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Abstract—Multi-agent motion planning (MAMP) is a critical
challenge in applications such as connected autonomous vehicles
and multi-robot systems. In this paper, we propose a space-
time conflict resolution approach for MAMP. We formulate
the problem using a novel, flexible sphere-based discretization
for trajectories. Our approach leverages a depth-first con-
flict search strategy to provide the scalability of decoupled
approaches while maintaining the computational guarantees
of coupled approaches. We compose procedures for evading
discretization error and adhering to kinematic constraints in
generated solutions. Theoretically, we prove the continuous-time
feasibility and formulation-space completeness of our algorithm.
Experimentally, we demonstrate that our algorithm matches
the performance of the current state of the art with respect
to both runtime and solution quality, while expanding upon
the abilities of current work through accommodation for both
static and dynamic obstacles. We evaluate our algorithm in
various unsignalized traffic intersection scenarios using CARLA,
an open-source vehicle simulator. Results show significant success
rate improvement in spatially constrained settings, involving
both connected and non-connected vehicles. Furthermore, we
maintain a reasonable suboptimality ratio that scales well among
increasingly complex scenarios.

I. INTRODUCTION

Connected autonomous vehicles (CAVs) are self-driving
vehicles with the ability to communicate with infrastructure
and other vehicles. Vehicle-to-vehicle communication enables
coordination among CAVs, which will greatly improve both
the safety of road participants [1], [2] and the efficiency of
traffic flow [3]. We are particularly interested in the CAV
coordination at traffic intersections [4], which are the site of
a majority of road accidents due to human error [5]. The
problem can be formulated as multi-agent motion planning
(MAMP), which plans and coordinates trajectories among a
group of agents such that each agent can travel from its start
location to its goal without collisions with other agents or with
the environment. MAMP is also useful in surveillance, search-
and-rescue, warehouse, and assembly robot groups. See [6] for
a thorough review.

MAMP is a generalization of the multi-agent path-finding
problem (MAPF), where time is discretized into timesteps and
agents move along the edges of a discrete graph. Finding
an optimal solution to MAPF is NP-hard [7], hence opti-
mal MAMP is also computationally intractable. There are
generally two approaches to MAPF: coupled methods and
decoupled methods. Coupled methods are often also referred
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to in literature as centralized, and decoupled methods are
often referred to as decentralized or distributed. Coupled
methods search for solutions within a configuration space
containing all agents, which enables guarantees of optimality
and completeness. Despite recent advances in efficiency [8]–
[10], coupled methods are unable to escape the exponential
time complexity that comes with the high dimensionality
of the configuration space. On the other hand, decoupled
methods consider agent paths individually before combining
paths through conflict resolution strategies, which enables
faster processing and better scalability, but with the drawback
of difficulty in guaranteeing completeness and solution quality.
In pursuit of computational tractability, we are motivated to
further explore decoupled approaches.

Within decoupled MAMP approaches, there exist two pri-
mary conflict resolution strategies: temporal approaches and
path prioritization. Temporal conflict resolution involves ma-
nipulating agent velocity profiles along respective paths, caus-
ing agents to pass through the conflict zone at different mo-
ments [11]–[13]. In path prioritization, each agent is assigned
a priority, and agents plan their paths sequentially in order
of priority, with lower priority agents treating higher priority
agents as dynamic obstacles [14]–[16]. Temporal methods are
inherently suboptimal due to the omission of spatial trajectory
manipulation. Path prioritization methods face an inevitable
bottleneck due to the requirement of sequential processing.
Thus, we are motivated to address these drawbacks by pursu-
ing a space-time conflict resolution strategy with the ability
for parallelized path prioritization.

Due to the applicability to CAVs and other domains, we
also desire continuous-time feasibility and accommodation for
dynamic obstacles as critical properties of a MAMP algorithm.
Recent work in decoupled MAPF has excelled in providing
computational guarantees such as completeness [17], [18].
However, it is difficult to generalize MAPF solutions to
MAMP problems, as discretization error may give rise to
new conflict in continuous-time, and these approaches do
not consider agent kinematic constraints. Thus, we reach a
dilemma: discretization of MAMP allows for easier formu-
lation of robust and efficient algorithms, but at the expense
of continuous-time feasibility, and consequently applicability
to real-world settings. On the other hand, attacking contin-
uous MAMP directly risks computational intractability and
complicates trajectory formulation, which may in turn restrict
solution flexibility. Some work attempts to adapt discrete
solutions to the continuous problem [19], [20], but no formal
proof of feasibility in continuous time is present, and thus



much of this work is unsuitable for real-world implementation.
While the authors of [21] provide a proof of continuous-time
feasibility for their discretization strategy, dynamic obstacles
are ignored, which especially hinders applicability to the
CAV domain, where scenarios involving pedestrians and non-
connected vehicles are commonplace. To the best of the
authors’ knowledge, we are still missing literature regarding
decoupled, discretized MAMP algorithms with continuous-
time feasibility and accommodation for dynamic obstacles.
In this work, we aim to fill this gap.

We propose a novel decoupled approach to MAMP called
the Space-Time Conflict Spheres (STCS) algorithm. STCS
utilizes a sphere-based trajectory discretization to manipulate
paths both spatially and temporally during conflict resolution.
We theoretically prove STCS’s continuous-time feasibility and
formulation-space completeness. We experimentally demon-
strate that the algorithm exhibits comparable performance to
the current state of the art while offering a greater range of
problem settings and more consistency in finding solutions,
namely within environments that are spatially constrained and
contain dynamic obstacles.

The rest of the paper is organized as follows. Section II for-
mulates the problem of MAMP. Section III discusses the STCS
algorithm. Section IV discusses the theoretical properties of
STCS. Section V presents experimental results in simulation.
Finally, Section VI concludes our study and presents future
directions.

II. PROBLEM FORMULATION

We are given a set A containing N agents of radius r in
a continuous-time, two-dimensional space, where each agent
αi ∈ A is defined by its starting location qsi , goal location qgi ,
acceleration bound amax

i , priority ϕi, and path rigidity γi. We
are also given a workspace W containing M obstacles, where
each static obstacle osi ∈ W has a known location, and each
dynamic obstacle odi ∈ W has a known trajectory.

We use P to denote the set of agent and obstacle paths.
Each path πi ∈ P can be represented spatiotemporally as a
capsule, which we define as a curve inflated with radius λr
for some λ > 1. The capsule representation is analogous to a
chain of infinitely many spheres with radius λr.

We introduce a novel, flexible discretization of this represen-
tation to a finite chain of spheres, and introduce a requirement
that adjacent spheres within a path must be no further than
tangential to each other. By Theorem IV.1, this discrete
representation maintains continuous-time feasibility (i.e. no
discretization error) when r is scaled by λ∗ = 1√

3−1
≈ 1.366,

meaning paths can be interpolated safely for agent motion
control. For succinct representation, we can also introduce a
requirement that alternating spheres within a path must be
further than tangential to each other, ensuring that a path is
always built from the minimum number of spheres.

Using this representation, a path πi can be defined as a se-
quence of spatiotemporal spheres {si,1, ..., si,n} as waypoints,
where si,k is the k-th waypoint in πi. A waypoint si,k has
components (xi,k, yi,k, ti,k), where (xi,k, yi,k) is a physical

location in the environment and ti,k is the time at which
the location is occupied. Each si,k also has a corresponding
velocity vector ω⃗i,k, which is computed based on conflict
resolution conditions and kinematic constraints.

All paths in P can exist synchronously within a central
space-time grid (STG), which we define as a subspace of R3

with basis {x̂, ŷ, t̂}. We assume that each agent αi uses some
single-agent motion planner to sequentially upload waypoints
to its path πi in the STG. In practice, either some centralized
infrastructure can manage the STG while agents upload and
query data, or each agent can maintain its own copy of
the STG and send and receive broadcasts in a decentralized
manner. Among all paths in P , an intersection between a
pair of spheres belonging to distinct paths in the STG implies
conflict. Agents take turns uploading waypoints to the STG,
and when a conflict is detected, it must be resolved through
the manipulation of paths in the STG. We use sri,k and s∗i,k to
denote the initial (reference) and final (optimal) locations of
a sphere si,k, respectively.

Thus, we leverage our sphere-based discretization strategy
to formulate conflict resolution for MAMP as an optimization
problem:

s∗i,k∀(i, k) =

argmin
si,k∀(i,k)

n∑
i=1

ϕi
∥∥si,k − sri,k∥∥2 (1a)

s.t. ∥si,k − sj,l∥2 ≥ 2r, ∀(si,k, sj,l) ∈ P, i ̸= j
(1b)

∥si,k+1 − si,k∥2 ≤ 2r, ∀(si,k, si,k+1) ∈ P
(1c)

ti,k+1 − ti,k ≤ (δt)i,k,∀(si,k, si,k+1) ∈ P
(1d)

Equation (1a) minimizes the prioritized total displacement of
spheres from their “optimal” original state in their respective
path. Equation (1b) enforces that no pair of spheres from
different paths can intersect. Equation (1c) enforces that con-
secutive spheres within a path must intersect. Equation (1d) en-
forces that time intervals between consecutive spheres within
a path must be compatible with kinematic constraints; the
computation of (δt)i,k is given in eq. (5).

Solving this optimization problem to resolve conflicts fol-
lowing the convergence of all agent paths to their respective
goals would yield an optimal solution to MAMP. However,
this leaves the task of solving a non-convex and potentially
large optimization, which risks computational intractability.
Instead, conflict resolution can be applied following each agent
waypoint upload. Employing this method as a heuristic, as we
will observe, enables fast convergence to feasible solutions
that are suboptimal within a reasonable bound.

III. SPACE-TIME CONFLICT SPHERES

A. Overview

As agents sequentially upload waypoints to the STG, a
conflict may arise between agents as an intersection between



(a) Conflict detection (b) DV Computation (c) Path Shift (d) Final solution

Fig. 1: A simple scenario involving two agents initially positioned perpendicular to each other, each with a goal directly across the field. The conflict is
highlighted in yellow. Because the red path is given higher priority, the conflict search finds that shifting the blue path yields the best solution.

Algorithm 1 Calling STCS

1: function SOLVEMAMP(A)
2: while not all αi reached goal do
3: for all αi ∈ A do
4: w ← αi.GETWAYPOINT( )
5: STG.UPLOADWAYPOINT(πi, w)
6: if STG.HASCONFLICT( ) then
7: STG.RUNSTCS( )
8: for all αj ∈ A do
9: p← STG.GETPATH(αj)

10: αj .SETPATH(p)

spheres of distinct paths in the STG. The objective of STCS is
to resolve this intersection upon formation, while attempting to
minimize the total displacement of spheres in the STG during
this process. Simultaneously, the algorithm must ensure that
connectivity (1c) and compliance with kinematic constraints
(1d) is maintained within each path. Resolving one intersection
may lead to the formation of many others, making this a
difficult problem.

We begin by approaching the sub-problem of computing
the minimum displacement required to resolve an intersection
between a single pair of spheres, and we solve this by
introducing the idea of displacement vectors (DVs). Then, we
move to considering the effect of a sphere’s translation on
its individual path, namely through a path shift, which first
deforms a path around its displaced sphere then applies a
smoothing operation to maintain connectivity and adherence
to temporal and kinematic constraints. Finally, we employ
the two above concepts and formulate an efficient search
procedure for collecting complete solutions to the current
conflict using a depth-first paradigm; we refer to this process
as conflict search.

The high-level conflict resolution procedure is outlined in
Algorithm 1, and a visual overview of the process is given in
Figure 1. Each of the following three subsections details one
of the aforementioned aspects of STCS.

B. Displacement Vectors

We define an outstanding sphere as a sphere in the STG
with the potential to be involved in an intersection with another

sphere of a different path. We denote the set of all outstanding
spheres in a solution as S. Each sphere soi ∈ S has a single
corresponding DV v⃗i ∈ V , where V is the set of all DVs. Our
goal is to compute vectors for each of the outstanding spheres
such that applying soi += v⃗i for all soi ∈ S is guaranteed to
yield an intersection-free STG.

The translation caused by DVs for a pair of intersecting
spheres can be visualized as a repulsive force acting between
two charged particles. In general, the DV v⃗i of outstanding
sphere soi to resolve intersection with sphere soj is given by

v⃗i =

(
2r∥∥soi − soj∥∥2 − 1

)
(soi − soj) (2)

The magnitude of v⃗i is the minimum displacement of soi
necessary to resolve the intersection, assuming soj is stationary.
The direction of v⃗i is orthogonal to the plane of intersection
between soi and soj (see Figure 2). In the case where two paths
advance straight towards one another, we can introduce a small
bias in the angle of each DV in the conflicting sphere pair to
ensure the paths can navigate around each other. Note that
the first sphere in any path is immutable both spatially and
temporally, and the final sphere in any path that has converged
to its goal is immutable spatially.

C. Path Shifts

Path shifts are first simulated during the conflict search
stage, then finally applied post-optimization. The displacement
of any outstanding sphere along its DV will cause a shift within
that sphere’s path, centered around it. This can be intuitively
visualized as a rubber rod deforming after being hit by a ball
(see Figure 3).

For a path πi that contains an outstanding sphere soj with
DV v⃗j , we define the following coefficient for each sphere
si,k ∈ πi:

µi,k = exp

(
−γi(

di,k
dmax
i

)2
)
, (3)

where di,k is the distance between si,k and the outstanding
sphere soj , dmax

i is the maximum distance between any point
along πi and soj (see Figure 3a). Furthermore, γi is a positive
constant assigning the path rigidity of πi: larger γi localizes



Fig. 2: Computed DVs for a pair
of intersecting spheres.

(a) Pre-shift

(b) Post-shift

Fig. 3: A path shift centered around
soj translating across v⃗j .

the effects of the collision around the outstanding sphere, while
smaller values resonate the effects throughout the path.

Then, each si,k is accordingly translated along a path shift
vector ψ⃗i,k generally given by

ψ⃗i,k = µi,kv⃗j (4)

Similar to the conditions for DV computation, the first sphere
in any path is immutable both spatially and temporally, and
the final sphere in any path that has converged to its goal is
immutable spatially. In the former case, we can simply set the
DV or path shift vector to 0⃗, and in the latter case, we can
project the vector onto t̂.

By adapting basic kinematics equations and solving for
time, the minimum timestep (δt)i,k required for an agent αi

to traverse between points si,k and si,k+1 on its path is given
by

(δt)i,k =
−
∥∥∥ω⃗σ

i,k

∥∥∥
2
+

√∥∥∥ω⃗σ
i,k

∥∥∥2
2
+ 2amax

i ∥σ⃗i,k∥2
amax
i

(5)

where σ⃗i,k denotes the projection of (si,k+1−si,k) onto {x̂, ŷ},
i.e. the spatial displacement between si,k and si,k+1, ω⃗σ

i,k is
the projection of agent αi’s velocity vector ω⃗i,k at si,k onto
σ⃗i,k, i.e. the velocity of αi along πi at point si,k, and amax

i

is the agent’s acceleration bound. After applying eq. (4), the
following path-smoothing operation is executed by iterating
forward through the current agent path πi, which computes
a velocity profile and removes all kinematic constraint viola-
tions:

ω⃗i,k := ω⃗i,k−1 + amax
i (δt)i,kσ̂i,k (6a)

ti,k := max(ti,k, ti,k−1 + (δt)i,k) (6b)

This smoothing strategy pushes the trajectory to its kinematic
limits by maximizing velocity while ensuring agreement with
kinematic constraints.

For scenarios in which agent paths are spatially constrained
along a general direction, e.g. lane markings at a traffic
intersection, it is simple to introduce a requirement that makes
certain spheres along the trajectory immutable spatially.

D. Conflict Search
We can utilize a three-dimensional range querying data

structure to efficiently query pairs of intersecting spheres
within the STG during each iteration of conflict resolution. We
choose to employ the k-d tree data structure, which provides
average-case logarithmic time complexity for range queries
using space partitioning.

In order to determine the set of outstanding spheres S
and their respective DVs V , we employ a recursive, depth-
first conflict search. To construct the recursion, we define
calling a sphere as translating the sphere across some specified
DV within some current state of the STG, applying a path
shift, querying further intersections, computing the DV of each
sphere involved in an intersection, and finally calling each of
these involved spheres with their respective DVs and the new
STG state. There are two base cases for this recursion when a
sphere is called: if the sphere has already been visited in the
current recursion sequence, it returns false (infeasible), and if
no more intersections arise following the sphere’s translation
and path shift, it returns true (feasible).

Through recursion, a sequence of sphere translations is
accumulated, which generates a solution. Multiple solutions
are obtainable since each intersection can be decomposed into
two cases (e.g. s1 moves vs. s2 moves). In the case of an
agent-obstacle sphere intersection, only the agent sphere can
be called. In the case of a chain reaction of intersections
(e.g. s1 intersects s3 after resolving intersection with s2), the
requirement that visited spheres cannot be called implies that
only one new sphere will be called. Once all solutions have
been collected, the best can be selected by minimizing the
following objective function:

n∑
i=1

ϕi∥v⃗i∥2 (7)

where ϕi is the priority value of the path that soi belongs
to. Note that eq. (7) is a refinement of eq. (1a) that only
allows the manipulation of outstanding spheres, and restricts
the movement of these spheres to the magnitude and direction
of their respective DVs. This formulation enables parallelized
path prioritization, since trajectories can be planned simultane-
ously while still implicitly favoring high-priority agents during
conflict.

The above procedure is summarized in Algorithm 2. We
use L to denote the set of all solutions found by the conflict
search, where each solution Li is an object containing a set of
outstanding spheres and respective DVs {Si,Vi} in a sequence
that resolves all conflict. We also utilize a variable T to
store the state of the STG following a particular sequence of
translations during conflict search, and an array vis to query
whether a given sphere has been visited. We will show in
Theorem IV.2 that this algorithm is complete with respect to
the formulation space F of the conflict (see Definition IV.2).

IV. THEORETICAL PROPERTIES

Definition IV.1 (feasibility). We refer to a MAMP solution as
feasible if the computed path configuration is conflict-free in



Algorithm 2 Conflict search

1: function RESOLVE(Tcur, scur, v⃗cur, vis)
2: if vis[scur] then
3: return [ ] ▷ Infeasible, already visited
4: vis[scur]← True
5: Lcur ← [ ]
6: Tnew ← PATHSHIFT(Tcur, scur, v⃗cur)
7: query ← QUERYPAIRS(Tnew)
8: feasible← False
9: for all (si,k, sj,l) in query do

10: v⃗i,k ← COMPUTEDV(Tnew[si,k], Tnew[sj,l])
11: v⃗j,l ← COMPUTEDV(Tnew[sj,l], Tnew[si,k])
12: Li,k ← RESOLVE(Tnew, si,k, v⃗i,k, vis)
13: Lj,l ← RESOLVE(Tnew, sj,l, v⃗j,l, vis)
14: Lcur += Li,k + Lj,l

15: if (Li,k + Lj,l) not empty then
16: feasible← True
17: if not feasible and query not empty then
18: return [ ] ▷ Infeasible, unresolved conflict
19: if Lcur empty then
20: PUSH(Lcur, [ ]) ▷ Feasible, end of solution
21: for all sol in Lcur do
22: PUSH(sol, (scur, v⃗cur)) ▷ Feasible, build solutions
23: return Lcur ▷ All solutions

the continuous time domain.

Theorem IV.1 (continuous-time feasibility). If there exists a
solution to the discrete-time problem (1) when r is scaled by
λ∗ = 1√

3−1
, then the solution is feasible.

Proof. The chain-of-spheres path representation is discrete,
and thus discretization error is inherent. The error occurs if
an intersection exists in the capsule representation, but not in
the chain-of-spheres representation. Suppose we have a sphere
si,k from path πi, and two adjacent spheres sj,l and sj,l+1

from a second path pj . Here, discretization error would occur
if si,k intersects neither sj,l nor sj,l+1, but it is still within the
bounding capsule c between sj,l and sj,l+1. A conflict exists
between paths, but it will not be detected.

In the above case, the maximum violation of c occurs when
sj,l and sj,l+1 are a distance 2r apart (the maximum), and
si,k is equidistant to each of the spheres and as close as
possible to the pair without intersecting either. This forms
three mutually tangential spheres. To resolve this violation,
we can scale the radius of all spheres in the space by some
constant λ > 1. If large enough, the three spheres can remain
mutually tangential while si,k and c no longer intersect. Note
that c retains its original radius, as c represents the actual
area of space-time through which the agent will travel. By
geometry, si,k is exactly tangential to c when the radius of each
sphere is scaled by λ∗ = 1√

3−1
≈ 1.366. Thus, scaling r by at

least λ∗ guarantees no discretization error, i.e. all intersections
relevant to continuous-time agent conflict will be detected and

resolved by STCS.

Definition IV.2 (formulation space). We define the formula-
tion space F of a MAMP conflict as the set of all possible
path configurations that can be reached from some initial con-
figuration by executing some sequence V of DV translations,
where V can be feasibly constructed by the conflict search
procedure given the formulation of the DV computation and
path shift operations.

Theorem IV.2 (formulation-space completeness). If there ex-
ists a solution to (1) that also exists in F , then STCS will find
and return a feasible solution.

Proof. We can prove the above using induction. First suppose
that there exists some single DV v⃗n such that applying
son += v⃗n resolves some previous conflict involving son
without generating any subsequent conflict; this implies a
feasible solution. Next, suppose that there exists a second
DV v⃗n−1 such that applying son−1 += v⃗n−1 resolves some
previous conflict involving son−1 and generates a subsequent
conflict between son−1 and son, which can in turn be resolved
through the previous statement; this also implies a feasible
solution.

Generally, we can state that if v⃗i will yield a feasible
solution following some additional sequence of translations
{v⃗i+1, v⃗i+2, ..., v⃗n−1, v⃗n}, then v⃗i−1 will also yield that same
feasible solution, given v⃗i and the same additional sequence.
Because DV translations and subsequent path shifts are applied
in the same order in which they are computed and path shifts
are simulated during the conflict search stage, a solution in the
form of a DV sequence must yield an intersection-free STG.
By nature, the depth-first conflict search procedure performs
a complete search of the solution space.

By Theorem IV.1, an intersection-free STG implies a so-
lution to MAMP, due to the absence of discretization error.
Conflict resolution is applied at each iteration of agent plan-
ning, making the overall algorithm complete with respect to
the formulation space.

V. EXPERIMENTAL RESULTS

We first evaluate STCS under motion planning tasks, and
then verify the planned trajectories in realistic traffic simu-
lation. We compare our algorithm to a baseline in term of
various performance metrics.

A. Simulation Setup

We simulate motion planning tasks where N agents are
each given starting and goal locations and must cooperatively
plan trajectories within an environment containing M static
and dynamic obstacles, for N ∈ [2, 4] and M ∈ [0, 5].
We implement STCS in Python to configure and solve each
motion planning instance. The planned trajectories from each
scenario are then executed in a traffic intersection setting
using CARLA, an open-source autonomous driving simulator
[23]. During CARLA evaluation, we verify the feasibility of
solutions through adherence to car dynamics for control and
spatial constraint of agent motion to the dimensions of the



intersection. In all experiments, the field size is 20m × 20m,
and for all agents, we assign the radius r = 3.5m, the
acceleration bound amax

i = ±3m/s2, and the path rigidity
γi = 10. We assign the priority ϕi = 100 for Agent 1 and
ϕi = 1 for all other agents.

For evaluation, we configure various scenarios that have
either no obstacles, static obstacles only, dynamic obstacles
only, or a mix of static and dynamic obstacles. We also
consider scenarios involving non-connected vehicles, since this
is a special case of dynamic obstacles that is particularly
applicable to the CAV domain.

1) Obstacle-Free: We compare the performance of STCS
to that of S2M2 in three obstacle-free scenarios.

• Obstacle-Free 1 (F1): Agent 1 travels from bottom to
top. Agent 2 travels from left to right.

• Obstacle-Free 2 (F2): Agent 1 travels from bottom to
top. Agent 2 travels from top to bottom. Agent 3 travels
from left to right.

• Obstacle-Free 3 (F3): Agent 1 travels from bottom to
top. Agent 2 travels from top to bottom. Agent 3 travels
from left to right. Agent 4 travels from right to left.

2) Static Obstacles: We compare the performance of STCS
to that of S2M2 in three static obstacle scenarios.

• Static Obstacles 1 (S1): Agent 1 travels from bottom to
top. Agent 2 travels from top to bottom. A static obstacle
is in the center of the field.

• Static Obstacles 2 (S2): Agent 1 travels from bottom to
top. Agent 2 travels from left to right. One static obstacle
is in the center of the field, and one static obstacle is in
the center of each of the four quadrants of the field.

• Static Obstacles 3 (S3): Agent 1 travels from bottom to
top. Agent 2 travels from left to right. Agent 3 travels
from right to left. A static obstacle is in the center of the
field.

3) Dynamic Obstacles: We evaluate the performance of
STCS in three dynamic obstacle scenarios.

• Dynamic Obstacles 1 (D1): Agent 1 travels from bottom
to top. Agent 2 travels from top to bottom. A dynamic
obstacle travels from top left to bottom right.

• Dynamic Obstacles 2 (D2): Agent 1 travels from bottom
to top. Agent 2 travels from left to right. Agent 3 travels
from right to left. A dynamic obstacle travels from top
left to bottom right.

• Dynamic Obstacles 3 (D3): Agent 1 travels from bottom
to top. Agent 2 travels from left to right. Agent 3 travels
from right to left. One static obstacle is in the center of
the first quadrant of the field, and a second static obstacle
is in the center of the third quadrant. A dynamic obstacle
travels from top left to bottom right.

4) Non-Connected Vehicles: We evaluate the performance
of STCS in three non-connected vehicle scenarios.

• Non-Connected Vehicles 1 (N1): Agent 1 travels from
bottom to top. Agent 2 travels from left to right. One
non-connected vehicle travels from right to left.

• Non-Connected Vehicles 2 (N2): Agent 1 travels from
bottom to top. Agent 2 travels from right to left. One non-
connected vehicle travels from top to bottom. A second
non-connected vehicle travels from left to right.

• Non-Connected Vehicles 3 (N3): Agent 1 travels from
bottom to top. Agent 2 travels from left to right. Agent
3 travels from right to left. One non-connected vehicle
travels from top to bottom.

B. Baseline and Evaluation Metric

To assess solution quality, we compute suboptimality ratios
for various metrics, which we define as the ratio between the
observed value of the metric and a lower bound on its optimal
value. In particular, we measure total distance, which is simply
the sum of the distances traveled by all agents in the solution,
and makespan, which is the time that the last agent reaches its
goal. We obtain a lower bound on the optimal total distance
of a solution using the sum of L2 norms between each agent’s
starting point and its goal. We obtain a lower bound on the
optimal makespan of a solution by solving for time using basic
kinematics formulas, assuming that traveled distance is the L2
norm between an agent’s starting point and its goal and that
the agent has a constant acceleration amax

i . After computing
suboptimality ratios for each of these metrics, we compute the
overall suboptimality ratio as the average of these two ratios.
A lower overall suboptimality ratio implies higher solution
quality, and a value of 1 is the minimum. Because we use
lower bounds to compute these metrics, a value of 1 is often
unattainable while preserving solution feasibility.

We compare the performance of STCS to that of S2M2, a
MAMP algorithm proposed in [22]. While S2M2 has proved
to excel among nonlinear dynamics and bounded disturbances
and in settings involving static obstacles, the algorithm has
not shown compatibility with dynamic obstacles. Thus, we
evaluate the performance of S2M2 in scenarios that are
obstacle-free or that contain only static obstacles. We configure
all parameters unique to S2M2 to the default values provided
by the authors. We measure each algorithm’s runtime in each
scenario as the average runtime over 20 trials. All experiments
were run on a desktop computer with an AMD Ryzen 5 2600X
CPU and 16GB RAM.

C. Motion Planning Evaluation

We evaluate the performance of STCS in motion planning
with respect to runtime and suboptimality ratio in the twelve
outlined scenarios, comparing it to S2M2 in obstacle-free
and static-obstacle scenarios. Figure 4 indicates that STCS
and S2M2 provide similar runtime values in obstacle-free
scenarios. Figure 5 indicates that the algorithms also exhibit
comparable solution quality in these scenarios, as implied by
the overall suboptimality ratio metric. Likewise, Figure 6 and
Figure 7 extend these observations to scenarios involving static
obstacles. Table I and Table II demonstrate that the perfor-
mance of STCS with respect to both runtime and solution
quality scales well to scenarios involving dynamic obstacles
and non-connected vehicles, respectively.



Fig. 4: Average runtime, in seconds,
of STCS and S2M2, as measured
over 20 trials in each of the three
obstacle-free scenarios.

Fig. 5: Overall suboptimality ratio
of STCS and S2M2, as measured in
each of the three obstacle-free sce-
narios.

Fig. 6: Average runtime, in seconds,
of STCS and S2M2, as measured
over 20 trials in each of the three
static obstacle scenarios.

Fig. 7: Overall suboptimality ratio
of STCS and S2M2, as measured
in each of the three static obstacle
scenarios.

Thus, STCS matches state-of-the-art performance with re-
spect to both runtime and solution quality in obstacle-free and
static-obstacle environments. Furthermore, STCS extends this
performance to settings involving dynamic obstacles.

D. CARLA Evaluation

We further evaluate STCS in the setting of traffic intersec-
tions using the CARLA autonomous vehicle simulator. We
use a four-way, two-lane uncontrolled intersection setting. We
assign cars for each agent and non-connected vehicle, and
bicycles and pedestrians for each static or dynamic obstacle.
Furthermore, we introduce spatial constraints on each planner
to ensure that vehicles stay within the bounds of the intersec-
tion during execution. In each scenario, we evaluate the ability
of STCS and S2M2 to produce a solution that can be feasibly
executed in CARLA. A full solution generated by STCS for
Scenario N2 is shown in Figure 8.

As indicated by Table III, the MAMP solutions produced
by STCS were feasible in the traffic intersection setting
for all obstacle-free, static-obstacle, dynamic-obstacle, and
non-connected-vehicle scenarios. On the other hand, S2M2
occasionally failed to produce feasible solutions when given
the spatial constraints of this setting, specifically in the more
challenging scenarios F3 and S3. Thus, we experimentally
demonstrate that STCS expands upon the current state of the
art by solving complex traffic intersection scenarios involving
pedestrians and non-connected vehicles, and by maintaining
continuous-time feasibility and formulation-space complete-

D1 D2 D3

Runtime (s) 0.231 0.246 0.212
Distance Suboptimality 1.059 1.094 1.128
Makespan Suboptimality 1.825 2.424 2.324
Overall Suboptimality 1.442 1.759 1.726

TABLE I: Performance evaluation of STCS in the three dynamic obstacle
scenarios.

N1 N2 N3

Runtime (s) 0.155 0.224 0.237
Distance Suboptimality 1.561 1.146 1.785
Makespan Suboptimality 1.657 2.281 1.848
Overall Suboptimality 1.609 1.713 1.817

TABLE II: Performance evaluation of STCS in the three non-connected
vehicle scenarios.

ness in all cases. In particular, we show that the latter property
enables solutions to be found more consistently in challenging
scenarios, given the spatial constraints of the traffic intersec-
tion setting.

VI. CONCLUSION

In this work we presented STCS, a novel discrete-time
formulation and decoupled algorithm for multi-agent motion
planning. We theoretically proved the continuous-time feasi-
bility and formulation-space completeness of STCS. We ex-
perimentally validated the algorithm’s performance in various
scenarios with application to unsignalized traffic intersections,
demonstrating that we expand upon the current state of the art
with regard to dynamic obstacle compatibility and consistency
in constrained settings, while maintaining runtime and solution
quality. As STCS is a novel approach to MAMP, there still
remains much work to be done. In future work, we intend
to further explore optimization techniques and formally prove
suboptimality bounds and adherence to motion constraints.
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