-round Orthros can resist against the differential attack and the linear attack.

6.4.2 Impossible Differential Attack

The impossible differential attack can be estimated by the required number of rounds for the full

diffusions. In the forward direction, both Branch1 and Branch2 require 2.5 rounds for the full

diffusion, while it is 5 rounds in the backward direction. Consequently, we expect that there is no

any probability-one impossible differential characteristic over 8 rounds of Branch1 and Branch2,

respectively. Since Orthros take a sum of the outputs of Branch1 and Branch2, we believe that the

number of rounds of an impossible differential characteristic for Orthros is much lower than that

of Branch1 and Branch2.

To obtain actual impossible differential characteristics, we utilize the MILP-aided automatic

searching tool proposed by Sasaki and Todo [158]. Taking DDT (differential distribution table)

of the S-box into consideration, we searched bit-wise impossible differential characteristics of

Orthros that have one active bit for both of a plaintext and a ciphertext. The details of DDT and

94

modeling S-box are as follows:

DDT and modeling of S-box The aforementioned DDT table of our S-box is shown in Ta-

ble 6.13, where din and dout denote the input and output difference of 4-bit S-box, respec-

tively.

Table 6.13: The differential distribution table of S-box.

din

dout 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 2 2 4 0 2 2 0 0 0 0 4 0 0 0 0
0x2 0 0 2 2 4 4 0 0 2 2 0 0 0 0 0 0
0x3 0 2 2 0 0 2 0 2 0 0 2 2 0 0 4 0
0x4 0 0 2 0 2 0 4 0 2 2 0 2 2 0 0 0
0x5 0 0 2 2 0 4 0 0 0 4 0 0 0 0 2 2
0x6 0 2 2 0 2 0 0 2 0 0 0 0 2 2 2 2
0x7 0 2 0 0 0 0 2 4 0 0 2 0 4 2 0 0
0x8 0 2 0 0 2 0 0 0 4 2 4 0 2 0 0 0
0x9 0 0 0 2 0 0 0 2 0 2 2 2 2 0 0 4
0xa 0 2 0 0 2 0 0 0 0 2 2 2 0 2 4 0
0xb 0 0 2 0 0 0 2 0 2 0 2 2 0 2 0 4
0xc 0 2 2 2 0 2 0 0 0 0 2 0 2 2 2 0
0xd 0 2 0 2 0 0 2 2 2 2 0 0 0 2 0 2
0xe 0 0 0 0 0 2 4 2 4 0 0 0 0 2 0 2
0xf 0 0 0 2 4 0 0 2 0 0 0 2 2 2 2 0

Based on the method of [166], we derive following 37 linear inequalities from Table 6.13,

where din = (din0 , din1 , din2 , din3) and dout = (dout0 , dout1 , dout2 , dout3).

95

⎧⎪⎪⎨
⎪⎪⎩

−din0 − din1 + 2din2 − din3 − 2dout0 + 2dout1 − dout2 + dout3 + 3 ≥ 0
din0 + din1 − din2 + din3 + dout0 + dout1 + dout2 ≥ 0
din0 + 2din2 + din3 + dout0 − dout1 − dout2 − 2dout3 + 2 ≥ 0
2din0 − din1 + din2 + 2din3 + dout0 − dout1 + dout2 − 2dout3 + 2 ≥ 0
din0 − 2din1 − 2din2 − din3 + 2dout0 − 2dout1 + 2dout2 − dout3 + 6 ≥ 0
−din0 + 2din1 − 2din2 − din3 + 2dout0 + dout1 − dout2 − 2dout3 + 5 ≥ 0
din0 + din1 + 2din2 + 2din3 − dout1 − dout3 ≥ 0
din0 + 2din1 + din2 + 2din3 − dout0 − dout1 − dout2 − dout3 + 1 ≥ 0
din0 + din1 − din2 + dout0 − dout1 − dout2 + dout3 + 2 ≥ 0
din1 + din2 + 2din3 − dout1 − dout2 − dout3 + 1 ≥ 0
2din0 + din2 + din3 − 2dout0 + dout1 − 2dout2 + 2dout3 + 2 ≥ 0
din0 − din2 − din3 − dout0 − dout1 − dout2 − dout3 + 5 ≥ 0
din0 + 2din1 + 2din2 − 2dout0 − 1dout1 − 1dout2 + dout3 + 2 ≥ 0
−din0 + 2din1 + din2 + din3 + 2dout0 − 2dout2 + dout3 + 1 ≥ 0
din0 + din1 + din2 − din3 − dout0 + dout1 + dout2 + dout3 ≥ 0
din0 + din1 + din2 − 2dout0 − dout1 + dout2 − dout3 + 2 ≥ 0
−din0 + din1 + din3 + dout0 − dout1 − dout3 + 2 ≥ 0
−din0 − din1 + din2 − dout0 + dout1 − dout2 − dout3 + 4 ≥ 0
din0 − din2 + din3 + dout0 − dout1 − dout2 + dout3 + 2 ≥ 0
din0 − din1 − din2 + dout1 − dout2 − dout3 + 3 ≥ 0
−din1 − 2din2 − din3 − 2dout0 + 2dout1 + 2dout2 − dout3 + 5 ≥ 0
−3din0 − 2din1 − 3din2 + din3 + 4dout0 + 3dout1 + dout2 + 2dout3 + 4 ≥ 0
2din0 − din1 + din2 − 3din3 + 2dout0 + dout1 + 4dout2 + 3dout3 ≥ 0
din0 − 2din1 − 2din2 − 2dout0 + 2dout1 + dout2 − 1dout3 + 5 ≥ 0
−3din0 + din1 + din2 − 2din3 + 2dout0 − 2dout1 + 3dout2 − 1dout3 + 5 ≥ 0
−2din0 − 2din1 + din2 + din3 + 3dout0 + 2dout1 + 4dout2 + 4dout3 ≥ 0
din0 − din1 + 2din2 − 3din3 + dout0 − dout1 + 2dout2 + 3dout3 + 2 ≥ 0
−din0 + din1 − 2din2 + din3 − 2dout0 − dout1 + 2dout2 + 2dout3 + 4 ≥ 0
−2din0 − 2din1 + din2 + din3 + 2dout0 − 1dout1 + dout2 + 2dout3 + 3 ≥ 0
−din0 − 2din1 − din2 + din3 − dout0 + 2dout1 + dout2 − 2dout3 + 5 ≥ 0
din1 − din2 − dout0 − dout1 + dout2 + dout3 + 2 ≥ 0
−din0 − din1 − din2 + din3 − dout0 − dout2 + dout3 + 4 ≥ 0
−3din0 − 4din1 − 2din2 − 2din3 + dout0 + 3dout1 − dout2 + 4dout3 + 8 ≥ 0
−din1 − din2 − din3 − dout0 − dout1 − dout2 − dout3 + 6 ≥ 0
−din0 + din1 − din3 − dout0 − dout1 − dout2 + dout3 + 4 ≥ 0
din0 − din1 − din2 − din3 − dout0 − dout1 − dout2 + 5 ≥ 0
−din0 + din2 − din3 − dout0 − dout1 − dout2 + dout3 + 4 ≥ 0

As a result, we found 3/5/5-round impossible differential characteristics of Orthros, Branch1

96

and Branch2, respectively, as follows:

Orthros:

Input⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 rounds−→

Output⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Branch1 :

Input⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5 rounds−→

Output⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Branch2 :

Input⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5 rounds−→

Output⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we expect that the full-round Orthros is secure against impossible differential attacks.

6.4.3 Integral Attack

We present integral distinguishers on round-reduced Orthros. Since the division property [170,

171] was proposed, it has become an efficient tool to evaluate the resistance against integral attacks.

Moreover, with the development of the MILP model for the bit-based division property [177], the

attacker now only needs to focus on modeling the propagation of the division property.

The round function of Orthros consists of a nonlinear layer (S-box), a bit/nibble permutation

layer, another linear layer (matrixMul) and the constant/key addition. To model the propagation

of the division property through each component, we only need to consider the S-box and the

binary matrix used in matrixMul. The bit/nibble permutation only has an influence on the coordi-

nates of the variables used in the MILP model. The modelling of the S-box and binary matrix are

97

as follows:

Modeling S-box. Similar to Section 6.4.2, one could build a table to describe the propagation

of the division property through S-box, as shown in Table 6.14. In this table, u and v denote

Table 6.14: The propagation of the division property for the S-box.

u

v 0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xa 0xc 0x7 0xb 0xd 0xe 0xf

0x0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xc ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xb ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xd ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xf ∗

the input and output division property of S-box, respectively. The entry at (u, v) is ∗ when

the propagation u → v is possible. Otherwise, the propagation is impossible. Based on

the method proposed by [166], such a table is equivalent to the linear inequalities as shown

below, where u = (u0, u1, u2, u3) and v = (v0, v1, v2, v3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u0 − u1 + 2v0 + 2v1 + 2v2 + v3 ≥ 0
−u0 − u2 + v0 + v1 + v3 + 1 ≥ 0
−u2 − u3 + v0 + 2v1 + 2v2 + 2v3 ≥ 0
−u0 − u1 − u3 + 3v0 + 2v1 + 3v2 + 2v3 ≥ 0
−u0 − u3 + 2v0 + v1 + 2v2 + 2v3 ≥ 0
−u0 − u1 − u2 + v0 + v1 + 2 ≥ 0
−4u0 − 3u1 − 4u2 − 4u3 + v0 + v1 + v2 + 2v3 + 10 ≥ 0

Modeling the Binary Matrix. For the matrixMul operation, it can also be viewed that the

binary matrix Mb works on four bits independently. Let B = Mb · A, where A, B ∈ F
4
2.

Therefore, we could pre-compute a table to describe the mapping from A to B, as specified

in Table 6.15.

Table 6.15: The mapping of the binary matrix.

A 0 1 2 3 4 5 6 7 8 9 a b c d e f
B 0 14 13 3 11 5 6 8 7 9 10 4 12 2 1 15

To model the propagation of the division property through the binary matrix, similar to the

way we model S-box, we first build a table to describe the propagation rule (Table 6.16),

where w and z denote the input and output division property. The entroy (w, z) is marked

98

as ∗ when the propagation w → z is possible. Otherwise, the propagation is impossible.

By using the method of [166], Table 6.16 can be expressed by the linear inequalities as

Table 6.16: The propagation of the division property for the binary matrix.

w

z
0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xa 0xc 0x7 0xb 0xd 0xe 0xf

0x0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xc ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x7 ∗ ∗ ∗ ∗
0xb ∗ ∗ ∗ ∗
0xd ∗ ∗ ∗ ∗
0xe ∗ ∗ ∗ ∗
0xf ∗

displayed below, where w = (w0, w1, w2, w3) and z = (z0, z1, z2, z3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−w0 − w1 − w2 + z3 + 2 ≥ 0
−w0 − w1 − w3 + z2 + 2 ≥ 0
−w0 − w1 − w2 − w3 + z0 + z1 + z2 + z3 ≥ 0
−w0 − w2 − w3 + z1 + 2 ≥ 0
−w1 − w2 − w3 + z0 + 2 ≥ 0
−w0 − w2 + z0 + z2 + 1 ≥ 0
−w0 − w1 + z0 + z1 + 1 ≥ 0
−w1 − w2 + z1 + z2 + 1 ≥ 0
−w1 − w3 + z1 + z3 + 1 ≥ 0
−w2 + z0 + z1 + z3 ≥ 0
−w3 + z0 + z1 + z2 ≥ 0
−w2 − w3 + z2 + z3 + 1 ≥ 0
−w1 + z0 + z2 + z3 ≥ 0
−w0 + z1 + z2 + z3 ≥ 0
−w0 − w3 + z0 + z3 + 1 ≥ 0

Based on our model, the longest integral distinguisher can reach up to at most 7 rounds with

127 active bits in the input. For example, when the most significant bit of the plaintext is constant

and the remaining 127 bits take all possible 2127 values, for 7-round Orthros, all output bits are

balanced.

6.4.3.1 Remark. Although there are several 7-round integral distinguishers, it is difficult to

mount a key-recovery attack on 8 rounds of Orthros. This is different from usual key-recovery

99

attacks on block ciphers, where the attacker is able to add several rounds after the integral dis-

tinguisher and guess partial key bits to decrypt the ciphertext. It is quite costly to guess the key

bits and reverse the ciphertext for Orthros since the final output is the sum of the outputs of two

branches, i.e., the attacker further needs to guess the output of the other branch.

6.4.4 Invariant Subspace Attack

Beierle et al. [25] showed that an invariant subspace attack can be mounted on a block cipher if

one finds a non-trivial invariant for the substitution layer whose linear space is invariant under the

linear layer matrix L that it uses and contains all the differences between the round keys. For block

ciphers without a dedicated key schedule function, say when the i-th round key rki = k ⊕ rci is

simply the xor of the master key and the i-th round constant, the difference of all round keys is the

difference of the round constants. If D denotes the set of all round constant differences, the authors

of [25] computed WL(D), which denotes the smallest L-invariant subspace containing D. If the

dimension of WL(D), dim(WL(D)), satisfies dim(WL(D)) ≥ n − 1, where n is the block size of

the cipher in bits, then the authors showed that there is no non-trivial invariant of the substitution

layer, provided that the S-box is well designed and does not have any linear component.

If this condition is not satisfied, one must further investigate the properties of the substitution

layer. The authors then showed that, for every subspace Z of the 0-linear space of the invariant of

the substitution layer S, the invariant, g, takes the same value on each coset of Z in F
n
2 and also

on each element of the set S(Z). To show that g is trivial, the authors computed the S-box layer

at some points in Z and hoped that all cosets would be hit when evaluating S at a few points in

Z. If g takes the same value on all the corresponding cosets, we would conclude that g must be a

constant function and thus trivial. This can be done if we take Z = WL(D) and if dim(WL(D))
is close to n, since one would only need to hit 2n−dim(WL(D)) cosets.

Since our construction uses a key schedule function for both branches, we can not directly con-

struct the set D as the difference of round constants. From this fact, we use four different linear lay-

ers (two different in each branch) in our construction. However for any randomly chosen value of

the secret key k one can construct the sets D1, D2, D3, D4, one each for the difference of the round

keys used in each of the four linear layers L1, L2, L3, L4, and then try to compute dim(WLi(Di))
for each i. We found that the linear matrices composed by a bit permutation and a matrix multipli-

cation (used in the first to 4th rounds of each branch, call them L1 (left), L3 (right)) have extremely

high multiplicative orders – around 248 to 260 – and thus it is not directly possible to find WL(D)
for these matrices. Thus we limited ourselves to find WL(D)′ =

∑
c∈D < Li(c), i ≤ 10000 >

for L1, L2 and L3 (where < · > denotes the subspace generated by the constituent vectors). We

did an experiment with 1000 randomly chosen keys, and computed WLi(Di), WLi(Di)′. The di-

mension of these spaces is almost always more than 127 for L1, L3 and always more than 123 for

L2, L4. Whenever the dimension of these spaces was less than 127, we tried to run Algorithm 1

of [25] to see if all cosets are hit when trying to evaluate the S-layer. For all choices of the random

key, we find that all the cosets are always hit, and thus we conclude that it is highly unlikely that

an invariant subspace attack can be mounted on our construction.

6.4.5 Meet-in-the-Middle Attack

To mount a meet-in-the middle attack, the adversary has to compute the inverse of the cipher, i.e.,

computing intermediate states (matching states) from the corresponding ciphertexts by guessing

the involved round keys. As discussed above, the adversary needs to guess one of two 128-bit

outputs of branches to go through the final XOR operation in the backward computation. As it

requires at least 2128 iterations, the attack is not efficient than the brute force attack.

100

Another possibility is to use the splice-and-cut technique [157]. With this technique, the ad-

versary guesses the intermediate values as the start point from which the adversary starts the com-

putation toward both directions. However, once she guesses a 128-bit intermediate of one branch,

she has to correctly guess the corresponding 128-bit intermediate of the other branch. Therefore,

we believe that Orthros is secure against meet-in-the middle attacks.

6.4.6 Yoyo and Mixture-Differential Attacks

The yoyo attack was first introduced by Biham [40]. Recently, it has been applied to the cryptanal-

ysis of AES by Rønjom et al. [151], where generic attacks on up to 3 rounds of SPNs have been

discussed. Since 2-round AES can be viewed as 1-round SPN with the concept of super S-box,

distinguishing attack on up to 6 rounds of AES are derived by [151]. However, there is one major

step in the yoyo attack, that is, the attacker needs to make a decryption query. For the design of

Orthros, since the final output is the xor sum of the outputs of Branch1 and Branch2, it is infeasi-

ble to make a decryption query. In addition, due to the fast diffusion of the bit permutation and the

fact that each branch adopts a different bit permutation, it is quite difficult to construct an efficient

super S-box for Orthros in the first four rounds. Based on these reasons, we believe that Orthros
is resistant against such an attack.

In Asiacrypt 2019, a different view of the yoyo attack on AES, called exchange attack, was

proposed by Bardeh and Rønjom [23]. It does not require decryption queries and can reach up to

6 rounds of AES. However, due to the similarity in the underlying idea between the yoyo attack

and exchange attack, we believe that the resistance against the yoyo attack implies the resistance

against exchange attack.

The mixture differential introduced by Grassi [85] is an efficient tool to analyze a reduced-

round AES, as its contribution to the recent progress of key-recovery attacks on 5-round AES [22,

77]. An important factor which makes the mixture differential efficient is that AES adopts a word-

wise permutation. Due to the effect of the bit permutation in the first four rounds, we are not able

to find a useful mixture differential for Orthros.

6.4.7 Difficulty of Key-Recovery Attacks

As we repeated several times, the unique feature of Orthros (as a cryptographic primitive) is that it

takes the sum of two branch outputs. To mount a key-recovery attack with a statistical distinguisher

for block ciphers, such as a differential/linear/integral distinguisher, it is common to append a few

rounds after a certain number of rounds for which a distinguisher exists, and guess partial key

bits by partially decrypting the ciphertext and verifying whether the distinguishing property holds.

However, such a common strategy is quite hard for Orthros since the attacker even needs to guess

the outputs of each branch in order to reverse the ciphertext. In addition, it is required to construct

two distinguishers for two different branches with the same plaintext set simultaneously if the

attacker wants to append a few rounds after the distinguishable rounds. Even if it is possible to

construct a distinguisher for one block cipher with an advanced cryptanalysis method as discussed

above, it would be challenging to construct two different distinguishers for two different block

ciphers for the same plaintext set simultaneously. In such a situation, we think generally the most

promising direction is to find integral distinguishers. This will be discussed later.

Another attacking strategy is to prepend some rounds before the distinguishable rounds. How-

ever, this implies that there exists a distinguisher for each branch simultaneously. When extending

two distinguishers backwards to the plaintext, the attacker can derive which key bits should be

guessed in order to compute the desired value of the intermediate internal state of both branches.

Since each branch adopts a different linear layer in its round function, and the key schedules of

two branches also differ, a lot of to-be-guessed key bits will be involved. Moreover, the whiten-

101

ing keys in two branches are different as well, which further increases the complexity to prepend

some rounds before a distinguisher. For better understanding, we present a framework to recover

the secret key by extending an integral distinguisher backwards.

6.4.7.1 A Framework for Recovering the Secret Key. This framework was once

applied to a preliminary version of Orthros. Therefore, we omit the details of the design and

explain a high-level idea. First, we denote the states after the S-box layer in the first round of

Branch1 and Branch2 by XL0.5 and XR0.5, respectively. Suppose there is a set of bit positions

denoted by PSet ⊆ {i | 0 ≤ i ≤ 127} and the size of PSet is PSize. In addition, let us denote the

final output after r rounds of (an old version of) Orthros by Cr, which is the sum of the outputs of

(old versions of) Branch1 and Branch2. Suppose there is an integral distinguisher such that∑
Cr =

∑
XL0.5∈P S

Branch1(XL0.5) ⊕
∑

XR0.5∈P S′
Branch2(XR0.5) = 0,

where PS, PS′ ∈ {e ∈ F
128
2 | e[i] ∈ {0, 1}, i ∈ PSet}, i.e., the set of values whose bits located at

the positions belonging to PSet take all the possible 2PSize values and the remaining (128 − PSize)
bits take constant values.

To mount a key recovery attack, the attacker first derives from PSet the active bits in the

plaintext. Specifically, if i ∈ PSet, the (4 × i/4)-th, (4 × i/4 + 1)-th, (4 × i/4 + 2)-th and

(4 × i/4 + 3)-th bits of the plaintext are all active. Let ASize be the size of the active bits in

the plaintext. The attacker then prepares a plaintext set whose active bits take all possible values

and make encryption queries with the r-round Orthros. It is easily detected that the sum of the

ciphertext is zero. Record the corresponding 2ASize pairs of plaintext and ciphertext in a table.

Suppose the whitening keys used by Branch1 and Branch2 are the same. In this case, the

attacker guesses 2ASize different values of the whitening key which is xored with the active bits in

the input. For each guess, the attacker can partially know the corresponding XL0.5 and XR0.5 and

can divide the plaintext set into 2ASize−PSize different subsets according to the value of the nonactive

bits of XL0.5 and XR0.5 via the constructed integral distinguisher. For each subset, compute the

sum of the corresponding ciphertexts. For the correct key, the sum will be zero for all subsets.

However, for a wrong key, the sum is zero for a subset with a probability 2−128. Therefore, the

attacker can recover the key bits by checking the sum of the ciphertexts for the plaintexts in each

subset.

Consider the case when different whitening keys are used for Branch1 and Branch2. In

this case, when the attacker guesses the key bits in the left branch to obtain the corresponding

2ASize−PSize subsets of the plaintexts, the sum of the ciphetexts for the plaintexts in each subset is

not clear even the guess is correct. This is because the set of XR0.5 behaves randomly for each

subset of plaintext obtained according to the guess of the whitening key used in Branch1.

Obviously, it can be interpreted that this framework for Orthros is to convert a r-round distin-

guisher into a r-round key-recovery attack. Therefore, a long distinguisher should be prevented in

our design.

6.5 Hardware Evaluation

Since our target construction is a low-latency PRF, the most useful hardware evaluation of the

design is a fully unrolled circuit that optimizes the signal delay from the input to output ports.

Such a circuit would be able to evaluate the PRF in one clock cycle itself, and naturally the clock

frequency can be increased till the clock period is just above the total critical path of the circuit,

affording a maximum throughput of blocksize
critical path bits per second. To perform a fair evaluation

we compare our construction with two other low-latency primitives that provide at least 128-bit

102

block and 128-bit security. The first is Midori-128 and the second is QARMA9-128-σ0 (in [9],

QARMA with 9 forward and backward rounds was recommended for applications targeting 192 bit

security). QARMA9-128-σ0 is a particular instantiation of QARMA with 9 forward and backward

rounds and a low-delay S-box σ0. For an added comparison, we also include the 64-bit block

cipher PRINCE in our results. On the other hand we also benchmark some permutation based

constructions that can be used as a PRF. For example the Kangaroo12-XOF [38] which is based

on the 12-round Keccak-f[1600] permutation can be used as a PRF: one could absorb the key

and plaintext in the permutation state and extract 128 bits from the resulting XOF. Let us call

this construction Kangaroo12-PRF[1600]. Since any design based on a 1600-bit state would

naturally be hardware-intensive we also consider a lightweight version of the above construction

Kangaroo12-PRF[400] based on the 12-round Keccak-f[400] permutation. We can also use the

Subterranean-Deck function [65] to extract a 128 bit MAC from a 128 bit key and message. We

also benchmark this design which we call Subterranean-PRF. It is even more lightweight as it has

only a 257-bit state.

We found that across all libraries, Orthros even outperforms PRINCE (see Tables 6.17, 6.19,

6.20, 6.18) when it comes to the absolute signal delay between the input/output ports. We remark

that PRINCE is a 64-bit block cipher.

For a fair evaluation we adhered to the following design flow for all the ciphers:

1. The RTL source codes for the circuit of the ciphers were first written in the Verilog HDL,

and a functional simulation was done using the Modelsim software to ensure correctness.

2. The RTL codes were synthesized by the Synopsys Design Vision circuit compiler, with the

compiler command set to compile ultra. No other optimizations are done at this stage.

For this process we used the standard cell libraries of the following CMOS logic processes:

a) STM 90nm, b) TSMC 90nm, c) Nangate 45nm and d) Nangate 15nm.

3. A timing simulation was done on the synthesized netlist to confirm the correctness of the

design, by comparing the output of the timing simulation with known test vectors.

4. The switching activity of each gate of the circuit was collected while running post-synthesis

simulation. The average power was obtained using Synopsys Power Compiler, using the

back annotated switching activity.

5. Step 2 outputs the critical path of the circuit. We repeat steps 2-4 (for each of the libraries)

but this time by asking the circuit compiler to constrain the total signal delay between the

input/output ports to some value less than the critical path computed in step 2.

6. We repeat the above processes, with progressively lower values of total signal delay, till

such time as the circuit compiler is unable to construct a circuit with given delay. We stop

the flow at this point. All results have been tabulated in Tables 6.17, 6.18, 6.19, 6.20

Why area increases with decrease in latency: A cell library typically has several

drive strengths of cells that implement a given logic function. These drive strengths correspond

to the capacitive load that a cell can drive without excessive delay and with acceptable signal

characteristics. Thus when we force the circuit compiler to construct a circuit with lower delay, it

starts introducing higher drive strength gates, that typically occupy more area while offering the

same functionality. For example, in the TSMC 90nm library 2-input xor gates of drive strength

1, 2 ,4 occupy around 2.5, 3, 5 GE respectively. Thus it is natural for the area of a circuit to

progressively increase as we constrain the circuit compiler to construct circuits of increasingly

lower delay as shown in Tables 6.17, 6.18, 6.19, 6.20.

103

Cipher Area Power Energy Latency Max TP
(μm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 98150.7 22307 6.647 664.69 10.60 11.246
99258.2 22559 6.025 602.50 9.00 13.245
102286.4 23247 6.214 621.40 8.00 14.901
108582.3 24678 7.220 722.02 7.00 17.030
123160.6 27991 9.612 961.24 6.00 19.868
133931.3 30430 10.751 1075.07 5.00 23.842
148432.8 33735 12.614 1261.35 4.00 29.802
177991.2 40453 16.591 1659.12 3.00 39.736
298855.6 67922 27.628 2762.76 2.40 49.671

Midori-128 85435.0 19417 10.205 1020.49 18.54 6.430
86470.0 19652 9.671 967.14 16.00 7.451
89648.7 20375 9.748 974.81 14.00 8.515
96225.5 21869 11.275 1127.54 12.00 9.934
107393.6 24408 15.687 1568.7 10.00 11.921
122584.4 27860 17.887 1788.72 8.00 14.901
144109.4 32752 24.011 2401.09 5.99 19.868
277950.7 63171 46.464 4646.39 4.10 29.075

QARMA9-128-σ0 104118.3 23663 10.044 1004.38 19.41 6.142
104686.9 23792 9.810 981.04 17.00 7.012
106848.1 24284 9.911 991.05 15.00 7.947
112157.2 25490 11.571 1157.09 13.00 9.170
128032.8 29098 16.816 1681.62 11.00 10.837
147874.2 33608 20.438 2043.83 9.00 13.245
182268.6 41425 27.714 2771.37 6.96 17.128
234453.9 53285 41.508 4150.79 4.99 23.890
319634.3 72644 58.119 5811.87 4.38 27.217

PRINCE 27897.7 6340 1.867 186.73 11.35 10.503
28773.6 6539 1.791 179.13 9.00 13.245
31905.0 7251 2.057 205.67 7.00 17.030
38941.7 8850 3.274 327.44 5.00 23.842
63795.8 14499 6.023 602.25 3.00 39.736
87285.5 19838 8.151 815.12 2.56 46.566

Kangaroo12-PRF[1600] ∗ 498909.7 113389 59.533 5953.25 17.52 6.804
552581.2 125587 58.170 5817.01 12.00 9.934
590922.6 134301 57.350 5735.03 8.00 14.901
1184290.6 269157 140.664 14066.38 3.99 29.877

Kangaroo12-PRF[400] ∗ 133662.4 30378 16.674 1667.36 18.47 6.454
144600.0 32864 14.388 1438.84 12.00 9.934
167258.9 38013 18.260 1825.96 8.00 28.725
339374.6 77131 39.311 3931.14 4.15 14.901

Subterranean-PRF ∗ 130206.1 29592 9.976 997.59 17.45 6.831
139879.2 31791 8.467 846.6 12.00 9.934
177843.0 40419 18.475 1847.46 8.00 14.901
375592.1 85362 40.271 4027.13 3.63 32.840

Table 6.17: Results for the STM 90nm library. Power measured at 10 MHz. ∗The
core implementation of the underlying permutations in these constructions were taken
from [35,64]

104

Cipher Area Power Energy Latency Max TP
(μm2) (GE) (mW) (pJ) (ps) (Gbps)

Orthros 5766.1 29328 2.332 233.18 485.72 245.428
5792.8 29464 2.187 218.74 450.00 264.910
6013.5 30586 2.038 203.85 400.00 298.023
7439.2 37838 2.637 263.73 351.55 339.096

Midori-128 5102.3 25952 3.354 335.36 850.55 140.156
5116.7 26025 3.251 325.12 800.00 149.012
5156.9 26229 3.132 313.15 750.00 158.946
5298.5 26950 3.138 313.80 700.00 170.299
5731.8 29153 3.305 330.49 650.00 183.399
6976.4 35484 4.466 446.60 603.78 197.438

QARMA9-128-σ0 6263.3 31857 4.160 415.98 908.09 131.275
6304.8 32068 3.810 380.95 800.00 149.012
7085.8 36040 3.861 386.12 700.00 170.299
8869.9 45115 5.611 561.05 640.00 186.265

PRINCE 1664.3 8465 0.671 67.14 536.37 222.252
1671.5 8502 0.657 65.71 500.00 238.419
1698.5 8639 0.604 60.36 450.00 264.910
1889.6 9611 0.599 59.98 400.00 298.023
2337.9 11891 0.894 89.43 371.62 320.783

Kangaroo12-PRF[1600] 26957.8 137114 13.470 1347.04 722.32 165.036
27298.5 138847 12.223 1222.25 650.00 183.400
28803.4 146502 12.884 1288.39 600.00 198.682
31052.8 157943 13.096 1309.60 576.65 206.727

Kangaroo12-PRF[400] 7332.0 37293 3.812 381.22 765.95 155.636
7407.3 37675 3.711 371.08 700.00 170.300
7584.7 38578 3.501 350.11 650.00 183.400
8278.4 42106 5.571 557.07 602.81 197.756

Subterranean-PRF 7582.4 38566 3.548 354.78 692.84 172.059
7586.4 38586 3.385 338.53 650.00 183.400
7661.4 38968 3.122 312.22 600.00 198.682
8392.3 42865 2.878 287.80 543.21 219.453

Table 6.18: Results for the Nangate 15nm library. Power measured at 10 MHz.

105

Cipher Area Power Energy Latency Max TP
(μm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 76712.1 27179 2.452 245.22 9.37 12.722
77355.6 27407 2.525 252.49 8.00 14.901
83566.3 29607 3.478 347.79 7.00 17.030
95896.7 33976 4.447 444.73 6.00 19.868
124746.6 44197 5.393 539.28 5.29 22.535

Midori-128 67710.8 23990 3.817 381.72 15.89 7.502
67938.7 24070 4.090 408.97 14.00 8.515
73455.8 26025 5.374 537.38 12.00 9.934
90043.0 31902 7.200 719.96 10.00 11.921
122156.3 43279 9.138 913.82 9.05 13.172

QARMA9-128-σ0 80258.5 28435 4.2252 422.52 17.40 6.851
80844.1 28643 5.2578 525.78 15.00 7.947
89048.8 31550 6.8206 682.06 13.00 9.170
107814.3 38198 8.4356 843.56 11.00 10.837
153286.0 54309 10.3168 1031.68 9.43 12.641

PRINCE 22036.6 7807 0.699 69.94 9.79 12.177
22674.5 8033 0.911 91.09 8.00 14.901
25879.3 9169 1.135 113.47 7.00 17.030
31206.6 11056 1.421 142.12 6.00 19.868
42518.8 15064 1.898 189.81 5.52 21.596

Kangaroo12-PRF[1600] 372818.5 132088 21.558 2155.83 16.21 7.354
379806.1 134564 20.788 2078.78 14.00 8.515
424274.4 150319 24.212 2421.24 11.00 10.837
504947.1 178901 29.376 2937.59 9.12 13.071

Kangaroo12-PRF[400] 104761.8 37117 5.259 525.93 15.15 7.869
104882.5 37159 5.661 566.09 14.00 8.515
121185.4 42935 7.248 724.75 11.00 10.837
151044.3 53514 9.119 911.92 9.27 12.860

Subterranean-PRF 103337.2 36612 3.367 336.72 14.28 8.348
105067.4 37225 3.388 338.77 12.00 9.934
123273.3 43675 5.149 514.85 10.00 11.921
156786.4 55549 5.227 522.74 7.98 14.938

Table 6.19: Results for the TSMC 90nm library. Power measured at 10 MHz.

106

Cipher Area Power Energy Latency Max TP
(μm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 21404.5 26756 15.952 1595.20 3.81 31.289
21466.2 26833 14.858 1485.80 3.50 34.060
21548.4 26936 13.386 1338.60 3.00 39.736
24028.6 30036 13.237 1323.70 2.68 44.481

Midori-128 18784.7 23481 23.088 2308.79 6.29 18.952
18808.6 23511 22.071 2207.10 6.00 19.868
18971.7 23715 21.533 2153.30 5.50 21.674
19666.7 24583 21.014 2101.40 5.00 23.842
20396.6 25496 21.066 2106.60 4.72 25.256

QARMA9-128-σ0 22866.4 28583 28.055 2805.50 6.68 17.846
22903.4 28629 27.896 2789.60 6.50 18.340
22956.6 28696 25.678 2567.80 6.00 19.868
23044.9 28806 23.804 2380.4 5.50 21.674
24699.2 30874 24.174 2417.40 4.92 23.842

PRINCE 6037.4 7547 4.371 437.11 3.87 30.803
6072.8 7591 4.135 413.54 3.50 34.060
6473.9 8092 3.994 399.43 3.00 39.736
6693.1 8366 4.005 400.55 2.92 40.825

Kangaroo12-PRF[1600] 99007.3 124069 85.880 8588.00 5.08 23.466
101193.1 126808 82.437 8243.70 4.70 25.364
100167.0 125522 79.505 7950.50 4.50 26.491
102999.7 129072 78.764 7876.40 4.34 27.468

Kangaroo12-PRF[400] 26726.0 33491 24.496 2449.60 5.49 21.714
26756.7 33530 23.986 2398.60 5.20 22.925
27033.3 33876 22.812 2281.20 4.80 24.835
27699.4 34711 21.814 2181.40 4.50 26.491

Subterranean-PRF 27671.7 34676 22.760 2276.03 5.01 23.794
27696.2 34707 22.225 2222.50 4.70 25.364
28071.5 35177 21.406 2140.60 4.30 27.723
28960.2 36291 20.762 2076.20 3.98 29.952

Table 6.20: Results for the Nangate 45nm library. Power measured at 10 MHz.

107

For a better illustrative purposes, we provide Area vs Delay (see Fig. 6.14). The plots tell us

that not only does Orthros perform around 40% better across all standard cell libraries when it

comes to the absolute delay value, it also outperforms QARMA9-128-σ0 and Midori-128 when it

comes to achieving a) lower area figures and power consumption given a particular delay budget

and b) lower or competitive delay given a particular area/power budget.

0.5 1 1.5 2 2.5

·105
2

4

6

8

10

12

14

16

18

20

Area (GE)

D
el
ay

(n
s)

(a) STM 90

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

6

8

10

12

14

16

18

20

Area (GE)

D
el
ay

(n
s)

(b) TSMC 90

0.2 0.4 0.6 0.8 1 1.2

·105
2

3

4

5

6

7

Area (GE)

D
el
ay

(n
s)

(c) Nangate 45

0.4 0.6 0.8 1 1.2 1.4 1.6

·105
300

400

500

600

700

800

900

1,000

Area (GE)

D
el
ay

(p
s)

(d) Nangate 15

Orthros Midori-128 QARMA9-128-σ0

Kangaroo12-PRF[1600] Kangaroo12-PRF[400] Subterranean-PRF

Figure 6.14: Delay vs Area comparisons.

6.6 Conclusions

We have presented a new low-latency PRF of 128-bit block, dubbed Orthros. The design is es-

sentially a sum of keyed permutations, which has been studied in the context of provable security.

We found this design is suitable to a low-latency cryptographic primitive, which is intuitive, how-

ever, to our knowledge never seriously considered before. We made it real by thoroughly revising

the current state-of-the-art low-latency, lightweight building blocks, together with an extensive

security analysis and comprehensive hardware benchmarks.

For further directions, it would be interesting to extend our design, say having more branches

(with even simpler round functions or fewer rounds), to even reduce latency. Software performance

and related-key/side-channel security would also be interesting topics.

108

7 Rocca: An Efficient AES-Based Encryption Scheme for
Beyond 5G

In this section, we present an AES-based authenticated-encryption with associated-data scheme

called Rocca, with the purpose to reach the requirements on the speed and security in 6G systems.

To achieve ultra-fast software implementations, the basic design strategy is to take full advantage

of the AES-NI and SIMD instructions as that of the AEGIS family and Tiaoxin-346. Although Jean

and Nikolić have generalized the way to construct efficient round functions using only one round

of AES (aesenc) and 128-bit XOR operation and have found several efficient candidates, there still

seems to exist potential to further improve it regarding speed and state size. In order to minimize

the critical path of one round, we remove the case of applying both aesenc and XOR in a cascade

way for one round. By introducing a cost-free block permutation in the round function, we are able

to search for candidates in a larger space without sacrificing the performance. Consequently, we

obtain more efficient constructions with a smaller state size than candidates by Jean and Nikolić.

Based on the newly-discovered round function, we carefully design the corresponding AEAD

scheme with 256-bit security by taking several reported attacks on the AEGIS family and Tiaxion-
346 into account. Our AEAD scheme can reach 150 Gbps which is almost 5 times faster than the

AEAD scheme of SNOW-V. Rocca is also much faster than other efficient schemes with 256-bit

key length, e.g. AEGIS-256 and AES-256-GCM. As far as we know, Rocca is the first dedicated

cryptographic algorithm targeting 6G systems, i.e., 256-bit key length and the speed of more than

100 Gbps.

7.1 Introduction

7.1.1 Background

The fifth-generation mobile communication systems (5G) have been launched in several countries

for commercial services since 2020. Besides, researches for beyond-5G or 6G have been already

started in some research institutes. As the first white paper of 6G, [117] was published by the

6Genesisi project in 2019, which is mainly organized by the University of Oulu in Finland. In the

white paper, several requirements for 6G systems are raised. For the data transmission speed, it

says that 6G achieves more than 100 Gbps, which is more than 10 times faster than that of 5G.

For the 4G system, as underlying cryptographic algorithms to ensure confidentiality and in-

tegrity, SNOW 3G [152], AES [135], and ZUC-128 [153] are employed, which are specified

as 128-EEA1 (EIA1), 128-EEA2 (EIA2), 128-EEA3 (EIA3), respectively, and these algorithms

are also selected cryptographic algorithms for the 5G system as 128-NEA1 (NIA1), 128-NEA2

(NIA2), 128-NEA3 (NIA3). However, for the 5G system, the 3GPP standardization organization

requires to increase the security level to 256-bit key lengths. In 2018, ZUC-256 [169] was pro-

posed as the 256-bit key version of ZUC-128. ZUC-256 was revised only in the initialization phase

and in the MAC generation phase from ZUC-128. By this revise, ZUC-256 improves the security

level against the key-recovery attack to the 256-bit security from the 128-bit security. On the other

hand, the performance of the encryption/decryption speed is not quite improved because the key-

stream generation phase is the same as ZUC-128, and a structural weakness was found [178]. In

FSE 2020, Ekdahl et al. proposed SNOW-V that is the 256-bit key version of SNOW 3G, and they

showed that SNOW-V achieves more than 38 Gbps at an AEAD (Authenticated Encryption with

Associated Data) mode on OpenSSL [81]. The performances of SNOW-V are sufficient for them

to be used in the 5G system.

However, when taking requirements in 6G systems into account, we have to tackle some chal-

lenges. The biggest one is the encryption/decryption speed. For 6G systems, as the data transmis-

sion speed is expected to reach more than 100 Gbps, we have to design a cryptographic algorithm

109

with the encryption/decryption speed of more than 100 Gbps, which is at least three times faster

than SNOW-V. Besides, achieving 256-bit security against key-recovery attacks is essential as in

5G systems [3]. In addition, due to the increase of data transmissions in 6G systems, it is necessary

to ensure at least 128-bit security against distinguishing attacks while SNOW-V only claims 64-

bit security against distinguishing attacks. Therefore, there is no doubt that a new cryptographic

algorithm is needed in 6G systems.

For symmetric-key primitives targeting high-performance applications, there are several inter-

esting cryptographic algorithms. The most tempting ones are those employing AES-NI [61, 87],

which is a new AES instruction set equipped on many modern CPUs from Intel and AMD. Some

SoCs for mobile devices are also equipped with an instruction set for AES [7], and more and more

SoCs will support the instruction by the time 6G system is realized. Hence employing AES-NI

seems reasonable in designing cryptographic algorithms for 6G systems. The AEGIS family and

Tiaoxin-346 belongs to such a category, which are two submissions to the CAESAR competi-

tion [2] and AEGIS-128 has been selected in the final portfolio for high-performance applications.

The round functions of the AEGIS family and Tiaoxin-346 are quite similar. Specifically, they are

only based on the usage of one AES round and the 128-bit XOR operation, both of which have

been realized with one instruction on SIMD (Single Instruction, Multiple Data) instructions. As a

result, both the AEGIS family and Tiaoxin-346 are competitive in terms of encryption/decryption

speed in a pure software environment, if compared with many primitives.

Jean and Nikolić generalized the method to design efficient round functions as that used in

AEGIS and Tiaoxin-346 in [103]. After a thorough search, they discovered round functions that can

achieve a faster speed than any of the round functions adopted in the AEGIS family and Tiaoxin-
346 and provide the 128-bit security against forgery attacks. However, they did not propose a

concrete AEAD scheme [103].

Obviously, AEGIS-128, AEGIS-128L and Tiaoxin-346 do not meet the security requirement of

the 256-bit key length in 6G systems. In addition, according to our experiments, AEGIS-256 does

not reach more than 100 Gbps (See Sect. 7.5). However, those researches leave us the potential of

designing the faster cryptographic algorithm based on AES round functions for 6G.

7.1.2 Our Design

In this section, we present an AES-based encryption scheme with a 256-bit key and 128-bit tag

called Rocca, which provides both a raw encryption scheme and an AEAD scheme with a 128-bit

tag. The goal of Rocca is to meet the requirement in 6G systems in terms of both performance

and security. For performance, Rocca achieves an encryption/decryption speed of more than 100

Gbps in both raw encryption scheme and AEAD scheme. For security, Rocca can provide 256-bit

and 128-bit security against key-recovery attacks and forgery attacks, respectively.

7.1.2.1 Optimized AES-NI-Friendly Round Function To achieve such a dramat-

ically fast encryption/decryption speed, Rocca is designed for a pure software environment that

can fully support both the AES-NI and SIMD instructions. The design of the round function of

Rocca is inspired by the work of Jean and Nikolić [103]. To further increase its speed and reduce

the state size, we explore a new class of AES-based structures. Specifically, we take the following

different approaches.

• To minimize the critical path of the round function, we focus on the structure where each

128-bit block of the internal state is updated by either one AES round or XOR while Jean

and Nikolić consider the case of applying both aesenc and XOR in a cascade way for one

round, and most efficient structures in [103] are included in this class.

110

• We introduce a permutation between the 128-bit state words of the internal state in order

to increase the number of possible candidates while keeping efficiency as executing such a

permutation is a cost-free operation in the target software, which was not taken into account

in [103].

We search for round functions that can ensure 128-bit security against forgery attacks in a class of

our general constructions as with [103]. Consequently, we succeed in discovering more efficient

constructions with a smaller state size than those in [103]. The internal state of Rocca consists of

eight 128-bit words and its round function is composed of 4 aesencs and 4 128-bit XOR operations,

which is significantly faster than those of the AEGIS family, Tiaxion-346 and Jean and Nikolić’s

structure [103].

7.1.2.2 Encryption and Authentication Scheme. To resist against the statistical

attack in [129], generating each 128-bit ciphertext block will additionally require one AES round,

while it is generated with simple quadratic boolean functions in the AEGIS family and Tiaxion-346.

However, such a way will have few overhead by AES-NI (See Sect. 7.3). Moreover, a study on the

initialization phases for both reduced AEGIS-128 and Tiaoxin-346 has been reported recently [119].

To further increase the resistance against the reported attacks, how to place the nonce and the key

at the initial state is carefully chosen in our scheme.

7.1.2.3 Performance The encryption/decryption speed of Rocca is dramatically improved

compared with other AES-based encryption schemes. Rocca is more than three and four times

faster than SNOW-V and SNOW-V-GCM, respectively, i.e. the speed reaches 215 and 178 Gbps,

respectively. Compared to other schemes with 256-bit key, Rocca is more than five times faster

than AEGIS-256 and more than three times faster than AES-256-GCM in our evaluations (See

Sect. 7.5 and Sect. 7.5.1). Moreover, Rocca is also faster than AEGIS-128, AEGIS-128L, and

Tiaoxin-346 even though Rocca provides a higher security level. To the best of our knowledge,

Rocca is the first dedicated cryptographic algorithm targeting 6G systems and we hope it can

inspire future designs.

7.1.3 Organization

We first present the specification of Rocca in Sect. 7.2. Then, we describe the design rationale,

such as the general construction based on AES-NI, criteria for performance and security, and

how to find efficient round functions in Sect. 7.3. In Sect. 7.4, we provide the details of security

evaluations against possible attacks on Rocca. Sect. 7.5 shows our software implementation results.

Finally, we conclude this section in Sect. 7.6.

7.2 Preliminaries

In this section, the notations and the specification of our designs will be described.

7.2.1 Notations

The following notations will be used in Sect. 7. Throughout Sect. 7, a block means a 16-byte value.

For the constants Z0 and Z1, we utilize the same ones as Tiaoxin-346 [137].

1. S: The state of Rocca, which is composed of 8 blocks, i.e. S = (S[0], S[1], . . . , S[7]),

where S[i] (0 ≤ i ≤ 7) are blocks and S[0] is the first block.

2. Z0: A constant block defined as Z0 = 428a2f98d728ae227137449123ef65cd.

111

3. Z1: A constant block defined as Z1 = b5c0fbcfec4d3b2fe9b5dba58189dbbc.

4. AES(X, Y): One AES round applied to the block X , where the round constant is Y , as

defined below:

AES(X, Y) = (MixColumns ◦ ShiftRows ◦ SubBytes(X)) ⊕ Y,

where MixColumns, ShiftRows and SubBytes are the same operations as defined in AES.

5. A(X): The AES round function without the constant addition operation, as defined below:

A(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X),

6. |X|: The length of X in bits.

7. 0l: A zero string of length l bits.

8. X||Y : The concatenation of X and Y .

9. R(S, X0, X1): The round function used to update the state S.

7.2.2 The Round Update Function

The input of the round function R(S, X0, X1) of Rocca consists of the state S and two blocks

(X0, X1). If denoting the output by Snew, Snew ← R(S, X0, X1) can be defined as follows:

Snew[0] = S[7] ⊕ X0,

Snew[1] = AES(S[0], S[7]),
Snew[2] = S[1] ⊕ S[6],
Snew[3] = AES(S[2], S[1]),
Snew[4] = S[3] ⊕ X1,

Snew[5] = AES(S[4], S[3]),
Snew[6] = AES(S[5], S[4]),
Snew[7] = S[0] ⊕ S[6].

The corresponding illustration can be referred to Figure 7.1.

S[0]

AX0 X1A A A

S[1] S[2] S[3] S[4] S[5] S[6] S[7]

S
new[7]S

new[6]S
new[5]S

new[4]S
new[3]S

new[2]S
new[1]S

new[0]

Figure 7.1: Illustration of the round function

112

7.2.3 Specification of Rocca

Rocca is an authenticated-encryption with associated-data scheme composed of four phases: ini-

tialization, processing the associated data, encryption and finalization. The input consists of a

256-bit key K0||K1 ∈ F
128
2 × F

128
2 , a 128-bit nonce N , the associated data AD and the message

M . The output is the corresponding ciphertext C and a 128-bit tag T . Define X = X||0l where

l is the minimal non-negative integer such that |X| is a multiple of 256. In addition, write X
as X = X0||X1|| . . . ||X |X|

256 −1 with |Xi| = 256. Further, Xi is written as Xi = X0
i ||X1

i with

|X0
i | = |X1

i | = 128.

7.2.3.1 Initialization. First, (N, K0, K1) is loaded into the state S in the following way:

S[0] = K1, S[1] = N, S[2] = Z0, S[3] = Z1,

S[4] = N ⊕ K1, S[5] = 0, S[6] = K0, S[7] = 0.

Here, two 128-bit constants Z0 and Z1 are encoded as 16-byte little endian words and loaded into

S[2] and S[3] respectively. Then, 20 iterations of the round function R(S, Z0, Z1) is applied to the

state S. After 20 iterations of the round function, two 128-bit keys are XORed with the state S in

the following way;

S[0] = S[0] ⊕ K0,

S[4] = S[4] ⊕ K1.

7.2.3.2 Processing the associated data. If AD is empty, this phase will be skipped.

Otherwise, AD is padded to AD and the state is updated as follows:

for i = 0 to d − 1
R(S, AD

0
i , AD

1
i),

end for

where d = |AD|
256 .

7.2.3.3 Encryption. The encryption phase is similar to the phase to process the associated

data. If M is empty, the encryption phase will be skipped. Otherwise, M is first padded to M
and then M will be absorbed with the round function. During this procedure, the ciphertext C is

generated. If the last block of M is incomplete and its length is b bits, i.e. 0 < b < 256, the last

block of C will be truncated to the first b bits. A detailed description is shown below:

for i = 0 to m − 1
C0

i = AES(S[1], S[5]) ⊕ M
0
i ,

C1
i = AES(S[0] ⊕ S[4], S[2]) ⊕ M

1
i ,

R(S, M
0
i , M

1
i),

end for

where m = |M |
256 .

113

7.2.3.4 Finalization. After the above three phases, two 128-bit keys K0 and K1 are first

XORed with the state S in the following way;

S[0] = S[0] ⊕ K0,

S[4] = S[4] ⊕ K1.

Then, the state S will again pass through 20 iterations of the round function R(S, |AD|, |M |) and

then the tag is computed in the following way:

T =
7⊕

i=0
S[i].

The length of associated data and message is encoded as 16-byte little endian word and stored into

|AD| and |M |, respectively.

A formal description of Rocca can be seen in Algorithm 1 and the corresponding illustration

is shown in Figure 7.2.

R20
N

R
K0||K1

Z0

Z1

AD0

0

AD1

0

R

AD0

1

AD1

1

R

AD1

d−1

AD1

d−1

. . . R

M0

0

M1

0

⊕

⊕

C0

0

C1

0

R

M0

1

M1

1

⊕

⊕

C0

1

C1

1

R

M0

m−1

M1

m−1

⊕

⊕

C0

m−1

C1

m−1

. . . R20

|M |

|AD|

T⊕⊕

Figure 7.2: The procedure of Rocca

7.2.3.5 A raw encryption scheme. If the phases of processing the associated data and

finalization are removed, a raw encryption scheme is obtained.

7.2.3.6 Test Vectors This section gives three test vectors of Rocca. The least significant

byte of the vector is shown on the left and the first 256-bit value (in plaintext and ciphertext) is

shown on the first line.

7.2.3.7 Security claims. Rocca provides 256-bit security against key-recovery and 128-bit

security against distinguishing and forgery attacks in the nonce-respecting setting13. We do not

claim its security in the related-key and known-key settings.

The message length for a fixed key is limited to at most 2128 and we also limit the number of

different messages that are produced for a fixed key to be at most 2128. The length of associated

data of a fixed key is up to 264.

13We updated the claimed security of distinguishing attacks from the ToSC version [154] for the following
reasons. The most well-known and popular distinguishing attack on the keystream seems to be the linear
attack. Such a distinguishing attack often requires a large number of plaintexts. If the data complexity
exceeds the time complexity to find the key with Grover’s algorithm, we view such an attack as invalid in
the quantum setting. Therefore, regarding the distinguishing attack, we only claim 128-bit security in the
quantum setting and a meaningful distinguishing attack in the classical setting should have data complexity
below 2128.

114

Algorithm 1 The specification of Rocca
1: procedure RoccaEncrypt(K0, K1, N, AD, M)
2: S ← Initialization(N, K0, K1)
3: if |AD| > 0 then
4: S ← ProcessAD(S, AD)
5: if |M | > 0 then
6: S ← Encryption(S, M, C)
7: Truncate C
8: T ← Finalization(S, |AD|, |M |, K0, K1)
9: return (C, T)

10: procedure RoccaDecrypt(K0, K1, N, AD, C, T)
11: S ← Initialization(N, K0, K1)
12: if |AD| > 0 then
13: S ← ProcessAD(S, AD)
14: if |C| > 0 then
15: S ← Decryption(S, C, M)
16: Truncate M
17: if T = Finalization(S, |AD|, |C|, K0, K1) then
18: return M
19: else
20: return ⊥
21: procedure Initialization(N, K0, K1)
22: (S[0], S[1], S[2], S[3]) ← (K1, N, Z0, Z1), (S[4], S[5], S[6], S[7]) ← (N ⊕ K1, 0, K0, 0)
23: for i = 0 to 19 do
24: S ← R(S, Z0, Z1)
25: (S[0], S[4]) ← (S[0] ⊕ K0, S[4] ⊕ K1)
26: return S
27: procedure ProcessAD(S, AD)
28: d ← |AD|

256
29: for i = 0 to d − 1 do
30: S ← R(S, AD0

i , AD1
i)

31: return S
32: procedure Encryption(S, M, C)
33: m ← |M |

256
34: for i = 0 to m − 1 do
35: C0

i ← AES(S[1], S[5]) ⊕ M0
i , C1

i ← AES(S[0] ⊕ S[4], S[2]) ⊕ M1
i

36: S ← R(S, M0
i , M1

i)
37: return S
38: procedure Decryption(S, M, C)
39: c ← |C|

256
40: for i = 0 to c − 1 do
41: M0

i ← AES(S[1], S[5]) ⊕ C0
i , M1

i ← AES(S[0] ⊕ S[4], S[2]) ⊕ C1
i

42: S ← R(S, M0
i , M1

i)
43: return S
44: procedure Finalization(S, |AD|, |M |, K0, K1)
45: (S[0], S[4]) ← (S[0] ⊕ K0, S[4] ⊕ K1)
46: for i = 0 to 19 do
47: S ← R(S, |AD|, |M |)
48: T ← 0
49: for i = 0 to 7 do
50: T ← T ⊕ S[i]
51: return T

115

Table 7.1: Test vectors.

K 00
N 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A 00
M 00

00 00
C 15 89 2f 85 55 ad 2d b4 74 9b 90 92 65 71 c4 b8 c2 8b 43 4f 27 77 93 c5 38 33 cb 6e 41 a8 55 29

17 84 a2 c7 fe 37 4b 34 d8 75 fd cb e8 4f 5b 88 bf 3f 38 6f 22 18 f0 46 a8 43 18 56 50 26 d7 55
T cc 72 8c 8b ae dd 36 f1 4c f8 93 8e 9e 07 19 bf
K 01
N 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
A 01
M 00

00 00
C 60 9b 60 18 7e ae 09 ee 0d df 95 af 40 86 e7 66 32 5c 17 03 26 c2 9d 91 b2 4d 71 4f ec f3 85 fd

09 87 f8 20 cb f7 ca bb 11 52 43 2c 6d 60 5a 8e c5 7e af 08 2b b4 e7 2b 9e 54 5e 5c 59 01 3d af
T 74 0e 79 c5 e5 9b d2 91 5f da 57 9d 51 7a c4 1d
K 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
N 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
A 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
M 00

00 00
C 44 c7 46 1b 6c 13 08 79 da 05 de 5e f8 8e da 35 91 a2 a7 ae ff 91 ef d3 ac 60 3b 28 e0 57 61 09

5d d8 a1 87 bf 57 8b 5f a6 04 ed 5e 61 f0 3c 0b 81 91 05 c3 6f 6a b7 97 59 7b 67 e3 80 3b 6a 04
T 1e 5e fe fa 86 df b6 e5 5a d5 bb 9d bd a6 98 e5
K: Master key N: Nonce A: associated data M: Plaintext C: Ciphertext T: tag

7.3 Design Rationale

7.3.1 General Construction

SIMD instruction. The prime design goal of Rocca is to meet the requirements of processing/-

transmission speed for 6G applications, namely more than 100 Gbps [117]. In order to realize fast

encryption/decryption speed (hereafter, we simply call ”speed”) on a pure software environment,

we take full advantage of the SIMD instructions and the AES-NI, both of which are equipped on

most of modern CPUs. The SIMD instructions contains some fundamental instructions such as

XOR and AND, and can execute them by 32/64/128-bit units as one instruction, where the AES-

NI is a special set of the SIMD instructions, which is first rolled out by Intel [60] and available on

modern processors. The AES-NI can execute AES about 10 times faster than non-AES-NI in par-

allelizable modes such as CTR mode. In Sect. 7, we utilize on aesenc, which is one of instruction

sets of AES-NI, and performs one regular (not the last) round of AES on an input state S with a

subkey K:

aesenc(S, K) = (MixColumns ◦ ShifRows ◦ SubBytes(S)) ⊕ K.

The execution speed of these instructions can be evaluated by latency and throughput, where

latency is the number of clock cycles required to execute a single instruction and throughput is the

required number of clock cycles before the same instruction to be executed. It is important when

considering the parallel execution. Table 7.2 shows latency and throughput of aesenc [148] in each

architecture. Among existing architectures, we focus the latest architecture Intel Ice-Lake series

that has the fastest AES-NI whose latency and throughput of aesenc are 3 and 0.5, respectively.

Figure 7.3 illustrates an example of the process in the parallel execution of aesenc for Intel Ice-lake

whose latency and throughput are 3 and 0.514, respectively.

Employing one AES round as an underlying component for future designs has a great merit

for performance compared to employing other cryptographic primitives. Many software and li-

braries support AES-NI natively, e.g OpenSSL. Thus, it seems to be very reasonable that devices

connected to 6G services will still support such instructions. SNOW-V also takes advantage of

AES-NI for the same reason.

Permutation-based Structure. As a reference point, we consider a stream cipher SNOW-V,

14Throughput 0.5 means that there are two ports for aesenc with throughput 1.

116

Table 7.2: Latency and throughput of aesenc for some architectures by Intel and AMD
referred by [148].

Vendor Architecture Latency Throughput

Intel

Sky-lake 4 1
Kaby-lake 4 1
Coffee-lake 4 1

Cannon-lake 4 0.5
Cascade-lake 4 1
Comet-lake unknown unknown

Ice-lake 3 0.5
AMD Zen + 4 0.5

Zen 2 4 0.5

Throughput

Latency

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

AESENC

0 1 2 3 4 5 6 7 8 9 10

cycle/Byte

Figure 7.3: The process of aesenc for Intel Ice-lake.

which is designed for 5G applications. SNOW-V is based on linear feedback shift register (LFSR)

and Finite State Machine(FSM) with AES-based round functions. As discussed in Section 7.1, if

we follow this design strategy, we need to accelerate the performance approximately at least three

times faster than SNOW-V to achieve the required performance of 100 Gbps. Thus, we decide to

choose other design strategies based on AES round functions.

Specifically, we focus on AEGIS family [175] and Tiaoxin-346 [137], which are permutation-

based authenticated encryption schemes using AES round functions and submitted to CAESAR

competition [2]. These allow a full parallelization and can achieve the outstanding speed compared

to AES-CTR.

However, as it has been pointed out that there exists a linear bias in the ciphertext blocks for

AEGIS-256 [129], it seems insecure to adopt the similar quadratic boolean function to generate the

ciphertexts, especially for the purpose to reach 256-bit security. This fact motivates us to design

different ways to generate the ciphertext blocks and finally involving 1 AES round function into

generating each ciphertext block is chosen. Such a way is efficient due to the parallel calls to AES-

NI. Moreover, a study on the initialization phases for both reduced AEGIS-128 and Tiaoxin-346
has been reported recently [119]. To further increase the resistance against the reported attacks,

how to place the nonce and the key at the initial state is carefully chosen in our scheme, which is

little discussed in AEGIS and Tiaoxin-346.

Efficient AES-Based Round Function. Round functions of AEGIS family [175] and

Tiaoxin-346 [137] consist of the 128-bit XOR operation and one AES round that is executed by

the processor instruction aesenc. Jean and Nikolić have generalized the way to construct efficient

117

Block

A

M

A A A

M M M

Block Block Block

Block Block Block Block

Figure 7.4: The general construction considered of the round function in [103]. Dash
lines mean that it can be possible to be absent or present in the design.

A or or M or or or

Block

A A Aor M or M or M

Block Block Block

Block Block Block Block

or M

Permutation

Figure 7.5: General construction of the round function. Dash lines mean that it can be
possible to be absent or present in the design.

round functions using only the one AES round (aesenc) and 128-bit XOR and have found several

more efficient candidates [103]. Figure 7.4 shows the general construction of the round function

considered in [103].

To push the limitation further of efficiency of their structures, we explore a new class of AES-

based structures shown in Fig 7.5. Compared to the structures considered by Jean and Nikolić

results [103], our constructions remove the case of applying both aesenc and XOR to each block

in a cascade way for one round to minimize the critical path of one round. Specifically, we only

consider the case of applying only either aesenc or 128-bit XOR to each block in one round, where

aesenc takes a state block or message block as input of AddRoundKey and 128-bit XOR takes state

block or message block as inputs, respectively as shown in Figure 7.5.

Moreover, we apply a block permutation to state blocks, which was not considered by Jean and

Nikolić (See Fig 7.4). This sufficiently increases the number of possible candidates. Indeed, as

described in later section, it enables us to find more efficient constructions than Jean and Nikolić’s

results, which is not covered by their target classes. It should be emphasized that executing the

block permutation in register size is a cost-free operation, that is, the permutation only changes

the order of blocks. More strictly, a permutation needs some temporary registers. However, these

registers almost do not affect the speed if the total number of registers used in process of the

scheme is lower than 16, which is the total number of xmm-registers equipped in almost all modern

CPUs. Hence, applying a block permutation does not affect the speed of the round function. For a

block that will be inputted into aesenc or XOR, we use one-block right rotation as in [103].

118

7.3.2 Criteria for Performance and Security

For designing efficient round functions, we need to choose several parameters such as the number

of aesencs, the number of inserted message blocks, and a block permutation for our structure in

Fig. 7.5. We clarify requirements of performance and security for target applications to choose

these parameters.

7.3.2.1 Requirements for Performance. To theoretically estimate speed, we utilize a

metric called rate, which is proposed by Jean and Nikolić [103].

Definition 17 (Rate [103]) The rate p of a design is the number of AES rounds (calls to aesenc)
used to process a 128-bit message.

For our general construction of Fig 7.5, the rate p is estimated as a ratio of (# of aesencs)/(# of the

inserted 128-bit messages) in one round. Since a smaller rate leads to more efficient design [103],

we should design the round function that have as small rate as possible. The rate is the most

important parameter for speed.

The number of aesenc in one round is also important factor to maximize the efficiency. Jean

and Nikolić claim that the number of aesenc in one round should be close to (latency)/(throughput)

ratio [103] for the efficient design, e.g. if the latency and throughput of aesenc are respectively 3

and 0.5, the number of aesenc should be 6 in one round. The reason is when the number of aesencs

is less than a (latency)/(throughput) ratio, there are empty cycles in process of aesenc. On the other

hand, if the number of aesencs is the same as (latency)/(throughput) ratio, there is no empty cycles

as shown in Figure 7.3. Since our target architecture is Ice-lake, the number of aesenc in a round

should be 6.

Another important factor related to speed is the number of blocks of round functions, namely

the state size. Smaller state size significantly improves the efficiency because it can reduce reg-

isters used for encryption and makes a whole process of encryption easier. We experimentally

confirmed that reducing the number of blocks leads to increasing speed when the rate is the same.

Table 7.3 shows our experimental result that compares three types of round functions of the rate
2 with the number of blocks of 8, 9, and 10, each of which is measured on Intel(R) Core(TM)

i7-1068NG7 CPU @ 2.30GHz with 16 GB RAMs. Details of these round functions are given in

Fig 7.6, 7.7, and 7.8. The round function whose # of blocks is 8 is the same as the one of Rocca.

Other 2 round functions whose # of blocks is 9 and 10 are the simple extended version of that.

Block

AX0 X1A A A

Block Block Block Block Block Block Block

BlockBlockBlockBlockBlockBlockBlockBlock

Figure 7.6: The round function whose # of blocks is 8.

119

Block

AX0 X1A A A

Block Block Block Block Block Block Block

BlockBlockBlockBlockBlockBlockBlockBlock

Block

Block

Figure 7.7: The round function whose # of blocks is 9.

Block

AX0 X1A A A

Block Block Block Block Block Block Block

BlockBlockBlockBlockBlockBlockBlockBlock

Block

Block

Block

Block

Figure 7.8: The round function whose # of blocks is 10.

Besides, a smaller state size is a preferable feature to be deployed in wider classes of devices

with keeping the efficiency. It is because this, that some CPUs, such as ones from AMD, do not

support the large size register like AVX512, and the process requiring the use of many registers

tends to become more complicated on these CPUs. Since the number of blocks of SNOW-V,

which is our reference point, is 7, the state size should be competitive.

Table 7.3: Comparison of the performance of the round function having different number
of blocks at the same rate.

of blocks Speed (in cycle/Byte) rate
8 0.126717 2
9 0.147397 2
10 0.155584 2

7.3.2.2 Requirements for Security. Since evaluating the resistance to all possible attacks

for all possible candidates is practically infeasible, we focus on the security against the forgery

attack by the internal collision as a criteria of security when finding candidates, as with [103].

Especially, we impose the 128-bit security against the forgery attack on our design, i.e. our security

requirement is that there are no internal collisions with a probability more than 2−128. Through

Sect. 7, “forgery attacks” is meant to be a universal forgery in the nonce-respecting setting.

To evaluate the probability of the internal collision, we search the lower bound for the num-

ber of active S-boxes by a Mixed Integer Linear Programming (MILP) solver [133]. Since the

maximum probability of an S-box is 2−6, it is sufficient to guarantee the security against internal

collisions if there are 22 active S-boxes, as it gives 2(−6×22) < 2−128 as an estimate of differential

probability. For the security against other possible attacks, we evaluate after designing a whole

design, and it will be described in Sect. 7.4.

7.3.2.3 Summary of Our Criteria. Requirements for AES-based round function are as

follows.

For speed.

Requirement 1. The lowest rate round function as possible that leads to faster speed.

120

Requirement 2. The number of aesencs in one round is close to 6.

Requirement 3. A round function with a smaller number of blocks (around 7).

For security.

Requirement 4. 128-bit security to the forgery attack by internal collision, i.e. the lower

bound of active S-boxes is 22.

For comparison, Table 7.4 shows parameters of the round function in the AEGIS [175] family,

Tiaoxin-346 [137] and structure by Jean and Nikolić [103].

Table 7.4: Round functions of AEGIS family and Tiaoxin-346

Primitive # of aesenc # of blocks # of inserted message blocks rate
AEGIS-128 5 5 1 5
AEGIS-256 6 6 1 6
AEGIS-128L 8 8 2 4
Tiaoxin-346 6 13 2 3

[103] 6 12 3 2

7.3.3 Finding Efficient Structures

We choose several parameters such as the number of aesencs, the number of inserted message

blocks, and a block permutation to meet requirements given in Sect. 7.3.2. The number of

possible candidates is estimated as s! × (s
a

)× (s
m

)
candidates where s, a, and m are # of blocks, #

of aesenc, and # of message blocks, respectively. For example, it reaches 235.00 candidates when

s = 10, a = 4, and m = 2.

7.3.3.1 Our Approach. According to Table 7.4, the most efficient design is Jean and

Nikolić’s structure whose rate is 2. However, their state size is quite large for our requirement.

In our experiments, the round functions with a smaller rate require a larger number of blocks to

meet the security requirement. Indeed, we cannot find any structure of rate 2 and less than 12

internal blocks by Jean and Nikolić’s constructions (Fig.7.4) [103]. To address it, our approach is

as follow.

• To expand possible candidates while keeping efficiency, we introduce a block permutation to

state blocks in the round function, while Jean and Nikolić did not consider any permutation.

It should be emphasized that executing the block permutation in register size is a cost-free

operation.

• To further improve the efficiency, we focus on the structure in which each block in one round

is applied only either aesenc or XOR to minimized the critical path of the round function.

7.3.3.2 Search Targets. When the number of inserted message blocks is m, the number

of aesencs in one round should be (6 − m) to satisfy requirement 2 as m aesenc is used for

generating ciphertext blocks for our design to the resistance to the linear bias (details in Section

3.5). Considering requirement 1 (rate = 2), the only choice of m is 2, thus the number of aesencs

is 4. Following requirement 3, we consider the case where # of blocks are from 6 to 8. Besides, we

consider the case where rate = 1.5 that can not satisfy requirement 2, because the low rate round

function might be possible to more efficient even if it does not meet requirement 2. Table 7.5

shows our candidates of the round function.

121

Table 7.5: Candidates of round functions which we search.

Round function # of aesenc # of blocks # of message blocks rate # of candidates # of searched candidates
Candidates-1 4 6 2 2 217.30 ALL
Candidates-2 4 7 2 2 221.82 ALL
Candidates-3 4 8 2 2 226.23 219.93

Candidates-4 3 6 2 1.5 217.72 ALL
Candidates-5 3 7 2 1.5 221.82 ALL
Candidates-6 3 8 2 1.5 225.91 219.93

We evaluate the lower bounds for the number of active S-boxes for Candidate-1, 2, 3, 4, 5,

and 6 by a MILP solver. We can conduct exhaustive searches for Candidates-1, 2, 4, and 5 while

exhaustive searches for Candidates-3 and 6 are infeasible due to too large candidates that reach

226.23 and 225.91 for Candidates-3 and 6, respectively. Thus, we randomly search 219.93 candidates

for both Candidate-3 and 6.

7.3.3.3 Results. As a result of an exhaustive search over Candidates-1, 2, 4, and 5, there are

no round functions that satisfy the requirement 4. For candidates-6, we could not find round func-

tions meeting requirement 4 either. For Candidates-3, we found that 100 out of 219.93 candidates

ensure active S-boxes of ≥ 22. We then evaluate a diffusion property for these 100 candidates.

Then we find 22 out of 100 candidates achieve the full diffusion after 7 rounds in nibble-wise

while round functions of AEGIS-128, AEGIS-256, AEGIS-128L, and [103] require 7, 8, 10, and

12 rounds for the full diffusion, respectively, and the one of Tiaoxin-346 never achieve the full

diffusion as the state consists of three independent chucks.

We finally choose the round function shown in Fig 7.1 as the one of Rocca, which ensures

active S-boxes of 24 that is the largest number of active S-boxes among 22 candidates. This eval-

uation requires about 23 days on three computers equipped with 48/64/64 cores and 256/256/256

GB RAMs.

Table 7.6 compares the speed of round functions of Rocca and other primitives, where speed is

estimated as the average value of the round function executed 1000000 times with 64kB messages

on Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz with 16 GB RAMs. Our round function is

the fastest one and the number of blocks is smaller than ones whose rate is 2 or 3.

It should be mentioned that the comparison of the speed of round functions does not always

reflect directly to the speed of the whole design. This is because that the overhead of the ciphertext

generation depends on the structure of the round function, especially the empty cycle in process

of XOR/aesenc.

Table 7.6: Speed (in cycles / Byte) of round functions of Rocca, AEGIS-128, AEGIS-128L,
AEGIS-256, Tiaxion-346, and JN16 (not include a generation part of a ciphertext).

Primitive Speed (in cycles / Byte) # of blocks rate
AEGIS-128 0.384482 5 5
AEGIS-256 0.388125 6 6
AEGIS-128L 0.191072 8 4
Tiaoxin-346 0.192413 13 3

[103] 0.140433 12 2
Rocca 0.124609 8 2

7.3.4 Loading the Nonce and Key

It has been pointed by Liu et al. that there is one useless round in Tiaoxin-346 by expressing

the internal states in terms of the nonce and the key at the initialization phase [119]. The main

reason is that the nonce and the key are not well diffused, i.e. after a certain number of rounds, the

122

internal state can be expressed in terms of A(N) and the key. To avoid it in Rocca, we carefully

investigate how to place the nonce and the key.

In Rocca, the initial state is loaded as follows:

S[0] = K1, S[1] = N, S[2] = Z0, S[3] = Z1,

S[4] = N ⊕ K1, S[5] = 0, S[6] = K0, S[7] = 0.

After one-round update, the state (S[0], . . . , S[7]) becomes:

S[0] = Z0, S[1] = A(K1), S[2] = N ⊕ K0, S[3] = N ⊕ A(Z0),
S[4] = 0, S[5] = A(N ⊕ K1) ⊕ Z1, S[6] = N ⊕ K1, S[7] = K0 ⊕ K1.

It can be observed that N is xored with K0 and K1, respectively. Moreover, N is involved in

the expressions of each state block in a very different way, which can avoid the useless rounds

and, at the same time, strengthen the resistance against the key-recovery attacks applied to round-

reduced AEGIS-128 and Tiaoxin-346 as described in [119]. Further evidence can be seen from the

expressions of the state blocks after 3 rounds of update, as shown below:

S[0] = N ⊕ K1,

S[1] = A(K0 ⊕ K1 ⊕ Z0) ⊕ Z0 ⊕ N ⊕ K1,

S[2] = A(Z0) ⊕ K0 ⊕ K1 ⊕ A(A(N ⊕ K1) ⊕ Z1),
S[3] = A(A(K1) ⊕ N ⊕ K1) ⊕ A(Z0) ⊕ K0 ⊕ K1,

S[4] = A(N ⊕ K0) ⊕ A(K1) ⊕ Z1,

S[5] = A(N ⊕ A(Z0) ⊕ Z1) ⊕ A(N ⊕ K0) ⊕ A(K1),
S[6] = A(N ⊕ A(Z0)) ⊕ N ⊕ A(Z0) ⊕ Z1,

S[7] = K0 ⊕ K1 ⊕ Z0 ⊕ A(A(N ⊕ K1) ⊕ Z1).

7.3.5 Generating the Ciphertext Blocks

In both AEGIS and Tiaoxin-346, each ciphertext block is computed based on a simple quadratic

boolean function in terms of the several internal state blocks where the number of AND operations

is 1. However, such a way to generate the output seems to be insecure against the statistical attack

proposed by [129], especially for the scheme targeting 256-bit security.

At the initial design phase, we tried many possible combinations to compute each ciphertext

block with a similar quadratic boolean function. However, with the MILP-based method [80]

to automatically evaluate the security against this statistical attack, the lower bound for the time

complexity is always below 2128, which is far smaller than 2256. Therefore, new strategies are

essential for Rocca.

The basic idea is to utilize a complex nonlinear function and finally the AES round function is

chosen as the only nonlinear function. Due to the parallel way to perform the AES round function,

such a way is indeed rather efficient and can simultaneously strengthen the security of our scheme.

To reduce the overall overheads, computing each ciphertext block only utilizes 1 aesenc.

The basic principle to choose the state blocks to compute the ciphertext is that the state blocks

(S[0], S[2], S[4], S[5]) passing through the AES round function in the round updated function

should be involved, which can increase the number of active S-boxes in the first round. In addition,

we expect that they should be processed in a different way from that in the round update function.

Intuitively, this can prevent the ciphertext blocks from being related to the updated internal state

blocks.

123

Moreover, as (S[4], S[5]) passes through the AES round function in the round update function

and the two state blocks are next to each other, considering the fact that several rounds are needed,

it is better to choose additional state blocks from (S[0], S[1], S[2], S[3], S[4]), which will be shifted

to (S[4], S[5]) after some rounds. A detailed study of the security of our choice can be found in

the following section.

We emphasize that the overhead of executing these two aesencs is few since we can assign

them into empty cycles of aesenc in the round function.

7.4 Security Evaluation

7.4.1 Differential Attack

The differential attack is one of the possible attacks on the initialization phase of Rocca. Specifi-

cally, the differences in the nonce (and key) can propagate to the ciphertext. If there is a differential

characteristic with a high probability, it can be exploited for the differential attack. Hence, we can

compute the lower bound for the number of active S-boxes in the initialization phase to evaluate

the resistance against the differential attack. To compute the lower bound, we utilize a MILP-aided

method proposed by Mouha et al. [133] and focus on the byte-wise truncated differences. We eval-

uate it in both the single-key setting where differences can only be injected into the nonce and the

related-key setting where differences can be injected into the key and nonce.

Table 7.7 shows the lower bounds for the number of active S-boxes up to 14 rounds in the

single-key setting and up to 11 rounds in the related-key setting in the initialization phase. Since

the maximal differential probability of the S-box of AES is 2−6, it is sufficient to guarantee the

security against differential attacks if there are 43 active S-boxes, as it gives 2(−6×43) < 2−256

as an estimate of the differential probability. As shown in Table 7.7, there are 54 active S-boxes

over 6 rounds in the single-key setting and 44 active S-boxes over 7 rounds in the related-key

setting in the initialization phase. It should be emphasized that we do not claim the security in the

related-key setting, although we evaluated the number of active S-boxes in the related-key setting.

Since there is a large security margin, we expect that Rocca can resist against differential

attacks in the initialization phase.

Table 7.7: The lower bound for the number of active S-boxes in the initialization phase
where ASsk and ASrk mean an active S-box in the single-key setting and in the related-key
setting, respectively.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14
of ASsk 1 6 9 30 38 54 62 82 85 93 100 104 111 115
of ASrk 0 1 2 11 21 36 44 48 68 73 79 - - -

7.4.2 Forgery Attack

It has been shown in [137] that the forgery attack is a main threat to the constructions like Tiaoxin-
346 and AEGIS as only one-round update is used to absorb each block of associated data and

message. Such a concern has been taken into account in our design phase, as reported in Sect. 7.3.

Specifically, in the forgery attack, the aim is to find a differential trail where the attackers can

arbitrarily choose differences at the associated data and expect that such a choice of difference can

lead to a collision in the internal state after several number of rounds. The resistance against this

attack vector can be efficiently evaluated with an automatic method [133]. As Rocca is based on

the AES round function, it suffices to prove that the number of active S-boxes in such a trail is

larger than 22 as the length of the tag is 128 bits. With the MILP-based method, it is found that the

lower bound is 24. Consequently, Rocca can provide 128-bit security against the forgery attack.

124

7.4.3 Integral Attack

One of the most efficient attacks on round-reduced AES is integral attacks. Recently, Liu et al.

presented some attacks [119] on round-reduced AEGIS-128 and Tiaoxin-346 based on the integral

distinguisher on 4-round AES. To understand the security of our construction, it is necessary to

evaluate the resistance against integral attacks. Similar to [119], the internal state will be first

expressed in terms of the initial state and then we study the expressions.

For simplicity, denote the state after r iterations of the round function at the initialization phase

by Sr. In addition, when writing the expressions, we omit the constants and use A(X) to represent

that X passes through one AES round, i.e. A(X) can represent A(X ⊕ ε) where ε is a 128-bit

constant. In this way, the internal state S4 can be expressed as follows:

S4[0] = A(A(N)), S4[1] = A(N) ⊕ A(A(N)),
S4[2] = A(N), S4[3] = A(A(A(N))) ⊕ N,

S4[4] = A(N), S4[5] = A(A(N)) ⊕ A(N),
S4[6] = A(A(N) ⊕ A(N)) ⊕ A(N), S4[7] = A(N).

As our construction can provide 256-bit security, it is necessary to evaluate the case when

N traverses all the 2128 possible values under the same 256-bit key. According to [119], some

terms in the expressions can be eliminated by adding proper conditions and the expressions can be

simplified. However, according to the expression of S4[3], when N takes all the possible values, it

is impossible that S4[3] will also take all the 2128 possible values. In other words, the multiset of

S4[3] tends to be unstructured. Therefore, by considering the propagation of S4[3] and the way to

compute the ciphertext, we believe that 20 rounds are sufficient to resist against integral attacks.

On the other hand, consider the expressions for S6, as shown below:

S6[0] = A(A(N)) ⊕ A(A(N) ⊕ A(N)) ⊕ A(N),
S6[1] = A(A(N)) ⊕ A(A(N)) ⊕ A(A(N)) ⊕ A(A(N) ⊕ A(N)) ⊕ A(N),
S6[2] = A(A(A(N))) ⊕ A(N) ⊕ A(A(A(N)) ⊕ A(N)) ⊕ A(N),
S6[3] = A(A(N) ⊕ A(A(N)) ⊕ A(A(N) ⊕ A(N)) ⊕ A(N)) ⊕ A(N))

⊕A(A(A(N))) ⊕ A(N),
S6[4] = A(A(N)) ⊕ A(N) ⊕ A(A(N)),
S6[5] = A(A(A(A(N))) ⊕ N) ⊕ A(A(N)) ⊕ A(N) ⊕ A(A(N)),
S6[6] = A(A(A(N)) ⊕ A(A(A(N))) ⊕ N) ⊕ A(A(A(N))) ⊕ N,

S6[7] = A(N) ⊕ A(A(A(N)) ⊕ A(N)) ⊕ A(N).

As

S8[0] ⊕ S8[4] = S6[0] ⊕ S6[6] ⊕ A(S6[2]) ⊕ S6[1] ⊕ Z0 ⊕ Z1,

S8[1] = A(S6[7] ⊕ Z0) ⊕ S6[0] ⊕ S6[7],

it can be found that in the expressions of A(S8[1]) and A(S8[0] ⊕ S8[4]), N will pass through 5

AES rounds and there seems to be no way to add proper conditions to prevent N from passing

through 5 AES rounds. Moreover, as N passes through 5 AES rounds in very different ways

in A(S8[1]) and A(S8[0] ⊕ S8[4]), it is also impossible to prevent it by considering the sum

A(S8[1]) ⊕ A(S8[0] ⊕ S8[4]). Consequently, we further believe that 20 rounds are secure against

integral attacks.

125

7.4.4 State-recovery Attack

Different from AEGIS and Tiaoxin-346, the output in our construction only involves a few state

blocks, i.e. the attackers are able to know A(S[1]) ⊕ S[5] and A(S[0] ⊕ S[4]) ⊕ S[2]. As the

internal state consists of 8 blocks and the output in each round only leaks 256-bit information,

the attackers at least need to consider 4 consecutive rounds in order to recover the whole secret

internal state.

7.4.4.1 Guess-and-determine attack. The guess-and-determine attack is a common tool

to achieve state recovery. Consider four consecutive rounds at the encryption phase and denote the

4 internal states used to generate the ciphertexts by St, St+1, St+2 and St+3, respectively. In this

case, the attackers can compute

A(Si[1]) ⊕ Si[5], A(Si[0] ⊕ Si[4]) ⊕ Si[2],

where t ≤ i ≤ t + 3.

Assuming the message blocks are all zero, we thus have

A(St+1[1]) = A(A(St[0]) ⊕ St[7]),
St+1[5] = A(St[4]) ⊕ St[3],

A(St+1[0] ⊕ St+1[4]) = A(St[7] ⊕ St[3]),
St+1[2] = St[1] ⊕ St[6],

A(St+2[1]) = A(A(St+1[0]) ⊕ St+1[7])
= A(A(St[7]) ⊕ St[0] ⊕ St[6]),

St+2[5] = A(St+1[4]) ⊕ St+1[3]
= A(St[3]) ⊕ A(St[2]) ⊕ St[1],

A(St+2[0] ⊕ St+2[4]) = A(St+1[7] ⊕ St+1[3])
= A(St[0] ⊕ St[6] ⊕ A(St[2]) ⊕ St[1]),

St+2[2] = St+1[1] ⊕ St+1[6]
= A(St[0]) ⊕ St[7] ⊕ A(St[5]) ⊕ St[4],

A(St+3[1]) = A(A(St+1[7]) ⊕ St+1[0] ⊕ St+1[6])
= A(A(St[0] ⊕ St[6]) ⊕ St[7] ⊕ A(St[5]) ⊕ St[4]),

St+3[5] = A(St+1[3]) ⊕ A(St+1[2]) ⊕ St+1[1],
= A(A(St[2]) ⊕ St[1]) ⊕ A(St[1] ⊕ St[6]) ⊕ A(St[0]) ⊕ St[7],

A(St+3[0] ⊕ St+3[4]) = A(St+1[0] ⊕ St+1[6] ⊕ A(St+1[2]) ⊕ St+1[1]),
= A(A(St[5]) ⊕ St[4] ⊕ St[1] ⊕ St[6] ⊕ A(St[0])),

St+3[2] = A(St+1[0]) ⊕ St+1[7] ⊕ A(St+1[5]) ⊕ St+1[4],
= A(St[7]) ⊕ St[0] ⊕ St[6] ⊕ A(A(St[4]) ⊕ St[3]) ⊕ St[3].

Therefore, the attackers at least need to consider the following 1024 nonlinear boolean equa-

126

tions in terms of 1024 boolean variables (St[0], . . . , St[7]) in order to recover the secret state:

α0 = A(St[1]) ⊕ St[5],
α1 = A(St[0] ⊕ St[4]) ⊕ St[2],
α2 = A(A(St[0]) ⊕ St[7]) ⊕ A(St[4]) ⊕ St[3],
α3 = A(St[7] ⊕ St[3]) ⊕ St[1] ⊕ St[6],
α4 = A(A(St[7]) ⊕ St[0] ⊕ St[6]) ⊕ A(St[3]) ⊕ A(St[2]) ⊕ St[1],
α5 = A(St[0] ⊕ St[6] ⊕ A(St[2]) ⊕ St[1]) ⊕ A(St[0]) ⊕ St[7] ⊕ A(St[5]) ⊕ St[4],
α6 = A(A(St[0] ⊕ St[6]) ⊕ St[7] ⊕ A(St[5]) ⊕ St[4])

⊕A(A(St[2]) ⊕ St[1]) ⊕ A(St[1] ⊕ St[6]) ⊕ A(St[0]) ⊕ St[7],
α7 = A(A(St[5]) ⊕ St[4] ⊕ St[1] ⊕ St[6] ⊕ A(St[0]))

⊕A(St[7]) ⊕ St[0] ⊕ St[6] ⊕ A(A(St[4]) ⊕ St[3]) ⊕ St[3],

where αi ∈ F
128
2 (0 ≤ i ≤ 7) are known constants. It is obvious that the attackers should not

completely guess 2 state blocks as the time complexity of guess will be 2256. A clever way is to

guess a column and a diagonal of the state blocks, which fits well with the form of the outputs.

Such a strategy will allow attackers to guess at most 8 columns and diagonals. However, only in

the conditions imposed by (α0, α1, α3), one AES round is involved, i.e. the clever way is only

applicable to these conditions. For the remaining conditions, two AES rounds are involved, which

implies that the attackers at least need to guess a complete 128-bit block due to the full diffusion.

For such reasons, we believe the time complexity of the guess-and-determine attack cannot be

lower than 2256.

7.4.4.2 Algebraic attack. It is well-known that the S-box of AES can be expressed as a set

of quadratic boolean equations if the input zero is discarded. Therefore, the above equation system

can be described as quadratic boolean equations by introducing extra intermediate variables to

represent the outputs of the S-box for each AES round function. Notice that for different ciphertext

blocks (α0, ..., α7), the attackers have to introduce different variables due to the big difference

between the equations. Although the system of equations is overdefined, the number of equations

is only slightly larger than the number of variables and the number of variables is much larger than

256. As far as we know, such a system of equations can not be solved with time complexity 2256.

7.4.5 The Linear Bias

Exploiting the fact that the output (keystream) of AEGIS is quadratic in terms of several state

blocks and only one-round update is used to process each message block, Minaud proposed a

statistical attack [129] on the keystream of AEGIS-256. Such an attack was improved in [80]

with an automatic search method based on [160]. Specifically, the authors first utilized a simple

truncated model and evaluated the minimal number of active S-boxes. It is found that for AEGIS-
128, AEGIS-128L and AEGIS-256, all the results obtained in the simple truncated model suggest

they are insecure against such a statistical attack. However, when searching for compatible linear

trails in the bit level, almost all of them are incompatible. In addition, the results obtained in the

refined model is far larger than that obtained in the simple truncated model.

To evaluate the resistance of our construction against such a statistical attack, we also adopted

the simple truncated model as in [80]. According to our results, the best case is to consider 4

consecutive rounds and the minimal number of active S-boxes is 38, which suggests that the time

complexity of the distinguishing attack is at least 2228. Achieving 42 active S-boxes is ambitious

without affecting the performance and we believe 38 is enough to resist against such an attack

considering the big gap between the truncated model and bitwise model as reported in [80]. To

127

further verify whether there is a compatible linear trail to the best solution obtained with the

truncated model, we also implemented the bitwise model where there is no additional constraint

on the input mask and output mask of the S-box except the trivial infeasible pairs caused by the

zero input mask or zero output mask. When searching for a compatible linear trail based on the

truncated pattern, it is soon shown to be infeasible. One main reason is that compared with the

attack on AEGIS-256 requiring 2 consecutive rounds, this statistical attack on Rocca requires

4 consecutive rounds, which makes the contradictions in the solutions obtained with the simple

truncated model occur more easily if verified with the bitwise model. Taking this fact into account,

we further believe Rocca is secure against this attack vector.

7.4.6 The State-recovery Attack Using the Decryption Oracle

In a recent work [95], by using a trivial decryption oracle, it is possible to recover the full internal

state after the initialization phase with time complexity 2128. Indeed, such a state-recovery attack

has been observed by the designers of AEGIS-256 and it is inavoidable if the tag size is small.

However, what we need to care is to prevent the further key-recovery attacks after the internal

state is recovered in such a way. In AEGIS-256, this is ensured by using a keyed permutation

for the initialization phase. In this revised version, we simply use a key feed-foward operation to

prevent the further key-recobery attack because the attackers cannot invert the initialization phase

without knowing the key even if the state after this phase is fully known. Moreover, although

the finalization phase of AEGIS-256 does not involve the key, i.e. it is a public permutation, as

suggested by [95], we feel it is reasonable to involve the key addition at the very beginning of this

phase to prevent further forgery attacks.

7.4.7 Other Attacks

While there are many attack vectors for block ciphers, their application to Rocca is restrictive as

the attackers can only know partial information of the internal state from the ciphertext blocks. In

other words, reversing the round update function is impossible in Rocca without guessing many

secret state blocks. For this reason, only the above potential attacks vectors are taken into account.

In addition, due to the usage of the constant (Z0, Z1) at the initialization phase, the attack based

on the similarity in the four columns of the AES state is also excluded.

7.4.8 No Claims

We do not claim the security of our scheme in the nonce-misuse setting and it seems trivial to

achieve the state recovery in this setting as the output is computed with only one-round update

function at the encryption phase. In addition, we do not claim the security of our scheme in the

related-key and known-key setting, which is far from meaningful in real-world applications. For

the attacks on the initialization phase, we emphasize that the attackers can only derive information

from the restricted outputs and cannot know the full secret internal state.

7.5 Software Implementation

According to [98], target peak data rates for 5G communication are 10 Gbps for uplink and 20

Gbps for downlink. SNOW-V [81] is a new version of SNOW-family designed for 5G commu-

nication with 256-bit key support and achieves 58.25 Gbps on Intel(R) Core(TM) i7 8650U CPU

@1.90GHz in encryption only mode. In the next generation (i.e. 6G), the target peak data rate is

further increased to 100 Gbps to 1 Tbps [117]. In order to realize this high peak data rate, a new

encryption algorithm is required.

128

Table 7.8: Performance Evaluation

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
64.60 Gbps 63.43 Gbps 57.53 Gbps 43.44 Gbps 28.94 Gbps

AEGIS-128L 104.91 Gbps 102.71 Gbps 66.28 Gbps 31.30 Gbps 14.10 Gbps
Tiaoxin-346 v2 127.55 Gbps 126.73 Gbps 81.27 Gbps 33.78 Gbps 13.61 Gbps
AEGIS-256

256-bit

66.02 Gbps 64.39 Gbps 59.09 Gbps 40.59 Gbps 26.28 Gbps
AES-256-CBC 9.35 Gbps 9.34 Gbps 9.51 Gbps 9.23 Gbps 9.26 Gbps
AES-256-CTR 58.19 Gbps 56.83 Gbps 48.77 Gbps 38.90 Gbps 19.54 Gbps
ChaCha20 11.49 Gbps 11.38 Gbps 11.40 Gbps 10.63 Gbps 4.8 Gbps
SNOW-V 43.39 Gbps 41.47 Gbps 41.59 Gbps 36.29 Gbps 25.78 Gbps
Rocca 180.55 Gbps 177.71 Gbps 151.22 Gbps 98.30 Gbps 33.74 Gbps

AEAD
AEGIS-128

128-bit
60.03 Gbps 55.16 Gbps 30.13 Gbps 11.88 Gbps 3.62 Gbps

AEGIS-128L 97.55 Gbps 85.41 Gbps 31.14 Gbps 9.96 Gbps 2.95 Gbps
Tiaoxin-346 v2 114.61 Gbps 97.52 Gbps 31.67 Gbps 9.16 Gbps 2.54 Gbps
AEGIS-256

256-bit

61.16 Gbps 57.51 Gbps 30.43 Gbps 11.26 Gbps 3.37 Gbps
AES-256-GCM 29.08 Gbps 27.90 Gbps 18.78 Gbps 8.41 Gbps 2.57 Gbps
ChaCha20-Poly1305 7.60 Gbps 7.32 Gbps 5.98 Gbps 3.61 Gbps 1.24 Gbps
SNOW-V-GCM 30.20 Gbps 29.31 Gbps 19.14 Gbps 8.84 Gbps 2.73 Gbps
Rocca 150.95 Gbps 131.41 Gbps 42.39 Gbps 12.75 Gbps 3.29 Gbps

We evaluate the performance of Rocca and show that Rocca can achieve 160 Gbps when en-

crypting data of large size. Modern CPUs are equipped with a dedicated instructions set for AES
called AES New Instructions (AES-NI). As Rocca has the AES round function as its component,

we can optimize the implementation by utilizing AES-NI. Specifically, we use _mm_aesenc_si128()
for AES’s round function. For XORing two 128-bit values, we use _mm_xor_si128(). We also

compare the performance with existing algorithms and demonstrate Rocca’s advantage in terms of

the performance. All evaluations were performed on a PC with Intel(R) Core(TM) i7-1068NG7

CPU @ 2.30GHz with 32GB RAM. For the fair comparison, we included Rocca as well as SNOW-
V, Tiaoxin and AEGIS to Openssl (3.1.0-dev) and measured their performances. We used SNOW-V
reference implementation with SIMD, which was given in [81]. For Tiaoxin-346 and AEGIS, we

used implementations available at https://github.com/floodyberry/supercop. The results

are given in Table 7.8, and all performance results are given in Gbps. In TLS, data will be divided

into chunks of 214 = 16384 bytes or less before it is encrypted, the values in Table 7.8 are close to

what we expect in practice. As shown, Rocca is 4.16 times faster than SNOW-V, and 3.10 times

faster than AES-256-CTR in processing 16384 bytes message. It also outperforms both 128-bit

algorithms which we tested. In encryption only mode, the initialization is performed once and

only the encryption is iterated. While in AEAD mode, the initialization, associated data addition,

encryption, tag generation and finalization are iterated. Here, the size of associated data is fixed

to 13 bytes. In case of Rocca, the round function is iterated 20 times in the initialization and final-

ization, respectively, which is equivalent to processing 1280 bytes of input. As a result, we expect

1280/16384 ≈ 8% overhead to the encryption mode for 16384 bytes input. Additional overhead

will be incurred by calling functions for the initialization, tag generation and finalization. The per-

formance results on other CPUs are given in Sect. 7.5.1, and Rocca achieves the best performance

in other CPUs as well.

The performance can be further improved by using new instructions set and/or optimizing the

implementation. The new instructions set AVX512 contains _mm512_aesenc_epi128(), which

runs four 128-bit AES round functions in parallel. As Rocca uses four AES round functions in one

state update, using _mm512_aesenc_epi128() instead of four _mm_aesenc_epi128()s can be

improved by up-to 4 times.

7.5.1 Software Implementation Results on Other CPUs

We show software implementation results on other CPUs in Tables 7.9 to 7.11. The evaluations

were performed on Windows 10 Pro 21H1 for Table 7.9, Windows 10 Pro 21H2 for Table 7.10 and

macOS Big Sur 11.4 for Tables 7.11. The difference of the environments affects the performance

129

of some algorithms(e.g. AESGIS-256, AES-256-CTR and ChaCha20), Rocca shows competitive

performance on all environments.

Table 7.9: Performance on Intel(R) Core(TM) i9-12900K CPU with 64 GB RAMs.

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
101.50 Gbps 99.13 Gbps 84.44 Gbps 63.66 Gbps 23.46 Gbps

AEGIS-128L 143.87 Gbps 142.70 Gbps 126.06 Gbps 77.85 Gbps 20.08 Gbps
Tiaoxin-346 v2 192.64 Gbps 189.01 Gbps 148.12 Gbps 78.02 Gbps 21.05 Gbps
AEGIS-256

256-bit

47.27 Gbps 46.65 Gbps 45.82 Gbps 43.09 Gbps 26.55 Gbps
AES-256-CBC 13.62 Gbps 13.69 Gbps 13.65 Gbps 13.68 Gbps 13.44 Gbps
AES-256-CTR 77.82 Gbps 77.49 Gbps 68.58 Gbps 51.40 Gbps 22.04 Gbps
ChaCha20 32.98 Gbps 32.99 Gbps 31.19 Gbps 15.58 Gbps 7.67 Gbps
SNOW-V 62.00 Gbps 62.06 Gbps 56.88 Gbps 54.66 Gbps 27.09 Gbps
Rocca 235.45 Gbps 232.81 Gbps 218.54 Gbps 160.92 Gbps 54.65 Gbps

AEAD
AEGIS-128

128-bit
92.66 Gbps 84.70 Gbps 38.52 Gbps 13.77 Gbps 3.68 Gbps

AEGIS-128L 125.42 Gbps 110.38 Gbps 41.49 Gbps 12.74 Gbps 3.21 Gbps
Tiaoxin-346 v2 163.23 Gbps 138.51 Gbps 46.23 Gbps 13.65 Gbps 3.55 Gbps
AEGIS-256

256-bit

44.82 Gbps 42.46 Gbps 27.98 Gbps 12.53 Gbps 3.64 Gbps
AES-256-GCM 57.87 Gbps 54.47 Gbps 29.12 Gbps 11.45 Gbps 3.13 Gbps
ChaCha20-Poly1305 21.99 Gbps 21.33 Gbps 13.99 Gbps 5.38 Gbps 1.81 Gbps
SNOW-V-GCM 36.10 Gbps 34.81 Gbps 23.63 Gbps 11.26 Gbps 3.54 Gbps
Rocca 210.67 Gbps 185.90 Gbps 70.40 Gbps 22.59 Gbps 6.07 Gbps

Table 7.10: Performance on Intel(R) Core(TM) i9-11900 CPU@2.50GHz with 64 GB
RAMs.

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
97.67 Gbps 95.76 Gbps 79.37 Gbps 53.05 Gbps 23.53 Gbps

AEGIS-128L 142.44 Gbps 140.26 Gbps 112.17 Gbps 62.09 Gbps 17.07 Gbps
Tiaoxin-346 v2 178.69 Gbps 173.88 Gbps 120.69 Gbps 60.13 Gbps 18.79 Gbps
AEGIS-256

256-bit

34.90 Gbps 34.53 Gbps 33.09 Gbps 28.61 Gbps 18.83 Gbps
AES-256-CBC 13.71 Gbps 13.71 Gbps 13.68 Gbps 13.59 Gbps 13.26 Gbps
AES-256-CTR 84.30 Gbps 83.28 Gbps 71.92 Gbps 48.46 Gbps 21.28 Gbps
ChaCha20 62.07 Gbps 61.41 Gbps 57.25 Gbps 29.95 Gbps 7.96 Gbps
SNOW-V 63.67 Gbps 63.44 Gbps 57.21 Gbps 48.58 Gbps 25.76 Gbps
Rocca 207.07 Gbps 203.49 Gbps 156.64 Gbps 80.02 Gbps 24.61 Gbps

AEAD
AEGIS-128

128-bit
88.96 Gbps 81.84 Gbps 37.80 Gbps 13.69 Gbps 3.82 Gbps

AEGIS-128L 122.92 Gbps 105.54 Gbps 36.04 Gbps 11.40 Gbps 2.99 Gbps
Tiaoxin-346 v2 148.90 Gbps 125.89 Gbps 38.13 Gbps 11.28 Gbps 3.01 Gbps
AEGIS-256

256-bit
33.86 Gbps 32.56 Gbps 22.45 Gbps 10.82 Gbps 3.49 Gbps

AES-256-GCM 117.60 Gbps 103.47 Gbps 38.44 Gbps 15.57 Gbps 4.51 Gbps
ChaCha20-Poly1305 39.26 Gbps 37.36 Gbps 17.51 Gbps 5.76 Gbps 1.60 Gbps
SNOW-V-GCM 35.43 Gbps 33.91 Gbps 21.54 Gbps 9.51 Gbps 2.93 Gbps
Rocca 175.12 Gbps 148.95 Gbps 46.22 Gbps 13.81 Gbps 3.68 Gbps

Table 7.11: Performance on Intel(R) Core(TM) i9-10910 CPU@3.60GHz with 64 GB
RAMs.

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
73.43 Gbps 73.84 Gbps 71.21 Gbps 66.15 Gbps 29.23 Gbps

AEGIS-128L 137.50 Gbps 138.47 Gbps 97.32 Gbps 50.41 Gbps 17.45 Gbps
Tiaoxin-346 v2 163.10 Gbps 159.46 Gbps 107.99 Gbps 47.57 Gbps 14.61 Gbps
AEGIS-256

256-bit

89.14 Gbps 88.71 Gbps 82.87 Gbps 67.46 Gbps 29.06 Gbps
AES-256-CBC 10.01 Gbps 10.01 Gbps 9.98 Gbps 9.79 Gbps 9.51 Gbps
AES-256-CTR 41.39 Gbps 40.88 Gbps 39.25 Gbps 33.84 Gbps 20.15 Gbps
ChaCha20 15.89 Gbps 15.85 Gbps 15.35 Gbps 14.42 Gbps 6.86 Gbps
SNOW-V 55.44 Gbps 57.58 Gbps 55.54 Gbps 49.77 Gbps 33.90 Gbps
Rocca 186.22 Gbps 186.02 Gbps 159.62 Gbps 89.59 Gbps 29.53 Gbps

AEAD
AEGIS-128

128-bit
70.04 Gbps 66.94 Gbps 38.53 Gbps 15.33 Gbps 4.18 Gbps

AEGIS-128L 122.96 Gbps 108.75 Gbps 41.34 Gbps 13.24 Gbps 3.45 Gbps
Tiaoxin-346 v2 136.70 Gbps 117.28 Gbps 33.48 Gbps 10.67 Gbps 2.94 Gbps
AEGIS-256

256-bit
79.60 Gbps 76.58 Gbps 38.85 Gbps 14.06 Gbps 3.91 Gbps

AES-256-GCM 26.32 Gbps 25.70 Gbps 17.94 Gbps 8.79 Gbps 2.85 Gbps
ChaCha20-Poly1305 9.95 Gbps 10.02 Gbps 8.00 Gbps 4.69 Gbps 1.59 Gbps
SNOW-V-GCM 31.56 Gbps 30.55 Gbps 19.66 Gbps 8.97 Gbps 2.83 Gbps
Rocca 156.15 Gbps 132.09 Gbps 41.99 Gbps 12.60 Gbps 3.30 Gbps

We also evaluate the performance on Android and iOS, implemented with ARM NEON intrin-

sics. The results are shown in the Tables 7.12 to 7.14. Note that the implementation of SNOW-V is

not optimized and the shown results can be further improved by optimizing the implementation. In

130

the original paper, Ekdahl et al. [81] showed SNOW-V can achieve 23.59 Gbps on Apple A11 SoC.

Rocca achieves very competitive performance on recent mobile platforms. The performance is im-

proved on the newer platforms (i.e. Snapdragon 888 and A15 Bionic) and further improvement is

expected in the future.

Table 7.12: Performance on Apple M1

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
41.24 Gbps 41.20 Gbps 40.50 Gbps 36.81 Gbps 26.73 Gbps

AEGIS-128L 67.58 Gbps 67.19 Gbps 61.01 Gbps 46.42 Gbps 23.39 Gbps
Tiaoxin-346 v2 90.45 Gbps 89.23 Gbps 75.47 Gbps 49.47 Gbps 21.33 Gbps
AEGIS-256

256-bit

39.95 Gbps 39.77 Gbps 39.00 Gbps 36.12 Gbps 26.29 Gbps
AES-256-CBC 8.44 Gbps 8.46 Gbps 8.40 Gbps 8.30 Gbps 7.91 Gbps
AES-256-CTR 69.11 Gbps 68.94 Gbps 63.77 Gbps 42.12 Gbps 26.79 Gbps
ChaCha20 18.77 Gbps 18.75 Gbps 18.68 Gbps 10.43 Gbps 5.10 Gbps
SNOW-V 29.43 Gbps 29.52 Gbps 29.15 Gbps 28.28 Gbps 25.22 Gbps
Rocca 96.54 Gbps 96.58 Gbps 91.03 Gbps 71.48 Gbps 35.66 Gbps

AEAD
AEGIS-128

128-bit
40.22 Gbps 39.21 Gbps 28.98 Gbps 15.14 Gbps 5.18 Gbps

AEGIS-128L 64.35 Gbps 61.33 Gbps 35.69 Gbps 14.55 Gbps 4.30 Gbps
Tiaoxin-346 v2 85.43 Gbps 78.75 Gbps 37.26 Gbps 13.38 Gbps 3.74 Gbps
AEGIS-256

256-bit
38.68 Gbps 37.7 Gbps 26.53 Gbps 13.23 Gbps 4.45 Gbps

AES-256-GCM 41.71 Gbps 40.18 Gbps 27.37 Gbps 15.18 Gbps 5.44 Gbps
ChaCha20-Poly1305 13.36 Gbps 13.12 Gbps 9.77 Gbps 4.41 Gbps 1.73 Gbps
SNOW-V-GCM 8.01 Gbps 7.92 Gbps 6.82 Gbps 4.59 Gbps 1.99 Gbps
Rocca 90.02 Gbps 82.12 Gbps 37.30 Gbps 12.94 Gbps 3.56 Gbps

Table 7.13: Performance on Apple A15 Bionic

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
43.28 Gbps 43.34 Gbps 42.04 Gbps 36.50 Gbps 23.33 Gbps

AEGIS-128L 69.25 Gbps 68.09 Gbps 60.87 Gbps 44.61 Gbps 20.18 Gbps
Tiaoxin-346 v2 87.48 Gbps 86.26 Gbps 71.58 Gbps 43.91 Gbps 17.34 Gbps
AEGIS-256

256-bit

39.21 Gbps 39.35 Gbps 38.21 Gbps 34.76 Gbps 22.29 Gbps
AES-256-CBC 8.74 Gbps 8.77 Gbps 9.07 Gbps 8.99 Gbps 8.40 Gbps
AES-256-CTR 69.39 Gbps 69.06 Gbps 62.95 Gbps 46.76 Gbps 25.34 Gbps
ChaCha20 17.21 Gbps 17.04 Gbps 16.68 Gbps 10.00 Gbps 5.07 Gbps
SNOW-V 29.75 Gbps 29.78 Gbps 28.92 Gbps 27.24 Gbps 22.46 Gbps
Rocca 103.09 Gbps 102.45 Gbps 91.23 Gbps 70.86 Gbps 32.85 Gbps

AEAD
AEGIS-128

128-bit
40.61 Gbps 39.27 Gbps 27.39 Gbps 13.25 Gbps 4.39 Gbps

AEGIS-128L 63.10 Gbps 59.38 Gbps 32.32 Gbps 12.58 Gbps 3.68 Gbps
Tiaoxin-346 v2 81.25 Gbps 74.24 Gbps 33.29 Gbps 11.51 Gbps 3.20 Gbps
AEGIS-256

256-bit
39.00 Gbps 37.54 Gbps 25.27 Gbps 11.98 Gbps 3.74 Gbps

AES-256-GCM 43.87 Gbps 42.42 Gbps 28.26 Gbps 14.30 Gbps 4.82 Gbps
ChaCha20-Poly1305 12.30 Gbps 12.07 Gbps 9.18 Gbps 4.45 Gbps 1.76 Gbps
SNOW-V-GCM 7.73 Gbps 7.66 Gbps 6.47 Gbps 4.14 Gbps 1.73 Gbps
Rocca 82.20 Gbps 76.59 Gbps 33.40 Gbps 11.28 Gbps 3.05 Gbps

Table 7.14: Performance on Qualcomm Snapdragon 888

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
31.33 Gbps 30.92 Gbps 30.03 Gbps 27.44 Gbps 19.96 Gbps

AEGIS-128L 53.35 Gbps 53.06 Gbps 47.44 Gbps 34.37 Gbps 16.61 Gbps
Tiaoxin-346 v2 63.41 Gbps 62.57 Gbps 52.50 Gbps 34.25 Gbps 13.84 Gbps
AEGIS-256

256-bit

34.26 Gbps 34.38 Gbps 32.75 Gbps 28.54 Gbps 19.54 Gbps
AES-256-CBC 11.76 Gbps 11.82 Gbps 11.65 Gbps 11.46 Gbps 10.61 Gbps
AES-256-CTR 37.70 Gbps 37.45 Gbps 35.18 Gbps 27.44 Gbps 17.37 Gbps
ChaCha20 13.44 Gbps 13.40 Gbps 13.04 Gbps 8.22 Gbps 4.23 Gbps
SNOW-V 23.94 Gbps 23.85 Gbps 23.59 Gbps 22.12 Gbps 18.44 Gbps
Rocca 78.11 Gbps 77.51 Gbps 70.08 Gbps 51.55 Gbps 24.07 Gbps

AEAD
AEGIS-128

128-bit
30.63 Gbps 30.24 Gbps 20.68 Gbps 9.98 Gbps 3.26 Gbps

AEGIS-128L 50.63 Gbps 47.35 Gbps 24.34 Gbps 9.16 Gbps 2.65 Gbps
Tiaoxin-346 v2 58.45 Gbps 53.39 Gbps 24.26 Gbps 8.35 Gbps 1.20 Gbps
AEGIS-256

256-bit
32.74 Gbps 31.37 Gbps 20.00 Gbps 8.97 Gbps 2.76 Gbps

AES-256-GCM 25.44 Gbps 24.38 Gbps 17.02 Gbps 8.29 Gbps 2.88 Gbps
ChaCha20-Poly1305 9.21 Gbps 8.94 Gbps 6.29 Gbps 3.13 Gbps 1.21 Gbps
SNOW-V-GCM 7.25 Gbps 7.15 Gbps 5.78 Gbps 3.50 Gbps 1.36 Gbps
Rocca 71.23 Gbps 64.00 Gbps 26.55 Gbps 8.80 Gbps 2.38 Gbps

131

7.6 Conclusions

To fulfill the basic requirements on the speed and security in 6G systems, i.e. 100 Gbps and 256-

bit security, we are motivated to further study the generalized method to construct round functions

based on the parallel calls to the AES round function, which was first studied by Jean and Nikolić

in FSE 2016. As a result, an efficient AES-based AEAD scheme called Rocca is proposed, whose

construction is only based on the AES round function and the 128-bit XOR operation supported

by the SIMD instructions on model CPUs. In addition, we have performed a thorough study to

understand the security of Rocca. According to the software implementation, Rocca can reach 150

Gbps in the AEAD mode, which is more than four times faster than SNOW-V designed for 5G

systems. To the best of our knowledge, Rocca is the first dedicated scheme targeting 6G systems

and it also shows the potential to reach the basic requirements in such systems.

As future work, a parallelizable mode of Rocca would be interesting and beneficial for both

environments equipped with multiple cores and not supported AES-NI.

132

8 Conclusions

In this thesis, we studied on how to design efficient symmetric-key cryptographic algorithms.

More specifically, we introduce four latest algorithms, including a lightweight block cipher, lightweight

tweakable block cipher, lightweight block cipher-based PRF, and ultra-high throughput AEAD as

follows:

We introduced a lightweight tweakable block cipher Tweakable TWINE whose the key, block,

and tweak sizes are 80/128, 64, and 64 bits, respectively. By investigating the best linear

layer for the tweak scheduling function, we expanded a block cipher TWINE to a tweakable

block cipher Tweakable TWINE with a minimum additional hardware cost. As a result,

Tweakable TWINE achieves a competitive hardware implementation result compared with

other tweakable block ciphers.

We introduced a lightweight block cipher WARP whose the key and block sizes are both 128 bits.

By carefully revisiting all components of type-2 GFN, we could construct a 128-bit block

cipher with a small GEs from scratch. As a result, WARP achieves the minimum hardware

circuit size among 128-bit block ciphers.

We introduced a block cipher-based low latency PRF Orthros whose the key and block sizes are

both 128 bits. With the two branches-based construction, we could design ultra low-latency

PRF due to no need to consider of the additional rounds to stand the key-recovery attack.

As a result, Orthros acieves the minimum latency among all block ciphers.

We introduced an ultra-high throughput AEAD scheme Rocca for beyond 5G applications. Rocca
is optimized on a pure software environment by taking full advantage of the SIMD instruc-

tion and AES-NI, both of which are equipped with the latest CPUs and SoCs. As a result,

Rocca achieves incredible encryption/decryption speed of more than 200 Gbps on the latest

CPU. Moreover, Rocca also supports 258-bit secret key to resist against future attacks with

a quantum computer. We emphasize that Rocca is the first ever encryption scheme meeting

both security and performance requirements for beyond 5G systems.

133

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Takanori Isobe for his all support

and advice to my research. He introduced me to research in the field of symmetric-key cryptogra-

phy and has also given me many valuable opportunities to start my career as a researcher. There

is no doubt that this five-year experience, including my master’s and PhD studies, is going to help

me with shaping my future career. Without him, this work would not have been possible, and I

could not have started my career as a cryptographic researcher.

I am really grateful for Kazuhiko Minematsu in NEC corporation. He has given me a lot of

advice to my research since when the beginning of my research career in the field of symmetric-

key cryptography. Despite being a mere master’s student with limited knowledge in the field, he

graciously accepted me for an internship and it was through this experience that I developed a

passion for research. I may not have pursued a PhD without him

I would like to thank Fukang Liu. He has helped me a lot with my research since when I

was a master student. Without his help, I would not have finished this work. In addition, I would

like to express my appreciation to all of my co-authors and lab members who have supported me

throughout my master’s and PhD studies. I really appreciate Prof. Yukikazu Nakamoto and Prof.

Jun Kurihara for judging and reviewing this thesis.

Finally, I greatly appreciate my parent, siblings, and grandparents for their long-time support.

Kosei Sakamoto

Kobe, January 2023

134

References

[1] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. National Institute of Standards and Technology. Springer, 2007.

[2] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robust-

ness,. https://competitions.cr.yp.to/caesar.html, 2018.

[3] 3GPP SA3. Study on the support of 256-bit algorithms for 5G. https:
//portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=3422, 2018.

[4] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M. Youssef.

MILP modeling for (large) s-boxes to optimize probability of differential characteristics.

IACR Trans. Symmetric Cryptol., 2017(4):99–129, 2017.

[5] Advanced Encryption Standard (AES). National Institute of Standards and Technology

(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[6] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink, Mridul

Nandi, Elmar Tischhauser, and Kan Yasuda. Colm v1. a CAESAR portfolio, 2016.

[7] arm. Arm® architecture reference manual armv8, for armv8-a architecture profile, 2021.

[8] Roberto Avanzi. The QARMA block cipher family – almost MDS matrices over rings with

zero divisors, nearly symmetric Even-Mansour constructions with non-involutory central

rounds, and search heuristics for low-latency S-boxes. Cryptology ePrint Archive, Report

2016/444, 2016. http://eprint.iacr.org/2016/444.

[9] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm. Cryptol.,
2017(1):4–44, 2017.

[10] Subhadeep Banik, Zhenzhen Bao, Takanori Isobe, Hiroyasu Kubo, Fukang Liu, Kazuhiko

Minematsu, Kosei Sakamoto, Nao Shibata, and Maki Shigeri. WARP : Revisiting GFN

for lightweight 128-bit block cipher. In SAC, volume 12804 of Lecture Notes in Computer
Science, pages 535–564. Springer, 2020.

[11] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari,

Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In Tetsu

Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS,

pages 411–436. Springer, Heidelberg, November / December 2015.

[12] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. SUNDAE:

Small universal deterministic authenticated encryption for the internet of things. IACR
Trans. Symm. Cryptol., 2018(3):1–35, 2018.

[13] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, Elmar

Tischhauser, and Yosuke Todo. Sundae-gift. A Submission to NIST Lightweight Cryptog-

raphy Project, 2019.

[14] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring energy effi-

ciency of lightweight block ciphers. In Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected
Papers, pages 178–194, 2015.

135

[15] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES: A com-

pact implementation of the AES encryption/decryption core. In Orr Dunkelman and Somi-

tra Kumar Sanadhya, editors, INDOCRYPT 2016, volume 10095 of LNCS, pages 173–190.

Springer, Heidelberg, December 2016.

[16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-aes: A compact

implementation of the AES encryption/decryption core. In Progress in Cryptology - IN-
DOCRYPT 2016 - 17th International Conference on Cryptology in India, Kolkata, India,
December 11-14, 2016, Proceedings, pages 173–190, 2016.

[17] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul Nandi,

Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift-cofb. A Submission

to NIST Lightweight Cryptography Project, 2019.

[18] Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, and Kosei Sakamoto.

Orthros: A low-latency PRF. IACR Trans. Symmetric Cryptol., 2021(1):37–77, 2021.

[19] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe, Willi Meier, An-

drey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni. Towards low energy stream

ciphers. IACR Trans. Symm. Cryptol., 2018(2):1–19, 2018.

[20] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and

Yosuke Todo. GIFT: A small present - towards reaching the limit of lightweight encryption.

In Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS,

pages 321–345. Springer, Heidelberg, September 2017.

[21] Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. TNT: How to tweak a block cipher.

In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part II, LNCS, pages 641–

673. Springer, Heidelberg, May 2020.

[22] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. Improved

key recovery attacks on reduced-round AES with practical data and memory complexi-

ties. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume

10992 of LNCS, pages 185–212. Springer, Heidelberg, August 2018.

[23] Navid Ghaedi Bardeh and Sondre Rønjom. The exchange attack: How to distinguish six

rounds of AES with 288.2 chosen plaintexts. LNCS, pages 347–370. Springer, Heidelberg,

December 2019.

[24] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and

Louis Wingers. The SIMON and SPECK families of lightweight block ciphers. Cryptology

ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/2013/404.

[25] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving resistance

against invariant attacks: How to choose the round constants. In Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, pages 647–678, 2017.

[26] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin,

Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers

and its low-latency variant MANTIS. In CRYPTO (2), volume 9815 of Lecture Notes in
Computer Science, pages 123–153. Springer, 2016.

136

[27] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin,

Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers

and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan Katz, editors,

CRYPTO 2016, Part II, volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, Au-

gust 2016.

[28] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin,

Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers

and its low-latency variant MANTIS. Cryptology ePrint Archive, Report 2016/660, 2016.

http://eprint.iacr.org/2016/660.

[29] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. CRAFT:

lightweight tweakable block cipher with efficient protection against DFA attacks. IACR
Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[30] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. CRAFT:

Lightweight tweakable block cipher with efficient protection against DFA attacks. IACR
Trans. Symm. Cryptol., 2019(1):5–45, 2019.

[31] M. Bellare and R. Impagliazzo. A tool for obtaining tighter security analyses of pseudoran-

dom function based constructions, with applications to PRP to PRF conversion. Cryptology

ePrint Archive, Report 1999/024, 1999. http://eprint.iacr.org/1999/024.

[32] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing lightweight

block ciphers on x86 architectures. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors,

SAC 2013, volume 8282 of LNCS, pages 324–351. Springer, Heidelberg, August 2014.

[33] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas. Extended generalized

feistel networks using matrix representation to propose a new lightweight block cipher:

Lilliput. IEEE Trans. Computers, 65(7):2074–2089, 2016.

[34] Thierry P. Berger, Marine Minier, and Gaël Thomas. Extended generalized Feistel networks

using matrix representation. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC
2013, volume 8282 of LNCS, pages 289–305. Springer, Heidelberg, August 2014.

[35] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and

Ronny Van Keer. Team keccak: Hardware resources. https://keccak.team/hardware.
html.

[36] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferen-

tiability of the sponge construction. In EUROCRYPT, volume 4965 of Lecture Notes in
Computer Science, pages 181–197. Springer, 2008.

[37] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the

sponge: Single-pass authenticated encryption and other applications. In Selected Areas
in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 320–337.

Springer, 2011.

[38] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Ronny Van Keer, and

Benoı̂t Viguier. Kangarootwelve: Fast hashing based on keccak-p. In Applied Cryptography
and Network Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July
2-4, 2018, Proceedings, pages 400–418, 2018.

137

[39] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of 64-bit block

ciphers: Collision attacks on HTTP over TLS and OpenVPN. In Edgar R. Weippl, Stefan

Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 456–467. ACM Press, October 2016.

[40] Eli Biham, Alex Biryukov, Orr Dunkelman, Eran Richardson, and Adi Shamir. Initial obser-

vations on Skipjack: Cryptanalysis of Skipjack-3XOR (invited talk). In Stafford E. Tavares

and Henk Meijer, editors, SAC 1998, volume 1556 of LNCS, pages 362–376. Springer, Hei-

delberg, August 1999.

[41] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of skipjack reduced to 31 rounds

using impossible differentials. In Jacques Stern, editor, Advances in Cryptology - EURO-
CRYPT ’99, International Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture
Notes in Computer Science, pages 12–23. Springer, 1999.

[42] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to 31 rounds

using impossible differentials. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of

LNCS, pages 12–23. Springer, Heidelberg, May 1999.

[43] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In Alfred

Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-
15, 1990, Proceedings, volume 537 of Lecture Notes in Computer Science, pages 2–21.

Springer, 1990.

[44] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In Al-

fred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages

2–21. Springer, Heidelberg, August 1991.

[45] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES. In Ernest F.

Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 487–496. Springer, Heidelberg,

August 1993.

[46] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz. Thresh-

old implementations of all 3 ×3 and 4 ×4 s-boxes. In Cryptographic Hardware and Em-
bedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, pages 76–91, 2012.

[47] Alex Biryukov. The design of a stream cipher LEX. In Eli Biham and Amr M. Youssef,

editors, SAC 2006, volume 4356 of LNCS, pages 67–75. Springer, Heidelberg, August 2007.

[48] Alex Biryukov and Christophe De Cannière. Data encryption standard (DES). In Encyclo-
pedia of Cryptography and Security. Springer, 2005.

[49] Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential analysis and meet-in-the-

middle attack against round-reduced TWINE. In Gregor Leander, editor, FSE 2015, volume

9054 of LNCS, pages 3–27. Springer, Heidelberg, March 2015.

[50] Alex Biryukov and Ivica Nikolic. Complementing Feistel ciphers. In Shiho Moriai, editor,

FSE 2013, volume 8424 of LNCS, pages 3–18. Springer, Heidelberg, March 2014.

138

[51] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight

block cipher. In CHES, volume 4727 of Lecture Notes in Computer Science, pages 450–466.

Springer, 2007.

[52] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-

lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES 2007,

volume 4727 of LNCS, pages 450–466. Springer, Heidelberg, September 2007.

[53] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R.

Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter

Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A low-latency block cipher for

pervasive computing applications - extended abstract. In Xiaoyun Wang and Kazue Sako,

editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225. Springer, Heidelberg,

December 2012.

[54] Christina Boura, Marı́a Naya-Plasencia, and Valentin Suder. Scrutinizing and improving

impossible differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In

Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,

pages 179–199. Springer, Heidelberg, December 2014.

[55] Victor Cauchois, Clément Gomez, and Gaël Thomas. General diffusion analysis: How

to find optimal permutations for generalized type-II Feistel schemes. IACR Trans. Symm.
Cryptol., 2019(1):264–301, 2019.

[56] Florent Chabaud and Serge Vaudenay. Links between differential and linear cryptanaly-

sis. In EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 356–365.

Springer, 1994.

[57] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul

Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak tweakable block cipher.

In INDOCRYPT, volume 13143 of Lecture Notes in Computer Science, pages 114–137.

Springer, 2021.

[58] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-

based authenticated encryption: How small can we go? In Wieland Fischer and Naofumi

Homma, editors, CHES 2017, volume 10529 of LNCS, pages 277–298. Springer, Heidel-

berg, September 2017.

[59] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to build pseudorandom functions

from public random permutations. In Alexandra Boldyreva and Daniele Micciancio, edi-

tors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 266–293. Springer, Heidelberg,

August 2019.

[60] Intel Corporation. Intel Advanced Encryption Standard (AES) New Instructions

Set. Official webpage, https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf.

[61] Intel Corporation. Intel intrinsics guide. Official webpage,

https://software.intel.com/sites/landingpage/
IntrinsicsGuide/.

139

[62] Joan Daemen. Limitations of the even-mansour construction. In ASIACRYPT, volume 739

of Lecture Notes in Computer Science, pages 495–498. Springer, 1991.

[63] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In Eli Bi-

ham, editor, FSE’97, volume 1267 of LNCS, pages 149–165. Springer, Heidelberg, January

1997.

[64] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann Rotella. The

subterranean 2.0 cipher suite. https://cs.ru.nl/˜joan/subterranean.html.

[65] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann Rotella. The

subterranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol., 2020(S1):262–294, 2020.

[66] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie proposal:

Noekeon. http://gro.noekeon.org/Noekeon-spec.pdf, 2000.

[67] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

[68] Joan Daemen and Vincent Rijmen. A new MAC construction ALRED and a specific in-

stance ALPHA-MAC. In Henri Gilbert and Helena Handschuh, editors, FSE 2005, volume

3557 of LNCS, pages 1–17. Springer, Heidelberg, February 2005.

[69] Joan Daemen and Vincent Rijmen. The Pelican MAC function 2.0. Cryptology ePrint

Archive, Report 2005/088, 2005. http://eprint.iacr.org/2005/088.

[70] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic indistinguishability

via the chi-squared method. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 497–523. Springer, Heidelberg, August 2017.

[71] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and KTANTAN

- a family of small and efficient hardware-oriented block ciphers. In Christophe Clavier and

Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 272–288. Springer, Heidelberg,

September 2009.

[72] Patrick Derbez. Note on impossible differential attacks. In Thomas Peyrin, editor,

FSE 2016, volume 9783 of LNCS, pages 416–427. Springer, Heidelberg, March 2016.

[73] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Victor Mollimard. Efficient

search for optimal diffusion layers of generalized feistel networks. 2019(1):218–240, 2019.

[74] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang Wang, and

Meiqin Wang. Cryptanalysis of AES-PRF and its dual. IACR Trans. Symm. Cryptol.,
2018(2):161–191, 2018.

[75] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and

Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things. Journal of
Cryptographic Engineering, 9(3):283–302, September 2019.

[76] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strengthened

version of RIPEMD. In Dieter Gollmann, editor, FSE’96, volume 1039 of LNCS, pages

71–82. Springer, Heidelberg, February 1996.

[77] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The retracing boomerang

attack. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part I, LNCS,

pages 280–309. Springer, Heidelberg, May 2020.

140

[78] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC

Mode for Authentication. Standard, National Institute of Standards and Technology., 2005.

[79] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The XTS-AES

Mode for Confidentiality on Storage Devices. Standard, National Institute of Standards and

Technology., 2010.

[80] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear keystream

biases in AEGIS. IACR Trans. Symmetric Cryptol., 2019(4):348–368, 2019.

[81] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A new SNOW

stream cipher called SNOW-V. IACR Trans. Symmetric Cryptol., 2019(3):1–42, 2019.

[82] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudoran-

dom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,

ASIACRYPT’91, volume 739 of LNCS, pages 210–224. Springer, Heidelberg, November

1993.

[83] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian

Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate. In

Helena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, editors, Symmet-
ric Cryptography, 11.01. - 16.01.2009, volume 09031 of Dagstuhl Seminar Proceedings.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009.

[84] David Goldenberg, Susan Hohenberger, Moses Liskov, Elizabeth Crump Schwartz, and

Hakan Seyalioglu. On tweaking Luby-Rackoff blockciphers. In Kaoru Kurosawa, editor,

ASIACRYPT 2007, volume 4833 of LNCS, pages 342–356. Springer, Heidelberg, December

2007.

[85] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and

attacks on round-reduced AES. IACR Trans. Symm. Cryptol., 2018(2):133–160, 2018.

[86] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. LS-designs:

Bitslice encryption for efficient masked software implementations. In Carlos Cid and Chris-

tian Rechberger, editors, FSE 2014, volume 8540 of LNCS, pages 18–37. Springer, Heidel-

berg, March 2015.

[87] Shay Gueron. Intel advanced encryption standard (aes) new instructions set, 2010.

[88] Shay Gueron. A memory encryption engine suitable for general purpose processors. Cryp-

tology ePrint Archive, Report 2016/204, 2016. http://eprint.iacr.org/2016/204.

[89] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient permutations using the

AES round function. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 95–125. Springer, Heidelberg, December 2016.

[90] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block

cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS,

pages 326–341. Springer, Heidelberg, September / October 2011.

[91] Kishan Chand Gupta, Sumit Kumar Pandey, and Ayineedi Venkateswarlu. Almost involu-

tory recursive MDS diffusion layers. Des. Codes Cryptography, 87(2-3):609–626, 2019.

141

[92] W. Eric Hall and Charanjit S. Jutla. Parallelizable authentication trees. In Bart Preneel

and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 95–109. Springer,

Heidelberg, August 2006.

[93] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption

AEZ and the problem that it solves. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part I, volume 9056 of LNCS, pages 15–44. Springer, Heidelberg, April

2015.

[94] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo,

Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim, Jongsung Kim,

and Seongtaek Chee. HIGHT: A new block cipher suitable for low-resource device. In

Louis Goubin and Mitsuru Matsui, editors, CHES 2006, volume 4249 of LNCS, pages 46–

59. Springer, Heidelberg, October 2006.

[95] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko Mimematsu, Fer-

dinand Sibleyras, and Yosuke Todo. Cryptanalysis of rocca and feasibility of its security

claim. IACR Transactions on Symmetric Cryptology, 2022(3):123–151, Sep. 2022.

[96] Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.

[97] Gurobi Optimization Inc. Gurobi optimizer 6.5. Official webpage, http://www.gurobi.com/,

2015.

[98] ITU. Minimum requirements related to technical performance for IMT-2020 radio inter-

face(s), 2017.

[99] Tetsu Iwata. New blockcipher modes of operation with beyond the birthday bound secu-

rity. In Matthew J. B. Robshaw, editor, FSE 2006, volume 4047 of LNCS, pages 310–327.

Springer, Heidelberg, March 2006.

[100] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Duel of the

titans: The romulus and remus families of lightweight AEAD algorithms. IACR Trans.
Symmetric Cryptol., 2020(1):43–120, 2020.

[101] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authenticated

encryption for short input. In Carlos Cid and Christian Rechberger, editors, FSE 2014,

volume 8540 of LNCS, pages 149–167. Springer, Heidelberg, March 2015.

[102] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-sliding: A generic

technique for bit-serial implementations of spn-based primitives - applications to aes,

PRESENT and SKINNY. In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, pages 687–707, 2017.

[103] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES round function.

In Thomas Peyrin, editor, Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783 of

Lecture Notes in Computer Science, pages 334–353. Springer, 2016.

[104] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The

TWEAKEY framework. In ASIACRYPT (2), volume 8874 of Lecture Notes in Computer
Science, pages 274–288. Springer, 2014.

142

[105] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The

TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 274–288. Springer, Heidelberg, December 2014.

[106] Peyrin T Seurin Jean J, Nikolić I. Deoxys v1.41. submitted to CAESAR, 2016.

[107] Auguste Kerkhoff. La cryptographie militaire. ournal de sciences militaires, IX:5–38,

161–191,, 1883.

[108] Miroslav Knežević, Ventzislav Nikov, and Peter Rombouts. Low-latency encryption -

is “lightweight = light + wait”? In Emmanuel Prouff and Patrick Schaumont, editors,

CHES 2012, volume 7428 of LNCS, pages 426–446. Springer, Heidelberg, September 2012.

[109] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw. PRINT-

cipher: A block cipher for IC-printing. In Stefan Mangard and François-Xavier Standaert,

editors, CHES 2010, volume 6225 of LNCS, pages 16–32. Springer, Heidelberg, August

2010.

[110] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and Vincent

Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127. Springer, Heidelberg,

February 2002.

[111] Stefan Kölbl. Avx implementation of the skinny block cipher.

https://github.com/kste/skinny avx, 2019.

[112] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption

modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 306–327. Springer,

Heidelberg, February 2011.

[113] Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and differential cryptanal-

ysis. In Workshop on the Theory and Application of of Cryptographic Techniques, pages

17–38. Springer, 1991.

[114] Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptotically opti-

mal security. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 133–151.

Springer, Heidelberg, March 2014.

[115] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable blockciphers with

beyond birthday-bound security. In CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 14–30. Springer, 2012.

[116] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable blockciphers

with beyond birthday-bound security. In Reihaneh Safavi-Naini and Ran Canetti, editors,

CRYPTO 2012, volume 7417 of LNCS, pages 14–30. Springer, Heidelberg, August 2012.

[117] Matti Latva-aho and Kari Leppänen. Key drivers and research challenges for 6G ubiquitous

wireless intelligence, 2019.

[118] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti

Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46. Springer, Heidelberg,

August 2002.

[119] Fukang Liu, Takanori Isobe, Willi Meier, and Kosei Sakamoto. Weak keys in reduced aegis

and tiaoxin. Cryptology ePrint Archive, Report 2021/187, 2021. https://eprint.iacr.
org/2021/187.

143

[120] Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear trails in ARX

with applications to SPECK and chaskey. In ACNS, volume 9696 of Lecture Notes in
Computer Science, pages 485–499. Springer, 2016.

[121] Stefan Lucks. The sum of PRPs is a secure PRF. In Bart Preneel, editor, EUROCRYPT 2000,

volume 1807 of LNCS, pages 470–484. Springer, Heidelberg, May 2000.

[122] J. L. Massey. Cryptography: Fundamentals and applications. Copies of transparencies,

Advanced Technology Seminars, 1993.

[123] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,

Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765

of Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[124] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,

EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer, Heidelberg, May 1994.

[125] Edward J McCluskey. Minimization of Boolean functions. The Bell System Technical
Journal, 35(6):1417–1444, 1956.

[126] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and its dual: Towards optimal

security using mirror theory. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 556–583. Springer, Heidelberg, August 2017.

[127] Bart Mennink and Samuel Neves. Optimal PRFs from blockcipher designs. IACR Trans.
Symm. Cryptol., 2017(3):228–252, 2017.

[128] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On ciphers that continuously

access the non-volatile key. IACR Trans. Symm. Cryptol., 2016(2):52–79, 2016. http:
//tosc.iacr.org/index.php/ToSC/article/view/565.

[129] Brice Minaud. Linear biases in AEGIS keystream. In Antoine Joux and Amr M. Youssef,

editors, Selected Areas in Cryptography - SAC 2014 - 21st International Conference, Mon-
treal, QC, Canada, August 14-15, 2014, Revised Selected Papers, volume 8781 of Lecture
Notes in Computer Science, pages 290–305. Springer, 2014.

[130] Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable block cipher. In

FSE, volume 5665 of Lecture Notes in Computer Science, pages 308–326. Springer, 2009.

[131] Atsushi Mitsuda and Tetsu Iwata. Tweakable pseudorandom permutation from generalized

Feistel structure. In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec
2008, volume 5324 of LNCS, pages 22–37. Springer, Heidelberg, October / November 2008.

[132] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the

limits: A very compact and a threshold implementation of AES. In Kenneth G. Paterson,

editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 69–88. Springer, Heidelberg, May

2011.

[133] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear cryptanal-

ysis using mixed-integer linear programming. In Chuankun Wu, Moti Yung, and Dongdai

Lin, editors, Information Security and Cryptology - 7th International Conference, Inscrypt
2011, Beijing, China, November 30 - December 3, 2011. Revised Selected Papers, volume

7537 of Lecture Notes in Computer Science, pages 57–76. Springer, 2011.

144

[134] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB: A

lightweight blockcipher-based AEAD mode of operation. IACR TCHES, 2018(2):192–217,

2018. https://tches.iacr.org/index.php/TCHES/article/view/885.

[135] National Institute of Standards and Technology. FIPS 197 Advanced encryption standard.,

2001.

[136] Bruce Schneier Doug Whiting Mihir Bellare Tadayoshi Kohno Jon Callas Jesse Walker

Niels Ferguson, Stefan Lucks. The skein hash function family. http://www.skein-hash.info,

2010.

[137] Ivica Nikolić. Tiaoxin-346: Version 2.0. CAESAR Competition, 2014.

[138] Y. Nir and A. Langley. RFC 8439: ChaCha20 and Poly1305 for IETF Protocols. IETF,

2018.

[139] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and

GMAC. Technical report, 2007. National Institute of Standards and Technology.

[140] Kaisa Nyberg. Generalized Feistel networks. In Kwangjo Kim and Tsutomu Matsumoto, ed-

itors, ASIACRYPT’96, volume 1163 of LNCS, pages 91–104. Springer, Heidelberg, Novem-

ber 1996.

[141] Jacques Patarin. A proof of security in O(2n) for the xor of two random permutations. In

Reihaneh Safavi-Naini, editor, ICITS 08, volume 5155 of LNCS, pages 232–248. Springer,

Heidelberg, August 2008.

[142] Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-round advanced en-

cryption standard (AES). Inf. Process. Lett., 91(1):33–38, 2004.

[143] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and

San Ling. Side-channel resistant crypto for less than 2, 300 GE. J. Cryptol., 24(2):322–345,

2011.

[144] Qualcomm Technologies Inc. Pointer Authentication on

ARMv8.3. https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf.

[145] Willard V Quine. The problem of simplifying truth functions. The American mathematical
monthly, 59(8):521–531, 1952.

[146] Willard V Quine. A way to simplify truth functions. The American mathematical monthly,

62(9):627–631, 1955.

[147] Schroeppel R. An overview of the hasty pudding cipher. http://www.cs.arizona.edu/ rcs/hpc,

1998.

[148] Real-Time and Embedded Sys Lab. uops.info. Official webpage, https://www.uops.
info/.

[149] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of

LNCS, pages 16–31. Springer, Heidelberg, December 2004.

145

[150] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode

of operation for efficient authenticated encryption. In Michael K. Reiter and Pierangela

Samarati, editors, ACM CCS 2001, pages 196–205. ACM Press, November 2001.

[151] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with AES. In

Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of

LNCS, pages 217–243. Springer, Heidelberg, December 2017.

[152] SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.

Version 1.1, ETSI/SAGE, 2006. https://www.etsi.org/deliver/etsi_ts/133500_
133599/133501/15.02.00_60/ts_133501v150200p.pdf, 2006.

[153] SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. document 2: ZUC specification. Version 1.6, ETSI/SAGE,

2011. https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/15.02.
00_60/ts_133501v150200p.pdf, 2011.

[154] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori Isobe.

Rocca: An efficient aes-based encryption scheme for beyond 5g. IACR Trans. Symmetric
Cryptol., 2021(2):1–30, 2021.

[155] Kosei Sakamoto, Kazuhiko Minematsu, Nao Shibata, Maki Shigeri, Hiroyasu Kubo, Yuki

Funabiki, Andrey Bogdanov, Sumio Morioka, and Takanori Isobe. Tweakable TWINE:

building a tweakable block cipher on generalized feistel structure. In IWSEC, volume 11689

of Lecture Notes in Computer Science, pages 129–145. Springer, 2019.

[156] Sanjay E. Sarma, Stephen A. Weis, and Daniel W. Engels. RFID systems and security and

privacy implications. In CHES, volume 2523 of Lecture Notes in Computer Science, pages

454–469. Springer, 2002.

[157] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than exhaustive

search. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 134–

152. Springer, Heidelberg, April 2009.

[158] Yu Sasaki and Yosuke Todo. New impossible differential search tool from design and

cryptanalysis aspects - revealing structural properties of several ciphers. In Jean-Sébastien

Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of

LNCS, pages 185–215. Springer, Heidelberg, April / May 2017.

[159] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J.,
28(4):656–715, 1949.

[160] Danping Shi, Siwei Sun, Yu Sasaki, Chaoyun Li, and Lei Hu. Correlation of quadratic

boolean functions: Cryptanalysis of all versions of full \mathsf MORUS. In Alexandra

Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II, volume 11693 of Lecture Notes in Computer Science, pages 180–209.

Springer, 2019.

[161] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and

Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Bart Preneel and Tsuyoshi

Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 342–357. Springer, Heidelberg,

September / October 2011.

146

[162] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-bit

blockcipher CLEFIA (extended abstract). In Alex Biryukov, editor, FSE 2007, volume 4593

of LNCS, pages 181–195. Springer, Heidelberg, March 2007.

[163] Ling Sun, Wei Wang, and Meiqin Wang. More accurate differential properties of LED64

and midori64. IACR Trans. Symmetric Cryptol., 2018(3):93–123, 2018.

[164] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential and linear

characteristics with the SAT method. IACR Trans. Symmetric Cryptol., 2021(1):269–315,

2021.

[165] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic se-

curity evaluation and (related-key) differential characteristic search: Application to simon,

present, lblock, DES(L) and other bit-oriented block ciphers. In ASIACRYPT (1), volume

8873 of Lecture Notes in Computer Science, pages 158–178. Springer, 2014.

[166] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic

security evaluation and (related-key) differential characteristic search: Application to SI-

MON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Palash Sarkar

and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178.

Springer, Heidelberg, December 2014.

[167] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized Feistel. In Seokhie

Hong and Tetsu Iwata, editors, FSE 2010, volume 6147 of LNCS, pages 19–39. Springer,

Heidelberg, February 2010.

[168] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi. TWINE
: A lightweight block cipher for multiple platforms. In Lars R. Knudsen and Huapeng Wu,

editors, SAC 2012, volume 7707 of LNCS, pages 339–354. Springer, Heidelberg, August

2013.

[169] The ZUC design team. The ZUC-256 Stream Cipher. http://www.is.cas.cn/
ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf, 2018.

[170] Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth Oswald

and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 287–

314. Springer, Heidelberg, April 2015.

[171] Yosuke Todo and Masakatu Morii. Bit-based division property and application to simon

family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 357–377.

Springer, Heidelberg, March 2016.

[172] James Waldrop, Daniel W. Engels, and Sanjay E. Sarma. Colorwave: an anticollision

algorithm for the reader collision problem. In ICC, pages 1206–1210. IEEE, 2003.

[173] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How to build fully

secure tweakable blockciphers from classical blockciphers. In ASIACRYPT (1), volume

10031 of Lecture Notes in Computer Science, pages 455–483, 2016.

[174] Louis Wingers. Supercop:supercop-20190110/crypto stream/simon128128ctr/avx2.

https://bench.cr.yp.to/supercop/supercop-20190110.tar.xz, 2019.

[175] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm. In

Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography

147

- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,
Revised Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages 185–

201. Springer, 2013.

[176] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In Javier Lopez and Gene

Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 327–344. Springer, Heidelberg,

June 2011.

[177] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP method to

searching integral distinguishers based on division property for 6 lightweight block ciphers.

In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031

of LNCS, pages 648–678. Springer, Heidelberg, December 2016.

[178] Jing Yang, Thomas Johansson, and Alexander Maximov. Spectral analysis of ZUC-256.

IACR Trans. Symmetric Cryptol., 2020(1):266–288, 2020.

[179] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Impossibility and optimality re-

sults on constructing pseudorandom permutations (extended abstract). In Jean-Jacques

Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages

412–422. Springer, Heidelberg, April 1990.

[180] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the construction of block ciphers

provably secure and not relying on any unproved hypotheses. In Gilles Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 461–480. Springer, Heidelberg, August 1990.

148

