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Perishable products cover a high percentage of all goods. The variability, long lead times, risk period, and high service level 

increase the safety stock level. An increase in safety stock will also increase the probability of perished products because of 

the increased probability of sales of less than stock during shelf life. This study proposes a model for calculating safety stocks 

of perishable products besides showing the effect of perishability on service level. The effects of long lead times, risk periods, 

high sales and lead-time variance, and short shelf life adversely affect perished products. The study investigates and proposes 

a novel model for calculating total expected waste and costs with a waste quantity constraint. A real-life example compares 

a proposed model with waste constraints and the traditional safety stock model based on costs and waste quantity. The case 

study shows the better results of the proposed models. 
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1 INTRODUCTION 
 

The deterioration of products is an area that has drawn significant attention in modern academic literature. The reason is that 

the deterioration of products is a common occurrence. As stated in the literature, the deterioration of products is a part of 

commercial activity. According to a study, 54% of total store sales and 57% of total inventory is perishable products in the 

supermarket sector of the US (NSSS, 2005). 31% of foods at the retail and consumer level were wasted in the United States, 

10% at the retail level, and 21% at the consumer level (Buzby et al., 2014). Such wasted products increase costs, undermine 

the service level, and cause the loss of valuable resources. In today’s globally competitive market environment, suppliers of 

perishable products face tremendous pressure to maintain inventory and supply optimum order quantity to fulfill customer 

demands, thus minimizing the cost (Mallidis et al., 2018). Improper management of inventory may lead to dissatisfaction 

among customers. Effective inventory management would increase customer satisfaction and revenue (Ovezmyradov and 

Kurata, 2019). 

In contrast, about 15% of the perishable products in a supermarket are lost by retailers due to spoilage and damage 

(Ferguson and Ketzenberg, 2006). The effect of perishability would further be amplified when products that do not perish but 

lose value are also investigated. As a result, perishable products are an essential aspect of accurate inventory management. 

Many studies have been in the literature regarding perishable products and safety stocks. Most of the studies focus on 

the two topics separately. A recent study investigates the literature regarding the safety stock. In the mentioned study, a 

detailed search is conducted using keywords; however, no keyword is associated with shelf life, perishability, or expiry date. 

(Gonçalves et al., 2020). Similarly, a recent study reported that safety stocks are essentially affected by six factors: service 

level, lead time, demand volatility, order policy, component commonality, and holding costs (Gonçalves et al., 2020). As a 

result, it is assumed that the shelf life does not affect safety stock.  

On the other hand, a high service level combined with high variability would increase the safety stock. High safety stock 

would increase the possibility of perishing due to the increased risk of selling less than safety stock during shelf life. Ignoring 

the shelf life of products would undermine both service-level and total costs.  

The study first investigated the effects of lead time, variance, and shelf life on service level and costs for perishable 

products. Then, by using this information, the authors developed a new model. The study calculated the actual service level 
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considering shelf life. The proposed model considers shelf life, calculates the probability of perishing, and formulates the 

accurate waste and total cost. The waste quantity calculated according to the proposed model is vital as it allows the 

integration of green constraints into the model. The proposed model will represent the total cost for perishable products with 

a waste constraint (TCMPP). Comparisons are shown in a real case study based on the data received from a distribution 

company.  

The study aims to propose a new methodology to integrate the perishability of products in safety stock calculation. The 

motivation of this study is to analyze the relationship of product perishing with safety stock levels and propose a model to 

integrate the relevant waste quantity and costs into the model. The study develops a model that calculates the optimum 

quantities considering perishability. This aspect is also essential, especially when green concerns regarding sustainability are 

an increasing trend. A case study validates the assumptions and shows the proposed and traditional models. 

Some of the significant contributions of this research paper are as follows. 

• Assess the impact of lead times, risk period, variability, and shelf life on the service level of perishable products 

• A real-life example compares the traditional and proposed models based on total cost and service level. 

• To show the effect of service level and safety stock on products with shelf life. 

• To show the relationship between perished product quantity and cost with the service level and shelf life. 

• Using adjusted safety stocks, a novel model to achieve lower cost and higher service levels for perishable products. 

• Meeting the service level and, at the same time lowering inventory and the total cost is a challenging task. The proposed 

model serves the following purposes. 

• Service level is recalculated based on perished product quantity. The recalculation shows the actual and planned service 

level. 

• Total cost and quantity are calculated, considering perished products’ cost due to high safety stock. The additional cost 

would significantly differ between TCMPP and the traditional model (TM). 

The proposed model integrates waste quantity into the decision model. As a result, the decision model integrates the 

green constraint. The increased waste is an essential aspect of decisions. It allows the integration of concerns that may not be 

converted as cost. The sections of the study are as follows. Section 2 deals with the literature review of separately proposed 

safety stock, perishable products, and relevant models. The authors assume that neglecting shelf life for safety stock 

undermines the service level and deserves a novel model to represent accurate cost and service level. Therefore, Section 3’s 

model formulation represents the safety stock level for perishable products with short shelf life. To underline the need for the 

proposed study, a simple example to show the comparison between the TCMPP and TM is given in Section 4. In addition, in 

the same section, the study uses a real-life example from a distribution company with high demand variability, short shelf 

life, and long lead times. Finally, the proposed model and standard safety stock calculation are compared. In section 5, a 

conclusion is given to summarize the outcomes of this study, limitations, and areas for further research. 

 

2 LITERATURE REVIEW 
 

Perishable products inventory management is complex and deserves a specific focus. Forecasting all perishable products’ 

consumption becomes difficult and time-consuming (Holmström, 1997). Financial-wise, this focus is also essential, as a 

yearly loss of millions of dollars occurred in the European grocery store from products not consumed by the end of their shelf 

life (Beck, 2004). It is also vital for business performance due to emerging green concerns. Such losses undermine the 

profitability of a company but also damage the sustainability of the environment. 

Therefore, studies emerged to model perishability since 1963, starting with the problem of modeling the deterioration 

process by Ghare and Schrader (1963). Ghare and Schrader (1963) developed an exponentially decaying inventory model. 

Covert and Philip (1973) contributed considerable work on deteriorating inventory systems that deal with continuously 

deteriorating items. As an extension, Misra (1979) developed an inventory system for deteriorating items. Regarding the 

studies associated with perishable items, the researcher may check detailed studies associated with the literature review. 

Bakker et al. (2012) published such a study. The study investigates a review of the advances made in inventory control of 

perishable items (deteriorating inventory). A recent study by Chaudhary et al. (2018) investigates the literature on perishable 

products. According to the study, the literature review covers 419 studies published between 1990-2016 for perishable 

products.  

Multiple studies focus on effectively managing perishable products as a topic that draws attention in the literature. A 

recent study on perishable products focused on the decision support model of perishable products. The study concluded that 

successfully controlling distribution operations according to weather conditions can significantly reduce energy consumption 

and costs (Accorsi et al., 2017). Another study also focused on the integrated approach for production-inventory routing 

coordination of perishable products. The study suggested two heuristic and meta-heuristic algorithms to solve the problem 

(Vahdani et al., 2017). 
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Similarly, constraints are a part of the decision models. A recent study used a simulation model to analyze the inventory 

model with service level constraints (Alizadeh et al., 2017). The proposed model in this study has a legal aspect due to this 

constraint integration with the proposed study. Additional studies focus on some decisions regarding perishable products’ 

inventory. Perishable product tracking is another important topic in order to reduce waste. Traceability systems of perishable 

products are also analyzed in the literature (Zhu and Lee, 2018). A model using an integer linear programming type 

simultaneously minimizes the sum of production, inventory holding, wastage, freshness-related, and transportation costs 

proposed (Alipour et al., 2020). A different study focused on the lot sizing of perishable products (Sinha and Anand, 2020). 

However, an essential aspect of inventory, safety stock, is not considered for the proposed decision model.  

Effective inventory management employs safety stock. Safety stock is a vital countermeasure to secure supply chain 

performance against forecast inaccuracy and sales variance. The amount of safety stocks required to satisfy a specific 

customer service level depends on the demand uncertainty and the corresponding forecast errors (Hosoda and Disney, 2009). 

Therefore, ignoring the aspect of safety stock often increases the risk of high costs and product waste (Mallidis et al., 2020). 

It is vital to develop a further understanding of correctly determining safety stocks for each product (Gonçalves et al., 2020). 

As a result, accurate safety stock levels are essential in today’s business world. The business world is defined as Volatile, 

Uncertain, Complex, and Ambiguous (VUCA) (Popova et al., 2018).  

Safety stock is essential for business performance and customer satisfaction. However, high safety stock increases the 

possibility of perishing for products with a short shelf life. Safety stock is an essential aspect of an efficient inventory policy 

and is vital for dealing with demand and lead time variation. This aspect is considered a countermeasure against forecast and 

risk period variability. Mainstream inventory management models require the specification of a demand distribution and are 

solved using calculus to derive required safety inventory levels (Beutel and Minner, 2012). The safety stock is calculated 

according to the demand variance and the risk period’s length and variability. Typically, the risk period covers the lead time 

and review period. Generally, when the variance increases, the safety stock level increases to overcome the possibility of 

above-average sales. 

Similarly, lower variability thus reduces the risk associated with an inventory decision (Beutel and Minner, 2012). A 

study by Sonntag and Kiesmüller (2017) combined the number and positions of inspections with inventory control strategies 

in a warehouse. The goal was achieved by reducing the safety stock levels by 30% with the defined parameters. 

There are many studies associated with the inventory management of perishable products. Econometrics provides an 

extensive toolbox for estimation and statistical analysis, especially concerning forecast errors. Furthermore, these models 

decrease safety stock by explaining a significant portion of the demand variability (Beutel and Minner, 2012). Muriana (2016) 

proposed an Economic Order Quantity (EOQ) model for perishable products with fixed shelf life under stochastic demand. 

For deteriorating products, e.g., Perishable products, literature mainly focuses on defining optimal batch sizes. A detailed 

literature study regarding the impact of perishability and shelf life is given by Muriana (2016). 

Minner and Transchel (2017) analyzed the impact of perishability on a tactical level, expressed in shelf life, retailers’ 

order variability, and demand managing perishables: replenishment and issuance. The question generally dealt with in the 

perishable inventory research field is determining the optimal batch to stock under either deterministic or stochastic demand 

conditions and possibly considering constant or time-dependent deterioration (e.g., exponential, Weibull, or Gamma 

deterioration distribution) and shortage costs. A recent study focused on products with concise shelf life. The study focused 

on cut flowers with only two periods of shelf life (Fu et al., 2019). On the other hand, a small research effort deals with the 

inventory planning problem of perishable products under a stochastic customer demand assumption (Mallidis et al., 2020). 

The study proposed by Noble et al. (2023) underlined the importance of effectively managing perishable products. The study 

presented an efficient inventory model for a perishable product. The study focused on two cases following order-up-to-S, and 

(s, S) were compared. The proposed model can help retailers meet customer requirements while reducing shortages and 

expired products. The safety stock aspect is also not covered in the mentioned models. 

The study by Riezebos and Zhu (2020) focused on the seasonality effects and showed the importance of focusing on 

prediction rather than allocating safety stocks. In the same study, the perishability of products is also ignored. This cost 

reduction is an essential aspect of the proper management of inventory. The cost also increases when safety stock costs cover 

added perishability costs. Also, a reduced service level would dramatically affect inventory management decisions. The study 

by Mallidis et al. (2018) considers the shelf life of products. The study proposes a social responsibility model for the ideal 

donation period of goods. This study is one of the studies covering the shelf life or perishability of products in inventory 

management studies. As seen from the studies on perishable products, the safety stock aspect is ignored (Reio and Ghosh, 

2009; Minner and Transchel, 2017; Chaudhary et al., 2018; Gonçalves et al., 2020; Mallidis et al., 2020; Riezebos and Zhu, 

2020). Decisions regarding the management of safety stock are vital decisions.  

There are recent studies associated with managing safety stocks. Aouam et al. (2021) proposed a study employing a 

critical constraint in safety stock management. Different constraints are typical in business life, as no company has unlimited 

resources for inventory management. The study compared the guaranteed and chance-constraint approaches and analyzed 

their effects on safety stock placement. The decisions are complex regarding safety stock. Da Silva et al. (2021) proposed a 
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decision support system (DSS) that considers safety stocks and time. The study also proposed improving service levels while 

minimizing inventory-related costs. The study is essential as it links costs with service levels. Again in the recent study, shelf 

life is not integrated into the decision model. 

From the business perspective, efficient inventory management, including decisions about safety stocks, is an important 

aspect. Reducing safety stocks can contribute to the total inventory level reduction but may sacrifice service level. An increase 

would benefit customer satisfaction but increase the cost simultaneously. However, as long as variability exists, safety stocks 

will be a part of inventory systems, so the relevant study about safety stocks of perishable items is prepared.  

Safety stocks increase with both variability and increase in the lead period. So, the safety stock level is increased to 

overcome the expected deviations from historical data or forecasts and the time needed to react to the underperformance. 

This characteristic of safety stock has a potential adverse effect if the product is perishable. When the variance is high and 

the perishable product has a short shelf life, the possibility of lower total sales during the shelf life period increases. This risk 

increases when the risk period is extended. This risk would cause increased waste. Based on the mentioned studies, it has 

been observed that the specific topic of safety stock for perishable products is an under-investigated area. To the best of our 

research, increased perishability is not a part of safety stock calculations. TM does not fulfill the specific constraints of 

perishable products.  

A recent study investigates 95 papers regarding safety stocks from 1977 to 2019. The study employs modeling 

techniques and main performance criteria (Gonçalves et al., 2020). Similarly, in the mentioned study, no relationship between 

safety stock and perishable products is mentioned. Therefore, this study proposes a novel model to fill this gap. In the 

proposed model, TCMPP calculates the total inventory cost while considering shelf life and possible perished products 

quantity and cost. Polotski and Gharbi (2021) addressed in their study the difficulty of finding a trade-off between having an 

inventory level that satisfies the demand and perished products that are kept in inventory exceeding shelf life. The study 

proposed a solution to solve this trade-off. Although the model has limitations, the authors suggested that obtained results 

may serve as valuable guidelines for more complex problems. Li et al. (2021) focused on the effective placement of safety 

stock in a supply chain for perishable products. The results indicate that the proposed solution performed better compared to 

the alternatives.  

A more recent study also underlines the importance of both aspects for determining safety stocks (Polotski et al., 2022). 

The study underlines the importance of considering shelf life for inventory management. The study proposed s 3-step 

procedure that causes no perished products. On the other hand, the goal is to develop a model with no perished products. 

Under probabilistic demand and lead-time, statistically, it may be possible to always achieve no perished products without 

sacrificing customers’ service level. Besides, the study focuses on the production environment in contrast with the proposed 

study on distribution business with deterministic shelf life. 

The study by Nematollahi et al. (2022) proposed a model to solve a common problem. The case covers an actual case 

where products have limited shelf life and demand variation. The study results reveal that the proposed coordination policy 

not only coordinates the SC of products with fixed shelf life but also significantly improves the customer service level (CSL) 

and the profits of the entire supply chain. Polotski et al. (2022) study focused on perishable products with limited and random 

shelf lives. The proposed optimal control policy aims to minimize the total cost. The numerical studies showed that total cost 

is lowered compared to other policies. 

As can be seen from the literature, the deterioration of products is a common characteristic of products. The topic is 

extensively investigated in literature in line with the common occurrence of perishability. Similarly, safety stock is an 

essential tool to counter variability. Therefore, efficient inventory management should employ safety stock and consider 

perishability. According to the existing literature review, the proposed model aims to cover this gap. This study offers an 

analytical model to calculate appropriate customer service levels, accurate total costs, and waste quantity for perishable 

products associated with safety stocks. The extensive literature review of the safety stock calculation of perishable products 

shows that it is an important gap. The study aims to propose a model that can contribute to the efficient inventory management 

of perishable products. In the following section, 3, the model formulation of the proposed model represents the safety stock 

level model for perishable products with short shelf life. 

 

3 MODEL FORMULATION OF THE PROPOSED MODELS 
 

In Section 3, details of the proposed models will be given. The proposed model is a multi-period model of a company selling 

n products with probabilistic customer demand that fits a normal distribution. The company uses a periodic review model. 

The inventory model is a periodic review and Order Up-to Level (R, S) model. Order up to level is calculated based on mean 

demand during the risk period. The supply chain is a two-stage supply chain covering the seller and customers. The objectives 

of the two models are calculating the actual service level and minimizing the total cost, respectively. Inventory aims to satisfy 

customer demand. slx are the variables in the model. The primary assumption regarding the supplier is that the supply is 
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unconstrained and lead times are deterministic. The model has been formulated by considering the following assumptions 

and notations. Some assumptions and notations are used from the study by Muriana (2016).  

• The item’s shelf life equal to p is deterministic and constant. 

• rp covers lead time and review period. It is denoted as a risk period. This value is considered deterministic. 

• The demand rate is probabilistic and fits the normal distribution with the mean dt and variance σt
2. t is denoted as 

a time unit.  

• The safety stock aims to satisfy service level (sl). This rate is fixed for each t. In normally distributed demand, 

such a quantity can be approximated by kσt, where k is the safety factor. see (Alstrøm, 2001) 

• A is the ordering cost per order 

• hxy is the inventory holding cost per unit value held in stock per period y for product x 

• Cpx is the cost of perished products per unit for product x 

• Cox is the shortage cost per unit per time for product x 

• The initial stock level is raised to the order level at the beginning of the risk period. Deterministic and constant ltx 

assumes that new order is to be placed after the review period for product x. 

• First in, First Out (FIFO) principles are applied to the inventory on hand. 

• Sales and inventory values have integer values. This assumption is due to the packaging quantities of products. 

 

Notations:  

μsl : Mean service level 

σsl  : Standard deviation of service level 

μp : Mean of perished products percentage of the total quantity 

σp : Standard deviation of perished products percentage of the total quantity 

𝜎𝑡𝑥
2   : Variance of demand per period for product x 

σtx : Standard deviation of demand per period for product x 

𝜎𝑟𝑝𝑥  : Standard deviation of demand in risk period for product x 

𝜎𝑠𝑙𝑥  : Standard deviation of demand in shelf life for product x 

A : Ordering cost per order 

cp : Waste quantity coefficient for product x 

Cpx : Cost of perished products per unit for product x 

Cox  : Shortage cost per unit per time for product x 

drpx : Mean demand per lead time for product x 

dpx : Mean demand during p period for product x 

dtx  : Mean demand per period for product x 

hxy : The inventory holding cost per unit value per period y for product x 

kx : Safety factor of the service level for product x 

krx : Revised safety factor of the service level for product x 

kpx : Cost coefficient of perished products based on the value of products for product x 

ksx : Storage cost coefficient for product x 

kso : Cost coefficient of a stock-out product based on value (>1) 

kw : Waste cost coefficient 

ltx : Lead Time for product x 

MT : Metric Ton 

n : Number of products 

p : Shelf life period 

P(dxy) : Probability of demand of product x in period y 

P(SSp) : Probability of perishing 

Pso(1 – sl)  : Probability of stock-out based on sl 

rp : Risk period 

slx : Service level for product x 

slrx : Service level revised for product x 

sspx : Stock perished for product x 

ssrx : Revised safety stock for product x 

ssx  : Safety stock for the product x 

ssxy : Safety stock for the product x per period y 

t : Time unit 
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TCf : Total financial cost of inventory 

TCh : Total holding cost 

TCs : Total storage cost 

TCw : Total waste cost 

TCp : Total cost of perished products 

TCso : Total cost of a stock-out 

TS  : Total stock 

TSx : Total stock of x 

TSp  : Total stock perished 

x : Indices of products 

vx  : Cost of the item x 

y : Indice of period y 

 

The primary assumption of the study is that the probability of product perishing is associated with the safety stock 

quantity and shelf life. Eq. (1) and Eq. (2) represent the mean and standard deviation of demand during the risk period (rp). 

In Eq. (1) and Eq. (2), rp represents the risk period, σ𝑥  represents the standard deviation of demand, 𝑑𝑡𝑥 represents the 

demand in period 𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑥. rpx covers the total period of the review period and lead time of the product x (Silver, 

Pyke and Peterson, 1998). 

 

𝑑𝑟𝑝𝑥 = 𝑑𝑡𝑥 ∗ 𝑟𝑝𝑥   (1) 

𝜎𝑟𝑝𝑥 = 𝜎𝑥 ∗  √𝑟𝑝𝑥 . (2) 

 

Safety stock calculation is directly relevant to the deviation of sales and, therefore, set to cover the variance during the 

risk period. The common assumption used for the calculation of safety stock is that these errors have a normal distribution 

with no bias (that is, the average value of the error is zero) and a known standard deviation (𝜎𝑟𝑝𝑥) for a period of rp (Silver 

et al., 1998). Figure 1 represents the normal distribution and relevant forecast errors in rp. 

 

 
Figure 1. Normally Distributed Forecast Errors (Silver, Pyke and Peterson, 1998) 

Traditional safety stock calculations and models in the literature, as given in Section 2, ignore the shelf life aspect of 

products. Ignoring shelf life is an essential drawback of the safety stock models because perishable products cover a high 

portion of sales, therefore, inventory (Sinha and Anand, 2020).  

There is a higher probability of perishing when the safety stock level is set to a high level due to long lead time, high 

variance, or service level. When shelf life is short and, at the same time, the safety stock level is high, the probability of 

perishing increases. The high safety stock reflects the probability of lower sales than products in inventory during shelf life. 

In order to integrate the effect of perishability, accurate models should reflect this aspect accordingly. 

The amount of perished products is calculated according to the probability of lower sales than inventory during the shelf 

life. The formula of safety stock is given in Eq. (3) (Silver, Pyke and Peterson, 1998). 
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𝑠𝑠𝑥 = 𝑘𝑥 ∗ 𝜎𝑟𝑝𝑥 , (3) 

 

where  

ssx  = safety stock for the product x 

kx   = safety factor of the service level for product x 

𝜎𝑟𝑝𝑥   = standard deviation of demand during rp for product x 

 

In Eq. (3), although the safety stock level increases in parallel with lead time, the shelf life of products is not considered. 

In order to integrate this factor into safety stock, the study focused on two different goals. The first goal is to incorporate the 

effect of perishability on service levels. Service level is defined as the expected probability of not hitting a stock-out during 

the next replenishment cycle or the probability of not losing sales (Radasanu, 2016). This effect is critical due to two reasons. 

The first concern is the lowered customer service level due to perished products resulting from lower sales than anticipated. 

Lower sales cause an increased possibility of perished products. The amount of perished products decreases the quantity of 

usable safety stock; therefore, it has an adverse effect on customer service levels (Silver et al., 1998). Service level, risk 

period, standard deviation, and demand are the primary inputs for the calculation. The proposed model reevaluates this issue 

and comes with a revised calculation for the safety stock level. The revised service level is calculated based on perished 

products. The possibility and effect on service level are given in Section 3.1, which aims to show the effects of shelf life on 

safety stocks and perishability. 

The proposed model in Section 3.2 incorporates the amount of perished products into the decision model. This aspect 

is also integrated as a constraint to reflect a real-life case. The additional cost is essential as total cost calculation is a standard 

model used for safety stocks (Silver et al., 1998). The proposed model incorporating waste quantity and value is given in 

Section 3.2. 

 

3.1 Actual Customer Service Level Due to Perished Products 

 

The amount of safety stock increases with increased risk period, demand variability, and defined service level. The safety 

factor correlates positively with increased variability. The total demand during shelf life may be lower than the total safety 

stock and order quantity. Low sales are an increased possibility when the variance and service level increase. In this case, the 

products that are not sold will perish. The inventory kept as a part of safety stock that perished will affect the service level 

negatively. All goods that perished have no commercial value. The goods are not transferred to the next period when they 

perish. Total stock (TS) at the beginning of the risk period equals the total safety stock and order quantity. Eq. (4) represents 

the calculation of TS. 

 

TSx = ssx + drpx  . (4) 

 

The probability of demand for product x in a period of y in Eq. (5) is given as 𝑃(𝑑𝑥𝑦) according to demand that fits 

normal distribution (~𝑁(𝑑𝑡𝑥, 𝜎𝑡𝑥
2 )). The amount of perished products is proportional to the inventory and the probability of 

lower sales during shelf life. The primary assumption is that the demand should be rounded to the next upper integer value 

as the goods are given in integer values. When the total demand can be denoted as 𝑃(𝑑𝑥𝑦) ∗  𝑑𝑥𝑦  is less than the total stock, 

the goods will perish. After the shelf life of products, all stock goods will perish. The expected amount of perished product 

is given in Eq. (6). 

 

𝑃(𝑑𝑥𝑦) =  𝑓𝒩 (𝑘; 𝑑𝑡𝑥, 𝜎𝑡𝑥). (5) 

𝑠𝑠𝑝𝑥  =    𝑇𝑆𝑥 − ∑ 𝑃(𝑑𝑥𝑦) ∗  𝑑𝑥𝑦  𝑠𝑙
𝑦=1 ; when TSx ≥ P(dxy) * dxy (6) 

 

Accordingly, the revised safety stock is given in Eq. (7).  

 

𝑠𝑠𝑟𝑥  =  𝑠𝑠𝑥  −  𝑠𝑠𝑝𝑥.  (7) 

 

The revised service level for product x is calculated based on Eq. (8) and Eq. (9). 

 

𝑠𝑠𝑟𝑥  =  𝑘𝑟𝑥 ∗  𝜎𝑠𝑙𝑥  (8) 

𝑘𝑟𝑥 =  
𝑆𝑆𝑟𝑥

𝜎𝑠𝑙𝑥
 . (9) 



Yigit and Esnaf Safety Stock of Perishable Products with A Total Waste Constraint 

 

513 

The difference between ssrx and ssx shows the variance between expected and actual safety stocks. slrx, defined as the 

revised service level, can be calculated with a normal distribution function using the krx. slrx is an important outcome. The 

difference between slrx and slx is essential. Low service levels will undermine the desired customer satisfaction. Without 

satisfied customers, a company’s long-term objectives are hard to achieve. slr is an essential objective in determining the 

service level. 

 

3.2 Total Cost Based on Shelf Life and Safety Stock 

 

An alternative model to define the safety stock level is to set the safety stock level to minimize the total cost. The total cost 

is the main objective to be minimized. Typical costs are ordering costs, holding costs, stock-out costs, perished product costs, 

and waste disposal. 

Ordering costs are mostly one-time costs associated with the ordering decision but do not change with the quantity. 

Instead, the costs are fixed and include the cost of order form processing, receiving, inspection, following up on unexpected 

situations, and handling vendor invoices (Silver et al., 1998).  

The variable costs associated with the quantities ordered are called holding costs. These are typical costs incurred during 

the management of inventory. Such costs are storing, handling, transportation, and the financial cost of money tied to 

inventory, insurance, and inventory obsolescence. In case there is a stock-out incident, costs of stock-out also occur. Such 

costs are relevant to inventory but occur when insufficient inventory matches the demand. Also, the costs of perished products 

are essential costs associated with inventory decisions for perishable products. These costs occur when the product’s age 

exceeds the shelf life. Additional costs of disposal of waste also occur. The disposal of waste is strictly regulated in many 

countries. As a result, disposal is managed by specialized companies with additional costs. Disposal of waste costs is 

associated with the mentioned disposal activities. 

In the rest of the section, a model is proposed to accurately calculate total costs while calculating the increased perished 

product quantity and using this quantity as a constraint. The goal of minimizing total cost is to lower the total cost of inventory 

level, including safety stock level, by balancing the cost of inventory holding and stock-out costs and perished product costs. 

The constraint is used to incorporate waste quantity in the model. 

Inventory holding cost equals the sum of the financial cost and the total storage cost. This calculation is given in Eq. (10) 

 

𝑇𝐶ℎ =  𝑇𝐶𝑓  +  𝑇𝐶𝑠 . (10) 

 

The total cost of finance is given in Eq. (11). This cost is associated with the financial value of inventory. The total cost 

of finance also represents the opportunity cost associated with the money tied to inventory.  

 

𝑇𝐶𝑓  =  ∑ ∑ 𝑠𝑠𝑥𝑦  ∗  ℎ𝑥𝑦  ∗  𝑣𝑥
𝑟𝑝
𝑦=1

𝑛
𝑥=1  . (11) 

 

The total cost of storage of safety stock is given in Eq. (12), associated with the stock quantity. It is represented with a 

coefficient proportional to safety stock quantity. 

 

𝑇𝐶𝑆 =  ∑ ∑ 𝑠𝑠𝑥𝑦  ∗ 
𝑟𝑝
𝑦=1 𝑘𝑠𝑥

𝑛
𝑥=1  . (12) 

 

The total inventory cost also covers the expected cost of perished products not sold during the shelf life. Since it is a 

probability rather than a deterministic value, this cost should be calculated as given in Eq. (13). The perished products cost 

also covers the waste cost. For the proposed model’s simplicity, the waste cost is added to the kpx. 

𝑇𝐶𝑝 =  ∑ ∑ 𝑠𝑠𝑝𝑥 ∗  𝑣𝑥  ∗  (𝑘𝑝𝑥 +  1)  
𝑟𝑝
𝑦=1

𝑛
𝑥=1  . (13) 

 

The total cost of a stock-out is given in Eq. (14). In Eq. (14), the stock-out cost is proportional to the value of goods. 

Therefore, the cost coefficient is given as kso. 

 

𝑇𝐶𝑠𝑜 = ∑ ∑ (1 − 𝑃(𝑠𝑙𝑟𝑥))  ∗  𝑣𝑥  ∗  𝑘𝑠𝑜 

𝑟𝑝
𝑦=1

𝑛
𝑥=1  . (14) 

 

Therefore, according to the abovementioned costs, the goal is to minimize inventory, holding, and stock-out costs. 

The total objective of cost is given in Eq. (15) 

 

𝑀𝑖𝑛 (𝑇𝐶ℎ  +  𝑇𝐶𝑝  +  𝑇𝐶𝑠𝑜). (15) 
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Total waste is a significant concern for sustainability. Even when recycling is in place, waste means sacrificing human 

effort, raw material, and energy. Green concerns should play an essential role in our decisions. As a result, this study integrates 

this concern into the decision on safety stock. The study integrates total waste quantity as a constraint in the decision.   

In Eq.(16), waste is integrated into the decision. cp represents the value used for constraints. The total proportion of waste 

products can not exceed that amount. 

 

𝑇𝑆𝑝 < 𝑇𝑆 ∗ 𝑐𝑝 . (16) 

 

So the model is defined as: 

 

𝑀𝑖𝑛 ∑ ∑ (𝑠𝑠𝑥𝑦  ∗  ℎ𝑥𝑦  ∗  𝑣𝑥𝑦
𝑟𝑝
𝑦=1

𝑛
𝑥=1 )  +  ( 𝑠𝑠𝑥𝑦 ∗ 𝑘𝑠𝑥)  + (𝑠𝑠𝑝𝑥 ∗  𝑣𝑥  ∗  𝑘𝑝𝑥)  + (𝑠𝑠𝑝𝑥  ∗  𝑣𝑥) + (𝑃(1 − 𝑠𝑙𝑟𝑥)  ∗

 𝑣𝑥  ∗  𝑘𝑠𝑜)) 
(17) 

 

s.t. 

𝑇𝑆𝑝 < 𝑇𝑆 ∗ 𝑐𝑝 

0 ≤ 𝑐𝑝𝑥 ≤ 1 

0 ≤ 𝑠𝑙𝑥 ≤ 1 

𝑠𝑠𝑥𝑦 , ℎ𝑥𝑦 , 𝑣𝑥𝑦  ≥ 0 ∀𝑥, 𝑦 

𝑘𝑠𝑥 , 𝑘𝑝𝑥, 𝑘𝑠𝑜 ≥ 0 

 

4 NUMERICAL EXAMPLE AND CASE STUDY IN A DISTRIBUTION COMPANY 
 

In subsection 4.1, an illustrative example shows the probability of a product perishing when safety stock is high. This example 

is important because it shows the effect of long lead times, short shelf life, high variability on service level, and decreased 

safety stock due to perished products. Another aspect is the increased waste and cost. Traditional approaches ignore the 

increased risk of perishing associated with short shelf life and high safety stock. 

 

4.1 Single Product Example 

 

The effect of a long risk period, high variability, and short shelf life are shown. Table 1 shows the safety stocks based on 

calculation for a basic example with d1=100 and σ1=55. The demand and standard deviation are assumed to be constant for 

all periods. Table 2 shows the probability of product perishing based on shelf life and risk period calculated on d1=100 and 

σ1=55. The calculations are based on Eq. (3). The order quantity is another critical factor in calculating perished products. 

The amount of perished product is associated with the initial inventory levels. In order to integrate this decision, the fixed 

order period principle is applied.  

The traditional approach gives monthly orders based on average sales and calculated safety stock. The shelf life is 

calculated based on the additional time after lead time. Lead time and risk periods are in months for simplifications. The 

simplification represents longer shelf life, particularly for products with long lead times.  

 

Table 1. Safety Stocks Based on rp1 and sl1 with a d1=100 and σ1=55 

  
Risk Period in Months  

  1 2 3 4 5 6 7 8 9 10 11 12 

S
er

v
ic

e 
L

ev
el

 

0.900 70.49 99.68 122.08 140.97 157.61 172.65 186.49 199.36 211.46 222.89 233.77 244.17 

0.950 90.47 127.94 156.69 180.93 202.29 221.60 239.35 255.88 271.40 286.08 300.04 313.39 

0.990 127.95 180.95 221.61 255.90 286.10 313.41 338.52 361.89 383.85 404.61 424.36 443.23 

0.995 141.67 200.35 245.38 283.34 316.79 347.02 374.83 400.71 425.01 448.00 469.87 490.76 

0.999 169.96 240.36 294.38 339.93 380.05 416.32 449.68 480.73 509.89 537.47 563.70 588.77 

 

As seen in Table 1, the safety stock levels increase with variance, lead times, and service levels. Based on these figures, 

Table 2 shows the probability of product expiration based on different order quantities and shelf life with an rp=1.  

Figure 2 also represents the product expiry probability based on changing order quantities and shelf life for goods with 

a lead time of 3 months. Order quantities in months represent the quantity sufficient for average consumption for given 

months. As seen in Figure 2, the products with shorter shelf life (x-axis) and order in months (z-axis) increase the probability 

of expired products.  
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Based on Table 2, the increase in service level and, accordingly, safety stock causes an increase in perishability 

probability, e.g., the service level of 99% is used for safety stocks for an item with an rp=1 with an average sale of 100 and a 

standard deviation of 55. As a result, there is a probability that 0.69 of the safety stock kept in inventory may perish. 

Considering that the sales figures are taken from a real-life example, the service level of 99% is used, as given in Radasanu’s 

study (2016). Table 3 represents the revised service level when perished products are reduced from the available inventory. 

Table 3 also represents the importance of integrating shelf life for safety calculations. As expected, short shelf life combined 

with high order quantity in months increases the risk and reduces the service level. 

 

 
 

Figure 2. Shelf life, Order in Months, and Expired Product Rate Relationship 

Table 2. Expiry Probability Based on Different Order Quantity and Shelf Life 

   
Shelf Life in Months 

O
rd

er
 Q

u
an

ti
ty

 

in
 M

o
n

th
s 

 
1 2 3 4 5 6 7 8 9 10 11 12 

1 0.69 0.38 0.15 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.76 0.52 0.30 0.13 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.81 0.62 0.42 0.25 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 

4 0.84 0.68 0.52 0.36 0.21 0.10 0.04 0.02 0.01 0.00 0.00 0.00 

5 0.86 0.72 0.58 0.45 0.31 0.19 0.10 0.04 0.02 0.01 0.00 0.00 

6 0.88 0.76 0.63 0.51 0.39 0.27 0.17 0.09 0.04 0.02 0.01 0.00 

 

 

Table 3. Revised SL Based on Expired Products 

  
Shelf Life in Months   

1 2 3 4 5 6 7 8 9 10 11 12 

O
rd

er
 Q

u
an

ti
ty

 i
n

 

M
o

n
th

s 

1 0.51 0.96 1 1 1 1 1 1 1 1 1 1 

2 0.1 0.5 0.89 0.98 1 1 1 1 1 1 1 1 

3 0.02 0.15 0.5 0.84 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

4 0 0.03 0.18 0.5 0.79 0.92 0.96 0.97 0.98 0.98 0.98 0.98 

5 0 0.01 0.05 0.21 0.5 0.76 0.89 0.94 0.96 0.96 0.96 0.96 

6 0 0 0.01 0.07 0.23 0.49 0.73 0.86 0.92 0.94 0.95 0.95 

 

4.2 Real-Life Example 

 

The authors assume a relationship between safety stocks and expired products for goods with high variability, long lead times, 

and short shelf life. A real-life example consisting of 20 items is given in this section to validate our assumption. The service 

level for products is 99%. The service level of products is taken high as the products considered for the case are under Class 
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A according to the ABC classification of the company inventory. Products, especially with a short shelf life, are subject to 

perishing. 

The data is received from a distribution company specializing in the chemical business. The products distributed and 

sold have a short shelf life as they are subject to chemical decomposition. Due to harsh competition, products have a high 

variance in sales and a long risk period. The products have an average shelf life of 2.85 and a standard deviation of 0.66 

months. 

The cost of safety stock is calculated according to Eq. (14). The following variables are used for the calculation of stock 

costs; 

 

hx = 2%/yr 

 

This amount is equal to the finance cost of USD at the time of the study. Finance cost is a part of the inventory holding 

cost. 

 

ksx = 0.25 USD* day * MT 

 

This formula represents the storage cost for all products. 

 

kw= 285 USD/MT 

 

The amount is equal to the cost of disposal of products. According to regulations, accredited authorities should dispose 

of a chemical product. 

 

cp = 0.01 

 

The total waste is limited with cp. 

The stock cost of both original and revised safety stock costs is calculated. Stock-out costs are calculated according to 

Eq. (13). 

This value is partly due to the B2B environment in which the company works. When customers are unsatisfied, they are 

very likely to switch to an alternative provider. As a result, 

 

kso = 3 

 

Matlab 2018a and a computer with an i7 processor with 16 MB RAM running on Windows 10 are used to calculate. As 

a result of these calculations, the outcomes are summarized in Table 4. Table 4 compares the total cost model(TCM) that 

calculates fixed service levels for all products and the proposed TCMPP approach.  

 

Table 4. Service Level and Expired Products 

 

    TM TCM TCMPP 

Service Level μsl 97% 86.2% 90.1%  
σsl 8.5% 6.1% 15.1% 

Expired Products  μp 8.1% 5.2% 0.9%  
σp 13.6% 9.5% 0.6% 

Expired Products (Kg) Total 331,593 140,340 5,288 

 

Table 5 shows the cost based on the TM, TCM, and TCMPP models. The TM’s calculation detail is given in Eq. (3). 

Costs associated with waste and perished products are not considered in the classical model for calculation. 

 

Table 5. Cost Comparisons of Models 

 

  TM  

(USD) 

TCM 

 (USD) 

TCMPP 

(USD) 

Cost of Safety Stock (Revised) 82,067 29,682 7,421 

Cost of Finance 3,510 1,826 2,602 

Cost of Storage 4,422 2,457 2,350 
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Cost of Expired Product 49,346 15,217 2,006 

Cost of Waste 24,789 10,183 462 

Cost of Stock-Out 13,101 32,675 25,872 

Total Cost 95,169 62,358 33,293 

 

In order to reduce the total cost of inventory using stock-out costs and perished product costs, the proposed model 

achieved a 65% and 46.5% reduction in total costs compared to other models. When traditional safety stock is calculated 

based on fixed service level for all products, out of 839,000 kg of all safety stock, 331,593 kg will perish due to lower sales 

than the safety stock quantities during the shelf life. Due to perished safety stocks, the service level desired of 99% cannot be 

achieved. Therefore, after the perished products, the service level decreased to an average of 96.96%, with a standard 

deviation of 8.55%. 

The proposed model calculates the total cost without waste constraint with total cost minimization and achieves better 

results. The service level will have a mean of 86.2%, with a standard deviation of 6.1%. At the same time, the total waste will 

be lower. The proposed TCMPP model with waste constraint achieves better results compared to TM. Table 5 and Table 4 

show that costs and quantity were dramatically reduced. The proposed model also calculated the service level achieved 

according to Eq. (8) and Eq. (9). The set service level and achieved service level, including perished products, are summarized 

in Table 4. The results show that under the circumstances of our case study, setting the service level high may increase the 

cost dramatically due to perished products’ cost. Also, it will increase the total amount of waste dramatically, as shown in 

Table 4.  

 

4.3 Sensitivity analysis 

 

A sensitivity analysis was performed to validate the applicability of the proposed model. The main variables for the model 

are associated with safety stock and shelf life. 12 scenarios are performed, each by changing a variable. The behavior of the 

proposed methodology is observed afterward. 

Service level is essential since it affects the safety stock level and business perspective due to customer retention. 

Different service levels are used to see the possible effects of different service levels. As expected, increased service levels 

adversely affect the total cost as expired products increase. The proposed TCMPP performs better than alternative models, 

as the goal is to minimize the total cost by covering all factors. When the service level is reduced to 0.90 and 0.70, respectively, 

the total cost of the TM is lower due to lower expired products. In all cases, TCMPP performed better compared to TM. The 

performance increased for a higher service level, 0.999. The cost improvement became 78.7%. The improvement still is valid 

for other service levels. For the service level of 0.90, the improvement is 50.4%; for the service level of 0.70, the improvement 

is 57.4%. The primary outcome of these cases, as the expected increase in service level, will increase the inventory cost 

mainly due to perished goods. Setting the correct service level and the existence of perishable products are essential. 

Shelf life directly affects inventory decisions. In order to assess this assumption, we performed three adjustments to the 

shelf life of products. In the first case, we increased the shelf life of products by multiplication of 2; in the other two cases, 

the shelf life of products decreased by multiplication of 0.5 and 0.25, respectively. As expected, total costs increased 

dramatically in the two latter cases and decreased in the first. The primary outcome of these changes, the proposed model 

could not find a feasible solution due to waste constraints. For all three cases, the proposed TCMPP performed better than 

TM. The improvements are 35.6%, 71.3%, and 64.1%, respectively. The quantity of waste could not be lower than the 

constraint as products expired due to high service levels. This outcome is important to show that short shelf life and high 

service levels are conflicting as expected. The decision-makers should be aware of these cases. In such cases, make-to-order 

instead of make-to-stock can be a better alternative. Goods with a short shelf life will not be kept in inventory. As a result, 

the risk of perishing will diminish. 

The cost of disposal is an essential cost for particular cases. For some goods, the cost of disposal can be very high, 

namely explosives, toxic waste, and infectious waste. Disposal cost is reduced by 50% for one case and increased by 200% 

and 400% for two cases. The TCMPP model performed better for all cases than the TM and TCM models. All models’ total 

cost was reduced when the disposal cost was amended to 50%. However, when the disposal cost is increased by 200% and 

400%, TM performed much worse than TCM and TCMPP models. The improvement of the proposed model increased to 

73.4% and %80.4, respectively. When the cost of disposal is reduced by 50%, the difference between TM and TCMPP is 

reduced to 62.7%. The results underline the importance of the cost of disposal. For goods with high disposal costs, the 

inventory management decisions should integrate the risk of perishing.  
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Table 6. Sensitivity Analysis Results and Costs 

 

Variable Revision  Amendments 
TM  

(USD) 

TCM  

(USD) 

TCMPP 

(USD)  
Base Results 

 
95,169 62,358 31,285 

Service Level Scenario-1a Revised Service Level 99.9% 145,563 62,358 31,020  
Scenario-1b Revised Service Level 90% 63,091 62,358 31,285  
Scenario-1c Revised Service Level 70% 73,516 62,354 31,285 

Shelf life Scenario-2a Increased to 200% 23,926 20,904 15,392  
Scenario-2b Decreased by 50% 477,510 149,965 136,942  
Scenario-2c Decreased by 75% 1,438,885 506,847 517,248 

Cost of Disposal Scenario-3a Increased to 400% 169,535 82,974 33,172  
Scenario-3b Increased to 200% 119,957 71,424 31,865  
Scenario-3c Decreased by 50% 82,774 56,913 30,915 

Lead Time Scenario-4a Increased to 400% 283,521 89,767 42,199  
Scenario-4b Increased to 200% 163,866 77,326 36,700  
Scenario-4c Decreased by 50% 78,922 59,459 27,352 

 

Lead times affect the safety stock and also inventory decisions. Increased safety stocks will increase the possibility of 

perishing. To validate this assumption, we performed three cases by amending the lead times of the actual case. In the first 

two cases, lead times are increased by 4 and 2, respectively. The TM model’s total cost dramatically increased for these two 

cases. When the lead time is increased by 2, the total cost of inventory for the TM model increases by 72.2%, and when the 

lead time is increased by 4, the TM’s total cost increases by 197.2%. 

On the other hand, the TCMPP model performs 77.6% and 85.1% compared to the TM model. When the lead times are 

changed by 50%, the TCMPP performs 65.4% better compared to TM Model. These outcomes are essential as lead time is 

subject to changes in the real business case. The proposed TCMPP model still performs better compared to TM under these 

circumstances. The graphical representation of Table 6 is given in Figure 3. As can be seen, the shelf-life has a major effect 

on total costs in all models.  

 
Figure 3. Total Cost of Models after Sensitivity Analysis 

5 CONCLUSION 
 

The increasing trend for sustainability and devotion to nature protection increased the importance of the efficiency of supply 

chains. Therefore, the level of perished products became an essential key performance indicator (KPI) not only in economics 

but also in particular energy and waste management and, thus, overall environmental impact. 

The studies in the literature consider safety stock and perishability as two areas that do not have a relation. This study 

has a goal to cover this gap. The first illustrative example shows the effect of shelf life on the service level. The example 
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shows that the extended risk period, the higher variability, and the shorter shelf life undermine customer service levels. The 

factors also increase perished products. The first example is essential to validate our assumption. 

The second example covers a real-life case. The data from a distribution company reflects the high variability, long lead 

times and risk period, and short shelf life. In return, the typical safety stock calculation ends with a high quantity of perished 

products, high costs, lower service levels, and high waste. The proposed model shows higher performance compared to the 

traditional approach. 

In conclusion, the revised service level represents 90.1%, whereas the TM’s goal was 99% based on TM and 86.2% 

based on a model that ignores the waste quantity constraint. The difference is a significant gap between the goal and the 

achieved service level. Therefore, the products classified under the A-class achieve much lower service levels than desired. 

On the other hand, the quantity of perished products equals 0.9% of the total stock. TCMPP model reduced the waste quantity 

dramatically. Based on the traditional approach, the waste quantity is 331,593 kg, whereas the proposed TCMPP reduced it 

to 5,288 kg. The results show the importance of the perishability factor on safety stock. 

The proposed model calculated that the optimum value for service level is 90.1%, while there is an average waste 

constraint per product. Thus, the total cost is significantly lower than the original model based on service level only. The 

proposed model and alternatives’ cost differences are 65% and 46.5%, respectively.  

As the results show, the traditional by-the-book approaches may not be suitable for perishable products. Considering 

the number of perishable products compared to non-perishable products, the importance of integration of shelf life can be 

better understood. In this research, we developed a model that integrates the shelf life into the model. Integration of the shelf 

life would be necessary for inventory decisions due to increased risk, particularly for products with short shelf life. The 

detailed sensitivity analysis validated the importance of shelf life, service level, and lead times on inventory costs. The 

proposed TCMPP model performed better than TM in all cases with different variable values. 

The study has some limitations due to application areas. The shelf life is considered deterministic; this assumption is 

parallel with the case study. On the other hand, in literature, the shelf life may be stochastic. Although the products may not 

wholly deteriorate for fresh foods, they may lose some value. As a result, the proposed model needs to be revised to cover 

such cases. Our assumption that shelf life and safety stock are closely linked is based on our future studies. Other methods 

can develop analytical solutions to the developed model. Similarity with newsvendor problems or linear programming 

methods may provide better results. The study focused on providing a new area in safety stock for perishable products. 

Alternative solutions to the same problem by different methods can benefit future studies. 

In some cases, low variability and long shelf life may cause our assumption to be inaccurate. Although our study has 

limitations, the authors assume that applying the shelf life of products for the safety stock calculation would be valuable when 

the additional workload is justified. Even when the additional workload becomes a limitation for the application, integration 

with inventory classification may help to overcome such limitations.  

The areas for future research are integrating dynamic sales price changes subject to the remaining shelf life. Also, a DSS 

to help decision-makers will be developed. This DSS will contribute to real-time decision-making in a highly complex and 

volatile business environment of perishable products. In our opinion, DSS in inventory management should cover the 

perishable characteristics of products. Similarly, the same DSS system should integrate safety stock calculations as a part of 

DSS. Future works will cover similar sub-areas for the effective development of inventory management. 
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