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INTRIGUING SETS OF STRONGLY REGULAR GRAPHS

AND THEIR RELATED STRUCTURES

DEAN CRNKOVIĆ, FRANCESCO PAVESE, AND ANDREA ŠVOB

Abstract. In this paper we outline a technique for constructing di-
rected strongly regular graphs by using strongly regular graphs having
a “nice” family of intriguing sets. Further, we investigate such a con-
struction method for rank three strongly regular graphs having at most
45 vertices. Finally, several examples of intriguing sets of polar spaces
are provided.

1. Introduction

A finite incidence structure consists of a finite set V, called points, a set
B of subsets of V, called blocks, and the incidence relation ∈ (containment)
between points and blocks. An incident point-block pair is called a flag, and
a nonincident point-block pair is called an antiflag. A tactical configuration
with parameters (v, b, k, r) is a finite incidence structure (V,B) with |V| = v,
|B| = b such that every block contains k points and every point belongs to
exactly r blocks. A partial geometric design [10] or a 11

2 -design [56] with
parameters (v, b, k, r;α, β) is a tactical configuration (V,B) with parameters
(v, b, k, r) such that for every point x ∈ V and every block B ∈ B, the
number of flags (y, C) such that y ∈ B \ {x}, x ∈ C ̸= B equals α or β, for
x /∈ B or x ∈ B respectively. A special partially balanced incomplete block
design (SPBIBD) [11] with parameters (v, b, k, r, λ1, λ2) of type (α1, α2),
with v, b, r, k ≥ 2, λ1, λ2, α1, α2 ≥ 0, λ1 ̸= λ2 and r < b, is a tactical
configuration with parameters (v, b, k, r) such that

(i) Two distinct points are either in exactly λ1 (when they are λ1-
associated) or in exactly λ2 common blocks (when they are λ2-
associated).
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(ii) A point x is λ1-associated to exactly α1 points of a block B if x ∈ B,
and to α2 points of B if x /∈ B.

A SPBIBD is called quasi-symmetric if any two distinct blocks have either
µ1 or µ2, µ1 ̸= µ2, points in common. A strongly regular graph (SRG) Γ
with parameters (v, k, λ, µ) is a (connected, simple, undirected, and loopless)
k-regular graph with v vertices such that any two adjacent vertices have
λ common neighbours and any two nonadjacent vertices have µ common
neighbours. If Γ is a strongly regular graph, then V (Γ) will denote the set
of its vertices. A subset S of vertices in a strongly regular graph is said to
be intriguing if the number of neighbours in S of a vertex x only takes two
values, according as x ∈ S or x ∈ V (Γ)\S. An intriguing set S is said to be
proper if 0 < |S| < v. A directed strongly regular graph [34] with parameters
(v, k, t, λ, µ) is a directed graph on v vertices without loops such that

(i) every vertex has in-degree and out-degree k,
(ii) every vertex x has t out-neighbours that are also in-neighbours of x,
(iii) the number of directed paths of length 2 from a vertex x to another

vertex y is λ if there is an edge from x to y, and is µ if there is no
edge from x to y.

Let G be a group of permutations acting on a set Ω. The rank of the action
is the number of orbits of the subgroup Gx fixing x ∈ Ω on Ω. The orbits
of G on Ω× Ω are called orbitals and they are symmetric if for all x, y ∈ Ω
the pairs (x, y) and (y, x) belong to the same orbital. Let G be transitive of
rank three. Then its orbitals, say I = {(x, x) | x ∈ Ω}, R, S, are symmetric
if and only if G has even order. In this case (Ω, R) and (Ω, S) form a pair
of complementary strongly regular graphs, called rank three strongly regular
graph. In particular, they are connected if and only if G is primitive and
the group G acts transitively on ordered pairs of adjacent vertices and on
ordered pairs of non-adjacent vertices of each of these graphs. See [47], [48],
[65].

Recently, it has been shown that directed strongly regular graphs can
be constructed from partial geometric designs [14]. Moreover, a partial
geometric design with parameters (v, b, k, r;α, β) gives rise to two distinct
DSRGs having parameters:

(b(v − k), r(v − k), kr − α, kr − (k + r − 1 + β), kr − α),

(vr, rk − 1, β + r + k − 2, β + r + k − 3, α).

We will consider proper partial geometric design, i.e., the design for which
α > 0, 3 ≤ k ≤ v − 3 and 3 ≤ r ≤ b− 3 (see [56]).

In this paper we show that a strongly regular graph having a “nice” family
of intriguing sets gives rise to SPBIBD (section 3). See section 2 for the
basic properties and the definition of intriguing sets. Since SPBIBDs form a
particular class of partial geometric designs (see Lemma 3.1), a technique for
constructing directed strongly regular graphs arises in this way. In section 4
we investigate such a construction method for rank three strongly regular
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graphs on at most 45 vertices. Finally, several examples of intriguing sets
of polar spaces are provided in section 5.

2. Preliminaries

In this section we recall some basic facts regarding strongly regular graphs,
intriguing sets, special partially balanced incomplete block designs and quasi-
symmetric special partially balanced incomplete block designs. For a more
comprehensive treatment of these topics we refer the reader to [9, 12].

2.1. Strongly regular graphs. Let Γ be a strongly regular graph with
parameters (v, k, λ, µ). Let A be the adjacency matrix of Γ. The matrix A
satisfies the equation A2 = kI + λA + µ(J − I − A), where I denotes the
identity matrix of order v and J the all-ones matrix of order v. On the other
hand, if A is a v×v matrix and there exist non-negative integers k, λ, µ such
that

A2 = kI + λA+ µ(J − I −A) = (λ− µ)A+ (k − µ)I + µJ,

then A can be seen as the adjacency matrix of a strongly regular graph. The
matrix A has three distinct eigenvalues: θ0 > θ1 > θ2, where

θ0 = k,

θ1 =
(
λ− µ+

√
(λ− µ)2 + 4(k − µ)

)
/2,

θ2 =
(
λ− µ−

√
(λ− µ)2 + 4(k − µ)

)
/2.

The matrices A0 := I, A1 := A,A2 := J − I − A are symmetric and they
pairwise commute. Moreover, AiAj =

∑2
k=0 p

k
ijAk where

pk0j = δj,k,

p011 = k,

p111 = λ,

p211 = µ,

p012 = 0,

p112 = k − λ− 1,

p212 = k − µ,

p022 = v − k − 1,

p122 = v − 2k + λ,

p222 = v − 2k + µ− 2.

Since the matrices A0, A1, A2 are linearly independent, they generate a
commutative 3-dimensional algebra A consisting of real symmetric matrices,
called Bose-Mesner algebra of Γ. Also, A admits a basis {E0, E1, E2}, of so
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called minimal idempotents, where EiEj = δi,jEi and E0 + E1 + E2 = I.
Here

E0 =
1

v
J,

E1 =
1

θ1 − θ2

(
A− θ2I −

k − θ2
v

J

)
,

E2 =
1

θ2 − θ1

(
A− θ1I −

k − θ1
v

J

)
.

A subset I of vertices of Γ, 0 < |I| < v, is said to be intriguing with
parameters (h1, h2) if there exist constants h1 and h2 such that every vertex
of I is adjacent to precisely h1 vertices of I and every vertex of V (Γ) \ I
is adjacent to precisely h2 vertices of I. This concept has been introduced
by Delsarte [32] in the more general framework of association schemes and
investigated in different contexts by several authors [1, 2, 3, 15, 17, 20, 36,
57]. If I is intriguing with parameters (h1, h2), then (h1−h2−k)jI +h2j is
an eigenvector of the adjacency matrix A with the eigenvalue h1 − h2. Here
and in the sequel j denotes the v × 1 all ones vector, 0 the v × 1 all zeros
vector and jI the v × 1 characteristic vector of I. Hence, either h1 − h2
is θ1 and I is said to be a positive intriguing set or h1 − h2 is θ2 and I is
said to be a negative intriguing set. For an intriguing set I, we have that
|I| = h2v

k−θi
, where i equals 1 or 2 according as I is positive or negative,

respectively. Note that the complement of an intriguing set is an intriguing
set of the same type; the union of two disjoint intriguing sets of the same
type is an intriguing set of the same type; if A and B are intriguing sets
of the same type and A ⊆ B, then B \ A is an intriguing set of the same
type. Moreover, if Γc denotes the complement of Γ and I is a (positive or
negative) intriguing set of Γ, then I is a (negative or positive) intriguing set
of Γc. As a consequence we have the following.

Proposition 2.1. A self-complementary strongly regular graph has a posi-
tive intriguing set of size x if and only if it has a negative intriguing set of
size x.

An equivalent definition of an intriguing set is the following:

Definition 2.2. I is a positive intriguing set of Γ if E2jI = 0, and I is a
negative intriguing set of Γ if E1jI = 0.

Since both h1, h2 are non-negative integers, the definition of an intrigu-
ing set does not make sense if Γ is a conference graph with non-integral
eigenvalues.

2.2. Finite classical polar spaces. Let q be a prime power and let PG(r, q)
be the r-dimensional finite projective space over the finite field GF(q). We
will use the term n-space to denote an n-dimensional projective subspace
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of PG(r, q). Let Pr be one of the following nondegenerate polar spaces of
PG(r, q):

H(r, q2),Q−(r, q) (r odd), Q+(r, q) (r odd), Q(r, q) (r even).

Associated with Pr, there is a polarity ⊥ of PG(r, q), which is nondegen-
erate except when Pr = Q(r, q) and q is even. In particular, the polarity
⊥ is symplectic if Pr = W(r, q) or Pr ∈ {Q+(r, q),Q−(r, q)} with q even,
orthogonal if Pr ∈ {Q(r, q),Q+(r, q),Q−(r, q)} with q odd, and Hermitian
if Pr = H(r, q2). If Pr = Q(r, q) with q even, then ⊥ is degenerate, indeed
N⊥ = PG(r, q) if N is the nucleus of Q(r, q) and P⊥ is a hyperplane of
PG(r, q) for any other point P of PG(r, q). A generator of Pr is a projective
space of maximal dimension contained in Pr and the union of pairwise dis-
joint generators is a partial spread of Pr. More background information on
the properties of the finite classical polar spaces can be found in [49, 50, 51].

Let Γ be the point graph of Pr. A subset I of points of Pr is called
intriguing if the corresponding set of vertices of Γ is an intriguing set of Γ.
An m-ovoid O of Pr is a subset of points of Pr such that every generator of
Pr meets O in exactly m points [63]. A subset T of points of Pr is said to be
i-tight if the average number of points of T collinear with a given point of T
attains a maximum possible value [33, 60, 61]. Tight sets and m-ovoids are
intriguing sets of Pr. Viceversa, a positive intriguing set of Pr is an i-tight
set, whereas a negative intriguing set of Pr is an m-ovoid [2, Theorem 6],
[3, Theorem 4.1]. The points covered by a partial spreads of size x form an
x-tight set of Pr. For more results and constructions of intriguing sets of
finite polar spaces see [4, 31, 24, 26, 27, 30, 28, 29, 6, 7, 16, 39, 40, 41, 42,
44, 43, 51, 52, 53, 54, 55, 59].

2.3. SPBIBDs. Let D be a SPBIBD with parameters (v, b, k, r, λ1, λ2) of
type (α1, α2). Let ΓD be the graph having as vertices the points of D, where
two distinct vertices are adjacent whenever the corresponding points of D
are λ1-associated. The graph ΓD is strongly regular. Moreover, if D is
quasi-symmetric, then its block graph is strongly regular. These facts are
stated implicitly in [11, p. 3–4] and [11, p. 10] and a proof is given here for
completeness.

Lemma 2.3. The graph ΓD is strongly regular.

Proof. Let N be v × b the incidence matrix of D and let P be the v × v
adjacency matrix of ΓD. Then
(2.1)

NN t = (r−λ2)Iv+(λ1−λ2)P+λ2Jv,v = (λ1−λ2)

(
P − λ2 − r

λ1 − λ2
Iv

)
+λ2Jv,v

and

(2.2) PN = (α1 − α2)N + α2Jv,b.
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It follows that on one hand

(2.3) PNN t = P (NN t) = (λ1 − λ2)P

(
P − λ2 − r

λ1 − λ2
Iv

)
+ λ2PJv,v.

On the other hand

PNN t = (PN)N t

= ((α1 − α2)N + α2Jv,b)N
t

= (α1 − α2)NN t + α2Jv,bN
t

= (α1 − α2)

[
(λ1 − λ2)

(
P − λ2 − r

λ1 − λ2
Iv

)
+ λ2Jv,v

]
(2.4)

+ α2rJv,v.

Taking into account (2.1), (2.2), we have that

krJv,v = k(NJb,v)

= N(N tJv,v)

= (NN t)Jv,v

= (r − λ2)Jv,v + (λ1 − λ2)PJv,v + λ2J
2
v,v,

and hence

(2.5) PJv,v =
kr − r + λ2 − λ2v

λ1 − λ2
Jv,v.

Therefore, from (2.3), (2.4) and (2.5), we obtain

(λ1 − λ2)P
2 = (λ2 − r + (α1 − α2)(λ1 − λ2))P − (α1 − α2)(λ2 − r)Iv

+

(
(α1 − α2)λ2 + α2r − λ2

kr − r + λ2 − λ2v

λ1 − λ2

)
Jv,v.

□

Lemma 2.4. The block graph of a quasi-symmetric SPBIBD is strongly
regular.

Proof. Assume that two distinct blocks of D have either µ1 or µ2 points in
common, µ1 < µ2. Let Γ

′
D be the graph having as vertices the blocks of D,

where two distinct vertices are adjacent whenever the corresponding blocks
of D have µ1 points in common. Let N be the v × b incidence matrix of D
and let A be the b× b adjacency matrix of Γ′

D. Then

N tN = (k−µ2)Ib+(µ1−µ2)A+µ2Jb,b = (µ1−µ2)

(
A− µ2 − k

µ1 − µ2
Ib

)
+µ2Jb,b.
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As a consequence we have that

N tNN t = (N tN)N t

= (µ1 − µ2)

(
AN t − µ2 − k

µ1 − µ2
N t

)
+ µ2Jb,bN

t

= (µ1 − µ2)

(
AN t − µ2 − k

µ1 − µ2
N t

)
+ µ2rJb,v

= (NN tN)t

=

(
(λ1 − λ2)

(
PN − λ2 − r

λ1 − λ2
N

)
+ λ2Jv,vN

)t

= ((λ1 − λ2)(α1 − α2)− λ2 + r)N t + ((λ1 − λ2)α2 + λ2k) Jb,v,

and

N tNJb,b = (N tN)Jb,b

= (k − µ2)Jb,b + (µ1 − µ2)AJb,b + µ2bJb,b

= N t(NJv,b)

= rkJb,b.

Therefore,

(µ1 − µ2)AJb,b = (kr − k + µ2 − µ2b)Jb,b.(2.6)

(µ1 − µ2)AN
t = (µ2 − k + r − λ2 + (λ1 − λ2)(α1 − α2))N

t

+ (λ2k − µ2r + (λ1 − λ2)α2) Jb,v.
(2.7)

Taking into account (2.6) and (2.7), it follows that

AN tN = A(N tN)

= (µ1 − µ2)

(
A2 − µ2 − k

µ1 − µ2
A

)
+ µ2AJb,b

= (µ1 − µ2)

(
A2 − µ2 − k

µ1 − µ2
A

)
+

µ2(kr − k + µ2 − µ2b)

µ1 − µ2
Jb,b

= (AN t)N

=
µ2 − k + r − λ2 + (λ1 − λ2)(α1 − α2)

µ1 − µ2
N tN

+
λ2k − µ2r + (λ1 − λ2)α2

µ1 − µ2
Jb,vN

=

[
µ2 − k + r − λ2 + (λ1 − λ2)(α1 − α2)

µ1 − µ2

×
(
(µ1 − µ2)

(
A− µ2 − k

µ1 − µ2
Ib

)
+ µ2Jb,b

)]
+

(λ2k − µ2r + (λ1 − λ2)α2) k

µ1 − µ2
Jb,b.
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Hence,

(µ1 − µ2)A
2 =(2(µ2 − k) + (α1 − α2)(λ1 − λ2)− λ2 + r)A

− (µ2 − k) ((α1 − α2)(λ1 − λ2)− λ2 + r + µ2 − k)

µ1 − µ2
Ib

+
(λ1 − λ2)(α1µ2 − α2µ2 + α2k)

µ1 − µ2
Jb,b

+
µ2(r − λ2) + λ2k

2 − 2µ2kr + µ2
2b

µ1 − µ2
Jb,b.

□

3. Intriguing sets and partial geometric designs

For the convenience of the reader we remark that SPBIBDs form a par-
ticular class of partial geometric designs.

Lemma 3.1. A SPBIBD with parameters (v, b, k, r, λ1, λ2) of type (α1, α2)
is a partial geometric design with parameters

(v, b, k, r;α2(λ1 − λ2) + kλ2, α1(λ1 − λ2) + (k − 1)(λ2 − 1)).

Proof. Let x be a point and B a block. We count the number N of flags
(y, C) such that x ∈ C, y ∈ B, with y ̸= x and C ̸= B. Assume first that
x /∈ B. Let y ∈ B such that there are exactly λ1 blocks containing both x
and y, then y can be chosen in α2 ways. The remaining k−α2 elements of B
are λ2-associated with x. Hence N = λ1α2+(k−α2)λ2 = kλ2+α2(λ1−λ2).

Assume that x ∈ B. Let y ∈ B such that there are exactly λ1 − 1 blocks
distinct from B and containing both x, y; then y can be chosen in α1 ways.
The remaining k − α1 − 1 elements of B are λ2-associated with x. Then
N = (λ1 − 1)α1 + (k − α1 − 1)(λ2 − 1) = α1(λ1 − λ2) + (k − 1)(λ2 − 1). □

The converse situation has been investigated in [8]. See also [64].

Theorem 3.2. Let Γ be a strongly regular graph and let F be a family of
subsets of V (Γ) such that

1) all elements of F have that same number z of elements,
0 < z < |V (Γ)|;

2) there exist constants λi, 0 ≤ i ≤ 2, such that ∀x, y ∈ V (Γ),
d(x, y) = i, then λi = |{I ∈ F | {x, y} ⊂ I}|.

Then (V (Γ),F) is a SPBIBD with parameter (|V (Γ)|, |F|, z, λ0, λ1, λ2) of
type (

θi +
k − θi
|V (Γ)|

z,
k − θi
|V (Γ)|

z

)
,

if and only if F consists of intriguing sets of Γ with parameters(
θi +

k − θi
|V (Γ)|

z,
k − θi
|V (Γ)|

z

)
.
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Proof. Firstly, observe that (V (Γ),F) is a tactical configuration with pa-
rameters (|V (Γ)|, |F|, z, λ0). Assume that (V (Γ),F) is a SPBIBD; then two
distinct vertices x, y are adjacent in Γ if and only if they are λ1-associated.
Let x ∈ V (Γ) and B ∈ F . Then x is adjacent to either

θi +
k − θi
|V (Γ)|

z, or
k − θi
V (Γ)

z,

vertices of B, for x ∈ B or x /∈ B, respectively. Hence B is an intriguing set
of Γ. Viceversa, assume that F consists of intriguing sets of Γ. From 2), we
have that through two distinct elements x, y of V (Γ) there pass either λ1 or
λ2 blocks of F according as x, y are adjacent or not in Γ. Let x ∈ V (Γ) and
B ∈ F . Since B is an intriguing set of Γ, we have that x is λ1-associated to
exactly

θi +
k − θi
|V (Γ)|

z,

points of B if x ∈ B, and to
k − θi
|V (Γ)|

z,

points of B if x /∈ B. □

Remark: Note that, taking into account [20, Proposition A.2], if Γ is a con-
nected regular graph of diameter 2 with s + 1 ≥ 3 eigenvalues and F is a
family of intriguing sets of Γ of fixed index satisfying 1), 2) of Theorem 3.2,
then Γ is strongly regular.

Proposition 3.4. Let Γ be a strongly regular graph admitting a rank three
automorphism group G and let I ≠ V (Γ) be a nonempty subset of vertices of
Γ. Then (V (Γ), IG) is a SPBIBD with parameters (|V (Γ)|, b, k, r, r1, r2) of
type (θi+h2, h2), with b = |G|/|GI |, k = |I|, if and only if I is an intriguing
set of Γ with parameters (θi + h2, h2).

Proof. The group G has three orbits on V (Γ)×V (Γ), namely I,R, S, where
x, y ∈ V (Γ), x ̸= y, are adjacent if and only if (x, y) ∈ R. Let I ≠ V (Γ)
be a nonempty subset of vertices of Γ, hence 0 < |I| = k < |V (Γ)|, and let
b = |G|/|GI |. Then each of the incidence structures (I, IG), (R, IG) and
(S, IG) is a tactical configuration. Therefore, through a vertex of Γ there
pass a constant number of elements of IG, say r, and through two distinct
vertices x, y of Γ there pass either r1 or r2 elements of IG, according as x is
adjacent to y or not. The result follows from Theorem 3.2. □

As a consequence, the next result is immediately obtained.

Corollary 3.5. Let Pr be a nondegenerate polar space of PG(r, q) and let G
be the subgroup of either PSL(r+1, q) or PGL(r+1, q) or PΓL(r+1, q) fixing
Pr. If I is a nontrivial intriguing set of Pr, then the incidence structure
whose points are the points of Pr and whose blocks are the elements of IG

is a SPBIBD.
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Corollary 3.5 provides motivation to construct intriguing sets in polar
space, a task that will be discussed further in section 5.

4. Intriguing sets in small rank three strongly regular graphs

In what follows, by using GAP list of primitive groups [46], we consider a
primitive rank three group G of even order and the strongly regular graph
Γ obtained from one of its orbitals. Of course G ≤ Aut(Γ). If Γ has at
most 40 vertices, we completely classify its intriguing sets and compute the
corresponding DSRGs via Proposition 3.4. Moreover, some partial results
are obtained for Γ having 45 vertices. Most of them have a large number
of vertices. We omit the known DSRGs whose parameters are included in
Tables [13]. Besides the conference graphs with nonintegral eigenvalues, we
exclude the Petersen graph, the Clebsch graph and the Hoffman–Singleton
graph since they have been considered in [1]. For more information on some
families of strongly regular we refer the reader to [12, section 9.9.1].

The Paley graph SRG(9, 4, 1, 2)

There are two rank three groups: 32 : 4 ≤ 32 : D(8) = Aut(Γ). The
eigenvalues of Γ are 1 and −2 and Γ has one positive and one negative
intriguing set both of size 3 and both stabilized by a subgroup of Aut(Γ) of
order 12.

The point graph of Q(4, 2) SRG(15, 6, 1, 3)

There are two rank three groups: A6 ≤ S6 = Aut(Γ) ≃ PGO(5, 2) and Γ has
eigenvalues 1 and −3. There is one example of tight set of size 3 correspond-
ing to a line of Q(4, 2) and two tight sets of size 6 corresponding to either the
complement of a Q+(3, 2) or to two disjoint lines. In the latter case there
arise a DSRG(540, 216, 96, 72, 96) and a DSRG(360, 143, 71, 70, 48). There
is only one negative intriguing set of size 5, being the ovoid Q−(3, 2).

The point graph of Q+(3, 3) SRG(16, 6, 2, 2)

There are four rank three groups: (A4 ×A4) : 2, 2
4.S3 × S3, 2

4.32 : 4,
(S4 × S4) : 2 = Aut(Γ) ≃ PGO+(4, 3) and the eigenvalues of Γ are 2
and −2. There is a tight set of size 4 (that is a line of Q+(3, 3)) stabi-
lized by a subgroup of G of order 144 and a tight set of size 8 (a pair
of disjoint lines of Q+(3, 3)) fixed by a subgroup of G of order 96. Re-
garding m-ovoids of Q+(3, 3), there is a unique class of ovoids, being the
conic sections and two distinct examples of 2-ovoids: one of which is a
pair of disjoint conics admitting a subgroup of G of order 16 and there is
one more stabilized by a subgroup of G of order 64. The related DSRGs
have parameters (144, 36, 10, 6, 10), (144, 71, 39, 38, 32), (144, 72, 40, 32, 40)
and (288, 72, 20, 12, 20).

The triangular graph T (7) SRG(21, 10, 3, 6)
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In this case there are two rank three groups: A7 ≤ S7 = Aut(Γ) and
θ1 = 1, θ2 = −4. There is one example of negative intriguing set of size
6 left invariant by S6, which is a coclique. Regarding positive intriguing
set there are two examples of size 7, admitting an automorphism group of
size 14 and 48, respectively. Moreover, the DSRGs associated with the SP-
BIBDs have parameters (5040, 1680, 600, 480, 600), (2520, 839, 359, 358, 240),
(1470, 490, 175, 140, 175), (735, 244, 104, 103, 70).

The point graph of Q+(3, 4) SRG(25, 8, 3, 2)

There are six rank three groups: 52 : 8 : 2, 52 : O+(2, 5), (A5 × A5) : 2,
(A5 × A5) : 4, (A5 × A5) : 22 ≃ PΓO+(4, 4) and (S5 × S5) : 2 = Aut(Γ).
The eigenvalues of Γ are 3 and −2. There is a tight set of size 5 (that is
a line of Q+(3, 4)) stabilized by a subgroup of Aut(Γ) of order 2880 and a
tight set of size 10 (a pair of disjoint lines of Q+(3, 4)) fixed by a subgroup
of Aut(Γ) of order 1440. Regarding m-ovoids of Q+(3, 4), all the ovoids
are Aut(Γ)-equivalent, nevertheless they fall into two sets under the action
of PΓO+(4, 4): the conic sections and the elliptic quadric Q−(3, 2) (which
coincide with the twisted cubic in this case). There are two distinct examples
of 2-ovoids: one of which admits a group of order 48 and consists of a pair of
conics having in common two points of a line ℓ together with ℓ⊥ ∩Q+(3, 4).
The other example is obtained from two disjoint ovoids and is left invariant
by a group of order 20. These example corresponds to 26 DSRGs; those on
less than 103 vertices have parameters

(400, 159, 72, 71, 58), (200, 79, 40, 39, 26), (400, 80, 17, 12, 17),

(600, 119, 47, 46, 18), (600, 240, 102, 87, 102), (200, 40, 9, 4, 9),

(500, 99, 39, 38, 15), (300, 59, 23, 22, 9), (300, 120, 54, 39, 54).

The Paley graph SRG(25, 12, 5, 6)

There are three rank three groups: 52 : Q(12), 52 : 12, 32 : D(8) = Aut(Γ).
The eigenvalues of Γ are 2 and −3, and Γ has one positive and one negative
intriguing set of size 5, both stabilized by a subgroup of Aut(Γ) of order
40. There are also two positive and two negative intriguing sets of size 10,
invariant under by a subgroup of Aut(Γ) of order 6 and 20, respectively.
The corresponding DSRGs have parameters

(300, 60, 13, 8, 13), (1500, 600, 260, 210, 260), (1000, 399, 189, 188, 140),

(450, 180, 78, 63, 78), (300, 119, 56, 55, 42).

The point graph of Q−(5, 2) SRG(27, 10, 1, 5)

There are two rank three groups: PΩ−(6, 2) ≤ PGO−(6, 2) = Aut(Γ) and
the eigenvalues of Γ are θ1 = 1, θ2 = −5. There are no examples of negative
intriguing set (or m-ovoids), indeed this would correspond to a regular sys-
tem of order m of H(3, 4) [49], [62]. There is one example of a tight set of
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size 3 corresponding to a line of Q−(5, 2) and two tight sets of size 6 corre-
sponding to either two disjoint lines or the 6 points of a Q(4, 2) \ Q+(3, 2).
There are four examples of tight sets of size 9: the points of a Q+(3, 2);
the union of three pairwise disjoint lines of Q−(5, 2) generating the whole
PG(5, 2); the union of three pairwise disjoint lines of Q−(5, 2) generating
a four-space and having a common transversal. The last example can be
described by using Construction 5.0.1. The related DSRGs have parameters

(1080, 120, 14, 8, 14), (135, 14, 6, 5, 1), (15120, 3360, 784, 616, 784),

(4320, 959, 343, 342, 176), (7560, 1680, 392, 308, 392), (2160, 479, 171, 170, 88),

(2160, 720, 252, 216, 252), (1080, 359, 143, 142, 108),

(58320, 19440, 6804, 5832, 6804), (29160, 9719, 3887, 3886, 2916),

(51840, 17280, 6048, 5184, 6048), (25920, 8639, 3455, 3454, 2592),

(38880, 12960, 3888, 3264, 3888), (19440, 6479, 3215, 3214, 2592).

The graph NO+(6, 2) SRG(28, 15, 6, 10)

There are two rank three groups:

PΩ+(6, 2) ≃ A8 ≤ S8 = Aut(Γ) ≃ PGO+(6, 2),

and θ1 = 1, θ2 = −5. Concerning positive intriguing sets there is one ex-
ample of size 4, that is an affine plane disjoint from Q+(5, 2) such that its
line at infinity is a line of Q+(5, 2), fixed by a group of order 384, three of
size 8 stabilized by a group of order 128, 60 and 16, respectively, and six
examples of size 12. One of these consists of the points of Q+(5, 2) on a
tangent hyperplane. The remaining are left invariant by a group of order
4, 12, 16, 16, 48, respectively. There arise 22 distinct DSRGs; those on less
than 104 vertices have parameters

(2520, 360, 54, 36, 54), (420, 59, 23, 22, 6), (6300, 1800, 540, 450, 540),

(2520, 719, 269, 268, 180), (5376, 1535, 575, 574, 384),

(6720, 2880, 1296, 1152, 1296), (5040, 2159, 1007, 1006, 864),

(560, 240, 108, 96, 108), (420, 179, 83, 82, 72).

There is one negative intriguing set of size 7 left invariant by S7, which is
a coclique. The DSRGs associated have parameters (168, 42, 12, 6, 12) and
(56, 13, 7, 6, 2).

The point graph of Q+(5, 2) SRG(35, 18, 9, 9)

There are two rank three groups:

PΩ+(6, 2) ≃ A8 ≤ S8 = Aut(Γ) ≃ PGO+(6, 2).

The eigenvalues of Γ are 3 and −3. The positive intriguing sets are de-
termined in [21]; we have one example of a 1-tight set, a plane of Q+(5, 2),
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and one example of 2-tight sets, i.e., the union of two disjoint planes. The
corresponding DSRGs have parameters

(840, 168, 36, 24, 36), (210, 41, 17, 16, 6), (420, 84, 18, 12, 18),

(2520, 1008, 432, 360, 432), (1680, 671, 311, 310, 240).

There is a unique ovoid, that is the elliptic quadric Q−(3, q), two types of
2-ovoids: the points of Q(4, q) \Q−(3, 2) which admits a group of order 240
or two disjoint elliptic quadrics Q−(3, 2), left invariant by a group of order
48. Finally, there are five 3-ovoids: two of them are a disjoint union of
elliptic quadrics, and admit a group of order 12 or 48, respectively; a third
example was pointed out by D. Glynn [45] and it is stabilized by a group of
order 60; a fourth example is a Q(4, 2) embedded in Q+(5, 2) and the last
example is left invariant by a group of order 48 and can be obtained from
Construction 5.0.1. The related DSRGs have parameters

(1680, 240, 36, 24, 36), (280, 39, 15, 14, 4), (21000, 6000, 1800, 1500, 1800),

(420, 179, 83, 82, 72), (8400, 2399, 899, 898, 600), (4200, 1200, 360, 300, 360),

(1680, 479, 179, 178, 120), (8400, 3600, 1620, 1440, 1620),

(6300, 2699, 1259, 1258, 1080), (67200, 28800, 12960, 11520, 12960),

(50400, 21599, 10079, 10078, 8640), (13440, 5760, 2592, 2304, 2592),

(10080, 4319, 2015, 2014, 1728), (16800, 7200, 3240, 2880, 3240),

(12600, 5399, 2519, 2518, 2160), (560, 240, 108, 96, 108).

The point graph of Q+(3, 5) SRG(36, 10, 4, 2)

There are eight rank three groups: (A5×A5) : 2, (A5×A5).4, ((A5×A5) : 2)2,
(S5 × S5) : 2 ≃ PGO+(4, 5), (A6 × A6) : 2, (A6 × A6) : 22, (A6 × A6) : 4,
(S6 × S6) : 2 = Aut(Γ) and θ1 = 4, θ2 = −2. Regarding the tight sets,
there are either one, two, or three pairwise disjoint lines. The corresponding
DSRGs have parameters

(360, 60, 11, 5, 11), (360, 119, 55, 54, 32), (360, 179, 98, 97, 81),

(360, 180, 99, 81, 99), (720, 240, 88, 64, 88),

(720, 359, 197, 196, 162), (720, 360, 198, 162, 198).

Under the action of Aut(Γ) there is one ovoid stabilized by a group of order
1440, four types of 2-ovoids, fixed by a group of order 24, 64, 144, 768, re-
spectively, and six examples of 3-ovoids, admitting a group of order 8, 12, 24,
48, 64, 5184, respectively. Note that there are m-ovoids that are equivalent
under the action of Aut(Γ), although they are not PGO+(4, 5)-equivalent.
For instance, under the action of PGO+(4, 5), there are two types of ovoids:
the conic sections and the ovoids that span the whole PG(3, 5), see also [23,
Proposition 2.10]. Hence, these two types of ovoids are not PGO+(4, 5)-
equivalent, whereas they are Aut(Γ)-equivalent. Varying G in one of the
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eight rank three groups listed above, there arise 86 distinct DSRGs. If
G = Aut(Γ), the related DSRGs on less than 105 vertices have parameters

(21600, 3600, 624, 480, 624), (4320, 719, 239, 238, 96),

(86400, 28799, 11135, 11134, 8832), (32400, 10800, 3744, 3312, 3744),

(16200, 5399, 2087, 2086, 1656), (3600, 1800, 936, 864, 936),

(3600, 1799, 935, 934, 864).

SRG(36, 14, 4, 6)

In this case G = PΓU(3, 9) = Aut(Γ) and θ1 = 2, θ2 = −4. Concerning
positive intriguing sets, there is one example of size 6 left invariant by a
group of order 96, four types of size 12 fixed by a group of order 6, 16, 24
and 192, respectively, and eight examples of size 18, four of which are fixed
by a group of order 6, two by a group of order 12 and the remaining two by
a group of order 24 and 216, respectively. The corresponding DSRGs have
parameters

(3780, 630, 110, 80, 110), (756, 125, 45, 44, 16), (1512, 504, 176, 152, 176),

(24192, 8063, 3199, 3198, 2432), (18144, 6048, 2112, 1824, 2112),

(36288, 18144, 9504, 8640, 9504), (36288, 18143, 9503, 9502, 8640),

(18144, 9072, 4752, 4320, 4752), (18144, 9071, 4751, 4750, 4320),

(12096, 4032, 1408, 1216, 1408), (9072, 3023, 1199, 1198, 912),

(6048, 2015, 799, 798, 608), (48384, 16128, 5632, 4864, 5632),

(9072, 4536, 2376, 2160, 2376), (9072, 4535, 2375, 2374, 2160),

(1008, 504, 264, 240, 264), (1008, 503, 263, 262, 240), (756, 251, 99, 98, 76).

As for positive intriguing sets, there is one example of size 12 admitting an
automorphism group of order 192, and one example of size 18 fixed by a
group of order 108. The related DSRGs have parameters

(1512, 504, 180, 144, 180), (756, 251, 107, 106, 72), (2016, 1008, 540, 468, 540),

(2016, 1007, 539, 538, 468).

The triangular graph T (9) SRG(36, 14, 7, 4)

There are three rank three groups: PΓL(2, 8) ≤ A9 ≤ S9 = Aut(Γ) and
θ1 = 5, θ2 = −2. There is only one positive intriguing set, which is of size 8
and left invariant by S8. The DSRG obtained has parameters (252, 56, 14, 7, 14).
Regarding negative intriguing sets there are four examples of size 9 left in-
variant by a group of order 18, 72, 80, 1296, respectively, and sixteen exam-
ples of size 18, three of which are stabilized by an involution, two by a group
of order 4, three by a group of order 8, two by a group of order 12, two by
a group of order 16, two by a group of order 18 and the remaining two by a
group of order 32 and 72, respectively. There are 52 distinct corresponding
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DSRGs. Many of them have a quite large number of vertices; those on less
than 103 vertices have parameters (756, 189, 49, 42, 49), (756, 188, 62, 61, 42)
and (252, 62, 20, 19, 14).

The graph NO−(6, 2) SRG(36, 15, 6, 6)

There are two rank three groups: PΩ−(6, 2) ≤ PGO−(6, 2) = Aut(Γ) and
the eigenvalues of Γ are θ1 = 3, θ2 = −3. There are two examples of positive
intriguing sets of size 9 and 18, stabilized by a group of order 1296 and 216,
respectively. The corresponding DSRGs have parameters

(1080, 270, 72, 54, 72), (360, 89, 35, 34, 18), (4320, 2160, 1152, 1008, 1152),

(4320, 2159, 1151, 1150, 1008).

As for negative intriguing sets there is one example of size 8 admitting a
group of order 384, two examples of size 12 one of which is ℓ⊥ \ ℓ, where ℓ is
a line of Q−(5, 2). The remaining one is fixed by a group of order 36. There
are three examples of size 16, one of these consists of the points off Q−(5, 2)
not on a tangent hyperplane; the others are left invariant by a group of order
20, 48, respectively. The related DSRGs have parameters

(51840, 23040, 10752, 9600, 10752), (41472, 18431, 8831, 8830, 7680),

(21600, 9600, 4480, 4000, 4480), (17280, 7679, 3679, 3678, 3200),

(540, 240, 112, 100, 112), (432, 191, 91, 90, 80).

The point graph of W(3, 3) SRG(40, 12, 2, 4)

There are two rank three groups: PSp(4, 3) ≤ PGSp(4, 3) = Aut(Γ) and
θ1 = 2, θ2 = −4. As for tight sets, there is one example of size 4, a line of
W(3, 3) and two examples of size 8: a pair of disjoint lines of W(3, 3) and
the set ℓ ∪ ℓ⊥, where ℓ is a line of PG(3, 3), that is not a line of W(3, 3).
There are four 3-tight sets. One of them consists of three pairwise disjoint
lines of W(3, 3) such that the opposite of the regulus determined by them
has no lines of W(3, 3). The second one consists of three pairwise disjoint
lines of W(3, 3) such that the opposite of the regulus determined by them
has two lines of W(3, 3). The third example is r∪ ℓ∪ ℓ⊥, where r is a line of
W(3, q), ℓ is a line of PG(3, 3), that is not a line of W(3, 3) and |r ∩ ℓ| = 0.
The fourth example can be described by using Construction 5.1.1 and it is
left invariant by a group of order 48. There are seven 4-tight sets. Two
of these 4-tight sets are reguli consisting of lines of W(3, 3). Two further
examples are four pairwise disjoint lines of W(3, 3) not forming a regulus
having a line of W(3, 3) as a transversal line (stabilized by a group of order
24), or not (fixed by a group of order 8). Two further examples arise by
gluing two generators of W(3, 3) that are disjoint from ℓ, to ℓ ∪ ℓ⊥, where
ℓ is not a generator of W(3, 3), and are left invariant by a group of order
16 or 12. Another example admits a group of order 12. There are nine
types of 5-tight sets. Five of them are five pairwise disjoint lines and are
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left invariant by a group of order 12, 16, 16, 20 or 240, respectively. One
more example arises from Construction 5.3.1 and admits a group of order
240. The remaining three examples are left invariant by groups of order 4,
12, and 24. There arise 38 DSRGs. Those with less than 104 vertices have
parameters

(4320, 1727, 755, 754, 648), (8640, 3455, 1511, 1510, 1296), (160, 15, 6, 5, 1),

(4320, 2159, 1124, 1123, 1035), (4320, 2160, 1125, 1035, 1125),

(4320, 863, 287, 286, 144), (6480, 2592, 1080, 972, 1080),

(1440, 144, 15, 9, 15), (360, 71, 23, 22, 12), (1440, 288, 60, 48, 60).

Regardingm-ovoids, the symplectic polar spaceW(3, 3) has a unique 2-ovoid
[3, Theorem 5.1], which admits a group of order 120. The related DSRGs
have parameters

(8640, 4320, 2304, 2016, 2304), (8640, 4319, 2303, 2302, 2016).

The point graph of Q(4, 3) SRG(40, 12, 2, 4)

There are two rank three groups: PΩ(5, 3) ≤ PGO(5, 3) = Aut(Γ) and
θ1 = 2, θ2 = −4. Concerning tight sets, there is one example of size 4 (a
line) and one example of size 8 (a pair of disjoint lines). The 3-tight sets
are of three types. One consists of three pairwise disjoint lines spanning a
three-space stabilized by a group of order 144. The second one consists of
three pairwise disjoint lines spanning the whole four-space fixed by a group
of order 18. The third example is left invariant by a group of order 36 and
can be described as follows: (Q+(3, q) \ (ℓ1 ∪ ℓ2)) ∪ (ℓ \ {P}), where P is a
point of Q+(3, 3) ⊂ Q(4, 3), ℓ1, ℓ2 are the lines of Q+(3, 3) through P and
ℓ is a line of Q(4, 3) meeting Q+(3, 3) exactly in P . It is easily seen that
such a set is a tight set being the union of 4 pairwise skew lines minus a
transversal. Of course it generalizes for q > 3 as well. There are five 4-tight
sets, and four pairwise disjoint lines spanning a three-space, i.e., the points
of a Q+(3, 3) embedded in Q(4, 3). Further, four pairwise disjoint lines,
three of them span a three-space, admitting a group of order 18. The third
example consists of four pairwise disjoint lines, no three in a three-space,
left invariant by a group of order 8. A fourth example can be described
by means of Construction 5.0.1 and it is left invariant by a group of order
72. A fifth example admits a group of order 6. Finally, there are five types
of 5-tight sets. Two of them are five pairwise disjoint lines and these are
left invariant by a group of order 6 or 10, respectively. The other examples
admit either a group of order 6, or a group of order 10 fixing a Q−(3, 3), or
a group of order 24 fixing a Q+(3, 3). There arise 26 distinct DSRGs. Those
having less than 104 vertices have parameters

(4320, 863, 287, 286, 144), (720, 287, 125, 124, 108), (160, 15, 6, 5, 1),

(1080, 432, 180, 162, 180), (1440, 144, 15, 9, 15), (4320, 1295, 476, 475, 351).
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As for m-ovoids, the parabolic quadric Q(4, 3) possesses a unique ovoid,
the elliptic quadric Q−(3, 3), and a unique 2-ovoid, which is obtained by
intersecting Q(4, 3) with the unique 2-ovoids of Q−(5, 3) and admits a group
of order 160. The related DSRGs have parameters

(1080, 270, 72, 54, 72), (360, 89, 35, 34, 18), (6480, 3240, 1728, 1512, 1728),

(6480, 3239, 1727, 1726, 1512), (3240, 1620, 864, 756, 864),

(3240, 1619, 863, 862, 756).

The point graph of H(3, 4) SRG(45, 12, 3, 3)

There are two rank three groups: PGU(4, 4) ≤ PΓU(4, 4) = Aut(Γ) and
θ1 = 3, θ2 = −3. Regarding positive intriguing sets, we have one example of
1-tight set, a line ofH(3, 4), and one example of 2-tight sets, i.e., the union of
two disjoint lines. Examples of size 15 arise either from a W(3, 2) embedded
in H(3, 4) or by the union of three pairwise disjoint lines of H(3, 4). As for
4-tight sets, we have either four pairwise disjoint lines or the complement
of the two non-equivalent sets of five pairwise disjoint generators of H(3, 4).
The related DSRGs have parameters

(1080, 120, 14, 8, 14), (135, 14, 6, 5, 1), (7560, 1680, 392, 308, 392),

(2160, 479, 171, 170, 88), (21600, 7200, 2520, 2160, 2520),

(10800, 3599, 1439, 1438, 1080), (1080, 360, 126, 108, 126),

(540, 179, 71, 70, 54), (5400, 2400, 1120, 1000, 1120),

(4320, 1919, 919, 918, 800), (10800, 4800, 2240, 2000, 2240),

(8640, 3839, 1839, 1838, 1600), (27000, 12000, 5600, 5000, 5600),

(21600, 9599, 4599, 4598, 4000).

As for m-ovoids there are two classes of ovoids, a nondegenerate plane
section and an ovoid spanning the whole 3-space admitting a group of order
324, whereas from [19] there are six types of 2-ovoids. Some of the related
DSRGs have parameters

(5760, 1152, 240, 192, 240), (1440, 287, 95, 94, 48), (1440, 288, 60, 48, 60),

(360, 71, 23, 22, 12), (116640, 46655, 20411, 20410, 17496),

(174960, 69984, 29160, 26244, 29160), (38880, 15552, 6480, 5832, 6480),

(25920, 10367, 4535, 4534, 3888).

The triangular graph T (10) SRG(45, 16, 8, 4)

There are two rank three groups: A10 ≤ S10 = Aut(Γ) and θ1 = 6, θ2 = −2.
There is one example of a positive intriguing set of size 9 admitting S9 whose
associated DSRGs has parameters (360, 72, 16, 8, 16).

The negative intriguing sets of the graph are the following: a coclique of
size 5 fixed by a group of order 3840; five distinct examples of size 10 left
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invariant by a group of order 20, 84, 96, 200, 576, respectively; 21 intriguing
sets of size 15 admitting a subgroup of order 22, 44, 62, 83, 12, 162, 20, 32,
48, 32, 120, 288, 1728. Some of the related DSRGs have parameters

(1323000, 294000, 67200, 58800, 67200), (378000, 83999, 25199, 25198, 16800),

(1512000, 336000, 76800, 67200, 76800), (432000, 95999, 28799, 28798, 19200),

(6350400, 1411200, 322560, 282240, 322560), (63000, 13999, 4199, 4198, 2800),

(1814400, 403199, 120959, 120958, 80640), (181440, 40319, 12095, 12094, 8064),

(220500, 49000, 11200, 9800, 11200), (635040, 141120, 32256, 28224, 32256).

4.1. Quasi-symmetric SPBIBDs. According to Lemma 2.4 a quasi
-symmetric SPBIBD yields a strongly regular graph. Note that the lines of
a generalized quadrangle are blocks of quasi-symmetric SPBIBDs and the
obtained SRG is the point graph of its dual generalized quadrangle. More
interestingly, the nondegenerate hyperplane sections of a parabolic quadric
Q(2n, q) or of a Hermitian polar space H(n, q2) are intriguing sets and form
the blocks of quasi-symmetric SPBIBDs. The SRGs that arise are the graphs
NO±(2n + 1, q) or NU(n, q2). Similarly, in NO±(2n, 2) or NU(n, q2) the
nonisotropic points on tangent hyperplanes form an intriguing set. These
are blocks of quasi-symmetric SPBIBDs. The related SRGs are the point
graphs of the corresponding polar spaces. In what follows we provide some
interesting SPBIBDs arising from Proposition 3.4 that are quasi–symmetric
and compute the parameters of the associated strongly regular block graph.

(1) In NO−(6, 2), there are 40 positive intriguing sets of size 9 and two of
them are either disjoint or meet in 3 points. There arises a SRG with
parameters (40, 12, 2, 4) that is the point graph of Q(4, 3). There are
45 negative intriguing sets of size 12 fixed by a group of order 1152,
any two of them have 3 or 6 points in common. The corresponding
SRG has parameters (45, 32, 22, 24) that is the complement of the
point graph of H(3, 4).

(2) In NU(3, 25), there is a negative intriguing set I of size 105, fixed

by the group A7. If Z = IPSU(3,5), then |Z| = 50. Since two distinct
members of Z meet in either 15 or 45 points, there arises a SRG
with parameters (50, 7, 0, 1), i.e., the Hoffman–Singleton graph.

(3) Let Q−(5, 3) be a nondegenerate elliptic quadric of PG(5, 3). Up to
isomorphism, there is a unique 2-ovoid (being a negative intriguing
set of the point graph of Q−(5, 3)) of Q−(5, 3) admitting the group

PSL(4, 3) as an automorphism group. If Z = IPΩ−(6,3), then
|Z| = 162. Since two distinct members of Z meet in either 20 or 32
points, there arises the unique SRG with parameters (162, 56, 10, 24).

(4) Let H(5, 4) be a nondegenerate Hermitian variety of PG(5, 4). A
hyperoval of H(5, 4) is a set of points of H(5, 4) such that every line
of H(5, 4) meets in either 0 or 2 points. There exists a hyperoval I
of H(5, 4) of size 126 [58], [25]. Moreover, I is the unique hyperoval
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of H(5, 4) of size 126, up to isomorphism. The stabilizer of I in
PSU(6, 2) is a group S of order 6531840 containing PSU(4, 3). The
group S has two orbits on the points of H(5, 4), hence I is an intrigu-
ing set of H(5, 4). Particularly, I is a positive intriguing set (tight
set) of the point graph of H(5, 4) with h1 = 45 and h2 = 30. Let

Z = IPSU(6,2). Since two distinct members of Z meet in either 18 or
30 points, there arises a SRG with parameters (1408, 567, 246, 216).
The SRG can be described as a rank three graph, obtained from the
group PSU(6, 2).

5. Intriguing sets of polar spaces: some constructions

In this section we present some constructions of intriguing sets of finite
classical polar spaces. We say that an intriguing set I of Pr is classical if
I = Pr ∩Σ, for some subspace Σ not contained in Pr. Then it is easily seen
([2, Lemma 7], [18]), that Σ is either an (r− 1)-space or an (r− 2)-space of

PG(r, q) such that Pr ∩ Σ = P̃r−1 or Pr ∩ Σ = P̃r−2, where

(5.1)

Pr P̃r−1 P̃r−2

H(r, q2) H(r − 1, q2)
Q−(r, q) Q(r − 1, q) Q+(r − 2, q)
Q+(r, q) Q(r − 1, q) Q−(r − 2, q)
Q(r, q) Q+(r − 1, q)
Q(r, q) Q−(r − 1, q)

First we show that by perturbating a classical intriguing set of Pr, a non-
classical intriguing set can be obtained. Then some tight sets of W(3, q) are
described.

Construction. Let Pr be a polar space of PG(r, q), r ≥ 4, and let Σ be

an (r − 1)-space or an (r − 2)-space of PG(r, q) such that Pr ∩ Σ = P̃r−1

or Pr ∩ Σ = P̃r−2 as in (5.1). Let σ be an s-space of Pr contained in Σ
such that σ⊥ ∩ Pr ∩ Σ ̸= σ. Then σ⊥ ∩ Pr is a cone having σ as the vertex
and Pr−2s−2 as the base, and σ⊥ ∩ Pr ∩Σ is a cone, say C, having σ as the
vertex and as the base the polar space P̃r−2s−3 ⊂ Pr−2s−2 or the polar space
P̃r−2s−4 ⊂ Pr−2s−2. Let P̃ ′

r−2s−3 or P̃ ′
r−2s−4 be a polar space embedded in

Pr−2s−2 distinct from P̃r−2s−3 or P̃r−2s−4 and of the same type as P̃r−2s−3

or P̃r−2s−4, respectively. Let C′ be the cone having σ as the vertex and
P̃ ′
r−2s−3 or P̃ ′

r−2s−4 as the base . Set X = ((Pr ∩ Σ) \ C) ∪ C′.

Proposition 5.1. The set X is a nonclassical intriguing set of Pr of the
same type as Pr ∩ Σ.

Proof. Let P be a point of Pr. Assume first that P /∈ σ⊥. Then σ ∩ P⊥ is
an (s − 1)-space and P⊥ ∩ σ⊥ ∩ Pr is a cone having σ ∩ P⊥ as the vertex
and Pr−2s−2 as the base. Hence, |P⊥ ∩ C| = |P⊥ ∩ C′|.

Assume now that P ∈ σ⊥. If P ∈ σ, then σ⊥ ⊂ P⊥ and
|P⊥∩C| = |P⊥∩C′|. If P /∈ σ, then we may suppose w.l.o.g. that it belongs
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to the base of the cone σ⊥ ∩ Pr, i.e., P ∈ Pr−2s−2. Note that both P̃r−2s−3

and P̃ ′
r−2s−3 or P̃r−2s−4 and P̃ ′

r−2s−4 are intriguing sets of P̃r−2s−2. If

P ∈ Pr−2s−2 \ ((P̃r−2s−3 ∪ P̃ ′
r−2s−3) \ (P̃r−2s−3 ∩ P̃ ′

r−2s−3)),

or

P ∈ Pr−2s−2 \ ((P̃r−2s−4 ∪ P̃ ′
r−2s−4) \ (P̃r−2s−4 ∩ P̃ ′

r−2s−4)),

then |P⊥ ∩ P̃r−2s−3| = |P⊥ ∩ P̃ ′
r−2s−3| or |P⊥ ∩ P̃r−2s−4| = |P⊥ ∩ P̃ ′

r−2s−4|.
Hence, |P⊥ ∩ C| = |P⊥ ∩ C′|. If R ∈ P̃r−2s−3 \ P̃ ′

r−2s−3 and

Q ∈ P̃ ′
r−2s−3 \ P̃r−2s−3, then |R⊥ ∩ P̃r−2s−3| = |Q⊥ ∩ P̃ ′

r−2s−3| and
|R⊥ ∩ P̃ ′

r−2s−3| = |Q⊥ ∩ P̃r−2s−3|. Similarly, if R ∈ P̃r−2s−4 \ P̃ ′
r−2s−4

and Q ∈ P̃ ′
r−2s−4 \ P̃r−2s−4, then |R⊥ ∩ P̃r−2s−4| = |Q⊥ ∩ P̃ ′

r−2s−4| and
|R⊥ ∩ P̃ ′

r−2s−4| = |Q⊥ ∩ P̃r−2s−4|. Therefore, |R⊥ ∩ C| = |Q⊥ ∩ C′| and
|R⊥ ∩ C′| = |Q⊥ ∩ C|. The result follows from the fact that P̃r−1 or P̃r−2 is
an intriguing set of Pr.

Finally, notice that X is not contained in Σ, hence, it is not classical.
□

5.1. Tight sets of W(3, q).

Construction. Assume that q is odd. Let W(3, q) be a symplectic polar
space of PG(3, q) and let Q+(3, q) be a hyperbolic quadric with reguli R1

and R2 such that all the lines of R1 and two of the lines of R2, say ℓ1 and
ℓ2, are lines of W(3, q). Let K be the group of projectivities of PG(3, q)
isomorphic to PSL(2, q)×PSL(2, q) fixing Q+(3, q). Then K has two orbits
of size (q3 − q)/2 on points of PG(3, q) \ Q+(3, q). Let X be one of these
two K-orbits.

Proposition 5.2. The set X is a (q2 − q)/2-tight set of W(3, q).

Proof. Let P be a point of PG(3, q). Assume first that P ∈ X . Then P⊥

meets ℓi at the point Pi, i = 1, 2, and the lines PPi are lines of W(3, q)
that are tangent to Q+(3, q). Hence, the plane P⊥ meets Q+(3, q) in a
nondegenerate conic C. Moreover, X ∩ P⊥ are the points of P⊥ that are
external to C. Hence, |P⊥ ∩ X | = (q2 + q)/2. Assume now that P /∈ X . If
P ∈ Q+(3, q), then P⊥ is a plane tangent to Q+(3, q) at a point P ′. Note
that P = P ′ if and only if P ∈ ℓ1∪ℓ2. Among the q−1 lines through P ′ that
are tangent to Q+(3, q) there are (q − 1)/2 lines containing q points of X
and (q−1)/2 lines containing no points of X . Hence, |P⊥∩X | = (q2− q)/2.
If P /∈ Q+(3, q), then again P⊥ meets Q+(3, q) in a nondegenerate conic
C. In this case X ∩ P⊥ consists of the points of P⊥ that are internal to C.
Therefore, |P⊥ ∩ X | = (q2 − q)/2. □

Construction. Assume that q ≡ 1 (mod 3). Let C be a twisted cubic of
PG(3, q) and let W(3, q) be the symplectic polar space whose polarity ⊥ maps
the points of C to their osculating planes and interchanges the chords and
axes of C, see [49, Theorem 21.1.2]. The union of the q + 1 tangents to C,
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the q(q+1) unisecant lines in the osculating planes and q3− q lines external
to C not lying in osculating planes is the set of generators of W(3, q). With
the same notation used in [49, Corollary 5, Lemma 21.1.11, Corollary], let
M4 be the set of points lying on the imaginary chords of C.
Proposition 5.3. The set M4 is a (q2 − q)/2-tight set of W(3, q).

Proof. The points of W(3, q) are partitioned into five sets, namely M1,
points of C, M2, points off C on a tangent, M3 ∪ M5, points off C on
a real chord, M4 points on an imaginary chord. Similarly, the planes are
partitioned into the five setsNi, 1 ≤ i ≤ 5, and the polarity ⊥maps points of
Mi to planes of Ni, 1 ≤ i ≤ 5, [49, Corollary 4, Corollary 5, Lemma 21.1.11,
Corollary]. Moreover, a point off C lies on exactly one real chord, tangent or
imaginary chord of C, [49, Theorem 21.1.9]. This means that M4 consists of
the points on q(q−1)/2 pairwise skew lines having no point in common with
C. Thus |M4| = (q3− q)/2. Assume first that P is a point of W(3, q) not in
M4. If P ∈ M1∪M2, then P⊥ contains a tangent, say t; hence, P⊥ cannot
contain an imaginary chord, otherwise it would meet the line t at a point
not on C, a contradiction. Therefore, |P⊥ ∩M4| = q(q− 1)/2. Analogously,
if P ∈ M3, then |P⊥ ∩ C| = 3 and P⊥ contains three real chords; therefore,
P⊥ cannot contain an imaginary chord, otherwise it would meet a real chord
at a point off C, a contradiction. It follows that |P⊥ ∩M4| = q(q − 1)/2. If
P ∈ M5, then |P⊥ ∩ C| = 0. In this case P⊥ cannot contain a tangent or a
real chord and hence, |P⊥ ∩M2| = q + 1, |P⊥ ∩ (M3 ∪M5)| = q(q − 1)/2.
It turns out that |P⊥ ∩M4| = q(q − 1)/2. Assume now that P ∈ M4. We
have seen so far that no plane of N1 ∪N2 ∪N3 ∪N5 contains an imaginary
chord. Hence, P⊥ ∈ N4 has to contain exactly one imaginary chord and
therefore, |P⊥ ∩M4| = q + 1 + q(q − 1)/2− 1 = q(q + 1)/2. □

Construction. Assume that q is odd. Let W(3, q) be a symplectic polar
space of PG(3, q). There is a partition of the points of PG(3, q) into q + 1
elliptic quadrics [35]. These elliptic quadrics can be paired in such a way
they give rise to (q+1)/2 pairwise disjoint 2-ovoids of W(3, q) [3, Corollary
5.2], say {O1,O′

1}, . . . , {O(q+1)/2,O′
(q+1)/2}. Let X be the set obtained by

selecting one elliptic quadric for each of the (q+1)/2 pairs and taking their
union.

Proposition 5.4. The set X is a (q2 + 1)/2-tight set of W(3, q).

Proof. By construction |X | = (q + 1)(q2 + 1)/2. Let P be a point of Oi.
Note that among the q + 1 lines of W(3, q) through P there is exactly one
that is tangent to Oi and the remaining q are secant to Oi, see also [3].
Hence, |P⊥ ∩ Oi| = q + 1 and |P⊥ ∩ O′

i| = 1, since Oi ∪ O′
i is a 2-ovoid

of W(3, q). Moreover, a plane of PG(3, q) is tangent to exactly one elliptic
quadric of the partition and it is secant to the remaining q. This means that
|P⊥ ∩ Oj | = |P⊥ ∩ O′

j | = q + 1, if i ̸= j.
If R is a point of X , then we may assume that R ∈ Oi. Hence, Oi ⊂ X

and |O′
i∩X | = 0. Thus |R⊥∩X | = (q− 1)(q+1)/2+ q+1 = (q2+1)/2+ q.
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If R /∈ X , then we may assume that R ∈ O′
i and

|R⊥ ∩ X | = (q − 1)(q + 1)

2
+ 1 =

(q2 + 1)

2
,

as required. □
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88 DEAN CRNKOVIĆ, FRANCESCO PAVESE, AND ANDREA ŠVOB
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