
Computing and Informatics, Vol. 42, 2023, 280–310, doi: 10.31577/cai 2023 2 280

NOVEL APPROACH TO HIDE SENSITIVE
ASSOCIATION RULES BY INTRODUCING
TRANSACTION AFFINITY

Kshitij Pathak

Department of Computer Science and Engineering
Government Polytechnic College
Mandsaur, MP, India
e-mail: er.k.pathak@gmail.com

Sanjay Silakari

Department of Computer Science and Engineering
University Institute of Technology
RGPV Bhopal, MP, India
e-mail: ssilakari@yahoo.com

Narendra S. Chaudhari

Department of Computer Science and Engineering
Indian Institute of Technology
Indore, MP, India
e-mail: nsc0183@yahoo.com

Abstract. In this paper, a novel approach has been proposed for hiding sensitive
association rules based on the affinity between the frequent items of the transac-
tion. The affinity between the items is defined as Jaccard similarity. This work
proposes five algorithms to ensure the minimum side-effects resulting after apply-
ing sanitization algorithms to hide sensitive knowledge. Transaction affinity has
been introduced which is calculated by adding the affinity of frequent items present
in the transaction with the victim-item (item to be modified). Transactions are se-
lected either by increasing or decreasing value of affinity for data distortion to hide

https://doi.org/10.31577/cai_2023_2_280

Novel Approach to Hide Sensitive Association Rules 281

association rules. The first two algorithms, MaxaffinityDSR and MinaffinityDSR,
hide the sensitive information by selecting the victim item as the right-hand side of
the sensitive association rule. The next two algorithms, MaxaffinityDSL and Mi-
naffinityDSL, select the victim item from the left-hand side of the rule whereas the
Hybrid approach picks the victim item from either the left-hand side or right-hand
side. The performance of proposed algorithms has been evaluated by comparison
with state-of-art methods (Algo 1.a and Algo 1.b), MinFIA, MaxFIA and Naive al-
gorithms. The experiments were performed using the dataset generated from IBM
synthetic data generator, and implementation has been performed in R language.

Keywords: Association rule hiding, transaction affinity, affinity, AffinityDSR, Af-
finityDSL

Mathematics Subject Classification 2010: 68T05, 68T30

1 INTRODUCTION

1.1 Terminology and Preliminaries

1. Let I = {I1, I2, I3, I4, . . . , In}, a set containing a finite set of literal, known as
items and cardinality of the set represented by |I| is n.

2. Any subset Is ⊆ I is known as an itemset over I. An itemset of size n, repre-
sented as n-itemset. Example: Let I = {a, b, c, d, e} then a, b, c, d and e are
known as items or 1-itemset. ab, bc and cd are examples of 2-itemset. abc, bcd
and cde are examples of 3-itemset and so on.

3. The support of itemset I is equal to the number of transaction having itemset
I in database D. It is represented by Support(I) or Support(I,D).

4. Database D consisting of m transactions is represented by D = {T1, T2, T3, T4,
. . . , Tm} and |D| is equal to the number of transactions present in the dataset.

5. A transaction set Ts over I is pair Ts = (tid, Is) where Is is the itemset and tid
is a unique identifier.

6. T [m,n] is used to identify nth item of mth transaction in the database.

7. The support of the association rule A→ B is calculated by

Support(A→ B) = Support(A,B)÷ |D|. (1)

8. The Confidence of the association rule A→ B is calculated by

Confidence(A→ B) = Support(A,B)÷ Support(A). (2)

282 K. Pathak, S. Silakari, N. S. Chaudhari

9. An itemset is said to be frequent if its support is greater than user defined mfreq,
minimum frequency threshold and itemsets having frequency lower than mfreq
are treated as non-frequent items.

10. Relation between mfreq and user defined threshold MST is MST (%) = mfreq÷
|D| ∗ 100.

11. An association rule A → B is considered to be significant if support and con-
fidence of the rule is greater than or equal to user defined support and Confi-
dence i.e. MST (Minimum Support Threshold) and MCT (Minimum Confidence
Threshold) i.e. Support(A→ B) ≥ MST and Confidence(A→ B) ≥ MCT.

12. User marked some association rules to be hided from the set of generated asso-
ciation rules, known as sensitive and remaining rules are known as non-sensitive
association rules.

13. A subset of transactions that can be modified/updated to hide sensitive associ-
ation rule is known as candidate transactions or sensitive transactions whereas
modified candidate transactions are known as victim transactions.

14. Victim item is a term used to represent the itemset being modified by the
association rule hiding method.

1.2 Motivating Example

Let us suppose that the officials of BigMDSBazaar company purchase socks from
XYZ socks company. XYZ socks company official gives an offer to BigMDSBazaar
official that they are ready to reduce the price of their socks if BigMDSBazaar would
share their customer data with XYZ socks company. BigMDSBazaar thought that
it is a good deal and customer’s data can be shared, so, both the parties have
accepted the deal. XYZ socks company now started mining the customer’s data
they receive from BigMDSBazaar. They identified that, in 70% cases, whoever
purchases A type of shoes also going to purchase XYZ socks. After learning this
knowledge from the datasets, XYZ socks company made a public offer that the
customer purchasing the socks from their company will be given a 20% cashback on
the purchase of A type of shoes. After this particular advertisement, many customers
who are purchasing A type of shoes earlier from BigMDSBazaar have moved to XYZ
socks company. In this particular scenario, we can see that BigMDSBazaar is losing
its customers. At the same time, XYZ socks company increases the price of socks
purchased by BigMDSBazaar in the next deal since the sales of socks have decreased
at the stores of BigMDSBazaar. BigMDSBazaar is harming its own business by
sharing its customer’s data. Finally, we can conclude that BigMDSBazaar lost
business to the XYZ socks company as a result of exchanging data without sanitizing
it. Several other motivating examples have been discussed in [1, 2, 3, 4].

Novel Approach to Hide Sensitive Association Rules 283

1.3 Association Rule Hiding

Association rules are defined as statements of the form {X1, X2, . . . , Xn} → Y which
means that Y may be present in the transaction if X1, X2, . . . , Xn are all in the
transaction. Notice that the use of may imply that the rule is only probable, not
identical. Note also, that there can be a set of items, not just a single item. The
probability of finding Y in a transaction with all X1, X2, . . . , Xn is called confidence.
The threshold (percentage) that a rule holds in all transactions is called support.
The level of confidence that a rule must exceed is called interestingness.

In this research work, we focus on knowledge hiding in the database, i.e., asso-
ciation rule hiding. The association rule hiding problem is an extension of the very
well-known database inference control problem that has been applied to multilevel
and statistical databases. In the database inference control problem, the primary
objective is to hide sensitive information that can be inferred from non-sensitive
data, whereas in association rule hiding it is inferred that it is not only the data
but the hidden information is also a threat to privacy. So, in association rule hid-
ing, before sharing the database various data mining techniques have been applied
to identify the sensitive knowledge and then sanitization algorithms are applied to
modify the dataset before releasing it to hide the sensitive information/knowledge
earlier present in the dataset. The main challenges that are associated with asso-
ciation rule hiding are what strategy should be adopted in modifying the transac-
tions of the database so that sensitive association rule gets hidden whereas non-
sensitive association rule can still be mind as earlier as possible. Another critical
factor that has to be taken into consideration is how much we are modifying the
dataset, i.e., there must be a proper balance between privacy and utility. Associa-
tion rule hiding or hiding large itemsets approaches can be divided into five major
classes.

They are heuristic, border-based, exact, data reconstruction based and crypto-
graphic approaches. The first class, i.e., heuristic approaches algorithms, [4, 2, 5, 6,
7, 8] are efficient, fast, and selectively sanitize the candidate transactions and victim
items from original datasets to hide the sensitive information. Heuristic approaches
are a dominant area of importance and research interest because of their efficiency
and scalability. However, such algorithms suffer from various side-effects because
the decisions taken are local decisions, which do not necessarily provide the global
best solution.

The second class, border-based approaches, hide sensitive association rules by
modifying the borders in the lattice of frequent and non-frequent itemsets by se-
lecting itemsets of the lattice that control the borderline position which separates
frequent and nonfrequent itemsets. Border-based algorithms hide sensitive asso-
ciation rules by tracking the non-sensitive frequent itemsets borders, and greedily
data modifications are applied such that there is a minimum effect on the quality
of the border to accommodate the hiding of the rules. The work related to the
border-based approach is proposed in Main [9], BBA [9], Max-Min [10], positive
and negative border-based algorithms [11], and the AARHIL algorithm [12].

284 K. Pathak, S. Silakari, N. S. Chaudhari

The third class, exact approaches, treats the hiding problem as a constraint
satisfaction problem solved by integer programming. The constraint satisfaction
problem is an optimization problem that enables the algorithm to identify optimal
solutions by minimum distorting the database and introducing no new side effects.
On the contrary, the time complexity of exact approaches is higher when compared
to heuristic approaches because of the time taken by the integer programming solver
to solve the optimization problem [13].

The fourth class, data reconstruction-based approaches [14, 15, 16, 17], perform
the hiding process in three phases. In the first phase, association rules are mined,
sensitive rules are selected by the data owner and itemset lattice is built. In the
second phase, knowledge sanitization is applied on itemset lattice and the database
is reconstructed from the modified lattice in the third phase.

The fifth class, cryptographic approaches, is used in multi-party computation
where data is dispersed in several locations [18]. The owner may want to share
their data but does not want the confidential information to be disclosed. The
cryptographic approach can be divided into two categories: vertical partitioned
distributed data and horizontal partitioned distributed data. Various approaches in
this class are discussed in [19, 20, 21, 22, 23, 24].

2 AFFINITY-BASED APPROACH

The affinity between the two items i and j is defined by Aggarwal et al. [25] as

A(i, j) = support(i, j)/(support(i) + support(j)− support(i, j)), (3)

where support(.) is the count of the presence of an item in the dataset. This means
that affinity is defined as the Jaccard similarity between items.

We propose five sanitization algorithms based on the affinity between the fre-
quent itemsets by introducing the concept of transaction affinity. Transaction affin-
ity is calculated by adding the affinity of frequent items present in the transaction
with the victim-item (Victim-item is the item selected for modification in the trans-
action.). Transactions having a high value of transaction affinity signify that the
set of items present in the transaction has high similarity with the victim-item. We
have conducted experiments to analyze the proposed methods of picking the trans-
action for modification based on the similarity between victim-item and frequent
items present in the transaction.

The first two algorithms, MAXAffinityDSR and MINAffinityDSR, hide the sen-
sitive association rule by selecting transactions on the basis of the similarity of
the victim-item (Right-hand side of sensitive association rule) with frequent items
present in the transaction. This method hides the rule by decreasing the support
of the right-hand side of the rule (victim-item) thereby reducing the confidence or
support of the sensitive association rule below a minimum threshold. The third and
fourth approach, MAXAffinityDSL and MINAffinityDSL, consider the victim-item
as the left-hand side of the rule whereas the fifth one, the hybrid approach, selects

Novel Approach to Hide Sensitive Association Rules 285

the victim-item by using HybridCode function present in Algorithm 3. Initially, the
candidate transaction picked is the one that contains all the items of sensitive asso-
ciation rules, i.e., if B → A is to be hidden, then candidate transactions are the ones
having BA as the subset of items present in the transaction. In earlier approaches,
then candidate transactions are arranged in ascending or descending order either
on the basis of length of the transaction as done in [4] or they completely remove
the frequent itemset from all transactions which results in increasing the number of
side-effects like the border-based approach. The proposed approach uses the concept
of transaction affinity to select transactions to be sanitized.

2.1 Hiding Strategy

A sensitive association rule A→ B can be hidden by following two hiding strategies
as per the taxonomy of association rule hiding algorithms:

1. Support-based or reducing support below user-specified threshold: We know that
support of rule A→ B is defined as the count of transactions having both A and
B divided by a total number of transactions. Support can be reduced by remov-
ing either the left-hand side (A) or right-hand side (B) from the transactions in
which both A and B are present.

2. Confidence-based or reducing confidence below user-specified confidence: Confi-
dence of the rule is defined as support of rule items divided by the support of
left-hand side of the rule. To hide the rule by confidence, any item from the
right-hand side of rule is to be removed from candidate transaction (Candidate
transaction, in this case, are the ones which fully supports the rule) or support of
left-hand side of rule is increased by adding items in candidate transaction (Can-
didate transactions, in this case, are the ones which do not support left-hand
and right-hand side of rule).

Example: Consider a sample database D shown in Table 1.

Transaction Id Items

1 ABC
2 AB
3 A
4 C

Table 1. Database D

Support Based: In the database, support of rule A→ B is 2÷ 4 or 50% as both
A and B are present in two transactions (T1 and T2) out of 4 transactions. Let
the user-specified support threshold is 30%. Here, the candidate transactions
are T1 and T2, as they fully support the rules (i.e., all rule items are present
in T1 and T2). If we remove any item from the rule from either T1 or T2, then
the support of the rule will be 1÷ 4 which is equal to 25% which makes it falls
below a user-specified threshold, and eventually, rules get hided.

286 K. Pathak, S. Silakari, N. S. Chaudhari

Confidence-Based: In the database, the confidence of rule A → B is 2 ÷ 3 or
66.67% as both A and B are present in two transactions (T1 and T2) out of
4 transactions and A is present in 3 transactions. Let the user-specified confi-
dence threshold is 55%.

To hide the rule by deleting a subset of the right-hand side of the rule, we need
to make 1 modification to hide the rule. Support of AB is reduced to 1 and
confidence will be reduced to 1÷ 3 or 33.33%.

To hide the rule by increasing support of the left-hand side, we need to make
1 modification to hide the rule. Candidate transaction is 4 since transaction
4 does not support rule items. Item A will be added to transaction 4 which
increases support of A to 4. Confidence will be reduced to 2÷ 4 or 50% which
makes it falls below the user-specified confidence threshold and eventually rule
gets hided.

2.2 Preliminary Definitions

Definition 1. The Transaction Id’s in support of sensitive rule Sr and will be the
candidate for MAXAffinityDSR and MINAffinityDSR approach is defined by:

Tid(Sr) = Tid(LSr) ∩ Tid(RSr), (4)

where LSr and RSr are the left-hand and right-hand side of the sensitive association
rule.

Definition 2. The affinity of each transaction, i.e., transaction affinity in MAX-
AffinityDSR and MINAffinityDSR algorithm is calculated by

affinitysum(Tid) =
∑

for all 1−itemset m in Tid
and

m ⊂ F
and

m != LSr
and

for all r in RSr

affinity(m, r), (5)

where F is set of frequent itemsets, Tid is a transaction, LSr and RSr are left-hand
and right-hand side of association rule. It is calculated by summation of the affinity
between every 1-itemset from the right-hand side of a sensitive association rule,
and every frequent 1-itemset present in the transaction ignoring itemsets belongs
to the left-hand side of the transaction. Consider a sample database TD shown in
Table 2.

Consider a transaction T1 with items UWXY Z, sensitive association rule U →
X, frequent items = {U,W,X,Z}. Then, m = {W,Z}, r = {X} and transaction
affinity for T1 is affinity(X,W) + affinity(X,Z).

Novel Approach to Hide Sensitive Association Rules 287

Transaction Id Items

T1 UWXYZ
T2 UWXZ
T3 UWX
T4 WXZ

Table 2. Database TD

Definition 3. All the candidate transactions identified for approaches are ordered
in decreasing order in MAXaffinityDSR and MAXAffinityDSL on the basis of the
affinity value evaluated for transactions (affinitysum (Tid)).

SORT (Tid, affinitysum (Tid) , decreasing = TRUE) . (6)

Definition 4. All the candidate transactions identified for approaches are ordered
in increasing order in MINaffinityDSR and MINAffinityDSL on the basis of
affinitysum (Tid) as described in Equation (5).

SORT (Tid, affinitysum (Tid) , decreasing = FALSE) . (7)

Definition 5. The candidate transaction for AffinityDSL is defined by:

Tid (Sr) = Tid (LSr) ∩ Tid (RSr) , (8)

where LSr and RSr are the left-hand and right-hand side of association rule(Sr).

Definition 6. The transaction affinity in MAXAffinityDSL and MINAffinityDSL
is calculated by

affinitysum (Tid) =
∑

for all 1−itemset m in Tid
and

m ⊂ F
and

m != RSr
and

for all l in LSr

affinity(m, l), (9)

where F is set of frequent itemsets, Tid is a transaction, LSr and RSr are left-hand
and right-hand side of association rule. It is calculated by summation of the affinity
between every 1-itemset from the left-hand side of a sensitive association rule, and
every frequent 1-itemset present in the transaction ignoring itemsets belongs to the
right-hand side of the transaction.

2.3 Algorithm Parameters

In association rule hiding, the decision has to be taken in the following aspects which
significantly affect the performance of the algorithm:

288 K. Pathak, S. Silakari, N. S. Chaudhari

1. Victim-item: In the proposed work, first, two algorithms, MaxAffinityDSR and
MinAffinityDSR, pick the victim item as a subset of the right-hand side of the
rule whereas the next two algorithms, MaxAffinityDSL and MinAffinityDSL,
pick victim item as a subset of the left-hand side of the rule. AffinityHybrid
algorithm picks the victim item at runtime based on a minimum number of
modifications required to hide the rule. All five sanitization algorithms remove
the item from the database.

2. Picking the candidate transactions: In the proposed algorithms, candidate trans-
actions are the ones that fully support the rule.

3. Selecting transactions for modification from candidate transactions: The pri-
mary decision of the association rule hiding algorithm falls in this step. All
the candidate transactions are not modified. A subset of candidate transac-
tions is altered until the rule’s support or confidence is below the minimum
support threshold and minimum confidence threshold, respectively. In proposed
approaches, an affinity between frequent items is calculated and stored in a two-
dimensional array in which dimensions are items. Then transaction affinity for
each transaction is calculated as per the approach. Now candidate transactions
are sorted by transaction affinity. The transaction affinity value is stored in
a one-dimensional array.

2.4 Procedure

The procedure for MaxAffinityDSR, MinAffinityDSR, MaxAffinityDSL and Mi-
nAffinityDSL is as follows:

1. Generate association rule from the database using the Apriori algorithm.

2. The owner analyzes association rules generated and identifies sensitive associa-
tion rules.

3. Repeat steps 4 to 10 for every sensitive association rule.

4. Calculate affinity between the items using Equation (3).

5. Pick candidate transactions like the ones which support all the items present in
the sensitive association rule defined in Equations (4) and (8).

6. Calculate transaction affinity for all candidate transactions identified in step 5.
The transaction affinity is calculated by adding the affinity of the victim item
with every frequent 1-itemset present in the transaction. It is defined in Equa-
tions (5) and (9).

7. Sort candidate transactions by transaction affinity as defined in Equations (6)
and (7).

8. Calculate the minimum number of modifications required to hide the rule.

9. Select the victim item as the right-hand side of the rule for AffinityDSR and
the left-hand side of the rule for AffinityDSL respectively, which is going to be
deleted from candidate transactions.

Novel Approach to Hide Sensitive Association Rules 289

10. Pick one by one transaction from the sorted candidate transaction list prepared
in step 5 and remove the victim item, till the number of modifications required
is achieved.

2.5 MAXAffinityDSR and MINAffinityDSR Algorithm

input : dataset, minsupp, minconf, sensitive association rules
output: Modified database to hide association rules

1 rulesdataset = apriori (dataset, parameter = list(supp = minsupp, conf = minconf,
minlen = 2));

// extract rules from dataset with user defined support and confidence threshold
2 inspect (rulesdataset);

// user decides which rules are sensitive, needs to be hided
3 ruletohide = subset (rulesdataset);

// selects sensitive rule in ruletohide
4 ruletohidec = |ruletohide |;
5 for o← 1 to ruletohidec do
6 aff ← affinity(dataset);

// calculate affinity among the frequent itemset
7 lhs ← selectLhs(ruletohide [o]);
8 rhs ← selectRhs(ruletohide [o]);
9 lhslist = {t | tεtransactions and t fully support LHS of rule};

10 rhslist = {t | tεtransactions and t fully support RHS of rule};
11 transactionDSR ← intersect(lhslist, rhslist);

// prepare candidate transaction list in transactionDSR by intersecting
lhslist and rhslist

12 tosorttransactionDSR ← NULL;
13 for i Input: transactionDSR
14 do
15 k ← o;
16 for j Input: items
17 do
18 if j ̸= lhs and j ̸= rhs and j is frequent and i contains j then
19 k = k + aff[rhs, j];
20 end
21 affinity(i) = k;
22 tosorttransactionDSR = concate(tosorttransactionDSR, concate(i, affinity(i)));

// tosorttrnasactionDSR contain candidate transaction with their
respective affinity sum

23 end
24 end
25 sort(tosorttransactionDSR, sortby(affinity(i),i) Decreasing = FALSE);

// Sorted Candidate Transactions
26 NoOfModificationinDSR

← minimum(ceiling((length(transactionDSR)− (TotalNumberOfTransaction ∗MST
/100))), ceiling((length(transactionDSR)− (length(lhslist) ∗MCT /100))));

27 NoofModificationsDoneinDB ← 0;
28 for i← 1 to NoOfModificationinDSR do
29 NoofModificationsDoneinDB ← NoofModificationsDoneinDB + 1;
30 pick transaction i from tosorttransactionDSR;
31 Dataset [i, rhs]← 0;
32 end
33 end

Algorithm 1. MINAffinityDSR algorithm

290 K. Pathak, S. Silakari, N. S. Chaudhari

The basis of the first two approaches, MAXAffinityDSR and MINAffinityDSR,
select those transactions as victim transactions from the candidate transactions hav-
ing a maximum and minimum value of transaction affinity respectively. In MAX-
AffinityDSR and MINAffinityDSR, the victim item is on the right-hand side of the
sensitive association rule. Suppose there is a transaction t having items A, B, C,
D, E. Suppose A is to be removed from transactions assuming it is present on the
right-hand side of the sensitive rule B → A. Let D and E be frequent itemsets and
C is non-frequent itemsets. The affinity value of the transaction is identified as the
sum of the affinity of A with D and E. Affinity of B is not considered while calculat-
ing the affinity of the transaction since the item belongs to the sensitive association
rule which needs to be hidden. Affinity calculation with item C is not considered in
the affinity value of the transaction since there does not exist any association rule
having C on either side of the rule, as it is a non-frequent itemset. In this way all
the transactions now have their affinity value then transactions are sorted by their
affinity value in decreasing order in MAXAffinityDSR algorithm and in increasing
order in case of the MINAffinityDSR algorithm. Then, one by one transactions are
picked, and item present on the right-hand side of the rule is deleted from transaction
till the confidence or support of the rule falls below the minimum threshold. The
motivation for doing that is to reduce the side effects associated with the distorted
database. This approach, MINAffinityDSR, is presented in Algorithm 1. In the
MAXAffinityDSR algorithm, the only change is a selection of victim transactions
from candidate transaction set; here candidate transactions are sorted in decreasing
order of their affinity value.

Consider an example shown in Table 3 with user-defined support threshold of
55% and user-defined confidence threshold is 80%, following 14 association rules
gets generated as shown in Table 4.

Transaction Id Items

1 ABCD
2 ABCD
3 ABC
4 ABCD
5 C
6 B
7 ABDEF

Table 3. Database D1

The affinity values of the items are calculated by Equation (3) as shown in
Table 5.

Let B → A be the sensitive association rule that needs to be hided, then can-
didate transactions to be sanitized are identified as 1, 2, 3, 4, 7 since B and A both
are present in this transactions. The affinity of these five transactions is calculated
by adding the affinity of frequent items present in the transaction with the items
of the right-hand side of a rule by Equation (5). So, the calculation of affinity of

Novel Approach to Hide Sensitive Association Rules 291

S No LHS→ RHS Support Confidence Lift

1 {C} → {A} 0.5714286 0.8 1.12
2 {A} → {C} 0.5714286 0.8 1.12
3 {C} → {B} 0.5714286 0.8 0.9333333
4 {D} → {A} 0.5714286 1 1.4
5 {A} → {D} 0.5714286 0.8 1.4
6 {D} → {B} 0.5714286 1 1.1666667
7 {A} → {B} 0.7142857 1 1.1666667
8 {B} → {A} 0.7142857 0.8333333 1.1666667
9 {A,C} → {B} 0.5714286 1 1.1666667

10 {B,C} → {A} 0.5714286 1 1.4
11 {A,B} → {C} 0.5714286 0.8 1.12
12 {A,D} → {B} 0.5714286 1 1.1666667
13 {B,D} → {A} 0.5714286 1 1.4
14 {A,B} → {D} 0.5714286 0.8 1.4

Table 4. Association rules for sample databases D1

A B C D E F

A 0 0.8333333 0.6666667 0.8 0.2 0.2
B 0.8333333 0 0.5714286 0.6666667 0.1666667 0.1666667
C 0.6666667 0.5714286 0 0.5 0 0
D 0.8 0.6666667 0.5 0 0.25 0.25
E 0.2 0.1666667 0 0.25 0 1
F 0.2 0.1666667 0 0.25 1 0

Table 5. Affinity matrix

transactions is as follows:

• Affinity(1) = affinity(A,C) + affinity(A,D) = 0.6666667 + 0.80 = 1.4666667,

• Affinity(2) = affinity(A,C) + affinity(A,D) = 0.6666667 + 0.80 = 1.4666667,

• Affinity(3) = affinity(A,C) = 0.6666667,

• Affinity(4) = affinity(A,C) + affinity(A,D) = 0.6666667 + 0.80 = 1.4666667,

• Affinity(7) = affinity(A,D) = 0.80.

Note. E and F are not included in finding affinity of the transaction as they are
non-frequent items and B is not considered since it belongs to sensitive association
rule in the process of being hided.

For hiding the rule B → A, item A, right-hand side of the rule, must be removed
from transaction to reduce the support or confidence below the threshold. For
reducing support below the threshold, number of modification required is 2, and
for reducing confidence below the threshold, number of modification required is
1. Picking the minimum among these two is a sufficient and necessary number of
modification required to successfully hide sensitive association rule.

292 K. Pathak, S. Silakari, N. S. Chaudhari

Transaction Id Items

1 ABCD
2 ABCD
3 BC
4 ABCD
5 C
6 B
7 ABDEF

Table 6. Released Database D1

Since transaction affinity of Transaction 3 is minimum for MINAffinityDSR, so
it is picked as the first transaction to be sanitized, and A is removed. Released
database is shown in Table 6.

2.6 MAXAffinityDSL and MINAffinityDSL Algorithm

In this approach, sensitive association rules are hided by reducing the support of left-
hand side thereby reducing the support of sensitive association rule. Same process as
applied for hiding right-hand side of the rule in MAXAffintyDSR can be implemented
with LHS in MAXAffinityDSL and MINAffinityDSL, i.e., the affinity of all the
transaction is calculated by summing the affinity of the LHS with every frequent
1-itemset present in the transaction but ignoring the itemsets of the right-hand side
of the rule. The insight for selecting the transaction based on affinity sum lies in the
fact that more petite will be a side-effect of the modification if the similarity between
the victim item and other frequent items is considered while selecting transactions.
This approach is presented in Algorithm 2.

2.7 AffinityHybrid Algorithm

The third approach (Algorithm 3 AffinityHybrid) shown in Figure 1 combines the
above two approaches to have a mixture of reducing the support of a subset of the
left-hand side and right-hand side of the sensitive association rule.

In this method first, it is identified that for hiding sensitive association rule how
many modifications are required to hide the rule on lowering the confidence below
minimum confidence threshold and how many modifications are necessary to cover
up the rule by reducing the support below the minimum support threshold. If the
number of modification required is less for reducing confidence below MCT rather
than reducing support below MST then victim item belongs to the right-hand side
of the rule and removed from the transaction, we call it a hybrid(0) otherwise, items
belongs to either left-hand side or right-hand side are removed as per HybridCode
function. We call it a hybrid(1).

For hybrid(0), the approach is applied in the same way defined for the Affini-
tyDSR approach.

Novel Approach to Hide Sensitive Association Rules 293

input : Database, minsupp, minconf, sensitive association rules
output: Modified database to hide association rules

1 rulesdataset = apriori (dataset, parameter = list(supp = minsupp, conf = minconf,
minlen = 2));

// extract rules from dataset with user defined support and confidence threshold
2 inspect (rulesdataset);

// user decides which rules are sensitive, needs to be hided
3 ruletohide = subset (rulesdataset);

// selects sensitive rule in ruletohide
4 ruletohidec = |ruletohide|;
5 for o← 1 to ruletohidec do
6 aff ← affinity(dataset);

// calculate affinity among the frequent itemset
7 lhs ← selectLhs(ruletohide [o]);
8 rhs ← selectRhs(ruletohide [o]);
9 lhslist = {t | tε transactions and t fully support LHS of rule};

10 rhslist = {t | tε transactions and t fully support RHS of rule};
11 transactionDSL ← intersect(lhslist, rhslist);

// prepare candidate transaction list in TransactionDSL by intersecting
lhslist and rhslist

12 tosorttransactionDSL ← NULL;
13 for i Input: transactionDSL
14 do
15 k ← o;
16 for j Input: items
17 do
18 if j ̸= lhs and j ̸= rhs and j is frequent and i contains j then
19 k = k + aff[lhs, j]
20 end
21 affinity(i) = k;
22 tosorttransactionDSL = concate(tosorttransactionDSL, concate(i, affinity(i)))

// TosorttrnasactionDSL contain candidate transaction with their
respective affinity sum

23 end
24 end
25 sort(tosorttransactionDSL, sortby((affinity(i), i)));

// MINAffinityDSL and MAXAffinityDSL sort transactions in increasing and
decreasing order respectively.

26 NoOfModificationinDSL
← ceiling((length(transactionDSL)− (TotalNumberOfTransaction ∗MST /100)));

27 NoofModificationsDoneinDB ← 0;
28 for i← 1 to NoOfModificationinDSL do
29 NoofModificationsDoneinDB ← NoofModificationsDoneinDB + 1;
30 pick transaction i from tosorttransactionDSL;
31 Dataset [i, lhs]← 0;
32 end
33 end
34 RulesNew = apriori (dataset, parameter = list(supp = minsupp, conf = minconf, minlen = 2));
35 inspect (RulesNew);

Algorithm 2. MAXAffinityDSL and MINAffinityDSL algorithm

294 K. Pathak, S. Silakari, N. S. Chaudhari

Figure 1. Hybrid Approach

For hybrid(1), the affinity of the transaction is divided into two parts:

1. Affinity of the transaction for left-hand side.

2. Affinity of the transaction for right-hand side.

The affinity of the transaction for the left-hand side is calculated by summing
the affinity of the left-hand side with frequent items presenting in the transaction
ignoring items belongs to the right-hand side of the transaction. The affinity of
transactions for the right-hand side is calculated by summing the affinity of the
right-hand side with frequent items present in the transaction ignoring the items
belongs to the left-hand side. Then affinity of the transaction for the left-hand side
is sorted on the basis of affinity calculated in increasing order. Similarly, affinity
for the right-hand side is sorted on the basis of affinity calculated in the increasing
order.

Novel Approach to Hide Sensitive Association Rules 295

input : Database, minsupp, minconf, sensitive association rules
output: Modified database to hide association rules

1 rulesdataset = apriori (Dataset, parameter = list(supp = minsupp, conf = minconf,
minlen = 2));

2 inspect (rulesdataset);
3 ruletohide = subset (rulesdataset);
4 ruletohidec = |ruletohide|;
5 for o← 1 to ruletohidec do
6 aff ← affinity(dataset);
7 lhs ← selectLhs(ruletohide [o]);
8 rhs ← selectRhs(ruletohide [o]);
9 lhslist = {t | tε transactions and t fully support LHS of rule};

10 rhslist = {t | tε transactions and t fully support RHS of rule};
11 TransactionHybrid ← intersect(lhslist, rhslist);

// prepare candidate transaction list in TransactionHybrid by intersecting
lhslist and rhslist

12 TosorttransactionHybrid ← NULL;
13 for i Input: TransactionHybrid
14 do
15 kl← o;
16 kr ← o;
17 for all frequent items j Input: items
18 do
19 if j ̸= lhs and j ̸= rhs and i contains j then
20 kl = kl + aff[lhs, j];
21 kr = kr + aff[rhs, j];
22 end
23 TosorttransactionHybrid = concate(TosorttransactionHybrid, concate(i, kl, kr))

// TosorttransactionHybrid contain candidate transaction with their
respective affinity sum with lhs and affinity sum with rhs

24 end
25 end
26 SortedLHSHybrid ← sort(TosorttransactionHybrid over (i, kl));
27 NewMatrixOrderedLHS ← as(SortedLHSHybrid, ”Matrix”);

// Sorted candidate transaction by affinity sum with LHS
28 SortedRHSHybrid ← sort(TosorttransactionHybrid over (i, kr));
29 NewMatrixOrderedRHS ← as(SortedRHSHybrid, ”Matrix”);

// Sorted candidate transaction by affinity sum with RHS
30 CMRCBMST ← ⌈(|TransactionHybrid| − (|Dataset| ∗MST/100))⌉;
31 CMRCBMCT ← ⌈(|TransactionHybrid| − (|lhslist| ∗MCT/100))⌉;
32 NoOfModificationinHybrid ← minimum(CMRCBMST, CMRCBMCT);
33 if CMRCBMST ≤ CMRCBMCT then
34 NoHybrid(NoOfModificationinHybrid, Dataset, SortedRHSHybrid, rhs)
35 end
36 else
37 Call HybridCode(NoOfModificationinHybrid, Dataset, NewMatrixOrderedLHS,

NewMatrixOrderedRHS, lhs, rhs)
38 end
39 end
40 call CheckPerformance(Dataset, rulesdataset);

Algorithm 3. AffinityHybrid algorithm

296 K. Pathak, S. Silakari, N. S. Chaudhari

1 kl← 1;
// Index for sorted transaction list having transaction ID and

Transaction affinity with victim-item as LHS

2 kr ← 1;
// Index for sorted transaction list having transaction ID and

Transaction affinity with victim-item as RHS

3 NoofModificationsDoneinDB ← 0;
4 NoofModificationsDoneinLHS ← 0;
5 NoofModificationsDoneinRHS ← 0;
6 while NoofModificationsDoneinDB < NoOfModificationinHybrid do

// Transaction is selected by comparing the two sorted list

prepared

7 if NewMatrixOrderedLHS [kl, 2] < NewMatrixOrderedRHS [kr, 2] then
8 Dataset [(NewMatrixOrderedLHS [kl, 1]),Lhs]← 0;

// transaction picked from sorted list prepared by having

victim-item as LHS

9 x ← which(NewMatrixOrderedRHS [, 1] == NewMatrixOrderedLHS
[kl, 1]);

10 NewMatrixOrderedRHS ← NewMatrixOrderedRHS [−x,];
// Transaction removed from sorted list prepared by

having victim-item as RHS, as it is already sanitized

11 NoofModificationsDoneinLHS ← NoofModificationsDoneinLHS + 1;
12 NoofModificationsDoneinDB ← NoofModificationsDoneinDB + 1;
13 kl← kl + 1;

14 end
15 else
16 Dataset [(NewMatrixOrderedRHS [kr, 1]), Rhs]← 0;

// transaction picked from sorted list prepared by having

victim-item as RHS

17 x ← which(NewMatrixOrderedLHS [, 1] == NewMatrixOrderedRHS
[kr, 1]);

18 NewMatrixOrderedLHS ← NewMatrixOrderedLHS [−x,];
// Transaction removed from sorted list prepared by

having victim-item as LHS, as it is already sanitized

19 NoofModificationsDoneinRHS ← NoofModificationsDoneinRHS + 1;
20 NoofModificationsDoneinDB ← NoofModificationsDoneinDB + 1;
21 kr ← kr + 1;

22 end

23 end

Algorithm 4. HybridCode algorithm

Novel Approach to Hide Sensitive Association Rules 297

1 for i← 1 to NoOfModificationinHybrid do
2 NoofModificationsDoneinDB ← NoofModificationsDoneinDB + 1;
3 Dataset [m in SortedRHSHybrid, Rhs]← 0;

4 end
5 Return(Dataset);

Algorithm 5. NoHybrid algorithm

1 RulesNew = Apriori (dataset, parameter = list(supp = minsupp,
conf = minconf, minlen = 2));

2 Inspect (RulesNew);
3 GhostRules ← SetDiff(RulesNew, rulesdataset);
4 LostRules ← SetDiff(rulesdataset, RulesNew);
5 GhostRulesCount ← Length(SetDiff(RulesNew, rulesdataset));
6 LostRulesCount ← Length(SetDiff(rulesdataset,

RulesNew))− ruletohidec;

Algorithm 6. Performance After Hybrid algorithm

Let x be the number of modification required for hybrid(1). Then one by one
transaction is selected by comparing the two sorted lists prepared, and transaction
having the least affinity is modified with the condition that if transaction has been
picked from sorted affinity list of the transaction for the left-hand side then the
left-hand side of the rule gets removed from transaction otherwise if the transaction
is picked from sorted affinity of the transaction for the right-hand side, then the
right-hand side of the rule gets removed. Once the transaction picked from the one
list, it cannot be picked again from the second list since if the same transaction is
used for removing the left-hand side and the right-hand side – this does not add any
benefit to the approach.

Let X and Y be present on the left-hand side and the right-hand side of the
rule. For reducing the support below MST either X or Y is sufficient to remove
the transaction to reduce the support of the overall rule. The rationale for a hybrid
approach is that changing only one side of the rule would result in a large reduction in
its support, which will have more unintended consequences that can be managed by
taking into account both the left-hand and right-hand sides of the rule. Additionally,
the side-effect is diminished because the choice of transaction is fully chosen based
on how it would affect another frequently used itemset.

3 COMPUTATIONAL EXPERIMENTS AND RESULTS

Approaches present in the literature for hiding the rule fall into two broad categories
viz

1. hiding a large itemset,

298 K. Pathak, S. Silakari, N. S. Chaudhari

2. hiding an association rule directly.

It is more complicated to hide rules in comparison to hiding itemsets. This paper
presents five approaches that hide sensitive association rule by directly working on
hiding rules as it gives the database owner more control. Latest work that has
been done on association rule hiding hides large itemsets to preserve the privacy
in the database like the border based approach. Greedy approaches [26] (2013)
hides a sensitive association rule by increasing the number of transactions that will
greatly affect the database size as well as a lot of computation needed to add the
items to the added transaction. So, we evaluate our work against algorithms that
fall under the category of heuristic algorithms. The algorithms used for comparison
are Algo 1.a [4], Algo 1.b [4], MinFIA [2], MaxFIA [2] and Naive [2]. To evaluate
performance, we ran two experiments. In the first setup, experiments were per-
formed with dataset generated by IBM Synthetic data generator where database
size is ranging from 10K to 100K. In the second setup, experiments were performed
with real-world datasets downloaded from UCI repository and fimi.

3.1 Experiment Setup 1

We have performed experiments on a computer with a core-i7 processor, 8GB RAM
running on Windows 10 Operating System. The datasets used in the assessment
trials are generated using IBM synthetic data generator [27]. The database size
employed in the dataset range from 10K to 100K with the average transaction
length, |ATL| = 5, and a total number of items is 50. The minimum support
threshold picked is 4% and the minimum confidence threshold picked is 20%. In
the series of experiments, database size ranging from 10K to 100K is generated ten
times and arbitrary five rules are selected for hiding. All the graphs were plotted
to represent the average of 10 iterations of experiments. The language used for
implementation is R [28]. To evaluate the performance of the algorithms following
side-effects are considered:

1. Rule Hiding Failure (RHF);

2. Rule Falsely Generated or Ghost Rules (GR) (Also known as Artifactual Pat-
terns (AF));

3. Rules Falsely Hidden or Lost Rules (LR);

4. Dissimilarity measure.

The rule hiding failure side-effect counts the number of sensitive association
rules; the algorithm fails to hide. Rule falsely generated (Ghost rules) side-effect
counts the number of rules that were not available with the original dataset, but after
the modifications performed by the algorithm, the rule appears. The rules falsely
hidden (Lost rules) side-effect counts the number of nonsensitive rules hided because
of the data distortion process. Comparisons were made with Algo1.a, Algo1.b,
MinFIA, MaxFIA and naive algorithm against various database sizes ranging from
10K to 100K.

Novel Approach to Hide Sensitive Association Rules 299

Hiding failure is 0 in all algorithms except Algo 1.a. So Algo 1.a is not considered
in analyzing other side-effects.

10 30 50 70 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

Database Size

G
h
os
t
R
u
le
s
(%

)

Ghost Rules Evaluation

MinAffinityDSR
MaxAffnityDSR
MinAffinityDSL
MaxAffnityDSL
AffnityHybrid

Algo1.b
MaxFIA
MinFIA
Naive

Figure 2. Performance of Algorithms with respect to Ghost Rules

Figures 2 and 3 account for the ghost rule and lost rule side-effect evaluation
of algorithms, respectively. Table 7 represents data for the ghost rule and lost rule
side-effect in a tabular form, where each average value is accompanied by a value of
the standard error.

It is depicted in Figure 2 that MinAffinityDSR algorithm is free from the ghost
rule side-effect. It never generates ghost rules in all our experiment trials. Max-
AffnityDSR also performs well in the ghost rule side-effect. It suffered from this
side-effect only once.

It is clear from Figure 3 that MinAffinityDSR, MaxAffinityDSL and AffinityHy-
brid algorithm performs best with lost rules side-effects. Less rules lost means more
is the utility of the database.

Dissimilarity measure is based upon the count of the frequency of the items be-
fore the sanitization algorithm and after the sanitization algorithm, i.e., to measure
the frequencies of the items in the original database and the released database. Dis-
similarity measure evaluation is shown in Figure 4. Table 8 represents data for Dis-
similarity measure evaluation in a tabular form, where each average value is accom-
panied by a value of the standard error. It is clear from the graph that AffinityHybrid
outperforms all algorithms used in experiments for comparison. MinAffinityDSR,
MaxAffinityDSR and MaxAffinityDSL also has good results and Naive algorithm
performance was the weakest with respect to dissimilarity measure.

300 K. Pathak, S. Silakari, N. S. Chaudhari

10 30 50 70 100
0

10

20

30

40

50

60

70

Database Size

L
os
t
R
u
le
s

Lost Rules Evaluation

MinAffinityDSR
MaxAffnityDSR
MinAffinityDSL
MaxAffnityDSL
AffnityHybrid

Algo1.b
MaxFIA
MinFIA
Naive

Figure 3. Performance of Algorithms with respect to Lost Rules

10 30 50 70 100
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

8

10

12

Database Size

D
is
si
m
il
ar
it
y
M
ea
su
re

(%
)

Dissimilarity Measure Evaluation

MinAffinityDSR
MaxAffnityDSR
MinAffinityDSL
MaxAffnityDSL
AffnityHybrid

Algo1.b
MaxFIA
MinFIA
Naive

Figure 4. Performance of Algorithms with Dissimilarity Measure

Novel Approach to Hide Sensitive Association Rules 301

Algorithm
Database

Ghost Standard Lost Standard

Size
Rules Error Rules Error
(GR) (GR) (LR) (LR)

MinAffinityDSR 10 0 0 10.48 2.82
30 0 0 0 0.2
50 0 0 11.66 3.2
70 0 0 3.97 0.67

100 0 0 7.3 1.56
MaxAffinityDSR 10 0 0 52.41 4.81

30 0 0 27.05 3.22
50 0.57 0.01 30.68 1.56
70 0 0 18.54 3.39

100 0 0 11.51 1.22
MinAffinityDSL 10 0 0 41.38 4.29

30 1.45 0.11 0.48 0.55
50 0.57 0.12 17.61 4.99
70 0 0 3.31 2.23

100 1.44 0.49 12.23 4.81
MaxAffinityDSL 10 0.69 0.66 33.79 1.64

30 1.93 1.21 1.45 2.59
50 3.41 0.23 9.09 3.58
70 0.66 0.47 5.96 2.47

100 2.16 1.09 7.91 3.29
Affinityhybrid 10 0.53 0.04 20.79 1.01

30 0.93 0.37 0.48 1.2
50 1.41 0.01 9.09 0.25
70 0.11 0.01 3.31 1.23

100 0.66 0.78 4.91 0.45
Algo 1.b 10 0.69 0.16 37.93 0.68

30 1.93 0.19 1.45 1.26
50 2.84 1.01 14.77 2.32
70 1.32 1.07 5.96 1.67

100 2.16 1.22 7.91 0.44
MaxFIA 10 0 0 45.52 4.25

30 1.93 1.19 44.44 2.25
50 0.57 0.09 31.82 3.29
70 0 0 10.6 4.17

100 1.44 0 12.23 2.38
MinFIA 10 0 0 44.14 1.82

30 1.93 0.08 17.87 0.17
50 0 0 29.55 3.68
70 0 0 3.31 4.25

100 0.72 0.49 18.71 1.19
Naive 10 0 0 62.07 2.28

30 0.97 0.11 52.66 4.28
50 0 0 48.3 4.66
70 0 0 12.58 2.38

100 2.16 0.19 22.3 2.87

Table 7. Performance of Algorithms – Ghost Rules and Lost Rules (With Standard Error)

3.2 Experiment Setup 2

We have performed performance evaluation experiments on a PC with a core-i7
processor, 8GB RAM running on Windows 10 Operating System and the language
used for implementation is R Language.

We tested the proposed algorithm on three real representative databases. One is
a mushroom [29] (descriptions of hypothetical samples corresponding to 23 species

302 K. Pathak, S. Silakari, N. S. Chaudhari

Algorithm Database Size Dissimilarity Standard Error

MinAffinityDSR 10 3.70819848975189 1.52
30 0.52254906665387 2.31
50 3.30037822918644 0.65
70 1.17524852996062 0.58
100 2.01695689527802 0.29

MaxAffinityDSR 10 4.15110779188449 2.28
30 0.64602428139546 3.47
50 3.37266527447172 1.69
70 1.17055066774891 2.59
100 1.67285940210462 3.57

MinAffinityDSL 10 4.10339390921915 1.22
30 0.92254906665387 0.52
50 3.96994611329351 0.47
70 1.17524852996062 1.66
100 2.09695689527802 2.59

MaxAffinityDSL 10 4.29839847315575 3.69
30 0.68561351312443 2.48
50 3.63516217123998 3.58
70 1.17524852996062 2.46
100 1.67285940210462 3.46

Affinityhybrid 10 3.68819848975189 2.59
30 0.5882 3.57
50 3.30037822918644 2.58
70 1.17055066774891 2.69
100 1.65 4.24

Algo 1.b 10 4.58675628578541 0.66
30 0.687413023657565 2.25
50 3.64830527038276 3.28
70 1.17524852996062 2.69
100 2.01414387940674 2.47

MaxFIA 10 4.90726910629823 2.56
30 3.52464129756706 3.58
50 5.76507440454459 3.98
70 1.17524852996062 2.58
100 2.43897100267592 3.69

MinFIA 10 4.90726910629823 3.57
30 3.52464129756706 2.49
50 5.76507440454459 3.74
70 1.17524852996062 4.25
100 2.43897100267592 1.12

Naive 10 9.63612978176085 2.28
30 7.02169010029272 3.48
50 11.2986842297414 1.69
70 2.33953538142726 2.49
100 4.86772718401089 1.66

Table 8. Performance of Algorithms – Dissimilarity (With Standard Error)

Novel Approach to Hide Sensitive Association Rules 303

0 5 7 10
0

10

20

30

40

50

60

70

80

90

100

Number of Sensitive Association rules

T
ot
al

S
id
e-
eff

ec
ts

Side-Effect Evaluation

MinAffinityDSR
MaxAffnityDSR

Algo1.b
MaxFIA
MinFIA
Naive

MinAffinityDSL
MaxAffnityDSL
AffinityHybrid

Figure 5. Performance on real datasets – Mushroom, BMS-WebView-1, BMS-WebView-2

of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500–525). Each
species is identified as definitely edible, definitely poisonous, or of unknown edi-
bility and not recommended), which was prepared by Roberto Bayardo and is pub-
licly available through the FIMI repository website located at http://fimi.ua.ac.
be/data/ (Frequent Itemset Mining Dataset Repository). The other datasets were
BMS-WebView-1 (downloaded from [30]) from Blue Martini Software Inc. that
were used for the KDD Cup of 2000. This dataset contains 59,601 sequences of
clickstream data from an e-commerce. It contains 497 distinct items. The aver-
age length of sequences is 2.42 items with a standard deviation of 3.22. In this
dataset, there are some long sequences. For example, 318 sequences contain more
than 20 items. Another dataset used is BMS-WebView-2 (downloaded from [30])
which is a second dataset used in the KDD-CUP 2000 competition. It contains
77 512 sequences of click-stream data. It contains 3340 distinct items. The av-
erage length of sequences is 4.62 items with a standard deviation of 6.07 items.
The thresholds of minimum support were appropriately set to ensure an adequate
amount of frequent itemsets. Comparisons were made with state-of-art approaches
(Algo 1.a and Algo 1.b), MinFIA, MaxFIA and Naive, and the results are summa-
rized in Figure 5. The graph represents the average of total side-effects generated
on all three datasets when number of sensitive association rule is varied from 0
to 10. The result obtained is similar to the case when experiments are performed
with datasets generated from IBM Synthetic data generator. AffinityHybrid al-
gorithm gives the best solution. It can also be concluded that while hiding the
rule by reducing the support of right-hand side of rule, transactions must be se-
lected in increasing value of affinity, i.e., MinAffinityDSR is preferred. If the rule
is to be hided by decreasing the support of the left-hand side of the rule, transac-
tions must be selected in decreasing value of affinity, i.e., MaxAffinityDSL is pre-

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

304 K. Pathak, S. Silakari, N. S. Chaudhari

ferred.

4 ANALYSIS AND DISCUSSION

4.1 Accuracy

In association rule hiding techniques, the accuracy of the heuristic algorithms de-
pends on the victim item as well as the victim transaction. In [4] approaches selects
the victim transaction by count of itemsets present in the transaction. Picking
the transaction in this fashion can significantly increase side-effects. Let there are
four transactions all having precisely four itemsets, then as per [4], all four will be
considered equally as the candidate transaction to be modified.

Proposed strategy while selecting a potential transaction, takes into account
the effects of modifying it. This is done by the concept of affinity of transaction
introduced in the paper. Also in [4], approaches either select victim item from the
left-hand side of the rule or right-hand side of the rule.

In proposed hybrid approach, victim item, as well as victim transaction both are
selected on the basis of transaction affinity calculated exclusively for the left-hand
side as well as the right-hand side of the sensitive association rule.

4.2 Effect of MST and MCT

For hiding sensitive association rule, either support of the rule should be below
the minimum support threshold (MST), or confidence should be below minimum
confidence threshold (MCT). The number of modification increases as MST and
MCT selected by the data owner decreases.

It is identified by experimental results that proposed approaches performed bet-
ter not only with the higher value of MST and MCT but also with low range values.
Although the side-effect may get an increase, as the too low value of MST and MCT
is considered by data owner, while the optimal sanitization in association rule hiding
belongs to the class of NP-Complete problems.

4.3 Number of Modifications

1. The number of modifications to be done in MAXAffinityDSR and MINAffini-
tyDSR can be identified by:

NMDSR =

⌈
MIN(|T-id(Sr)| −

|T-id| ∗MST

100
, |T-id(Sr)| −

|T-id(LSr)| ∗MCT

100
)

⌉
.

(10)

T-id(Sr) or (
∑

X∪Y) and T-id(LSr) contains the set of all transactions containing
X ∪ Y and X respectively. |T-id| is the total number of transactions. To hide X
→ Y, removing items in Y from the transactions will decrease supportX∪Y i.e., it

Novel Approach to Hide Sensitive Association Rules 305

will reduce the number of transactions supporting the rule by deleting elements
from transactions present on the right-hand side of the rule. Let NMDSR (θ),
an integer, be number of modified transactions when the rule X → Y is hidden.
This make either support is reduced below MST as defined in Equation 11 or
confidence reduced below MCT as defined in Equation 12 which is sufficient to
hide the sensitive association rule.

|T-id(Sr)| − θ

|T-id|
<

MST

100
, (11)

|T-id(Sr)| − θ

|T-id(LSr)|
<

MCT

100
. (12)

Hence, the number of modifications required is minimum value of θ to satisfy
either Equations (11) or (12).

2. The number of modifications in MAXAffinityDSL and MINAffinityDSL is iden-
tified by:

NMDSL =

⌈
|T-id(Sr)| −

|T-id| ∗MST

100

⌉
. (13)

T-id(Sr) or (
∑

X ∪ Y) contains the set of all transactions containing X ∪ Y .
To hide X → Y , removing items in X from the transactions will decrease the
supportX∪Y i.e., it will reduce the number of transactions supporting the rule
by deleting elements from transactions present on left-hand side of rule. Let
NMDSL (θ), an integer, be number of modified transactions when rule X → Y
is hidden. This makes support to reduce below MST as defined in Equation (14)
which eventually hide the sensitive association rule.

|T-id(Sr)| − θ

|T-id|
<

MST

100
. (14)

3. The third approach AffinityHybrid combines the above two approaches to have
a mixture of reducing the support of a subset of the left-hand side and right-
hand side of the sensitive association rule. Therefore, number of modification
can be identified by:

NMH =

⌈
MIN

(
|T-id(Sr)| −

|T-id| ∗MST

100
, |T-id(Sr)| −

|T-id(LSr)| ∗MCT

100

)⌉
.

(15)

4.4 Results Summary

• MinAffinityDSR algorithm never generates ghost rules.

306 K. Pathak, S. Silakari, N. S. Chaudhari

• Algo 1.b perform worst in case of ghost rules side-effects.

• MaxAffinityDSR and MinAffinityDSR generate good results with dissimilarity
measure.

• Ghost rule percentage is low in comparison to lost rule percentage in case of
all algorithms as the maximum percentage of ghost rule side effect is under 3.5.
This shows that lost rule plays a primary concern in evaluating the performance
of the algorithm.

• MaxAffinityDSL and MinAffinityDSL performance were better in comparison to
Algo 1.a, Algo 1.b, MinFIA, MaxFIA and naive algorithm regarding lost rule
side-effect. Also, both perform better with dissimilarity measure.

• AffinityHybrid algorithm outperforms all the algorithms used for comparison
with the lost rule, ghost rule and dissimilarity measure.

5 CONCLUSION

This work proposes five new algorithms based on modifying transactions by con-
sidering the side effect, by calculating affinity sum of victim items with other
frequent items present in the transaction. The experimental result clearly shows
the fruitfulness of the approach. Experiments suggest that proposed approach
not only outperforms Algo 1.a, Algo 1.b, MINFia, MaxFIA and NAive algorithm
regarding dissimilarity measure but at the same time, side-effects have been re-
duced. A drawback of the proposed algorithm is its running time. Algorithm
performs a bit slower in comparison to other algorithms when experiments per-
formed with large databases. The reason for a slow speed is that the affinity cal-
culation time increases with database size. Among the five algorithms presented
in the paper, AffinityHybrid algorithm gives the best solution. It can also be con-
cluded that while hiding the rule by reducing the support of the right-hand side
of the rule, transactions must be selected in the increasing value of affinity, i.e.,
MinAffinityDSR is preferred. If the rule is to be hided by the decreasing the sup-
port of the left-hand side of the rule, transactions must be selected in decreas-
ing value of affinity, i.e., MaxAffinityDSL is preferred. If there is no restriction
on selecting the victim item from the rule, the AffinityHybrid algorithm is pre-
ferred as it is the top performer among the set of algorithms discussed in the pa-
per.

REFERENCES

[1] Clifton, C.—Marks, D.: Security and Privacy Implications of Data Mining. ACM
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery,
Citeseer, 1996, pp. 15–19.

Novel Approach to Hide Sensitive Association Rules 307

[2] Oliveira, S. R.M.—Zaiane, O.R.: Privacy Preserving Frequent Itemset Mining.
In: Clifton, C., Estivill-Castro, V. (Eds.): IEEE ICDMWorkshop on Privacy, Security
and Data Mining. ACS, Maebashi City, Japan, CRPIT, Vol. 14, 2002, pp. 43–54.

[3] Sun, X.—Yu, P.: A Border-Based Approach for Hiding Sensitive Frequent Itemsets.
Fifth IEEE International Conference on Data Mining (ICDM ’05), 2005, 8 pp., doi:
10.1109/ICDM.2005.2.

[4] Verykios, V.—Elmagarmid, A.—Bertino, E.—Saygin, Y.—Dasseni, E.: As-
sociation Rule Hiding. IEEE Transactions on Knowledge and Data Engineering,
Vol. 16, 2004, No. 4, pp. 434–447, doi: 10.1109/TKDE.2004.1269668.

[5] Oliveira, S.—Zaiane, O.: Protecting Sensitive Knowledge by Data Sanitiza-
tion. Third IEEE International Conference on Data Mining, 2003, pp. 613–616, doi:
10.1109/ICDM.2003.1250990.

[6] Pontikakis, E.—Tsitsonis, A.—Verykios, V.: An Experimental Study of
Distortion-Based Techniques for Association Rule Hiding. Research Directions in
Data and Applications Security XVIII, 2004, pp. 325–339, doi: 10.1007/1-4020-8128-
6 22.

[7] Jain, D.—Khatri, P.—Soni, R.—Chaurasia, B.K.: Hiding Sensitive Associ-
ation Rules Without Altering the Support of Sensitive Item(s). Advances in Com-
puter Science and Information Technology. Networks and Communications, 2012,
pp. 500–509, doi: 10.1007/978-3-642-27299-8 52.

[8] Lin, Y.—Wang, E.—Lee, G.: A Novel Method for Protecting Sensitive Knowledge
in Association Rules Mining. Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC 2005), IEEE Computer Society,
Los Alamitos, CA, USA, Vol. 1, 2005, pp. 511–516, doi: 10.1109/COMPSAC.2005.27.

[9] Sun, X.—Yu, P. S.: Hiding Sensitive Frequent Itemsets by a Border-Based Ap-
proach. Journal of Computing Science and Engineering, Vol. 1, 2007, No. 1, pp. 74–94,
doi: 10.5626/jcse.2007.1.1.074.

[10] Moustakides, G.V.—Verykios, V. S.: A Maxmin Approach for Hiding Frequent
Itemsets. Data and Knowledge Engineering, Vol. 65, 2008, No. 1, pp. 75–89, doi:
10.1016/j.datak.2007.06.012 (Including Special Section: Privacy Aspects of Data Min-
ing Workshop (2006) – Five Invited and Extended Papers).

[11] Gkoulalas-Divanis, A.—Verykios, V.: A Hybrid Approach to Frequent Item-
set Hiding. 19th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2007), Vol. 1, 2007, pp. 297–304, doi: 10.1109/ICTAI.2007.68.

[12] Quoc Le, H.—Arch-Int, S.—Arch-Int, N.: Association Rule Hiding Based on
Intersection Lattice. Mathematical Problems in Engineering, Vol. 2013, 2013, doi:
10.1155/2013/210405.

[13] Gkoulalas-Divanis, A.—Verykios, V. S.: An Integer Programming Approach
for Frequent Itemset Hiding. Proceedings of the 15th ACM International Conference
on Information and Knowledge Management – CIKM ’06, ACM Press, 2006, doi:
10.1145/1183614.1183721.

[14] Guo, Y.: Reconstruction-Based Association Rule Hiding. Proceedings of SIGMOD
2007 Ph.D. Workshop on Innovative Database Research, Vol. 2007, 2007, pp. 51–56.

[15] Chen, X.—Orlowska, M.—Li, X.: A New Framework of Privacy Preserving Data

https://doi.org/10.1109/ICDM.2005.2
https://doi.org/10.1109/TKDE.2004.1269668
https://doi.org/10.1109/ICDM.2003.1250990
https://doi.org/10.1007/1-4020-8128-6_22
https://doi.org/10.1007/1-4020-8128-6_22
https://doi.org/10.1007/978-3-642-27299-8_52
https://doi.org/10.1109/COMPSAC.2005.27
https://doi.org/10.5626/jcse.2007.1.1.074
https://doi.org/10.1016/j.datak.2007.06.012
https://doi.org/10.1109/ICTAI.2007.68
https://doi.org/10.1155/2013/210405
https://doi.org/10.1145/1183614.1183721

308 K. Pathak, S. Silakari, N. S. Chaudhari

Sharing. Proceedings of the 4th IEEE ICDMWorkshop: Privacy and Security Aspects
of Data Mining. IEEE Computer Society, Citeseer, 2004, pp. 47–56.

[16] Wang, Y.—Wu, X.: Approximate Inverse Frequent Itemset Mining: Privacy, Com-
plexity, and Approximation. Fifth IEEE International Conference on Data Mining
(ICDM ’05), 2005, 8 pp., doi: 10.1109/ICDM.2005.27.

[17] Guo, Y.—Tong, Y.—Tang, S.—Yang, D.: A FP-Tree-Based Method for Inverse
Frequent Set Mining. In: Bell, D.A., Hong, J. (Eds.): Flexible and Efficient Infor-
mation Handling. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 152–163,
doi: 10.1007/11788911 13.

[18] Ahmed, G.—Abd Ellatif, L.—Sharaf, A.: Association Rules Hiding for Privacy
Preserving Data Mining: A Survey. International Journal of Computer Applications,
Vol. 150, 2016, No. 12, pp. 34–43, doi: 10.5120/ijca2016911664.

[19] Vaidya, J.—Clifton, C.: Privacy Preserving Association Rule Mining in Vertically
Partitioned Data. Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Association for Computing Machinery,
New York, NY, USA, KDD ’02, 2002, pp. 639–644, doi: 10.1145/775047.775142.

[20] Vaidya, J.—Clifton, C.: Secure Set Intersection Cardinality with Application to
Association Rule Mining. J. Comput. Secur., Vol. 13, 2005, No. 4, pp. 593–622, doi:
https://dl.acm.org/doi/10.5555/1239367.1239368.

[21] Zhong, S.: Privacy-Preserving Algorithms for Distributed Mining of Fre-
quent Itemsets. Information Sciences, Vol. 177, 2007, No. 2, pp. 490–503, doi:
10.1016/j.ins.2006.08.010.

[22] El-Sisi, A.: Fast Cryptographic Privacy Preserving Association Rules Mining on
Distributed Homogenous Database. Int. Arab J. Inf. Technol., Vol. 7, 2010, No. 2,
pp. 152–160.

[23] Kaosar, M.G.—Paulet, R.—Yi, X.: Fully Homomorphic Encryption Based
Two-Party Association Rule Mining. Data and Knowledge Engineering, Vol. 76–78,
2012, pp. 1–15, doi: 10.1016/j.datak.2012.03.003.

[24] Alborzi, S.—Raji, F.—Saraee, M.: Privacy Preserving Mining of Associa-
tion Rules on Horizontally Distributed Databases. International Conference on Soft-
ware and Computer Applications ICSCA 2012, IACSIT Press, Singapore, 2012,
pp. 158–164, http://usir.salford.ac.uk/id/eprint/42930/.

[25] Aggarwal, C.—Procopiuc, C.—Yu, P.: Finding Localized Associations in Mar-
ket Basket Data. IEEE Transactions on Knowledge and Data Engineering, Vol. 14,
2002, No. 1, pp. 51–62, doi: 10.1109/69.979972.

[26] Lin, C.W.—Hong, T. P.—Chang, C.C.—Wang, S. L.: A Greedy-Based Ap-
proach for Hiding Sensitive Itemsets by Transaction Insertion. J. Inf. Hiding Multim.
Signal Process., Vol. 4, 2013, No. 4, pp. 201–214.

[27] Agrawal, R.—Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Bocca, J. B., Jarke, M., Zaniolo, C. (Eds.): VLDB ’94, Proceedings
of 20th International Conference on Very Large Data Bases, September 12–15, 1994,
Santiago De Chile, Chile. Morgan Kaufmann, 1994, pp. 487–499, http://www.vldb.
org/conf/1994/P487.PDF.

[28] R Core Team: R: A Language and Environment for Statistical Computing. R Foun-

https://doi.org/10.1109/ICDM.2005.27
https://doi.org/10.1007/11788911_13
https://doi.org/10.5120/ijca2016911664
https://doi.org/10.1145/775047.775142
https://doi.org/https://dl.acm.org/doi/10.5555/1239367.1239368
https://doi.org/10.1016/j.ins.2006.08.010
https://doi.org/10.1016/j.datak.2012.03.003
http://usir.salford.ac.uk/id/eprint/42930/
https://doi.org/10.1109/69.979972
http://www.vldb.org/conf/1994/P487.PDF
http://www.vldb.org/conf/1994/P487.PDF

Novel Approach to Hide Sensitive Association Rules 309

dation for Statistical Computing, Vienna, Austria, 2017, https://www.R-project.
org/.

[29] Mushroom. 1987, doi: 10.24432/C5959T.

[30] Fournier-Viger, P.—Lin, J. C.W.—Gomariz, A.—Gueniche, T.—
Soltani, A.—Deng, Z.—Lam, H.T.: The SPMF Open-Source Data Mining
Library Version 2. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G.,
Miettinen, P., Tatti, N., Tresp, V. (Eds.): Machine Learning and Knowledge
Discovery in Databases. Springer International Publishing, Cham, 2016, pp. 36–40,
doi: 10.1007/978-3-319-46131-1 8.

https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.24432/C5959T
https://doi.org/10.1007/978-3-319-46131-1_8

310 K. Pathak, S. Silakari, N. S. Chaudhari

Kshitij Pathak is a Lecturer in the Department of Computer
Science and Engineering at Government Polytechnic College
Mandsaur, MP, India. He has been awarded a Ph.D. degree
in computer science and engineering. He has published 42 pa-
pers in International and National journals and conferences. His
research interest includes data mining, information security and
artificial intelligence. He is a life member of the Computer So-
ciety of India and the Institution of Engineers India.

Sanjay Silakari is Professor in the Department of Computer
Science and Engineering at the University Institute of Technol-
ogy, RGPV Bhopal, MP, India. He has more than two decades
of teaching and administrative experience and has guided several
students in their doctoral and master’s studies. He has several
research publications to his credit in different reputed national
and international conferences and journals. His areas of interest
include network security, web engineering, web personalization
and search engines, operating systems, computer networks and
e-commerce. He is a life member of ISTE, CSI, and IAENG and

a member of IEEE and ACM. He is the author of the book Basic Computer Engineer-
ing.

Narendra S. Chaudhari is Professor (HAG) in the Computer
Science and Engineering Department at Indian Institute of Tech-
nology (IIT), Indore (M.P.), India. He has done significant re-
search work on game AI, novel neural network models and secu-
rity of the wireless mobile communication. He has been referee
and reviewer for a number of premier conferences and Journals
including IEEE Transaction, Neurocomputing, etc. Also, he is
fellow and recipient of Eminent Engineer Award (Computer En-
gineering) of the Institution of Engineers, India (IE-India), as
well as fellow of the Institution of Electronics and Telecommu-

nication Engineers (IETE) (India), senior member of Computer Society of India, senior
member of IEEE (USA), member of Indian Mathematical Society (IMS), Cryptology Re-
search Society of India (CRSI) and many other professional societies.

