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Abstract
This study presents a framework to study quantitatively geographical visual diversi-
ties of urban neighborhood from a large collection of street-view images using an 
Artificial Intelligence (AI)-based image segmentation technique. A variety of diver-
sity indices are computed from the extracted visual semantics. They are utilized to 
discover the relationships between urban visual appearance and socio-demographic 
variables. This study also validates the reliability of the method with human evalu-
ators. The methodology and results obtained from this study can potentially be 
used to study urban features, locate houses, establish services, and better operate 
municipalities.

Keywords Google street-view · Visual diversity · Urban neighborhood · Interrater 
reliability · Social phenomena · Semantic segmentation

Introduction

Geospatial visual appearance depends on many factors, such as built structures 
(roads, buildings, and sidewalks), greenery, and openness as well as the presence of 
different visual objects and their ratio in an environment [1, 2]. Visual appearance of 
built environments are inherently related to various socio-economic outcomes, such 
as population concentration, economic disparity, prevalence of crime, and pedes-
trian safety [1, 3–7].
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In this study, we define the geospatial visual diversity as a criterion by which to 
understand the visual appearance of a geographic area, which is considered as an 
important component of environmental design [8]. This definition of geospatial vis-
ual diversity is guided by previous studies, such as [8, 9]. According to Stamps III 
[8], geospatial visual diversity is an important component of environmental design. 
It contributes to understanding scenic beauty and esthetically pleasing landscapes 
[9–11], comparing neighborhoods [1, 5, 12], and providing a subjective visual pref-
erence [13]. A few existing approaches [7, 9, 14, 15] quantified visual diversity with 
different metrics, such as entropy [8].

Recently, AI-based image segmentation tools were utilized in extracting semantic 
object information from street-view images, which eased the burden of data access 
and computing [1, 10, 12, 16–18]. In the existing work, however, the extracted 
semantics from street-view images was not employed in computing geographical 
visual diversity.

In this study, we compute and investigate a variety of visual diversity indices 
based on the AI tools and a large set of street-view images. Further, we compare 
multiple indices to see which index is more suitable and how the indices relate to 
multiple social phenomena.

This study aims to advance urban technology in four ways: 

(1) Presenting a computational framework of geographical visual diversity based 
on the semantic segmentation that extracts semantically segmented information 
from a large set of street-view images of a neighborhood;

(2) Computing and comparing multiple types of visual diversity indices, including 
both single group diversity indices and multi-group diversity indices;

(3) Validating the reliability of using the computed diversity indices through a study 
with human evaluators; and

(4) Extracting social-demographic information including economy, population and 
crime metrics, and studying the correlations between the visual diversity indices 
with the socio-demographic variables.

The contribution of this research is twofold: (1) by measuring visual diversity from 
street-view images for urban studies; and (2) by recognizing implications for urban 
neighborhood planning based on visual diversity. Of specific value to the current 
research, this study demonstrates the process and value in examining can reveal rela-
tionships between street-level urban design qualities and property values.

Related work

The term diversity helps to quantify and compare social phenomena [19]. Measur-
ing diversity is crucial in several disciplines [20], such as economics [21], ecology 
[22], urban planning [9], and social studies (e.g., culture). Diversity can also help 
to understand and assess the distribution of resources of an area, such as greenery, 
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water, wetlands, and land use [23–25]. It also relates to human movement and urban-
ization [26, 27] as well as home prices [9].

De Jonge [28] interviewed residents and found that most people prefer to live in 
areas with more visually diverse. Stamps III [8, 29–31] reported similar findings, 
indicating that when an urban area has more visual diversity, people find the area 
more appealing. Visual diversity can be related to and improve livability in urban 
planning [9, 32].

Many past studies have used Street-View images to explore information about 
the environment. For example, presence of openness [33], healthy areas [5], green 
areas [33, 34], crime-prone areas [1, 35], local businesses [36], land use and vacant 
areas [37], urban effect over time [38, 39], voting pattern analysis [40], COVID-19 
affected areas [41], and landscape analysis [18, 39]. Most studies have used street-
view images because it is readily available for almost all cities and saves research-
ers time to walk around and collect street-view images from different geographic 
locations.

The aforementioned studies competently focused on particular problems and used 
street-view images as their data source. Past studies that used street-view image had 
different research goals than this study. However, one notable study seems similar 
to the study. For example, Wen, Liu, and Wu [18] used an entropy weighted method 
to quantify ecological matrices. While Wen et. al.’s [18] study contributes to urban 
planning by focusing on ecological aspects, this current study concentrates on other 
social aspects and uses both multi-category and single-category diversity indices. 
Literature review indicates a gap between the neighborhood and its relationship with 
social-demographic variables. This study also presents its results in terms of social 
aspects, such as population, economics, and crime.

In the past, the visual content of a map, such as landscape and land cover type, 
served as primary sources of information that contributed to measuring visual diver-
sity [42]. In a recent study, Zhang and Dong [9] used the horizontal green view 
index (HGVI) to measure the visual diversity of greenery from street-view images. 
In this study, we instead study a set of diversity indices from multiple visual catego-
ries computed from street-view images, and we further examine their relationships 
to social variables.

Urban data and AI‑based street‑view image segmentation

We collected two types of data: (1) socio-demographic information; and (2) street-
view images from a U.S. metropolitan area. The details of our data collection pro-
cedure is explained in following sections. Please see sections "Open street-view 
image data" for socio-demographic data collection, "Open street-view image data" 
for street-view image data collection, and "Reliability study with human evaluator" 
for human evaluator data collection.
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Open socio‑demographic information

For the socio-demographic information of neighborhoods, the researchers used open 
data from Zillow. Zillow is an online real estate marketplace [43]. For crime-related 
information, open data from the FBI Uniform Crime Report were obtained [44]. In 
addition, other socio-demographic information, such as population size and popula-
tion density per square mile, was gathered from open data at Area Vibes. Area Vibes 
is a website that measures various neighborhood population parameters [45, 46].

Open street‑view image data

Using a neighborhood’s boundary information downloaded from Zillow, the street net-
work of the neighborhood was retrieved from OpenStreetMap [47]. Next, a large set 
of locations were sampled on the street network. In particular, each street is sampled 
with points with a 20-meter distance (see Fig. 1) so as to capture each block from the 
neighborhood [10]. A similar approach was applied by previous studies as well [1, 39]. 

Fig. 1  A large set of sampling locations in a region
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The blue dots in Fig. 1 represent the generated segmented geolocations, which are 20 m 
apart from each other.

Then, we used the segmented geolocations to download street-view images with the 
help of the Google Street-View (GSV) Application Programming Interface (API). We 
were only interested in the side-views (see Fig. 2) and ignored the front-view of roads. 
We ignored front and back views because those would mostly include roads, cars, and 
the sky, which could dominate the diversity computation (see Fig. 2); instead, we were 
mostly interested in scenic views. Scenic views primarily consist of the side-view of the 
street-view images [1].

To obtain side-views of the streets we computed the heading of the street and then 
added 90 degrees and 270 degrees, respectively (see Eq.  1). This idea was adopted 
from [1]:

where � is the heading for geolocation ( lat1, lng1 ), using geolocation ( lat0, lng0 ) 
before the geolocation ( lat1, lng1 ) and after the geolocation ( lat2, lng2).

Semantic segmentation

From each street-view image, a deep learning-based semantic segmentation tool, PSP-
net [48], extracted the visual information of each category from a total of 19 categories, 
namely road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, 
terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicycle. The segmented 
proportion for category i is computed as

(1)

� = atan2 (x, y)

where

x ={cos(lat0) × sin(‖lat0 − lng2‖)},
y ={cos(lat0) × sin(lat2)

− sin(lat0) cos(lat2) × cos(‖lng0 − lng2‖)},

(2)ci =
The number of pixels in categoryi

Total number of pixels
.

Fig. 2  Street-view images from four different sides: left view; front view; right view; and back view
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The PSPnet model can reach 82.2% accuracy [48], as a state-of-the-art AI model at 
the time of this study. Figure 3 shows several examples of semantic segmentation 
results.

Visual diversity indices

The visual diversity was computed using a selection of indices in two categories: 
(1) multi-category indices; and (2) single-category indices. We computed multi-cat-
egory indices to understand how different categories holistically affect the environ-
ment, while single-category indices explored individual category affects.

The PSPnet model provided the same 19 above-noted categories from each 
image, road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegeta-
tion, terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicycle [10]. 
An initial qualitative review of these categories found that some were considered 
more “static” while others were more “transient.” Static categories consist of immo-
bile objects, such as buildings, trees, sky, and fences. Transient categories include 
mobile objects, such as persons, cars, and trains.

We studied the 19 categories extracted from PSPNet in all images. Interestingly, 
we noticed that only five categories (i.e., road, building, vegetation, terrain, and 
sky) are normally distributed. The remainder of the categories are highly skewed 
and have high kurtosis values. Further analysis indicated that more than 97% images 
lacked presence of “transient” categories. Further, the presence of “transient” cat-
egories are more of time dependent. For example, we might see more presence of 
cars, bicycles, motorcycles during working hours, than weekends and after work 
hours. As such, we only considered these five categories in the diversity computa-
tion. For a given spatial unit (e.g., block, neighborhood, city), k street-view images 
in this unit were selected to compute the geospatial visual diversities shown below.

Fig. 3  Segmented images used in the content validation: (top) with low geospatial visual diversity and 
(bottom) with high geospatial visual diversity. Green: greenery such as trees and bushes. Dark gray: 
buildings. Light blue: sky or openness. Purple: roads and driveways. Light green: grass or vegetation. 
Beige: fences. Dark blue: cars. Red: person. Pink: sidewalk
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Multicategory diversity indices

The following section describes the multi-category diversity indices used in this 
study.

Simpson index
The Simpson index [49] considers a sum of individual categories with respect to 
the sum of all categories:

where ni =
∑

ck
i
 for category i ∈ [1, 5] in all k images and N =

∑
ni .

McIntosh index
The value of the McIntosh index [50] varies from 0 (no diversity) to 1 (extreme 
diversity):

Here n and N are the same as in the Simpson index.

Multiple-category entropy (MCE)
Considering the popularity of entropy as a diversity index (i.e., entropy of Shan-
non’s entropy H(p) = −

∑
pi × log2(pi) , where pi is the probability of each cat-

egory), we extended it to multiple categories as presented in the following Eq. 5:

 where p is the probability of a single category computed by pi =
ci

ni
 .

Single‑category indices

Entropy
One of the most-used diversity indexes is Shannon’s entropy or entropy [51, 52]. 
A few recent studies also used entropy to compute diversity, such as [52, 53], and 
[18].

Entropy is computed as

where p is the same as in Equation 5. A comparable diversity index value obtained 
can be further obtained as

(3)D = 1 −

∑
ni × (ni − 1)

N × (N − 1)
,

(4)M = 1 −
N −

�∑
n2
i

N −
√
N

,

(5)H = −

n∑

i=1

k∑

j=1

(p1, p2,… , pk) log

(
k∏

j=1

(p1, p2,… , pk)

)
,

(6)H(p) = −
∑

pi × log2(pi),
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where e is the Euler number (i.e., e = (1 + 1∕n)n ) [54].

Horizontal view index
Li, Zhang, Li, Ricard, Meng, and Zhang [55] and Zhang and Dong [9] used a Hori-
zontal View Green Index (HGVI) to measure the greenery of an area. To generalize 
this index, we call it Horizontal View Index (HVI), which is computed as

Gini index
One of the most popular diversity indexes to understand economic diversity or 
income inequality is the Gini index [56]. The Gini index is frequently used to meas-
ure diversity in other fields, such as social and health [57]. Considering its wide-
spread use, we used this index to understand individual category diversity. In this 
study, the Gini index was computed for each individual category in four steps: (1) 
sum all the proportion values of the category in all images; (2) sort the values in 
ascending order; (3) divide each value by the sum to get probabilities of each value; 
(4) compute the cumulative sum of all the probabilities.

Reliability study with human evaluator

It is important to validate the reliability of the proposed method (i.e., the consistency 
interpreting the definition of geospatial visual diversity and computational indices). 
Reliability analyses such as Inter-Evaluator Reliability or Inter-Rater Reliability 
(IRR), are helpful to measure the consistency among human ratings and computa-
tion results [58]. We conducted an IRR study with a group of five human evaluators. 
One of the biggest advantages of IRR is that it does not require a large pool of raters. 
Even in some cases, only raters can be sufficient to measure IRR [58, 59]. The defi-
nition of geospatial visual diversity, rating scales, and sample images were provided 
to the evaluators, who evaluated each image for its visual diversity.

We analyzed the semantic segmentation information of an urban neighborhood 
and found that the data was not normally distributed, which means that there were 
some outliers. To remove the outliers, we computed the z-scores of static categories, 
and we removed values ±3 ( � = .01). Stamps III  [8] showed that the visual diversity 
of individual images can be calculated using the entropy values. Thus, we computed 
entropy values for each image vector.

To find visually low and high diversity images, first, we computed the median 
from the entropy values and divided the dataset into four quantiles. As for the visu-
ally low diversity images, we selected five random images from the first quartile, 
and for the visually high diversity images, we selected five random images from the 
third quartile.

(7)D = eH ,

(8)HVI =

∑
ni∑
Ni

× 100.
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Second, ten representative images are used with a mix of low and high visual 
diversities as shown in Fig. 3. Then, the evaluators who were not aware of the actual 
calculated diversity rated each image for its level of visual diversity, using a 5-point 
Likert scale (i.e., 1 = Not Diverse and 5 = Extremely Diverse). The IRR of the 
evaluators were calculated by Intra-Class Correlation (ICC) [58] and Krippendorff’s 
alpha [60], which were computed by the rating variance. Our resulting ICC was .836 
for single measures and .953 for average measures. These ICC values indicated that 
the evaluators had a high degree of agreement and suggested that the evaluators 
similarly scored diversity in the images. The high ICCs also meant that a minimal 
amount of measurement error attributed to the evaluators, and thus power was not 
reduced. In addition, the obtained Krippendorff’s Alpha was .775, which likewise 
indicated a moderate to high degree of agreement among evaluators [60]. In this 
study, SPSS version 24.0 was used to compute the ICC and Krippendorff’s Alpha 
values. Finally, we performed correlation analysis between the average ratings and 
geospatial visual diversity indices. Before conducting the correlation analysis, we 
ran the assumptions of correlation and noticed that the data was normally distrib-
uted. Seeing this, we used Pearson correlation to analyze the relationship between 
average ratings and geospatial visual diversity indices. The correlations appear in 
Table 1.

The correlation between evaluators’ average ratings and multiple category vis-
ual diversity index (e.g., Simpson index) was positive for both low and high diver-
sity images (see Table 1). This indicates that the Simpson index could be helpful in 
assessing both low and high diverse images for a geospatial urban area. Despite this, 
the McIntosh index could be more appropriate for low diverse areas, whereas for 
high diverse areas, multi-category entropy might be the superior index to use.

For the single-category indices, entropy could be helpful to assess diversity for 
the building and greenery of a high diverse area. Similarly, the HVI index could be 
good for assessing a high diverse area in terms of building, greenery, and sky (see 
Table 1). Overall, the results here indicated that multiple category diversity indices 
show a stronger relationship than single category indices. This finding makes con-
ceptual sense as different aspects of the geospatial area, and their proportions are 
typically considered together when appraising diversity, while single-category indi-
ces are better able to appraise which individual category impacts overall diversity.

Evidence from this study suggests that the validity for geospatial visual diversity 
computed from street-view images was high. It should be noted that the sample size 
was five, meaning that several correlation values might be high, but not significant. 
In this study, magnitudes and directions of the correlation values were the focus.

Correlation study between visual diversity and social variables

Street-view images totaling 351,246 in number were analyzed from 86 neighbor-
hoods in a Midwest metropolitan area consisting of two major cities (City 1 and City 
2). The sample size for the correlation analysis was computed using G*Power [61]. 
An a priori power analysis indicated that a total sample of 85 would be needed to 
detect medium effects with 80% power using an alpha of .05. The sample size for 
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this study was 86 neighborhoods, enough to achieve 80% statistical power. Table 2 
reports the result. Next, we present a few examples.

Relationship between geospatial visual diversity indices and population metrics

The results here indicated that there were mainly negative correlations between 
multi-category diversity indices and population metrics. For instance, Simpson 
index ( rs = – .328, p < .05 for City 1 and rs = – .442, p < .01 for City 2, respec-
tively) and McIntosh index ( rs = – .390, p < .01 and rs = – .423, p < .01, respec-
tively) have medium, negative correlation with total population. There were strong, 
negative correlations between MCE index ( rs = – .502, p < .01 and rs = – .513, p < 
.01, respectively) and total population.

For diversity indices of individual visual category, the relationships depend on 
specific categories. For instance, high diversity of building and terrain often links to 
a large population. There were strong, negative correlations between total popula-
tion and Gini index of building ( rs = – 0.727, p < .001 and rs = – 0.531, p < .01, 
respectively), and the same occurred for the Gini index of terrain ( rs = – 0.706, p < 
.001 and rs = – 0.657, p < .001, respectively). In addition, negative correlation was 
reflected between population density per square mile and Gini index of building ( rs 
= – 0.461, p < .01 for City 1 and rs = – 0.432, p < .01 for City 2 respectively). In a 
similar manner, a negative correlation occurred between MCE index and population 
density per square mile ( rs = – .309, p < .05 and rs = – .420, p < .01, respectively).

Relationship between geospatial visual diversity indices and economic indicators

For multi-category indices, negative correlations appeared between diversity and 
household income in a neighborhood. In some examples, this occurred between 
Simpson index and median household income ( rs = – 0.785, p < .001 for City 1 
and rs = – 0.387, p < .05 for City 2, respectively), and between McIntosh index 
and median household income ( rs = – 0.756, p < .001 and rs = – 0.349, p < .05, 
respectively), For individual categories, positive correlations were detected between 
HVI of green and median household income ( rs = 0.780, p < .001 for City 1 and rs 
= 0.368, p < .05 for City 2, respectively). Similarly, there were positive correlations 
between HVI index of green and median home value ( rs = 0.663, p < .001 and rs = 
0.309, p < .05, respectively). Greenery is often an indicator of a high-income neigh-
borhood. Conversely, personal income has a negative correlation with diversity of 
building: HVI of building and median household income ( rs = – 0.551, p < .01 and 
rs = – 0.370, p < .05, respectively).

Relationship between geospatial visual diversity indices and crime metrics

For multi-category indices, high diversity often indicates high crime activities. In 
the table, there were positive correlations between Simpson index and violent crime 
( rs = 0.721, p < .001 for City 1 and rs = 0.323, p < .05 for City 2, respectively), 
McIntosh index and violent crime ( rs = 0.691, p < .001 and rs = 0.337, p < .05, 
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respectively), Simpson index and property crime ( rs = 0.684, p < .001 and rs = 
0.324, p < .05, respectively), and McIntosh index and property crime ( rs = 0.641, 
p < .001 and rs = 0.339, p < .05, respectively).

For single-category indices, it became evident that positive correlations exist 
between violent crime and Gini index of green ( rs = 0.751, p < .001 for City 1 and 
rs = 0.328, p < .05 for City 2, respectively), and between property crime and Gini 
index of green ( rs = 0.707, p < .001 and rs = 0.321, p < .05, respectively).

Discussion

One difference between our approach and those of other researchers was to under-
stand a built environment using micro-level analysis, as we tried to capture every 
single block of a neighborhood using the street-view images. This process allowed 
us to gain information from every corner of a neighborhood and then compute the 
geospatial diversity. Moreover, we used different indices to understand the same 
information, which was an attempt to overcome underlying limitations and biases 
that each index could have. We also sought to use single categories to understand 
how each category relates to social phenomena. This was an attempt to discern the 
effect of individual categories and their relationships with different social aspects. 
The results of this study suggested that multi-category geospatial indices are more 
effective at explaining social phenomenon than single categories.

In this section, the results from the previous section are discussed in the order 
of the research questions. We ran two separate correlation analyses to see whether 
the correlation between visual diversity indices and social phenomenon varies for 
the two cities. Evidence obtained from the analysis suggests that the correlations 
between visual indices and social phenomena are somewhat similar but still different 
regardless of the cities.

Relationship between geospatial visual diversity indices and population metrics

In both cities, there were negative correlations between the Simpson, McIntosh, and 
MCE indices and total population (see Table 3, rows 1-3). Similarly, as total popu-
lation and population density are related to where people live, Day [62] found that 
most residents preferred to have their homes in a less visually diverse area. Collis, 
Felton, and Graham [63] reported comparable findings.

There was a negative correlation between the MCE index and population den-
sity per square mile (see Table  3, row 16). This finding concurs with previous 
research indicating that low visually diverse areas are typically less crowded 
and contain fewer buildings, greenery, and sky [64]. In other words, the suburbs 
are considered less visually diverse and downtown urban areas are more visu-
ally diverse [37, 65]. In all, two of three multi-category diversity indices, Simp-
son and McIntosh diversity indices, correlated with the total population, but only 
one multi-category diversity index, MCE, correlated with population density per 
square mile.
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The results indicated that there were positive correlations between Entropy 
indices of road, building, green, terrain, and sky and the total population in the 
neighborhoods of both cities (see Table 3, rows 8-12). As the research by Zhang 
and Dong [9] noted, people prefer to live in areas with more greenery and visible 
terrain. In addition, this finding was consistent with Noland [66], who noted that 
an increase in population demands an increase in vehicles and roads.

Negative correlations exist between Gini index of building, green, and terrain 
and the total population (see Table 3, rows 4-6). For instance, this indicates that 
high building diversity is related to a higher population density. This finding is 
supported by Gillis [67] as well as Ellis and Ramankutty [68], with each study 
asserting that the more variety of buildings in a given area are related to higher 
population density.

In addition, there was a negative correlation between HVI index of sky and the 
total population (see Table 3, row 15). Higher HVI of sky indicates more openness. 

Table 3  Summary of the correlation table for diversity indices and population metrices.†

† (C1 = city 1, C2 = City 2, S = Strong, M = Moderate, * = p < .05, ** = p < .01, *** = p < .001)

Row Index Variable Direction Sig

1 Simpson Total population – M(C1)*, M(C2)**
2 McIntosh – M(C1)**, M(C2)**
3 MCE – S(C1)** , S(C2)**
4 Gini building – S(C1)***, S(C2)**
5 Gini green – M(C1)***, S(C2)***
6 Gini terrain – S(C1)***, S(C2)***
7 Gini sky + M(C2)*
8 Entropy road + S(C1)***, M(C2)**
9 Entropy building + S(C1)***, S(C2)***
10 Entropy green + S(C1)***, S(C2)**
11 Entropy terrain + S(C1)***, S(C2)***
12 Entropy sky + S(C1)***, M(C2)**
13 HVI green + M(C1)*, M(C2)*
14 HVI terrain + M(C1)**, S(C2)***
15 HVI sky – M(C1)*, S(C2)**
16 MCE Population density – M(C1)*, M(C2)**
17 Gini building – M(C1)**, M(C2)**
18 Gini green – M(C2)**
19 Gini terrain – S(C2)***
20 Entropy road + M(C2)*
21 Entropy building + M(C2)*
22 Entropy terrain + M(C2)*
23 HVI building + S(C1)***
24 HVI terrain + M(C2)**
25 HVI sky – M(C2)**
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This explains that fewer people tend to live in open-sky areas in outer-city neighbor-
hoods. In general, inner-city areas are covered with high-rise buildings or concrete 
jungles with a high population where high-rise buildings prevent fully viewing the 
sky from the street level [69].

Relationship between geospatial visual diversity indices and economic indicators

In both cities, there were negative correlations between the Simpson index and the 
McIntosh index and household income and median home value (see Table 4, rows 
1-2, 13-14). That is, families/individuals with more household income as well as 
a higher home value tend to reside in less visually diverse areas (e.g., living in the 
outer-city or suburb areas), instead of more visually diverse areas (e.g., inner-city 
or downtown areas). These findings are supported by Howe, Bier, Allor, Finnerty, 
and Green [70], who found that most people want to live outside inner-city areas 
due to lower taxes and less crime. Despite these findings, the HVI of green and sky 
showed positive correlations with median household income (see Table 4, rows 10, 
12) and median home value (Table 4, rows 20, 22). These findings are consistent 
with Kim and Kim [71], who showed that families/individuals with higher income 
and home values were more likely to live in green and open areas compared to those 
with lower incomes and home values.
Table 4  Summary of the 
correlation table for diversity 
indices and economic metrices

* = p < .05, ** = p < .01, *** = p < .001)

Row Index Variable Direction Sig

1 Simpson Income – S(C1)***, M(C2)*
2 McIntosh – S(C1)***, M(C2)*
3 MCE – M(C1)*
4 Gini building – M(C2)*
5 Gini green – S(C1)***, M(C2)**
6 Gini terrain – M(C2)**
7 Gini sky + S(C1)***
8 HVI road – M(C1)**
9 HVI building – S(C1)***, M(C2)*
10 HVI green + S(C1)***, M(C2)*
11 HVI terrain + M(C1)*
12 HVI sky + S(C1)***, M(C2)*
13 Simpson Home Value – S(C1)***, M(C2)*
14 McIntosh – S(C1)***, M(C2)*
15 MCE – M(C1)*
16 Gini green – S(C1)***
17 Gini terrain – M(C1)*
18 Gini sky + S(C1)**
19 HVI building – S(C1)***
20 HVI green + S(C1)***, M(C2)*
21 HVI terrain + M(C1)**
22 HVI sky + S(C1)***, M(C2)*
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In both cities, there was a negative correlation between HVI of building and 
median household income (see Table 4, row 9). A study by Ghose [72] suggesting 
that those with higher income want to reside in outer-city (suburb) areas with fewer 
high-rise buildings concurs with this study’s results.

Relationship between geospatial visual diversity indices and crime metrics

There were positive correlations between the Simpson and McIntosh indices and 
both violent and property crime (see Table 5, rows 1-2, 11-12). A previous study 
reported that high visual inequality and crime were correlated [73]. Likewise, Lentz 
[74] asserted that the type of environment and crime are related.

In terms of single-category geospatial diversity indices and crime metrics, the 
results here suggested that there were positive correlations between Gini index 
of green and both violent and property crime (see Table 5, rows 4, 14). Notably, 
a higher value of Gini green indicates heterogeneity of greenery. In other stud-
ies, however, Kuo [75, 76] and Kuo and Sullivan [77] did not support this asser-
tion. Rather, Kuo [76] explained that green areas decrease crime since paved 
areas with no vegetation are often seen as “no man’s lands.” In general, empty or 
“no man’s land” areas have less presence of residents or witnesses and increase 
crime activities, making criminals feel that they are less likely to be caught. 

Table 5  Summary of the correlation table for diversity indices and crime metrices

* = p < .05, ** = p < .01, *** = p < .001)

Row Index Variable Direction Sig

1 Simpson Violent crime + S(C1)***, M(C2)*
2 McIntosh + S(C1)***, M(C2)*
3 MCE + M(C1)*
4 Gini green + S(C1)***, M(C2)*
5 Gini sky – S(C1)***
6 HVI road + M(C1)*
7 HVI building + S(C1)***
8 HVI green – S(C1)***
9 HVI terrain – M(C1)*
10 HVI sky + S(C1)***
11 Simpson Property crime + S(C1)***, M(C2)*
12 McIntosh + S(C1)***, M(C2)*
13 MCE + M(C1)*
14 Gini green + S(C1)***, M(C2)*
15 Gini terrain + M(C1)*
16 Gini sky – S(C1)***
17 HVI road + M(C1)*
18 HVI building + S(C1)***
19 HVI green – S(C1)***
20 HVI terrain – M(C1)**
21 HVI sky + S(C1)***
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Often, studies containing crime statistics characterized empty areas as crime hot 
spots [78].

Limitations and future directions

The computation of diversity and the relationship between diversity and social 
variables are based on the primary results in the selected metropolitan area in the 
Midwest. We recognize that specific relationships between visual diversity indi-
ces and social factors might become different due to the variation of geographi-
cal regions or even different countries. Despite this, we contend that this study 
presents a useful methodology and substantive results in computing and linking 
the diversities with social outcome, which can be leveraged by urban researchers, 
residents, the workforce (i.e., businesses), and administrators.

For the validity and reliability analyses, only five evaluators were asked to par-
ticipate. This smaller sample size was bolstered by the number of pictures rated 
(i.e., ten) and the rating scale that was used (i.e., 5-point Likert scale). Over-
all, the Inter-Rater Reliability (IRR) component in this study was exploratory 
in nature, and a total of five evaluators was considered adequate. Future stud-
ies should include more evaluators in order to approximate the magnitude of the 
reliability coefficient with more precision. Second, for the validity and reliability 
analysis, GSV images (n = 10) were randomly chosen from approximately 53,000 
images from an urban neighborhood. In addition, only lower and higher visu-
ally diverse images were selected. Future studies should consider selecting more 
images and from a range of neighborhoods with levels of visually diverse images 
in more than two categories.

Although a total of 351,246 street-view images were collected in this study, the 
neighborhoods sample remained limited. More samples of neighborhoods should 
be selected in future research to verify whether obtained results of this study have 
any biases related to the sample size. Future studies should also explore how 
relationships might change or remain the same across more states or countries. 
In the end, limited sample size can dictate the kinds of analyses conducted. For 
instance, this study relied primarily on correlational analyses. A larger sample 
size and variety of geolocations (i.e., cities and neighborhoods from different 
states or countries) could be used in future research to develop more complex 
statistical models.

Another limitation of this study is that the accuracy of the geospatial visual 
diversity indices depends on the precision of the deep learning model. While PSP-
Net achieves about 82.2% accuracy with cityscape images [48], future AI studies 
could improve the deep learning model, which could also enhance this method in 
the accuracy and reliability of the diversities and the correlation coefficients.
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Conclusion

The work here presents a computing framework of geospatial visual diversity based 
on AI-based tools from street-view images. It shows that diversity indices can be 
helpful in understanding the built and natural environment as well as the social 
dynamics of an urban neighborhood. Still, correlation analysis does not imply cau-
sality or inference. Nevertheless, the results presented in this study can be used 
to understand the influence of visual diversity for cities or neighborhoods. This 
study indicated that multiple category geospatial indices could be more effective in 
explaining social phenomena in urban neighborhoods than in single-category indi-
ces. This approach can potentially be used by city administrators, policymakers, and 
urban planners for their work in urban and community study and improvement.

We considered three aspects of the social phenomenon: the economy; population; 
and crime. We considered three social aspects together because earlier studies found 
they are related, so it was important for the researchers to consider them together. 
This study used street-view images to capture neighborhood scenes and the seman-
tic segmentation method to extract visual objects information, enabling the compu-
tation of geospatial visual diversity. This was an attempt to incorporate computer 
programs to understand geospatial visual diversity and automate the computational 
process. This approach can be employed by city administrators, policymakers, and 
environmental designers to understand geospatial visual diversity without leav-
ing their offices. Our approach could potentially save time and cost to aid in better 
understanding a built environment.
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