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Abstract. Smart grid is an advanced electrical grid that enables more efficient
distribution of electricity. It counters many of the problems presented by renew-
able energy sources such as variability in production through techniques like load
forecasting and dynamic pricing. Smart grid generates massive amounts of data
through smart meters, this data is used to forecast future load to adjust distribu-
tion. To process all this data, big data analysis is necessary. Most existing schemes
use Apache Hadoop for big data processing and various techniques for load fore-
casting that include methods based on statistical theory, machine learning and deep
learning. This paper proposes using Apache Spark for big data analysis and a mod-
ified version of the transformer model for forecasting load profiles of households.
The modified transformer model has been tested against several state-of-the-art
machine learning models. The proposed scheme was tested against several baseline
and state-of-the-art machine learning models and evaluated in terms of the RMSE,
MAE, MedAE and R2 scores. The obtained results show that the proposed model
has better performance in terms of RMSE and R2 which are the preferred metrics
when evaluating a regression model on data with a large number of outliers.
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1 INTRODUCTION

Traditional electric grids face many issues such as variable consumption and elec-
trical outages. A smart grid (SG) is an electrical grid that can counter these issues
in a cost effective manner with minimal loss. SG balances the gap between power
supply and demand more efficiently than traditional electric grids. In an SG, data
is collected from several sources like smart meters, sensors and external sources
such as weather reports and demographics. Smart meters measure electricity con-
sumption and communicate it to energy suppliers [1]. One million smart meters
installed in an SG with a sampling rate of 4 times per hour can generate 35.04
billion records, which is equivalent to 2 920 terabytes of data in quantification [2].
This results in generation of huge amount of data which needs to be processed, ana-
lysed and used to make accurate load predictions for the SG to efficiently allocate
energy. This is where two major issues in an SG arise. These issues are processing
the massive generated data and making accurate load predictions using forecasting
techniques.

SG data cannot be processed using standard data processing techniques as the
data is massive, very wide in scope and has a high degree of variance. Therefore, pre-
processing and cleaning the data becomes essential before it can be used for making
predictions. As discussed earlier, data of such massive size cannot be effectively
managed using traditional methods, instead big data analysis has to be utilized.
Big data is a relative concept and no absolute threshold has been defined. It can
be understood as an amount of data beyond the standard technology’s capability to
store, manage and process efficiently because of its sheer size or complexity [3]. The
data collected from an SG can be classified as big data on the basis of 5V’s which
are Volume, Velocity, Variety, Veracity and Value [4].

Smart meters record terabytes and exabytes of measurement data every sin-
gle day. Furthermore, approximately 220 million smart meter measurements are
recorded daily in a large SG [1]. Data generation in an SG is also a continu-
ous streaming process. This makes the volume and velocity of data generation
very high as data is recorded in small intervals. Moreover, data collected can be
present in many different formats e.g. time-series uni-variate load data, multivari-
ate weather data and census data [1]. Therefore, the data exhibits a high degree
of variety. With such large amounts of data integration, its quality and accuracy
becomes less trustworthy which increases its veracity [4]. Furthermore, since the
data obtained is very massive, the density of valuable information will be low.
As all the 5V’s are satisfied, the data obtained from SG can be classified as big
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data. Using a big data framework, the data is then preprocessed and cleaned. The
data thus obtained is then used to create the energy consumption prediction mod-
els.

Predicting energy consumption of every node in an SG is very important for
balancing power generation and filling the demand response gap. In order to predict
load consumption, energy demand patterns of the consumers have to be estimated.
These demand patterns are not always consistent since there are many unpredictable
external factors that can influence load consumption. Therefore, to make accurate
predictions, the shared uncertainties between multiple households, such as houses
in similar neighbourhoods, need to be extracted along with several highly non-
linear relations between the input features, like size of a household [5]. This makes
load forecasting a fairly difficult task. In the past, several approaches have been
proposed for load forecasting. These approaches have mainly been divided into two
categories which are conventional and machine learning methods. This paper mainly
focuses on deep learning methods which is a subset of machine learning methods
and proposes a novel modified transformer model architecture. Most of the methods
used for big data analysis and prediction models have been highlighted in the next
section.

1.1 Related Works

A big data processing framework is required to effectively handle and process data
in an SG. [6] and [7] used the Apache Hadoop framework to handle big data because
of MapReduce and Hadoop Distributed File System (HDFS). [8] and [9] used the
Apache Spark framework for clustering and real-time big data processing. Apache
Spark was chosen by them because of its parallel data processing capabilities. [10]
offer a detailed comparison of the Spark and Hadoop frameworks on remote sensing
and [11] compare Spark and Hadoop for real-time processing. Both papers conclude
that Spark is the better platform for real-time data. It is faster than Hadoop but
more resource-intensive, requiring far more RAM than Hadoop for effective usage.
After reviewing this information, the Apache Spark framework was chosen for data
pre-processing in this paper.

After the appropriate pre-processing and feature selection, time-series models
are used for load forecasting. These models can be categorized into two types –
conventional models and machine learning models. The most popular amongst the
conventional models is auto-regressive integrated moving average (ARIMA). [12]
compared ARIMA with support vector machine (SVM) which is a machine learn-
ing model for load forecasting. They concluded that SVM has lower overall loss
but ARIMA obtains better results when predicting peaks. [13] used ARIMA and
autoregressive integrated moving average with exogenous variables (ARIMAX) and
concludes that ARIMAX makes more accurate predictions than ARIMA. [14] com-
bined differential evolution and Support Vector Regression (SVR) to find the most
optimum model parameters for load forecasting. [15] combined the two and took



78 A. Upadhyay, D. Garg, M. Singh

advantage of ARIMA for predicting linear basic part of load and used SVM to
forecast the non-linear sensitive part of load.

Papers using deep learning for load forecasting generally use Long Short-Term
Memory (LSTM) or Gated Recursive Unit (GRU). [16] used an LSTM model for
short-term load forecasting and compared it with several machine learning models.
They concluded it to have better results than the other models. [17] used a bi-
directional LSTM and [18] used an A-LSTM model which is a modified LSTM model
with added attention mechanism and both obtained higher accuracy than standard
LSTM models. [19] introduced a new model (EGA-STLF) based on bidirectional
gated recursive unit model (Bi-GRU) and attention mechanism. It was found to
perform better than most other models, such as KNN and ELM, in terms of accuracy
and efficiency. [20] compared various models such as vanilla recurrent neural network
(RNNs), RNN-LSTM and RNN-GRU with seq2seq (S2S) models. They found that
S2S models with a Bahdanau attention mechanism outperforms all other models in
terms of MAPE and MAE. [21] proposed using a transformer model for short term
load forecasting and found it to have excellent performance compared to baseline
models. [5] used a novel deep RNN model which outperformed several state-of-the-
art models used for household load forecasting like ARIMA, SVR and classic RNN.
Based on this information, several baseline models for comparison with the proposed
model were chosen.

[22] used an LSTM model with pinball loss instead of Mean Square Error (MSE)
to predict the long-term and short-term dependencies within the load profiles. [23]
made a novel architecture by combining Convolutional Neural Network (CNN) and
RNN architectures to predict load. [24] compared various statistical methods such
as ARIMA and deep learning methods like Artificial Neural Networks (ANN) and
proposes a dynamic pricing scheme using the results. [25] proposed a novel fac-
tored conditional restricted Boltzmann machine (FCRBM) optimized using a genetic
wind-driven optimization algorithm (GWDO) with a modified mutual information
(MMI) technique used for feature selection. They validated the model by com-
paring it against state-of-the-art mutual information ANNs, fast converging ANNs
and LSTM models. [26] proposed using an auto-encoder only for feature extraction
and Random Forest for the actual forecasting. [27] proposed combining the Fruit
Fly Optimization algorithm (FOA) and a Generalized Regression Neural Network
(GRNN) to solve this problem.

A new deep learning model called the transformer model was first proposed by
[28] for performing NLP tasks which gave excellent results. It has since become the
standard model for most NLP tasks. Recently, modified versions of the transformer
model have been found to perform very well for time-series forecasting as shown by
[29]. The transformer model proposed by them has performed better than baseline
time-series forecasting models such as LSTM, ARIMA and S2S+Attention in terms
of Root Mean Square Error (RMSE). The transformer model provides a much higher
degree of parallelism, uses the attention mechanism and also considers the previous
and next state before making predictions similar to bi-directional models. Due to
these reasons, this paper proposes a modified version of the transformer model. To
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the best of our knowledge, this model has not been used for SG load forecasting in
the past.

1.2 Motivation

As discussed in the previous section there are many ways to handle big data and
forecast load consumption in an SG however most of them lack the efficiency and
accuracy to be implemented practically. Most papers on SG load forecasting utilize
Apache Hadoop as their big data framework, however it is unsuitable for SG big
data. In terms of forecasting models, conventional methods such as ARIMA tend to
lack accuracy in predictions. While, deep learning models although more accurate
in forecasting load consumption, require a lot of time and resources to obtain results
that are accurate enough to be implemented. The most popularly used deep learning
models are LSTM and GRU, which have sequential processing that results in long
training times and also assume that every state is only dependent on previous states.
In contrast, the transformer model provides a much higher degree of parallelism and
also introduces self-attention mechanism which assumes a particular state can be
dependent on states both before and after that state. Keeping these issues in mind,
this paper proposes a modified transformer model coupled with the Apache Spark
framework for SG load forecasting and big data analysis.

1.3 Contribution

The primary contribution of this paper is to present an approach for load fore-
casting using big data analysis in an SG that is efficient and accurate in making
predictions.

• This paper proposes a heavily modified version of the transformer model, which
was originally made for NLP tasks, that has now been altered to work for time
series tasks.

• This modified model is used alongside Apache Spark for fast computation and
accurate results.

• This model uses uni-variate time series data and it provides a much higher degree
of parallelism than other deep learning time-series forecasting models.

1.4 Organization

The rest of the paper is organized as follows. Section 2 gives the brief description
about the working of the proposed scheme. Section 3 elaborates the working of the
modified transformer model. The results and discussions are presented in Section 4.
The paper is finally concluded in Section 5.
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2 PROPOSED SCHEME

This section illustrates the working of the proposed scheme for SG load forecasting.
This paper has used smart meter energy consumption data in London Households
which contains load data collected from 5 567 London households between November
2011 and February 2014. As shown in Figure 1, this data is passed through several
data pre-processing stages. First, the data is cleaned by removing outliers and
null values. Next, data is reduced by removing the redundant details. This data
is then normalised by scaling it between 0 and 1. After the pre-processing, the
dataset is split into train and test dataset. The chosen deep learning model learns
on the train dataset observations. The trained model is then evaluated on test
dataset. The model can then be used to forecast consumption data. The data
obtained from an SG is massive and a big data framework is needed to effectively
complete the pre-processing steps. Therefore, Apache Spark has been used for data
pre-processing.

Figure 1. Flowchart of data pre-processing

Apache Spark was chosen for many reasons. Firstly, it is capable of real-time
processing which makes it preferable for SG data processing. This is because most
of the data in an SG is generated and stored in real-time. Spark can handle
real-time data very efficiently using spark streaming. Other frameworks such as
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Hadoop would require the use of a different framework such as Apache Storm to
handle real-time data. Furthermore, Apache Spark is also capable of parallel pro-
cessing, with automated load distribution to prevent load imbalance, and uses an
in-memory data engine. Both of these features make processing faster than MapRe-
duce which is used by Hadoop and most other frameworks. Spark achieves paral-
lel processing using Resilient Distributed Datasets (RDDs), as shown in Figure 2.
An RDD is a programming abstraction that represents a collection of objects that
can be split across a computing cluster. This split allows it to process multiple
instances of data in parallel. Apache Spark also includes Spark MLib, which allows
us to construct a pipeline to feed incoming data into a deep learning model. Us-
ing a similar pipeline, the pre-processed data is fed into the modified transformer
model.

Figure 2. Working of RDDs in Apache Spark

The detailed architecture of the transformer model is depicted in Figure 3. The
transformer model follows an encoder-decoder structure using stacked self-attention
and fully connected layers for both encoder and decoder. The data is input to the
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transformer model in a sequence format with 0s in place of unknown values. It first
passes through an embedding layer, which acts as a linear transformation layer. The
input sequence is then passed through the encoder. The encoder layers consists of
a series of stacked self-attention and fully connected layers. The attention layers
give us the weighted relation between values in the input sequence with respect to
each other. The input sequence is then encoded using the weights obtained. The
output of encoder is passed to the decoder. Inside the decoder layers, the inputs
will first be masked because the modified transformer model generates a completely
new sequence using only the values that appear before it in the sequence. The
decoder layers are very similar to the encoder layers with just an added component.
The decoder layer also contains an encoder-decoder attention layer which takes in
outputs from decoder self-attention layer and also encoder outputs, then finds the
weighted relations between the two. The output sequence is then encoded using
the weights obtained. The decoder output then passes through a linear layer with
sigmoid activation which converts embedding to the actual value and gives us the
new sequence containing predictions for all the unknown values. All of these layers
have been explained in detail in Section 3.
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Figure 3. Modified transformer model architecture

3 MATHEMATICAL MODELLING
OF MODIFIED TRANSFORMER MODEL

The modified transformer follows the overall architecture as shown in Figure 3 using
stacked self-attention and point-wise fully connected layers for both the encoder and
decoder. Encoder and decoder are shown in the left and right halves of Figure 3,
respectively. The main purpose of the modified transformer model is to map an
input sequence in the format (x1, x2, . . . , xts−1, xts) to a newly generated output
sequence such as (y1, y2, . . . , yts−1, yts), where ts is the timestep at which the load
is to be predicted and yts is the predicted load. In this case, the first 24 timesteps
(i1 to its−1) followed by a 0 are passed as input (i1, i2 . . . , its−1, 0). The passed 0 is
replaced by the predicted value at timestep ts in the output sequence.
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The input is first passed through a linear layer to generate embeddings. Embed-
dings are used to represent our load values in an n-dimensional space. These values
are then passed to the encoder layer. Next, the encoder output is passed to the de-
coder layer as decoder input. The encoder and decoder layers are discussed in detail
in subsection A. The decoder outputs a sequence of 25 timesteps with embeddings.
These values pass through a linear layer which converts the embedded values into
the load values. Next, the output is passed through a sigmoid activation layer which
maps it between zero and one. Final output will be in the form (z1, z2 . . . , zts−1, zts).
These values are compared to (i1, i2 . . . , its−1, its) where the first 24 timesteps are
same as input but 25th timestep is the original value which was input as 0 initially.
The objective of the transformer model is to replicate the first 24 values and predict
the 25th value in this case. The final loss is only calculated for the 25th timestep.
This model can very easily be modified to predict multiple timesteps ahead and also
to handle multivariate data. The encoder and decoder are explained in detail in the
next subsection.

3.1 Encoder and Decoder

Encoder: The encoder is composed of a stack of N identical layers. Each layer has
two components, multihead self-attention and position-wise feedforward. Both
of these are discussed in detail later. Layer normalization has been applied after
each of these components. The output of each component is given by (1)

LN(x+ f(x)), (1)

where LN is layer normalization, f(x) is the function implemented by the com-
ponent and x is the input value passed to that function. The vector is normalized
using (2).

LN(x) = γ
x− E[x]√
Var [x] + ϵ

+ β, (2)

where E[x] is the expected value of x, V ar[x] is the variance of x and γ and β
are learnable affine transform variables.

Decoder: The decoder is also composed of a stack of N identical layers. Each
layer in the decoder has three components, they are multihead self-attention,
position-wise feedforward and multihead attention on encoder-decoder output.
The primary difference between the decoder and the encoder is that the self-
attention sublayer in the decoder is modified using look ahead masking to pre-
vent a position from attending to subsequent positions. This is done to ensure
that the predictions for the position can depend only on the known outputs at
earlier positions. The decoder also has layer normalization after each component
similar to the encoder.
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3.2 Attention

3.2.1 Scaled Dot Product Attention

The Transformer model uses a unique attention mechanism called scaled dot product
attention. Queries (Q) and key (K) vectors of dimension dk and values (V ) of
dimension dv are input into the function. The dot product of a query and all keys are
computed and divided by

√
(dk). The output obtained from this is passed through

a softmax layer to obtain weights for the corresponding value as seen in (3) where
Attn is the attention function. Softmax (SM) of the vector is computed using (4).

Attn(Q,K, V ) = SM
(
QKT/

√
dk

)
V, (3)

SM(Xi) =
eXi∑
j=1 e

Xj
, (4)

where Xi is the input vector and Xj is the output vector.

3.2.2 Multihead Self-Attention

The modified transformer model applies linear transformations on the queries, keys
and values h times (h is the number of heads) to obtain vectors of dimension dk
and dv. Scaled dot product attention is then performed on the obtained transforms
to get outputs of dimension dv. The obtained vectors are concatenated and passed
through another linear transform to obtain the final values as seen in (5), where Cc
is concatenation and h1, h2, . . . , hi are the heads which are computed using (6).
The working of multihead self-attention can be seen in Figure 4.

Mh(Q,K, V ) = Cc(h1, . . . , hh)W
O, (5)

hi = Attn(QW q
i , KW k

i , V W v
i ), (6)

where the projections are parameter matrices

WQ
i ∈ Rdmodeldk ,

WK
i ∈ Rdmodeldk ,

W V
i ∈ Rdmodeldv ,

WO ∈ Rhdvdmodel .

3.3 Feedforward

Position-wise feedforward layer (FFN) is a fully connected layer present in each of the
encoder and decoder layers. It consists of 2 linear transformations with a Rectified
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Figure 4. Mechanism of multihead self-attention layer

Linear Unit (ReLU) activation after the first layer as seen in (7).

FFN(x) = max(0, xW1 + b1)W2 + b2. (7)

The linear transformations are the same across all layers but the dimensionality
differs based on the position. The input and output have a dimensionality dmodel

while the inner layers have dimensionality dff .

3.4 Sigmoid

Sigmoid (Sig) serves as the activation function in the output layer for the proposed
model.

Sig(x) =
1

1 + e−x
. (8)

Sig function results in an S shaped output curve that exists between [0, 1]. Sig of
an input vector x is computed using (8).

4 RESULTS

This section presents the results of the proposed model and compares it with the
results of seven other state-of-the-art forecasting models across four different error
metrics. This paper proposes using the Apache Spark big data framework along with
a modified version of the transformer model for SG short term load forecasting. The
dataset used for training and testing the models have been discussed in the following
subsection.
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Figure 5. Monthly energy consumption for one house

4.1 Dataset Description and Analysis

The proposed model is trained and validated on a publicly available dataset con-
taining energy consumption readings for a sample of 5 567 London households that
took part in the Low Carbon London project between November 2011 and February
2014 led by UK Power Networks [30]. The dataset contains energy consumption
readings, in kWh (per half hour), taken at half hourly intervals along with a unique
household identifier, date-time and CACI Acorn group. CACI Acorn is a segmenta-
tion tool that categorizes the houses on the basis of the socio-economic conditions
of the household. The dataset contains a total of 167 million rows of data. All
the data was pre-processed and prepared for the models using the Apache Spark
framework. Due to technical limitations, the entire dataset could not be used to
train and validate the models. The dataset was divided into smaller subsets that
were used for this purpose instead. A subset of 750 000 rows randomly selected from
data of 100 houses belonging to the affluent acorn was used as the training dataset.
For the validation dataset we took approximately 200 000 rows from the same set of
houses. The final models were tested on a separate subset containing the data for
one year from 10 houses which has 175 000 rows.

Table 1 shows a small sample of the training dataset. Figure 6 visualizes a
small subset of the training dataset for eight different houses. Monthly change in
energy consumption can be seen for one house in Figure 5. It can be concluded
from this figure that peak usage occurs in the winter months. Figure 7 shows the
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self-correlation of the sample taken in Figure 5, as seen in this figure the dataset has
a fair amount of seasonality with alternating positive and negative peaks. Figure 8
is a heat map that shows the average hourly consumption for each day of the week.
It can be seen from Figure 8 that peak usage occurs in the early hours of the day
and usage is minimum around noon.
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Figure 8. Heatmap of average hourly usage by the day

LCLid Consumption (kWh/hh (per half hour)) Acorn

MAC000072 0.417 Affluent

MAC000072 0.311 Affluent

MAC000072 0.249 Affluent

MAC000072 0.295 Affluent

MAC000072 0.259 Affluent

Table 1. Training dataset sample

4.2 Experimental Results

For this dataset, a 4-layer stacked encoder-decoder modified transformer model ar-
chitecture has been used. The transformer model has been tested against 4 baseline
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deep learning models: LSTM, GRU, CNN and CNN-LSTM and 3 baseline ma-
chine learning models: LightGBM, CatBoost, Random Forest. All these models
are trained to use 12 hours of data to predict half an hour of data. The LSTM
and GRU are both 3 layer models. CNN is 2 convolutional layers followed by
a dense layer and CNN-LSTM is a single time distributed convolutional layer fol-
lowed by a dense layer along with an LSTM layer. All the models were trained
for 20 epochs with a batch size of 64 on the training dataset. The 4-layer stacked
modified transformer model took 5 hours to train for 20 epochs on the train dataset
with 750 000 rows. All these computations were carried out on an Nvidia K80 with
2 496 CUDA cores operating at 4.1 TFLOPS with 12GB of primary memory. The
data pre-processing step took 2 hours using Apache Spark using a hyper-threaded
Intel Xeon processor with 2 cores operating at 2.3GHz with 12GB of primary
memory. As seen in Table 2, the transformer model has performed very well in
comparison to all the other baseline deep learning models in terms of most error
metrics.

Model RMSE MAE MedAE R2

Modified Transformer 0.22004029 0.10875492 0.04158187 0.61770006

LSTM 0.22186998 0.11009181 0.04684585 0.61131435

GRU 0.22208220 0.10727535 0.04077151 0.61057043

CNN-LSTM 0.22541212 0.12090687 0.05422697 0.59880441

CNN 0.23921741 0.11336003 0.04301256 0.54815757

LightGBM 0.224019 0.106347 0.036593 0.6037490

CatBoost 0.225925 0.1071185 0.0395297 0.5969781

RandomForest 0.226586 0.1140612 0.0443616 0.5946145

Table 2. Comparison of loss values obtained by all models on the test set

To evaluate the performance of the proposed method and the baseline mod-
els, RMSE, Mean Absolute Error (MAE), Median Absolute Error (MedAE) and
R-squared score metrics have been used. RMSE is square root of the average of
the square of the differences between the predicted and the actual values. MAE
is the absolute value of the difference between the predicted value and the ac-
tual value. It tells us how big of an error we can expect from the forecast on
average. MedAE works similarly to MAE and uses absolute value to calculate
the loss. So, lower values of RMSE, MAE and MedAE mean that the proposed
model performed well. R-squared score signifies the proportion of the variance
in the dependent variable that is predictable from the independent variable. So
a greater value of R-squared score means the model performed better. This paper
was unable to use percentage error metrics like MAPE because the dataset used
contains zero values and MAPE cannot be used with those due to division by zero
error.

As shown in Table 2, the modified transformer model has the best results in
terms of RMSE and R2 error. In terms of MAE and MedAE, the modified trans-
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Figure 9. Load vs time graphs of real and predicted values of all the models
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Figure 10. Evaluation metrics on different models
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former model has the fourth best performance behind GRU, LightGBM and Cat-
Boost. RMSE and R2 penalize large errors more since they are quadratic measures
as compared to MAE and MedAE which are linear measures. Therefore, on av-
erage the modified transformer model has performed better than all other deep
learning models and machine learning models as it has the best performance in
RMSE and R2 and has performed very close to the models above it in MAE and
MedAE, based on this we can infer that the transformer model makes slightly more
errors but the total amplitude of errors is much smaller. Visual representation
of the predicted values vs time and real values vs time given by all the models
can be seen in Figure 9. It can be observed from this figure that the values pre-
dicted by modified transformer, LightGBM, CatBoost, LSTM and GRU are much
closer to the real values than the values predicted by the other models. Also, the
modified transformer model seems to have the best performance when it comes to
predicting peaks. This is due to the modified transformer’s abilities of predicting
values by detecting correlations between the load values using attention mecha-
nism.

5 CONCLUSION

SG is designed to tackle issues like variable electricity consumption and electri-
cal outages to decrease the gap between energy supply and demand. In order
to achieve this, efficient big data analysis and accurate load forecasting is neces-
sary. This paper proposes using Apache Spark coupled with a modified version of
the transformer model to predict energy consumption using short term load fore-
casting. Apache Spark is much faster compared to other big data frameworks
such as Hadoop and has more features such as the Spark MLlib, which makes
it ideal for SG load forecasting. Moreover, the modified transformer model was
compared to other baseline machine learning models on a univariate time-series
dataset and it performed better than all the baseline models in terms of most eval-
uation metrics. Thus, it can be concluded that the proposed scheme, using the
modified transformer model and Apache Spark, is very accurate and efficient. Fur-
ther work needs to be done to evaluate the usability of the proposed scheme on
multivariate data using both weather and previous load information and further
modifications to the transformer model need to be tested for time-series forecast-
ing.
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