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Abstract— Zellig Harris proposed a method for grouping
phonemes in an utterance into morphemes by simply using
counts of each of the phonemes in a corpus relative to their
position in sequences contained in the data set. Thus, using
an n-gram model, one can model this process and see whether
a computational model can actually group representations of
phonemes into segments which correspond to morphemes. Here,
we use a general n-gram modelling tool created for melodic
grouping in music corpora and apply it to a natural language
data set. We show that this method which approximates Harris’s
can indeed find morphemes in a given language corpus by
calculating the distributions of phonemes across a corpus.

I. INTRODUCTION

The underlying principles contained in our current ap-
proach were first introduced by Harris [1]. Harris described
a procedure by which phoneme sequences could be grouped
into morphemes. He envisioned a use-case for this method
in which one knows about a given alphabet (in the formal
sense of the word) but has not worked out what the mean-
ingful segments are. He specifically hypothesised that the
distributional properties could be used to determine whether
an item in a sequence of phonemes constitutes a morpheme
without reference to meaning.

This is the task that the IDyOM framework was devel-
oped for. IDyOM [2] stands for Information Dynamics Of
Music. However, it was developed for the purpose of finding
boundaries in sequences of musical notes. The purpose of
the analysis presented here is to see what results one can
expect when IDyOM is used on a natural language corpus. In
previous work it was also hypothesised that IDyOM performs
well at determining morpheme boundaries [3]. In a test with
respect to other linguistic units, it performed reasonably well
for syllable segmentation and word boundary detection and
to a lesser extent regarding phrase boundary detection [4].
Golcher [5] similarly tried to segment text into morphemes,
words and multi-word expressions with a related but different
approach. Although both methods use the predictability
strategy for segmentation [6], the latter approach used text
as the input whereas in the current contribution our model is
trained on representations of phonemes. Harris [7] stressed
that the method he described was intended for analysing
sequences of phonemes.

In this contribution we examine the role of morphemes
in segmenting a natural language data set comprised of
sequences of symbols representing phonemes. Phonemes will
group into morpheme segment candidates without reference
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to “meaning” simply by considering their distributional prop-
erties in sequences across the data set.

II. MODELLING GROUPING AND BOUNDARY
PERCEPTION USING INFORMATION DYNAMICS

IDyOM calculates the regularities of a corpus using a
multidimensional variable-order Markov model. Thus, it is
based on n-gram modelling [8, pp. 845–847]. Harris [1]
referred to this as predecessor counting. He used a simple
counting method to determine rises in frequency for each
element both forward counting (successor count) and back-
ward counting (predecessor count). He then determined for
every utterance how often a given phoneme would appear in a
certain context. His assumption was that a given distribution
would show periodicity determined by boundaries which
group phonemes into morphemes.

In contrast to raw counts of frequencies of elements in a
sequence taking a given position, we propose using infor-
mation content as a measure of frequency. More precisely,
we call this a measure of unexpectedness (sometimes also
called ’surprisal’, e.g. in [9]). Following MacKay [10], we
formalise information content as:

h(ei|ei−1
1 ) = log2

1

p(ei|ei−1
1 )

. (1)

With elements e from an alphabet E being the phonemes
in a sequence. For each element ei in e one can calculate
its probability given the context – more specifically the
preceding context ei−1

1 – which can be defined as:

p(ei|ei−1
1 ) (2)

as used in (1).
We use information content as the measure of the pre-

dictability of boundaries. It has been shown that for music
this measure is particularly useful [11] in computational
models of boundary detection. However, apart from its
usefulness in computational models, it has also been demon-
strated to be a useful predictor of segments in experimental
research [12].

Our segmentation method assumes that local peaks will
indicate a boundary. However, not every rise will be asso-
ciated with a segment boundary. We assume that there is a
parameter d such that:

h(ei|ei−1
1 ) < d (3)

will be identified as boundary. A different setting of d will
result in different segmentations. In order of finding a good
d one needs to compare different segmentation results to
a ground-truth (such as annotated syllable boundaries [3]
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for language or expert judgements for music [13]). Our
method for determining an appropriate value for d is further
explained below (see Section III).

The model is not as such a direct implementation of the
model presented by Harris [1], [7] but similar to the model
of Golcher [5] and sources cited therein ([14], [15], [16]),
it is inspired by the work of Harris in the sense that it is
purely statistical, uses successor or predecessor counts of the
elements in strings of language and predicts the next element
in the sequence based on these counts. Brent [6] calls this the
predictability strategy of text segmentation which contrasts
with utterance boundary detection methods (e.g. [17], [18])
and recognition based approaches (e.g. [19], [20], [21]).

III. METHODS

We now discuss what kind of units the segmentation
predicts in the corpus with different settings of the parameter
d and how these develop as d changes. The corpus we
use in this evaluation is the TIMIT corpus [22] which
was created for training speech recognition systems. Our
processed version of this dataset contains 81,533 phoneme
tokens (40 types) which make up 20,756 words and 2,342
utterances; average utterance length is therefore 8.9 words.

The data were presented to the IDyOM system in a total of
5 conditions, as itemised in Tab. I. IDyOM can be used with
a Long Term model (LTM), which is exposed to an entire
corpus (modelling the learned experience of a listener) and
a Short Term model (STM), which is exposed only to the
current melody or utterance (modelling a specific listening
experience). Also, there is a version of the LTM which
is called LTM+ in which the LTM learns from its current
stimulus presented to the system. Additionally, both LTM and
LTM+ can be combined with the STM to give two further
models – Both and Both+. The LTM, LTM+, Both and Both+
models are trained using ten fold cross-validation.

In each condition, the resulting model was used to predict
the information content of each phoneme in the corpus,
in context of its utterance prefix. The resulting signal was
differentiated (see equation (3) above), and values larger
than a parameter d were taken as boundaries. d was varied
with d ∈ [0 : 10] at 0.01 increments which yields a
1,000 different possible segmentations. In order of obtaining
“good” possible segmentations, we compared all possible
segmentations against a ground truth for syllables, words
and phrase-chunks. We use these three ground truths as
a reference in lieu of a ground truth for morphemes as
the TIMIT corpus does not have annotations for morpheme
boundaries.

This procedure is an automatisation of the search for rises
in the counts of phonemes at a given position [1]. Harris
did not have a threshold value above which a new segment
was to be identified. However, he was aware that within a
segment the counts do not fall linearly but fall and rise with
high rises defining a new segment.

IV. RESULTS
The performance of each of the configurations is shown

in Tab. I. The different models actually give different results

which is to be expected for language.
The STM’s performance is worse than that of all other

configurations. Also, the Both and Both+ performance is
worse than the LTM and LTM+ configurations which can
be explained by the fact that the STM contributes in a
detrimental way to the performance of the latter configu-
rations. In music segmentation the STM actually performs
well [23]. An interpretation of this difference is that music
is self-referential and much of its “meaning” is therefore
emergent from repetition and variation in its local structure
(see also discussion in [24], [25]), whereas in language (other
than rhyming poetry) the semantics of segments contributes
more to their interpretation [3]. More details regarding the
performance can be found in Tab. I.

Harris [1] also assumed, that for his method to work, the
counts would have to be based on a sufficiently large corpus
and could not be derived from an utterance in isolation.
Therefore, we now look at the results one can obtain by
applying this method considering the best performing model
which is the LTM which itself is also the closest approxima-
tion to Harris’s method. Tab. II shows the 10 most frequent
items produced by the segmentation method for the cases in
which d was optimised according to a ground truth relative
to (1) syllables, (2) words and (3) phrase-chunks.

One can see that there are segments which seem relatively
stable across different kinds values of d. The most frequent
words the, and and you are also frequent in all three seg-
mentations. Our observations are that the five most frequent
words in the word segmentation task are also reliably found
as individual words in the syllable and phrase segmentation.
For example, the is 1st in both the syllable segmentation
and the word segmentation but also 3rd in the phrase-
chunks segmentation. and on the other hand is not among the
ten most frequent items for the phrase-chunk segmentation;
however, it is among is the 20th most common item there.
As you, and and he all appear in the most frequent items
in all three lists, in becomes the only exception as it does
appear in the most frequent terms of the phrase-chunk list
(and doesn’t appear within the most frequent 100 items at
all). This may be due to the fact that instances of in have to a
large amount been absorbed into larger chunks (see below).

A. Morphemes

A consistent pattern is found with respect to morphemes
appearing in the list. Both [s] and [z] which are inflectional
morphemes which may indicate plurals of nouns, possessive
forms of nouns and 3rd person singular forms of verbs
are found among the most frequent ten candidate segments
within the lists for syllable, word and phrase-chunk seg-
ments. Similarly, [t] and [d] which indicate the past tense
forms of verbs are consistently among the most twenty most
frequent items. Among, the 20 most frequent items in the
best segmentation for syllables, one also finds the items
syllable -ing and -ly which are derivational morphemes. In
Fig. 1 one can see the appearance of these 6 morpheme
candidates plotted. With their frequency plotted on the y-
axis and the corresponding value for d on the x-axis.



TABLE I
SUMMARY OF RESULTS FOR THE TIMIT CORPUS FOR WORDS (LEFT) AND PHRASES (RIGHT) USING ALL FIVE CONFIGURATIONS OF IDYOM. MORE

DETAILS CAN BE FOUND IN GRIFFITHS ET AL. [4].

TIMIT
(1) SYLLABLES (2) WORDS (3) PHRASE-CHUNKS

Model {phonemes} {phonemes} {phonemes}
h̄ d κ F1 d κ F1 d κ F1

STM 5.46 2.43 0.11 0.26 3.95 0.17 0.24 6.96 0.39 0.42
LTM 3.55 1.29 0.47 0.65 1.96 0.58 0.69 4.50 0.41 0.47
LTM+ 3.54 1.15 0.47 0.66 1.95 0.56 0.69 4.40 0.41 0.47
Both 3.68 1.26 0.45 0.64 1.65 0.55 0.67 4.44 0.42 0.48
Both+ 3.67 1.05 0.45 0.65 1.94 0.56 0.69 4.52 0.42 0.48

TABLE II
THE TOP TEN SEGMENTS FOR THE BEST SEGMENTATION WITH RESPECT TO THE GROUND TRUTH FOR (1) SYLLABLES, (2) WORDS AND (3)

PHRASE-CHUNKS. THE SEGMENTS ARE SORTED BY FREQUENCY WITH THAT SEGMENTATION AND A POSSIBLE INTERPRETATION IS GIVEN IN

BRACKETS.

(1) Syllables (2) Words (3) Phrase-chunks
1 [dh ax] (the) [dh ax] (the) [y uw] (you)
2 [s] (noun and verb inflection realized as [s]) [ae n d] (and) [dh ih s] (this)
3 [z] (noun and verb inflection realized as [z]) [y uw] (you) [dh ax] (the)
4 [hh iy] (he) [hh iy] (he) [y uh r] (your)
5 [t] (verb inflection realised as [t]) [ih n] (in) [ah v] (*not in ground truth)
6 [ih n] (in) [z] (noun and verb inflection realized as [z]) [dh ae t] (that)
7 [ae n d] (and) [ah v] (*not in ground truth) [hh ih z] (his)
8 [y uw] (you) [s] (noun and verb inflection realized as [s]) [ao l] (all)
9 [d] (verb inflection realised as [d]) [hh ih z] (his) [aa r] (are)
10 [ah v] (*not in ground truth) [l iy] (adverbialiser ’-ly’) [b ah t] (but)

Fig. 1. The frequency of common morpheme segments (noun and verb
inflection markers [s] & [z], past tense markers [t] & [d], adverbialiser [ly]
and gerund-marker [ing]) are plotted against the parameter d. Thus, on the
x-axis one finds d ∈ [0 : 10] at 0.01 increments. On the y-axis one finds
the frequency of the examined items.

It is noticeable here that the shape of the curves in-
dicates that there is a difference between the inflectional
morphemes and the derivational morphemes. The deriva-
tional morphemes -ing (indicating a gerund) and -ly (an
adverbialiser) seem to show a more steady behaviour than
the inflectional morphemes for [s]/[z] which stand for plurals
and possessives on nouns and 3rd person singular on verbs.
This is indicated by the sharper drop in the graph of the
derivational morphemes compared to the rounder shape of
the graph for the inflectional morphemes.

Fig. 2. The frequency of common word segments (the, and, you, he, in) are
plotted against the parameter d. Thus, on the x-axis one finds d ∈ [0 : 10]
at 0.01 increments. On the y-axis one finds the frequency of the examined
items.

B. Words

As can be seen in Fig. 2 the shape of the graphs for words
displays a much rounder behaviour than the almost linear
decent that the derivational morphemes show. The increased
roundness as compared to the inflectional morphemes also
suggests that the patterns in lexical units becomes clearer
with higher values for d.

As the segments become larger with increases in the
value of d sequences of phonemes will be re-analysed and a
transition from smaller syllable-like and morpheme-like units
to ”word-like” units occurs. An example of this would be a
re-classification of an and following d to form the word and.



Fig. 3. The frequency of common word segments (he had, this is, it was,
has been, through the) are plotted against the parameter d. Thus, on the
x-axis one finds d ∈ [0 : 10] at 0.01 increments. On the y-axis one finds
the frequency of the examined items.

This is most likely the explanation for the graph starting low
and then a growing increase in frequency can be noted before
it drops again.

C. Phrases

We examined the most frequent multi-word units which
Harris [1] also proposed could be identified using his method
under certain conditions. It is noticeable that measured
against a ground truth which sees phrase-chunks as units
such as adjective phrases, noun phrases, verb phrases, etc. the
selected units, he had, this is, it was, has been, through the
will be incorrectly classified. However, it is interesting that
at higher d such units do appear. As can be seen in Fig. 3, the
persistence of these segments is short lived. Despite being
scattered they are more frequent in the regions of higher
values of d. Though, none of them is very frequent overall
with it was being the most frequent and being found 24 times
in one early segmentation.

D. Comparison

Three things are observable from the shape of the graphs
in Fig. 4. The behaviour of morpheme-like segment can-
didates, word-like segment candidates and multi-word seg-
ment candidates is quite distinct judging from these graphs.
First, the derivational morphemes show a more constant
drop than all other units. They will be absorbed into large
word-like segment candidates to a large extent before the
segmentation reaches its best result with respect to the
word ground truth. However, the inflectional morphemes are
more persistent. Second, word-like segment candidates show
higher frequencies than all other units from a certain value
of d onwards. Third, the frequency of multi-word segment
candidates is dwarfed by the frequency of word-like and
morpheme-like segment candidates. The graphs are barely
visible in comparison and they appear very late overall, at
high d values. This is to a large extent after a majority of
derivational morphemes has been absorbed into word-like
units.

Fig. 4. The frequency of common segments are plotted against the
parameter d. Thus, on the x-axis one finds d ∈ [0 : 10] at 0.01 increments.
On the y-axis one finds the frequency of the examined items. These include
the 6 most common morphemes which are frequently identified as segments
by the proposed method, the 5 most common words and the 5 most common
“phrase-like” segments.

V. DISCUSSION

In the following section, we will discuss the results with
respect to a few examples drawn from the segmentation
results. As discussed elsewhere [4] the phrase-chunk seg-
mentation did not perform as well as expected and thus these
will only briefly be discussed in the text and not in Fig. 5
which shows a few sentences drawn from the TIMIT corpus.

In this contribution, we specifically wanted to address the
question of whether there is a tendency to favour morpheme
segmentation over possible other linguistic units even when
parameter d is chosen for a specific type of unit such as
syllables, words and phrase-chunks. In the previous sec-
tions quantitative measures were explored and the results
are promising (see below in section VI). Additionally, we
discussed the lexicon with respect to the frequency at which
inflectional and derivational morphemes appear. In Fig. 5
three examples of sentences segmented with respect to both
the syllable and word ground truth are shown in order to be
able to discuss these results further.

In example (1), the false positives and false negatives
for the first two words are particularly interesting and align
with our argument. In the syllable segmentation task, the
method sees the word “only” as one unit although the syllable
segmentation would be two units, “on” and “ly” whereas
the method splits “incomplete” into “in” and “complete”
which would be “in” “com” and “plete” in a true syllable
segmentation. Correspondingly, in the word discovery task
there should two lexical items: “only” and “incomplete”.
However, again, one finds the segmentation into “only” and
“in” and “complete”. Also, independent of the task (i.e. the
ground truth chosen for which d is chosen), “things” gets
split into “thing” and the plural morpheme [z].

In example (2), one can see that “catastrophic” (containing
the syllables “cata”, “stro” and “phic”) is split up into
“catastrophe” and [k] in the syllable task. This is despite



the fact that the word “catastrophe” does not appear in the
corpus on its own. However, for a larger parameter d in
the word discovery task this segmentation can no longer be
found. Overall, example (2) shows a poorer performance than
the other two examples. Although, the final two segments
“the” and “poor”, which are both mono-syllabic and mono-
morphemic are found correctly in both tasks.

Example (3) shows a much better performance in both
tasks. Interesting items include “nearly” which is segmented
into “near” and “ly” and “overwhelmed” which is segmented
into “over” “whelm” and the past tense marker [d].

Overall, the phrase-chunk segmentation is very little infor-
mative for the selected examples. The sentences are all just
split into two parts at a particularly high information content
point. The only interesting example is example (2) which is
segmented into the proposition “only incomplete imperfect
things move” and the prepositional phrase “towards what
they lack”. This coincides with phrase-chunk boundaries,
though clearly, the noun phrase (“only incomplete imperfect
things”) and verb phrase (“move”) would ideally also have
to be identified.

These few selected examples are meant to illustrate how
the segmentation performs beyond the quantitative measures
(κ and F1 scores). Although more work needs to be done,
the examples indicate that morphemes are strong candidates
for “meaningful units” within the information dynamics
approach to segmentation. In future work, we plan to con-
struct another ground truth for morpheme boundaries and
re-evaluate the current approach.

VI. CONCLUSION

Morphemes are frequently called the “smallest meaningful
pieces” [26] of language. In the computational musicology
work from which IDyOM originates it is assumed the seg-
mentation based on information content will yield groupings
of musical events into “meaningful units”. While “mean-
ingful” certainly means something different in language
and music, we assumed here that applying this method to
language would result in a segmentation into “meaningful
units” without a recourse to semantics and based solely on
the distribution of the phonemes contained in a corpus.

In correspondence with Harris [1], we proposed an out-
come for such a segmentation which would result in a
segmentation which strongly favours morphemes as the re-
sulting segmentation candidates. This is also in agreement
with initial finding by Wiggins [3] using a similar method
to segment the same data set into syllables.

As the parameter d becomes larger in value the segment
candidates should increase in length. This is also observed
in the present study. We focused our analysis here on the
most frequent items among the candidate segments. As the
κ and F1 scores indicate, the method actually does perform
well in the segmentation tasks which it is assigned to.

Landis and Koch [27] characterise a κ ∈ [0.4, 0.6] as
“moderate”. Thus, the results reported here compared to three
ground truths all show moderate success apart from the STM
model. The method does indeed produce segment candidates

which go beyond mono-syllabic and mono-morphemic words
and even produces some multi-word segment candidates
which are even potentially phrase like. Yet, as we have shown
inflectional morphemes such as the noun and verb inflection
markers [s] & [z] and past tense markers [t] & [d] will
remain frequent even when the segment candidates become
large enough to allow the segmentation to include multi-
word segments. Hence, even at high values of parameter
d inflectional morphemes are still regarded “unexpected”
enough to be segmented on their own.

Similar to the proposal of Harris [1] we can show that
morpheme boundaries can be detected in a continuous stream
of phonemes without reference to meaning just by using the
distributional properties of the events in sequences in a given
corpus. Further, it is not even required as Harris postulated
that one knows about the existence of morphemes to find
these using a distributional method.
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