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ON A GENERALIZED BASIC SERIES AND

ROGERS-RAMANUJAN TYPE IDENTITIES - II

P. SONIK AND M. GOYAL*

Abstract. This paper is in continuation with our recent paper “On
a generalized basic series and Rogers–Ramanujan type identities” [18].
Here, we consider two generalized basic series and interpret these basic
series as the generating function of some restricted (n + t)-color parti-
tions and restricted weighted lattice paths. The basic series discussed
in the aforementioned paper, is now a mere particular case of one of the
generalized basic series that are discussed in this paper. Besides, eight
particular cases are also discussed which give combinatorial interpreta-
tions of eight Rogers-Ramanujan type identities which are combinatori-
ally unexplored till date.

1. Introduction

The Rogers-Ramanujan identities are the most mysterious and celebrated
results in the theory of partitions. Their remarkable applications appear
in areas as distinct as enumerative combinatorics, number theory, repre-
sentation theory, group theory, statistical physics, probability and complex
analysis [7, 8]. These identities have been known to the world for one hun-
dred and twenty-five years and are still the subject of attention and active
research. The Rogers-Ramanujan identities are a pair of infinite “Sum-
Product” basic series identities. Bailey [9, 10] systematically studied and
generalized Rogers’s work on Rogers-Ramanujan type identities. A large
collection of such identities was produced by L.J. Slater [17]. The con-
nection between Rogers-Ramanujan identities and ordinary partitions was
established by MacMahon [15]. But there were several identities in Slater’s
list for which combinatorial interpretation using ordinary partitions was not
possible. So, it demanded the generalization of ordinary partitions which is
attributed to Agarwal and Andrews work [4] in 1987 . They named these
new sets of partitions as (n+ t)-color partitions. Agarwal and Bressoud [5]
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introduced and studied weighted lattice paths for the graphical representa-
tion of Rogers-Ramanujan type identities. By now there are several com-
binatorial identities established for the Rogers-Ramanujan type identities
using (n + t)-color partitions and weighted lattice paths, see for instance,
[1, 3, 14]. In our recent paper [18], we studied a generalized basic series
that generalizes several Rogers-Ramanujan type identities found in literature
[11, 12, 17]. In this paper, we propose two new generalized combinatorial
identities for Rogers-Ramanujan type identities with a minimum amount of
algebraic manipulation. Our proofs involve the analysis of two distinct sets
of combinatorial objects, viz., (n + t)-color partitions and weighted lattice
paths using algebraic and constructive approaches. Our results are elemen-
tary and approachable. These results give a new insight into future advanced
combinatorial generalizations of Rogers-Ramanujan type identities.

In this paper, the following two generalized basic series have been studied.
∞∑
n=0

qαn
2+βn

(qγ ; q2γ)n(qδ; qδ)n
,(1.1)

∞∑
n=0

qαn
2+tn

(qγ ; q2γ)n+1(qδ; qδ)n
,(1.2)

where α, γ, δ, t ∈ Z+ and β ∈ Z+ ∪ {0} and

(a; q)n =

n−1∏
r=0

(1− aqr),

(a; q)∞ = lim
n→∞

(a; q)n,

where (a1, a2, . . . , an; z)∞ =
n∏

r=1
(ar; z)∞ and |q| < 1.

The purpose of this paper is to interpret the above generalized basic series
(1.1)–(1.2) as generating function of certain restricted classes of (n+t)-color
partitions and weighted lattice paths. Hence, these results provide an infinite
set of combinatorial identities and also provide many Rogers-Ramanujan
type combinatorial identities as their particular cases. The following series
is the generalized basic series studied in [18]:

∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
.(1.3)

If we compare the series (1.3) with the basic series (1.1), one can observe
that the basic series (1.3) is a mere particular case of (1.1) when δ is even.

We split the proof of the main results into three virtually independent
parts. In the first part, that is, the algebraic part, we use recurrence relations
and q-functional equations to provide partition theoretic interpretations.
In the second part, these basic series are interpreted in terms of weighted
lattice paths using a constructive approach, and in the last part, we establish
combinatorial identities by establishing direct bijections between restricted
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(n+t)-color partitions and weighted lattice paths. Our proofs are elementary
and completely self-contained. We conclude with the final remarks section.

The main results in this paper are stated as:

Theorem 1.1. Let A
(α,β)
(γ,δ) (ξ) denote the number of n-color partitions of ξ

in such a way that

(1) all subscripts are greater than or equal to α, and congruent to α (mod γ).
For any part eℓ, e ≥ ℓ+ β,

(2) if mi is the smallest or the only part in the partition then m ≡
i+ β (mod δ),

(3) the weighted difference of any two consecutive parts is non-negative
and is congruent to 0 (mod δ).

Let B
(α,β)
(γ,δ) (ξ) denote the number of lattice paths of weight ξ which start

from (0, 0) and

(1) they have no valley above height 0,
(2) the height of each peak is ≥ α and is ≡ α (mod γ),
(3) there is a plain of length congruent to β modulo δ at the beginning

of the path and the lengths of the other plains, if any, are congruent
to 0 (mod δ).

Then, we have A
(α,β)
(γ,δ) (ξ) = B

(α,β)
(γ,δ) (ξ) for all ξ and

∞∑
ξ=0

A
(α,β)
(γ,δ) (ξ) q

ξ =
∞∑
ξ=0

B
(α,β)
(γ,δ) (ξ) q

ξ =
∞∑
n=0

qαn
2+βn

(qγ ; q2γ)n(qδ; qδ)n
,(1.4)

where α, γ, δ ∈ Z+ and β ∈ Z+ ∪ {0}.

Theorem 1.2. Let C
(α,t)
(γ,δ)(ξ) denote the number of (n + t)-color partitions

of ξ in such a way that

(1) the smallest or the singleton part is of the form ii+t where i ≡
0 (mod γ),

(2) for all other parts, subscripts are at least α and congruent to α (mod γ),
(3) the weighted difference of any two consecutive parts is non-negative

and congruent to 0 (mod δ).

Let D
(α,t)
(γ,δ)(ξ) denote the number of lattice paths of weight ξ which start

from (0, t) and

(1) they have no valley above height 0,
(2) the height of the first peak is at least t and congruent to t (mod γ),
(3) for all other peaks, the height is at least α and is congruent to

α (mod γ),
(4) the lengths of the plains, if any, are congruent to 0 (mod δ),
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Then, we have C
(α,t)
(γ,δ)(ξ) = D

(α,t)
(γ,δ)(ξ) for all ξ and

∞∑
ξ=0

C
(α,t)
(γ,δ)(ξ) q

ξ =

∞∑
ξ=0

D
(α,t)
(γ,δ)(ξ) q

ξ =

∞∑
n=0

qαn
2+tn

(qγ ; q2γ)n+1(qδ; qδ)n
,(1.5)

where α, t, γ, δ ∈ Z+.

Before we proceed further, we first recall a few basic definitions.

Definition 1.3. [4] A partition with “n+t copies of n”, t ≥ 0, is a partition
in which a part of size n, n ≥ 0, can come in n+ t different colors denoted
by subscripts: n1, n2, n3, . . . , nn+t.

For example, the partitions of 2 with “n+ 1 copies of n” are

21 2101 1111 111101

22 2201 1211 121101

23 2301 1212 121201

Remark: Note that zeros are permitted if and only if t is greater than
zero.

For t = 0, these partitions are known as n-color partitions [1].

Definition 1.4. The weighted difference of two parts xi and yj, (x ≥ y), is
defined by x− y − i− j and is expressed by ((xi − yj)).

Definition 1.5. [5] All weighted lattice paths will be of finite lengths and
they lie in the first quadrant. They will start on the y-axis or the x-axis and
end on the x-axis. Only three steps are allowed:

• northeast: from (a, b) to (a+ 1, b+ 1).
• southeast: from (a, b) to (a+ 1, b− 1), only allowed if b > 0.
• horizontal: from (a, 0) to (a+ 1, 0), only allowed along x-axis.

Every lattice path is either empty or ends with a southeast step: from
(a, 1) to (a+ 1, 0).

To illustrate the lattice paths, the following terminology is used.

• Peak: Either a vertex on the y-axis is followed by a southeast step
or a vertex preceded by a northeast step and followed by a southeast
step.

• Valley: A vertex preceded by a southeast step and followed by a north-
east step. Remember that a southeast step followed by a horizontal
step followed by a northeast step does not form a valley.

• Mountain: A section of the path which begins on either the x- or
y- axis, which terminates on the x-axis, and which does not touch
the x-axis throughout in between the endpoints. There is at least one
peak in a mountain and the number of peaks may exceed one.

• Plain: A section of the path including only horizontal steps which
begins either on the y-axis or at a vertex preceded by a southeast step
and terminates at a vertex followed by a northeast step.
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The height of a vertex is its y-coordinate, the weight of a vertex is its
x-coordinate, and the weight of a lattice path is the sum of the weights of
its peaks.

2. Main Results

Firstly, we will prove Theorem 1.1 in three steps.

2.1. Step I: Algebraic approach. Let A
(α,β)
(γ,δ) (ζ, ξ) represent the number

of partitions of ξ enumerated by A
(α,β)
(γ,δ) (ξ) with the added restriction that

there be exactly ζ parts. First of all, we will prove the following recurrence
relation:

A
(α,β)
(γ,δ) (ζ, ξ) = A

(α,β)
(γ,δ) (ζ, ξ − δζ) +A

(α,β)
(γ,δ) (ζ − 1, ξ − 2αζ + α− β)

+A
(α,β)
(γ,δ) (ζ, ξ − 2γζ + γ)−A

(α,β)
(γ,δ) (ζ, ξ − ζ(2γ + δ) + γ).

To prove this, we split the partitions enumerated by A
(α,β)
(γ,δ) (ζ, ξ) into three

classes:

(i) those that do not contain λλ−β as a part,
(ii) those that contain (α+ β)α as a part, and
(iii) those that contain λλ−β, λ > α+ β as a part.

We now transform the partitions in class (i) by subtracting δ from each
part ignoring the subscripts. Obviously, this transformation will not disturb
the inequalities between the parts and so the transformed partition will be of

the type enumerated by A
(α,β)
(γ,δ) (ζ, ξ− δζ). Next, we transform the partitions

in class (ii) by deleting the least part (α+β)α and then subtracting 2α from
all the remaining parts ignoring the subscripts. The transformed partition

will be of the type enumerated by A
(α,β)
(γ,δ) (ζ− 1, ξ− 2αζ+α−β). Finally, we

transform the partitions in class (iii) by replacing λλ−β by (λ−γ)λ−β−γ and
then subtracting 2γ from all the remaining parts ignoring the subscripts.
This will produce a partition of ξ − 2γζ + γ into ζ parts. It is important
to note here that by this transformation we get only those partitions of
ξ − 2γζ + γ into ζ parts which contain a part of the form λλ−β. Therefore,
the actual number of partitions which belong to class (iii) is

A
(α,β)
(γ,δ) (ζ, ξ − 2γζ + γ)−A

(α,β)
(γ,δ) (ζ, ξ − ζ(2γ + δ) + γ),

where A
(α,β)
(γ,δ) (ζ, ξ−ζ(2γ+δ)+γ) is the number of partitions of ξ−2γζ+γ into

ζ parts which are free from the parts like λλ−β. The above transformations
are clearly reversible and so establish a bijection between the partitions

enumerated by A
(α,β)
(γ,δ) (ζ, ξ) and those enumerated by

A
(α,β)
(γ,δ) (ζ, ξ − δζ) +A

(α,β)
(γ,δ) (ζ − 1, ξ − 2αζ + α− β)

+A
(α,β)
(γ,δ) (ζ, ξ − 2γζ + γ)−A

(α,β)
(γ,δ) (ζ, ξ − ζ(2γ + δ) + γ).
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This generates the identity

A
(α,β)
(γ,δ) (ζ, ξ) = A

(α,β)
(γ,δ) (ζ, ξ − δζ) +A

(α,β)
(γ,δ) (ζ − 1, ξ − 2αζ + α− β)

+A
(α,β)
(γ,δ) (ζ, ξ − 2γζ + γ)−A

(α,β)
(γ,δ) (ζ, ξ − ζ(2γ + δ) + γ).(2.1)

Let

f
(α,β)
(γ,δ) (z; q) =

∞∑
ξ=0

∞∑
ζ=0

A
(α,β)
(γ,δ) (ζ, ξ)z

ζqξ.(2.2)

From (2.1) and (2.2), we have

f
(α,β)
(γ,δ) (z; q) = f

(α,β)
(γ,δ) (zq

δ; q) + zqα+βf
(α,β)
(γ,δ) (zq

2α; q) + q−γf
(α,β)
(γ,δ) (zq

2γ ; q)

− q−γf
(α,β)
(γ,δ) (zq

2γ+δ; q).(2.3)

Since f
(α,β)
(γ,δ) (z; q) is analytic function for |q| < 1 and |z| < |q|−1, we have

f
(α,β)
(γ,δ) (z; q) =

∞∑
n=0

an(q)z
n.(2.4)

Employing (2.4) into (2.3) and then comparing the coefficients of zn on
each side of the resulting identity, we deduce that

an(q) =
qα(2n−1)+βan−1(q)

(1− qδn)(1− q2γ(n−1)+γ)
.

On iterating and using a0(q) = 1, we obtain that

an(q) =
qαn

2+βn

(qδ; qδ)n(qγ ; q2γ)n
.

Hence

f
(α,β)
(γ,δ) (z; q) =

∞∑
n=0

qαn
2+βn

(qγ ; q2γ)n(qδ; qδ)n
zn.

Therefore
∞∑
ξ=0

A
(α,β)
(γ,δ) (ξ)q

ξ =

∞∑
ξ=0

∞∑
ζ=0

A
(α,β)
(γ,δ) (ζ, ξ)q

ξ

= f
(α,β)
(γ,δ) (1; q)

=

∞∑
n=0

qαn
2+βn

(qγ ; q2γ)n(qδ; qδ)n
.
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2.2. Step II: Constructive approach. In this step, we will prove that
∞∑
ξ=0

B
(α,β)
(γ,δ) (ξ) q

ξ =

∞∑
n=0

qαn
2+βn

(qγ ; q2γ)n(qδ; qδ)n
.(2.5)

In
qαn

2+βn

(qγ ; q2γ)n(qδ; qδ)n
,

the factor qαn
2+βn generates a lattice path from (0, 0) to (β+2αn, 0) having

n peaks each of height α and a plain of length β at the beginning of the
path. For example, α = 2, β = 1, n = 4, the path begins as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3

4

5

6

7

8

9

10

Figure 1. Four peaks each of height 2, three valleys each
at height zero and a plain of length 1 at the beginning of the
path

In Figure 1, we take two consecutive peaks say, jth and (j + 1)th and
denote them by P1 and P2 respectively.

P
1

P
2

Figure 2. Two peaks of same height

Clearly, in Figure 2

P1 ≡ (β + α(2j − 1), α) and P2 ≡ (β + α(2j + 1), α).

The factor
1

(qδ; qδ)n
,
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generates n nonnegative multiples of δ, say, u1 ≥ u2 ≥ . . . ≥ un ≥ 0 which
are encoded by inserting un horizontal steps in front of the first mountain
and uj − uj+1 horizontal steps in front of the (n − j + 1)th mountain for

1 ≤ j ≤ n− 1. Thus the x-coordinate of the jth peak is increased by un−j+1

and the x-coordinate of the (j + 1)th peak is increased by un−j . Figure 2
now turns into Figure 3.

P
1

P
2

Figure 3. Two peaks separated by a plain of length multiple
of δ

Thus two consecutive peaks P1 and P2 becomes

P1 ≡ (β + α(2j − 1) + un−j+1, α) and P2 ≡ (β + α(2j + 1) + un−j , α).

The factor
1

(qγ ; q2γ)n
generates n nonnegative odd multiples of γ, say

v1× γ, v2× 3γ, v3× 5γ, . . . , vn× (2n− 1)γ. These can be encoded by raising
the height of jth peak by γvn−j+1, 1 ≤ j ≤ n. So, jth peak grows to
height γvn−j+1+α. Each increase by one in height of a given peak increases
its weight by one and the weight of each subsequent peak by two. Figure
3 is altered to Figure 4 or Figure 5 depending on if vn−j > vn−j+1 or
vn−j < vn−j+1. In case when vn−j = vn−j+1, the new Figure looks like
Figure 3.

P
1

P
2

Figure 4. P2 has more height than P1 for vn−j > vn−j+1
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P
1

P
2

Figure 5. P1 has more height than P2 for vn−j < vn−j+1

By this way, we can uniquely generate each lattice path enumerated by

B
(α,β)
(γ,δ) (ξ). This demonstrates (2.5).

2.3. Step III: Direct bijections. We now establish a bijection between

the lattice paths enumerated by B
(α,β)
(γ,δ) (ξ) and the n-color partitions enu-

merated by A
(α,β)
(γ,δ) (ξ). We do this by encoding every path as the sequence of

the weights of the peaks with each weight subscripted by the height of the
respective peak. Therefore, if in the final figure, we represent the jth and
(j + 1)th peaks by Gx and Hy, (H ≥ G), respectively, then

G = β + α(2j − 1) + un−j+1 + 2γ(vn + vn−1 + . . .+ vn−j+2) + γvn−j+1,

H = β + α(2j + 1) + un−j + 2γ(vn + vn−1 + . . .+ vn−j+1) + γvn−j ,

x = γvn−j+1 + α,

y = γvn−j + α.

Now, the weighted difference of Hy and Gx is equal to

((Hy −Gx)) = H −G− x− y = un−j − un−j+1.

Clearly weighted difference is ≥ 0 and it is ≡ 0 (mod δ). Now for every
peak,

G− x = β + 2α(j − 1) + un−j+1 + 2γ(vn + vn−1 + . . .+ vn−j+2),

hence G− x ≥ β, and thus G ≥ x+ β.
Next, say Gx is the first peak, then it will correspond to the least part

in the corresponding n-color partition or to the singleton part if the n-color
partition contains only one part and in both of the cases G− x = β + un ≡
β (mod δ). This gives G ≡ x+ β (mod δ).

Moreover, x = γvn−j+1 + α and y = γvn−j + α. It is clear that each
subscript is at least α and is congruent to α (mod γ). In addition, all parts
are at least α+ β.

To check the reverse implication, we take two n-color parts of a partition

enumerated by A
(α,β)
(γ,δ) (ξ), sayMr and Ns with N ≥ M,N ≥ s+β,M ≥ r+β,

r ≥ α and s ≥ α. Let Q1 ≡ (M, r) and Q2 ≡ (N, s) be the associated peaks
in the corresponding lattice path.
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Q
1
 ≡ (M,r)

Q
2
 ≡ (N,s)

Plain

Figure 6. Two peaks separated by a plain

The length of the plain between the two peaks is N − M − r − s =
((Ns −Mr)) ≡ 0 (mod δ).

Also, there can not be a valley above height 0. This can be proved by
contradiction. Let us assume a valley V at height h (h > 0) between the
peaks Q1 and Q2.

Q
1
 ≡ (M,r)

Q
2
 ≡ (N,s)

h

V

Figure 7. Two peaks along a valley at height h

Clearly, there is a descent of r − h from Q1 to V and an ascent of s − h
from V to Q2. This implies

N = M + (r − h) + (s− h) =⇒ N −M − r − s = −2h,

hence ((Ns −Mr)) = −2h.
Now, ((Ns −Mr)) ≥ 0 =⇒ −2h ≥ 0 =⇒ h = 0. This confirms, there is

no valley above height 0.
Now in (1.4), the extra factor qβn puts β horizontal steps in front of the

first peak. This makes the length of the plain (which is at the beginning of
the path) congruent to β (mod δ). This completes the proof of Theorem
1.1.

2.4. Proof of Theorem 1.2. Since the proof of Theorem 1.2 is similar
to that of Theorem 1.1, we omit the details and give only the identities
analogous to (2.1) and (2.3).

C
(α,t)
(γ,δ)(ζ − 1, ξ − (2α− t)(ζ − 1)− α) = A

(α,0)
(γ,δ) (ζ, ξ)−A

(α,0)
(γ,δ) (ζ, ξ − δζ),
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and

zqαϕ
(α,t)
(γ,δ)(zq

2α−t; q) = f
(α,0)
(γ,δ) (z; q)− f

(α,0)
(γ,δ) (zq

δ; q),

where,

ϕ
(α,t)
(γ,δ)(z; q) =

∞∑
ξ=0

∞∑
ζ=0

C
(α,t)
(γ,δ)(ζ, ξ)z

ζqξ =
∞∑
n=0

qαn
2+tn

(qγ ; q2γ)n+1(qδ; qδ)n
zn.

Now comparing the identity (1.2) with identity (1.1), when β = 0, we see

that there are two extra factors, viz., qtn and (1 − q(2n+1)γ)−1. The extra
factor qtn puts t southeast steps: (0, t) to (1, t−1),· · · , (t−1, 1) to (t, 0). So,

there are n + 1 peaks starting from (0, t) and the extra factor
1

1− q(2n+1)γ

generates a nonnegative multiple of (2n + 1)γ say vn+1 × (2n + 1)γ. This
can be inserted by raising the height of the first peak by γvn+1 i.e. first
peak grows to height of γvn+1 + t in the northeast direction. Clearly,
(γvn+1)γvn+1+t which is of the form ii+t will be the colored part correspond-
ing to the first peak.

(0,t)

Figure 8. First peak corresponding to the height γvn+1+ t

3. Rogers-Ramanujan type identities

For some particular values of α, β, γ, δ and t, the generalized series (1.1)–
(1.2) yields the following eight Rogers-Ramanujan type identities. These
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identities are also found in Bailey [11], Chu and Zhang [12] and Slater [17]
∞∑
n=0

q2n
2+2n

(q2; q4)n+1(q2; q2)n
=
(q8, q20, q28; q28)∞

(q2; q2)∞
,(3.1)

∞∑
n=0

q3n
2

(q3; q6)n(q3; q3)n
=
(q18, q24, q42; q42)∞

(q3; q3)∞
,(3.2)

∞∑
n=0

q2n
2+2n

(q4; q8)n(q4; q4)n
=
(−q4; q4)∞(q8, q20, q28; q28)∞
(q4; q4)∞(−q4,−q24; q28)∞

,(3.3)

∞∑
n=0

q4n
2+4n

(q2; q4)n+1(q4; q4)n
=
(−q2,−q14, q16; q16)∞

(q4; q4)∞
,(3.4)

∞∑
n=0

q2n
2+4n

(q2; q4)n+1(q2; q2)n
=
(q4, q24, q28; q28)∞

(q2; q2)∞
,(3.5)

∞∑
n=0

q6n
2+3n

(q3; q6)n+1(q6; q6)n
=
(q6, q18, q24; q24)∞(q12, q36; q48)∞

(q3; q3)∞
,(3.6)

∞∑
n=0

q5n
2+5n

(q5; q10)n+1(q5; q5)n
=
(q20, q50, q70; q70)∞

(q5; q5)∞
,(3.7)

∞∑
n=0

qn
2+3n

(q2; q4)n+1(q2; q2)n
=
(−q2; q2)∞(q6, q8, q14; q14)∞(q2, q26; q28)∞

(q2; q2)∞
.(3.8)

The basic series (3.1)–(3.8) have their combinatorial counterparts in form
of the following theorems, respectively.

Theorem 3.1. Let X1(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±2,±4,±6,±10,±12, 14 (mod 28). Then

X1(ξ) = C
(2,2)
(2,2) (ξ) = D

(2,2)
(2,2)(ξ), for all ξ,

where C
(2,2)
(2,2) (ξ) and D

(2,2)
(2,2)(ξ) are as described in Theorem 1.2.
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The below-mentioned table describes the particular case (3.1) more precisely.
Partitions enum. Partitions enum. Lattice paths enum.

by X1(6) by C
(2,2)
(2,2) (6) by D

(2,2)
(2,2)(6)

6, 4+2, 2+2+2 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

6202

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6402

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

Theorem 3.2. Let X2(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±3,±6,±9,±12,±15, 21 (mod 42). Then

X2(ξ) = A
(3,0)
(3,3)(ξ) = B

(3,0)
(3,3)(ξ), for all ξ,

where A
(3,0)
(3,3)(ξ) and B

(3,0)
(3,3)(ξ) are as described in Theorem 1.1.

Theorem 3.3. Let Y3(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±4,±12 (mod 28) and Z3(ξ) represent the number of
ordinary partitions of ξ into distinct parts congruent to 0,±8,±12 (mod 28).
Then

X3(ξ) =

ξ∑
i=0

Y3(ξ − i)Z3(i) = A
(2,2)
(4,4)(ξ) = B

(2,2)
(4,4)(ξ), for all ξ,

where A
(2,2)
(4,4)(ξ) and B

(2,2)
(4,4)(ξ) are as described in Theorem 1.1.

Theorem 3.4. Let X4(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±2,±8,±12,±14 (mod 32). Then

X4(ξ) = C
(4,4)
(2,4) (ξ) = D

(4,4)
(2,4)(ξ), for all ξ,

where C
(4,4)
(2,4) (ξ) and D

(4,4)
(2,4)(ξ) are as described in Theorem 1.2.

Theorem 3.5. Let X5(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±2,±6,±8,±10,±12, 14 (mod 28). Then

X5(ξ) = C
(2,4)
(2,2) (ξ) = D

(2,4)
(2,2)(ξ), for all ξ,
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where C
(2,4)
(2,2) (ξ) and D

(2,4)
(2,2)(ξ) are as described in Theorem 1.2.

Theorem 3.6. Let X6(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±3,±9,±15,±21 (mod 48). Then

X6(ξ) = C
(6,3)
(3,6) (ξ) = D

(6,3)
(3,6)(ξ), for all ξ,

where C
(6,3)
(3,6) (ξ) and D

(6,3)
(3,6)(ξ) are as described in Theorem 1.2.

Theorem 3.7. Let X7(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±5,±10,±15,±25,±30, 35 (mod 70). Then

X7(ξ) = C
(5,5)
(5,5) (ξ) = D

(5,5)
(5,5)(ξ), for all ξ,

where C
(5,5)
(5,5) (ξ) and D

(5,5)
(5,5)(ξ) are as described in Theorem 1.2.

Theorem 3.8. Let Y8(ξ) represent the number of ordinary partitions of ξ
into parts congruent to ±4,±10,±12 (mod 28), and let Z8(ξ) represent the
number of ordinary partitions of ξ into distinct parts congruent to
0,±2,±4,±6,±8,±10,±12, 14 (mod 28). Then

X8(ξ) =

ξ∑
i=0

Y8(ξ − i)Z8(i) = C
(1,3)
(2,2) (ξ) = D

(1,3)
(2,2)(ξ), for all ξ,

where C
(1,3)
(2,2) (ξ) and D

(1,3)
(2,2)(ξ) are as described in Theorem 1.2.

4. Conclusion

In the present paper, the interpretation of two generalized basic series in
terms of (n + t)-color partitions and weighted lattice paths enables us to
provide two infinite classes of combinatorial identities. Our results not only
generalize the results we found in the literature (Agarwal [2, 3], Agarwal
and Goyal [6, 13], Sareen and Rana [16]), but also provide combinatorial
interpretations of entirely new Rogers-Ramanujan type identities. So, the
obvious question that arises here is, can we obtain such generalizations by
using other combinatorial objects, viz., associated lattice paths, F-partitions,
Bender and Knuth matrices, anti-hook differences etc.
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