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Abstract. The Transformer has been widely used for many tasks in NLP before,
but there is still much room to explore the application of the Transformer to the
image domain. In this paper, we propose a simple and efficient hybrid Transformer
framework, CTransNet, which combines self-attention and CNN to improve medi-
cal image segmentation performance. Capturing long-range dependencies at differ-
ent scales. To this end, this paper proposes an effective self-attention mechanism
incorporating relative position information encoding, which can reduce the time
complexity of self-attention from O(n2) to O(n), and a new self-attention decoder
that can recover fine-grained features in encoder from skip connection. This paper
aims to address the current dilemma of Transformer applications: i.e., the need
to learn induction bias from large amounts of training data. The hybrid layer in
CTransNet allows the Transformer to be initialized as a CNN without pre-training.
We have evaluated the performance of CTransNet on several medical segmentation
datasets. CTransNet shows superior segmentation performance, robustness, and
great promise for generalization to other medical image segmentation tasks.
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1 INTRODUCTION

With the development and widespread use of medical imaging equipment, X-rays,
CT examinations, magnetic resonance imaging (MRI), and ultrasound scans have
become four necessary medical aids used to assist doctors in disease diagnosis, prog-
nosis assessment, and surgery planning. To help doctors make accurate diagnoses,
medical image segmentation is required to identify some critical targets in medical
images and extract features from them for subsequent lesion diagnosis. In general,
there are two main types of image segmentation tasks: semantic segmentation and
instance segmentation. Image semantic segmentation is a pixel-level classification
task that requires predicting each pixel point of an image. Image instance seg-
mentation requires not only pixel-level classification but also the differentiation of
instances based on specific categories. Medical image segmentation is unique in that
there are significant differences between each organ or tissue, making instance seg-
mentation of medical images less meaningful. Medical image segmentation usually
refers to the semantic segmentation of medical images. Currently, the main med-
ical image segmentation tasks include liver and liver tumour segmentation, brain
and brain tumour segmentation, optic disc segmentation, cell segmentation, lung
segmentation, and lung nodule segmentation. Many recent medical semantic seg-
mentation approaches have adopted the U-Net framework with a codec structure.
However, U-Net using a simple jump-join scheme is still challenging for modelling
global multi-scale problems:

1. Not every jump-join setting is valid due to incompatible codec stage feature sets,
and even some jump-join can negatively affect segmentation performance;

2. The original U-Net is worse than U-Net without jump-join on some datasets.

CNNs are widely used in computer vision tasks because of their excellent feature
extraction capabilities; the encoder-decoder structure built on convolutional oper-
ations is currently well-suited for solving location-sensitive tasks such as semantic
segmentation. With the help of convolution operations, texture information and lo-
cal features between neighbouring pixels can be captured; then, by stacking the local
features extracted at different levels, the perceptual field can be gradually expanded
to obtain higher-level global features. However, this approach has two limitations:
firstly, convolution can only extract information between neighbouring pixels and
cannot model global associations effectively; secondly, the size and dimensions of
the convolution kernel are often fixed and cannot be adjusted according to the input
content.

The Transformer has been widely used for many tasks in NLP before [1, 2, 3],
but there is still much room to explore the application of the Transformer to the
image domain [4, 5, 6]. In this paper, we propose a simple and efficient hybrid Trans-
former framework, CTransNet, which combines self-attention and CNN to improve
medical image segmentation performance and capturing long-range dependencies at
different scales. To this end, this paper proposes an effective self-attention mech-
anism incorporating relative position information encoding, which can reduce the
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time complexity of self-attention from O(n2) to O(n), and a new self-attention de-
coder that can recover fine-grained features in encoder from skip connection. This
paper aims to address the current dilemma of Transformer applications: i.e., the
need to learn induction bias from large amounts of training data. The hybrid
layer in CTransNet allows the Transformer to be initialized as a CNN without
pre-training. We have evaluated the performance of CTransNet on several medi-
cal segmentation datasets. CTransNet shows superior segmentation performance,
robustness, and great promise for generalization to other medical image segmenta-
tion tasks.

Based on the above findings, we propose a new medical image segmentation
framework, CTransNet, which leverages channel attention mechanisms. Our ap-
proach utilizes a hierarchical cascaded self-attention module (MHSA) to address the
inefficiency of multi-headed self-attention in the visual Transformer model caused
by high computational and spatial complexity. We propose to split the image into
patches, with each patch representing a token to learn feature relationships within
a small grid. We group patches into each small grid and compute self-attention in
each group, capturing local feature relationships and producing different local fea-
ture representations. The smaller grids are then merged into the larger grid, with
the previous smaller grid treated as a new token for the next grid’s attention com-
putation. CTransNet combines self-attention [7] and convolutional neural network
(CNN) techniques to improve segmentation performance, with self-attention mod-
ules incorporated into both the encoder and decoder parts to capture long-range
dependencies at different scales with minimal overhead. Our approach uses an effec-
tive self-attention mechanism that includes relative position information encoding
to reduce self-attention’s time complexity from O(n2) to O(n). Additionally, our
self-attention decoder can recover fine-grained features in the encoder from skip
connection. Experimental results demonstrate that CTransNet outperforms tradi-
tional architectures, including transformer and U-Shape frameworks, across different
datasets, leading to more accurate and consistent improvements in semantic segmen-
tation.

2 RELATED WORK

2.1 CNN-Based Methods

Early methods for segmenting medical images primarily relied on contour and con-
ventional machine learning techniques [8, 9, 2, 10]. U-Net for medical picture seg-
mentation was proposed in [11] with the introduction of deep CNNs. Numerous
Unet-like techniques, like Res-UNet [12], have been developed as a result of the
U-shaped structure’s ease of use and high performance. U-Net++ [13], Dense-
UNet [10], and UNet3+ [14]. Additionally, it has been applied to the segmenta-
tion of 3D medical images using methods like 3D-Unet [15] and V-Net [16]. In
the field of medical picture segmentation right now, CNN-based techniques have
had remarkable success. Because of its potent representation, CNN-based tech-
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niques have now had tremendous success in the field of medical image segmenta-
tion.

2.2 Vision Transformers Methods

Transformer was initially put forth as a solution for machine translation tasks in [17].
In the field of NLP, techniques based on transformers have excelled in a range of
tasks, achieving state-of-the-art performance. Multiple tasks have been completed
with state-of-the-art performance [18]. Due to the popularity of Transformer, re-
searchers at [19] developed the ground-breaking Visual Transformer (ViT), which
demonstrated a remarkable speed-accuracy trade-off in picture recognition tasks.
Because ViT needs pre-training on its own sizable dataset, it is less advantageous
than CNN-based techniques. Deit et al. [20] outlines numerous training procedures
that make it possible for ViT to be effectively trained on ImageNet in order to over-
come the challenges associated with doing so. Recently, some outstanding papers
on ViT have been produced [21, 22, 23]. Notably, the Swin Transformer was pro-
posed as the visual backbone given in [23], and it is an effective hierarchical visual
transformer. The Swin Transformer, which is based on the shift window mechanism,
performs at the cutting edge on a range of vision tasks, including semantic segmen-
tation, object detection, and image classification. In this paper, we try by employing
the Swin Transformer block as the basis unit to create a U-shaped encoder-decoder
architecture with skip connections for medical picture segmentation, we want to
provide a benchmark for the advancement of transformers in the field of medical im-
ages. A benchmark comparison can be made using the Transformer’s advancement
in the realm of medical pictures.

2.3 Transformer to Complement CNNs

In recent years, researchers have attempted to increase network performance by in-
corporating self-attention mechanisms into CNNs [24, 25, 26, 27]. There are also
a number of vision tasks on which Transformer and CNN [28, 29] have been com-
bined, and significant improvements have been achieved. In [30], a U-shaped struc-
ture was integrated with skip connections and additive attention gates to analyse
medical images. However, this strategy is still CNN-based. Efforts are currently
being made to combine CNN with Transformer to challenge CNNs dominance in
medical image segmentation. CNNs have advantages for medical picture segmenta-
tion [25, 31, 32]. The authors of [25, 33] have developed a potent encoder for the
segmentation of two-dimensional medical images. Similar to [25, 31] and [34] use
the complementary nature of the Transformer and CNN to enhance the segmenta-
tion capabilities of the model. Various combinations of Transformer and CNN are
currently employed for the multimodal segmentation of brain tumors [35] and 3D
medical picture segmentation [32, 2]. In contrast to the methodologies described
above, we investigated the possibility of pure transformers for medical image seg-
mentation applications. We redesigned the multi-headed attention mechanism of
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the Transformer and perfectly fused the local information extraction of the convolu-
tional neural network and the global context of the Transformer to make our method
more applicable to image segmentation tasks.

3 METHODOLOGY

3.1 Self-Attention

The Transformer model is founded on a multi-head attention module (MHSA, Multi-
head self-attention) that enables the model to incorporate attention learned from
different subspaces. The output of the multi-heads is concatenated and supplied
to the feedforward network (FFN) layer. Given the small sample size of medi-
cal datasets, we conducted several experiments and found that a large number of
parameter calculations could have an adverse impact on model segmentation per-
formance. Therefore, we determined that the head parameter setting of 6 achieved
the best performance for our method. In this study, we applied head = 6 to the
input X (C × W × H) to obtain the mapping Q, K, V after a 1 × 1 convolution,
which is then divided into various heads. The following equation outlines the specific
attention calculation:

Att(Q,K, V ) = softmax

(
QKT

√
d

)
V. (1)

The computed attention is then processed by softmax and called: a contextual ag-
gregation matrix, or similarity matrix, indicating how well each q matches is similar
to all the keys; this similarity is then used as a weight and multiplied by the value,
so that attention is computed, and is based on a global perceptual field that takes
all the inputs into account. This self-attention-based contextual aggregation matrix
dynamically adjusts with the input content, allowing for better feature aggregation;
however, the dot product operation for n × d has a time complexity of O(n2), as
n as a sequence length is generally much larger than the dimension d. Where

√
d

denotes approximate normalization, applying the Softmax function to each row of
the matrix. Note that we have omitted the computation of multiple headers here
for simplicity. The matrix product QKT is done specifically by first computing
the similarity between each pair of tokens. Then, each new token is obtained by
derivative acquisition on top of the combination of all tokens. after the MHSA cal-
culation, further residual joins can be added to facilitate optimization. We assume
that the height of the input X feature map is H0 and the width is W0. We have
N = H0 ×W0. Then, we can divide the feature map into small grids, each of size
G0 ×G0. Therefore, we reconstruct the input feature map to obtain the new X ′:

X ∈ RC×H0×W0 → X ∈ R
C×

(
H0
G0

×G0

)
×
(

W
G0

×G0

)
→ X ′ ∈ R

C×
(

H0
G0

)
×
(

W0
G0

)
×(G0×G0). (2)
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To simplify the network optimization, we also perform the following transformation
for the generated local self-attentive Att :

Att0 ∈ RC×H0×W0 → Att0 ∈ R
C×

(
H0
G0

×G0

)
×
(

W
G0

×G0

)
→ Att ′0 ∈ R

C×
(

H0
G0

)
×
(

W0
G0

)
×(G0×G0).

(3)
This computational complexity is significantly reduced because the Att0 computes
each small G × G network faster. For the ith step, we can consider the smaller
network block obtained at the i− 1st step as a new token, which can be achieved
simply by downsampling the attentional features:

Att0 = X + Att0, (4)

Att ′i−1 = MaxPool(Att i−1) + AvgPool(Att i−1), (5)

where Att ′i−1 ∈ RC×Hi×Wi , Hi = H0/(G0G1 . . . Gi−1), Wi = W0/(G0G1 . . . Gi−1),
MaxPool and AvgPool denote maximum pooling and average pooling, respectively.
We then similarly divide Att ′i−1 into a grid of size Gi×Gi and re-obtain the following
equation:

Att ′i−1 ∈ RC×Hi×Wi → Att ′i−1 ∈ R
C×

(
Hi
Gi

×Gi

)
×
(

W
Gi

×Gi

)

→ Att ′i−1 ∈ R
C×

(
Hi
Gi

)
×
(

Wi
Gi

)
×(G2

i ), (6)

Q = X ′
i−1W

q, K = X ′
i−1W

k, V = X ′
i−1W

v, (7)

finally, we obtain the mathematical representation of Ai as follows:

Att ′i ∈ RC×Hi×Wi → Att ′i ∈ R
C×

(
Hi
Gi

×Gi

)
×
(

W
Gi

×Gi

)
→ Att ′i ∈ R

C×
(

Hi
Gi

)
×
(

Wi
Gi

)
×(G2

i ).
(8)

We connect through the residuals and will keep iterating until it is small enough.
Then we stop slicing the grid blocks. the final output of MHSA is:

MHSA(X) = (Att0 + . . .+ Upsample(AttM))W p +X, (9)

where UPsample(.) denotes upsampling the attentional features to their original size
and W p is the weight matrix of the feature projection. m is the maximum number of
iteration steps. In this way, our method can establish global feature dependencies. It
is easy to prove that, under the assumption that all Gi are equal, the computational
complexity of MHSA is:

Ttime(MHSA) = 3NC2 + 2NG2
0C. (10)

Thus, we reduce the computational complexity significantly from O(N2) to O(N),
and here G0 is much smaller than N . Likewise, the space complexity is greatly
reduced.



398 Z. Zhang, S. Jiang, X. Pan

In terms of network time complexity computation, our approach differs from
some state-of-the-art not-transformer-based approaches in that we first divide the
image into multiple patches, each of which can be considered as a token, and
instead of computing attention across all patches, we further group the patches
into each small grid and compute self-attention in instead of computing atten-
tion across all patches, we further group patches into each small grid and com-
pute self-attention in each grid, thus capturing local feature relationships and pro-
ducing distinguishable local feature representations. Then, the smaller grids are
merged into the larger grid, and the attention in the next grid is recomputed by
treating the smaller grid in the previous step as a new token. This process is re-
peated iteratively to gradually reduce the number of tokens. Throughout the pro-
cess, our MHSA module progressively computes self-attention in increasing regional
network sizes and naturally models the global feature relationships in a hierarchi-
cal manner. Since each grid has only a small number of tokens at each step, we
can significantly reduce the computational/spatial complexity of the vision Trans-
former.
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Figure 1. Illustration of the proposed CTransNet. GAP: global average pooling; DW
Conv: deepthwise separable convolution; RB: Residual Bottleneck; GCE: global context
extraction.

3.2 Network Architecture

Figure 1 illustrates the network structure of CTransNet. The purpose of this study
is to combine the benefits of convolution with self-attention so that, on the one
hand, convolution can be used to learn inductive bias and avoid pre-training the
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Transformer on big datasets, and on the other hand, the Transformer can be used
to capture global characteristics. The effective self-attention and relative location
coding suggested in this research enable the Transformer to accumulate global con-
textual data at various scales efficiently. Since miss segmentation frequently hap-
pens at the edges of the ROI region, high-resolution contextual information is re-
quired for precise segmentation. Instead of only computing self-attention on the
CNN-extract feature map, this research employs a transformer at each level of
the encoder-decoder to collect long-range dependencies at various scales. How-
ever, the raw input was not processed using the Transformer, as employing the
Transformer at a superficial level would be of limited benefit and raise the com-
puting cost. One possible explanation for this is that the shallow feature map is
more concerned with fine-grained textures than global information. Since the Eu-
clidean distance possesses symmetry, the disease-centric learning strategy, in this
case, can be substituted by r. Figure 3 depicts a symmetric metric learning ap-
proach centred on drugs and diseases under the explicit treatment relationship.
In summary, the disease-centric metric is symmetric with the drug-centric met-
ric, and the objective of symmetric metric learning is to push drugs or diseases
that are not associated out of the ball, pull drugs or diseases that are associ-
ated or potential associations into the ball, and guarantee that the distance of
known drug-disease pairs is smaller than the distance between unknown associa-
tions.

3.3 Loss Fuction

Our proposed approach employs the widely-used cross-entropy as the loss func-
tion, which serves as a metric to evaluate the degree of agreement between the
predicted and ground-truth outputs. In the context of classification training, for
a given sample belonging to the Kth class, the corresponding output node should
have a value of 1 while the remaining nodes have values of 0, forming the target
label. By calculating the cross-entropy loss function, we quantify the discrepancy
between the predicted output and the target label, and use this difference to update
the network parameters through backpropagation. The cross-entropy loss function
measures the divergence between the predicted probability distribution and the true
probability distribution, where lower cross-entropy implies greater similarity be-
tween the two distributions. Formally, assuming p and q as the target and predicted
probability distributions, respectively, the cross-entropy loss function is defined as
follows:

LCE = −
∑
x

(p(x) log q(x) + (1− p(x) log(1− q(x))), (11)

where p(x) is the expected output and the probability distribution q(x) is the actual
output.
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4 EXPERIMENTS AND DISCUSSION

In this section we will focus on some of the details and steps in the experimental
process, and the comparative results of some of the most advanced methods and the
visualisation of the experimental results on the graphs.

4.1 Datasets and Evaluation

4.1.1 Kvasir-SEG Datasets

Kvasir-SEG is an open-access collection of gastrointestinal polyp pictures and related
segmentation masks that were manually annotated by a medical practitioner and
subsequently validated by a seasoned gastroenterologist. The Kvasir-SEG dataset
includes one thousand polyp pictures and their related ground truth from the Kvasir
Dataset v2. The resolution of the photos contained in Kvasir-SEG ranges from
332 × 487 to 1 920 × 1 072 pixels. The photos and their respective masks are
saved in two distinct folders with the same name. The image files are compressed
using the JPEG format, which facilitates online viewing. The publicly available
dataset is freely downloadable for research and teaching purposes. The bounding
box (coordinate points) for the respective photos is saved in a JSON file. This
data collection is intended to further the current best method for polyp identifica-
tion.

4.1.2 DRIVE Datasets

The DRIVE database was designed to facilitate comparative research on the seg-
mentation of blood vessels in retinal pictures. Retinal vessel segmentation and
delineation of morphological attributes of retinal vessels, such as length, width,
tortuosity, branching patterns, and angles, are utilized for the diagnosis, screening,
treatment, and evaluation of numerous cardiovascular and ophthalmic diseases, such
as diabetes, hypertension, atherosclerosis, and choroidal neovascularisation. Auto-
mated detection and analysis of blood vessels can help create screening programs
for diabetic retinopathy, research the association between vascular tortuosity and
hypertensive retinopathy, and aid in computer-assisted laser surgery. For tempo-
ral or multimodal image registration and retinal image mosaic synthesis, automatic
retinogram generation and branch point extraction have been employed. In addi-
tion, it was discovered that the retinal vascular tree is unique to each individual and
can be utilized for biometric purposes.

4.1.3 Evaluation

In Equation (12), the accuracy, sensitivity, IoU, and Dice are shown as a criterion
group to completely evaluate the experimental outcomes.
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Accuracy = TP+TN

TP+FP+FN+TN
,

Sensitivity = TP
TP+FN

,

IoU = TP
TP+FN+FP

,

Dice = 2×TP
(TP+FN)+(TP+FP )

.

(12)

In this study, the performance of the predictive model is evaluated using sev-
eral metrics, including true positive (TP ), true negative (TN), false positive (FP ),
and false negative (FN). These metrics represent the number of correctly pre-
dicted positive and negative samples, the number of negative samples that were
incorrectly predicted as positive, and the number of positive samples that were in-
correctly predicted as negative, respectively. Additionally, the sensitivity against
specificity is assessed using the Area Under the ROC Curve (AUC) metric. This
measure is commonly used to evaluate the performance of binary classification mod-
els, where sensitivity is the true positive rate and specificity is the true negative
rate.

4.2 Implementation Details

Our CTransNet was implemented using the Pytorch deep learning framework, and
we conducted a range of hyperparameter tuning experiments, such as adjusting the
learning rate, batch size, weight decay rate, and resize parameters. Both training
and testing were carried out on Ubuntu 18.04, using two RTX 2080Ti graphics cards
with 12GB of video memory each. The small batch stochastic gradient descent
(SGD) method was employed for training, with a batch size of 8 and a learning
rate of 0.0001 on the DRIVE dataset, and a batch size of 8 and a learning rate
of 0.001 on the Kvasir-SEG dataset. We compared Adam optimization with SGD
and found that SGD typically outperforms Adam, albeit at a slower convergence
rate. Despite Adam converging faster, we prioritized performance in both time and
accuracy. To validate the effectiveness of our approach, we conducted experiments
on multiple datasets, as shown in the figure below, and demonstrated that our
approach consistently achieved favourable results.

4.3 Experimental Results

4.3.1 Result on DRIVE Dataset

DRIVE is a dataset that permits the segmentation of retinal blood vessels. It consists
of forty color retinal images, twenty of which are used for training and twenty of
which are used for evaluation. Originally, the dimensions of the images were 565×584
pixels. A dataset sample of this size is insufficient for training a deep neural network.
Consequently, we apply the following strategy to overcome this issue: Beginning
with the provided images, random blocks are generated. The remaining photos



402 Z. Zhang, S. Jiang, X. Pan

Original Probability Binary Groundtruth

Figure 2. The segmentation results of CTransNet on DRIVE dataset

Methods Accuracy Specificity Sensitivity AUC

Backbone 0.9477 – 0.7781 0.9705
UNet [11] 0.9531 0.9820 0.7537 0.9680
R2-Uet [36] 0.9652 0.8303 0.7792 0.9245
Deep Model [37] 0.9495 0.9768 0.7763 0.9720
RU-net [38] 0.9553 0.9820 0.7726 0.9779
Attention-Unet [39] 0.9629 0.9725 0.7884 0.9740
Unet++ [13] 0.9656 0.9867 0.8234 0.9628
BCD-Unet [40] 0.9560 0.9786 0.8007 0.9789
CENet [41] 0.9545 0.9851 0.8309 0.9779
Fusion Mechanism [42] 0.8247 0.9847 0.8140 0.9782
CTtansNet(Ours) 0.9660 0.9870 0.8433 0.9785

Table 1. Performance comparison of the proposed network and the State-of-the-Art meth-
ods on DRIVE dataset

were utilized to validate 19,000 segmentation findings using DRIVE. The batch size
used as input data for the network was 64× 64.

The Figure 2 illustrates some precise of CTransNet and promising segmentation
results. In the four columns are listed the original RGB image, the anticipated
probability image, the predicted binary image, and the ground truth. Table 1 of-
fers further state-of-the-art research and quantitative findings produced by the pro-
posed network CTransNet on the DRIVE dataset. Our studies were assessed using
five unique measures. CTransNet performs brilliantly in terms of accuracy, speci-
ficity, sensitivity, and AUC, with respective values of 0.9660, 0.9870, 0.8433, and
0.9785.
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Input PredictMask Input PredictMask

Figure 3. The segmentation results of CTransNet on Kvasir-SEG dataset datasets

4.3.2 Result on Kvasir-SEG Dataset

The results of our CTransNet visualization test on the Kvasir-SEG dataset are shown
in Figure 3, from left to right, Input, Mask and Predict. It can be seen that our
algorithm has a low error value with Mask. In addition, we also compared it with
some classical methods, as shown in Table 2, where our method achieves state-of-the-
art performance in several metrics. the values of Precision, Recall, mIOU, and Dice
for UNet on the Kvasir-SEG dataset are 92.22, 63.06, 43.43, and 81.80, respectively.
resUNet The values of Precision, Recall, mIOU, and Dice on the Kvasir-SEG dataset
are 72.92, 50.41, 43.64, and 51.44, respectively. The values of Precision, Recall,
mIOU, and Dice on the Kvasir-SEG dataset for MSRF-Net are 96.66, 91.88, 89.14,
92.17. The values of Precision, Recall, mIOU, and Dice for CTransNet on the Kvasir-
SEG dataset are 96.75, 90.15, 89.32, and 93.21, respectively. MSRF-Net exceeds
our Recall metric by 1.83%, and their different perceptual fields and multi-scale
residual fusion network have significant advantages for the image segmentation task.
Experimental results show that our method outperforms the existing state-of-the-
art methods in several evaluation metrics, and we analyze some specific reasons why
our method efficiently combines visual local attention and contextual information,
which is crucial for our semantic segmentation task. Experimental results show
that our method outperforms existing state-of-the-art methods in several evaluation
metrics, and we analyze some specific reasons why our method effectively combines
visual local attention and contextual information, which is crucial for our semantic
segmentation task, especially for small dataset tasks where global information is
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more important. However, MSRF-Net is currently 1.83% ahead of us in the Recall
metric, which may be an advantage for the Recall metric as MSRF-Net is able to
use dual-scale dense fusion to exchange multi-scale features from different perceptual
fields.

Methods Precision Recall mIoU Dice

Unet [11] 92.22 63.06 43.34 81.80
ResUNet [43] 72.92 50.41 43.64 51.44
ResUnet-mod [44] 87.13 69.09 42.87 79.09
ResUnet++ [45] 70.64 70.64 79.27 81.33
DeeplabV3+ [46] 94.96 89.84 85.75 89.65
DDANet [47] 86.43 88.80 78.00 85.76
MSRF-Net [48] 96.66 91.98 89.14 92.17
CTransNet (Ours) 96.75 90.15 89.32 93.21

Table 2. Performance comparison of the proposed network and the State-of-the-Art meth-
ods on n Kvasir-SEG dataset

5 SENSITIVITY ANALYSIS

In this section, in order to verify the effective performance of our method, we con-
ducted a series of ablation experiments aimed at verifying the role of each component
on the whole network, and we chose the dataset Kvasir-SEG for this purpose, and
the results of the experiments are shown in Table 3. We obtained an mIoU metric
of 0.782 on the original CNN-based network, which then increased to 0.792 after
embedding the RB module in it. We obtained an mIoU of 0.821 on Kvasir-SEG
after using the vision transformer as the backbone, which proves that transformer
added as a CNN has a more significant effect than the original CNN. The final mIoU
metric of our method on the Kvasir-SEG dataset is 0.893.

Method mIoU

Encoder + Decoder 0.782
Encoder + RB +Decoder 0.792
Trans + Decoder 0.821
Trans + RB +Decoder 0.834

Trans + GCE +Decoder 0.842
Trans + GCE + RB+Decoder 0.867
Trans+GCE+MHSA+RB+Decoder (CTransNet) 0.893

“Trans” represents vision transformer.

Table 3. mIoU with different setting on Kvasir-SEG dataset
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6 CONCLUSION

In this paper, the proposed CTransNet effectively combines CNN with the self-
attention mechanism in Transformer to improve the performance of medical image
segmentation. This hybrid framework does not require Transformer to be pre-trained
on large-scale datasets, where self-attention can effectively capture different levels
of long-range information. We believe that this design will help design richer Trans-
former models that are more suitable for medical image segmentation tasks; in addi-
tion, the excellent ability to handle long-range sequences in CTransNet opens up the
possibility of migration to other downstream tasks. In the future, we will be work-
ing on the task of analysing medical image segmentation from a semi-supervised or
weakly supervised perspective. This will give us access to fewer datasets and a more
scientific approach to deep learning, and we will also be working on the segmentation
of small medical targets.
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