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Abstract. With the rapid increase of Internet of Things (IoT) devices and ap-
plications, the ordinary cloud computing paradigm soon becomes outdated. Fog
computing paradigm extends services provided by a cloud to the edge of network
in order to satisfy requirements of IoT applications such as low latency, locality
awareness, low network traffic, mobility support, and so forth. Task scheduling in
a Cloud-Fog environment plays a great role to assure diverse computational de-
mands are met. However, the quest for an optimal solution for task scheduling
in the such environment is exceedingly hard due to diversity of IoT applications,
heterogeneity of computational resources, and multiple criteria. This study ap-
proaches the task scheduling problem with aims at improving service quality and
load balancing in a merged computing system of Edge-Fog-Cloud. We propose
a Multi-Objective Scheduling Algorithm (MOSA) that takes into account the job
characteristics and utilization of different computational resources. The proposed
solution is evaluated in comparison to other existing policies named LB, WRR, and
MPSO. Numerical results show that the proposed algorithm improves the average
response time while maintaining load balancing in comparison to three existing
policies. Obtained results with the use of real workloads validate the outcomes.
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1 INTRODUCTION

With the rapid increase of Internet of Things (IoT) and its applications, the ordinary
cloud computing paradigm faces a challenge to satisfy applications that require
frequent data access, low latency, real-time interaction, high-speed communication,
and so forth. Edge computing was introduced to support task computation on
source devices of generated data. Generally, computational capacity is limited on
edge nodes. Fog computing appears as an effective complement of Cloud center to
cope with those issues by extending cloud services to the edge network [1, 2, 3, 4,
5].

Task scheduling in such distributed environment plays a great role to assure
that diverse computational demands are met. However, the quest for an efficient
and effective solution in merged computing environments is exceedingly hard due to
diversity of IoT applications, heterogeneity of computational resources, and multiple
criteria [3, 6, 7, 8]. In the literature, task scheduling has been studied with various
desired factors of effective processing [9, 10, 11, 12], load balancing [13, 14] and/or
power efficiency [15, 16, 17].

Energy cost contributes a significant factor to overall operation cost of large-scale
computational systems. The use of dynamic power management (DPM) techniques
has been crucial to achieve energy efficiency as addressed in [15, 16, 18] and references
therein. Switching off technique (that is, switching idle servers off and only turning
them back on when they are needed) has been addressed as an effective method
of power/energy consumption management of Cloud systems [13, 15, 16, 17, 19,
20].The application of switching off technique in a merged, heterogeneous computing
environment of Edge, Fog, Cloud has been studied in [13]. Authors proposed the use
of load thresholds of computing resources in a subsystem to determine the number
of active servers in the subsystem.

Due to the diversity of applications and the resource heterogeneity, we argue
that characteristics of both user jobs and resources play a role in the system cost
and performance. Therefore, scheduling policy should take into account job char-
acteristics and resource capacity in order to improve the performance. In addition,
we follow the resource utilization based approach given in [13] for load balance and
energy efficiency. The contributions of this work are highlighted in what follows.

• This study argues that job service demand and resource processing capacity play
a role for efficient computation;

• Load threshold based policy helps to avoid load stress at power-sensitive ma-
chines;

• Numerical results (both theoretical and traced workloads) address that our pro-
posed algorithm improves both performance and load balance of a Cloud-Fog
computing system, in comparison with three other existing algorithms named
Weighted Round Robin, Load-Balance, and Modified Particle Swarm Optimiza-
tion (MPSO) based heuristic.
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• The energy cost of Cloud center is reduced with Load-Balance and our proposed
algorithm at low load, while our proposal yields lower energy cost of Raspberry
Pi cluster than Load-Balance does.

The paper is organized as follows. Section 2 gives a review on the literature works.
Section 3 describes the system model and the proposed scheduling solution. Section 4
presents obtained numerical results and discussions. Finally, Section 5 concludes the
paper.

2 RELATED WORK

This section is a brief review on the related works of task scheduling in Cloud-Fog
computing environments. In [9], authors proposed a batch-mode task scheduling
algorithm based on the relationship between a fog node set and a task set. Com-
pared with existing batch-mode scheduling algorithms (MCT, MET, MIN-MIN), the
proposal yields a shorter total completion time of tasks. Rafique et al. [15] focused
on balancing task execution time and energy consumption at Fog layer computing
resources; the proposed NBIHA algorithm resulted in resource utilization, average
response time, and energy consumption but an increase in task execution time.
A time-cost based scheduling algorithm was introduced in [11], wherein authors ap-
plied a set of modifications of Genetic Algorithm in their proposal. They showed
that the time-cost based algorithm achieves a better trade-off between time and cost
execution.

Xiang et al. [21] proposed a solution for mode selection and resource allocation
with the aim to maximize the energy efficiency of the fog-RAN system. The proposed
algorithm that is based on particle swarm optimization leads to energy savings –
delay trade-off. Oueis et al. [22] introduced three variants of the algorithm that
clusters small cells into computational clusters to process the users’ requests, they
and indicated that the power-centric solution results in a low energy consumption
per user. In [23], a workload allocation policy was proposed to solve the trade-off
problem between job execution delay and energy consumption.

Agarwal et al. [24] proposed an algorithm that allows efficiently distributing
the workload over the fog and the cloud domains according to the available re-
sources. Simulation results showed that the proposed algorithm is more efficient
when compared to other existing strategies. Huedo et al. [25] focused on process-
ing latency-critical application in Edge Cloud computing and proposed a platform
model of Edge computing. Workload redistribution in the fog stratum was stud-
ied in [14]. The proposed framework focused on balancing between communication
load and computation latency, taking into account the task redundancy and mobil-
ity.

In [26], authors considered a hierarchical architecture of cloud and fog and pro-
posed a task scheduling policy, wherein real-time tasks are to be processed in the
fog layer, while computational-intensive tasks are to be executed by cloud servers.
Their study covered both time and fog energy consumption. However, the results
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showed only the fitness value of the proposed algorithm, which does not represent
comprehensively the system performance.

In scalable computing systems, load balancing refers to efficient use of com-
putational resources for task execution. D. Tychalas et al. [13] proposed a load
balancing solution wherein all available computing resources have been utilized.
Authors showed that their proposed scheduling algorithm can improve the resource
utilization and reduce energy costs at the cloud center in low load in comparison
to a weighted round robin policy. Recently, artificial intelligence (AI) has attracted
a great attention in the research of the task scheduling and resource management
problem as shown in [27, 28, 29].

In this study, we partly take the load based scheduling approach in [13] to
achieve load balance. Moreover, we also investigate the impact of job characteristics
in terms of job service demand and task size model on the system performance.

3 SYSTEM MODELING AND PROPOSAL

3.1 Cloud Fog Computing Overview

Stand-alone cloud centers have become outdated for extremely heterogeneous IoT
applications, of which a portion requires high-speed communication and quick re-
sponse time. Edge computing paradigm represents the use of IoT devices for data
storage and computation to avoid data transfer and retrieve near real-time process-
ing. Normally edge devices have limited storage and computation capacity. Fog
computing was born to enhance cloud services nearby IoT devices. Fog computing
is not a replacement but a complement of cloud by extending cloud services to the
edge of the network. To give a comprehensive look on the hierarchical, distributed
environment of Cloud-Fog, we can consider a multi-tiered Cloud-Fog architecture
(shown in Figure 1), including the following layers:

Edge layer: In the edge, end-user smart devices connect to the (IoT) gateways
which provide various services of computation, local storage, data routing, se-
curity, and so forth.

Fog layer: Lying in the middle of the architecture, Fog layer represents a bridge
between user devices in edge networks and cloud center. In fog layer, data and
resource management are decided by the fog broker. Due to the increase of
IoT applications and data, a solution of locating a small-scale version of cloud
data centers geographically nearby users (so-called Cloudlet) becomes feasible
to improve job response.

Cloud layer: The cloud represents the most available storage and computing ca-
pacity to provide big data storage, real-time and batch processing for generated
data from IoT devices.
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Figure 1. The Cloud-Fog architecture model

3.2 System Modeling

In the big picture of an IoT-enable Cloud computing environment, any device com-
posed of processing capacity and storage in the network can be referred as a fog
node. Therefore, there is a wide range of fog node types from end-user smart de-
vices, low-performance gateways, powerful cloudlet servers, to virtual or physical
machines at cloud center.

The considered computing system makes use of all available computational re-
sources from four subsystems:

1. end-user smart devices,

2. low-performance network gateways using Raspberry Pi devices,

3. powerful cloudlet servers, and

4. VM pool at cloud center (as shown in Figure 2).

Let M(i) (i = 1, 2, 3, 4) be the number of nodes in subsystem i. We assume that
nodes of subsystem i (i = 1, 2, 3, 4) are homogeneous and have a service rate µi.
Load Dispatcher is responsible to distribute incoming workloads to computational
resources.
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Figure 2. The considered Cloud-Fog computing system model

We consider Bag-of-Tasks (BoT) application model as the input workload.
A BoT job consists of a set of independent tasks (i.e., tasks do not require commu-
nication with each other during their execution and can be executed in an arbitrary
order) [30, 31]. This application model represents a such wide range of practices as
data mining, heavily searches, computer imaging sweeping parameters, bioinformat-
ics, and fractal calculations which occur in cloud computing environments. Thanks
to their simplicity, BoT applications are appropriate to run over widely distributed,
large-scale computing systems. As a result, efficient scheduling for the BoT appli-
cations has received a great attention of researchers [31, 13, 32, 33, 34]. We assume
that incoming jobs have the following characteristics:

• a job task can be executed on any fog node;

• a job task is non-preemptible (i.e., task is uninterruptible while being processed);

• jobs are compute-intensive and have service time demand known by the sched-
uler;

• jobs are independent of each other.



A Scheduling Algorithm for IoT Applications 317

3.3 Scheduling Problem and the Proposal of MOSA

Task scheduling problem in a single-machine system or homogeneous computing
cluster simply refers to dispatching tasks in an appropriate order of execution. On
the other hand, scheduling problem in a heterogeneous system composed of various
computing machine types pays more attention to resource allocation for jobs/tasks.
Task allocation refers to the selection of a computing machine to which a task
is routed. Allocating an appropriate resource has a major impact on both user’s
satisfaction of services and operation cost paid by a service provider.

This study focuses on the resource allocation policy. If not stated otherwise,
we assume that jobs arriving the system are to be served with First Come – First
Served (FCFS) policy. Each task of a job is routed to node based on a resource
allocation policy applied by the scheduler. A job task in the system will be served
immediately if there is an available computing node. If all nodes are busy, a task
will be routed to a node with the shortest queue and wait in the selected node’s
queue.

In [13], authors proposed a Load-Balance allocation policy that uses subsystem
loads as thresholds for deciding resource selection. Their goal was to reduce the
operation cost of cloud and Raspberry Pi cluster by keeping a low number of active
servers in those subsystems so that idle servers can be switched off. Their proposal
was compared with the best-effort Round-Robin policy. It is worth to note that
switching off technique is inefficient to be applied when Round-Robin policy is used.
The reason is Round-Robin selects computing servers with roughly equal probability,
which causes the idle period of a server not significantly long enough to power it off.

In this study, we take the same approach of Load-Balance given in [13] to bal-
ance loads of all subsystems (cloud center, cloudlet, poor-resource devices, and edge
devices). To enhance switching off technique for a system, the resource allocation
policy attempts to reduce the number of servers needed for task processing (i.e.,
the more free servers are available and can be switched off, the lower the energy
consumption of the system). Since switching on a sleeping server takes time, it may
add more cost of execution delay and energy consumption (if the sleep period is
shorter than switching on delay). To avoid the added cost, we only switch off free
servers when the subsystem load meets the minimum threshold (θ3) and switch on
a server if the load reaches the maximum threshold (θ4).

In addition, Cloud-Fog computing is a highly heterogeneous environment. Hen-
ce, user jobs’ characteristics and resource heterogeneity should be taken into account
to decide an appropriate task-resource mapping.

We propose a Multi-Objective scheduling algorithm (MOSA) taking into account
job service time demands, resource processing capacity, and the loads of subsystems
to improve quality of service as well as system operation cost with the following
rules:

• End-user devices and poor-resource Raspberry Pis are preferred if their loads
are less than the lower load threshold θ1;
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• Utilization of Cloudlet subsystem should be kept under the upper load threshold
θ2;

• Tasks with acute service time demand (that is, less than the service demand
threshold β(t)) should be executed in resources closer to them (end-devices or
Cloudlet);

• Cloud center is chosen if the above rules are not satisfied.

Let a job be identified by (j, Taj, sdj), where j is job identification, Taj is the
number of tasks, and sdj is the service time demand of job j. To estimate the
service demand of job, we use a threshold called statistical mean service demand in
what follows. Let N(t) and β(t) denote the number of historical incoming jobs and
the average service time demand of those at the considered time t. The statistical
mean service demand is calculated as:

β(t) =
1

N(t)

N(t)∑
j=1

sdj. (1)

Algorithm 1 presents pseudo-code of the proposed resource allocation solution.
Algorithm 2 describes the switching off policy for cloud and RaspberryPi subsystems.

4 RESULTS

4.1 Experimental Design

The evaluation is conducted using a simulation software written in C. We make
a long-term run for each simulation that stops after five million completions. We also
apply the statistical module [35] developed by Politecnico di Torino to collect and
evaluate statistics during simulation. The results are obtained with the confidence
level of 95% and the accuracy (i.e., the ratio of the half-width of the confidence
interval to the mean of collected observations) of 0.05.

The proposed MOSA is evaluated in comparson to other existing scheduling
policies, Load-Balance (LB) and Weighted Round Robin (WRR) given in [13] and
MPSO heuristic [36]. The system constructed for simulation runs is composed of 64
end-user devices, 64 powerful Cloudlet servers, 32 Raspberry Pis, and 128 virtual
machines (VMs) located at cloud center.

We assume that the inter-arrive time and the execution time of jobs are expo-
nentially distributed with means of 1/λ and 1/µ, respectively. An end-user device,
a Raspberry Pi, a Cloudlet node, and a VM are assumed to have ability of execut-
ing tasks at service rate µ1 = 2.0 (tasks/s), µ2 = 0.5 (tasks/s), µ3 = 1.0 (tasks/s),
µ4 = 1.0 (tasks/s), respectively.

We consider that the number of tasks of BoT jobs follows a uniform distribution
in range of [1, 8]. Being frequently observed in practice, Power-of-two and Square
job models [37] are also used as input workloads for evaluation. Workload models
and their parameters are given in Table 1.
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Algorithm 1 Pseudo-code of resource allocation in MOSA

for each new arriving job j do
CALCULATE Load[End-Devices], Load[Cloudlet], Load[RasberryPi],
Load[Cloud]

if Load[End-Devices] ≤ θ1 OR
(sdj ≤ β(t) AND Load[End-Devices] ≤ θ2) then
chosen subsystem ← End-Devices

else if Load[Cloudlet] ≤ θ2 then
chosen subsystem ← Cloudlet

else if Load[RaspberryPi] ≤ θ1 OR
(sdj ≤ β(t) AND Load[RaspberryPi] ≤ θ2) then
chosen subsystem ← RaspberryPi

else
chosen subsystem ← Cloud

end if
GOTO ALLOCATION

end for
ALLOCATION: {Shortest queue based task scheduling}
for each task in task set Taj of job j do
if found free server in chosen subsystem then
ROUTE task to free server
GOTO ALGORITHM 2

else
Calculate server.queue in chosen subsystem
ROUTE task to the server with the shortest queue

end if
end for

Algorithm 2 Pseudo-code of switching-off policy

if chosen subsystem is Cloud or RaspberryPi then
s← chosen subsystem
CALCULATE Load[s]
if Load[s] ≤ θ3 AND number active servers [s] > 1 then
Switch off a free server in the subsystem
Decrement number active servers [s]

else if Load[s] ≥ θ4 AND number active servers [s] is less than total number of
servers in the system s then

Switch on a sleep server in the subsystem s
Increment number active servers [s]

end if
end if
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Workload
Description Task Size

Average
Model Task Size

Uniform Task size (i.e., the number of tasks)
is an integer that follows the uni-
form distribution within the range
of [1, 8]

[1, 2, . . . , 8] 4.5

Power-of-two Task size is an integer that is calcu-
lated by 2k, k = 1, 2, 3

[2, 4, 8] ≈ 4.67

Square Task size is an integer that is calcu-
lated by k2, k = 1, 2, 3

[1, 3, 9] ≈ 4.67

Table 1. Workload models and their parameters

The average service rate of the entire system is calculated as:

µ =

(
4∑

i=1

M(i)× µi

)
/Tavg. (2)

Therefore the considered system has the average service rate of (64 × 2.0 +
64 × 1.0 + 32 × 0.5 + 128 × 01.0)/4.5 = 336/4.5 ≈ 74.67(jobs/s). We run the
simulations with various arrival rates of 16.8 (jobs/s), 22.68 (jobs/s), 28.56 (jobs/s),
34.44 (jobs/s), and 40.32 (jobs/s).

We choose the load thresholds that θ1 = 0.3, θ2 = 0.7 for allocation decision and
θ3 = 0.5, θ4 = 0.7 for switching off policy.

System performance metrics are as follows.

• Average response time of job (RT ): The response time of a job is defined as the
time period between job arrival and its departure. Let N be the total number
of completed jobs during simulation time and rtj be the response time of job j.
The average response time is calculated as:

RT =
1

N

N∑
j=1

rtj. (3)

• Average waiting time of task (WT ): Let wtt be the wait time in queue of task t
before its execution and TN be the total number of tasks of N completed jobs.

WT =
1

TN

TN∑
t=1

wtt. (4)

• Average service time of tasks (ST ): Let stt be the service time of task t. The
average service time of TN tasks (the total number of tasks of N completed jobs)
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is calculated as:

ST =
1

TN

TN∑
t=1

stt. (5)

• Resource utilization (U(i)): defined as the average percentage of time that each
server of subsystem i is in the busy state over the simulation time and calculated
as

U(i) =
(
∑M(i)

m=1 busy timem)/M(i)

simulation time
∗ 100%. (6)

• Average busy servers: the average number of servers processing tasks during the
simulation time.

To estimate the effectiveness of switching off technique, metrics of number of busy
servers and the resource utilization are used. The energy cost is directly proportional
to the busy time of servers and the server power consumption. Therefore, utilization
of a subsystem that addresses the percentage of time that a server is in busy state
can be interpreted as the cost of subsystem. Moreover, the number busy servers can
determine the energy cost of the total system. The system notations are listed in
Table 2.

Notation Description

M(i) Number of servers in Subsystem i
µi Service rate of a server in Subsystem i
µ System service rate
λ System arrival rate
sdj service demand of job j
Taj Number of tasks of job j
Tavg Average task number per job
β(t) Service demand threshold at time t
θ1 Lower Load threshold
θ2 Upper Load threshold
θ3 Minimum Load threshold for switching off
θ4 Maximum Load threshold for swithcing on

RT Average response time per job
WT Average waiting time per task
ST Average service time per task
U(i) Average resource utilization of subsystem i

Table 2. System Notations

4.2 Numerical Results with Theoretical Loads

Figure 3 plots the average response time per job where three types of workload
model are used. Figure 3 a) (with a uniform distribution workload model) shows that
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a) Uniform task size model

b) Power-of-two task size model

c) Square task size model

Figure 3. Average Response time (s) (a) Uniform model, b) Power-of-two model, c) Square
model)
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b) Power-of-two task size model
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Figure 4. Average Waiting time of tasks (s) (a) Uniform model, b) Power-of-two model,
c) Square model)
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the proposed MOSA outperforms the other policies, regardless the used workload
model. Particularly, MOSA improves the performance by 10% and ≈ 3% compared
to Weighted Round Robin (WRR) and Load-Balance (LB) at low load, respectively.
When the intensity is high, MOSA performs 6% better than WRR and as well as
the LB policy. Figures 3 b) and 3 c) (wherein Power-of-two and Square workload
size models are used) point out that LB outperforms WRR at low load, but causes
a slight increase in the response time when the load intensity is high. For the
instance of Square workload size model, the average response time is increased by
3% with the use of LB algorithm but decreased by approximately 6% with MOSA,
in compared to that achieved by WRR policy. In summary, the proposed MOSA
attains better performance regardless the workload model and intensity.

The average waiting time and average service time of tasks are plotted in Fig-
ures 4 and 5, respectively. It can be observed that at low to medium workload
intensity, tasks have to wait for shorter time with LB and MOSA in compared to
WRR. At high load, the waiting time with LB and MOSA is higher. It can be
explained that tasks need to wait for servers to be switched on. Figure 5 shows
that MOSA results in a slightly faster service at low load and there is no difference
among algorithms at high load.

Figure 6 presents the resource utilization of subsystems where three scheduling
policies are applied. We can observe that when the workload intensity increases,
Weighted Round Robin (WRR) policy puts load stress on end-user devices (Fig-
ure 6 a)) while letting powerful servers in Cloudlet and Cloud center under-utilized
(see Figures 6 b) and 6 d)). That can degrade the performance of end-user devices
and cause a discomfort to users. Load-Balance (LB) policy leads to high utilization
of low-performance Raspberry Pis when load is high (see Figure 6 c)). With the
MOSA policy, loads of end-user devices and of Raspberries Pi are kept under the
desired thresholds, as well as a balanced utilization between Cloudlet and Cloud
center is achieved. It can be interpreted that the proposed MOSA results in better
resource utilization compared to Weighted Round Robin (WRR) and Load-Balance
policy.

The resource utilization also depicts the energy cost of subsystems. In Fig-
ure 6 c), the portion of busy time of Raspberry Pi machines where MOSA is applied
is slightly higher compared to LB at low load but less than LB when the intensity
increases. Figure 6 d) shows that our proposed MOSA yields 2% reduction in busy
time of cloud servers at low load in comparison to LB. There is no such difference
between these two algorithms at high load. It means that MOSA is able to maintain
energy cost reduction as LB did. It is worth noting that WRR is not to be compared
since switching off is not effective as aforementioned in Section 3.3.

Obtained results of subsystem utilization with the presence of Power-of-two and
Square workload model are given in Figures 7 and 8. We observe stable outcomes
and system behavior regardless the types of workloads.

Figure 9 depicts the average number of busy servers over the run time while
three job models are applied as input workload alternatively. It shows that the
proposed MOSA and LB use less servers for task processing than WRR at low
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b) Power-of-two task size model
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Figure 5. Average Service time of tasks (s) (a) Uniform model, b) Power-of-two model,
c) Square model)
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a) End device utilization b) Cloudlet Utilization

c) Gateway utilization d) Cloud Center Utilization

Figure 6. Utilization of subsystems with Uniform workload model (a) End-device,
b) Cloudlet, c) Raspberries, d) Cloud center)
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a) End device utilization b) Cloudlet Utilization

c) Raspberry Pis utilization d) Cloud Center Utilization

Figure 7. Utilization of subsystems with Power-of-two workload model (a) End-device,
b) Cloudlet, c) Raspberries, d) Cloud center)
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a) End device utilization b) Cloudlet Utilization

c) Raspberry Pis utilization d) Cloud Center Utilization

Figure 8. Utilization of subsystems with Square workload model (a) End-device,
b) Cloudlet, c) Raspberries, d) Cloud center)
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Figure 9. Average active servers (s) (a) Uniform model, b) Power-of-two model, c) Square
model)
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load and there is no difference observed at high workload intensity. That means
the overall energy cost of the Cloud-Fog system can be reduced with MOSA and
LB at low load. Similar behaviors are obtained with different workload mod-
els.

4.3 Comparison Between the Proposed MOSA and MPSO

This section presents a comparison between the proposed algorithm and the MPSO-
based scheduling heuristic. The MPSO (Modified Particle Swarm Optimization)
was studied in [36] with the aim to balance the job makespan and total operation
cost of the system. The principle of MPSO based heuristic in the comparison can
be drawn as follows:

1. Calculate the fitness values of particles as a function of execution time and the
utilization of nodes;

2. Find the personal best position for a task in each subsystem according to fitness
values;

3. Update the global best position of which the lowest fitness value is obtained.

Figures 10, 11 and 12 plot the job average response time, task service time,
and task waiting time, respectively. It can be observed in Figure 10 that the MOSA
policy outperforms the others (WRR, LB and MPSO) at low load. At high workload
intensity, there is only an obscure difference in the performance with LB, MPSO and
MOSA whilst WRR performs worst. Figure 11 indicates that MPSO provides the
fastest execution service among the solutions. However, MPSO also causes the
longest waiting time of tasks for the service as shown in Figure 12. Therefore, we
observe a performance degradation with MPSO, showed in Figure 10.
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Figure 10. Average response time per job (uniform model)

The average active servers versus load intensity with the application of different
algorithms are illustrated in Figure 13. It shows that MPSO leads to lowest number
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Figure 11. Average service time per job (uniform model)
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Figure 12. Average waiting time per job (uniform model)
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Figure 13. Average active servers (uniform model)
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of busy server among solutions, which may result in lower operation energy cost of
the system.

Figure 14 depicts the utilization ratio of the four subsystems. It is shown that
MPSO causes an intense amount of workloads processed in end devices and cloudlet
severs which are closer to users. On the other hand, cloud servers and network
gateways are mostly underutilized with the MPSO algorithm. This phenomenon
can be explained by the powerful capacity of local processing. A heavy execution
load on end devices may cause service discomfort of users, while other resources are
not utilized properly.

In summary, MPSO yields a balance for execution time and total operation cost
from operator’s perspective. However, the overall service quality defined by the job
response time and a balanced resource utilization which consider user’s experience
is achieved by the proposed solution MOSA.
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a) End device utilization
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b) Cloudlet Utilization
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c) Raspberry Pis utilization
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d) Cloud Center Utilization

Figure 14. Utilization of subsystems with Square workload model (a) End-device,
b) Cloudlet, c) Raspberry Pi, d) Cloud center)

4.4 Experimental Results with Traced Workloads

In order to examine the proposed algorithm thoroughly, we also experiment the
simulation with various real workloads which were captured from practical exe-
cutions. Table 3 presents the statistical metrics of traced workloads in terms of
mean and variance. It is observed that these do not follow exponential distribu-
tion.

Figure 15 depicts the average response time of job when three traced workloads
are used for comparing the proposed MOSA with three other scheduling algorithms.
It shows that with INCC workload trace the proposed MOSA outperforms WRR
and LB with a reduction of over 15% in the average response time, while result-
ing in roughly the same performance to MPSO. With other workload traces, the
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Workload Number Inter-Arrival Time Service Time
of Samples Mean Var Mean Var

INCC trace 1 037 093 15.236 102 062.096 546.591 1 789 574.190
NVS trace 2 188 683 62.861 671 414.041 404.909 446 969.583
UPR trace 1 352 714 129.436 473 524.089 850.539 1 509 552.918

Table 3. Traced workloads

proposed MOSA outperforms other solutions with a reduction of 30%–40% in av-
erage response time. There is no clear difference observed between WRR, LB and
MPSO.

Figure 16 shows that the utilization of subsystems with the use of INCC work-
load. The outputs verify that the proposal yields better resource utilization by
maintaining the resource load under desired thresholds. It can also be observed
that WRR and LB policies send a larger percentage of workload to remote cloud
center and low-performance gateways (Raspberry Pi). That means the idle period
of servers in those subsystems become shorter which lead to the higher energy cost
in comparison to our solution. On the other hand, the MPSO overloads end user
devices that causes dissatisfaction to users.
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Figure 15. Average response time vs. traced workloads

5 CONCLUSIONS

Fog computing has become significant to develop 5G/6G network and allow more
IoT applications to connect to the system. As a result, a merged computing en-
vironment for IoT applications is spread from edge node to remote cloud center.
In this study, we investigate the impact of characteristics of jobs and resources
on the system performance of a merged computing environment of Edge, Fog and
Cloud. With the aim at improving system performance and energy efficiency of this
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Figure 16. Utilization of subsystems (INCC workload)

such heterogeneous environment, we propose a multi-objective scheduling algorithm-
MOSA using various characteristics of user workloads and computational resources.
The proposed algorithm MOSA uses job service demand and resource processing
capacity to find an appropriate task-resource mapping. Numerical results show that
MOSA leads to shorter average response time per job than existing WRR, LB, and
MPSO policies.

For load balancing and energy efficiency, the proposed MOSA uses load threshold
based approach. Obtained results indicate that MOSA yields a slight improvement
in load balancing than LB in some scenarios and similar outcomes in other cases.
Compared with MPSO that balances execution time and total system cost, MOSA
achieves similar or better performance while yielding better resource utilization and
guaranteeing user’s service experience. Experimental outputs with the use of real
workloads validate the foregoing conclusions wherein MOSA yields a reduction of
15%–40% in the average response time per job and balances resource utilization
among subsystems.

The proposed MOSA is based on job service demand as well as hard thresholds of
resource utilization to make decision, while different service level agreements (SLAs)
also depend on other proprieties of jobs and computing resources. Therefore, we
must investigate more complex scenarios wherein other characteristics such as types
of jobs, physical location of job request should be taken into account to achieve
various SLA requirements in future work.
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