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Abstract. Vision-based underwater object detection technology is a hot topic of
current research. In order to address the issues of low accuracy and high missed rate
of marine life detection, an object detection algorithm called MDM-YOLO (Marine
Detection Model with YOLO) for marine organisms based on improved YOLOv4 is
proposed. To improve the network’s capacity for feature extraction, a multi-branch
architecture CSBM is integrated into the backbone. Based on this, the feature
fusion structure introduces shuffle attention to reinforce the focus on important in-
formation. The experimental results demonstrate that the MDM-YOLO algorithm
increases the mean average precision (mAP) by 2.31% compared to the YOLOv4
algorithm on the Underwater Robot Picking Contest (URPC) dataset. Moreover,
on the RSOD dataset and PASCAL VOC dataset, MDM-YOLO obtained an mAP
of 87.54% and 86.87%, respectively. According to these advancements, the MDM-
YOLO model is more suitable for the identification of items on the seafloor.
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1 INTRODUCTION

There is no denying the ocean’s significance and its role as a catalyst for social and
economic development [1]. For reliable sea life identification and location, under-
water robots are essential for ocean exploration [2]. Robots have been developed
in a variety of fields [3, 4, 5], but underwater robots struggle with issues including
distorted underwater images and weak computational capabilities [6]. As a result,
undersea creature detection remains a challenging task.

Traditional object detection generally starts with a sliding window algorithm
that adopts sliding windows of various widths for the initial target localization. Af-
ter that, a local binary pattern and directed gradient histogram are introduced to
extract the characteristics of candidate regions. Eventually, the collected features
were categorized using the support vector machine or adaboost algorithms. How-
ever, untargeted region selection and ineffective artificial feature extraction are the
primary difficulties that classical object detection systems face [7]. These issues
make these methods slow, inaccurate, and time-consuming, and they prevent them
from being accurate and real-time enough to identify marine life.

Due to recent developments in deep learning technology, the convolutional neural
network has significantly improved object detection algorithms. The convolutional
neural network avoids the laborious process of obtaining features by using the origi-
nal image as input and extracting features from a large number of samples through
a nonlinear model. Deep learning-based object detectors are mainly separated into
two-stage and one-stage depending on whether there are region proposals generated.
Two-stage detectors are mainly represented by the regional convolutional neural
network (RCNN) [8], Fast R-CNN [9], and Faster R-CNN [10]. They first generate
candidate object bounding boxes for the image and then carry out a secondary cor-
rection to them for the following classification and bounding-box regression tasks.
The one-stage detectors are mainly dominated by the YOLO [11] and SSD [12],
which directly process images to generate the outcomes without the region proposal
step [13, 14]. Compared with the previous type of detectors, the one-stage detec-
tors simplify the detection process and have superior detection efficiency. Due to
the high complexity of the anchor box setup, some researchers have also proposed
some anchor-free detection algorithms. One example of this tendency is Corner-
Net [15] which creates a bounding box by combining the target’s top left and lower
right corners. By directly anticipating the nine representative points, RepPoint [16]
determines the location of the closest bounding box surrounding these points.

The development of these potent detection algorithms has also contributed to
the study of marine species. The improvement of the underwater detecting sys-
tem has drawn more attention from researchers. For example, using Fast RCNN,
Li et al. [17] developed a fish species detector that outperformed RCNN in term
of accuracy and speed. The YOLOv2 model was proposed by Xia et al. [18] to
identify sea cucumbers, and it was demonstrated how significance training sam-
ples and detection model optimization are to increase accuracy. Han et al. [19]
integrated max-RGB and grayscale gradient to ameliorate image quality and up-
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graded deep convolutional neural networks to detect sea cucumbers and sea urchins.
Song et al. [20] used an MSRCR image enhancement algorithm paired with Mask
RCNN, exhibiting more than 90% mAP on a small sample underwater dataset, yet
its speed is too slow to be practical. Fan et al.[21] constructed six prediction layers to
create a new multi-scale feature to identify the new underwater dataset UWD, while
the advance was inapparent in terms of precision. Chen et al. [22] set up multiple
high-resolution and semantic-rich feature maps combined to form Sample-Weighted
hyPEr network (SWIPENet) for small underwater objects but the accuracy was not
adequate. Zeng et al. [23] designed an adversarial occlusion network (AON) and
Faster RCNN against each other to learn to correctly classify intercepted targets,
making the undersea detection model more robust. Adding some shortcut struc-
tures, Fang et al. [24] created the S-FPN by incorporating a few shortcut structures
in order to lessen the typical message loss and produce a high-precision detect-
ing impact on sea cucumbers. Liu and Wang [25] reduced the omission ratio of
small and dense marine benthos by embedding the kernel adaptive selection unit in
the backbone network of Faster RCNN, whereas it was not effective at recognizing
multi-scale objectives. Hu et al. [26] embedded dense unit in YOLOv4 and applied
high-resolution feature maps to realize the detection of underwater dense tiny parti-
cles. Zhang et al. [27] introduced AFFM attention for feature fusion in YOLOv4 to
obtain richer semantic information and increase the accuracy of underwater object
detection.

According to above analysis, there are two troubles with underwater object
detection. Because of problems such as uneven light distribution and relatively
large water waves, the quality of underwater collected datasets is generally inferior,
which may make feature extraction more difficult. Secondly, the small volume and
easy aggregation of many halobios can easily create missed detection. Based on
the above discussion, we first take advantage of image enhance algorithm to process
images. After this, some ameliorations are made in the efficient one-stage algorithm
YOLOv4 [28] for marine creature object detection. The contributions and benefits
of our method are as follows:

1. Using the Multi-Scale Retinex with Color Restoration (MSRCR) [29] algorithm
to increase the visibility and recognition of the image.

2. Designing the CSBM structure in CSPdarknet53 to heighten the backbone net-
work feature extraction capability.

3. Introducing the shuffle attention (SA) [30] mechanism to reinforce the network’s
competency to capture representations of the objects of interest.

2 RELATED METHODOLOGY AND WORK

2.1 YOLOv4 Detection Algorithms

YOLOv4 is one of the most widely used one-stage object detection algorithms.
The backbone network for feature extraction, the neck for feature fusion, and the
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detecting head for classification regression make up the majority of YOLOv4. The
backbone network CSPDarknet53 is improved from Darknet53 in YOLOv3 [31], and
Darknet53 is mainly composed of five residual network structures. The cross-stage
partial network (CSPNet) [32] concept, which divides the residual block stacking
into two halves, is adopted by YOLOv4. Half of the channels in the feature map
remain the original residual block stacking, and with minimal processing, the other
half is connected to the end directly like a residual edge. By lowering the number of
channels engaged in residual block stacking and increasing the gradient path through
chunking, the CSPNet effectively lowers the computational cost. To prevent various
layers from picking up redundant gradient information, these two components are
then aggregated. This split-and-merge structure can improve the backbone’s feature
extraction while also addressing the gradient disappearance issue brought on by
deeper deep neural networks. The CSPDarknet53 backbone structure is shown in
Figure 1.

CBM

CBM

CBMRes_unitCSP =

CBM CBMRes_unit =

conv BN MishCBM =

Figure 1. CSPDarknet53 structure

The Spatial Pyramid Pooling (SPP) [33] module and Path aggregation network
(PANet) [34] structure are located in the neck, where the SPP module is positioned
following CSPdarknet53’s deepest feature layer. It is comprised of four max-pooling
layers with pooling kernels of 1×1, 5×5, 9×9, and 13×13 in four distinct sizes. The
SPP module performs max-pooling and feature fusion by diverse pooling kernels,
which decreases information consumption, gathers local receptive field information,
and retains the most important contextual properties.

The PANet structure is an amelioration of FPN [35], which has a bottom-up,
lateral connection, and top-down network structure. FPN can construct multi-scale
feature maps with rich high-level semantic information and handle detection objects
at different scales flexibly. Nevertheless, in the process of downsampling, the higher-
level feature maps are more likely to lose information. To alleviate this problem,
PANet as in Figure 2 adds deep to shallow feature fusion paths to strengthen the
flow between multiple layers of information and improve the problem of missing
information at the shallow level of FPN.
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Figure 2. PANet structure

The YOLOv4 network input is generally of specific lengths such as 608× 608×
3, 416 × 416 × 3. Since after five downsamplings in the network, three feature
maps of different scale sizes are formed, and all of them are multiples of 32. The
processed pictures are inputted into the CSPDarknet53 backbone network for feature
extraction, generating feature maps of three sizes 52× 52, 26× 26, and 13× 13 after
SPP and PANet. The detection head maps the feature maps of these three sizes
back to the original image, divides the image into grids of the corresponding size,
and realizes the detection of small, medium and large targets separately. Compared
with the two-stage algorithms, YOLOv4 has great advantages in accuracy and speed,
while saving a lot of computational resources and training time costs.

CBM and CBL in Figures 1 and 2 are convolutional layers in the network in-
corporating batch normalization (BN) [36] and activation functions. Not using the
Leaky relu function that most network apply, YOLOv4 replaces the activation func-
tion of the backbone network with the Mish function, which has the characteristics
of low cost, smooth curve, non-monotonic, lower bound without upper bound, and
has better generalization ability and results of effective optimization capability.

2.2 Improved YOLOv4 Algorithm for Marine Organisms Detection

An effective solution to the problem of blurred and distorted underwater picture
imaging and low biological detection accuracy is to improve the feature extraction
capability of the network. Method adopted in this paper embeds CSBM module in
the CSPdarknet53 network, which can strengthen the convolution network’s ability
to extract features without deepening the network hierarchy. Furthermore, an ultra-
lightweight shuffle attention mechanism is added in PANet to enhance the focus of
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aim information, further improve the detection accuracy and reduce the missed
detection of marine organisms.

2.2.1 The Feature Extraction Backbone Network
Based on CSBM Module

In most detection network architectures, there are three main functional modules:
a backbone network for initial feature extraction, a specific network for deep feature
extraction, and a head network for detection. Of these, the backbone network is
used to extract some low-level general features such as color, shape, and texture. As
a benchmark network for many high-level tasks, its performance largely determines
part of the upper limit of that network. To reduce the loss of feature information and
optimize the detection performance, it is necessary to improve the feature extraction
ability in the backbone network. Consequently, inspired by RepVGG [37], a multi-
branch structure is designed into CSPNet to reconstitute a new module, as shown in
Figure 3, called cross-stage multiple-branching block (CSMB). This multi-branching
convolutional block contains two convolutions of different sizes, 1 × 1 and 3 × 3,
replacing the original 3 × 3 convolution in the CSPNet to fuse different learned
knowledge and retain richer spatial information.

conv1×1

conv3×3

CBMCBMCBM

CBM

Mish

GN

GN

multi-branch block

Figure 3. CSBM structure

The CSBM module can be divided into two parts in the inference stage:

1. fusing the 1 × 1 convolutional and 3 × 3 convolutional layers with the group
normalization (GN) [38] layer separately;

2. superimposing the fused convolutional layers to get a new 3 × 3 convolutional
layer.

The specific process can be described as follows:
Convolution layer: Assume the parameters of a convolution layer with C input

channels and D outputchannels. The input feature map is I ∈ RC×H×W and the
output feature map is O ∈ RC×H′×W ′

. The convolution kernel is a four-dimensional
vector F ∈ RD×C×K×K of size K ×K, and an optional bias b ∈ RD. The equation
of the convolution process can be expressed as Equation (1):

O = I ∗ F +REP (b), (1)
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where “*” denotes the convolution operation, and formulate the bias-adding as repli-
cating the bias b into REP (b) ∈ RD×H′×W ′

. The value at (h,w) on the ith output
channel is given by Equation (2):

Oi,h,w =
C∑
c=1

K∑
u=1

K∑
v=1

Fi,c,u,vX(c, h, w)u,v + bi, (2)

where X(c, h, w) ∈ RK×K is the sliding window on the cth channel of corresponding
to the position (h,w) on o. Such a correspondence is determined by the padding and
stride. From the above equation, it is easy to infer the linearity of the convolution,
which contains the homogeneity and additivity [39]. The equations can be show in
Equations (3), (4):

I ∗ (pF ) = p(I ∗ F ),∀p ∈ R, (3)

I ∗ F (1) + I ∗ F (2) = I ∗
(
F (1) + F (2)

)
. (4)

The additivity holds only if the two convolutions have the same configurations
(e.g., number of channels, kernel size, stride, padding, etc.).

Convolution-GN layer: A BN layer usually is configured after convolution for
channel normalization and linear scaling. Batch normalization, on the other hand,
has a small-batch-size issue since it normalizes the activation using mini-batch statis-
tics during training but overall statistics during inference. This might cause net-
work performance to suffer by changing the distribution of the data during testing.
To combat the buildup of BN estimate bias, a number of batch-free normaliza-
tions [38, 40, 41] are presented and proven as a solution [42]. Layer normalization
(LN) [40], which uniformizes the layer input within the neurons for each training
sample, is one such technique. Let j be the channel position, µj and σj are the cu-
mulative channel-wise mean and standard deviation, γj and βj be the learned scaling
factors and bias term, respectively, the output channel j becomes Equation (5):

Oj,:,: = ((I ∗ F )j,:,: − µj) γj/σj) + βj. (5)

GN is a further generalization of LN and is more flexible, enabling it to achieve
good performance on visual tasks limited to small-batch-size training (e.g., object
detection and segmentation). The homogeneity of the convolution allows the GN
layer to be fused into the convolution when inferred. The convolution kernel F ′ and
b′ bias of the fused channel can be represented as Equation (6):

F ′
j,:,:,; ← Fj,:,:,;γj/σjFj,:,:,;, b

′
j ← −µjγj/σj + βj. (6)

Branch Fusion: According to the additivity of convolution, convert all the con-
volutions into a 3× 3 convolution. This process can be easily implemented by first
zero-padding the 1 × 1 kernels to 3 × 3. In this way, all branch convolutions are
added to be a new 3× 3 convolution. Noted that the additivity of the convolution
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here requires the same configuration, so the stride values of both convolutions are set
to 1. The padding of the 1× 1 convolution should be one pixel less than that of the
3× 3 convolution, thus setting the padding = 0 of the former and the padding = 1
of the latter.

The network training becomes simpler and more efficient since more gradient
flow paths are generated by adding convolution branch. However, a major deficiency
of the multi-branch structure is that it is not friendly to memory and inference speed.
It may not be effective for YOLOv4 models that are sufficiently complex themselves
if an over-complicated multi-branch structure is used. That is why we do not design
more branches to improve network performance.

2.2.2 Feature Fusion Based on SA Mechanism

The feature fusion phase is a further extraction of the generic traits obtained from
the backbone network, which transforms into the features needed in the detection
task. YOLOv4 applies the PANet structure for separate detection of targets at
different scales in this stage, which allows more small objects traits to be focused
on. However, the feature maps are inclined to information loss during multiple
dimensionality reduction. Therefore, the SA mechanism is embeded into PANet to
enhance the focus of the network on the key targets and reduce the wastage of target
information.

The SA is an efficient shuffle attention mechanism, which effectively integrates
the channel attention mechanism and spatial attention mechanism. The interaction
between spatial locations dynamically depends on their respective features, enhanc-
ing the momentous trait information of the feature map in channel and space, mak-
ing the network training more capable of capturing the principal target features for
learning. The SA mechanism consists of four main components: feature grouping,
channel attention mechanism, spatial attention mechanism, and feature aggregation.
The architecture is shown in Figure 4.
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Figure 4. SANet structure
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Feature Grouping: It is mainly used to group the input feature maps. Suppose
the input feature map X ∈ RC×H×W , where C, H, W indicate the channel number,
spatial height, and width, respectively. SA is first split into groups along the channel
dimension: X = [X1, . . . , XG] , R

C/G×H×W . Each group of features is split into
two branches along the channel dimension: Xk1,Xk2 ∈ RC/2G×H×W , which generate
different importance coefficients focusing on the target class and location information
through the channel and spatial attention mechanisms, respectively.

Channel Attention: In terms of channel attention implementation, the more
classical one is the squeeze-and-excitation (SE) [43] module. However, it will bring
too many parameters, which is not conducive to the design of lightweight atten-
tion mechanisms. To be as lightweight as possible, the global information firstly is
emdedded by using global averaging pooling (GAP) to generate channel-wise statis-
tics as S ∈ RC/2G×1×1, which can be calculated by shrinking Xk1 through the spatial
dimensions H ×W . It can be shown in Equation (7):

s = Fgp (Xk1) =
H∑
i=1

W∑
j=1

Xk1(i, j)/H ×W. (7)

In addition, precise and adaptive weight changes are achieved by a simple gat-
ing mechanism with sigmoid activation functions. The final output of the channel
attention can be obtained by Equation (8):

W ′
k1 = σ(F (s)) ·Xk1 = σ (W1s+ b1) ·Xk1, (8)

where W1 ∈ RC/2G×1×1 and b1 ∈ RC/2G×1×1 are learnable parameters for scaling and
shifting s.

Spatial Attention: Unlike channel attention, spatial attention focuses on the
location information of the target. In practice, we use GN over Xk2 to get spatial-
wise statistics, and then X̂k2 representation is enhanced by F(x). The final output
of the channel attention can be got by Equation (9):

X ′
k2 = σ (W2 ·GN (Xk2) + b2) ·Xk2, (9)

whereW2 ∈ RC/2G×1×1 and b2 ∈ RC/2G×1×1 denote learnable parameters. After that,
the two branches are fused by a simple concatenation to obtain X ′

k = [X ′
k1, X

′
k2] ∈

RC/G×H×WV , making the number of channels and the number of inputs the same.
Aggregation: It tends to prevent the flow of information between channels and

weaken the expressiveness of the model with too many groups. The channel shuffle
operation is adopted to disrupt the order of groups and then connect them to achieve
the flow of information along the channel dimension across groups.

The idea behind the attention mechanism is to give the feature map weights, and
those weight values typically correspond to how important the feature information is.
The backbone network filters out the majority of useless features, however some do
still exist. Richer information can be retained more appropriately since the attention
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Figure 5. Location embedding structure of SA mechanism

mechanism suppresses the available background information while keeping it. We
conducted an experimental investigation to determine whether the SA mechanism
is more successful when incorporated before or after feature fusion, as shown in
Figure 5, due to the lightweight and “plug-and-play” nature of the SA mechanism.
Finally, the SA mechanism is put after feature fusion.

YOLOv4 YOLOv4+SA
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Figure 6. Visualization of feature maps

The visualization of the feature map after adding the SA mechanism is shown
in Figure 6, and there is a picture with more small sea urchins to be marked. Con-
sidering that the deepest layer feature map generally identifies large-sized targets,
the two layers of 26 × 26 and 52 × 52 feature maps are visualized and compared.
It is evident that there are additional targets in the 26 × 26 visualization diagram
that can be concentrated on following the enhancement. The suppression of starfish
misidentification and the enhancement of the attention on the right target are seen
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in the 52× 52 visualization plot. From this outcome, the SA mechanism is effective
in capturing vital pixels and suppressing useless target information. After CSBM
and SA strength, the improved overall structure is shown in Figure 7.
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Figure 7. MDM-YOLO structure

3 EXPERIMENTS AND RESULTS

The experimental model training and testing were implemented on a server with
a Xeon E5 CPU and NVIDIA GTX3090-24G GPU combined with CUDNN8.2.4
and CUDA11.4, using Python 3.7 and PyTorch deep learning framework.

3.1 Experimental Setup

3.1.1 Dataset

In this paper, the official dataset of the 2020 China Underwater Robotics Compe-
tition is used in our research, and all images are taken in real underwater environ-
ments. The whole dataset includes four categories of marine organisms: holothurian,
echinus, scallop, and starfish. The dataset contains 5400 images of underwater crea-
tures in jpg format. The training set and test set are divided in the ratio of 9:1,
where 1/10 of the image data in the training set is the validation set. That is, 4 860
images are used for the training set, 486 of them for the validation set, and the rest
540 images are for the test set. The following characteristics exist in this dataset:

1. Owing to the large underwater shaking and limited visibility, the captured image
is not clear enough to extract the target for processing;



Object Detection Algorithm Based on Improved YOLOv4 for Marine Organisms 221

2. There is a limited amount of data, which makes the network training prone to
overfitting;

3. The marine organisms in the data are generally small and obscured, generating
more obstacles to capturing accurate object information.

For this reason, the MSRCR algorithm, which is able to raise the brightness of
the image overall and improve the local contrast of the image, is selected to deal
with the light problem. Overall targets, like starfish and sea cucumbers, become
simpler to discern in the fuzzy zone, as seen in Figure 8.

(a) Before MSRCR (b) After MSRCRa) Before MSRCR(a) Before MSRCR (b) After MSRCRb) After MSRCR

Figure 8. The samples of URPC dataset

Futhermore, the RSOD [44, 45] dataset and the PASCAL VOC [46] dataset
are utilized to confirm the model’s effectiveness. In the following, we introduce the
RSOD and VOC datasets.

RSOD: this is an open dataset for object detection in remote sensing images,
annotated by the remote sensing image target detection team of Wuhan University.
It includes four types of targets: aircraft, playground, overpass and oil-tank. The
dataset includes 4 files, and each file represents one kind of object.

VOC: The PASCAL VOC challenge mainly has the sub-tasks of Object Classifi-
cation, Object Detection, Object Segmentation, Human Layout, and Action Classifi-
cation. The current object detection commonly used is the VOC2007 and VOC2012
datasets, which are divided into a total of 4 major categories: vehicle, household,
animal, and person, with a total of 20 subcategories. Here, the VOC2007 dataset is
selected for training.

3.1.2 Evaluation Metrics

In this experiment, four performance metrics, namely Average Precision (AP), mean
Average Precision (mAP), Missing Rate (MR), Parameters (Params), and Floating-
point Operations (FLOPs), are used to evaluate the model performance.

1. The AP evaluates the accuracy of image category detection for a single label,
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and the calculation formulas are in following Equations (10), (11), (12):

P = TP/(TP + FP ), (10)

R = TP/(TP + FN), (11)

AP =

∫ 1

0

P (R) dr, (12)

where, P is the precision rate, R is the recall rate, True Positive (TP ) indicates
the number of positive samples included in the predicted positive samples, False
Positive (FP ) indicates the number of negative samples included in the predicted
positive samples, and False Negative (FN) means the number of positive samples
included in the predicted negative samples. P (R) is the P-R curve, AP is the
area under the P-R curve.

2. The mAP metric is used for the evaluation of multi-label image classification
tasks and is an important indicator of the overall detection accuracy of the
model in multi-category target detection. The mAP can be calculated by Equa-
tion (13):

mAP =
∑n

n=1AP/n, (13)

where n denotes the number of detected dataset classes.

3. The MR is the missed detection rate, which is used to evaluate the model de-
tection performance. The calculation equation is Equation (14):

MR = FN/(FN + TP ). (14)

4. The FLOPs denote the amount of computation and are used to measure the
complexity of the algorithm model.

3.2 Experimental Results

3.2.1 Parameters Settings

Several experiments are done to tune the parameters to select more suitable ones for
model training. Overfitting is easy due to the small amount of data in our dataset.
We introduce the mosaic algorithm to perform the data enhancement operation
and add the regularized weight decay (wd) to the optimizer to relieve the model
overfitting problem. Figure 9 presents that with the addition of data enhancement
and weight decay, the validation set loss is subsequently reduced in the late training
period as show in Figure 9 a). Since our model may not converge if the learning
rate changes too much, which will result in failure to train properly, the learning
rate is fine-tuned as shown in Figure 9 b). Although the change is not evident, it is
still seen that the accuracy change is more stable and higher when lr = 0.001 and
wd = 0.0005.
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Figure 9. Parameter comparison experiment

3.2.2 Results

Additionally, the MDM-YOLO algorithm in this work, the basic YOLOv4, the two-
stage detector Faster R-CNN, the widely used one-stage detector SSD, the YOLOv3
and YOLOv5 are all tested on the URPC dataset. As shown in Table 1, our method
surpasses the other five state-of-the-art methods. It can be seen that MDM-YOLO
has increased AP over YOLOv4 in all categories, whereas Faster RCNN and SSD
both have slightly lower accuracy.

Ablation experiments are adopted to demonstrate the effectiveness of various
methods. There are three groups of experiments in Table 2, group 01 without any
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Model
AP (%)

mAP (%)
Starfish Holothurian Echinus Scallop

Faster RCNN 77.72 60.37 78.53 48.00 66.16
SSD 72.65 59.59 74.37 46.62 63.31
YOLOv3 80.97 58.48 85.65 68.87 73.49
YOLOv4 80.52 64.41 86.72 70.87 75.63
YOLOv5 80.30 67.04 86.72 76.22 77.57
MDM-YOLO 82.22 70.34 87.90 71.30 77.94

Table 1. Experimental comparison of different algorithm models

treatment, group 02 introducing CSBM structure, and group 03 embedding SA
mechanism in PANet based on group 02 to be the MDM-YOLO model. Where “+”
expresses that the method is used. After adding the CSBM module, the mAP is
improved by 1.29% compared with the original one, and after superimposing the
SA mechanism, the mAP is improved by another 1.02%. Ultimately, the total mAP
is improved by 2.31% compared with YOLOv4. Additionally, it is clear that they
only contribute a relatively tiny number of additional parameters and calculations.
Figure 10 show the visualization results under different methods. Although the
influence on the heat map is not immediately apparent, it can still be used to
recognize the benefits of the upgraded network. The detection rate of each category
except starfish in Figure 11 has decreased. From these comparisons, it is observed
that MDM-YOLO presents better results both in terms of accuracy and in terms of
miss detection rate.

CSBM SA mAP (%) Params (M) FLOPs (G)

01 75.63 69.13 29.98
02 + 76.92 71.24 30.98
03 + + 77.94 71.24 30.98

Table 2. Comparison of ablation experiments

(a) Original image (b) YOLOv4 (c) MDM-YOLO
a) Original image

(a) Original image (b) YOLOv4 (c) MDM-YOLO
b) YOLOv4

(a) Original image (b) YOLOv4 (c) MDM-YOLO
c) MDM-YOLO

Figure 10. The visualization of different methods

Convolutional branches can be added to the network to improve performance,
but doing so it will result in an increase in complexity that must be taken into
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Figure 11. The precision and Missed Rate of different methods

account. We must decide whether it is worthwhile to forego some computational
efficiency in order to achieve better detection results. Additionally, it needs to be
confirmed that GN actually produces beneficial consequences. As shown in Table 2,
experiment 01’s outcomes were average despite using identity, 1 × 1, and 3 × 3
as multi-branch structures to train the model. Experiment 02 does away with the
identification branch, which results in considerably better performance and less com-
plexity – a worthwhile trade-off for enhancing network performance. In Experiment
03, we introduced GN blocking distribution bias and mAP improved by 0.46%,
which is an optimization worth trying without adding any burden.

CSBM
Starfish Holothurian Echinus Scallop

mAP (%)
AP (%) MR (%) AP (%) MR (%) AP (%) MR (%) AP (%) MR (%)

01 81.35 34.23 63.24 55.52 87.09 24.45 69.58 57.51 75.31
02 80.63 35.12 64.77 46.23 87.37 22.50 73.01 46.35 76.46
03 82.52 23.19 64.58 46.75 86.42 21.44 74.18 37.05 76.92

Table 3. CSBM comparison experiment

In order to select the correct SA mechanism placement, two sets of experiments
are conducted, and this experiment is performed on the original YOLOv4 algorithm.
To reduce the computation, the SA mechanism is set to 64, i.e., the feature map is
divided into 64 groups before attention weighting. Experiment 01 SA mechanism is
placed before feature fusion, and Experiment 02 is placed after feature fusion. As
shown in Table 4, Experiment 01 puts the SA mechanism before feature fusion and it
does not improve the performance, and the AP value of each category is the lowest,
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and the mAP decreases by 0.48% in comparison with YOLOv4. Experiment 02 puts
the SA mechanism after feature fusion with better results, and the mAP improves
by 1.05%.

SA
Starfish Holothurian Echinus Scallop

mAP
AP (%) MR (%) AP (%) MR (%) AP (%) MR (%) AP (%) MR (%)

01 79.74 34.67 62.60 51.49 86.39 21.42 71.86 48.93 75.15
02 83.01 24.26 62.81 56.57 87.40 21.38 73.32 43.86 76. 63

Table 4. SA mechanism comparison experiment

Figure 12 shows the effect of our experiments presented in the picture specifically,
where the increased detected objects are circled using yellow circles. After MSRCR
enhancement, more sea urchins and starfishes are detected, which reduces the target
miss detection to some extent. Adding CSBM, more scallop and starfishe are able
to be recognized. Finally, adding the SA mechanism, MDM-YOLO can recognize
four more scallops. This fully illustrates that image enhancement is very necessary,
and MDM-YOLO performs better than YOLOv4 in the leakage detection problem.

4 DISCUSSION

Today, target detection is used in everything from self-driving cars and identity de-
tection to security and medical applications, and the marine sector is no exception.
Underwater image processing has shown great potential for exploring underwater en-
vironments, such as automated underwater vehicles (AUVs)-driven applications [27],
novel low-cost integrated system prototype for recognizing lifeforms underwater [44],
and video-based or image-based underwater object detection. However, the com-
plexity of the marine environment, the attenuation of artificial light sources, and
the impact of low-end optical imaging equipment have all led to degradation of
imaging distortion, making underwater image targets more difficult to detect. The
urgent need to protect marine species and exploit marine resources continue to
drive the development of underwater detection methods. Continuously optimiz-
ing the performance of these algorithms is a top priority to achieve more effective
detection results. The main contribution of this paper is to propose a YOLOv4-
based marine organisms target detection algorithm for improving the detection
accuracy and reducing the missed detection of marine life in underwater blurred
images.

Convolution is an operation to obtain local information, and different convolu-
tion kernel sizes are able to capture different ranges of information. The backbone
network preserves richer multi-scale semantic information through the superposition
of multi-branch convolution, which actively participates in capturing small-scale ma-
rine biological aspects. For detection, the target to be recognized is the foreground
and everything else is the background, and most of the background information
is considered as picture noise. The SA module, which combines channel attention
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(a-1) YOLOv4+Original image (a-2) YOLOv4+MSRCR

(b-1) YOLOv4 (b-2) YOLOv4+CSBM

(c-1) YOLOv4 (c-2) MDM-YOLO

Figure 12. Comparison of detection results in different algorithms

with spatial attention to boost the network’s ability to collect important pixels and
channels, helps the network become more focused on the region of interest infor-
mation. This operation is helpful to drive further accuracy improvement of the
network.

To demonstrate the broad validity of the MDM-YOLO model, we also conduct
experimental training on both the RSOD dataset, which has many small-sized tar-
gets, and the PASCAL VOC dataset, which has more large-sized targets.

As in Table 5, we use Params, FLOPs and the mAP value as performance
evaluation metrics. It can be seen that our model improves the marine organism
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detection accuracy without increasing too much complexity and does not affect
the high efficiency of YOLOv4 algorithm detection. The Faster RCNN, a two-
stage detector, has a not bad mAP but immense calculating costs, and both SSD
and YOLOv3 accuracy and speed are slightly inferior. In addition, MDM-YOLO
achieves better performance in both small target dataset RSOD and large target
dataset VOC.

Model Backbone Params(M) FLOPs(G)
RSOD VOC
mAP (%) mAP (%)

Faster RCNN Resnet50 28.47 470.17 86.1 80.36
SSD VGG 26.15 31.39 73.4 78.55
YOLOv3 Darknet53 61.63 32.83 76.8 81.97
YOLOv4 CSPDaknet53 69.13 29.98 85.9 85.25
MDM-YOLO CSPDaknet53 71.24 30.98 87.54 86.87

Table 5. Experimental comparison of different datasets

5 CONCLUSION

In this study, an object detection algorithm based on improved YOLOv4 for marine
organisms is proposed. The CSBM module is introduced to enhance the feature
extraction capability of backbone network and the SA mechanism is embedded to
enrich the semantic information of the network so as to improve the detection accu-
racy of marine organisms. In practice, five performance metrics: Average Precision
(AP), mean Average Precision (mAP), Missing Rate (MR), Parameters (Params),
and Floating-point Operations (FLOPs) are adopted to evaluate the performance
of the improved detection algorithm architecture. The model was able to achieve a
77.94% mAP on the URPC 2020 dataset. Furthermore, 86.87% and 87.54% mAPs
were obtained in the public dataset PASCAL VOC and the remote sensing dataset
RSOD, respectively. Compared with other detection algorithms, the experimental
results indicate that the MDM-YOLO algorithm is more suitable for underwater
object detection and is valuable for the study of marine species richness. MDM-
YOLO continues to use the strategy of expanding network complexity in order to
increase detection accuracy, and we’ll keep working to do so in the future. It is
worth mentioning that although our research is mainly aimed at the marine field,
it can be extended to more fields after corresponding optimization, and has great
prospects for development.

Acknowledgements

This project is partially supported by the program of The Institute of Oceanology,
Chinese Academy of Sciences “Deep sea biological in situ intelligent recognition
system and quantitative analysis system development project” (KEXUE2019GZ04).



Object Detection Algorithm Based on Improved YOLOv4 for Marine Organisms 229

REFERENCES

[1] Raphael, A.—Dubinsky, Z.—Iluz, D.—Netanyahu, N. S.: Neural Network
Recognition of Marine Benthos and Corals. Diversity, Vol. 12, 2020, No. 1, Art. No. 29,
doi: 10.3390/d12010029.

[2] Huang, H.—Tang, Q.—Li, J.—Zhang, W.—Bao, X.—Zhu, H.—Wang, G.:
A Review on Underwater Autonomous Environmental Perception and Target Grasp,
the Challenge of Robotic Organism Capture. Ocean Engineering, Vol. 195, 2020,
Art. No. 106644, doi: 10.1016/j.oceaneng.2019.106644.

[3] Li, C.—Fahmy, A.—Li, S.—Sienz, J.: An Enhanced Robot Massage System in
Smart Homes Using Force Sensing and a Dynamic Movement Primitive. Frontiers in
Neurorobotics, Vol. 14, 2020, Art. No. 30, doi: 10.3389/fnbot.2020.00030.

[4] Li, C.—Zhu, S.—Sun, Z.—Rogers, J.: BAS Optimized ELM for KUKA iiwa
Robot Learning. IEEE Transactions on Circuits and Systems II: Express Briefs,
Vol. 68, 2020, No. 6, pp. 1987–1991, doi: 10.1109/TCSII.2020.3034771.

[5] Li, C.—Fahmy, A.—Sienz, J.: Development of a Neural Network-Based Control
System for the DLR-HIT II Robot Hand Using Leap Motion. IEEE Access, Vol. 7,
2019, pp. 136914–136923, doi: 10.1109/ACCESS.2019.2942648.

[6] Yeh, C.H.—Lin, C.H.—Kang, L.W.—Huang, C.H.—Lin, M.H.—
Chang, C.Y.—Wang, C.C.: Lightweight Deep Neural Network for Joint
Learning of Underwater Object Detection and Color Conversion. IEEE Transactions
on Neural Networks and Learning Systems, Vol. 33, 2022, No. 11, pp. 6129–6143,
doi: 10.1109/TNNLS.2021.3072414.

[7] Zhao, Z.Q.—Zheng, P.—Xu, S. t.—Wu, X.: Object Detection with Deep Learn-
ing: A Review. IEEE Transactions on Neural Networks and Learning Systems,
Vol. 30, 2019, No. 11, pp. 3212–3232, doi: 10.1109/TNNLS.2018.2876865.

[8] Girshick, R.—Donahue, J.—Darrell, T.—Malik, J.: Rich Feature Hierar-
chies for Accurate Object Detection and Semantic Segmentation. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 580–587, doi: 10.1109/cvpr.2014.81.

[9] Girshick, R.: Fast R-CNN. 2015 IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.

[10] Ren, S.—He, K.—Girshick, R.—Sun, J.: Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 39, 2017, No. 6, pp. 1137–1149, doi:
10.1109/TPAMI.2016.2577031.

[11] Redmon, J.—Divvala, S.—Girshick, R.—Farhadi, A.: You Only Look Once:
Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 779–788, doi: 10.1109/CVPR.2016.91.

[12] Liu, W.—Anguelov, D.—Erhan, D.—Szegedy, C.—Reed, S.—Fu, C.Y.—
Berg, A.C.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (Eds.): Computer Vision – ECCV 2016. Springer, Cham, Lecture Notes
in Computer Science, Vol. 9905, 2016, pp. 21–37, doi: 10.1007/978-3-319-46448-0 2.

https://doi.org/10.3390/d12010029
https://doi.org/10.1016/j.oceaneng.2019.106644
https://doi.org/10.3389/fnbot.2020.00030
https://doi.org/10.1109/TCSII.2020.3034771
https://doi.org/10.1109/ACCESS.2019.2942648
https://doi.org/10.1109/TNNLS.2021.3072414
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/cvpr.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/978-3-319-46448-0_2


230 S. Li, Y. Liu, S. Wu, S. J. Zhang

[13] Jiao, L.—Zhang, F.—Liu, F.—Yang, S.—Li, L.—Feng, Z.—Qu, R.: A Sur-
vey of Deep Learning-Based Object Detection. IEEE Access, Vol. 7, 2019,
pp. 128837–128868, doi: 10.1109/ACCESS.2019.2939201.

[14] Kang, J.—Tariq, S.—Oh, H.—Woo, S. S.: A Survey of Deep Learning-Based
Object Detection Methods and Datasets for Overhead Imagery. IEEE Access, Vol. 10,
2022, pp. 20118–20134, doi: 10.1109/ACCESS.2022.3149052.

[15] Law, H.—Deng, J.: CornerNet: Detecting Objects as Paired Keypoints. Inter-
national Journal of Computer Vision, Vol. 128, 2020, No. 3, pp. 642–656, doi:
10.1007/s11263-019-01204-1.

[16] Yang, Z.—Liu, S.—Hu, H.—Wang, L.—Lin, S.: RepPoints: Point Set Represen-
tation for Object Detection. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 9657–9666, doi: 10.1109/ICCV.2019.00975.

[17] Li, X.—Shang, M.—Qin, H.—Chen, L.: Fast Accurate Fish Detection and Recog-
nition of Underwater Images with Fast R-CNN. OCEANS 2015 – MTS/IEEE Wash-
ington, IEEE, 2015, pp. 1–5, doi: 10.23919/OCEANS.2015.7404464.

[18] Xia, C.—Fu, L.—Liu, H.—Chen, L.: In Situ Sea Cucumber Detection Based on
Deep Learning Approach. 2018 OCEANS – MTS/IEEE Kobe Techno-Oceans (OTO),
IEEE, 2018, pp. 1–4, doi: 10.1109/OCEANSKOBE.2018.8559317.

[19] Han, F.—Yao, J.—Zhu, H.—Wang, C.: Underwater Image Processing and Ob-
ject Detection Based on Deep CNN Method. Journal of Sensors, Vol. 2020, 2020,
Art. No. 6707328, doi: 10.1155/2020/6707328.

[20] Song, S.—Zhu, J.—Li, X.—Huang, Q.: Integrate MSRCR and Mask R-CNN to
Recognize Underwater Creatures on Small Sample Datasets. IEEE Access, Vol. 8,
2020, pp. 172848–172858, doi: 10.1109/ACCESS.2020.3025617.

[21] Fan, B.—Chen, W.—Cong, Y.—Tian, J.: Dual Refinement Underwater Ob-
ject Detection Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.):
Computer Vision – ECCV 2020. Springer, Cham, Lecture Notes in Computer Science,
Vol. 1236, 2020, pp. 275–291, doi: 10.1007/978-3-030-58565-5 17.

[22] Chen, L.—Liu, Z.—Tong, L.—Jiang, Z.—Wang, S.—Dong, J.—Zhou, H.:
Underwater Object Detection Using Invert Multi-Class Adaboost with Deep Learn-
ing. 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020,
pp. 1–8, doi: 10.1109/IJCNN48605.2020.9207506.

[23] Zeng, L.—Sun, B.—Zhu, D.: Underwater Target Detection Based on Faster R-
CNN and Adversarial Occlusion Network. Engineering Applications of Artificial In-
telligence, Vol. 100, 2021, Art. No. 104190, doi: 10.1016/j.engappai.2021.104190.

[24] Peng, F.—Miao, Z.—Li, F.—Li, Z.: S-FPN: A Shortcut Feature Pyramid Net-
work for Sea Cucumber Detection in Underwater Images. Expert Systems with Ap-
plications, Vol. 182, 2021, Art. No. 115306, doi: 10.1016/j.eswa.2021.115306.

[25] Liu, Y.—Wang, S.: A Quantitative Detection Algorithm Based on Improved Faster
R-CNN for Marine Benthos. Ecological Informatics, Vol. 61, 2021, Art. No. 101228,
doi: 10.1016/j.ecoinf.2021.101228.

[26] Hu, X.—Liu, Y.—Zhao, Z.—Liu, J.—Yang, X.—Sun, C.—Chen, S.—
Li, B.—Zhou, C.: Real-Time Detection of Uneaten Feed Pellets in Under-
water Images for Aquaculture Using an Improved YOLO-V4 Network. Com-

https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/ACCESS.2022.3149052
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1109/ICCV.2019.00975
https://doi.org/10.23919/OCEANS.2015.7404464
https://doi.org/10.1109/OCEANSKOBE.2018.8559317
https://doi.org/10.1155/2020/6707328
https://doi.org/10.1109/ACCESS.2020.3025617
https://doi.org/10.1007/978-3-030-58565-5_17
https://doi.org/10.1109/IJCNN48605.2020.9207506
https://doi.org/10.1016/j.engappai.2021.104190
https://doi.org/10.1016/j.eswa.2021.115306
https://doi.org/10.1016/j.ecoinf.2021.101228


Object Detection Algorithm Based on Improved YOLOv4 for Marine Organisms 231

puters and Electronics in Agriculture, Vol. 185, 2021, Art. No. 106135, doi:
10.1016/j.compag.2021.106135.

[27] Zhang, M.—Xu, S.—Song, W.—He, Q.—Wei, Q.: Lightweight Underwater
Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion.
Remote Sensing, Vol. 13, 2021, No. 22, Art. No. 4706, doi: 10.3390/rs13224706.

[28] Bochkovskiy, A.—Wang, C.Y.—Liao, H.Y.M.: YOLOv4: Optimal Speed and
Accuracy of Object Detection. 2020, doi: 10.48550/arXiv.2004.10934.

[29] Rahman, Z.—Jobson, D. J.—Woodell, G.A.: Multi-Scale Retinex for Color
Image Enhancement. Proceedings of 3rd IEEE International Conference on Image
Processing, Vol. 3, 1996, pp. 1003–1006, doi: 10.1109/ICIP.1996.560995.

[30] Zhang, Q. L.—Yang, Y.B.: SA-Net: Shuffle Attention for Deep Convo-
lutional Neural Networks. ICASSP 2021 – 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2021, pp. 2235–2239, doi:
10.1109/ICASSP39728.2021.9414568.

[31] Redmon, J.—Farhadi, A.: YOLOv3: An Incremental Improvement. 2018, doi:
10.48550/arXiv.1804.02767.

[32] Wang, C.Y.—Liao, H.Y.M.—Wu, Y.H.—Chen, P.Y.—Hsieh, J.W.—
Yeh, I. H.: CSPNet: A New Backbone That Can Enhance Learning Capability
of CNN. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2020, pp. 1571–1580, doi: 10.1109/CVPRW50498.2020.00203.

[33] He, K.—Zhang, X.—Ren, S.—Sun, J.: Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 37, 2015, No. 9, pp. 1904–1916, doi:
10.1109/TPAMI.2015.2389824.

[34] Liu, S.—Qi, L.—Qin, H.—Shi, J.—Jia, J.: Path Aggregation Network for In-
stance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 8759–8768, doi: 10.1109/CVPR.2018.00913.

[35] Lin, T.Y.—Dollar, P.—Girshick, R.—He, K.—Hariharan, B.—
Belongie, S.: Feature Pyramid Networks for Object Detection. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944,
doi: 10.1109/CVPR.2017.106.

[36] Ioffe, S.—Szegedy, C.: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: Bach, F., Blei, D. (Eds.): Proceedings
of the 32nd International Conference on Machine Learning. PMLR, Proceedings of
Machine Learning Research, Vol. 37, 2015, pp. 448–456.

[37] Ding, X.—Zhang, X.—Ma, N.—Han, J.—Ding, G.—Sun, J.: RepVGG:
Making VGG-Style ConvNets Great Again. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021, pp. 13728–13737, doi:
10.1109/CVPR46437.2021.01352.

[38] Wu, Y.—He, K.: Group Normalization. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (Eds.): Computer Vision – ECCV 2018. Springer, Cham, Lecture
Notes in Computer Science, Vol. 11217, 2018, pp. 3–19, doi: 10.1007/978-3-030-01261-
8 1.

[39] Ding, X.—Zhang, X.—Han, J.—Ding, G.: Diverse Branch Block: Build-

https://doi.org/10.1016/j.compag.2021.106135
https://doi.org/10.3390/rs13224706
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1109/ICIP.1996.560995
https://doi.org/10.1109/ICASSP39728.2021.9414568
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR46437.2021.01352
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1


232 S. Li, Y. Liu, S. Wu, S. J. Zhang

ing a Convolution as an Inception-Like Unit. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 10881–10890, doi:
10.1109/CVPR46437.2021.01074.

[40] Ba, J. L.—Kiros, J. R.—Hinton, G. E.: Layer Normalization. 2016, doi:
10.48550/arXiv.1607.06450.

[41] Li, B.—Wu, F.—Weinberger, K.Q.—Belongie, S.: Positional Normalization.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R.
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