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Abstract
Objectives: Sepsis is a life-threatening condition characterized by multi-organ dysfunction due to host immune
system dysregulation in response to an infection. During sepsis, neutrophils release neutrophil extracellular traps
(NETs) as part of the innate immune response. However, excessive NETs play a critical role in the development of
organ failure during sepsis. Although recombinant human soluble thrombomodulin (rTM) can inhibit NET formation in
the lungs and liver of a mouse model of endotoxin shock, its effects on the kidneys are unclear.

Methods: The specific effects of NETs and rTM on the renal cortex and renal medulla were examined in a mouse
model of endotoxin shock generated by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), followed by i.p.
injection of rTM or an identical volume of saline 1 h later.

Results: LPS injection increased serum creatinine, blood urea nitrogen, and histone H3 levels. However, rTM
administration significantly decreased histone H3 and citrullinated histone H3 (citH3) levels. Immunohistochemical
analysis revealed no significant changes in citH3 quantity in the renal cortex of any group. However, in the renal
medulla, the increase in citH3 induced by LPS was abolished in the LPS+rTM group.

Conclusions: Our findings demonstrate that rTM can suppress NETs in the renal medulla of mice with endotoxin-
induced acute kidney injury.
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Introduction

Sepsis, a type of multi-organ dysfunction, results from
infection-induced dysregulation of immune responses.1 A recent
study revealed that hospital mortality rates associated with
sepsis and severe sepsis in the United States are 17% and 26%,
respectively.2 In addition, sepsis can cause acute kidney injury
(AKI),3,4 and considerably increases the duration of hospital
stays and in-hospital mortality rates compared with non-septic
AKI.5 However, the pathophysiology of AKI in sepsis remains
unknown, and better understanding could improve treatment
strategies for sepsis.

As a part of the innate immune response, neutrophils
release substances such as histones and nuclear DNA, which
form reticular structures called neutrophil extracellular traps
(NETs).6 As these reticular structures trap and kill bacteria,7

they affect coagulation and thrombogenesis.8,9 NET formation
contributes to immune thrombosis during the pathogenesis
of sepsis.9 However, excessive NET formation can lead to
capillary circulation disorders.10,11 During sepsis, rapid systemic
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inflammation causes these immune responses to affect both
infected and non-infected regions of the body, leading to multiple-
organ dysfunction.12 NETs release citrullinated histones, which
induce platelet aggregation13,14 and inflammation.15 Direct histone
injection into the kidney has been shown to cause neutrophil
migration, microvascular leakage, and renal inflammation.16

Thrombomodulin (TM) is an important cofactor in the
anticoagulant pathway that exerts anticoagulation effects in vivo,
however, its expression is decreased during the development
of septic-disseminated intravascular coagulation.17 Recombinant
human soluble TM (rTM) can inhibit NET formation by binding
to histones.18 Previously, we reported that injecting rTM into
a mouse model of endotoxin shock improved the survival
rate and inhibited NET formation in both lung and liver
tissues.19 However, the effects of rTM on the kidney remain
controversial. Hayase et al. found that rTM administration
inhibited histone accumulation and NET formation in the lungs,
but not kidneys, of a mouse model of renal ischemia-reperfusion
injury.20 In contrast, Nozaki et al. and Akatsuka et al. reported
that rTM reduces renal damage.21,22 The kidney has multiple
physiological roles: the glomerulus and glomerular capillary
produce primary urine in the renal cortex, whereas the nephron
and peritubular capillary reabsorb nutrients from primary urine
in the renal medulla. Notably, previous studies examined the
kidney as a single organ, with no distinction made between
the renal cortex and renal medulla. The immune function of
healthy renal medulla is more developed than that of the renal
cortex, as antigen-presenting dendritic cells are more prevalent

Advanced Publication by J-STAGE DOI https://doi.org/10.20407/fmj.2022-026

Original Article Open Access

1



in the peritubular interstitium.23 Moreover, the high-sodium
environment of the renal medulla induces chemokines that
promote immune function.24 We suspected that the renal medulla
plays an important role in the immune response during sepsis
as a result of its well-developed immune function. Therefore,
we hypothesized that NETs are abundant in the renal medulla of
endotoxin-shocked mice, and rTM can effectively reduce NETs.
In this study, we aimed to evaluate the specific effects of rTM on
the renal cortex and renal medulla in an endotoxin shock mouse
model.

Methods

Animals and study design
Female C57BL/6J Jms mice were obtained from SLC

(Hamamatsu, Japan) and maintained in our conventional mouse
and rat facility with free access to food and water. Mice aged
6–8 weeks were used after at least 6 days of acclimation.
Lipopolysaccharide (LPS; 125-05201, Wako Pure Chemical
Industries, Osaka, Japan) and rTM (ART-123; Asahi Kasei
Pharma, Tokyo, Japan) were used in the present study. To create
the endotoxin shock model, 10 mg/kg LPS was intraperitoneally
(i.p.) injected into mice. One hour after LPS injection, 6 mg/kg
rTM (rTM group) or an equal volume of saline (non-rTM
group) was administered (i.p.). Control mice were injected with
an identical volume of saline instead of LPS or rTM. Eight
hours after LPS/saline injection, mice were anesthetized with
isoflurane and euthanized by cardiac puncture. Blood and kidney
samples were collected for analysis. Symptoms of sepsis, such as
lethargy, piloerection, decreased appetite, and a hunched position,
were also observed.

Ethics statement
All mice were handled according to Regulations for the

Management of Laboratory Animals at Fujita Health University
(Toyoake, Japan). All animal protocols were approved by the
Animal Care and Use Committee of Fujita Health University
(Approval No. APU19079-MD1, 5 January 2022). The point when
mice displayed loss of the righting reflex while in a dorsal
position was classified as the humane endpoint, at which point
mice were culled.

Measurement of histone H3 (H3) and citrullinated H3 (citH3) levels
Serum was separated from collected blood samples by

centrifugation at 1470 × g for 10 min at 4°C. Serum H3 levels
were measured using enzyme-linked immunosorbent assay
(ELISA) with human anti-H3 antibodies (Shino-Test Corporation,
Sagamihara, Japan) as previously described.25 citH3 was detected
using an ELISA kit (501620; Cayman Chemical, Ann Arbor, MI,
USA).

Measurement of blood creatinine (CRE) and blood urea nitrogen
(BUN) levels

Dri-CHEM (NX600; Fujifilm, Tokyo, Japan) was used to
measure CRE (v-CRE-P, Fujifilm) and BUN (v-BUN-P, Fujifilm)
levels. Slides were placed in the machine and 10 μL of serum was
dropped onto the slides. Spotting was carried out manually using
a pipette because the sample volume was small.

Immunofluorescence staining
Excised kidneys were immediately fixed in 4% paraformal-

dehyde phosphate buffer solution (Fujifilm), and 3-μm-thick

sections were prepared after paraffin embedding. Sections were
incubated with primary antibodies against lymphocyte antigen 6
complex locus G6D (Ly-6G; 551459; BD Bioscience, Franklin
Lakes, NJ, USA) and histone H3 (citrulline R2+R8+R17,
citH3; ab5103; Abcam, Cambridge, UK), followed by Alexa
Fluor 488- (ab172332, Abcam) and Alexa Fluor 594-conjugated
(A21207; Thermo Fisher Scientific, Waltham, MA, USA)
secondary antibodies. Nuclei were stained using 4',6-diamidino-2-
phenylindole dihydrochloride solution (DAPI; Thermo Fisher
Scientific). Tissue sections were observed and imaged using
a confocal laser-scanning microscope (LSM 980; Zeiss,
Oberkochen, Germany).

Quantification of citH3 under immunohistochemical staining
Stained kidneys were imaged at 400× magnification with

an LSM 980 (Zeiss). Numbers of citH3-positive cells were
quantified in the renal cortex and renal medulla. In the renal
cortex, three images were taken per sample, citH3-positive
cells in the glomerulus were counted, and the mean value was
calculated. In the renal medulla, a single image was taken per
sample and citH3-positive cells in the field of view were counted.
Fiji (ImageJ, version 1.53q; http://imagej.nih.gov)26 was used for
manual quantification.

Statistical analysis
Serum CRE, BUN, H3, and citH3 levels were analyzed

using the Mann–Whitney U test. Numbers of citH3-positive
cells evaluated by immunohistochemical staining were analyzed
using an unpaired t-test. Results with P<0.05 were considered
statistically significant. All statistical analyses were conducted
using GraphPad Prism version 9.3.1 (GraphPad Software, San
Diego, CA, USA).

Results

Effects of rTM on Serum H3 and citH3 Levels during Endotoxin
Shock

First, we examined the effects of rTM on serum H3 and
citH3 levels in the mouse model 8 h after LPS injection.
LPS significantly increased serum H3 levels (H3: 0.535 mg/dL,
p=0.0202; citH3: 0.542 mg/dL) compared with the control (H3:
0.000 mg/dL; citH3: 0.484 mg/dL). However, rTM administration
significantly decreased serum H3 and citH3 levels (H3:
0.000 mg/dL, p=0.0493; citH3: 0.342 mg/dL, p=0.0179; Figure
1) following LPS induction.

Effects of rTM on blood CRE and BUN levels during endotoxin
shock

To determine the effects of LPS and rTM, we also measured
two indicators of endotoxin-induced renal injury, serum CRE and
BUN levels, 8 h after LPS administration. As expected, CRE
and BUN levels were significantly higher in the non-rTM group
(CRE: 0.18 mg/dL, p<0.0001; BUN: 64.4 mg/dL, p<0.0001)
compared with the control group (CRE: 0.15 mg/dL; BUN:
18.7 mg/dL). However, there was no significant difference in
CRE or BUN levels between non-rTM and rTM groups (CRE:
0.23 mg/dL; BUN: 64.7 mg/dL, Figure 2).

Effects of rTM on NETs in kidneys during endotoxin shock
To confirm the effects of rTM on NETs in the kidney, the left

kidney was removed 8 h after LPS administration and subjected
to immunofluorescence staining to identify neutrophils (Ly-6G,
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green) and NETs (citH3, red). Immunohistochemical analysis
revealed no significant changes in citH3 in the renal cortex
between control (21.87 count/glomerulus) and non-rTM groups
(23.57 count/glomerulus), or between non-rTM and rTM groups
(24.77 count/glomerulus, Figures 3 and 5). In the renal medulla,
citH3 was increased in the non-rTM group (317.3 count/HPF,
p=0.0144) compared with the control group (193.0 count/HPF)
and decreased in the rTM group (253.0 count/HPF, p=0.0352,
Figures 4 and 5). Notably, citH3 luminescence was observed in
both the renal cortex and renal medulla of the control group,
suggesting the possibility of autoluminescence.

Figure 1 Effects of lipopolysaccharide (LPS) and recombinant human
soluble thrombomodulin (rTM) on serum H3 (a) and citrullinated
H3 (citH3) levels (b). Mice were intraperitoneally (i.p.) injected with
10 mg/kg LPS (non-rTM group; ■, n=9), followed by 6 mg/kg rTM after
1 h (rTM group; ▲, n=9). Control group mice (●, n=9) were i.p. injected
with saline instead of LPS or rTM. Blood was collected 8 h after LPS
injection. Data are expressed as the median. * p<0.05.

Discussion

Sepsis is a life-threatening condition characterized by multi-
organ dysfunction due to dysregulation of the host immune
system in response to an infection.1 During sepsis, neutrophils
release NETs as part of the innate immune response, which
can trap pathogens and prevent them from spreading. However,
an excessive NET response can induce microvascular occlusion
and tissue damage.8,27 Previously, we reported that rTM inhibits
LPS-induced NETs in vitro in human neutrophils and platelets,28

and rTM injection can decrease lethality in mice with endotoxin
shock to inhibit NET formation in the lungs and liver.19 However,

Figure 2 Effects of LPS and rTM on serum creatinine (CRE) (a)
and blood urea nitrogen (BUN) levels (b). Mice were i.p. injected with
10 mg/kg LPS (non-rTM group; ■, n=9), followed by 6 mg/kg rTM after
1 h (rTM group; ▲, n=9). Control group mice (●, n=9) were i.p. injected
with saline instead of LPS or rTM. Blood was collected 8 h after LPS
injection. Data are expressed as the median. *** p<0.001.

Figure 3 Inhibitory effects of rTM on neutrophil extracellular trap (NET) formation in the renal cortex. Mice were i.p. injected with 10 mg/kg LPS
(non-rTM group), followed by 6 mg/kg rTM after 1 h (rTM group). Control group mice were i.p. injected with saline instead of LPS or rTM. The kidney
was removed 8 h after LPS injection and subjected to immunofluorescence staining for Ly-6G, citH3, and DAPI. (a) Control, (b) LPS-injected, and (c)
LPS- and rTM-injected renal cortex. Green, Ly-6G; red, citH3; blue, DAPI. Magnification: 400×, scale bar=20 μm.
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the effects of rTM on the kidneys remain unclear. Because the
kidney has various physiological roles, we evaluated the specific
effects of rTM on the renal cortex and renal medulla of mice
with endotoxin shock. First, we confirmed that LPS significantly

Figure 5 Numbers of citH3-positive cells in the renal cortex (a)
and renal medulla (b). Mice were intraperitoneally (i.p.) injected with
10 mg/kg LPS (non-rTM group; ■, n=3), followed by 6 mg/kg rTM after
1 h (rTM group; ▲, n=3). Control group mice (●, n=3) were i.p. injected
with saline instead of LPS or rTM. The kidney was removed 8 h after
LPS injection and subjected to immunofluorescence staining for citH3.
citH3-positive cells were counted manually using Fiji (ImageJ 1.53q)26 on
a 400× magnified image. (a) In the renal cortex, three images were taken
per sample, citH3-positive cells in the glomerulus were counted, and the
mean was calculated. (b) In the renal medulla, a single image was taken
per sample and citH3-positive cells in the field of view were counted.
Data are expressed as the mean. * p<0.05.

increased serum CRE, BUN, and H3 levels compared with the
control, suggesting that LPS successfully induced AKI in mice
(Figures 1a and 2). In addition, we found that rTM significantly
decreased serum H3 and citH3 levels in LPS-treated mice,
suggesting that it effectively alleviated endotoxin shock (Figure
1).

Organs that are in contact with the external environment
take up essential substances and excrete unwanted substances;
however, bacteria and toxins can inadvertently be taken up at
the same time. To protect organisms from external bacteria and
toxins, their organs have well-developed immune functions.29,30

For instance, the lungs take up oxygen while discharging carbon
dioxide, and contain both innate and adaptive immune cells.29.
Similarly, the liver both absorbs and excretes substances from/
into the intestinal tract via the enterohepatic circulatory system,
and is therefore continuously exposed to antigenic stimuli
including exogenous pathogens from the intestinal tract, dietary
components, and foreign biological substances such as drugs
and toxins.30 Although the lungs and liver have well-developed
immune functions and rich blood flow, they are both low-pressure
organs (Figure 6);31–37 this characteristic is hypothesized to
facilitate interactions with foreign substances to allow leukocyte
function. This hypothesis is consistent with the findings of our
previous study, in which we demonstrated that NETs form in
the lungs and liver of mice with endotoxin shock.19 Although
pulmonary, sinusoidal, and peritubular capillaries have low
perfusion pressure, glomerular capillaries have high perfusion
pressure (Figure 6),31–40 suggesting that the kidney is a high-
pressure organ. However, at the sub-organ level, the renal
cortex is associated with high pressure and the renal medulla is
associated with low pressure. Indeed, approximately 1 L of blood

Figure 4 Inhibitory effects of rTM on NET formation in the renal medulla. Mice were i.p. injected with 10 mg/kg LPS (non-rTM group), followed by
6 mg/kg rTM after 1 h (rTM group). Control group mice were i.p. injected with saline instead of LPS or rTM. The kidney was removed 8 h after LPS
injection and subjected to immunofluorescence staining for Ly-6G, citH3, and DAPI. (a) Control renal medulla; (b) LPS-injected renal medulla; (c) LPS-
and rTM-injected renal medulla. Green, Ly-6G; red, citH3; blue, DAPI. Magnification: ×400, scale bar=20 μm.
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flows into the kidneys every minute, with 90% of blood flowing
through the renal cortex,41 which filters out unwanted toxins
as primary urine; in contrast, the medulla reabsorbs essential
substances. In this study, no significant changes in citH3 quantity
were observed in the renal cortex of any group (Figure 3,
5a), likely because the renal cortex is a high-pressure organ
specialized for filtering urine.

Unlike the renal cortex, the renal medulla absorbs essential
substances that constitute around 99% of the primary urine
(100 L) produced by the glomerulus per day. Glomerular
capillaries have pores with an approximately 60-nm diameter
that rapidly filter out molecules <20 kDa, while partially
or completely filtering out larger molecules. Previous studies
reported that LPS accumulates in the proximal tubules,42

whereas damage-associated molecular patterns (DAMPs), such
as histones, are filtered out by the glomerulus. The receptors of
these molecules, Toll-like receptors 2 and 4, are located in the
tubular epithelium and can cause inflammation upon binding.43,44

Peritubular capillaries wrap around the tubules of the renal
medulla and reabsorb substances from the primary urine. The
renal medulla has a highly developed immunity, largely due
to the presence of many antigen-presenting dendritic cells in

Figure 6 Pulmonary capillary pressure in the lung, sinusoidal pressure
in the liver, glomerular capillary pressure in the renal cortex, and
peritubular capillary pressure in the renal medulla. Data in this figure
were obtained from ten studies.31–40 Pulmonary capillary pressure
was measured by the following methods: 1) Lung lobes removed
from mongrel dogs were perfused with blood from donor dogs and
measured by a transducer,31 2) the lower left lobe of lungs removed
from mongrel dogs were measured by an isogravimetric method,32

and 3) pulmonary capillary wedge pressure was measured from a
resting human.33 Sinusoidal pressure was measured by the following
methods: 1) estimated by occluding the portal vein in anesthetized
dogs,34 2) interstitial pressure in anesthetized mongrel dogs was
measured from polyethylene capsules implanted in the liver and
described as an approximation of sinusoidal pressure,35 and 3) using a
micropipette pressure-measuring system in anesthetized New Zealand
White rabbits.36,37 Glomerular capillary pressure and peritubular capillary
pressure were measured by the following methods: 1) kidneys removed
from Sprague-Dawley rats were perfused at 100 mmHg and measured
with micropressure measuring apparatus,38 2) direct measurement
by penetration from anesthetized squirrel monkeys,39 and 3) direct
measurement by penetration of anesthetized Munich-Wistar rats.40 All
pressures are displayed as mean values from each study and labeled
above each bar. Figure 5 was created using Excel version 2202 and Adobe
illustrator 2022.

the peritubular interstitium.23 Accordingly, the renal medulla
can induce high chemokine levels24 to prevent DAMPs and
LPS from re-entering the peritubular capillaries during advanced
sepsis. Here, we found that LPS increased citH3 in the renal
medulla (Figures 4a, b; 5b), as hypothesized. Thus, we believe
that the strong immune function of the renal medulla, as well
as its low pressure, may facilitate the accumulation of NETs.
Furthermore, we found that rTM suppressed citH3 (Figures 4b,
c; 5b), suggesting that rTM can effectively inhibit NETs in the
renal medulla. One limitation of this study is that the effect of
rTM was explored only with regard to neutrophils, although it
can bind to other immune cells. Although an endotoxin shock
model was used, this study focused on renal injury, and only
the effect on renal NETs on rTM was evaluated. Therefore, it is
possible that other immune effectors not targeted by rTM may
contribute to kidney injury after LPS administration. Indeed, this
study did not reveal whether NETs formed in the kidney, but
instead focused on whether rTM could suppress NETs in the
kidney following induction by LPS.
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