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CONFINING THE ROBBER ON COGRAPHS

MASOOD MASJOODY

Abstract. In a game of Cops and Robbers on graphs, usually the cops’
objective is to capture the robber—a situation which the robber wants
to avoid invariably. In this paper, we begin with introducing the no-
tions of trapping and confining the robber and discussing their relations
with capturing the robber. Our goal is to study the confinement of the
robber on graphs that are free of a fixed path as an induced subgraph.
We present some necessary conditions for graphs G not containing the
path on k vertices (referred to as Pk-free graphs) for some k ≥ 4, so that
k − 3 cops do not have a strategy to capture or confine the robber on
G (Propositions 2.1, 2.3). We then show that for planar cographs and
planar P5-free graphs the confining cop number is at most one and two,
respectively (Corollary 2.4). We also show that the number of vertices
of a connected cograph on which one cop does not have a strategy to
confine the robber has a tight lower bound of eight. Moreover, we ex-
plore the effects of twin operations—which are well known to provide a
characterization of cographs—on the number of cops required to capture
or confine the robber on cographs. Finally, we pose two conjectures on
confining the robber on P5-free graphs and the smallest planar graph of
confining cop number of three.

1. Introduction

A game of Cops and Robbers is a pursuit game on graphs, or a class of
graphs, in which a set of agents, called the cops, try to get to the same
position as another agent, called the robber. Among several variants of such
a game, we solely consider the one introduced in [1], which is played on
finite undirected graphs. Hence, we will simply refer to this variant as “the”
game of Cops and Robbers. Let G be a simple undirected graph. Consider
a finite set of cops and a robber. The game on G goes as follows. At the
beginning of the game (step 1), each cop will be positioned in a vertex of G
and then the robber will be positioned in some vertex of G. In each of the
subsequent steps, each agent either moves to a vertex adjacent to its current
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vertex or stays still, with the robber taking turns after all of the cops. The
cops win if one of the cops captures the robber, i.e., gets to the vertex where
the robber is located. The minimum number of cops that are guaranteed,
irrespective of how the robber plays, to capture the robber on G in a finite
number of steps is called the cop number of G and denoted C(G). Graph
G is said to be k-copwin (k ∈ N) if C(G) ≤ k. A 1-copwin graph is simply
referred to as a copwin graph. Since the cop number of a graph is equal to
the sum of the cop numbers of its components, whenever the cop number
of a graph G is concerned G is considered to be connected, unless otherwise
stated. A class G of graphs is called cop-bounded if there is k ∈ N such that
C(G) ≤ k for every G ∈ G. Among the cop-bounded classes of graphs, we
can mention the class of trees, which is cop-bounded by one, and the class
of planar graphs, which is cop-bounded by three [1]. For more background
on the game of Cops and Robbers and the cop number, see [3].

Notation.

• If a, b are integers with a ≤ b, we denote the set of integers between
a and b, both inclusive, by [a, b].

• When v and v are vertices in a graph G, we denote their graph
distance in G by dG(u, v).

• When G is a graph and U is a subset of its vertex set, G[U ] denotes
the subgraph of G induced by U .

• Let U and W be disjoint subsets of the vertex set of a graph G. Then
we write U ⇔G W (or simply U ⇔ W if the graph G is understood
from the context) to mean that every vertex in U is adjacent to every
vertex in W .

Definition 1.1. Let G = (V,E) be a graph. For each v ∈ V we define the
open neighborhood NG(v) of v to be {w ∈ V : vw ∈ E} and the closed
neighborhood NG[v] to be NG(v) ∪ {v}.

Definition 1.2. We say a vertex x of G is a dominated vertex or a corner
if there is another vertex y of G such that NG[x] ⊆ NG[y], in which case we
also say that y dominates x (in G). An elimination ordering of a graph G is
an ordering, say, v1, . . . , vn of the vertices of G where each vi (i ∈ [1, n−1])
is a corner of G[{vj : j ∈ [i, n]}]. Graphs that admit an elimination ordering
are called dismantlable.

Theorem 1.3 ([9, 10, 11]). A graph is copwin if and only if it is dismant-
lable.

Definition 1.4. Let H be a set of graphs. A graph G is called H-free if no
graph in H is an induced subgraph of G. If H is a singleton, say {H}, we
will use {H}-free and H-free interchangeably.

The game of Cops and Robbers on graphs with one forbidden induced
subgraph was studied in [6]. The main results in [6] are summarized as
follows:
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Theorem 1.5 ([6]).

(1) For a graph H, the class of H-free graphs is cop-bounded if and only
if every component of H is a path.

(2) The class of Pk-free graphs (k ≥ 3) is (k − 2)-copwin.

The results in [6] were extended [7, 8], mainly through the introduction of
the Train-chasing Lemma (Lemma 1.7), to the game of Cops and Robbers
on graphs with a set of forbidden induced subgraphs.

Definition 1.6 ([8]). Let G be a graph and U be the set of all triples (u, v,H)
where H is a connected subgraph of G, and u, v ∈ V (H) with dH(u, v) ≥ 2.
A chasing function for G is a function θ mapping every triple (u, v,H) ∈ U
onto the neighbor of u along a (u, v)-shortest path in H.

Lemma 1.7 (Train-chasing Lemma [8]). Consider an instance of the game
of Cops and Robbers on a graph G. Let θ be a chasing function for G. Let
k ∈ N and suppose on the cops’ turn in step one there are k cops C1, . . . , Ck

in a vertex v1 of the graph while the robber is located in a vertex w1. Further,
suppose the robber can and will play in such a way to survive the next k steps
of the game, regardless of how the cops C1, . . . , Ck play. Denote the following
(generally not predetermined) robber’s positions with w2, . . . , wk. Then, let
Hi (i ∈ [1, k]) and vi (i ∈ [2, k]) be defined recursively by the following
relations:

• H1 = G;
• vi+1 = θ(vi, wi, Hi) for i ∈ [1, k];
• X1 = NH1(v1) \ {v2};
• Xi = NHi(vi) \ {vi−1, vi+1} for i ∈ [2, k];
• Hi+1 : the component of v1 in Hi −Xi for i ∈ [1, k].

Then the following holds:

(1) Every Hi is an induced subgraph of G.

(2) If uv ∈ E(G) \ E(Hk+1) such that u ∈ V (Hk+1), then v ∈
⋃k

i=1Xi.
(3) Vertices v1, . . . , vk+1, in that order, induce a path in Hk.
(4) The cops can play such that on the cops’ turn in step k every Ci,

i ∈ [1, k], is located in vertex vi.
(5) Keeping every Ci in vi for the rest of the game forces the robber to

stay in Hk+1.

v1 v2 v3 vi vi+1 = θ(vi, wi, Hi)

wi

X1 X2 X3 Xi

Figure 1. Train-chasing the robber according to Lemma 1.7
[8].
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In [8], the Train-chasing Lemma was, in particular, used to characterize
classes F of graphs such that F-free graphs are cop-bounded, under the
condition that there is a constant bounding the diameter of the components
of elements of F . The resultant characterization generalizes Theorem 1.5(a).
It is worth mentioning that the following extension of Theorem 1.5(b) is
also an immediate corollary of the Train-chasing Lemma. (See [12] for the
definition of the one-active-cop version of the game of Cops and Robbers.)

Theorem 1.8 ([8]). For k ≥ 3, k− 2 cops require no more than k− 1 steps
of the game to capture the robber on a Pk-free graph in the one-active-cop
version of the game of Cops and Robbers.

In this paper, we consider Pk-free graphs from the viewpoint of some new
notions relevant to the cop number of graphs, described below.

Definition 1.9. The trapping cop number of a graph G, denoted tcn(G),
is the minimum number of cops that can force an arrangement of the cops
and the robber on vertices of G in which the robber has to invariably stay
in the closed neighborhood NG[v] of a vertex v in order to avoid immediate
capture, in which case we say that the cops have trapped the robber.

Definition 1.10. The confining cop number of a graph G, denoted ccn(G),
is the minimum number of cops that can force an arrangement of the cops
and the robber on vertices of G in which the robber has to stay in its position
in order to avoid capture in the next move of the cops, in which case we say
that the cops have confined the robber.

Definition 1.11. Let G be a graph with |G| ≥ 3. We call a vertex v of G
a confined corner of G if there exists a vertex w such that dG(v, w) = 2 and
NG(v) ⊆ NG(w), in which case w is said to confine v in G.

On a graph, the of cop number, trapping cop number, and confining cop
number are related through the following inequalities.

Proposition 1.12. For every graph G we have

tcn(G) ≤ ccn(G) ≤ C(G) ≤ tcn(G) + 1.

Proof. The first two inequalities are obvious. As for the last one, note that
with tcn(G) + 1 cops available, tcn(G) of them eventually force the robber
to stay in NG[v] for some vertex v. By keeping those cops stationary and
placing the remaining cop in v, the capture of the robber by the following
step of the game will be guaranteed. □

It is known that the cop number of any graph having girth ≥ 5 is at least
as large as its minimum degree:

Proposition 1.13 ([1]). For a graph G with minimum degree δ we have
C(G) ≥ δ provided the girth of G is at least 5.

The proof of Proposition 1.13 indeed establishes the following stronger
result, which is in terms of the confining cop number of graphs.
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Proposition 1.14. For a graph G with minimum degree δ we have ccn(G) ≥
δ provided the girth of G is at least 5.

Corollary 1.15. For every graph G of order ≤ 9 we have ccn(G) ≤ 2.
Moreover, the Petersen graph is the only graph on 10 vertices whose confin-
ing cop number is equal to 3.

Proof. As shown in [2], the cop number of the Petersen graph is three,
whereas every graph G on at most 10 vertices which is not the Petersen
graph has C(G) ≤ 2. Moreover, by Proposition 1.14, the confining cop
number of the Petersen graph is at least three. Hence, in light of Proposition
1.12 the desired claims follow. □

In light of Proposition 1.12, the following result can be presented as an
extension of Theorem 1.8.

Theorem 1.16. If G is a Pk-free graph for some k ≥ 3, then tcn(G) ≤ k−3.
Furthermore, k − 3 cops need no more than k − 3 steps of the game to trap
the robber in the one-active-cop version of the game of Cops and Robbers.

Sketch of proof. The proof is just an adaptation of the proof of Theorem 1.8
with k − 3 cops in play. See [8] for details. □

Remark: The case k = 3 is a triviality. Also, note that by Propositions 1.12
and Theorem 1.16, for a Pk-free graph G we have tcn(G) > k−3 if and only
if tcn(G) = C(G) = k − 2.

Notation. Given k ≥ 4, we will denote the class of all connected Pk-free
graphs G satisfying ccn(G) = k− 2 (resp. C(G) = k− 2) by Gk,c (resp. Gk).

In section 2 we will establish some necessary conditions for elements of Gk

and Gk,c. In light of such conditions, in section 3 we will consider the game
of Cops and Robbers on P4-free graphs, also known as cographs.

Definition 1.18. Distinct vertices u, v in a graph G are said to be twins
(or to form a twin pair) if every other vertex in G is adjacent to both u and
v, or nonadjacent to both u and v. A pair u, v of twin vertices in G is called
true (resp. false) whenever NG[u] = NG[v] (resp. NG(u) = NG(v)). Given
G = (V,E), a twin operation on G is an operation of adding a new vertex w′

to G so that NG′(w′) = NG(w) (false-twin operation) or NG′(w′) = NG[w]
(true-twin operation) for some w ∈ V (G).

Several characterizations of cographs were established in [5], one of which
states that a graph G is a cograph if and only if every nontrivial induced
subgraph of G has a pair of twins. It can be easily seen that the latter implies
the following characterization, which is of our special interest in section 3:

Theorem 1.19. A connected nontrivial graph G is a cograph if and only if
it can be obtained from K2 by a sequence of twin operations.

Remark: For general graph theoretic definitions see [4].
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2. Some properties of Gk and Gk,c

It is easy to see that Gk,c ⊆ Gk. In that regard, first, in Proposition
2.1, we present some properties of Gk, and then, in Proposition 2.3, refine
those properties for the subclass Gk,c of Gk. We point out that both of
these technical propositions are similar to the Train-chasing Lemma and are
established in a more-or-less similar fashion.

Proposition 2.1. Let G ∈ Gk and v1 ∈ V (G). With k − 3 cops available,
suppose the robber uses any winning strategy against the cops. In addition,
suppose the cops start at v1 and play according to any chasing function θ for
G in the first k−3 steps of the game. Denote the position at the end of step
k − 3 of the robber by w. Let Hi and vi be as in Lemma 1.7. Furthermore,
for j ∈ [1, (k − 3)] let

Mj := NG(vj) \
⋃

{NG[vi] : 1 ≤ i ≤ k − 2, i ̸= j},

and for j > k − 3 let Mj be the jth neighborhood of v1 in Hk−2.

v1 v2 v3 vk−3

wiM1 M2 M3 Mk−3

vk−2

Mk−2

Figure 2. An illustration of Mjs defined in Proposition 2.1.

Then:

(1) Mj = ∅ for j ≥ k − 1;
(2) Mj ̸= ∅ for each j ∈ [1, (k − 2)];
(3) M1 ⇔ Mk−2;
(4) for each u ∈ M1 and z ∈ Mk−2, G[{u, z, v1, . . . , vk−2}] is a k-cycle;

in particular, every vertex of G belongs to an induced k-cycle; and
(5) we have

(2.1) w ∈
⋂

{NG(Mj) : j ∈ [1, (k − 3)]}.

In particular,

(2.2) Mk−2 ∩
(⋂

{NG(Mj) : j ∈ [1, (k − 3)]}
)
̸= ∅,

and G contains a vertex that belongs to an induced j-cycle in G for
each j ∈ [4, k].

Proof. Since the cops play according to θ, at the end of step k−3 of the game
we have the cops along the induced path P : v1 = v, v2, . . . , vk−3 in Hk−2

and the robber at w ∈ Mk−2. Hence, in particular, Mk−2 ̸= ∅ and at the
end of step k−3, the game is restricted to Hk−2 with the properties set forth
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in Lemma 1.7. Therefore, if Mj ̸= ∅ for some j ≥ (k − 1) then Hk−2 and,
hence, G would contain an induced k-path from v1 to Mj ; a contradiction.
This establishes (a). Then, observe that since vk−2 dominates Mk−2, the
robber has to stay in Mk−2 as long as the cops cover the vertices of P .
Hence, if Mj = ∅ for some j ∈ [1, (k − 3)] then keeping cops in all vi with
i ∈ [1, (k − 3)] \ {j} would suffice to keep the robber in Mk−2 and allow
the cops to cover all vertices in {vi : i ∈ [1, (k − 2)] \ {j}} in the next
step of the game. But then the cops will be able to capture the robber by
the following step of the game. The latter contradicts the assumption that
G ∈ Gk. Therefore, (b) also holds. Next, note that if there exist x ∈ M1 and
y ∈ Mk−2 such that xy /∈ E(G), then G[{x, v1, . . . , vk−2, y}] would be a k-
path; a contradiction. Hence, (c) must also hold. Note that (d) is immediate
from (c) alongside the fact that any vertex v ∈ V (G) can be set as the initial
position v1 of the cops. Finally, if, given the position w of the robber at the
end of step k−3 of the game, there exists j0 ∈ [1, (k−3)] so that w ̸∈ NG(Mj0)
then, as argued for (a), covering all vertices in {vi : i ∈ [1, (k− 2)] \ {j}} by
the cops forces the robber to stay within the neighborhood of at least one
cop; thereby, the robber will be captured by the very next step of the game;
a contradiction. Hence, we have

w ∈
⋂

{NG(Mj) : j ∈ [1, (k − 3)},

from which the other claims in (e) follow. □

Corollary 2.2. Every G ∈ Gk is 2-connected.

Proof. In light of Proposition 2.1(d), it suffices to show that no induced
k-cycle in G contains a cut-vertex of G. To this end, consider an induced
k-cycle C of G and assume, toward a contradiction, that C contains a cut-
vertex x of G. Let B be the block of G that contains C, and B′ be another
block of G that contains x. Pick a neighbor y of x in C, and any neighbor
z of x in B′. Then, the graph

G[(V (C) \ {y}) ∪ {z}]
will be a Pk; a contradiction. □

Proposition 2.3. Let G ∈ Gk,c and v1 ∈ V (G). We consider the assump-
tions and notations of Proposition 2.1 with the exception that we assume the
robber uses any winning strategy against confinement by the cops. Then:

(1) |Mj | ≥ 2 for j ∈ {1, k − 2}.
(2) E(G[Mj ]) is nonempty for j ∈ {1, k − 2}.
(3) |V (G)| ≥ 2k − 2.

Proof. (a) and (b) Suppose the cops stay still after step k− 3 of the game
so that the robber has to stay in Mk−2 for the rest of the game. Since the
robber’s strategy avoids confinement, the robber at w must have a neighbor
w′ ∈ Mk−2. Hence, E(G[Mk−2]) ̸= ∅ and |Mk−2| ≥ 2. Likewise, by having
the cops occupy vertices v2, . . . , vk−2 in step k − 2, the robber has to leave
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w to a vertex u ∈ M1 to avoid capture. In that situation, since G ∈ Gk,c,
keeping the cops stationary in the next step of the game leads to the existence
of a vertex u′ satisfying u′ ∈ NG(u) \ NG({vi : i ∈ [2, (k − 2)}) so that the
robber can move to u′ in step k − 1 of the game. As such, considering the
graph

G[{u, u′} ∪ {vi : i ∈ [1, (k − 2)}]
shows that u′ must be in NG(v1); thereby, we have u

′ ∈ M1. As a result, we
also have E(G[M1]) ̸= ∅ and |M1| ≥ 2. (See Figure 3.)

v1 v3

vk−3

vk−2

w′

wu

u′

v2

u, u′ ∈ M1, w, w′ ∈ Mk−2

Figure 3. An illustration for an induced subgraph of G in
Proposition 2.3.

(c) Since the k− 1 sets M1, . . . ,Mk−2 and {vi : i ∈ [1, (k− 2)} are mutually
disjoint subsets of V (G), according to (a) and Proposition 2.1(b) we have

|V (G)| ≥ 2(k − 4) + 2× 3 = 2k − 2,

as desired. □

Corollary 2.4. Let G be a connected planar graph that is Pk-free for some
k ≥ 4. Then, ccn(G) ≤ k − 3. In other words, every element of Gk,c (with
k ≥ 4) is nonplanar.

Proof. If G ∈ Gk,c then, in terms of the notations of Proposition 2.3 and its
proof, we have |M1|, |Mk−3| ≥ 2 with M1 ⇔ Mk−3. Then, for all pairs of
2-sets {u, u′} ⊆ M1 and {w,w′} ⊆ Mk−3 the graph

G[{u, u′, w, w′, v1, . . . , vk−2}]

contains a subdivision of K3,3 with partite sets {u, u′, vk−2} and {w,w′, v1}.
(See Figure 3.) Hence, G is nonplanar according to the Kuratowski Theorem.

□

The following is also immediate in light of Proposition 2.3.

Corollary 2.5. For every G ∈ Gk,c we have δ(G) ≥ 3 and ∆(G) ≥ k.

Proof. We implement the notations of Proposition 2.3 and its proof. In that
regard, for any typical vertex v1 of G we have NG(v1) ⊇ {u, u′, v2}. Hence,
δ(G) ≥ 3. Furthermore, since {w′, u, u′, vk−2} ⊆ NG(w) and NG(w) ∩Mj is
nonempty for each j ∈ [2, (k − 3)], we also have |NG(w)| ≥ 4 + (k − 4) = k.
Thus, ∆(G) ≥ k, as desired. □
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For k ≥ 5 we can strengthen the first part of Corollary 2.5.

Proposition 2.6. For every G ∈ Gk,c with k ≥ 5 we have δ(G) ≥ 4.

Proof. Toward a contradiction, let G ∈ Gk,c with δ(G) ≤ 3. Then, by
Corollary 2.5, it follows that δ(G) = 3. Pick any vertex v1 ∈ V (G) with
degG(v1) = 3. Let there be k−3 cops available. Then, with the assumptions
and notations of Propositions 2.1 and 2.3, we have NG(v1) = {u, u′, v2} and
M1 = {u, u′}. (See Figure 3.) By having cops at vertices v2, . . . , vk−2 in step
k − 2 of the game, the robber will be forced to move to one of the vertices
in M1, say u. Then, for the following step, moving the cop at vk−2 to w and
keeping the other cops stationary force the robber to move to a neighbor,
say, z of u so that the robber will avoid being captured in the very next cop
moves—recall that G ∈ Gk,c. In that regard, we must have z ∈ V (G)\N(vj)
for each j ∈ [2, (k − 3)]. Moreover, by Proposition 2.1(c), we must have
z ̸∈ M1; thereby, z ̸∈ N(v1). Therefore, z, which is apparently a nonneighbor
of w, must belong to Mk−2, for otherwise G[{vj : j ∈ [1, (k − 2)]} ∪ {u, z}]
would be a Pk; a contradiction.

v1 v3

vk−3

vk−2

w′

wu

u′

v2

u, u′ ∈ M1, w, w′, z ∈ Mk−2, z′ ∈ Mk−1

z z′

Figure 4. Proof of Proposition 2.6 by contradiction.

After the robber’s move to z, in the following step of the game the cop
presently at w can move to u while the rest of the cops stay put. This
arrangement of the cops forces the robber to move to a neighbor z′ of z where
the robber can avoid capture. As with z, now we must have z′ ∈ V (G)\N(vj)
for each j ∈ [2, (k − 3)], and z′ ̸∈ Mj for j ∈ {1, k − 2}. Consequently, we
also have z′ ∈ V (G) \ N(vj) for j ∈ [1, (k − 2)]; i.e. z′ ∈ Mk−1. The latter
contradicts Proposition 2.1(a). (See Figure 4 for an illustration.) □

3. Cops and Robbers on Cographs

By Theorem 1.16, for every cograph G we have tcn(G) = 1. In this section,
we consider the effects of twin operations on the cop number and confining
cop number of cographs.

Proposition 3.1. Let G1 be a cograph and x ∈ V (G1).

(1) If G2 is obtained from G1 by adding a true twin y of x, then C(G1) =
C(G2).

(2) If G3 is obtained from G1 by adding a false twin z of x, then C(G1) ≤
C(G3).
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Proof. We will use Theorem 1.3 and the fact that the cop number of a
cograph is either one or two. (a) First, we show that C(G1) ≤ C(G2). To
this end, note that if there is a winning strategy for, say, k cops on G2,
then k cops on G1 can follow the same strategy on G1 except that a cop’s
move to or from y is replaced with that cop’s move to or from x. It is easy
to see that using this simple shadow strategy, ultimately the cops capture
the robber on G1. Hence, C(G1) does not exceed C(G2). Also note that if
C(G1) = 1, then pasting y in front of any elimination ordering of G1 gives
an elimination ordering of G2; therefore, in light of Theorem 1.3, we will
have C(G2) = 1. We also have C(G1) = C(G2) whenever C(G1) = 2, since
C(G1) ≤ C(G2) and cographs are cop-bounded by two. (b) By the fact that
cographs are cop-bounded by two, one only needs to consider the case where
C(G1) = 2. In this case, the robber has a winning strategy S against one
cop on G1. Then on G3 and against one cop, the robber can react to any
move of the cop to or from y as if the cop has moved to or from x and, as
such, simply move among V (G1) according to S. It can be easily seen that
the latter is a winning strategy for the robber on G2; therefore, C(G3) = 2
whenever C(G1) = 2. □

Remark: Note that the false twin operation can indeed increase the cop
number of a cograph, as is the case with C4 (with c(C4) = 2) which is
obtained by the false twin operation on the degree-two vertex of the copwin
graph P3.

Theorem 3.3. Let G1 be a cograph and x ∈ V (G1).

(1) If G2 is obtained from G1 by adding a true twin y of x, then we have
ccn(G1) ≤ ccn(G2).

(2) If G3 is obtained from G1 by adding a false twin z of x, then we have
ccn(G1) = ccn(G3).

Proof. (a) It suffices to consider the case where ccn(G1) = 2 so that the
robber has a strategy S against one cop on G1 to avoid confinement. Then,
the robber can mimic S on G2, as shown in the proof of Proposition 3.1(b),
to avoid confinement by one cop on G2. Therefore, ccn(G2) = 2 when
ccn(G1) = 2. (b) Likewise the proof of (a), we can easily see that ccn(G3) =
2 whenever ccn(G1) = 2. Hence, in any case we have ccn(G1) ≤ ccn(G3).
Therefore, to complete the proof, we assume ccn(G1) = 1 and ccn(G3) = 2,
and show that these assumptions together give rise to a contradiction. To
this end, consider a fixed strategy S ′ for one cop leading to confining or
capturing the robber on G1. Then, in the game of Cops and Robbers on G3

with one cop, move the cop within V (G1) by using the following strategy
shadowing S ′: If the robber moves to or from z, follow S ′ pretending that the
robber has moved to or from x. Eventually, the game will reach a situation
corresponding to confining or capturing the robber on G1. The latter case, in
turn, corresponds to the capture of the robber on G3 unless the cop and the
robber on G3 are located at x and z, respectively, in which case the robber
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is confined by the cop. Hence, we may assume the game on G3 has reached
a situation corresponding to the following situation on G1: The robber and
the cop are at vertices, say, x′ and y′ of G1 and the robber is confined on
G1. Note that in the latter situation we will have dG1(x

′, y′) = 2. Then,
we pick a vertex z′ ∈ NG1(x

′) ∩NG1(y
′)—keep in mind that z ̸∈ {x′, y′, z′}

since z ̸∈ V (G1).
For the present position of the robber in the actual game (i.e., the game

on G3), we consider the possible cases, as follows:

(i) The robber is not at x′.
(ii) The robber is at x′.

First, assume (i). Due to the shadow cop-strategy S ′ on G3, the present
robber’s position in G3 must be z and, additionally, we must have x′ = x
and NG3(y

′) = NG1(y
′). But from the latter, it follows that

(3.1) NG3(y
′) ⊇ NG1(x

′) = NG3(x
′) = NG3(z);

consequently, in the game on G3 the cop (at y′) has also confined the robber
(at z). (See Figure 3.1 for an illustration.)

y′

z′
x′ = x

z

Figure 5. An illustration of the situation leading to (3.1).

We now assume (ii). Note that if we additionally have z ̸∈ NG3(x
′) or

z ∈ NG3(x
′) ∩ NG3(y

′), then NG3(x
′) ⊆ NG3(y

′), implying that the robber
has been confined on G3; contradiction the assumption that ccn(G3) = 2.
Hence, we must have

z ∈ NG3(x
′) \NG3(y

′).

Thus, since x, z are twins in G3, we have xx′ ∈ V (G). Moreover, since y′

dominates x in G1, we have xy′ ∈ E(G1) ⊂ E(G3). Therefore, y is adjacent
in G3 to only one of the twin vertices x and z; a contradiction.

□

Corollary 3.4. If G is a cograph with ccn(G) = 2, then for every graph H
obtained from G by a sequence of twin operations we have ccn(H) = 2.

Adding a true twin vertex to a cograph can indeed increase the confining
cop number. This claim, according to Theorem 1.19 and Theorem 3.3, is
equivalent to the statement that there exists a cograph G with ccn(G) = 2.
We shall show that the smallest order of such a graph is eight:



12 MASOOD MASJOODY

Theorem 3.5. The confining cop number of every connected cograph on
fewer than 8 vertices is equal to one. Moreover, for every n ≥ 8 there is a
connected cograph G on n vertices such that ccn(G) = 2.

Proof. Let G be a graph in G4,c with the minimum number of vertices. By
Proposition 2.3(c), we have |V (G)| ≥ 6. Indeed, by Proposition 2.3 and in
accordance with its notations, G must have the graph G1 of Figure 6 as an
induced subgraph.

v1 v2

w

w′

u

u′

Figure 6. The induced subgraph G1 of G in the Proof of
Theorem 3.5.

As such, if |V (G)| = 6, we have G = G1, in which case placing a cop at w in
the first step of the game forces the robber to choose v1 as its first position,
at which vertex the robber is confined; a contradiction. Hence, we have

|V (G)| ≥ 7.

Next, we will show that |V (G)| ≥ 8. To this end, we show that each of the
following three cases gives rise to a contradiction:

Case 1: |V (G)| = 7 and |M1| = 3.
Case 2: |V (G)| = 7, |M1| = 2, and degG(v1) = 4.
Case 3: |V (G)| = 7 and |M2| = 3.

Case 1: |V (G)| = 7 and |M1| = 3.
In this case, we can easily examine that placing a cop at w1 leads to the
confinement or capture of the robber, hence, ccn(G) = 1; a contradiction.

Case 2: |V (G)| = 7, |M1| = 2, and degG(v1) = 4.
Let {x} = NG(v1) \ (M1 ∪ {v2}). Since x ̸∈ M1, we have x ∈ NG(v2).
If x is adjacent to a vertex in M1 (resp. M2), placing a cop at that
vertex leads to either the confinement of the robber at v2 (resp. v1) in
step 1 or the capture of the robber in step 2; a contradiction. Hence,
NG(x) = {v1, v2}. But then the the graphs G[{u,w, v2, x}] will be a P4;
contradicting the assumption that G is P4-free. (See Figure 7.)
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v1 v2

w

w′

u

u′

x

Figure 7. Proof of Theorem 3.5: An induced P4 under Case
II.

Case 3: |V (G)| = 7 and |M2| = 3.
This case also leads to a contradiction; likewise Case I.

Hence, |V (G)| ≥ 8. Therefore, in light of Corollary 3.4 , to complete the
proof it suffices to present a cograph of H of order eight so that ccn(H) = 2.
It can be easily checked that the graph of Figure 8 satisfies these conditions;
indeed, it is the only cograph of order eight with the confining cop number
of two.

Figure 8. The smallest cograph with the confining cop
number of two.

□

4. Concluding remarks

Since the cop number of the cycle on four vertices is two, the upper bound
of two for the cop number of cographs is tight. However, it is an open
question whether there exists a P5-free graph which requires three cops to
capture the robber. As shown in Corollary 2.4, though, the planarity of
a connected P5-free graph G implies ccn(G) ≤ 2. We conjecture that this
planarity condition can be relaxed:

Conjecture. For every connected P5-free graph G we have ccn(G) ≤ 2.

We conclude with another conjecture about the planar graphs. In light
of Propositions 1.12 and 1.14 and the fact that planar graphs are 3-copwin,
it can be easily seen that the dodecahedral graph has its cop-number and
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confining cop-number both equal to three. It has been conjectured that the
dodecahedral graph (which has 20 vertices) is the smallest planar graph with
cop-number three. Here, we pose the counterpart of this conjecture in terms
of the confining cop number:

Conjecture. For every connected planar graph G on at most 19 vertices we
have ccn(G) ≤ 2.
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