
Engineering
SAT Applications

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

MSc. (Bioinf.) Christian Zielke
aus Rathenow

Tübingen
2015

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 15.12.2015
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Wolfgang Küchlin

Acknowledgements

First and foremost I want to thank my advisor, Prof. Dr. Michael Kaufmann, for
giving me the opportunity to work in such an inspiring and light-hearted research
group as his, for his support, for the freedom he gave me to follow my research
ideas and last but not least, for the uncounted rides he gave me to the mensa.

I always enjoyed the easy, funny and friendly atmosphere at our group. I will
surely miss the coffee breaks (although I did not drink a single coffee during all the
time), the (active and passive) sports events we attended, the insightful discussions
about research, life and weekend plans.

I am really grateful to my current and former colleagues, namely Michael Bekos,
Till Bruckdorfer, Philip Effinger, Andreas Gerasch, Markus Geyer, Niklas Heinsohn,
Stephan Kottler, Robert Krug, and Martin Siebenhaller for creating such a nice
atmosphere. A special thank you has to be directed towards Renate Hallmayer,
our secretary.

Furthermore, I want to thank all the students, that did their theses under my
tutelage. It was a pleasure working with you. A special thanks has to be directed
towards Johannes Dellert, since a lot of important ideas originate from the joint
work with him.

Last but not least, I want to thank my family and friends, especially my parents,
for their unwavering support.

i

Zusammenfassung

Das Erfüllbarkeitsproblem der Aussagenlogik (SAT) ist nicht nur in der theoretis-
chen Informatik ein grundlegendes Problem, da alle NP-vollständigen Probleme
auf SAT zurückgeführt werden können. Durch die Entwicklung von sehr effizienten
SAT Lösern sind in den vergangenen 15 Jahren auch eine Vielzahl von praktis-
chen Anwendungsmöglichkeiten entwickelt worden. Zu den bekanntesten gehört
die Verifikation von Hardware- und Software-Bausteinen.

Bei der Berechnung von unerfüllbaren SAT-Problemen sind Entwickler und
Anwender oftmals an einer Erklärung für die Unerfüllbarkeit interessiert. Eine
Möglichkeit diese zu ermitteln ist die Berechnung von minimal unerfüllbaren Teil-
formeln. Es sind drei grundlegend verschiedene Strategien zur Berechnung dieser
Teilformeln bekannt: mittels Einfügen von Klauseln in ein erfüllbares Teilprob-
lem, durch Entfernen von Kauseln aus einem unerfüllbaren Teilproblem und eine
Kombination der beiden erstgenannten Methoden.

In der vorliegenden Arbeit entwickeln wir zuerst eine interaktive Variante der
Strategie, die auf Entfernen von Klauseln basiert. Sie ermöglicht es den Anwendern
interessante Bereiche des Suchraumes manuell zu erschließen und aussagekräftige
Erklärung für die Unerfüllbarkeit zu ermitteln. Der theoretische Hintergrund, der
für die interaktive Berechnung von minimal unerfüllbaren Teilformeln entwickelt
wurde, um dem Benutzer des Prototyps unnötige Schritte in der Berechnung der
Teilformeln zu ersparen werden im Anschluss für die automatische Aufzählung von
mehreren minimal unerfüllbaren Teilformeln verwendet, um dort die aktuell schnell-
sten Algorithmen weiter zu verbessern. Die Idee dabei ist mehrere Klauseln zu
einem Block zusammenzufassen. Wir zeigen, wie diese Blöcke die Berechnungen
von minimal unerfüllbaren Teilformeln positiv beeinflussen können. Durch die Im-
plementierung eines Prototypen, der auf den aktuellen Methoden basiert, konnten
wir die Effektivität unserer entwickelten Ideen belegen.

Nachdem wir im ersten Teil der Arbeit grundlegende Algorithmen, die bei
unerfüllbaren SAT-Problemen angewendet werden, verbessert haben, wenden wir
uns im zweiten Teil der Arbeit neuen Anwendungsmöglichkeiten für SAT zu. Zuerst
steht dabei ein Problem aus der Bioinformatik im Mittelpunkt. Wir lösen das so-
genannte Kompatibilitätproblem für evolutionäre Bäume mittels einer Kodierung
als Erfüllbarkeitsproblem und zeigen anschließend, wie wir mithilfe dieser neuen
Kodierung ein nah verwandtes Optimierungsproblem lösen können. Den von uns
neu entwickelten Ansatz vergleichen wir im Anschluss mit den bisher effektivsten
Ansätzen das Optmierungsproblem zu lösen. Wir konnten zeigen, dass wir für den
überwiegenden Teil der getesteten Instanzen neue Bestwerte in der Berechnungszeit

iii

iv

erreichen.
Die zweite neue Anwendung von SAT ist ein Problem aus der Graphentheorie,

bzw. dem Graphenzeichen. Durch eine schlichte, intuitive, aber dennoch effektive
Formulierung war es uns möglich neue Resultate für das Book Embedding Problem
zu ermitteln. Zum einen konnten wir eine nicht triviale untere Schranke von vier für
die benötigte Seitenzahl von 1-planaren Graphen ermitteln. Zum anderen konnten
wir zeigen, dass es nicht für jeden planaren Graphen möglich ist, eine Einbettung
in drei Seiten mittels einer sogenannten Schnyder -Aufteilung in drei verschiedene
Bäume zu berechnen.

Contents

1 Introduction 1

1.1 Algorithms . 1

1.2 Solving Problems by Translation into SAT 3

1.3 Algorithm Engineering . 4

1.4 Outline . 6

2 Preliminaries 9

2.1 Propositional Logic . 9

2.1.1 Conjunctive normal form . 10

2.1.2 Resolution . 10

2.2 Basic SAT Solving Techniques . 10

2.2.1 DPLL algorithm . 11

2.2.2 SAT solving with selector variables 12

2.3 Minimal Unsatisfiable Subsets . 12

2.3.1 Deletion-based MUS extraction 13

2.3.2 Model rotation . 15

2.3.3 Insertion-based MUS extraction 16

2.3.4 Hybrid MUS extraction . 17

3 Visualizing MUS extraction 19

3.1 Introduction . 19

3.2 Classification of Clauses . 20

3.3 The Application . 21

3.3.1 Automation through reduction agents 23

3.4 Saving unnecessary SAT Solver Calls 24

3.4.1 Criticality information via unsuccessful reductions 25

3.4.2 Successful reductions . 26

3.4.3 Blocks of selector variables 27

3.5 Additional Meta Constraints . 28

3.5.1 Inclusion or exclusion of specific clauses in USes 28

3.5.2 Expressing GMUS extraction 29

3.5.3 Enforcing limits on MUS sizes 30

3.6 Summary . 30

v

vi Contents

4 Improving MUS enumeration 33
4.1 Introduction . 33
4.2 Hitting Set Duality of MUSes and MCSes 34
4.3 Related Work . 35

4.3.1 Enumerating subsets . 37
4.3.2 The algorithm CAMUS . 38
4.3.3 The algorithm DAA . 39

4.4 The MARCO Algorithm . 40
4.4.1 Implementation . 42
4.4.2 Variants of MARCO . 47
4.4.3 Practical analysis of MARCO and its optimizations 50

4.5 Determine more MUS Members via map 53
4.6 Using Blocks to boost MUS Enumeration 54

4.6.1 Determine the blocks . 54
4.6.2 Proving the block property 56
4.6.3 Using block information during shrink 57
4.6.4 Using block information to find more MCSes 58

4.7 Practical Results . 60
4.7.1 Workload computation . 63
4.7.2 Influence of enumerated MCSes on shrink 64
4.7.3 Using block property within shrink 67

4.8 Summary . 68

5 Using SAT to reconstruct phylogenies 71
5.1 Introduction . 71
5.2 Preliminaries . 72
5.3 Related Work . 73

5.3.1 Answer set programming . 74
5.3.2 Pseudo boolean optimization 75

5.4 SAT Formulation . 75
5.4.1 The split encoding . 76
5.4.2 Using non-displayed quartets to prune search space 82
5.4.3 Using the input to prune the search space 84

5.5 Solving MQC . 86
5.6 Practical Results . 88

5.6.1 Comparison of SAT approaches and formulations 89
5.6.2 Comparison to PBO and ASP 89
5.6.3 Comparison to available MaxSAT approaches 91

5.7 Summary . 93

6 Using SAT to embed graphs in books 97
6.1 Introduction . 97
6.2 SAT Formulation . 101

6.2.1 A variant to check Hypothesis 3 104
6.2.2 A variant to check Hypothesis 4 106
6.2.3 A variant to check Hypothesis 5 107
6.2.4 Finding “difficult” graphs . 107

Contents vii

6.3 Practical Results . 108
6.3.1 Established benchmark sets 108
6.3.2 Crafted graphs . 110
6.3.3 Finding “difficult” graphs . 110
6.3.4 1-planar graphs . 112
6.3.5 Phase transition . 113
6.3.6 Randomized planar graphs 114

6.4 Summary . 114

7 Conclusion 117

1 Introduction

1.1 Algorithms

“Before there were computers, there were algorithms. But now that there are
computers, there are even more algorithms, and algorithms lie at the heart of
computing.”

These two sentences that were stated in the preface of the third edition of the
book “Introduction to Algorithms” by Thomas H. Cormen et al. [33] summarize
the current situation very well. The idea of designing machines which are capable
of solving problems automatically, is highly appealing and fascinating for many
people. Several hundred years ago scientists started to develop the theory and con-
structed some early automatic machines, whose applications were basic arithmetic
operations. Blaise Pascal and Wilhelm Schickard, the latter a former professor
of the University of Tübingen, are considered to be the first two inventors of the
mechanical calculator in the early 17th century1.

In fact, even the origin of the word “algorithm” has a mathematical background.
The Persian mathematician, astronomer and geographer al-Khwarizmi wrote the
book “On the Calculation with Hindu Numerals” around 825 AD. The Latin trans-
lation of the title is known as “Algoritmi de numero Indorum” and led to the term
“algorithm”, which nowadays refers to “a set of rules that precisely defines a se-
quence of operations” that terminates eventually [135].

The development of the computer in the last century was the major break-
through in the creation process of a universal machine that is capable of system-
atically executing algorithms to solve problems that naturally arise from the most
diverse applications in the growing areas of engineering, economy, science, and daily
life. Although the vast majority of people have access to computers nowadays and
although the development of faster and cheaper computation technology leads to
the creation of record breaking super-computers every year, the need for optimiz-
ing algorithms is not diminishing. In fact, the need for sophisticated algorithms is
bigger than ever. The application of an algorithm that searches in the huge data
space of the internet is a prime example for that. The available data are enormous

1Further information about the debate Pascal vs Schickard is available at http://metastudies.
net/pmwiki/pmwiki.php?n=Site.SchicardvsPascal

1

2 Algorithms

8
9 6
2

8
7 1

6
8 7

1 6
4
9

4 1

9
2

6 5

2 3
6

3 7
9

1
4 6

3
(a)

8 5 3
1 9 6
7 2 4
9 4 5
3 6 8
2 7 1
6 3 2
5 8 7
4 1 9

2 1 6
7 4 8
5 3 9
8 6 2
4 7 1
3 9 5
9 8 4
1 2 3
6 5 7

7 9 4
2 3 5
1 8 6
3 7 1
9 5 2
6 4 8
5 1 7
4 6 9
8 2 3

(b)

Figure 1.1. (a) A typical Sudoku puzzle. (b) The solution for the same puzzle, black
numbers were added due to reasoning.

and rise rapidly every year2. With the help of algorithms that harvest information
out of petabytes (1015 bytes) of data within fractions of a second and further algo-
rithms that process the relations between different entities of the internet to filter
relevant information out of the whole data set, the search engines changed the way
we currently handle knowledge.

Consider now the well-known Sudoku puzzle as an application that can be
solved by algorithms. It is a logic-based, combinatorial puzzle that is played on a
partially filled 9 × 9 grid. The task is to complete the assignment using numbers
from 1 to 9 such that the numbers in each row, each column and each major 3× 3
block are pairwise different. See Figure 1.1 for a typical Sudoku puzzle and its
solution. Sudoku is often referred to as the “21st century Rubik’s cube”. It is
easy to understand, but the reasoning needed to reach completion may be difficult.
Each puzzle is supposed to have a unique solution, which does not require the use
of trial and error or guessing. Thus, each puzzle can be solved merely by reasoning.

Nevertheless, there is a wide range of algorithms to solve Sudoku puzzles. The
easiest is probably just to iteratively create every possible combination of numbers
for the 9 × 9 grid and to check whether that solution contains the partially filled
assignments of the input puzzle. However, there are approximately 6.67 ∗ 1021

possible final grids. Finding the single one that corresponds to the given puzzle
might take a lot of time. Assuming that 10 million different possible final grids
can be tested within 1 millisecond, this algorithm can take up to 20, 819.5 years to
finish.

Another, more promising algorithm would be the idea to solve a Sudoku puzzle
by placing the digit 1 in the first cell and checking if it is allowed to be there
by checking the row, column, and box constraints. If it is allowed, the algorithm
advances to the next empty cell and places a 1 in that cell. Assume that the

2In the first quarter of the year 2015 over 294 million top level domains were registered, an
increase of 6.5% over the span of one year; numbers taken from http://www.verisign.com/en\

_US/innovation/dnib/index.xhtml on September 3, 2015.

Introduction 3

subsequent test discovers that the 1 is not allowed there. In that case, the value
of that cell is increased to a 2. If a cell within the grid is discovered where none
of the 9 digits is allowed, the algorithm leaves that cell blank and moves back to
the previous cell. The value in that cell is then increased by 1. The algorithm is
continued until a valid solution for all 81 cells is found.

However, there is also the possibility to translate the Sudoku puzzle into a
so-called constraint problem (cf. [129, 95]) and to use several highly optimized algo-
rithms that solve these problems. With the help of this approach, it is possible to
solve even the hardest known instances [134] in less than a second on average [129].

1.2 Solving Problems by Translation into SAT

The Boolean logic is the underlying concept of this work. It uses exactly two
values, true and false. With the help of special rules a Boolean formula can be
created, which represents relations between basic atomic elements (called variables)
in the domain of the Boolean logic. A real-world problem can be formally specified
by encoding it as a logical formula in such a way that solutions of the problem
correspond to models of the formula. In this context, a model is an assignment
to the variables such that the formula evaluates to true. If the problem has no
solution, then any possible assignment to the variables evaluates to false.

The problem that describes the possibility to evaluate a formula to true is the
Satisfiability problem (SAT). It was the first problem known to be NP-complete [32].
Thus, all currently known algorithms for SAT, in the worst case, require a runtime
that grows exponentially with the size of the formula. Whether there exist efficient
(polynomial time) solutions to NP-complete problems is arguably the most famous
open question in computer science. Although there is no definitive conclusion, most
researchers are convinced that the answer is in the negative.

It follows from NP-completeness that many interesting problems can be solved
by translating them into a SAT problem. Some of the first attempts to bring
this result into practice were applications of the satisfiability technology to solve
problems in the areas of planning [82, 60, 51] and scheduling [35].

The success in this field has aided the development of the most well-known
application of SAT: hardware verification, special tasks are microprocessor ver-
ification [143], automated test pattern generation [128], equivalence checking of
circuits [61], and bounded model checking [19].

Other fields, where satisfiability was successfully applied are natural language
processing [84], knowledge representation [93], security protocols [3], cryptanaly-
sis [101], and even bioinformatics [94, 25]. A more complete list of possible appli-
cations can be found in the overview paper by Gu et al. [67].

The description as a Boolean formula allows to solve many further interesting
problems using SAT technology. For example, (i) when solving the maximal sat-
isfiability problem, an optimal solution for a formula is searched that satisfies the
largest possible part of an unsatisfiable formula, (ii) a minimal unsatisfiable sub-
formula can be extracted, which represents a subproblem that cannot be satisfied.
We will cover both problems, as well as the basic SAT problem, within this work.

4 Algorithm Engineering

Applications

Experiments

Modelling

Algorithm Design

ImplementationLibraries

Analysis

Figure 1.2. Methodological structure of algorithm engineering

1.3 Algorithm Engineering

Motivated by the paradigm of algorithm engineering, we will follow an experiment
driven approach, as described in [121] and [105]. Over the last years the term algo-
rithm engineering has become a wide spread synonym for experimental evaluation
in the context of algorithm development. It is motivated by the fact that for a long
time in classical algorithmics the analysis of algorithms focused exclusively on the
theoretical analysis of asymptotic worst-case runtimes leading to the development
of highly sophisticated data structures and algorithms.

However, theoretically efficient algorithms do not necessarily turn out to be fast
in practice: the theoretic analysis may hide huge constants, the algorithm may
perform poorly on typical real-world instances, where alternative methods may
be much faster, or the algorithm and data structures may be too complex to be
implemented for a specific task. On the other hand, theoretically slow algorithms
may be efficient in practice, since the worst-case behavior can be seen only at some
highly artificial inputs, and the main applications are of much better structure for
the algorithm.

A classic example for this can be found in the field of mathematical program-
ming: The most popular algorithm for solving linear programming problems, the
simplex algorithm introduced by Dantzig in 1947, provides very good performance
for most input instances occurring in practice but it has been shown to have ex-
ponential worst-case time complexity [86]. In the 1970s it was shown that linear
programs are solvable in polynomial time using the ellipsoid method [85]. However,
the simplex method and its variants are most widely used for decades due to their
superior performance.

The general idea of the algorithm engineering approach is represented by the
scheme shown in Figure 1.2. The algorithm engineering cycle can be interpreted
in the following way (cf. [105]). It usually starts with some specific application in

Introduction 5

mind, for which a realistic model has to be found, such that the solutions we will
obtain match the requirements as well as possible. The main cycle starts with an
initial algorithmic design. Based on this design we analyze the algorithm from a
theoretical point of view to obtain performance guarantees like asymptotic run-
time or approximation ratios. The next step of the algorithmic development is the
implementation of the proposed algorithm, which is probably the most important
step of algorithm engineering. We can only succeed in this step if the algorithm
is reasonable in its implementation complexity. Since the next step is the exper-
iments, the implementation has to be sufficiently effective regarding possible side
effects, which are often underestimated. A very prominent example for this is the
memory efficiency. In modern hardware architectures the memory is organized in
a hierarchy, where the access costs may differ between different levels by several
orders of magnitude. Cache misses should be avoided as much as possible, other-
wise the algorithm has to load new data from memory levels that are much slower.
Because of this, it may be beneficial to evaluate in particular early experiments not
exclusively on the runtime of an approach, but on other quality measures. We will
see an example for that approach in Chapter 4 of this thesis.

It remains to close the main cycle of the algorithm engineering scheme and start
a new iteration by finding an improved algorithmic design using the knowledge
obtained during the steps of analysis, implementation, and experimentation.

A final by-product of the algorithm engineering cycle should be some kind of
algorithm library that allows simpler verification of the findings and allows other
groups to compare their new results against preceding algorithms.

The SAT community can be seen as a key example for the paradigm of algorithm
engineering, due to several observations:

• Satisfiability problems are solved in a broad range of applications. This led
to the creation of different benchmark sets. In its entirety, these sets cover
a wide range of different applications, as well as several possible sizes of the
formulae.

• Any common SAT solver is publicly available, often even with source code.

• An extensive practical analysis is the basis for determining the most perfor-
mant SAT solver. Therefore, the SAT competition/SAT race3 is organised
every year.

• The basic branch-and-bound algorithm to solve SAT, which was published in
1962 [36], and which can still be identified in nearly any state-of-the-art SAT
solver is, in fact, an extension to an algorithm from 1960. The original DP
algorithm [37] was found to be too memory consuming in practice, leading to
the development of the much more memory friendly DPLL algorithm.

3cf. www.satcompetition.org / baldur.iti.kit.edu/sat-race-2015

6 Outline

1.4 Outline

The basic preliminaries are introduced and defined in Chapter 2. We focus not
only on the DPLL algorithm and the translation into SAT, but also on interesting
problems that can be tackled when operating on unsatisfiable instances: the ex-
traction of a Minimal Unsatisfiable Subset (MUS), and its dual, the extraction of
a Maximal Satisfiable Subset (MSS).

The MUS extraction will play a central role in the next two chapters. Chapter 3
introduces a tool that enables the user to interactively extract different MUSes.
Since all the automatic MUS extraction algorithms do not have any idea about
the search space and the underlying application domain we give the user full con-
trol of the MUS extraction mechanism by interactively focusing on, or eliminating
parts of, the search space. That way, we will not only help domain experts, who
usually have good intuitions about the clauses relevant for good explanations, to
find meaningful explanations of unsatisfiability, but also researchers and students
in analyzing unsatisfiable instances and evaluating the effects of different heuristics
for selecting deletion candidates. However, the main result of this tool is the de-
velopment of a meta instance that speeds up the extraction algorithm by enabling
the user to save unnecessary steps in the MUS extraction algorithms. The chapter
is based on the published work in [45]. The idea of using a meta instance that is
an extra SAT formula representing additional information about the search space,
will be reoccurring through the thesis in multiple ways.

In Chapter 4 we introduce a technique to speed up the extraction of multiple
MUSes. The improvements are based on techniques from the interactive MUS ex-
traction, which are modified to fit the new purpose. We will show how to identify a
set of clauses that exhibit a very important block property: either none or all mem-
bers of the set are present in every MUS. With the help of this information, we put
the focus on the computation of an often undesired by-product of the extraction of
multiple MUSes: Minimal Correction Sets (MCSes). We will use these MCSes and
a meta instance to speed up a single MUS extraction by reducing the search space
considerably. We will incorporate the ideas into a state-of-the-art MUS enumerator
and analyze the effect of exploring the block property in detail. The main results
of this chapter are also presented in [156].

The remaining parts of the thesis will introduce two new applications to the
satisfiability problem. Chapter 5 focuses on a SAT formulation of a problem from
bioinformatics. The so-called Quartet Compatibility problem is a decision problem
that describes whether the relationship information given in small trees can be pre-
served in a big tree. We introduce a novel SAT formulation for this problem, and
show how to solve the related optimization problem of maximizing the amount of
relationship information that can be preserved. Motivated by the earlier chapters,
we will again use a meta instance to solve the optimization problem in one of the
approaches. The practical analysis will cover a well-established benchmark set and
compares our SAT formulation to state-of-the-art approaches from other optimiza-
tion domains.

Introduction 7

The second new application comes from the field of graph theory and graph
drawing. Chapter 6 introduces a novel SAT formulation for the Book Embedding
problem. In a book embedding, the vertices of a graph are placed on the spine
of a book and the edges are assigned to pages, so that edges on the same page
do not cross. We approach this problem of determining whether a graph can be
embedded in a book of a certain number of pages from a SAT solving perspective
by encoding it as a satisfiability problem. Since this is a problem that was not
tackled by SAT before, we are required to create benchmark sets that model the
possible inputs properly. We will show how to generate different benchmark sets
based on underlying hypotheses we want to prove or disprove for particular graph
classes. The material of this chapter is published in [153].

The thesis will finish with a short summary and conclusion in Chapter 7.

2 Preliminaries

This chapter defines the basic notation used in this thesis and introduces the most
relevant concepts. Some additional (mostly application-based) definitions and al-
gorithms will be introduced within later chapters. For basic concepts from graph
theory and algorithms we refer the reader to comprehensive textbooks, like [33].

2.1 Propositional Logic

The SAT problem describes the problem, whether a given Boolean formula can be
evaluated to true. To understand this problem in its full quality, we have to define
what a Boolean formula is, and how to evaluate it.

A Boolean formula consists of a countably infinite set of variables V. To-
gether with the two constants true (>) and false (⊥) the set of atoms A =
V ∪ {true, false} is built. A propositional formula is constructed from the set
of atoms A, the unary operator ¬ for negation, and the binary connectives ∨ for
disjunction, and ∧ for conjunction and the parentheses (and).

Definition 2.1 (Syntax of Propositional Logic).

• The constants > and ⊥ are formulae.

• Each variable v ∈ V is a formula.

• If ϕ is a formula, ¬ϕ is a formula.

• If ϕ and ψ are formulae, then (ϕ�ψ) : � ∈ {∨,∧} is a formula.

Further operations can be derived, e.g. implication (→), equivalence (↔), and
exclusive-or (⊕).

If a is an atom, then a and ¬a are literals, where a is a positive literal and
¬a is a negative literal. The set of literals of a formula F is L(F). The polarity
of a literal λa is positive if a is a positive literal. Otherwise, the polarity of λa is
negative.

The semantics of propositional logic is defined relative to an assignment τ :
V 7→ 0, 1 of variables to the numbers 0 and 1, where 0 represents the truth value
false, and 1 true. We will encounter both partial and complete assignments in

9

10 Basic SAT Solving Techniques

this thesis. The truth value of a formula ϕ under a complete assignment τ is defined
recursively via an evaluation function eval(ϕ, τ):

Definition 2.2 (Semantics of Propositional Logic). For a complete assignment τ
and formulae ϕ,ψ, we define the evaluation function eval(ϕ, τ) by

• eval(⊥, τ) = 0 and eval(>, τ) = 1

• ∀v ∈ V : eval(v, τ) = τ(v)

• eval(¬ϕ, τ) = 1eval(ϕ, τ)

• eval(ϕ ∨ ψ, τ) = max{eval(ϕ, τ), eval(ϕ, τ)}

• eval(ϕ ∨ ψ, τ) = min{eval(ϕ, τ), eval(ϕ, τ)}

The ground-breaking work by Davis and Putnam [37] started to consider Boolean
formulae in conjunctive normal form (CNF). Any Boolean expression can be trans-
formed into CNF [115].

2.1.1 Conjunctive normal form

A formula F in CNF is a set of clauses that are connected as conjunctions. Let V
be the set of Boolean variables of F . A clause c ∈ F is a disjunction of |c| literals,
whereas each literal is either a variable or its negation. A clause c is called unit if
it contains only one literal (|c| = 1), binary if |c| = 2 and ternary if |c| = 3.

The formula F is satisfied by an assignment τ , if and only if every single clause
c ∈ F is evaluated to true. A complete assignment τ that evaluates the formula
to 1 (true) is called model. A formula F is satisfiable if and only if at least one
model exists; it is unsatisfiable if no such assignment exists.

As already stated, the satisfiability problem is one of the original NP-complete
problems [32]. In general it suffices, that the formula F contains ternary clauses
to be NP-complete. However, if F contains at most binary clauses, then the SAT
problem can be solved in polynomial time.

2.1.2 Resolution

The resolution rule in Boolean logic is an inference rule that allows for the creation
of a new valid clause [118]. It requires two clauses, c1, c2 ∈ F , that contain for the
variable v the complementary literals λ,¬λ. Let c1 = (¬λ ∨ α) and c2 = (λ ∨ β),
where α and β are both a disjunction of some literals λ′ ∈ L(F). The derived
clause (α ∨ β) is called the resolvent of c1 and c2 on the variable v. If α and β
contain a pair of complementary literals, then (α ∨ β) is a tautology. It is satisfied
for any assignment of variables and can be removed from the formula F .

2.2 Basic SAT Solving Techniques

SAT solvers can generally be categorized into two distinct types, complete and
incomplete solvers. Given a satisfiable formula F in CNF, both kinds of solvers are

Preliminaries 11

able compute a satisfying assignment for F . However, complete solvers can also
prove unsatisfiability for formulae that cannot be satisfied by any assignment.

Incomplete solvers are mostly local search approaches [54], that use stochastic
models to decide how the current assignment τ should be changed. They have been
shown to be especially successful for satisfiable random SAT instances. Solving SAT
with local search is beyond the scope of this thesis and we refer the reader to [74].

The central technique of modern complete SAT solvers is the DPLL algo-
rithm [37, 36] extended by conflict-driven clause learning (CDCL). However, we
will only introduce the DPLL algorithm here, since it covers already the basic
techniques (like unit propagation and variable decision) we will be referring to
throughout this work.

2.2.1 DPLL algorithm

The original variant of the DPLL algorithm that was presented by Davis and Put-
nam in 1960 [37] is based on propositional resolution. Two years later the first
approach was reworked by Davis, Logemann and Loveland [36] to cope with mem-
ory restrictions [20]. The algorithm can be described by the following rules:

R1 unit propagation: If there is a unit clause c = (λv), add the corresponding
variable v with the polarity of λv to the assignment τ . Furthermore, remove
all clauses that contain the literal λv and remove the literal ¬λv from any
clause it is contained in.

R2 pure literal assignment : If there is a variable v such that λv occurs only in
positive polarity or only in negative polarity, add the variable v with the
polarity of λv to the assignment τ . Furthermore, remove all clauses that
contain the literal λv and remove the literal ¬λv from any clause it is contained
in.

R3 decision and branching : Choose one (unassigned) variable u of the formula
F and examine both subproblems (F ∧ (λu)) and (F ∧ (¬λu)).

The main idea of this algorithm is a branch-and-bound technique over all possi-
ble assignments of the variables of F . The search space can be visualized as a tree,
with the nodes being partial assignments, where the decision and branching rule
was executed. Whenever the algorithm finds a contradiction (an empty clause),
it prunes the search tree at a partial assignment, where the last decision had to
be done. However, there is no information about the structure of this contradic-
tion. This means that the DPLL algorithm probably runs into the same situation
for another partial assignment, finding the same contradiction again. This can be
avoided by the so-called conflict driven clause learning, an efficient extension of the
DPLL algorithm [125].

Adding redundant constraints, that enables the SAT solver to find conflicts
earlier in the search tree, can have a significant impact on the performance of the
solver. We will observe this behavior in Chapter 5 of this thesis.

12 Minimal Unsatisfiable Subsets

2.2.2 SAT solving with selector variables

Clause-selector variables (or short selector variables) can be used to augment a
CNF formula F in such a way that standard Boolean satisfiability (SAT) solvers
can manipulate and, in effect, reason about the formula’s clauses without any
modification to the solver itself. This augmentation has been used in many al-
gorithms [96, 112, 91, 106].

Every clause ci in a CNF formula F is augmented with a negated selector
variable si to create c′i = (¬si ∨ ci) in a new (augmented) formula F ′. Notice that
each augmented clause c′i is an implication: c′i = (si → ci). Assigning a particular
si the value true implies the original clause, essentially enabling it. Conversely,
assigning si to false has the effect of disabling or removing ci from the set of
constraints, as the augmented clause c′i is satisfied by the assignment to si. This
augmentation gives an unmodified, standard SAT solver the ability to enable and
disable constraints as part of its normal search, checking the satisfiability of the
enabled subsets of the formula F within a single backtracking search tree.

2.3 Minimal Unsatisfiable Subsets

The majority of this thesis will handle unsatisfiable formulae and the problems
that arise when dealing with these. In the past few years, there has been an
upswing of interest and research in a mechanism for providing information beyond
the basic response that a given formula F is unsatisfiable: extraction of Minimal
Unsatisfiable Subsets of constraints (MUSes), also called unsatisfiable cores. Given
an unsatisfiable formula F , an MUS of F is a subset of F that is (i) unsatisfiable
and (ii) minimal in the sense that removing any one of its elements renders the
remaining set of constraints satisfiable. It is defined as follows:

Definition 2.3 (Minimal Unsatisfiable Subset). A subset M ⊆ F is an MUS ⇔
M is unsatisfiable and ∀c ∈M : M \ {c} is satisfiable

An MUS minimizes an unsatisfiable constraint set to a “core” proof of its incon-
sistency. They are called “unsatisfiable cores” in some works, but we use the term
MUS instead. Unsatisfiable formulae often contain many MUSes, and the presence
of any one makes the formula unsatisfiable. Finding a single MUS is like pointing
to a single hole to explain why a sieve does not hold the water, and “repairing”
a single MUS (by relaxing constraints in the MUS to make it satisfiable) will not
necessarily affect other MUSes, leaving the formula F infeasible.

This observation leads us to the closely related concept of Minimal Correction
Subsets (MCS):

Definition 2.4 (Minimal Correction Subset). A subset M ⊂ F is an MCS ⇔
F \M is satisfiable and ∀c ∈M : (F \M) ∪ {c} is unsatisfiable

The removal of an MCS from the formula F restores its satisfiability (“corrects”
it). The minimality is again not in cardinality, but in the fact that no proper subset
of an MCS is a correction set itself. An MCS can also be defined as the complement
of a Maximal Satisfiable Subset (MSS):

Preliminaries 13

Definition 2.5 (Maximal Satisfiable Subset). A subset M ⊆ F is an MSS ⇔ M
is satisfiable and ∀c ∈ (F \M) : M ∪ {c} is unsatisfiable

A very common problem regarding MSSes is finding the MSS with the largest
cardinality. It is also well-known as the MaxSAT problem. Any MaxSAT solution
is an MSS, but the converse does not necessarily hold.

2.3.1 Deletion-based MUS extraction

Many of the high-performance algorithms for MUS extraction from CNF instances
can be classified as deletion-based. In such algorithms, starting from some un-
satisfiable subset, we gradually try to remove clauses while making sure that the
candidate set stays unsatisfiable. When the candidate set cannot be further re-
duced, we have arrived at an MUS.

Algorithm 2.1 A deletion-based MUS extraction algorithm using selector vari-
ables.

Require: an unsatisfiable SAT instance F = {c1, . . . , cm} in CNF
Ensure: some MUS ⊆ F

1: F ′ ← ∅
2: for all clauses ci ∈ F do
3: F ′ ← F ′ ∪ {ci ∨ ¬si} . add selector variables
4: end for
5: UC← F . clauses of unknown status
6: MUS← ∅ . this set will be the MUS in the end
7: while UC is not empty do
8: ci ← select one clause ∈ UC

9: UC← UC \ {ci}
10: res = SAT (F ′, {si : ci ∈ UC ∪ MUS}) . reduction attempt
11: if res = true then . unsuccessful reduction, ci is critical
12: MUS← MUS ∪ {ci}
13: end if
14: end while
15: return MUS

In the pseudocode, the set MUS collects the indices of clauses known to be critical.
A clause ci is said to be critical in an unsatisfiable subset F ′ if its deletion from
F ′ will cause that F ′ \ {ci} becomes satisfiable. Thus, the critical clauses form an
MUS, since the deletion of any of them results in a satisfiable subformula. The set
UC contains clauses that have to be tested for criticality.

In line 10 of Algorithm 2.1 a SAT solver is called with two parameters: the
formula F and a set of selector variables in positive polarity. This set of selector
variables can be seen as forced variables assignments, that are given as an input
to a SAT solver. As described in Section 2.2.2, the clauses corresponding to these
selector variables will be enabled. All other clauses of the formula will be disabled
by the pure literal rule of the underlying DPLL algorithm (see Section 2.2.1).

14 Minimal Unsatisfiable Subsets

The complexity of MUS extraction algorithms is commonly measured in the
number of necessary SAT calls. Obviously, the number of SAT calls for this algo-
rithm is ∈ O(m), i.e. linear in the size of the input formula F = {c1, . . . , cm}.

Clause set refinement

The advantage of deletion-based approaches lies in the possibility to execute larger
reduction steps by analyzing the refutation proofs produced by the SAT solver,
rather than only eliminating one constraint c from the US F ′. When the SAT
solver determines that a current subformula is unsatisfiable, the refutation proof
returned by the solver is guaranteed to contain at least one MUS. If we generate
such a proof and only select those clauses which were used in it, we are guaranteed
to receive an unsatisfiable subset F ′′ smaller than or equal to the reduced clause
set, F ′′ ⊆ F ′ \ {c}. This technique is often referred to as clause set refinement in
the literature. It was made popular by Alexander Nadel [106], who uses it in the
following simple, but very efficient algorithm for deletion-based MUS extraction:

Algorithm 2.2 A deletion-based MUS extraction algorithm using selector variables
and clause set refinement.

Require: an unsatisfiable SAT instance F = {c1, . . . , cm} in CNF
Ensure: some MUS ⊆ F

1: F ′ ← ∅
2: for all clauses ci ∈ F do
3: F ′ ← F ′ ∪ {ci ∨ ¬si} . add selector variables
4: end for
5: 〈res, proof〉 = SAT (F ′, {s1, . . . , sm})
6: for all clause cj /∈ proof do . clause set refinement
7: F ′ ← F ′ ∪ {¬sj} . disable the clauses that are not used for the proof
8: end for
9: US← {ci : ci ∈ proof} . clauses of unknown status

10: MUS← ∅ . this set will be the MUS in the end
11: while US is not empty do
12: ci ← select one clause ∈ US \ MUS
13: US← US \ {ci}
14: 〈res, proof〉 = SAT (F ′, {si : ci ∈ US}) . reduction attempt
15: if res = true then . unsuccessful reduction, ci is critical
16: MUS← MUS ∪ {ci}
17: else
18: US← {cj : cj ∈ proof}
19: for all clause cj /∈ proof do . clause set refinement
20: F ′ ← F ′ ∪ {¬sj} . disable the clauses that are not used for the

proof
21: end for
22: end if
23: end while
24: return MUS

Preliminaries 15

In comparison to Algorithm 2.1 a few things have changed: In addition to
the basic result whether the given formula is satisfiable or not, we are using the
capability of a SAT solver to return a refutation proof for the unsatisfiability for the
given formula F ′ (see line 5 and line 14 in Algorithm 2.2). For simplicity reasons we
interpret the proof as a set of clauses that are used to deduce the unsatisfiability.
In addition to the set MUS, that continues to collect the clauses known to be critical,
we use the set US to store the clauses of the current unsatisfiable subset, which is
always a superset of MUS.

The asymptotic complexity of the Algorithm 2.2 is ∈ O(m) as well, but the
actual number of SAT solver calls is in many cases much less than without the
clause set refinement.

2.3.2 Model rotation

Another very useful technique for speeding up deletion-based MUS extraction is
called model rotation and was introduced by Marques-Silva and Lynce [127]. This
technique uses the model returned by the SAT solver to get a lot more information
out of unsuccessful reduction attempts. Recall that an unsuccessful reduction at-
tempt results in the detection of one critical clause ci that has to be present in the
MUS.

A critical clause ci in an unsatisfiable clause set F is characterized by having
an associated assignment, i.e. an assignment τ which satisfies F \ {ci}, but not
ci. Model rotation exploits this property by cheaply deriving from an associated
assignment other assignments which can quickly be tested whether that model is
associated to another clause, which then has to be critical and hence is a part of
the MUS that is extracted. A formal proof of the fact that a clause is critical if
and only if it has an associated assignment can be found in [10].

Algorithm 2.3 The recursive model rotation routine.

Require: an unsatisfiable SAT instance F = {c1, . . . , cm} in CNF, critical clause
ci ∈ F , model τ of F \ {ci}

Ensure: a set of further critical clauses crit ⊆ F
1: crit← ∅
2: for each variable vj ∈ ci do
3: τ(vj)← 1− τ(vj) . flip the variable vj in the model τ
4: unsat = {ck : τ(ck) = 0} . collect clauses not satisfied by rotated model τ
5: for each clause cl ∈ F do
6: if unsat = {cl} then . τ is an associated assignment for cl
7: crit← crit ∪ {cl}
8: crit← crit ∪ modelRotation(F , cl, τ) . recursive call
9: end if

10: end for
11: τ(vj)← 1− τ(vj) . flip the variable vj back
12: end for
13: return MUS

In Algorithm 2.3 a variant called recursive model rotation [10] is presented.

16 Minimal Unsatisfiable Subsets

Since this algorithm identifies other critical clauses without having to perform a
costly SAT solver call, it should be executed after each unsuccessful reduction
attempt in deletion-based MUS extraction to significantly decrease the number of
SAT solver calls necessary to arrive at an MUS.

Siert Wieringa [146] gives an alternative description of recursive model rotation
based on traversals of the flip graph, achieves further improvements to the algorithm
based on these insights, and provides some analysis of benchmark instances which
(partially) explain its high usefulness in practice. Marques-Silva and Lynce [127]
determine in benchmarks that recursive model rotation is the single most effective
technique for speeding up MUS extraction.

2.3.3 Insertion-based MUS extraction

A second class of MUS extraction algorithms works in a dual fashion to the deletion-
based approach. In insertion-based approaches, we start with a satisfiable subset
of the formula, gradually expanding it by additional clauses until our candidate set
becomes unsatisfiable.

While insertion-based algorithms tend to require a higher number of SAT solver
calls, an advantage of them is that they profit immensely from the use of incremental
SAT solving. Incremental SAT solving describes a process of adding clauses to a
SAT solver iteratively. That way, the SAT solver will store the data it derived (e.g.
variable assignments, learnt clauses, heuristic measures) while processing a clause
set, to reuse the data to solve later inputs more efficiently, since a large subset
of the new formula was already known to the SAT solver. In an insertion-based
approach which gradually adds more clauses to a candidate set, the individual calls
to a SAT solver can therefore be performed incrementally at a much lower cost.

Algorithm 2.4 An insertion-based MUS extraction algorithm.

Require: an unsatisfiable SAT instance F = {c1, . . . , cm} in CNF
Ensure: some MUS ⊆ F

1: MUS← ∅ . this set will be the MUS in the end
2: F ′ ← F . candidates for critical clauses
3: while |MUS| < |F ′| do
4: F ′′ ← MUS

5: lastAppended← ∅
6: for all ci ∈ F ′ \ MUS do
7: res = SAT (F ′′ ∪ ¬ci, {}) . insertion attempt
8: if res = true then
9: F ′′ ← F ′′ ∪ {ci}

10: lastAppended← {ci} . detect the last non-redundant element
11: end if
12: end for
13: MUS← MUS ∪ lastAppended
14: F ′ ← F ′′
15: end while
16: return MUS

Preliminaries 17

The first algorithm for insertion-based MUS extraction was presented by Hans
van Maaren and Siert Wieringa [141]. Their algorithm operates in rounds that
repeatedly enlarge a satisfiable under-approximation until a new critical clause is
found. During the enlargement, redundant clauses are detected and pruned away
for the next iteration. A clause c is redundant in a CNF formula F if F \ {c} ∪ ¬c is
unsatisfiable. Here “¬c” denotes the set of unit clauses {{¬λ1}, . . . , {¬λk}} for the
clause c = (λ1∨ . . .∨λk). This result can be exploited to create a more constrained
SAT instance without losing any satisfying assignments, often considerably reducing
the time needed for each SAT solver run.

The last non-redundant element (line 10 in Algorithm 2.4) that could be added
during inflation before F becomes unsatisfiable, is identified as a critical clause.
The outer while loop (line 3 to 15) terminates when lastAppended is empty, which
is the case when every element remaining in F \ MUS is redundant. The number of
SAT solver calls is ∈ O(k ∗m) with k being the size of the MUS that is extracted.

Marques-Silva and Lynce developed a variant [127] that improves the number
of SAT solver calls to O(m) for this paradigm as well, showing that insertion-based
approaches are not asymptotically slower than deletion-based algorithms.

2.3.4 Hybrid MUS extraction

Incorporating the ideas from both, the deletion-based and insertion-based MUS
extraction, Marques-Silva and Lynce [127] proposed the Algorithm 2.5. The hybrid
algorithm uses the efficient redundancy check by van Maaren and Wieringa [141]
and the clause set refinement from Nadel [106]. However, clause set refinement
cannot be used every time the deletion of one candidate resulted in an unsatisfiable
subset S of F ′, since the redundancy check in line 6 adds new unit clauses to the
formula. These unit clauses can mask other clauses of F ′ in a sense that without
the redundant unit clauses, other elements of F ′ would have been used to prove
the unsatisfiability of S.

Algorithm 2.5 A hybrid MUS extraction approach that incorporates the ideas
from deletion and insertion-based approaches.

Require: an unsatisfiable SAT instance F = {c1, . . . , cm} in CNF
Ensure: some MUS ⊆ F

1: MUS← ∅ . this set will be the MUS in the end
2: F ′ ← F . candidates for critical clauses
3: while F ′ is not empty do
4: ci ← select one clause ∈ F ′
5: F ′ ← F ′ \ {ci}
6: 〈res, proof〉 = SAT (MUS ∪ F ′ ∪ ¬ci, {}) . redundancy check
7: if res = true then
8: MUS← MUS ∪ {ci}
9: else if proof ∩ ¬ci = ∅ then

10: F ′ ← proof \ MUS . clause set refinement
11: end if
12: end while
13: return MUS

3 Visualizing

MUS extraction

3.1 Introduction

Finding small reasons for unsatisfiability of a SAT formula by extracting a Minimal
Unsatisfiable Subset (MUS) is used in many different settings. Examples of appli-
cations include inconsistency measurement [76, 151], type error debugging [40, 4],
debugging of relational specifications [138, 139], analysis of over-constrained tem-
poral problems [90], axiom pinpointing in description logics [123], software and
hardware model checking [2], among many others [132, 112].

Aided by the broad range of applications a remarkable amount of work in recent
years caused a significant progress in efficient extraction of a MUS. The develop-
ment of model rotation (see Section 2.3.2), an improved use of resolution [107] and
refutation proofs [8] or completely new algorithms [100] are examples for the fact,
that the field of MUS extraction has become an emerging research field in the SAT
community, leading to the introduction of a special MUS track in the SAT compe-
tition 20111. However, most of the formulas that can be tackled relatively easily
by SAT solvers are very hard for MUS extraction algorithms, since the number of
SAT solver calls to extract one MUS is ∈ O(m) (see Section 2.3) with m being the
number of clauses in a CNF formula F .

In general the algorithms for MUS extraction can be characterized as construc-
tive (insertion-based), destructive (deletion-based) or a hybrid combination of both
(see Section 2.3), but they all focus exclusively on the number of clauses or clause
sets (called groups) [11] present in the minimal explanation.

In this chapter we introduce a completely new approach to guiding the basic
destructive MUS extraction algorithm, which is due to the effectivity of the clause
set refinement (see Section 2.3.1) and model rotation still among the top performing
algorithms for industrially relevant instances [126]. The central idea of destructive
MUS extraction, which was first proposed more than 20 years ago [29, 5], is to
perform a series of reduction steps, moving into smaller unsatisfiable subsets F ′

1http://satcompetition.org/2011/#tracks

19

20 Classification of Clauses

until all subsets F ′′ ⊂ F ′ are satisfiable.

The idea of interactive MUS extraction is to give a user full control over the
individual reduction steps, providing an interface for interactively focusing on or
eliminating parts of the search space. This is done in our tool MUStICCa, an ab-
breviation for “MUS extraction with interactive choice of candidates”, by reverting
to intermediate results, the non-minimal unsatisfiable subsets (US), and exploring
new parts of the search space by choosing alternative deletion candidates. This
feature will not only help domain experts (who usually have good intuitions about
the clauses relevant for good explanations) to find meaningful explanations of un-
satisfiability, but also researchers and students in analyzing unsatisfiable instances
and evaluating the effects of different heuristics for selecting deletion candidates.

During the extraction of different MUSes, the user (or any other MUS extraction
algorithm) has to perform “unnecessary” deletion tests. These tests are unneces-
sary, since the same information that is obtained with this step is already known
due to other reduction steps within another part of the search space. We will show
how these unnecessary steps can be avoided by an efficient representation of all the
clause criticality information that was gained anywhere in the search space. By
that we are able to reuse this information to not only save expensive SAT solver
calls for the user, but also to pave the way for the ideas that were used to boost
state-of-the-art MUS enumeration approaches (see Chapter 4).

This chapter is based on the work published in [45] and is organized as follows.
In the next section we describe a useful classification scheme of clauses in unsatis-
fiable clause sets, that will be used throughout this work. The scheme divides the
set of clauses regarding the information, whether they are present in all MUSes,
only in some MUSes, or in no MUSes at all. Section 3.3 introduces the tool’s user
interface and the possibilities to guide the interactive MUS extraction procedure.
We focus on the graphical representation of the search space, and of the criticality
information of clauses, and introduce the possibilities to start automatic proce-
dures that reduce the current unsatisfiable subset to reach an MUS finally. The
main contribution of this chapter is the development of an additional SAT formula
on selector variables, the so-called meta instance. It is introduced in Section 3.4.
We will show in Section 3.5 how the meta instance can be extended to represent
not only the criticality information of clauses, but also to enforce properties on the
MUS that is extracted. A short summary concludes this chapter.

3.2 Classification of Clauses

Typical MUS extraction problems contain not only a single MUS, but rather a
large set of different ones. These MUSes of an unsatisfiable SAT instance tend to
overlap, containing a common core set of clauses, which is satisfiable on its own.
To arrive at some MUS, this common core must be made unsatisfiable by adding
some combination of other clauses. Kullmann, Lynce and Marques-Silva [27] build
on this observation to formally distinguish different degrees of necessity for clauses
with respect to MUSes. These definitions introduce some very useful vocabulary

Visualizing MUS extraction 21

for talking about the role of different clauses in interactive MUS extraction. We
use F for some unsatisfiable SAT formula, and MUSes(F) for the set of all MUSes
of the formula F .

Definition 3.1 (Necessary Clause). A constraint c ∈ F is called necessary if
and only if F \ {c} is satisfiable. Thus, the constraint c is critical in every MUS
M ∈MUSes(F).

The set of necessary clauses forms the mentioned core that is contained in
every MUS, and can therefore be written as

⋂
MUSes(F). Given m clauses in F ,⋂

MUSes(F) can be computed by m calls to a SAT solver by checking if F \{c} is
satisfiable for each constraint c. This process can be speeded up by a large factor
by using the aforementioned techniques of model rotation (see Section 2.3.2) and
clause set refinement (see Section 2.3.1).

The dual to this strongest notion of necessity is a very weak notion of redun-
dancy of a clause. It describes the fact that unsatisfiability is maintained when the
single clause c is removed from the original formula F . Thus, there exists at least
one MUS where c is not present. However, it does not ensure that two unnecessary
clauses can be removed at the same time.

Definition 3.2 (Unnecessary Clause). A constraint c ∈ F is called unnecessary if
and only if F \ {c} is unsatisfiable. Thus, ∃M ∈MUSes(F) with c /∈M .

The strongest redundancy of a clause is defined by the following.

Definition 3.3 (Never Necessary Clause). A constraint c ∈ F is called never
necessary if and only if c is unnecessary in all unsatisfiable subsets F ′ ⊆ F . Thus,
c /∈ ⋃MUSes(F).

The definition implies that we can safely remove any clause known to be never
necessary, although this might make the unsatisfiability a lot harder to prove be-
cause they can contribute to much shorter proofs of unsatisfiability, which might
be a lot easier to understand than the proof of a MUS. We will not explore this
issue further here, as it is a general problem with the approach of taking minimal
subsets as formal approximations to small explanations of infeasibility.

3.3 The Application

By default, the graphical user interface (see Figure 3.1) consists of three main view
components. The central component is a representation of the current knowledge
about the search space. Explored USes are inspected in a separate US view com-
ponent, which also provides the interface for starting reduction steps. The third
component is responsible for administering automated reduction procedures, the
agents.

The interface is based on the open-source Kahina framework [44] for graphical
debugging, which was chosen because it already provided the needed view compo-
nents and native support for managing a database of computation steps as nodes
in a graph structure.

22 The Application

Figure 3.1. Screenshot of MUStICCa’s default user interface.

Since deletion-based MUS extraction can be viewed as a downward traversal
of the powerset lattice for an unsatisfiable clause set F , the explored part of the
search space is modeled by means of a reduction graph, which is a subsemilattice
of the powerset lattice whose edges represent successful reduction attempts. The
powerset lattice will be introduced in a more detailed fashion in Section 4.3.

A deterministic deletion-based MUS extraction algorithm will only create a
linear structure of US states connected by the subset relation. But as soon as
we allow the exploration of multiple deletion alternatives, the structure of the
encountered USes will probably branch out. Since there can be different sequences
of deletions leading to the same US, the structure is a directed acyclic graph (dag)
which can be defined as:

Definition 3.4 (Reduction graph). Let F be an unsatisfiable clause set. A reduc-
tion graph R = (V,E) for F is defined as a tuple of vertices V and edges E. V is
a set of unsatisfiable subsets V ⊂ 2F , and an edge (V1, V2) ∈ E exists if and only
if V2 was the result of removing some non-critical clause from V1, possibly followed
by clause set refinement.

The USes encountered on reduction paths are the obvious choice for defining
the meaningful steps of an MUS extraction process, and were therefore chosen as
the nodes in the graph. Since every US is a unique subset of the original clause set,
it can be represented and uniquely identified by a set of clause indices representing
the clauses it contains.

In the visualization of USes, the number on each node gives the size of the corre-
sponding US, followed in brackets by the number of clauses of unknown criticality.
MUSes are marked in red, dark green color marks non-MUSes where all reduction
options have been explored, and light green color marks USes where all clauses are

Visualizing MUS extraction 23

known to be either critical or unnecessary. The unnecessary clauses are unexplored
reduction options. Note that not every unnecessary clause c is unusable; we only
know that there is at least one MUS which does not contain c.

Whenever a node in the reduction graph view is selected, the US corresponding
to the node is displayed in the US view. The default format for clauses in the
US view consists of the clause ID (numbered according to the order in the input
DIMACS file) and the set of integers representing its literals. The clauses in the US
view are color-coded to reflect their criticality status: critical clauses are displayed
in red, explicitly reduced clauses in a dark green, other unnecessary clauses in a
lighter green, and clauses of unknown status in black. The color codes make it
easy to spot interesting deletion candidates for reduction steps, which are started
by double-clicking on clauses in the US view.

For advanced interactions, one or more clauses in the US view can be selected,
and are then highlighted by a yellow background color. The selection of interesting
clauses is supported by a selection refinement interface in the form of a hierarchy
of sub-menus in the US view ’s context menu. This menu provides the options
of manually executing reduction attempts followed by model rotation, and two
different options for executing reduction operations on sets of clauses: (i) Semi-
automation initiates a batch processing of deletion attempts for all the clauses in
the current selection. This helps to quickly open up several new branches in the
reduction graph at once, or to speed up series of criticality checks. (ii) Simultaneous
reduction is an attempt to delete all the currently selected clauses at once. If the
attempt was successful, the new node (or link) will appear in the reduction graph,
just like in the case of deleting a single clause. If a simultaneous reduction attempt
fails, this only yields very weak criticality information, since it might have been
possible to delete some of the clauses under the condition that others stay in.

3.3.1 Automation through reduction agents

During a process of interactive extraction, a user will often want to quickly explore
parts of the search space without having to manually execute hundreds of reduc-
tion attempts, especially in contexts where domain knowledge has not yet become
relevant. For this purpose, our tool MUStICCa includes an automated reduction
mechanism in the form of reduction agents which in essence act like autonomous
additional users who were given sets of simple instructions. In addition to pre-
defined reduction agents which emulate standard deletion-based algorithms, it is
possible to implement own heuristics to select deletion candidates as well.

The most important option in the dialog for creating and starting new reduction
agents serves to select one of the predefined heuristics from a drop-down menu.
Each new agent is initialized with a random signal color that can freely be redefined.
The new reduction agent starts at the US that is currently selected in the reduction
graph, and runs until it has determined an MUS. The downward path of an agent
through the powerset lattice (see Section 4.3 for more details) is highlighted in its
signal color.

24 Saving unnecessary SAT Solver Calls

3.4 Saving unnecessary SAT Solver Calls

Whenever at least two different branches in the reduction graph exist, the possi-
bility of unnecessary SAT solver calls arises. We start our analysis of this problem

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Figure 3.2. c2 is critical in {c2, c3, c4}

by considering the powerset lattice of an-
other small example instance {c1, c2, c3, c4}.
To simplify the example, we will assume that
clause set refinement is of no relevance here,
so that each single reduction step will at most
lead one step down in the powerset lattice.
Assume a state (see Figure 3.2) of interactive
reduction where the reduction graph spans
the edges colored in black (fat), and the grey
edges and subsets have not yet been explored.
In the subset {c2, c3, c4}, the clause c2 has
just been determined to be critical, which we
again symbolize by coloring critical clauses and the corresponding transition edges
in red, fat and dashed.

The criticality of c2 in {c2, c3, c4} is propagated downwards in the reduction
graph via the black edge to the subset {c2, c4}, but not to the other subsets. Now as-
sume that in the next reduction step, we successfully delete c1

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Figure 3.3. propagated criticality

from the set {c1, c2, c3}. The propagation
and the reduction attempt together lead
us to the following new state of the reduc-
tion graph shown in Figure 3.3. We do not
derive the criticality information of c2 in
the new US {c2, c3}, causing us to waste
a call to a SAT solver when we attempt
to delete c2 later. This type of problem is
quite virulent in larger instances with a lot
of different MUSes, because it is likely to
occur whenever one branch of the reduc-

tion graph arrives at a US which would also be reachable by a reduction starting
in some other node where some unsuccessful reduction attempts have already been
performed.

The approach developed in this chapter aims to achieve the storage of the criti-
cality information by explicitly representing and processing this information in the
form of Boolean constraints over selector variables. Before, selector variables si
had the only purpose of extending the clauses ci of the original instance in such a
way that the clause ci can effectively be switched off by assigning the corresponding
selector variable si to false. In this chapter, we will go beyond that by reusing
the selector variables as direct handles for talking about the presence or absence of
clauses in subsets of the formula F . As we have seen in our motivating example,
whenever we find during our reduction attempts a set of clauses {c1, c2} that cannot
be reduced at the same time (otherwise c2 would not be critical for {c2, c3, c4}),
we can save this information by an additional clause in the form of (s1 ∨ s2). It

Visualizing MUS extraction 25

contains positive literals for the two selector variables corresponding to c1 and c2.
This clause enforces the presence of either c1 or c2 in any subset we consider in
the future. We will be using a collection of such clauses to store all the derived
criticality information, and use it to efficiently determine all the clauses already
known to be critical in new unsatisfiable subsets.

All these additional clauses will be saved in the so-called meta instance. In
the following we will introduce shortly what kind of information we can store, and
how to use this information during the execution of MUSes. We will use the meta
instance to express conditions for clause set unsatisfiability. Thus, if the meta in-
stance is satisfiable (under given assumptions), the subset that corresponds to the
given assumptions is unsatisfiable. Analogously, if the meta instance is unsatisfi-
able under given assumptions, the subset that corresponds to the assumptions is
satisfiable.

We will see, that the meta instance will contain only clauses with selector vari-
ables in positive polarity. Thus, without further assumptions the additional SAT
formula is always satisfiable by the pure literal rule (see Section 2.2.1). Assuming
the meta instance contains the clause c = (si∨sj∨sk). The instance is unsatisfiable
if and only if at least one clause (w.l.o.g. c) is unsatisfiable, which is the case if all
variables of c are assumed to be negative.

3.4.1 Criticality information via unsuccessful reductions

Assume that we attempt to delete a clause ci from an unsatisfiable clause set
U ⊆ F , and that this results in a satisfiable instance U \ {ci}. Thus, ci is now
known to be critical in the US U . This criticality information depends on all the
clauses U = F \U which had already been reduced or fallen away in the state where
we attempted the deletion. This is often described as the complement of U . The
new information can be expressed as (

∧¬sj) → si : cj ∈ U . This can directly be
expressed as a single clause in CNF (

∨
sj ∨ si) for cj ∈ U , which is added to the

meta instance.
The added constraint (

∨
sj ∨ si) can be read as preventing all the elements

of the set {U ∪ si} from being removed at the same time, by requiring that one
element of the set must be present in any unsatisfiable subset. In our motivating
example, we would learn the meta clause (s1 ∨ s2), expressing that either c1 or c2
must be present in any unsatisfiable subset of {c1, c2, c3, c4}.

We use that criticality information during the MUS extraction in the follow-
ing way. Assume again that in the next reduction step, we successfully reduce
{c1, c2, c3} to {c2, c3}. If we now want to determine whether c2 is critical in {c2, c3},
we can perform a first check for the satisfiability of {c3} by testing the satisfiability
of the meta instance under the assumptions {¬s1 ∧ ¬s2 ∧ ¬s4}. Given that the
meta instance contains the constraint (s1 ∨ s2), the meta instance will be unsatis-
fiable, indicating that the clause set {c3} is satisfiable. Thus, c2 must be critical in
{c2, c3}. As intended, we do not need to waste a much more costly SAT solver call
on the original instance any longer.

26 Saving unnecessary SAT Solver Calls

Using model rotation, we potentially find an entire set {ci1 , . . . , cik} of k new
critical clauses in the current US U . This leads to the new constraint (

∧¬sj) →
(si1 ∧ . . . ∧ sik) : cj ∈ U , which could be converted into k constraints in CNF:
(
∨
sj ∨ si1) , . . . , (

∨
sj ∨ sik) for cj ∈ U . From the perspective of our meta

instance the result of a model rotation is equivalent to k sequential unsuccessful
deletion attempts of the clauses {ci1 , . . . , cik}.

Unsuccessful reduction of a clause set

Assume the simultaneous deletion of a set of k clauses {ci1 , . . . , cik} from a US
U = {c1, . . . , cm} leads to a satisfiable problem. We gain the knowledge that the k
clauses may not be deleted together. In other words, at least one of the k clauses is
critical for a subset U ′ ⊆ U . This information can be expressed with the constraint
(
∧¬sj) → (si1 ∨ . . . ∨ sik) : cj ∈ U . Converting this constraint into CNF leads to

the addition of a single clause (
∨
sj ∨ si1 ∨ . . . ∨ sik) for cj ∈ U .

3.4.2 Successful reductions

Assume that our attempt to delete a clause ci from an unsatisfiable clause set
U = {c1, . . . , cm} is successful. We arrive at a new unsatisfiable subset U ′ ⊆ U\{ci}.
Equality of the sets U ′ and U \ {ci} hold if and only if clause set refinement has
not caused any further clauses to be deleted from U .

With this result we know that we can safely delete all the clauses in U \ U ′
from any US that contains the clauses in U ′. If we express this connection in terms
of selector variables, we can simply say that it suffices for unsatisfiability that all
clauses in U ′ are present, i.e. if (

∧
sj) : cj ∈ U ′ holds.

Note that this formula is of a very different nature from what we have derived
for the case of unsuccessful reductions. The meta instance shall encode conditions
for unsatisfiability, but we are now dealing with a constraint that is a sufficient
condition, not a necessary condition as before.

In fact, (
∧
sj) : cj ∈ U ′ is a minterm which would need to be added as a disjunct

to the meta instance to represent one way to fulfill the condition that a subset is
unsatisfiable. But this disjunctivity means that we cannot simply integrate this
information by adding a set of clausal constraints to the meta instance.

As for unsuccessful reductions, the case of successful simultaneous reduction has
in principal no difference to the case of a sequence of successful deletions of a single
clause. Assume that a set of constraints {ci1 , . . . , cik} is simultaneously deleted
from an US U . If the result set U ′ := U \ {ci1 , . . . , cik} is unsatisfiable, we can
again store the minterm (

∧
sj) : cj ∈ U ′, which would be the result of k sequential

reductions of the constraints {ci1 , . . . , cik}. This observation also allows us to not
consider the consequences of clause set refinement in this section, since it does not
change anything except for the size of the derived minterm.

Visualizing MUS extraction 27

3.4.3 Blocks of selector variables

The clauses that are added to the meta instance tend to become very large, since
each of them enumerates all the individual selector variables which correspond to
the elements of the complement of some satisfiable subset. Even the most extreme
case of two large meta clauses only differing in a single literal is very common, since
this is what results from unsuccessful attempts to delete different clauses from the
same unsatisfiable subset, and model rotation.

Using an automated scheme which groups the selector variables that often occur
together in meta clauses into blocks, we introduce block variables bi as shorthands
for referring to large disjunctions of selector variables in our meta instance. This
approach can be viewed as using the block representation as a compression scheme.
The space savings achieved in this way turn out to be so significant that this
measure alone makes usage of the meta instance on benchmark instances of any
interesting size much more efficient. In Table 3.1 the size of the original and the
compressed meta-instance are shown for 10 different instances. The first set of
instances is taken from a hardware verification domain, specifically automated test
pattern generation [128]. The second set of instances is taken from the Daimler
testset for automotive product configuration [132]. For both sets a significant dif-
ference in the number of literals, that is in fact the sum of all clause sizes, can be
observed. The presented values are calculated by running three reduction agents
on every configuration until each of them detected an MUS. The difference in the
number of literals is expected to grow even further for every new criticality infor-
mation that is obtained by executing further reduction steps.

uncompressed compressed
test set instance |F| clauses literals clauses literals

a
tp

g

bf1355-127.cnf 7, 306 439 3, 143, 824 441 8, 186
bf1355-462.cnf 7, 305 469 3, 353, 061 472 8, 493
bf1355-530.cnf 7, 305 253 1, 827, 249 255 7, 813
bf1355-666.cnf 7, 305 343 2, 466, 969 345 7, 882
bf1355-741.cnf 7, 307 247 1, 784, 903 249 7, 803

D
a
im

le
r C168 FW SZ 66.cnf 5, 425 280 1, 493, 047 284 6, 355

C202 FW SZ 103.cnf 10, 283 428 4, 252, 915 437 12, 193
C208 FA SZ 121.cnf 5, 278 97 508, 990 99 5, 474
C210 FW RZ 57.cnf 7, 405 76 560, 980 78 7, 559
C220 FV SZ 55.cnf 5, 753 916 4, 989, 549 923 10, 133

Table 3.1. The number of clauses and literals of the original and compressed meta
instance. For every input 3 reduction agents executed a series of reduction steps until
detecting an MUS.

Apart from the compression quality, the clause sets represented by the blocks
can be interpreted in a more semantically motivated way as well. As the block
structure progressively becomes more granular, the block structure tends to group
together clauses which often occur together as subtrees of refutation proofs. The
reason for this connection between inferred blocks and refutation proofs lies in the
fact that the operation of clause set refinement prunes unsatisfiable subsets to only

28 Additional Meta Constraints

those clauses which occur in some unsatisfiability proof.

Assume that the clauses (s1 ∨ . . . ∨ si ∨ sk) and (s1 ∨ . . . ∨ si ∨ sl) are the only
clauses added to the meta instance. These clauses are added due to the fact that the
constraints ck and cl are both critical in the US F \ {c1, . . . , ci} (see Section 3.4.1).
By inserting a fresh variable bi representing a block of selector variables we obtain
the following clauses: (s1 ∨ . . . ∨ si ∨ bi), (bi ∨ sk) and (bi ∨ sl).

We will not go into more details here about the algorithm that is used to deter-
mine the blocks of selector variables, nor will we prove any properties for the equi-
satisfiability of the original meta instance and the new meta instance, which con-
tains the blocks of selector variables. We refer the reader to the work of Dellert [43],
a co-supervised student research project, that culminated in the tool presented in
this chapter.

3.5 Additional Meta Constraints

By representing the criticality information of clauses in unsatisfiable clause sets in
the meta instance we have a powerful tool at our disposal. However, we can extend
the current meta instance by additional constraints to specify additional properties
of the MUSes we extract. This general idea leads to a number of possible applica-
tions, some of which are presented in the following.

The applications proposed in this section demonstrate the potential benefits of
adding constraints over selector variables. However, none of them has actually been
implemented as part of our tool. The main reason for this is the unclear connection
to interactive MUS extraction caused by the lack of monotonicity in some inter-
esting properties. For interactive reduction, the purpose of the meta instance is to
axiomatize unsatisfiability of clause sets, whereas now, we are additionally using it
to axiomatize further criteria for the sets we want to find. If these criteria do not
hold for each superset of a set where they hold, the satisfiability check against the
meta instance rejects unsatisfiable subsets that would have reached the criterion by
future reductions. Therefore, some of the ideas presented in this section only make
sense in the mode of full SAT solving against meta constraints (without any given
assumptions), where they can be used to encode constraints on the combinations of
selector variables. The models of the meta instance then correspond to USes that
incorporate the additional encoded properties.

3.5.1 Inclusion or exclusion of specific clauses in USes

One big problem we want to solve with interactive MUS extraction is the loss
of clauses in USes which were supposed to be part of the desired explanation of
infeasibility. By allowing to revert reduction decisions and to explore alternative
paths that do not result in the deletion of the desired clauses the problem can
potentially be solved. However, because this approach does not change anything
about the fact that we are making reduction attempts which can in principle cause
arbitrary other clauses to fall away by clause set refinement, a lot of trial and error

Visualizing MUS extraction 29

might still be involved until the user arrives at an MUS containing a specific set of
desired clauses.

It becomes possible to explicitly specify such requirements of (un)desired clauses
using the meta instance. If we have a subset {ci1 , . . . , cik} which we desire to be
part of the extracted MUS, we can simply add the unit constraints (si1), . . . , (sik)
to the meta instance in order to ensure that the desired clause set must be part of
each unsatisfiable subset we encounter. We do not necessarily arrive at an MUS by
using this method, but we are guaranteed that the USes we arrive at are minimal
under the condition that all the clauses in {ci1 , . . . , cik} are present.

An analogous scenario arises when we are sure that some clauses, that are part
of the original instance, cannot be part of any interesting MUS. Just as we enforce
the presence of a subset {ci1 , . . . , cik}, we can also enforce its absence by adding
the unit constraints (¬si1), . . . , (¬sik) to the meta instance. However, this is a
non-monotonic property, as with these constraints added, the unsatisfiability of
the meta instance will not tell us anymore that all subsets of the tested clause set
violate the desired property. It might well be that we end up in a proper US after
removing some more clauses.

3.5.2 Expressing GMUS extraction

The standard approach to solve the task of GMUS (short for grouped MUS) ex-
traction is to assign the same selector variable to all clauses of a group. Doing so
ensures that certain groups of clauses are always removed together. The possibil-
ity to define additional constraints over the selector variables allows us to emulate
this behavior despite the fact that we identify every clause by a different selector
variable.

Assume that the clauses {c1, . . . , c4} belong to the same group. We can enforce
these clauses to be either all absent or present by adding the clauses (¬s1 ∨ s2),
(¬s2∨s3),(¬s3∨s4), and (¬s4∨s1) to the meta instance. The circular dependency
between these binary clauses enforces that as soon as one of the si : 1 ≤ i ≤ 4 is
assigned to false, repeated unit propagation forces all the three other si to also
be assigned to false, and analogously for the assignment to true.

The advantages of encoding the groups implicitly rather than using a single
selector variable become visible when we generalize the notion of a GMUS. A stan-
dard GMUS problem effectively defines a partition of the instance, as every clause
is assigned to exactly one group. Assume that we have an application where these
groups overlap, e.g. two groups {c1, c2, c3} and {c1, c4, c5} where the presence of c1
only forces the clauses from either one of the groups to be present, but the absence
of c1 forces all clauses from both groups to be absent. Such connections between
groups might be applied in identifying incorrect hardware or software components
that share parts.

Given our example the necessary conditions can easily be expressed by the meta
constraints (¬s1 ∨ s2 ∨ s4), (¬s2 ∨ s3), (¬s3 ∨ s1), (¬s3 ∨ s2), (¬s4 ∨ s5), (¬s5 ∨ s1),
and (¬s5 ∨ s4). The same disjunctive dependency of the clause c1 could not be
expressed within the standard GMUS paradigm. Depending on the application,
even more complex connections between overlapping groups might be desirable.
For such purposes, being able to freely define dependencies between clauses via

30 Summary

additional meta constraints is very helpful.

3.5.3 Enforcing limits on MUS sizes

Much more complex constraints than the previously presented are possible as well.
One of the potentially most attractive options is to express an upper bound k on
the size of the desired MUS, allowing us to explicitly check whether any MUS of a
given size exists. The basic procedure for adding such a parametrization is simple:
we use an efficient encoding for at-most-k constraints (such as the ones described
by Sinz [131] or Ben-Haim et al. [13]) to express the requirement

∑
i si ≤ k, and

add the resulting clauses to the meta instance.
Running the SAT solver on the meta instance would then only generate US

candidates of a size at most k. Once the meta instance is unsatisfiable by the
clauses that were added from unsuccessful reduction attempts and the at-most-k
constraints, this means that no further USes of size ≤ k exist.

3.6 Summary

Finding small reasons for unsatisfiability of a SAT formula by extracting minimal
unsatisfiable subformulae is an emerging research field in the SAT community.
However, the common MUS extraction algorithms focus exclusively on the number
of clauses. All clauses are treated equal, because the algorithms do not have any
information about the meaning of any of the clauses in the underlying problem.
In this chapter we presented our tool MUStICCa that was designed to provide the
user with the possibility to guide the well-known deletion-based MUS extraction
algorithm through the powerset lattice towards different MUSes using domain-
specific information to reach meaningful explanations of unsatisfiability.

MUStICCa is the first application that reuses criticality information from other
parts of the search space to avoid unnecessary execution steps. We are confident
that our tool is helpful to domain experts in analyzing inconsistencies in SAT
formulae. Moreover, MUStICCa can be used to create and evaluate new heuristics
to find “good” deletion candidates.

However, the main takeaway from this chapter is rather the methodical back-
ground that was introduced here and will be heavily used throughout this thesis.
Starting from the basic idea of explicitly modeling the search space of deletion-
based MUS extraction as a graph of USes, this reduction graph was conceived as
a subset lattice. We have analyzed the information that can be gained from suc-
cessful and unsuccessful reduction attempts in the deletion-based MUS extraction
paradigm, and developed a scheme for learning and retrieving this information for
a maximum of information reuse during interactive search space exploration. We
have shown that a clausal meta instance over the selector variables can store infor-
mation about all the encountered satisfiable subsets, which enables us to retrieve
the clauses which are implied to be critical in some US.

The general idea of expressing connections between clauses as meta constraints
over selector variables was shown to have other potential applications such as an
axiomatization of the desired MUS size or a generalized variant of group-based

Visualizing MUS extraction 31

MUS extraction. Throughout the remaining chapters of this work we will be using
several approaches that define additional constraints for selector variables to enforce
desired properties (mainly regarding the size) of satisfiable or unsatisfiable subsets
of a given formula F .

Block-based representations were developed mainly in order to derive more com-
pact representations of a clausal meta instance, but they are interesting from a
theoretical perspective as well. The clauses that are represented via one block of
selector variables are clauses that either occur in the same refutation proofs for un-
satisfiable subsets or are not present at all. The idea to group clauses together is the
basis for the ideas that are able to develop a technique to boost the enumeration of
MUSes, which will be presented in the next chapter. In contrast to the block notion
represented here, we will generalize it to incorporate sets of clauses, that show an
equal behavior regarding their presence and absence in the MUSes(F). In the new
sense, the clauses of one block are either all together in any MUS M ∈MUSes(F)
or none of the clauses is present in the MUS M .

4 Improving

MUS enumeration

4.1 Introduction

Many algorithms in common applications of constraint systems cover problems of
finding a satisfying assignment, commonly known as model. Applications require
either a single model, a set of these or even all models for a given problem [122,
145, 20].

On the other hand, constraint sets without any model are target for the “in-
feasibility analysis” algorithms, which can be partitioned into two groups. Their
tasks are a) finding a - preferably very large - part of the constraint set that is
still satisfiable and b) locating the area of the constraint set where the reason for
unsatisfiability lies. These two categories are known by different names: Maximal
Satisfiable Subsets (MSS) and Maximum Feasibly Subset (MaxFS) for the former
and Minimal(ly) Unsatisfiable Subset or Core (MUS/MUC) and Irreducible Infea-
sible Subsystem (IIS) for the latter. Although “Max / Min” and “SAT / UNSAT”
seem to be completely opposite, they are strongly connected via a hitting set rela-
tionship [39, 117].

Minimal reasons of infeasibility in linear programming [140, 64, 29] and in ar-
tificial intelligence [41] have been studied since the 1980s. Finding MUSes in SAT
covers a lot of applications, including debugging of relational specifications [138] or
type errors [4] and model checking [142, 31].

The relationship of Maximal Satisfiability and Minimal Unsatisfiability is based
on the following: any satisfiable subset of an infeasible constraint set cannot com-
pletely contain any unsatisfiable subset (US) of the formula, and thus must at least
exclude one constraint from every US. Searches for results of these can be guided
by the results of the other. Algorithms exist that compute MUSes with the help
of MSSes [4], vice versa [53] and even ones that use non-minimal USes to support
MSS solution finding to finally produce MUSes [92]. The latest improvements for
(partially) enumerating MUSes are based on this as well [89, 116].

We propose a novel approach to improve the partial enumeration of MUSes by

33

34 Hitting Set Duality of MUSes and MCSes

using the information which clauses are very similar according to their presence or
absence in MUSes. We first define basic terms and concepts (Section 4.2), before
describing the related work (Section 4.3) and especially the MARCO algorithm [89]
(Section 4.4). We present the new techniques in Sections 4.5, 4.6 and an extensive
practical analysis (Section 4.7) before concluding the work and discussing some
possibilities for future research (Section 4.8).

4.2 Hitting Set Duality of MUSes and MCSes

Recall that an MCS is a subset of an infeasible constraint set (SAT formula) whose
removal from that formula results in a satisfiable set of constraints. Thus, the
removal “corrects” the infeasibility. MCSes are minimal in the sense that any
proper subset does not have that correcting property.

The following unsatisfiable formula F in CNF is used as a running example
throughout this chapter. We refer to the 4 clauses of the formula F as c1, . . . , c4.

Example 1:

F =
∧
ci : 1 ≤ i ≤ 4

c1 = (x1) c2 = (x1 ∨ x2) c3 = (x2) c4 = (x2)

MUSes(F) MCSes(F) MSSes(F)
{c1, c2, c4} {c4} {c1, c2, c3}
{c3, c4} {c1, c3} {c2, c4}

{c2, c3} {c1, c4}

The formula F has 2 MUSes and 3 MCS/MSS pairs. For simplicity we denote
any MUS, MCS and MSS as a set of clauses throughout this work. Note that any
MCS is a complement of an MSS and vice versa.

Furthermore, the set of MUSes of a formula F and the set of MCSes of F are
“hitting set duals” of one another. All MUSes of F form a set that is equivalent
to the set of all irreducible hitting sets of the MCSes and analogously the set of
MCSes is equivalent to all irreducible hitting sets of the MUSes. The following
Theorem 4.1 is proven formally in [22].

Theorem 4.1. Let F be an unsatisfiable formula, MUSes(F) the set of all minimal
unsatisfiable subsets of F and MCSes(F) the set of all minimal correction sets.

1. U ⊂ F is an MUS ⇔ U is an irreducible hitting set of MCSes(F)

2. C ⊂ F is an MCS ⇔ C is an irreducible hitting set of MUSes(F)

We recall an intuitive explanation for this from Liffiton et al. [91] here. An
unsatisfiable formula F has at least one MUS M . Due to the minimality of an

Improving MUS enumeration 35

MUS it can be made satisfiable by simply deleting a single clause of it. Therefore,
in order to make the whole formula F feasible, one has to “dispose” its MUSes
by removing at least one clause from every MUS. An MCS corresponds to a set of
clauses that accomplishes this: its removal restores the satisfiability of F . Thus,
any MCS has to contain at least one element of every MUS of F and due to its
minimality the irreducibility of the hitting set is obtained. A similar argument can
be found for the fact that MUSes are irreducible hitting sets of MCSes.

Example 2: We explain the property using the example from above.

MCSes
{c4} {c1, c3} {c2, c3}

MUSes
{c1, c2, c4} x x x
{c3, c4} x x x

Whenever an MUS and MCS have a clause in common they intersect each other,
which is denoted by an “x”. Each clause in the intersection of all MUSes infers
an MCS of size one, in this example {c4}. These clauses are also called necessary
clauses (see Section 3.2). All other MCSes are of larger size.

4.3 Related Work

The existing work on MUS enumeration can be viewed as methodical explorations
of power sets, since each subset of the whole constraint set, in our case the SAT
formula F , is a possible MUS or MSS/MCS. The goal of an MUS enumeration
algorithm is the exploration of the complete power set of the input formula. The
power set can be visualized as a lattice in a Hasse diagram (see Figure 4.1). Each
level of the diagram contains subsets of a fixed size and edges connect sets with
their immediate supersets and subsets in the consecutive levels.

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Figure 4.1. Hasse diagram of the power set lattice for a formula of four constraints

Exploring this power set lattice, an enumeration algorithm will determine the
feasibility of various subsets of the formula F . A function that assigns each subset

36 Related Work

its feasibility
feas : S ⊆ F → {SAT,UNSAT}

can be represented by coloring each node in the power set lattice with a color
representing its satisfiability. A “map” will be created with exactly two regions:
satisfiable and unsatisfiable subsets. For our running example from Section 4.2, the
fully colored map is shown in Fig. 4.2.

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Figure 4.2. The colored Hasse diagram of our running example, the unsatisfiable (sat-
isfiable, respectively) region is marked red (green, respectively). Furthermore the MUSes
and MSSes are marked with a box in their respective color.

For a given infeasible constraint set (in our case the SAT formula F), the fol-
lowing simple facts and their connection to the corresponding Hasse diagram can
be stated:

• Every subset of the constraint set is either SAT or UNSAT. Trivially, F is
unsatisfiable and the empty set of constraints is satisfiable. In the diagram
we will mark nodes that correspond to satisfiable subsets green, and nodes
that correspond to unsatisfiable subset red.

• If a subset X is satisfiable (unsatisfiable, respectively), then all of it subsets
(supersets, respectively) are satisfiable (unsatisfiable, respectively). For every
green (red, respectively) node in the diagram all of its neighbors in the next
lower (higher, respectively) level have the same color.

• Given the minimality (maximality, respectively) of MUSes (MSSes, respec-
tively), all subsets (supersets, respectively) have to be satisfiable (unsatisfi-
able, respectively). The MUSes and MSSes are marked in the diagram with
a box in the corresponding color.

The problems that analyze the infeasibility of constraint sets, can be viewed as
problems of coloring the whole lattice or only a single point and therefore, de-
pending on the satisfiability of the corresponding point, all of its subsets/supersets.
Whereas algorithms that enumerate all MUSes/MSSes color the whole lattice, an
MUS extraction algorithm will result in coloring a node of the diagram and all of
its supersets red, and an MSS extraction algorithm (or Max-SAT calculation) will

Improving MUS enumeration 37

result in coloring a node of the diagram and all of its subsets green.

In comparison to the amount of research done on extracting single MUSes,
the existing work on enumerating MUSes of infeasible constraint sets is relatively
limited.

Several MUS enumeration approaches that are specialized on a particular type
of constraints are known. In the constraint programming domain, methods for
computing the MUSes of over-constrained NCSPs were developed by Gasca, et
al. [57]. NCSPs are numerical constraint satisfaction problems that consist of nu-
meric variables ∈ R and constraints in the form of (in-)equalities between linear or
polynomial combinations of elements of the variable set. This technique enumerates
all possible subsets of the constraint problem and prunes unnecessary collections of
subsets in between. The pruning is done based on rules, that are structure specific
to NCSPs and therefore are not easily generalizable.

In the field of operations research, in particular for linear programs (LP) and
integer linear programs (ILP), MUSes are known as Irreducible Inconsistent Sub-
systems (IISes). The methods [140, 64] that compute all IISes of an LP rely on
techniques like constructing polytopes and the simplex method. Since these are
specific to linear programming, these methods cannot be generalized easily to be
applicable for other constraint systems.

In the following we will introduce more generalizable approaches more specifi-
cally, since they are more relevant as predecessors for the MARCO algorithm.

4.3.1 Enumerating subsets

Early approaches to enumerate MUSes are based on an exhaustive search on the
power set lattice. The explicit enumeration uses an HS-tree data structure [75]
with pruning rules to avoid multiple satisfiability tests for a single subset. Every
node in the tree corresponds to a subset S of the formula F , and every child node
is labeled with a subset S′ ⊂ S. In a depth-first fashion the subsets are tested
for unsatisfiability. Each unsatisfiable node whose children are all found to be
satisfiable is marked as an MUS. This can be visualized in the power set lattice
(see Figure 4.1) as traversing top-down in a depth-first fashion, calling a SAT-solver
for each node (subset S of F) on the path, backtracking when a satisfiable S is
found, and marking unsatisfiable nodes, that are the “low-points” (thus, do not
have unsatisfiable subsets) as MUSes. Several improvements could be made for
this technique [69], but the iterative SAT-solver calls and the explicit enumeration
of all possible subsets of F are a performance bottleneck [4].

Junker [80] briefly described a method that focuses on extracting “preferred
explanations”, e.g. MUSes with regard to preferences on constraints. The method
operates on branching on each constraint ci ∈ F . The first direction of the branch
eliminates ci and enumerates recursively MUSes without ci if the remaining subset
of F is unsatisfiable. The second direction is an unspecified mechanism, which
removes other constraints to find MUSes that contain ci in the end. Effectively,
this is an exhaustive search as well. The major drawback, like before, is the large
number of SAT-solver calls which is required to determine the infeasible region of
the power set lattice explicitly.

38 Related Work

4.3.2 The algorithm CAMUS

The hitting set MUS/MCS duality discussed in Section 4.2 can be used to enu-
merate MUSes. The CAMUS algorithm by Liffiton and Sakallah [91] works in two
phases: the first phase computes all MSSes/MCSes in a “top-down” search through
the power set lattice of a constraint set by searching level-by-level (a level contains
all subsets of a particular size) for satisfiable subsets. These subsets must not be
subsumed by some larger satisfiable subset found at a higher level, since that in-
validates the MSS property. The second phase is a hitting set approach that is
completely independent of any constraint solver. It starts when all MSSes/MCSes
are found.

To enumerate all MCSes in the first phase a selector variable approach (see
Section 2.2.2) is used. By adding cardinality constraints on the selector variables
which are assigned to false, the search is restricted to a particular size of the
MCSes. Using a linear progression on the bound of the size of computed MCSes,
CAMUS computes MCSes of increasing size (MSSes of decreasing size) in the first
phase. For every found MCS M a new clause∨

i:ci /∈M
si

is added that ensures that all proper subsets of the corresponding MSS are blocked
in the future.

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Bound = 0, no MCSes found

Bound = 1, finds MCS
), blocks down

{c4}

Bound = 2, finds MCSes {c2, c3} {c1, c3}and
), blocks down

All subsets blocked,
first phase ends

F ′ becomes unsatisfiable,

(the MSS {c1, c2, c3}

(the MSSes {c1, c4} and {c2, c4}

Figure 4.3. Illustration of the first phase of the CAMUS algorithm on our running example
F . The levels are explored one-by-one from top to bottom.

The execution of the first phase of the CAMUS algorithm is shown in Figure 4.3.
The SAT and UNSAT regions are known implicitly due to the augmented formu-
lation of F ′, since the models of F ′ correspond to satisfiable subsets within the
power set lattice. For every bound k any reported model corresponds to an MCS
of size k. Every found MCS causes the blocking of its proper subsets. When no
further models can be found the remaining subsets in that level can be implicitly
marked as unsatisfiable. The combination of these implicitly marked unsatisfiable
regions together with the blocked subsets of found MSSes/MCSes eventually covers
the whole power set lattice and the first phase of CAMUS terminates.

The search for MCSes was boosted by Grégoire et al. [65] using an incomplete
local search oracle to identify possible MCSes. This method is more efficient than
complete MCS enumeration but still relies on it for completeness and correctness.

Improving MUS enumeration 39

A significant shortcoming of CAMUS is the possible intractability of the first
phase. A constraint system may have an exponential number of MCSes. Enu-
merating all MCSes in the first phase before computing the MUSes in the hitting
set phase is not possible within limited time in these cases. To cope with this in-
tractability, the concept of a partial correction set (PCS), a subset of some MCS,
was introduced by Liffiton and Sakallah [91]. The technique can be incorporated in
the first phase of CAMUS in the following way: every found MCS is reduced to a spec-
ified size k′ ≤ k by eliminating arbitrary constraints from the MCS to reach that
size. By eliminating elements from an MCS to build a PCS, we construct an over-
approximation of an MSS. By blocking proper subsets of this over-approximation
subsequently we mark a (potentially large) region of the power set lattice as already
inspected, and cut the search space, in which many more MCSes could have been
located. The hitting set approach of the second phase is unaltered and still com-
putes valid MUSes. Thus, using PCSes instead of MCSes sacrifices completeness
for the sake of reporting a subset of MUSes faster.

4.3.3 The algorithm DAA

Another algorithm that explores the hitting set duality between MCSes and MUSes
was developed by Bailey and Stuckey [4]. The so-called Dualize and Advance (DAA)
method is an incremental hitting set approach that computes both, MCSes and
MUSes, during its execution. In every iteration a satisfiable subset (in the beginning
the empty set) is grown into an MSS. Its complement MCS is added to the set of
already found MCSes. On this set of MCSes all minimal hitting sets (possible
MUSes) are computed. Each MUS candidate is then checked for unsatisfiability.
Each candidate is either a known MUS and filtered out, a new unexplored MUS
that will be reported immediately, or a new unexplored satisfiable subset. In the
latter case, it is used as a starting point for the computation of a new MSS in the
next iteration.

This technique of testing candidate MUSes while “jumping” from one solution
in the power set lattice to another possible solution is very similar to the technique
we developed to speed up the MUS enumeration. Therefore, we will show in the
following an example execution of DAA on our running Example 1.

Executing DAA on our example

Initially, no MCSes have been found. Thus, the first known satisfiable subset is
the empty set. It will be used to obtain an MSS via a so-called grow method (see
Section 4.4 for details). The complementary MCS is added to the set of known
MCSes, from which all minimal hitting sets are computed.

- grow(∅)→ {c1, c2, c3} ↔ MCS:{c4}

- MCSes = {{c4}}

- HittingSets(MCSes)→ {{c4}}

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

40 The MARCO Algorithm

The hitting set, which is a minimal point in the region above the known satis-
fiable region, turns out to be a satisfiable subset. It is taken as the next starting
point for the grow method.

- grow({c4})→ {c1, c4} ↔ MCS:{c2, c3}

- MCSes = {{c4}, {c2, c3}}

- HittingSets(MCSes)→ {{c2, c4}, {c3, c4}}

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c2, c4 c3, c4c1, c4

One of these hitting sets ({c3, c4}) is unsatisfiable and is reported as an MUS. The
other is taken as the next starting point for the grow method.

- grow({c2, c4})→ {c2, c4} ↔ MCS:{c1, c3}

- MCSes = {{c4}, {c2, c3}, {c1, c3}}

- HittingSets(MCSes)→ {{c1, c2, c4}, {c3, c4}}

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c3, c4c1, c4 c2, c4

One of these hitting sets ({c3, c4}) has already been found and is skipped, the other
({c1, c2, c4}) is unsatisfiable and is reported as an MUS. Since no other hitting sets
are found to be satisfiable, the algorithm terminates. All MUSes have been enu-
merated.

In contrast to CAMUS, the DAA algorithm reports MUSes and MCSes interleaved.
It produces MUSes before all MCSes are computed and avoids the possible in-
tractability of the first phase from CAMUS. However, the number of hitting sets
computed in each iteration can be exponential as well, resulting in another in-
tractability.

4.4 The MARCO Algorithm

Independently of each other Previti and Marques-Silva [116] and Liffiton and Ma-
lik [89] developed two very similar algorithms called eMUS and MARCO. Both can be
seen as partial (or incremental) MUS enumerators, not replacing any state-of-the-
art complete MUS enumerators like CAMUS [91] but providing a viable alternative
for satisfiability instances where the full enumeration is computationally infeasible
in limited time. Their major advantage is in reporting the first MUS as quickly as
state-of-the-art MUS extractors and reporting further MUSes with a similar delay.

We will describe first how the power set lattice which represents the whole search
space of an MUS enumeration algorithm can be implemented, such that we create
a data structure which gives us the possibility to obtain a not yet visited node of
the Hasse diagram.

Let expl be a function that assigns any subset X ⊆ F the value true, if the
subset is unexplored and its feasibility is undetermined and the valie false oth-

Improving MUS enumeration 41

erwise:
expl : X ⊆ F → {true (unexplored), false (explored)}

We can then define the Unexplored Subset Problem for a constraint set, in our case
a SAT-formula F , a set of known-unsatisfiable subsets U , and a set of known-
satisfiable subsets S:

Definition 4.2. Let F be a constraint set, U the set of its known-satisfiable subsets,
and S the set of known-unsatisfiable subsets of F . A subset X ⊆ F is said to be
dominated by a subset Y ∈ U ⇔ X ⊇ Y , and a subset X ⊆ F is said to be
dominated by a subset Z ∈ S ⇔ X ⊆ Y . In other words, the subset X is dominated
by an element of U or S if and only if the feasibility of the subset is known and
thus is “explored”.
The solution to the Unexplored Subset Problem is a subset X ⊆ F that is not
dominated by any element of U or S if X exists or NULL otherwise.

Note that the elements of U and S do not have to be minimal or maximal,
respectively. Furthermore, U and S can be empty.

Any function f : X ⊆ F → {true, false} can be implemented by a proposi-
tional formula over |F| variables. The Unexplored Subset Problem can be solved
as a Boolean CNF formula, called map. The formula map is defined by its set of
variables and a set of clauses in the following way:

• The formula contains |F| variables, for every constraint ci ∈ F there exists a
variable si (similar to the concept of selector variables).

• Any complete assignment of the variables correspond to a subset X ⊆ F by
the variables assigned to true:

si = true⇔ ci ∈ X

• For every known-unsatisfiable subset Y ∈ U the formula contains the clause∨
i:ci∈Y

¬si

This clause ensures that every superset of Y is marked as explored, since all
of them have to be unsatisfiable.

• For every known-satisfiable subset Z ∈ S the formula contains the clause∨
i:ci /∈Z

si

This clause ensures that every subset of Z is marked as explored, since all of
them have to be satisfiable.

Lemma 4.3 (Correctness). Given the above formulation of the Unexplored Subset
Problem for the constraint system F as a formula called map. Any model of map

represents a subset X ⊆ F , which is not dominated by any subset in the set of
known-unsatisfiable subsets U , nor by any subset in the known-satisfiable subsets
S. In other words: the subset X is unexplored.

42 The MARCO Algorithm

Proof. We have to consider both cases: (i) X is not dominated by any subset in
U , (ii) nor by any subset in S.

Case (i): Let m be a model of map and its corresponding subset of F is domi-
nated by a known-unsatisfiable subset Y ∈ U . Thus, ∀ci ∈ Y, si is assigned to true

in the model m. However, the formula map contains a clause
∨

i:ci∈Y ¬si, which is
not satisfied by the model. Thus, the assumption cannot be true.

Case (ii): Let m be a model of map and its corresponding subset of F is domi-
nated by a known-satisfiable subset Z ∈ S. Thus, ∀ci /∈ Z, si is assigned to false

in the model m. However, the formula map contains a clause
∨

i:ci /∈Z si, which is
not satisfied by the model. Thus, the assumption cannot be true.

By the combination of both cases we prove that any model m of map corresponds
to a subset of F , which is not dominated by any subset in the set of known-
unsatisfiable subsets U , nor by any subset in the known-satisfiable subsets S.

Lemma 4.4 (Completeness). Given the above formulation of the Unexplored Sub-
set Problem for the constraint system F as a formula called map that is unsatisfiable
if and only if the set of known-unsatisfiable subsets U contains all MUSes of F and
the set of known-satisfiable subsets S contains all MSSes of F . In other words: all
subsets of F are explored.

Proof. The formula map is unsatisfiable if and only if every complete variable as-
signment does not satisfy at least one clause in map. A specific clause cls in map

is not satisfied by complete variable assignments that correspond to subsets of F ,
which are dominated by the subset that caused the addition of the clause cls. Thus,
every complete assignment does not satisfy at least one clause in map if and only
if every subset of F is dominated by one known-unsatisfiable subset in U or one
known-satisfiable subset in S. Every possible subset of F is dominated by one
subset in U or one subset in S if and only if U contains all MUSes of F and S
contains als MSSes of F .

Theorem 4.5. The above defined formulation of the Boolean CNF formula map

presents a correct and complete solution for the Unexplored Subset Problem.

Proof. Follows from Lemma 4.3 and Lemma 4.4.

4.4.1 Implementation

We have shown before that the Unexplored Subset Problem can be solved by formu-
lating it as a SAT problem. For any algorithm that enumerates MUSes that power
set is initially unexplored, hence map = >. Every time the algorithm explores a
subset X ⊆ F and its feasibility, it should be marked as explored in the map by
adding at least one clause that “blocks” the the corresponding model.

Assume that an algorithm explores F itself and determines it to be unsatisfi-
able. To block that particular subset (and possible supersets) for the future, the
corresponding model {s1 = s2 = s3 = s4 = true} has to be forbidden by adding a
single clause to map: (¬s1,¬s2,¬s3,¬s4). The map represents then, that the subset
equal to the whole formula F is explored, and all proper subsets of F remain unex-
plored. Note that F would be added to the known-unsatisfiable subsets U . Since

Improving MUS enumeration 43

U does not necessarily contain only Minimal Unsatisfiable Subsets that is valid.
In fact, during the execution of MARCO only MUSes will be added to U and only
MSSes will be added to S.

In the following we will present possible tasks that can be executed in the context
of exploring the power set lattice. They will be presented as subroutines which will
be later used in the pseudocode of the algorithms throughout this chapter.

• getModel(map) →subset X ⊆ F
Assuming map is satisfiable, which indicates that at least one subset of F is
unexplored, this method will obtain an unexplored subset of F by returning
a model of map. Any constraint solver can be used for that.

• SAT(subset X) → {SAT,UNSAT}
By sending a subset X ⊆ F to a simple constraint solver, we can check
whether X is satisfiable or not.

• shrink(unsatisfiable subset X) → MUS M
We extract a MUS M from a given known-unsatisfiable subset X (M ⊆ X) by
executing a single MUS extraction algorithm. The simplest possible variant
is given in Algorithm 4.1.

• grow(satisfiable subset X) → MSS M
Analogously to before we extract an MSS M from a given known-satisfiable
subset X (M ⊇ X) by executing a single MSS extraction algorithm. The
simplest possible variant is given in Algorithm 4.2. Note that this is not
equivalent to solving the Max-SAT problem, since an arbitrary MSS does not
need to have the largest possible cardinality.

Algorithm 4.1 The shrink method

Input: X ⊆ F
Output: one MUS of F

1: for c ∈ X do
2: if X \{c} is unsatisfiable then
3: X ← X \ {c}
4: end if
5: end for
6: return X

Algorithm 4.2 The grow method

Input: X ⊆ F
Output: one MSS of F

1: for c ∈ F \X do
2: if X∪{c} is satisfiable then
3: X ← X ∪ {c}
4: end if
5: end for
6: return X

• complement(MSS/MCS M) → MCS/MSS M ′

Any subset can be seen as a complete variable assignment of map. By flipping
all variable assignments, we get the complement of an MSS, which is an MCS
and vice versa.

• blockMUS(MUS M) → clause cls
By adding a new clause to the map we can mark one region of the power set
lattice as explored. The clause cls will be∨

i:Ci∈M
¬si

44 The MARCO Algorithm

Algorithm 4.3 The basic MARCO algorithm

Input: unsatisfiable formula F = {c1, . . . , cn}
Output: MCSes and MUSes of F as they are discovered

1: map← BoolFormula(s1, . . . , sn) . si are “selector variables”
2: while map is satisfiable do
3: seed← getModel(map) . get an unexplored subset of F
4: if SAT(seed) then
5: MSS ← grow(seed)
6: MCS ← complement(MSS)
7: print MCS . print the MCS without ending the algorithm
8: map← map ∧ blockMSS(MSS)
9: else

10: MUS ← shrink(seed)
11: print MUS . print the MUS without ending the algorithm
12: map← map ∧ blockMUS(MUS)
13: end if
14: end while

• blockMSS(MSS M)→ clause cls
By adding a new clause to the map we can mark one region of the power set
lattice as explored. The clause cls will be∨

i:Ci /∈M
si

The basic version of the MARCO algorithm is presented as pseudocode in Algo-
rithm 4.3 and uses the subroutines introduced before. The fundamental execu-
tion process are the following four steps, which are repeated until all MUSes and
MSSes/MCSes are found eventually:

1. Get an unexplored subset of the power set lattice. This is the starting point
for further calculations and is called seed.

2. Check the satisfiability of the seed to decide, whether it is a superset of an
MUS, or the subset of an MSS.

3. According to the satisfiability, grow the seed to an MSS or shrink it to an
MUS.

4. Report the result and mark the corresponding region of the power set lattice
as explored.

Each iteration identifies either a new MUS or a new MSS/MCS. The process ter-
minates when all possible subsets of the formula F are explored and all MUSes and
MSSes/MCSes are reported.

The following example illustrates the execution of MARCO on our running exam-
ple.

Improving MUS enumeration 45

Executing MARCO on our example

F = {c1 = (x1), c2 = (x1 ∨ x2), c3 = (x2), c4 = (x2)}
In the beginning, the map is a tautology (true in every model), meaning that no

subset has been explored. The getModel(map)-method could return any subset of
F as a seed.

In our example it returns the complete formula F as seed. Since it is unsatisfi-
able, a MUS will be extracted:

- getModel(map) → {c1, c2, c3, c4}

- SAT({c1, c2, c3, c4}) → false (UNSAT)

- shrink({c1, c2, c3, c4}) → {c1, c2, c4}

- map ← map ∪ blockMUS({c1, c2, c4})

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

The next seed ({c3}) is SAT, resulting in an MSS:

- getModel(map) → {c3}

- SAT({c3}) → true (SAT)

- grow({c3}) → {c1, c2, c3}

- map ← map ∪ blockMSS({c1, c2, c3})

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

And so on. . .

- getModel(map) → {c4}

- SAT({c4}) → true (SAT)

- grow({c4}) → {c1, c4}

- map ← map ∪ blockMSS({c1, c4})

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

- getModel(map) → {c2, c3, c4}

- SAT({c2, c3, c4}) → false (UNSAT)

- shrink({c2, c3, c4}) → {c3, c4}

- map ← map ∪ blockMUS({c3, c4})

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

46 The MARCO Algorithm

- getModel(map) → {c2, c4}

- SAT({c2, c4}) → true (SAT)

- grow({c2, c4}) → {c2, c4}

- map ← map ∪ blockMSS({c2, c4})

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

At this point every subset of F is explored. The map is unsatisfiable and the
algorithm terminates.

Lemma 4.6 (Correctness). Every reported subset of F is either an MUS or an
MCS.

Proof. All MUSes reported by MARCO were calculated by the shrink method, sim-
ilarly all MSSes are calculated by the grow method. With the correctness of both
methods and the correctness of the complement method, it follows that only
correct MUSes and MCSes are reported.

The completeness of the results follows from the observation that no single result
(MUS or MCS) can be reported repeatedly, since blocking the first occurrence of
it in the map forbids any subset that is dominated by earlier results as new seeds.

Lemma 4.7 (No repeated results). If MARCO (Algorithm 4.3) reports an MUS or
MCS, the same subset will not be reported again.

Proof. Let M be the MUS (MCS/MSS) reported by Algorithm 4.3. Via the block-
MUS (blockMSS) all models that correspond to a superset of the MUS (subset
of the MSS) are blocked in map. With Lemma 4.3 of Section 4.4 it follows, that
getModel(map) will never return a model corresponding to a superset of the MUS
(subset of the MSS). Due to the facts that only shrink and grow are calculating
the reported MUSes and MSSes/MCSes and shrink needing a superset of M and
grow needing a subset of M to extract M again, it follows that once M is found,
no further iteration of the while loop (Algorithm 4.3 lines 2 to 14) will report M
again.

Theorem 4.8 (Completeness). MARCO (Algorithm 4.3) reports all MUSes and all
MCSes of an infeasible constraint set, in our case a SAT formula F .

Proof. Each iteration of the while loop (Algorithm 4.3 lines 2 to 14) will report an
MUS or MCS that has not been reported before (Lemma 4.7). As long as there is
at least one MUS or one MCS left to be found map is satisfiable, since at least one
model corresponding to a superset of that MUS or at least one model corresponding
to a subset of the MSS is not yet blocked (Lemma 4.4 of Section 4.4).

Therefore, as long as there are unreported MUSes or MCSes, each iteration of
the while loop will report a new MUS or MCS, ultimately reporting all MUSes
and all MCSes of F .

Theorem 4.9 (Termination). MARCO (Algorithm 4.3) will terminate.

Improving MUS enumeration 47

Proof. By Theorem 4.8 all MUSes and all MCSes will be found eventually. If every
MUS and every MCS has been found, then every superset of an MUS and every
subset of an MSS has been blocked in map by the lines 12 and 8. By Lemma 4.4
of Section 4.4 it follows that map is unsatisfiable at this point in time, causing the
termination of the while loop and the termination of the whole MARCO algorithm.

4.4.2 Variants of MARCO

Analyzing the performance from the basic MARCO version results in possible opti-
mizations which we will describe in the following.

MARCO reports the first MUS very fast. In fact, it reports it as fast as any state-
of-the-art single MUS extractor. Assume MARCO starts with the whole formula F
as the first seed. Since F has to be unsatisfiable, we can directly call shrink to
extract one MUS out of it. Since shrink can be any state-of-the-art MUS extraction
algorithm, especially the best known algorithm, MARCO will report the first MUS as
fast as any MUS extraction algorithm [89]. Directly following from that is the fact
that no other MUS enumeration algorithm can report a first MUS faster.

To report successive MUSes with a similar delay all successive seeds would
have to be unsatisfiable. This cannot be guaranteed, which causes that MCSes and
MUSes will be reported interleaving. However, it is possible to bias the algorithm
to unsatisfiable seeds early in the execution. Furthermore, successive calls to the
shrink method can be even faster than the first call of the same method. Since
the first extracted MUS M will cause a call of the blockMUS method, a region
of the power set lattice will be marked as explored. This region has to include the
complete formula F . Thus, we know that the successive calls of the shrink(seed)
method will be executed on a seed that is smaller than F . The search space is
reduced, which should result in a shorter run time. Further optimizations to boost
a single call of the shrink method will be introduced in this section.

The overall runtime of the MARCO algorithm is heavily dependent on the shrink
and grow methods. Both of these are working on a subset of the formula F . All
the other subroutines operate on the simple clause set map and are insignificant.

Due to this analysis three possible optimizations can be stated:

1. Favor unsatisfiable seeds rather than satisfiable seeds at the beginning

2. Reduce some or even all calls to shrink or grow

3. Boost individual shrink calls

We will introduce all three optimizations shortly.

Maximal models

The first two goals can be reached by the same technique: using maximal models as
seeds. A maximal model is a model m where none of the literals that are assigned
to false can be flipped.

48 The MARCO Algorithm

Therefore, mmax will correspond to a subset of F , whose supersets are all ex-
plored. Of course, it is not guaranteed to produce an unsatisfiable subset, but the
larger the subset is, the higher the probability to produce an unsatisfiable subset
of F . Assume the intermediate state of map shown in Figure 4.4. The maximal
models of map correspond to the subsets {c1, c2, c3} and {c1, c2, c4}. The first sub-
set is unsatisfiable and is the second MUS of the formula F , the second subset is
satisfiable and is an MSS.

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

Figure 4.4. A possible intermediate state of map after finding the MUS {c3, c4} as the first
MUS. The maximal models are corresponding to the subsets {c1, c2, c3} and {c1, c2, c4}.

In fact, whenever a subset corresponding to a maximal model of map is satisfi-
able, this subset builds an MSS. This is stated in the following theorem:

Theorem 4.10 (Maximal models). If the subset X ⊂ F corresponding to a maxi-
mal model mmax of map is satisfiable it is an MSS of F .

Proof. We have to show the following properties: (i) all immediate supersets of X
have to be explored, (ii) all supersets of X have to be unsatisfiable

(i): Assume that there exists a superset Y ⊃ X corresponding to the complete
variable assignment m′ = mmax ∪ si : ci /∈ X that is unexplored. Thus, it has
to be a model for map. Since Y is a superset of X and since the clause ci that
corresponds to the variable si in map is not contained in X, si has to be assigned to
false for mmax. Thus, mmax could not be a maximal model, since si violates the
“maximality” property; si could be assigned to true and would still satisfy map.
The resulting complete variable assignment would be m′.

(ii): Assume that there exists a superset Y ⊃ X that is satisfiable. We know
from the first part of the proof that it has to be marked as already explored. By
Lemma 4.3 from Section 4.4 it follows that X would be dominated by Y and thus,
also marked as explored.

With Theorem 4.10 all calls to the grow method are obsolete when the seeds
return. Thus, using maximal models to compute seeds will not only bias the al-
gorithm towards finding and reporting MUSes early, but also removes all calls to
the grow method, potentially resulting in an even bigger performance boost of the
algorithm. The resulting algorithm is shown as pseudocode in Algorithm 4.4.

Improving MUS enumeration 49

Algorithm 4.4 The MARCO algorithm using maximal models

Input: unsatisfiable formula F = {c1, . . . , cn}
Output: MCSes and MUSes of F as they are discovered

1: map← BoolFormula(s1, . . . , sn) . si are “selector variables”
2: while map is satisfiable do
3: seed← getMaximalModel(map) . get an unexplored subset of F
4: if SAT(seed) then
5: MCS ← complement(seed)
6: print MCS . print the MCS without ending the algorithm
7: map← map ∧ blockMSS(seed)
8: else
9: MUS ← shrink(seed)

10: print MUS . print the MUS without ending the algorithm
11: map← map ∧ blockMUS(MUS)
12: end if
13: end while

Note that this optimization has a dual: if any seed obtained from the map is
a minimal model, then all unsatisfiable subsets that correspond to these minimal
models are guaranteed to be MUSes. Thus, the calls to the shrink method could
be saved. At first glance that may be attractive, since the shrink subroutine can
be very expensive, but we will see in the practical analysis that this does not lead
to a better performance overall.

Boost individual MUS extractions

The development of the recursive model rotation [10] led to major improvements
for (single) MUS extraction algorithms in recent years [9] and led to the fact that
dropping the shrink calls completely from MARCO is not beneficial for the overall
performance. Another route of optimization is to provide the MUS extraction
algorithm with additional information to boost its execution.
During its execution, MARCO collects viable information on some constraints of F .
For example, certain constraints can be found to be necessary for every MUS. A
constraint c is necessary in a formula F , if F \{c} is satisfiable. Algorithm 4.1 - the
basic MUS enumeration algorithm - executes for all constraints ci ∈ X : X ⊆ F
the test, whether ci is a critical clause or not. Thus, knowing in advance which
constraints are necessary could save a lot of time during shrink.

Specifically, every found MCS that contains only one constraint is a necessary
constraint for every MUS. Note that such an MCS M = {ci} will cause the addition
of the unit clause (si) to map (since it is the only constraint not in the complemen-
tary MSS). More generally, any literal that is implied to be assigned to true by the
map formula corresponds to a necessary constraint that is included in every MUS
of F . These implications can be easily retrieved from the map formula and given to
the MUS extraction algorithm as so-called hard clauses.

Note that this idea has a dual as well: any by the map implied variable assign-
ment to false would correspond to a constraint that has to be present in any MCS

50 The MARCO Algorithm

(absent in any MSS). However, for Boolean formulae this is not possible at all, since
a single constraint cannot induce a conflict on its own.

4.4.3 Practical analysis of MARCO and its optimizations

Before introducing the new techniques which boost the MUS enumeration, we want
to compare the different variants of the original MARCO algorithm with each other
and with the best known existing MUS enumeration algorithms, CAMUS and DAA.
CAMUS typically outperforms DAA for complete MUS enumeration [91], and DAA

outperforms the subset enumeration algorithms (see Section 4.3 for details) [4].
Since DAA has an incremental MUS enumeration behavior (it reports MUSes and
MCSes interleaving and “early”) its addition to this analysis is vital. CAMUS on the
other hand, is in its basic version a complete MUS enumerator. When complete
MUS enumeration is intractable, CAMUS will not report any MUSes within a given
time limit. To cope with that problem a variant of CAMUS was added to the analysis
setup that truncates the MCSes calculated in the first phase of the algorithm to
partial correction sets of size 2 (“2PCSes”).

The following three variants of the original MARCO algorithm were tested:

• MARCO (all opt) - the optimized version of the MARCO algorithm using maximal
models to remove the calls to the grow method (see Algorithm 4.4) and using
the map to identify necessary constraints

• MARCO (basic) - the basic variant of the algorithm (see Algorithm 4.3)

• MARCO (MCS bias) - a variant of MARCO biased towards finding MCSes early
using minimal models instead of maximal models

Every algorithm was run on a collection of 300 unsatisfiable Boolean CNF bench-
marks, the special MUS track benchmarks of the 2011 SAT competition1. These
instances were drawn from a large variety of applications, with the most prominent
being hardware and software verification, product configuration and bounded model
checking. The size of the instances range from 26 to 4.4 million variables and from
70 to 16.0 million constraints. All experiments were run by the authors of the orig-
inal MARCO algorithm [89] on Amazon Elastic Compute Cloud (EC2) “cc2.8xlarge”
cores (Intel Xeon E5-2670 processors). Every single execution ran with a time limit
of one hour (3600 seconds) and a memory limit of 3000 MB RAM. The detailed
results can be found on the homepage from Mark Liffiton2.

Due to the potentially exponential number of MUSes, complete MUS enumer-
ation is in general an intractable problem. Due to this, no algorithm was able to
complete the enumeration within the timeout of one hour for more than 29 out of
300 instances. The runtimes for the tested algorithms are shown in a logarithmic
cactus plot in Figure 4.5. A cactus plot is created by sorting and plotting values
in order within each series. They show the value distribution of the series, but do
not allow a pairwise comparison. Each point (x, y) indicates that x instances have
a value (e.g. runtime, MUSes, etc.) of y or less. CAMUS is the fastest approach for

1http://www.satcompetition.org/2011/
2http://sun.iwu.edu/˜mliffito/marco/enumeration results 201312.ods

Improving MUS enumeration 51

runtime of complete enumerations

1

10

10
-2

10
-1

10
2

10
3

 5 10 15 20 25 30

ti
m

e
 (

s
e

c
 -

 3
6

0
0

 =
 t

im
e

o
u

t)

number of instances

MARCO (all opt)
MARCO (MCS bias)
MARCO (basic)
CAMUS
CAMUS (2PCSes)
DAA

Figure 4.5. Cactus plot of the total runtime to complete the MUS enumeration for each
algorithm

13 instances, but MARCO (all opt) is better for the next 16 instances. Comparing
all three variants of MARCO no substantial difference can be seen, though the MARCO

(all opt) seems to have a slight advantage.

Nevertheless, the algorithms tested here are better analyzed in terms of how
many results they produce in comparison to the runtime of completion, which will
in most cases be impossibly long to determine. For this purpose we created the
reverse cactus plots in Figure 4.6. A point (x, y) can be interpreted in these plots
as “x instances have at least y MUSes / MCSes”. We can see that MARCO (all opt)
vastly outperforms the other approaches for (partial) MUS enumeration. For 235
out of 300 instances it reports at least two MUSes, while the next best old approach,
CAMUS (2PCSes), reports more than one MUS for only 58 instances. The behavior
of MARCO (MCS bias) in comparison to the basic MARCO shows only a minor gain,
supporting the observation that using maximal models to get rid of the calls to the
grow method is much more effective than using minimal models to get rid of the
calls to the shrink method.

There are approximately 20 instances in which either version of CAMUS reports
at least two orders of magnitude more MUSes than the best variant of the MARCO

algorithm. In these cases, CAMUS finds the complete set of MCSes or PCSes very
quickly. With its efficient hitting set algorithm the MUSes are then enumerated
much faster than any shrink call of MARCO can handle this. In some of these cases,
CAMUS outputs millions of MUSes even before any version of MARCO completes its
first call to shrink.

The results are somehow flipped when analyzing the number of MCSes found
during the execution of the algorithms. Unfortunately, the versions of CAMUS do
not report the number of MCSes, so we were not able to add these values into the

52 The MARCO Algorithm

found MUSes and MCSes of MUS enumeration algorithms

1

10

10
2

10
3

10
4

10
5

10
6

10
7

#
M

U
S

e
s
 f

o
u

n
d

 w
it
h

in
 t

im
e

 l
im

it

MARCO (all opt)
MARCO (MCS bias)
MARCO (basic)
CAMUS
CAMUS (2PCSes)
DAA

1

10

10
2

10
3

10
4

10
5

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

#
M

C
S

e
s
 f

o
u

n
d

 w
it
h

in
 t

im
e

 l
im

it

number of instances

MARCO (all opt)
MARCO (MCS bias)
MARCO (basic)
DAA

Figure 4.6. Reverse cactus plots of the number of computed MUSes and MCSes within
the time and memory limits for each algorithm

plot. The MARCO variant which has a bias towards reporting MCSes early has a
slight advantage against the basic MARCO version, but all in all their performance
is almost the same. It is remarkable that for all but the first 9 instances, MARCO
(all opt) reports less MCSes than the other two variants of MARCO. But since, the
gap on the number of MUSes is much larger than the gap on the number of MCSes
between MARCO (all opt) and its other two variants, MARCO (all opt) is still the best
overall approach.

All of these results show the power of the MARCO approach in general, and the
“all opt” variant in particular. Because of this, we decided to incorporate the new
techniques to boost MUS enumeration, which will be described in the next sections,
into the “MARCO (all opt)” variant. Since the shrink method is the most time
consuming subroutine of MARCO, it is the obvious target for further improvements
to the algorithm.

Improving MUS enumeration 53

We will show in the next section, how the map can be used to detect not only
necessary clauses, but also some critical clauses for the current seed to decrease the
search space for the MUS extraction algorithms even further. Motivated by this
extension, we use a generalization to clausal blocks (see Section 3.4.3) to investigate
the possibility to speed-up the computation of MCSes as well as the MUS extraction
in detail afterwords.

4.5 Determine more MUS Members via map

In the previous section we introduced one extension which uses the map to identify
necessary MUS members, which could then be given as hard clauses to an MUS
extraction algorithm, saving potentially for every such clause one call to a SAT
solver during the extraction of the MUS.

The approach uses so-called top-level assignments within the map to identify
the hard clauses. Top-level assignments are implications that were caused by the
propositional logic of the map formula without any further assumptions of variables.
These top-level assignments may be caused for example by unit clauses that were
added by finding MCSes of size one. Assume that in our running example, the MCS
{c3} was found before all MUSes are detected. The corresponding MSS {c1, c2, c4}
would cause the addition of the unit clause (s3) (by calling blockMSS({c1, c2, c4}))
indicating that the clause c3 has to be present in every MUS M ⊂ F .

The reason for this is the following: Assume that there exists an MUS M that
does not contain c3. Then M would be a subset of the MSS S = {c1, c2, c4} that
caused the addition of the unit clause (s3). Since the MSS is satisfiable and M ⊆ S,
M has to be satisfiable as well, which violates the assumption.

However, the map is even capable of determining the hitting set property of
MUSes and MCSes (see Section 4.3). Thus, we decided to extend the detection of
necessary MUS members in the following way. Given a formula F and a seed ⊂ F .
Whenever seed is unsatisfiable we determine the set of positive implied assignments
of the map that are forced by adding the corresponding negative literals si for each
clause ci ∈ (F \ seed) as assumptions to the map. This is done via the method
getImplies(seed).

Assume the current state of the MARCO algorithm is the following:

- found MUSes = {{c3, c4}}

- found MSSes = {{c1, c2, c3}}

- next seed = ({c1, c2, c4})

- SAT(seed) → false (UNSAT)

c1, c2, c3, c4

c1, c3, c4 c2, c3, c4

c1, c2 c1, c3 c2, c3

c1 c2 c3 c4

∅

c1, c2, c3 c1, c2, c4

c1, c4 c2, c4 c3, c4

The shrink method will be called to extract one new MUS. By the hitting set
property between MUSes and MCSes and the knowledge of the MCS {c3, c4}, we
know that c4 has to be present in the MUS, since c3 /∈ seed. The shrink method

54 Using Blocks to boost MUS Enumeration

would provide this result as well, but has to use one SAT solver call to detect this.
We will show in the practical analysis in Section 4.7 that this extension alone

does not lead to an improved performance. The effort to compute the set of forced
positive assignments that correspond to necessary members of an MUS is larger
than the savings during the subsequent shrink method.

This is the reason we will introduce another extension to the approach (see
Section 4.6.4) which aims to find a lot more MCSes faster to boost the performance
of the MARCO algorithm with the help of the extended getImplies(seed) method.

4.6 Using Blocks to boost MUS Enumeration

All our extensions to the state-of-the-art partial MUS enumeration approach are
based on the following block property of clauses, which is very similar to the idea
of generalized nodes to speed-up hitting set computations in hypergraphs by Kav-
vadias et al. [83].

Definition 4.11 (Block property). Given an unsatisfiable formula F . A block b is
a set of clauses b = {cx, cy, . . . , cz} that are always either exactly altogether present
in an MUS or not:

∀M ∈MUSes(F) : b ∩M = ∅ ∨ b ∩M = b

The blocks are clause maximal, meaning that the block b cannot be extended by any
clause ci ∈ F \ b without losing the block property.

Some trivial observations derived from this definition are that every clause be-
longs to exactly one block and the set of blocks B is a partition of the unsatisfiable
formula F . We denote b0 as the block of clauses that do not belong to any MUS
of F . Then F \ b0 is the union of all MUSes.

4.6.1 Determine the blocks

To obtain the set of blocks B(F) for an unsatisfiable formula F the straight-forward
approach is to enumerate all MUSes of F and use the following split routine. Ini-
tially B0 = b0 = F . With no found MUS all clauses of the formula belong to the
default block of clauses. Note that Mi denotes the i-th found MUS and therefore
Bi denotes the set of (interim) blocks that are formed by the MUSes M1, . . . ,Mi.
Please note that interim blocks only permit the block property for the MUSes
M1, . . . ,Mi, and not necessarily for the later ones. Nevertheless we drop the word
“interim” from it in the remaining part of this chapter.

Definition 4.12 (Splitting blocks). Let Bi = {b0, . . . , bx} be the set of blocks for an
unsatisfiable formula F which were obtained by splitting the blocks via the MUSes
{M1, . . . ,Mi} and Mi+1 ⊂ F be the next MUS that was discovered during the MUS
enumeration algorithm. Then Bi is updated to Bi+1 via Algorithm 4.5.

Lemma 4.13. (Correctness) The splitblocks subroutine (Algorithm 4.5) com-
putes blocks Bi+1 that do not violate the block property.

Improving MUS enumeration 55

Algorithm 4.5 The splitblocks routine

Input: blocks Bi = {b0, . . . , bx} and MUS Mi+1 ⊂ F = {c1, . . . , cn}
Output: blocks Bi+1

1: Bi+1 ← ∅
2: m← x+ 1 . new block index (bx is last element in Bi)
3: for bi ∈ Bi do
4: if i == 0 and 0 < |bi ∩Mi+1| then . clauses that were in no MUS until

now
5: bm ← bi ∩Mi+1 . build new block bm
6: bi ← bi \ bm . update the old block bi
7: Bi+1 ← Bi+1 ∪ bi ∪ bm . add both blocks bi, bm
8: m← m+ 1
9: else if 0 < |bi ∩Mi+1| < |bi| then . proper subset

10: bm ← bi ∩Mi+1 . build new block bm
11: bi ← bi \ bm . update the old block bi
12: Bi+1 ← Bi+1 ∪ bi ∪ bm . add both blocks bi, bm
13: m← m+ 1
14: else . block unchanged
15: Bi+1 ← Bi+1 ∪ bi
16: end if
17: end for

Proof. Assume that the block bk is violating the block property (Definition 4.11)
for at least one of the MUSes {M1, . . . ,Mi+1}. We have to consider the following
two main cases: (i) bk violates the property for one of the MUSes {M1, . . . ,Mi},
(ii) bk violates the property for the MUS Mi+1.

Case (i): Since Bi was a set of blocks that did not violate the block property
for any of the old MUSes, bk has to be created in the last call to the splitblocks
method. This can happen either in lines 5-8 or in lines 10-13. Since in both parts
of the algorithm an old block bi will be partitioned into the blocks bm and bi′

with bi = bm ∪ bi′ (lines 6 and 11), bk has to be a proper subset of bi and cannot
violate one of the MUSes {M1, . . . ,Mi}, due to the fact, that if bk violates the MUS
Mj : 1 ≤ j ≤ i, any superset of bk (in particular bi) has to violate Mj as well.

Case (ii): Two subcases have to be considered here: either bk is unchanged from
Bi, or bk is created within the current call of splitblocks. The block bk cannot
be unchanged from Bi (line 15), since both sets bk ∩Mi+1 and Mi+1 \ bk have to
be nonempty to violate the block property and thus, the splitblocks would never
reach line 15. With a similar observation as in case (i) we know that bk cannot be
created within the current call either, since it would have been created in lines 5-8
or in lines 10-13. By that, bk is either the new block (lines 5 or 10), or the updated
old block (lines 6 or 11. Both cannot violate the block property for the MUS Mi+1

by definition.

Lemma 4.14. (Termination) The splitblocks subroutine (Algorithm 4.5) termi-
nates.

Proof. Trivial, since there are at worst m different blocks in the set Bi with m

56 Using Blocks to boost MUS Enumeration

being the number of clauses of the formula F .

Since the blocks can only get smaller, each block in the set Bk is an ances-
tor for at least one block in B(F). Each ancestor block can be seen as an over-
approximation of a block that gets tighter with more MUSes found until ultimately
reaching equality. Tightness is reached at latest when all MUSes were enumerated,
but could be obtained earlier as well. For example, whenever Bk 6= B(F) contains
a block of size 1 that block cannot be split any further.

Example 3: The splitblocks method results in the following blocks for our
running example F and the given sequence of enumerated MUSes.

Initialization: B0 ={(c1, c2, c3, c4}
1st MUS: M1 ={c1, c2, c4} B1 ={(c3), (c1, c2, c4)}
2nd MUS: M2 ={c3, c4} B2 ={(c1, c2), (c4), (c3)} = B(F)

Real-world instances show some important properties: The block of clauses that
are present in no MUS at all (b0) is normally the largest block and although there
are a lot of blocks containing only one clause, several blocks of larger sizes are
present as well.

4.6.2 Proving the block property

With the block property proven, we could save many SAT solver calls due to the
fact that whenever one clause of the block is determined to be present or absent
in the current MUS within the shrink subroutine, all other members of the block
are determined as well, without using any additional SAT solver calls. To prove
the block property we could use the available map instance. Recall that the map is
used to determine already covered areas of the search space. It provides the main
method with a seed from an area of the search space, that was not yet covered by
the algorithm and therefore offers a new result, either an MCS or an MUS.

After the addition of (an over-approximation of) a block bi ∈ Bk to the map via
blockMUS(bi) the map provides seeds where not the whole block bi is present.
Let clsi be the clause that was added to the map via blockMUS(bi) and the seed
returned from the map to be unsatisfiable. During the subsequent shrink method
the SAT solver either deletes all members of bi from the seed to find a new MUS,
or at least one member of bi is still present in the new MUS Mk+1. In the first
case, the block bi is not touched and thus is still valid. The algorithm could go on
with the proposed block bi added to the map. In the second case, the block bi is
divided into two new blocks bi′ and bi′′ with bi′ consisting of the elements of bi that
are present in the MUS Mk+1, and bi′′ = bi \ bi′ . Suppose we continue trying to
prove the block property for bi′ , since bi was proven to be an over-approximation.
Adding bi′ to the map would make bi obsolete, since bi′ is a subset of bi and thus
the clause clsi′ added via blockMUS(b′i) subsumes the clause clsi. From now on
the map provides seeds where not the whole block bi′ is present until it reaches
unsatisfiability. In the end, the block property of the current block is proven, since

Improving MUS enumeration 57

every unsatisfiable seed that is provided by the map without the current block has
to contain the whole block.

The problem of this approach to prove the block property for a block bi is, that
it finds all MUSes M that do not contain bi. Thus, the proven property is only
available when enumerating the remaining MUSes M′ = MUSes(F) \M, a part
of them already enumerated and used to redefine bi by the splitblocks method
(Algorithm 4.5). Therefore, we show in the next sections how unproven blocks
(that are over-approximations of blocks) are used to support the MUS and MCS
detection.

4.6.3 Using block information during shrink

The shrink method can be any state-of-the-art MUS extraction algorithm. MARCO
uses muser2 [11]. One major advantage and prerequisite for our extension is that
the solver is able to cope with so-called group-MUS instances [91].

Definition 4.15. Given an explicitly partitioned unsatisfiable CNF formula F =
D ∪ ⋃G∈G G with G = {G1, . . . , Gk}, D and Gi being disjoint sets of clauses, a
group oriented MUS of F is a subset G′ of G, such that D∪⋃G∈G′ is unsatisfiable,
and ∀G′′ ⊂ G′ : D ∪⋃G∈G′′ is satisfiable.

D is the default group (often denoted as being group G0) that has to be present
in every MUS. It consists of the clauses that correspond to the implied variable
assignments given by the map (via the getImplied(seed) method) as described in
Section 4.5.

The possibility to define partitioned groups allows us to use the block infor-
mation of clauses rather straight-forward. All blocks bi that are present in the
seed get their own group Gn+i = {seed ∩ bi} with n being the number of clauses
in the unsatisfiable formula F . The only exception from this rule is the block b0
of clauses which were not present in any MUS until now. Each of these clauses
ci ∈ {seed ∩ b0} form their own group Gi = {ci}. Due to the blocks being over-
approximations, the block property is not proven for any of its members. Thus,
executing the MUS extractor on this grouped instance does not return an MUS,
but rather an over-approximation of an MUS gM ⊇ M as well. We have to run
the MUS extractor a second time if and only if ∃Gi ∈ gM : |Gi| > 1. For every
Gi ∈ gM with |Gi| = 1 we know that the clause representing this group has to be
in M . We add that clause to G0 for the second MUS extractor call. Since it was
found to be critical for the over-approximation gM , it has to be critical for each
subset of gM , especially M , as well. Recall that a clause c is critical when the
deletion of it from an unsatisfiable set of clauses U causes U \ {c} being satisfiable.

For all other groups Gj ∈ gM with |Gj | > 1 every clause ci ∈ Gj forms its
own group Gi for the second call. Together with the increased G0 which can be
possibly (when gM ⊂ seed) further increased by new forced implications recognized
via getImplies(gM) they form a new instance where every non-default group is
of size one. Running the MUS extractor on this finally returns a valid MUS M ⊂ F .

We have seen that using the block property within the shrink subroutine may
cause that two calls to a group-MUS extractor have to be used to determine a single

58 Using Blocks to boost MUS Enumeration

MUS. Nevertheless the sum of SAT solver calls in those two MUS extractor runs
is potentially much smaller in comparison to the normal shrink call, when a large
group Gi could be deleted from the seed within the first run. During the practical
analysis of our extensions we will show the effect of using this extended shrink
method.

4.6.4 Using block information to find more MCSes

To gain additional boost of the getImplies(seed) method we present an approach
that uses the block information to determine likely candidates for other MCSes.
As we have seen in Section 4.5, a clause cls is added to the map with every
blockMSS(). The clause cls can be used to infer clauses ci ∈ F which have
to be part of an MUS via the hitting set property of MUSes and MCSes.

Recall that when two clauses ci and cj are present in the same block bk, the
clauses do not appear separately in any MUS. This leads to the following Lemma.

Lemma 4.16. Let block bk have at least two clauses ci and cj. For every MCS M
with ci ∈M , there has to be another MCS M ′ = cj ∪ (M \ {ci}).

Proof. By the hitting set property of MCSes and MUSes and the minimality of
MCSes we know that there has to be at least one MUS U with U ∩M = ci. If there
is no such U , then M would not be minimal. It would be possible to eliminate ci
from M and not lose the hitting set property of the set of MUSes. But since ci
and cj are in the same block bk all MUSes that were hit by ci are hit by cj as well.
Therefore M ′ = cj ∪ (M \ {ci}) is a valid MCS by the hitting set property.

Based on this Lemma we present the following algorithm which is called when-
ever a new MCS is found. This either happens via the grow method of the basic
MARCO algorithm (line 5 in Algorithm 4.3) or whenever we detect a satisfiable seed
(line 5) using the maximal model approach from Algorithm 4.4.

Algorithm 4.6 The moreMCS routine

Input: blocks Bi and MCS C = {c1, . . . , cn}, C ⊂ F
Output: MCSes and MUSes of F as they are discovered

1: find block blk(cj) ∈ Bi for every cj ∈ C
2: for every possible combination MCSc in {blk(c1)} × . . .× {blk(cn)} do
3: MSSc← complement(MCSc) . get the MSS candidate
4: if MSSc is satisfiable then . new MCS found
5: yield MCSc . print the MCS without ending the algorithm
6: else . unsatisfiable seed for MUS extraction
7: MUS ← shrink(MSSc) . extract new MUS
8: yield MUS . print the MUS without ending the algorithm
9: Bi+1 ← splitblocks(MUS) . use MUS to split blocks

10: find more MCSes/MUSes in split blocks . see Example 4
11: return
12: end if
13: end for

Improving MUS enumeration 59

Theorem 4.17. (Correctness) The moreMCS subroutine (Algorithm 4.6) reports
only correct MCSes (line 5) and correct MUSes (line 8) of F .

Proof. By the correctness of the shrink method we know that every reported MUS
is correct. Furthermore we know that the reported MCSc cannot be a superset of
an MUS, since it is satisfiable (line 4). It is left to show that MSSc cannot be a
real subset of an MSS in F . This follows directly from Lemma 4.16.

The presented algorithm tests all possible combinations as long as the resulting
candidate MSSes MSSc are satisfiable. Whenever the algorithm detects an unsat-
isfiable MSSc ⊂ F , it is used as the seed for the shrink method to extract a new
MUS. The extracted MUS is used to split the blocks, causing at least one of the
blocks {blk(c1), . . . , blk(cn)} for the original MCS C = {c1, . . . , cn} to be split. We
prove this formally via the following lemma.

Lemma 4.18. (MUSes split original blocks) Whenever a new MUS is found, the
splitblocks method (line 9) will split at least one of the blocks {blk(c1), . . . , blk(cn)}
for the MCS C = {c1, . . . , cn} that caused the execution of the moreMCS subrou-
tine (Algorithm 4.6).

Proof. Let bi = {ck, cl, . . .} be the block that contains at least the two elements ck
and cl. Suppose that the exchange of these two elements violates the block property.
This means that there exists an MCS C with ck ∈ C, but no MCS C ′ = cl∪(C\{ck})
(see Lemma 4.16). Thus, complement(C ′) is unsatisfiable and will be used as the
seed for the shrink method to extract a new MUS M in line 7 of the Algorithm 4.6.
We know that cl will not be present in the extracted MUS M , since it is not part of
the seed = complement(C ′). But ck is present in the seed (since ck /∈ C ′) and ck
will be even critical for the MUS M , since seed \ {ck} ⊂ complement(C), which
is satisfiable. Thus, ck ∈M and cl /∈M , causing at least a split of the block bi into
bm = {ck, . . .} and bi = bi \ bm = {cl, . . .} (Algorithm 4.5 line 11).

This approach used in the moreMCS subroutine (Algorithm 4.6) of testing a
candidate for a special property (here: being an MSS) and using that candidate as
a seed for extracting a new MUS is very similar to the DAA approach (see Sec-
tion 4.3), which tests candidate MUSes for unsatisfiability and grows them into an
MSS if the candidate is satisfiable.

Example 4: Suppose C = {c1, c4} is the MCS that triggered the call of moreMCS,
blk(c1) = {c1, c2, c3}, blk(c4) = {c4, c5, c6}. That leads to |blk(c1)| ∗ |blk(c4)| − 1 =
3 ∗ 3− 1 = 8 possible new MCSes since {c1, c4} has not to be tested. Suppose that
{c1, c5}, {c1, c6} are tested successfully as MCSes, but {c2, c4} is not an MCS. We
know that (at least) c2 has to leave the block blk(c1) due to Lemma 4.18.

Suppose the new blocks after the split operation are bi = {c1, c3}, b′i = {c2}, bj =
{c4, c5}, b′j = {c6}. The new possible combinations are bi×bj , bi×b′j , b′i×bj , b′i×b′j .
Please note, that in line 10 of Algorithm 4.6 the combinations b′i× bj , b′i× b′j would
not be tested, since no MCS was found that hits these combinations of blocks.

Furthermore, the implementation ensures that no subsets are tested twice during
the recursion to prevent doubled results. For example, the MCS candidate {c1, c6}
from the combination bi × b′j is not tested again, but the candidate {c3, c6} from
the same combination is tested.

60 Practical Results

4.7 Practical Results

To evaluate the extensions to the MARCO algorithm and to compare it to the pre-
vious approaches for (partial) MUS enumeration, MARCO and eMUS, we ran all al-
gorithms on a set of 207 instances from the Boolean satisfiability domain. These
instances were drawn from a large variety of applications, with the most promi-
nent being hardware and software verification, product configuration and bounded
model checking. The benchmark set is a subset of the MUS track of the 2011 SAT
competition3 containing only instances where at least two MUSes and one MCS
are found within the time limit of one hour. This decision is based on the fact that
our techniques for boosting the computation of MUSes and MCSes use the block
information, which is inferred from the already enumerated MUSes. The presented
techniques (shrink in Section 4.6.3, moreMCS in Section 4.6.4) are triggered for
the first time when the original MARCO algorithm found the first MCS, respectively
starts to extract the second MUS from a part of the formula. Thus, we focus our
analysis of the effects on the performance on these instances.

We used the latest MARCO release4 v1.0.1 that implements the Algorithm 4.4
as the framework for our extension. It is written as a python script that uses the
MiniSAT [47] solver for the formula F as well as the map. The shrink method
uses muser2 [11] as a MUS and group-MUS extraction algorithm. All experiments
were run on 2.83GHz Intel Xeon CPUs with a 3600 second timeout and a 16 GB
memory limit.

We use the following terminology to describe the different versions of the algo-
rithm and its possible combinations:

• MARCO the variant “(all opt)” by Liffiton et al. [89] (see Section 4.4)

• MARCO+ more critical clauses obtained by getImplies(seed) method (see Sec-
tion 4.5)

• MARCOs block information used during shrink (see Section 4.6.3)

• MARCOm block information used to find more MCSes faster (see Section 4.6.4)

Thus, when mentioning for example MARCO+m the second and fourth option are used
in parallel.

The first results (Figure 4.7) show that MARCO finds more MUSes than eMUS

for 182 instances, 23 times eMUS reports more MUSes and both provide the same
amount only twice. 44 times the number of MUSes found by MARCO is one order of
magnitude higher than the number found by eMUS. In comparison to MARCO+ the
results are not so clear. In that case MARCO reports more MUSes for 86 instances, in
70 out of 207 instances MARCO+ finds more MUSes and for the remaining 51 instances
both versions find the same amount of MUSes (see numbers on the right hand side
in Figure 4.9). The additional effort to compute forced MUS members shown in
Section 4.5 is not worth it when using the original MARCO algorithm without any
further extensions.

3http://www.satcompetition.org/2011/
4http://sun.iwu.edu/˜mliffito/marco/

Improving MUS enumeration 61

1

10

10
2

10
3

10
4

10
5

1 10 10
2

10
3

10
4

10
5

#
M

U
S

e
s
 f
o
u
n
d
 b

y
 e

M
U

S

#MUSes found by MARCO (all opt)

(a)

1

10

10
2

10
3

10
4

10
5

1 10 10
2

10
3

10
4

10
5

#
M

U
S

e
s
 f
o
u
n
d
 b

y
 M

A
R

C
O

+

#MUSes found by MARCO (all opt)

(b)

Figure 4.7. Comparing MARCO (all opt) to eMUS (a) and MARCO+ (b): number of MUSes
found within time limits of 3600 seconds. Each point declares one out of the 207 instances

The additional use of MARCOm changes that. MARCO+ benefits from the MCSes
that have been produced by MARCOm earlier. The resulting version MARCO+m reports
more MUSes for 105 instances, less MUSes in 87 and for the remaining 15 instances
the same amount as the original MARCO within the time limits. Nearly 94% of the
found MCSes for all 207 instances (6, 944, 690 out of 7, 390, 727) are reported by
the Algorithm 4.6 presented in Section 4.6.4.

We present in Figure 4.8 the reverse cactus plots for each possible combina-
tion of our extensions and “MARCO (all opt)”, which was the best variant in the
experiments presented in Section 4.4.3. It is obvious that the extensions are all
very similar in their performance. Looking at the results for the number of MCSes
found by the different combinations it can be seen that every single combination
that used the moreMCS subroutine (MARCOm, MARCO+m, MARCOms, MARCO+ms), per-
forms better than any combination without this subroutine. Furthermore, all pairs
for the combinations with and without the extension that computes more necessary
members of MUSes via the getImplied(seed) method are “grouped” together in
these reverse cactus plots. This indicates that it makes nearly no difference whether
this option (+) is activated or not. This behavior seems strange, considering the
values from the pairwise comparisons for each of the 207 instances. To understand
the problem of evaluating the approaches only on raw numbers, we shift the focus
towards an analysis of the relative number of found MUSes and MCSes combined.

Figure 4.9 shows the relative number of MUSes and MCSes found by two ex-
tensions, MARCO+m and MARCO+, in comparison to MARCO (all opt). The values on
the x-axis are computed by the logarithm (to the base 2) of the fraction of MUSes
found by the extensions and by MARCO. The y-values show the ratio of found MCSes.
The black points correspond to MARCO+, the red points to MARCO+m.

Points in the positive region of the x-axis denote instances where MARCO+ (or
MARCO+m) found more MUSes in the same time limit than MARCO (all opt). The
same applies correspondingly for the y-axis and the number of MCSes. On the
right-hand side of Figure 4.9 it is shown, how many instances are located within
the four quadrants in the plane, as well as how many instances are located on the

62 Practical Results

found MUSes and MCSes of extensions to MARCO

1

10

10
2

10
3

10
4

10
5

#
M

U
S

e
s
 f

o
u

n
d

 w
it
h

in
 t

im
e

 l
im

it

MARCO (all opt)
MARCO+
MARCOm
MARCO+m
MARCOs
MARCO+s
MARCOms
MARCO+ms

1

10

10
2

10
3

10
4

10
5

10
6

 20 40 60 80 100 120 140 160 180 200

#
M

C
S

e
s
 f

o
u

n
d

 w
it
h

in
 t

im
e

 l
im

it

number of instances

MARCO (all opt)
MARCO+
MARCOm
MARCO+m
MARCOs
MARCO+s
MARCOms
MARCO+ms

Figure 4.8. Reverse cactus plots of the number of computed MUSes and MCSes within
the time limits for each possible combination of the extensions and the variant of MARCO

that was the best overall (“MARCO (all opt)”)

(positive and negative) parts of the axes. Black numbers correspond to MARCO+,
red numbers to MARCO+m. The following things can be observed:

The relative numbers of MARCO+ in comparison to MARCO (all opt) are very
small: 184 points are located within the interval [−1 ≤ x ≤ 1], [−1 ≤ y ≤ 1]. In
other words MARCO+ reported for 184 instances more/less MUSes and MCSes with
a factor of at most 2. 144 of these points are even within the interval [−0.322 ≤
x ≤ 0.322], [−0.322 ≤ y ≤ 0.322], indicating that for these instances the factor of
more/less MUSes(MCSes) is at most approximately 1.25.

The relative numbers of MARCO+m are much more spread out: 35 points are
located within the interval [−1 ≤ x ≤ 1], [−1 ≤ y ≤ 1] and only 15 are located
within the interval [−0.322 ≤ x ≤ 0.322], [−0.322 ≤ y ≤ 0.322].

For the vast majority of 87.4% (181 out of 207) of the instances MARCO+m reports
more MCSes than MARCO (all opt). The same holds for just 34.8% (72 out of 207)

Improving MUS enumeration 63

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

lo
g

2
 (

M
C

S
e
s
 <

e
x
te

n
s
io

n
>

 /
 M

C
S

e
s
 M

A
R

C
O

 (
a
ll

o
p
t)

)

log2 (MUSes <extension> / MUSes MARCO (all opt))

MARCO+
MARCO+m

13
4

7
1

31
100

91

30
4

28
77

160

42
10

31
10

Figure 4.9. log2 of the relative number of MUSes on x-axis and of MCSes on y-axis;
together with the amount of points (instances) for every quadrant in the plane and on the
axes for MARCO+ (black) and MARCO+m (red) in comparison to MARCO (all opt)

for MARCO+.
For 50.7% of the instances (105 out of 207) MARCO+m outperforms MARCO (all

opt) on both, MUSes and MCSes (for 4 instances it computes more MCSes and the
same number of MUSes and for 1 instance it MARCO+m computes more MUSes and
the same amount of MCSes). The opposite holds for just 5.3% of the instances (11
out of 207 - one of them it detects the same amount of MUSes, but less MCSes).
For 10 instances the number of found MUSes and MCSes are identical.

The remaining 81 instances where MARCO+m either found less MUSes, but more
MCSes or vice versa, cannot simply be evaluated by the raw numbers of found
MUSes and MCSes since the effort to compute one MUS, or one MCS respectively,
varies. To overcome this problem we introduce a new way to measure the results
of (partial) MUS enumerators.

4.7.1 Workload computation

Since the partial MUS enumerators introduced in this chapter produce two different
results, MUSes and MCSes, our goal is to shift the evaluation and comparison of
different approaches to schemes and measures that cover both results as well. Until
now, the number of computed MCSes is seen as a side-effect of the computation,
which is sometimes even not reported (like in CAMUS [91]). The MCSes are needed
to terminate the algorithm by marking the satisfiable regions of the map as explored,
but we have shown in Section 4.5 how the MCSes can be used to speed up every
MUS extraction. Before we present detailed results on the effect of known MCSes
for the MUS extraction later, we introduce a new scoring scheme of partial MUS
enumeration approaches which is based on the number of detected MUSes and
MCSes, as well as the runtime the algorithm spends to report a new result.

64 Practical Results

Thus, we introduce the following scoring function, called the additional expected
workload to compare the results of two algorithms A1 and A2.

Definition 4.19 (The additional expected workload). Let Algorithm A1 and Al-
gorithm A2 be two partial MUS enumerators and the respective number of found
MUSes nU(Ai) and MCSes nC(Ai). With the time used to compute all found
MUSes tU(Ai) and MCSes tC(Ai) for a fixed instance we define the additional
expected workload of A1 in comparison to A2 as:

wl(A1, A2) = nU(A1)
tU(A1) + tU(A2)

nU(A1) + nU(A2)
+nC(A1)

tC(A1) + tC(A2)

nC(A1) + nC(A2)
−(tU(A1)+tC(A1))

The first term of the formula describes the expected time that is needed to find
the number of MUSes by algorithm A1. It is computed via the average time both
algorithms need to compute a single MUS. The second term describes the same for
the MCSes found by algorithm A1. Subtracting the real times the algorithm A1

spends computing MUSes and MCSes from this sum we get a positive value if and
only if A1 performed better than A2 because the expected runtime is higher than
the actual runtime. Note that wl(A1, A2) = −wl(A2, A1).

For the aforementioned 81 instances represented by the red points in the sec-
ond and forth quadrant of the Cartesian plane shown in Figure 4.9 we get a sum

Table 4.1. The sum
of the additional expected
workload for all possible ex-
tensions in comparison to
MARCO (all opt), the best
value is marked bolt.

extension add. exp. wl.
MARCO+ -9,735.52
MARCOm 79,786.84
MARCO+m 99,911.44
MARCOs -152,012.84
MARCO+s -142,216.26
MARCOms -18,123.78
MARCO+ms -43,770.99

of the additional expected workload of 3412.86 seconds
for MARCO+m in comparison to MARCO (all opt). When
expanding the sum to all 207 instances in the bench-
mark set we get the additional expected workload of
99911, 44 seconds with a median of 376.26 seconds and
an average of 482.66 seconds. The extension MARCO+m

clearly outperforms the state-of-the-art MARCO (all opt)
algorithm.

To put these results in perspective: the overall run-
time for MARCO+m on the 207 instances is approximately
730000 seconds, with the additional expected workload
of 99911.44 seconds MARCO+m performs 13.7% better
than MARCO (all opt).

The sum of the additional expected workload for all
possible extensions in comparison to MARCO (all opt)
is shown in Table 4.1. Only two out of 7 possible extensions outperform MARCO

(all opt). Whenever the block property is used within the shrink method (Sec-
tion 4.6.3), the results are much worse than without this option activated.

4.7.2 Influence of enumerated MCSes on shrink

In Section 4.5 we introduced a technique to increase the number of critical clauses
via an extensive use of the map formula. We expect that a higher number of already
known MUS members leads to an improved performance of the shrink method,
since the MUS extractor saves for every already known critical clause potentially
one SAT solver call which would have been used otherwise to detect the necessity
of them.

Improving MUS enumeration 65

In general it is hard to find a fair way to evaluate the influence of the number
of MCSes on each shrink call, since for the majority of instances the difference of
found MUSes (see Figure 4.9) is very large. The MUS extractions at a later point in
the execution time of MARCO are expected to have a shorter runtime, since the seed
that is used as a starting point for the shrink method is expected to be smaller
than earlier. This effect is caused by using maximal models and the observation
that the region of unexplored subsets of the map shrinks with every found MUS and
MCS.

Due to this, we present in the following some results on 9 instances, whose
complete MUS/MCS enumeration finished within the time limit of an hour. The
numbers of MUSes and MCSes and the minimum and maximum runtime (in sec-
onds) for any of the extensions is reported in Table 4.2.

Table 4.2. complete enumerated instances: the numbers of MUSes and MCSes together
with the minimum and maximum runtime (in seconds) for any of the extensions

instance MUSes MCSes min time max time
1) atpg ssa2670-140.cnf 58 696 777.545 2319.576
2) atpg ssa2670-140.cnf 12296 1997 537.362 1429.512
3) bmc-default barrel2.cnf 27 137 0.155 0.491
4) bmc-default longmult0.cnf 4 90 0.088 0.169
5) design-debugging c1 DD s3 f1 e2 v1-[. . .].cnf 4 1296 981.740 1706.239
6) equivalence-checking c2670.cnf 4 6185 459.273 556.23
7) hardware-verification dlx2 aa.cnf 32 1124 7.671 10.617
8) product-configuration C168 FW UT 851.cnf 852 30 8.899 82.631
9) product-configuration C208 FA UT 3254.cnf 25600 155 307.488 1243.728

Since we want to study the effect of the number of known MCSes on the per-
formance of shrink the majority of these instances are not usable for different
reasons:

• instances 3 and 4, since both are enumerated within a few tenths of a second

• instances 5 and 6, since these only have a very small amount of MUSes

• instances 2, 8 and 9, since the ratio of MUSes and MCSes is heavily skewed
towards MUSes

We are left with the instances 1 and 7. For the instance 1 the best performance
was achieved by MARCOm 777.545 seconds, MARCO (all opt) needed 1024.013 seconds.

The behavior of the instance hardware-verification dlx2 aa.cnf is shown
in a more detailed fashion in Figures 4.10 and 4.11. The Figure 4.10 compares
the number of detected MUSes and MCSes during each point in the execution
for every extension and MARCO (all opt). It can be seen that all the extensions
with the activated moreMCS option (m) detect the MCSes much earlier. MARCOm

and MARCO+m are the fastest and detected all 1124 MCSes after 4.75 seconds. The
fastest version without the m option is MARCO (all opt) approximately 4 seconds
later. Furthermore the Figure 4.10 shows that the extensions with activated m

option enumerate nearly all the MCSes, before extracting the fourth and all later
MUSes. MARCO+m for example extracts the fourth MUS when it already has detected

66 Practical Results

SAT11-mus-marques-silva-hardware-verification-dlx2-aa.cnf

 0

 5

 10

 15

 20

 25

 30

#
M

U
S

e
s

MARCO (all opt)
MARCO+
MARCOm
MARCO+m

MARCOs
MARCO+s
MARCOms
MARCO+ms

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

#
M

C
S

e
s

time (sec)

MARCO (all opt)
MARCO+
MARCOm
MARCO+m

MARCOs
MARCO+s
MARCOms
MARCO+ms

Figure 4.10. The number of found MUSes (top) and MCSes (bottom) for the instance
dlx2 aa.cnf during the execution of all extensions and MARCO (all opt)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30

#
s
a

t
c
a

lls
 d

u
ri
n

g
 s

h
ri
n

k

MUS

SAT11-mus-marques-silva-hardware-verification-dlx2-aa.cnf

MARCO (all opt)
MARCO+
MARCOm
MARCO+m

MARCOs
MARCO+s
MARCOms
MARCO+ms

Figure 4.11. The number of SAT solver calls needed within every shrink method for
all extensions. The numbers for the MUSes number 4 - 17 are significantly smaller for all
extensions with activated moreMCS option (m).

Improving MUS enumeration 67

circa 900 MCSes. MARCO (all opt) extracts the fourth MUS earlier in the execution
(circa at the 2.55 seconds mark), when it has only detected about 600 MCSes.

Figure 4.11 compares the number of SAT solver calls within each shrink method
for all extensions for the same instance. We see a significant difference of SAT solver
calls for the extraction of MUSes 4 to 17 between all extensions with and without
the activated moreMCS option (m). The higher number of MCSes present at the
start of the fourth (and any following) MUS extraction enables the detection of
more critical clauses by the moremcs method (Section 4.6.4), which leads to a
significantly smaller number of SAT solver calls during the shrink method. After
the seventeenth detected MUS, all versions have found the vast majority of MC-
Ses. Thus, no significant difference in number of SAT solver calls can be observed
anymore.

4.7.3 Using block property within shrink

As already mentioned, the extensions of MARCO (all opt) that use the block informa-
tion within shrink calls (MARCOs, MARCO+s, MARCOms and MARCO+ms, Section 4.6.3)
do not result in any improvements of the performance over all instances (Table 4.1).
However, there is a particular set of benchmarks, the rand net set from Eugene
Goldberg, where the extended shrink method helps to improve the performance
of MARCO (all opt). The rand net benchmarks are “miter” CNFs (all unsatisfiable)
produced from randomly generated circuits that contain AND and OR gates but
no inverters. Each circuit implements a monotone function and is rectangular, i.e.
the number of primary inputs, the number of gates of m-th level, and the number of
primary outputs are all equal to a given parameter n. To check if a circuit is equiv-
alent to itself, a so-called “miter” is formed. The specification and implementation
are equivalent if this “miter” is unsatisfiable.

For this particular benchmark set, which contains 9 different instances, the
sum of the additional expected workload from MARCOms in comparison to MARCO (all
opt) is 3434.89. This is particular remarkable, since for the same variant without
using the block property within shrink (MARCOm) the sum of the additional expected
workload in comparison to MARCO (all opt) is −2227.12. With the additional usage
of the extended shrink an approach which was performing worse than MARCO (all
opt) improves significantly, such that it outperforms MARCO (all opt) now. A more
detailed analysis the number of SAT calls for each shrink for a particular instance
is shown in Figure 4.12. Since the extensions with activated getImplies(seed) (+)
have the exact same behavior as the extensions without this option, we decided to
present only the 4 versions without this option activated.

It can be seen that the extensions with activated s-option need a smaller amount
of SAT calls to determine every single MUS. Up to 10% of the SAT solver calls
could be saved this way. Please note that towards the end of the enumeration
MARCOm has closed the gap and needs approximately the same amount of SAT
solver calls within each shrink. It appears that the extended shrink method can
be beneficial especially at the beginning of an MUS enumeration procedure. This
can be explained by the fact that the blocks are rather big when only a small amount
of MUSes is detected. The bigger the amount of detected MUSes the smaller the
blocks are expected to be, since the over-approximations get tighter whenever an

68 Summary

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 0 10 20 30 40 50

#
s
a

t
c
a

lls
 d

u
ri
n

g
 s

h
ri
n

k

MUS

SAT02-industrial-goldberg-rand-net-rand-net70-30-1.shuffled.cnf

MARCO (all opt)
MARCOm

MARCOs
MARCOms

Figure 4.12. The number of SAT solver calls needed within every shrink method for
all extensions.

MUS is used to split blocks via Algorithm 4.5.

4.8 Summary

In this chapter we presented a technique to boost partial MUS enumeration. In
fact, these partial MUS enumerators not only enumerate MUSes, but MCSes as
well. We introduced the state-of-the-art approach, that was developed by Liffiton
and Malik [89], and Previti and Marques-Silva [116] in detail, since they use an
additional meta instance over selector variables to determine the already processed
parts of the search space. Indeed, this is very similar to the idea we proposed in
the last chapter.

Based on a generalization of the block idea from Chapter 3 we introduced the
block property of clauses, which can be used to identify clauses that are always
present together or not present at all in an MUS. We showed a way to prove this
property for a given block, but due to its limited effectivity we opted to use un-
proven intermediate blocks, which are over-approximations of real blocks.

We incorporated the block information in the detection of MUSes and MCSes,
and showed how both detections benefit possibly. Furthermore, we presented an
extension to the already available clause necessity detection of the map instance,
that enabled us to infer even more clauses that are known to be critical in an MUS
by the hitting set property of MUSes and MCSes.

In combination with our technique to detect MCSes faster and earlier in the
search, it is possible that any MUS extraction algorithm can save potentially a
large amount of SAT solver calls, since the criticality for these clauses does not
have to be tested during the MUS extractor call, but can be given in advance.

With the help of an extensive empirical analysis we could show that our exten-

Improving MUS enumeration 69

sions lead to a better performance of our MARCO+m variant regarding the number of
found MUSes and MCSes, as well as the expected additional workload within a time
limit of one hour for every instance. We did not analyze the performance of MARCO+m
in comparison to the state-of-the-art MUS enumerator CAMUS, since the results ob-
tained in the original work about partial MUS enumeration algorithms [89, 116]
do not change: partial MUS enumeration does not replace state-of-the-art MUS
enumerators, but offers a viable option for instances where the full enumeration
is computationally infeasible in limited time. MARCO+m offers better results than
MARCO / eMUS, but does not close the gap completely.

Since the MUS extraction is the most time consuming step within MUS enu-
meration algorithms, we further analyzed the effect of our extensions to it. On
the one hand we saw that it is beneficial to have a larger set of detected MCSes
before starting a MUS extraction step, since it allows us to infer more criticality
information. On the other hand we analyzed that the usage of the block property
during the MUS extraction is not beneficial for the majority of instances.

The ability to prove blocks in an efficient manner could be the key to over-
come this problem. Other possible directions of future work will be presented in
Chapter 7, where the work is concluded.

5 Using SAT to

reconstruct phylogenies

5.1 Introduction

Since Charles Darwin postulated his thesis of genetic evolution being the basis for
the diversity of the organisms on earth in 1859, scientists are searching for the tree
of life, a phylogenetic tree that puts all organisms into relationship with each other.
The problem of finding the tree of life can be described in general as finding the
optimal phylogenetic tree for a set of taxa, e.g. organisms. This problem is known to
be NP-hard under the most popular optimization criteria (maximum parsimony and
maximum likelihood) [52, 119]. Nevertheless there are several approaches to solve
this problem, one of them a divide-and-conquer-approach that splits the problem
into subproblems, solves them and recombines the solutions to form a complete
tree that represents all taxa under consideration [77, 16].

In this chapter we will focus on Quartet Compatibility (QC), an approach that
tries to find a tree that preserves all the information of a set of binary unrooted
trees with 4 taxa : the quartets Q. If Q denotes the set of all

(
n
4

)
quartets of

a phylogenetic tree T , then T is uniquely defined by Q and can be computed in
polynomial time [49]. Once Q is incomplete or contains elements that contradict
each other QC becomes NP-complete [133]. Closely related to this is the Maximum
Quartet Consistency (MQC) problem, where a tree that agrees with the maxi-
mum number of quartet topologies is computed. Due to the NP-completeness of
both, QC and MQC, only a few algorithmic approaches are known, mostly using
graph-theory-based methods like edge colorings [66] or special techniques on lim-
ited graph classes, like chordal graphs [124]. The most efficient solutions for MQC
use Answer Set Programming [150], Pseudo Boolean Optimization or SAT Modulo
Theories [104].

In this chapter we introduce a new way to tackle QC as well as MQC by encoding
it as a satisfiability (SAT) problem. Due to the emergence of SAT solving in
practical applications [132, 38] and highly-optimized SAT solvers the idea is to

71

72 Preliminaries

develop new practicable approaches based on the SAT-methodology.
This chapter is organized as follows. Section 5.2 defines the problem and in-

troduces the background of this work. The most efficient solutions for MQC are
presented in Section 5.3. Section 5.4 describes the developed SAT encoding for
QC. We show in Section 5.5 how the SAT formulation is used to solve the MQC
problem. The practical results of the comparison of the novel SAT formulation
to the state-of-the-art approaches is shown in Section 5.6. The chapter is finished
with a small summary in Section 5.7.

5.2 Preliminaries

We take the basic graph-related definitions for granted and refer to textbook liter-
ature [14]. A phylogeny on a given set of taxa S = {s1, . . . , sn} is a tree whose n
leaves are mapped one-to-one to all elements from S. It can be rooted or unrooted.
We call a phylogeny binary or resolved when all inner nodes have a degree of three
(in a rooted phylogeny the only exception is the root which has degree two). From
now on whenever we say phylogeny we implicitly refer to unrooted binary phylo-
genies. Each inner node in a phylogeny represents a hypothesized (or an extinct)
ancestor of the taxa which are contained in the subtrees connected to the inner
node.

We will not go into details about phylogenetics, a field of interaction between
mathematics, statistics, computer science and biology, but rather refer the reader
to the basic literature [124] for further information.
A subset of S containing four different taxa is called quartet. A phylogeny for a
quartet is called a quartet topology (or topology short). It is the smallest phylogeny
containing any information regarding evolutionary relations between its associated
taxa. With {a, b, c, d} ⊆ S being the quartet, disregarding symmetric cases, each
quartet can have three different topologies ab|cd, ac|bd and ad|bc shown in Fig-
ure 5.1. The phylogenetic information from ab|cd is that the pair of a and b is
closer related to each other than to c or d, i.e. the path from a to b in the phy-
logeny for S does not intersect the path from c to d.

a c

b d

a b

c d

a c

d b
ab|cd ac|bd ad|bc

Figure 5.1. the three different topologies ab|cd, ac|bd and ad|bc for a quartet {a, b, c, d}

Let T be a phylogeny on S and q ⊆ S a quartet. The restriction of T to q,
denoted T |q, is the topology T ′ that is constructed by deleting all leaves labeled
with an element from S\q at first and subsequently removing all vertices with degree
two, merging their adjacent edges. If T ′ and the topology of q are equivalent (i.e.
isomorphic) we say T displays q. See Figure 5.2 for an example.

Using SAT to reconstruct phylogenies 73

a

b

a c

b d

e
c

d
f

Figure 5.2. An example for a phylogeny and a displayed topology.

The Quartet Compatibility Problem can be defined as

Definition 5.1 (Quartet Compatibility (QC)). Let Q = {q1, q2, . . . , qk} be a set
of topologies. The Quartet Compatibility Problem is the decision problem whether
there exists a phylogeny T that displays all topologies qi ∈ Q.

The set of topologies Q on the set of taxa S = {s1, s2, . . . , sn} is said to be
complete, if Q contains a topology for each of the

(
n
4

)
quartets of S, otherwise Q is

incomplete.
It is known that QC can be answered in polynomial time if Q is complete.

Given a compatible complete topology set Q, the associated phylogeny is unique
and can be constructed within the same time complexity [49]. However, if Q is
incomplete, it has been shown by Steel [133] that QC is NP-complete. The more
computationally interesting Maximum Quartet Consistency Problem arises when
Q is not compatible is defined as follows:

Definition 5.2 (Maximum Quartet Consistency (MQC)). Let Q = {q1, q2, . . . , qk}
be a set of topologies. The Maximum Quartet Consistency Problem determines a
phylogeny T which displays the maximum number of topologies qi ∈ Q.

MQC is shown to be a NP-hard problem if Q is complete [17], although it
admits a polynomial-time approximation scheme [79]. The existing approaches to
solve MQC can be categorized as either heuristic or exact.

The broad range of existing heuristics contains for example the short quartet
methods of Erdös et al. [50], the approach of semi-definite programming by Ben-
Dor et al. [12], the quartet cleaning algorithm of Berry at al. [17] and an algorithm
by Wu et al. [148] that computes a phylogeny with a high success probability.

Due to the fact that this chapter focuses on exact solutions for the MQC prob-
lem, we will introduce the most important ones in the next section.

5.3 Related Work

This section will introduce the most efficient techniques to solve the MQC problem
exactly: In 2004 Wu et al. [150] proposed the use of Answer Set Programming (ASP)
for MQC, and in 2008 Morgado and Marques-Silva [103] translated the problem of
MQC to Pseudo Boolean Optimization (PBO).

However, there are some other approaches as well. Ben-Dor et al. [12] proposed
the use of Dynamic Programming to solve the problem. In their setting the topolo-
gies have a weight assigned additionally. The objective is to compute a phylogeny

74 Related Work

with a maximal score, which is a phylogeny whose sum of weights of displayed
topologies is maximal.

Gramm and Niedermeier [63] developed a fixed-parameter algorithm whose ob-
jective was to compute a phylogeny that displays less or equal to k topologies.
This algorithm runs in time O(4kn+ n4) with the number of errors k and n = |S|.
A look-ahead branch-and-bound algorithm by Wu et al. [149] can be seen as an
improvement for that. It runs in the same running time complexity, but does not
require the number of errors k to be known.

5.3.1 Answer set programming

The central point in the approach proposed by Wu et al. [150] is the ultrametric
phylogeny T . Wu et al. use a rooted binary tree as T . This does not violate our
definition from before, since every unrooted binary tree can be rooted by inserting
a single node on one of its inner edges. An ultrametric phylogeny needs a special
labeling scheme for the set of inner nodes of T to the set of integers {1, 2, . . . , n−
1}. Since T is binary and rooted, there are exactly n − 1 inner nodes. However,
the labeling scheme does not have to be bijective; two different inner nodes can
be assigned to the same integer. A labeling scheme is said to be ultrametric, if
along each path from the root to any leaf the labels of the inner nodes is strictly
decreasing [68]. One phylogeny together with an ultrametric labeling scheme is
called an ultrametric phylogeny.

With the help of the lowest common ancestors it is tested whether a topology qk
is satisfied by an ultrametric phylogeny. The lowest common ancestor of two leaves

s1 s3 s5 s4 s2

1

3

2

4

Figure 5.3. An ultrametric
phylogeny.

in a rooted tree is the inner node on the path be-
tween the two leaves that is the closest to the root.
See Figure 5.3 for an example: the lowest common
ancestor of s1 and s5 is labeled with the 3.

The authors showed that MQC can be inter-
preted as finding an optimal ultrametric phylogeny
which satisfies the maximum number of topologies
from the input Q. Let LCAl(si, sj) be the label of
the lowest common ancestor of the leaves si and sj .
Then the topology q = sasb|scsd, q ∈ Q is satisfied
by an ultrametric phylogeny T , if and only if the
following inequality holds:

min{LCAl(sa, sc), LCAl(sb, sd)} > min{LCAl(sa, sb), LCAl(sc, sd)}

They formulated the problem of finding an optimal ultrametric phylogeny as an an-
swer set program (ASP). ASP is a form of logic programming that has its strengths
in solving constraint problems in a declarative way. In ASP a given problem is ex-
pressed as a logic program. Each answer of this program corresponds to a solution
of the given problem. The declarative knowledge representation allows the ASP
solver to use different techniques to efficiently compute an answer. In general an
ASP can be translated into SAT to be solved by any SAT solver. However, the au-
thors stated that the use of a specialized ASP solver is much more effective. They
use the solver smodels [130] which is over 6 years old for the experiments. We will

Using SAT to reconstruct phylogenies 75

add the more recent ASP solver clasp [58, 59] to the experimental setup (see Sec-
tion 5.6) to ensure that the ASP approach is solved by a solver which incorporates
the latest algorithmic improvements of the ASP community.

5.3.2 Pseudo boolean optimization

The PBO approach that was first introduced in 2008 by Morgado and Marques

Table 5.1. The ultramet-
ric matrix M for the example
shown in Figure 5.3.

s1 s2 s3 s4 s5
s1 0 4 1 4 3
s2 0 4 2 4
s3 0 4 3
s4 0 4
s5 0

-Silva [103] and extended in 2010 by the same
group [104] uses the same central concept of an
ultrametric phylogeny. In fact they use a matrix
representation of the LCAl(si, sj) (see Table 5.1).
For the matrix M whose values are M [si, sj] =
LCAl(si, sj) to be a ultrametric matrix the follow-
ing properties must be satisfied: (i) all values in
M have to be between 1 and n. In fact Wu et
al. [150] have shown that the entries can be re-
stricted to M [si, sj] ≤ dn2 e. (ii) M is symmetric,
thus M [si, sj] = M [sj , si], and (iii) for each triple
(si, sj , sl) : 1 ≤ i, j, l ≤ n

(M [si, sj] = M [si, sl] ∧ M [si, sl] > M [sj , sl]) ∨
(M [si, sj] = M [sj , sl] ∧ M [sj , sl] > M [si, sl]) ∨
(M [sj , sl] = M [si, sl] ∧ M [si, sl] > M [si, sj])

The authors developed over the years different encodings, that are combinations
of its three main parts: 1. the encoding of the ultrametric matrix, 2. the encod-
ing of the consistency of the topologies, and 3. the encoding of the cost function,
that is used in the target function. The authors use the most well-known PBO
solver minisat+ [48] for their approach. minisat+ translates the pseudo-boolean
constraint into clauses that can be handled by any SAT solver.

However, it is also possible to convert PBO problems into MaxSAT problems.
In fact the benchmark set which is used to evaluate the MaxSAT solvers every year
in the MaxSAT-evaluation1 contains several instances that solve the MQC problem.

Our experiments in Section 5.6 will cover the most effective PBO encodings
which will be solved with the help of minisat+, as well as the MaxSAT benchmarks.
Since we will use MaxSAT for our approach to solve MQC (see Section 5.5), the
comparison with existing MaxSAT instances is a good indicator of the performance
of our approach.

5.4 SAT Formulation

Let Q = {q1, q2, . . . , qk} be a set of topologies on the set of taxa S = {s1, . . . , sn}
for which we seek to decide, whether there exists a phylogeny Tn, that displays all
topologies qi ∈ Q. In the following, we describe a logic formula F(Q) that will solve
this problem by encoding it as a SAT instance. Recall that any SAT problem can

1http://maxsat.ia.udl.cat/introduction/

76 SAT Formulation

be described in conjunctive normal form (CNF), which is a conjunction of clauses;
each clause being a disjunction of (possibly negated) literals. We will define F(Q)
by its set of variables and a corresponding set of rules. The rules will ensure the
proper assignment of the variables and will be given in propositional logic, which
can be converted into CNF clauses straightforwardly [115].

Before introducing the SAT formulation we want to outline the idea behind it.
The encoding will be composed of five different parts. The first part will ensure
a construction of a phylogeny Tn for the complete set of taxa Sinput from the
input (|Sinput| = n) by using a sequence of split operations on “intermediate” trees
T3, . . . , Tn−1. The second part will determine for each inner edge e in the phylogeny
Tn which taxa are existent in the two remaining subtrees if the edge e would be
deleted from Tn. We call this the covering property of edges. This information will
be used to determine, whether Tn displays all input topologies qi ∈ Q in the third
part of the encoding. The forth and fifth part will use two different approaches to
increase the performance of the SAT solver by pruning a part of the search space
that cannot lead to satisfying variable assignments.

5.4.1 The split encoding

This SAT formulation is based on the split operation representing the fact that a
phylogeny Tn for S = {s1, s2, . . . , sn} can be constructed via splitting a single edge
e from the phylogeny Tn−1 for S = {s1, s2, . . . , sn−1} by inserting a new inner node
vn. This inner node vn will be connected to both endpoints of e, as well as to a
new leaf ln which will be associated with the new taxa sn.

A phylogeny for a set of taxa S with |S| = i, i ≥ 3 has 2i − 3 edges, thus
there are 2n − 3 possibilities to construct Tn, given a phylogeny Tn−1. Figure 5.4
illustrates the possibilities for the first two split operations: there are three different
operations to create T4 for S = {a, b, c, d} by splitting one of the three leaf edges of
T3 for S = {a, b, c}, and five possibilities to construct T5 for S = {a, b, c, d, e} given
one of the three versions of T4 for S = {a, b, c, d}.

Building a phylogeny Tn

The variables of F(Q) should model a phylogeny Tn which displays all topologies
qi ∈ Q, if it exists. We will handle splits of edges that are between inner nodes
(called inner edges) and splits of edges that are between one inner node and one
leaf (called leaf edges) separately. Thus, we will use different variables to determine
what kind of edge will be split. The variables ι(si, ej) determine whether the inner
edge ej is split to insert si into the phylogeny Ti−1. Similarly, the variables λ(si, ek)
determine whether the leaf edge ek is split to insert si into the phylogeny Ti−1. Since
a phylogeny Ti−1 contains i− 4 inner and i− 1 leaf edges, ι(si, ej) are defined for
all 5 ≤ i ≤ n, 1 ≤ j ≤ i− 4, and λ(si, ek) is defined for all 4 ≤ i ≤ n, 1 ≤ k ≤ i− 1.

For every taxa si ∈ S with 4 ≤ i ≤ n at least one of these variables has to be
set to true which is ensured by the following rule:

((
∨
ι(si, ej)) ∨ (

∨
λ(si, ek))

∀i : 4 ≤ i ≤ n

Using SAT to reconstruct phylogenies 77

a c

b d

a b

c d

a c

d b

a b

c

(i) (ii)

(iii)

(a)

a c

b d

(i)

(v)

(ii) (iii)

(iv)

a c

e d

b

e c

b d

a

a c

b d

e

a c

b e

d

a e

b d

c

(b)

Figure 5.4. (a) The three possibilities to construct T4 by splitting an one of the three
leaf edges of T3. (b) The five possibilities to construct T5 by splitting either the inner
edge or one of the four leaf edge of T4.

Together with the following rule which ensures that at most one of these variables
is set to true we have the splitting rule. This forces that every taxa si ∈ S with
4 ≤ i ≤ n splits exactly one of the edges ∈ Ti−1.

¬ι(si, ej) ∨ ¬ι(si, ek)

∀i, j, k : 4 ≤ i ≤ n, 1 ≤ j ≤ i− 4, 1 ≤ k ≤ i− 4, j 6= k

¬ι(si, ej) ∨ ¬λ(si, ek)

∀i, j, k : 4 ≤ i ≤ n, 1 ≤ j ≤ i− 4, 1 ≤ k ≤ i− 1

¬λ(si, ej) ∨ ¬λ(si, ek)

∀i, j, k : 4 ≤ i ≤ n, 1 ≤ j ≤ i− 1, 1 ≤ k ≤ i− 1, j 6= k

Please note that the phylogeny T4 has exactly one inner edge which will be called
inner edge e1. Every split introduces a new inner edge which has to be identified
uniquely for further split operations and resulting variable assignments the following
way.

• splitting a leaf edge is trivial, no special considerations needed (see Figure
5.5(a)). The new inner edge gets the index i− 3.

• splitting an inner edge ej will cause the new inner edge ei−3 to be inserted
on the path from inner edge ej to inner edge e1 right next to ej (see Figure
5.5(b))

Determine the covered labels

So far we have managed to encode the splitting operations. The next part of the
SAT formulation determines for each inner edge ei in the phylogeny Tn which taxa

78 SAT Formulation

e1
sk

ek

ei si

e i−
3

(a)

si

e1
e
i−
3

e j

(b)

Figure 5.5. (a) The phylogeny Ti after splitting leaf edge ek. (b) The phylogeny Ti after
splitting inner edge ej .

sj are existent in which of the two remaining subtrees if the edge ei would be
deleted from Tn. We call this the covering property of edges.

To encode this information we introduce the variables ρ(ei, sj) for each pair of
inner edge ei ∈ Tn and taxa sj ∈ S. These variables represent for every inner
edge ei whether the path from the leaf edge ej (the edge where the leaf associated
to the taxa sj is connected to) to inner edge e1 contains inner edge ei. In other
words, these variables describe whether taxa sj would be in a different connected
component than inner edge e1 after deleting inner edge ei from the phylogeny Tn.
For inner edge e1 these variables represent whether the taxa si would be in the same
connected component as s1 after deleting the inner edge e1. Exemplary variable
assignments for the example in 5.5(b) are ρ(ei−3, si) = true and ρ(ej , si) = false.

To ensure the correct assignment of the ρ(ei, sj) variables which will be used
to test whether the phylogeny Tn displays all the topologies from the input set, we
have to introduce variables ϕ(ek, el) for every distinct pair of inner edges ek, el ∈ Tn
which represent the same cover relation for inner edges.

Any time a leaf edge ek is split (see Figure 5.5(a)) to insert si into the phylogeny
Ti−1 the following assignments have to be made via the split leaf edge rule:
(i) the new inner edge ei−3 will cover the taxa si and sk

λ(si, ek)→ (ρ(ei−3, si) ∧ ρ(ei−3, sk))

∀i, k : 4 ≤ i ≤ n, 1 ≤ k ≤ i− 1

(ii) the new inner edge ei−3 will not cover the taxa sj that were already present
before si is added

λ(si, ek)→ ¬ρ(ei−3, sj)

∀i, j, k : 4 ≤ i ≤ n, 1 ≤ j ≤ i− 1, 1 ≤ k ≤ i− 1, j 6= k

(iii) the already present inner edges ej will cover the new inner edge ei−3 as well
as the taxa si if and only if they cover taxa sk

(λ(si, ek) ∧ ρ(ej , sk))→ (ϕ(ej , ei−3) ∧ ρ(ej , si))

(λ(si, ek) ∧ ¬ρ(ej , sk))→ (¬ϕ(ej , ei−3) ∧ ¬ρ(ej , si))

∀i, j, k : 5 ≤ i ≤ n, 1 ≤ j ≤ i− 4, 1 ≤ k ≤ i− 1

Using SAT to reconstruct phylogenies 79

Any time an inner edge ek is split (see Figure 5.5(b)) to insert si into the
phylogeny we have to force the following via the split inner edge rule:
(i) the new inner edge ei−3 will cover the inner edge ek as well as the taxa si,
whereas the inner edge ek will not cover inner edge ei−3 nor the taxa si

ι(si, ek)→ (ϕ(ei−3, ek) ∧ ρ(ei−3, si) ∧ ¬ϕ(ek, ei−3) ∧ ¬ρ(ek, si))

∀i, k : 5 ≤ i ≤ n, 1 ≤ k ≤ i− 4

(ii) the new inner edge ei−3 covers the already present taxa sj 6= sk if and only if
the inner edge ek covers it, same with already present inner edges ej

(ι(si, ek) ∧ ρ(ek, sj))→ (ρ(ei−3, sj))

(ι(si, ek) ∧ ¬ρ(ek, sj))→ (¬ρ(ei−3, sj))

(ι(si, ek) ∧ ϕ(ek, ej))→ (ϕ(si−3, ej))

(ι(si, ek) ∧ ¬ϕ(ek, ej))→ (¬ϕ(si−3, ej))

∀i, j, k : 5 ≤ i ≤ n, 1 ≤ j ≤ i− 4, 1 ≤ k ≤ i− 4, j 6= k

(iii) the already present inner edges ej will cover the new inner edge ei−3 as well
as the taxa si if and only if they cover the inner edge ek

(ι(si, ek) ∧ ϕ(ej , ek))→ (ϕ(ej , ei−3) ∧ ρ(ej , si))

(ι(si, ek) ∧ ¬ϕ(ej , ek))→ (¬ϕ(ej , ei−3) ∧ ¬ρ(ej , si)

∀i, j, k : 5 ≤ i ≤ n, 1 ≤ j ≤ i− 4, 1 ≤ k ≤ i− 4, j 6= k

Topology display test

So far, we have managed to encode the splitting operations to create Tn, and the
covering information of all inner edges ∈ Tn. It remains to ensure that every
topology qi ∈ Q is displayed by the phylogeny Tn. Thus, we introduce variables
δ(ei, qk) that represent whether inner edge ei separates the phylogeny Tn into two
components, with one of the components containing sa and sb, but not sc nor sd
for the topology qk = sasb|scsd. They are properly assigned by the following edge
separation rule:

(ρ(ei, sa) ∧ ρ(ei, sb) ∧ ¬ρ(ei, sc) ∧ ¬ρ(ei, sd)) ∨
(¬ρ(ei, sa) ∧ ¬ρ(ei, sb) ∧ ρ(ei, sc) ∧ ρ(ei, sd))

→ δ(ei, qk)

∀i, k : 1 ≤ i ≤ n− 3, qk = sasb|scsd ∈ Q

Of course, for every input topology qk on of the δ(ei, qk) has to be set to true.
Otherwise the topology qk would not be displayed by the phylogeny Tn. This is
ensured by the displayed quartet rule:

(
∨
δ(ei, qk))

∀i, k : 1 ≤ i ≤ n− 3, qk ∈ Q

80 SAT Formulation

Theorem 5.3. (Correctness) Let Q = {q1, q2, . . . , qk} be a set of topologies on the
set of taxa S = {s1, . . . , sn}. Then, there exists a phylogeny Tn which displays all
topologies qi ∈ Q if and only if F(Q) is satisfiable.

Proof. To prove this theorem we have to show that: (i) a phylogeny Tn which
displays all topologies qi ∈ Q yields a satisfying assignment of F(Q) and (ii) a
satisfying assignment of F(Q) yields a phylogeny Tn which displays all topologies
qi ∈ Q.

(i) From a phylogeny to an assignment: Assume, that Tn is the phylogeny
for the set of taxa S = {s1, s2, . . . , sn} which displays all topologies Q. We define

an assignment (ι̂, λ̂, ρ̂, ϕ̂, δ̂) to the ι-, λ-, ρ, ϕ and δ-variables consistent with the
intended meaning of the variables:

• ι̂(si, ej) = true, if and only if the restriction of Tn to Si = {s1, . . . , si}
(Tn|Si) is created by splitting the inner edge ej from the Tn|Si−i with Si−1 =
{s1, . . . , si−1}

• λ̂(si, ek) = true, if and only if the restriction of Tn to Si = {s1, . . . , si}
(Tn|Si) is created by splitting the leaf edge ek from the Tn|Si−i with Si−1 =
{s1, . . . , si−1}

• ρ̂(e1, sj) = true, if and only if the leaf that is associated with the taxa sj is
in the same connected component as s1 when the inner edge e1 is removed
from the phylogeny Tn

• ρ̂(ei, sj) = true with ei 6= e1, if and only if the leaf that is associated with
the taxa sj is in a different connected component as the inner edge e1 when
the inner edge ei is removed from the phylogeny Tn

• ϕ̂(e1, ej) = true, if and only if the inner edge ej is in the same connected
component as s1 when the inner edge e1 is removed from the phylogeny Tn

• ϕ̂(ei, ej) = true with ei 6= e1, if and only if the inner edge ej is in a different
connected component as the inner edge e1 when the inner edge ei is removed
from the phylogeny Tn

• δ̂(ei, qk)) = true, if and only if Tn is partitioned in the connected components
C1 and C2, for which w.l.o.g. C1 contains {sa, sb} and C2 contains {sc, sd}
for the quartet qk = sasb|scsd

To prove that the assignment (ι̂, λ̂, ρ̂, ϕ̂, δ̂) satisfies F(Q), we consider all rules of
F(Q):

• The splitting rule is satisfied by (ι̂, λ̂, ρ̂, ϕ̂, δ̂), since there is exactly one split
of an inner edge or leaf edge which creates the phylogeny Tn|Si given the next
smaller phylogeny Tn|Si−1.

• To prove that the split leaf edge rule is satisfied we have to consider all three
subcases of it:

Using SAT to reconstruct phylogenies 81

Case (i) and (ii) are trivially satisfied, since when deleting the newly inserted
inner edge ei−3 from Tn|Si, only the taxa sk, k < i associated to the split leaf
edge ek and the newly added si are in a different connected component than
s1 (case (i)). All other taxa sj , j 6= {1, i, k} are in the same component as s1
(case (ii)).

Case (iii): This case ensures the transitivity of the cover relationship. With
the property that Tn and every intermediate phylogeny Ti with 3 ≤ i ≤ n− 1
are trees this case is satisfied trivially as well.

• We consider each of the three subcase of the split inner edge rule:

Case (i): This subcase ensures the antisymmetry of the cover relationship for
inner edges which is trivially satisfied, since the newly inserted inner edge
ei−3 is directly adjacent to the split inner edge ek (see Figure 5.5(b)).

Case (ii): Since the newly inserted inner edge ei−3 is directly adjacent to the
split inner edge ek, it has to cover the same taxa as ek. This transitivity is
ensured here and by the property that we are working on phylogenies (that
are trees) this subcase is satisfied trivially.

Case (iii): This case is done analogously to the case (iii) from the split leaf
edge rule.

• The edge separation rule is satisfied due to the definition of the assignment
(ι̂, λ̂, ρ̂, ϕ̂, δ̂).

• It remains to show that the displayed quartet rule is satisfied which is trivially
true, since Tn was given as a phylogeny that displays all quartets from the
input Q.

(ii) From an assignment to a phylogeny: Let (ι̂, λ̂, ρ̂, ϕ̂, δ̂) be a satisfying
assignment to F(Q). Let Tn be the corresponding phylogeny that is created by a
sequence of split operations for the taxa s4, . . . , sn ∈ S. Every split that introduces
a new taxa si into the phylogeny Ti−1 can be uniquely identified, since exactly one
of the split variables for inner edges or leaf edges has to be true due to the splitting
rule. We start from a 3-star (which equals the complete bipartite graph K1,3) that
is acyclic and connected (see Figure 5.4(a)). Since the split operations conserve
the connectivity and acyclicity, we know that Tn is a tree. Furthermore we know
that the degree requirements of a unrooted binary tree are not violated, thus Tn
is a phylogeny. For the sake of contradiction, assume that Tn is not displaying a
particular qk = sasb|scsd, qk ∈ Q Then Tn has to display either q′ = sasc|sbsd or
q′′ = sasd|sbsc, which are the other two topologies for the quartet {ss, sb, sc, sd}
(see Figure 5.1). W.l.o.g. we assume that Tn displays q′. In this case one of the
following to cases must hold for at least one inner edge ei:

C.1 ρ(ei, sa) = true, ρ(ei, sc) = true, ρ(ei, sc) = false, ρ(ei, sd) = false

C.2 ρ(ei, sa) = false, ρ(ei, sc) = false, ρ(ei, sc) = true, ρ(ei, sd) = true

However, neither C.1 nor C.2 is possible, since both confidurations do not comply
with the edge separation rule of F(Q). Therefore, Tn does not display q′ nor q′′

which means directly that Tn displays qk, as desired.

82 SAT Formulation

The split encoding is able solve the Quartet Consistency problem. However,
with the help of an extensive practical analysis in Section 5.6 we will see that the
current SAT formulation has only limited efficiency.

Design

Implement

A
n
al

yz
e

E
xpe

r im
ent

Figure 5.6. The main algorithm engineering cycle.

The first iteration of the main algorithm engineering cycle (see Figure 5.6) is
finished with the experiments of the basic SAT formulation F(Q). We analyzed
the experimental results and recognized that the SAT solvers spend a lot of their
time in areas of the search space where no model can be found. Assuming that
the decisions in the DPLL algorithm are made exclusively on the ι and λ variables
which represent the splitting options, all the other variables will be assigned based
on either the pure literal rule or the unit propagation rule. Thus, the conflicts can
be detected only via the clauses that were added by the displayed quartet rule.
Note that the proper assignment of the δ(ei, sx) variables is forced by the ρ(ei, sy)
variables and the proper assignment of the ρ(ei, sy) variables is forced by the ι and
λ variables for a taxon sy+3. Thus, a conflict can occur only when all n taxa are
inserted into the phylogeny. To overcome that problem we introduce two extensions
to the formulation that enable us to

(i) detect conflicts much earlier; specifically at the time when the last taxa of a
quartet is inserted into the phylogeny by the split operation (Section 5.4.2),

(ii) forbid splittings that do not lead to a phylogeny that will display a quartet
qi ∈ Q (Section 5.4.3).

5.4.2 Using non-displayed quartets to prune search space

This section introduces an extension to the SAT formulation F(Q) which is based
on the following:

Definition 5.4. (Violated topology) Let Q = {q1, q2, . . . , qk} be a set of topolo-
gies on the set of taxa S = {s1, . . . , sn} and Tn a phylogeny on S. A topology
qi = sasb|scsd ∈ Q is violated by an inner edge ej, if and only if ej separates
the phylogeny Tn into two (connected) components, where both components contain
exactly one member of {sa, sb} and one member of {sc, sd}.

Using SAT to reconstruct phylogenies 83

Theorem 5.5. Assume Tn is a phylogeny. If Tn contains an inner edge ei which
violates the topology qk = sasb|scsd, then @ej, such that δ(ej , qk) = true. In other
words, qk cannot be displayed by any inner edge ∈ Tn.

Proof. It follows directly with the observation that a phylogeny Tn displays exactly
one of the three topologies for the quartet {sa, sb, sc, sd}: (i) sasb|scsd (ii) sasc|sbsd
(iii) sasd|sbsc . If the inner edge ei violates the topology qk = sasb|scsd, then it
displays one of the other topologies (denoted q′) and thus, the whole Tn cannot
display qk, since it displays q′.

We will extend the formula F(Q) with new variables and rules to encode the
Theorem 5.5. The resulting formula will be denoted Fv(Q). We introduce a new
variable δ(qk) for every qk ∈ Q which describes whether the topology qk is displayed
by at least one inner edge of the phylogeny Tn. The old displayed quartet rule from
F(Q) will be dropped in favor of the new displayed quartet rule:

(
∨
δ(ei, qk))↔ δ(qk)

δ(qk)

∀i, k : 1 ≤ i ≤ n− 3, qk ∈ Q

Note that the second part of the new displayed quartet rule is represented by unit
clauses which fix δ(qk) to be true. Via unit propagation (which is a basic operation
performed by all SAT solvers [47]) other constraints may become simpler or even
already satisfied. We are using this unit clause to force a conflict via the violating
topology rule:

((ρ(ei, sa) ∧ ¬ρ(ei, sb) ∧ ρ(ei, sc) ∧ ¬ρ(ei, sd)) ∨
(ρ(ei, sa) ∧ ¬ρ(ei, sb) ∧ ¬ρ(ei, sc) ∧ ρ(ei, sd)) ∨
(¬ρ(ei, sa) ∧ ρ(ei, sb) ∧ ρ(ei, sc) ∧ ¬ρ(ei, sd)) ∨
(¬ρ(ei, sa) ∧ ρ(ei, sb) ∧ ¬ρ(ei, sc) ∧ ρ(ei, sd)))

→ ¬δ(qk)

∀i, k : 1 ≤ i ≤ n− 3, qk = sasb|scsd ∈ Q

With the help of this conflict the SAT solver “recognizes” much earlier that the
current Tn is not displaying Q. The old formulation F(Q) does not allow this early
recognition. Once a topology qk is not displayed by an inner edge ei the SAT solver
would still have the chance to satisfy the clauses added by the displayed quartet rule
in F(Q) via the other δ(ej , qk), (ej 6= ei) variables. Thus, the SAT solver is allowed
spend a lot of computation time in areas of the search space where no satisfying
assignment can be found. The extended formulation Fv(Q) removes these areas of
the search space by introducing the conflict which should result in a much better
performance.

Theorem 5.6. (Correctness) Let Q = {q1, q2, . . . , qk} be a set of topologies on the
set of taxa S = {s1, . . . , sn}. Then, there exists a phylogeny Tn which displays all
topologies qi ∈ Q if and only if Fv(Q) is satisfiable.

Proof. Follows directly from the correctness of F(Q).

84 SAT Formulation

5.4.3 Using the input to prune the search space

This section introduces another approach to reduce the available search space for
the SAT solver. We will use the information given by the set of input topologies
Q to forbid particular splits of leaf edges as well as inner edges to prevent that
the SAT solver spends time in a subtree of the search space that cannot lead to a
satisfying variable assignment for the particular SAT formula.

This approach is based on the following two theorems. We will extend the
formula F(Q) with new variables and rules to encode both theorems. The resulting
formula will be denoted Fs(Q). In fact, the formula Fv(Q) which incorporates the
extension introduced in Section 5.4.2 can be extended as well. The resulting formula
will be denoted Fs

v (Q)

Theorem 5.7 (Pruned leaf edge splits). W.l.o.g. we assume that sd is the taxa
with the highest index in the topology qk = sasb|scsd, qk ∈ Q. The following splits
will never lead to a phylogeny Tn that displays qk and should be forbidden:

1. sd splits leaf edge ea or leaf edge eb

2. sd splits leaf edge ex if ∃ inner edge ei, such that ei covers exactly one of
{sx, sc} and exactly one of {sa, sb} with sx being the taxa that is connected
via the leaf edge ex

Proof. We have to consider both forbidden cases:

Case 1: Assume that sd splits the leaf edge ea ∈ Td−1. With the split leaf edge rule
(see Figure 5.5(a), Section 5.4.1) a new inner edge ed−3 is inserted, which covers
exactly sd and sa. Neither sc, nor sb is covered by the new inner edge ed−3 ∈ Td.
Thus, the inner edge violates the topology qk. With Theorem 5.5 we know that Td
does not display qk, and thus Tn will not display qk either, falsifying our assump-
tion. The case for splitting the leaf edge eb is done analogously.

Case 2: Assume that sd splits the leaf edge ex. Furthermore assume ∃ inner edge
ei, such that ei covers sx and exactly sa, but does not cover sb, nor sc. With
the split leaf edge rule (see Figure 5.5(a), Section 5.4.1) we know that the inner
edge ei covers sa and sd now (since it covers sx as well), but neither sb, nor sc.
Thus, ei is violating the topology qk for the phylogeny Td. With Theorem 5.5 we
know that Td does not display qk, and thus Tn will not display qk either, falsifying
our assumption. The other three possible combinations of covered taxa are done
analogously.

The corresponding pruned leaf edge split rule which incorporates Theorem 5.7
is

(¬λ(sd, ea) ∧ ¬λ(sd, eb))

∀k : qk = sasb|scsd ∈ Q with a, b, c < d

Using SAT to reconstruct phylogenies 85

((ρ(ei, sx) ∧ ρ(ei, sa) ∧ ¬ρ(ei, sb) ∧ ¬ρ(ei, sc)) ∨
(ρ(ei, sx) ∧ ¬ρ(ei, sa) ∧ ρ(ei, sb) ∧ ¬ρ(ei, sc)) ∨
(¬ρ(ei, sx) ∧ ρ(ei, sa) ∧ ¬ρ(ei, sb) ∧ ρ(ei, sc)) ∨
(¬ρ(ei, sx) ∧ ¬ρ(ei, sa) ∧ ρ(ei, sb) ∧ ρ(ei, sc)))

→ ¬λ(sd, ex)

∀x, k : qk = sasb|scsd ∈ Q with a, b, c < d, 1 ≤ x ≤ d− 1

The first part of the pruned leaf edge split rule is again represented by a set of
unit clauses that fix some λ variables to be assigned to false.

Theorem 5.8 (Pruned inner edge splits). W.l.o.g. we assume that sd is the taxa
with the highest index in the topology qk = sasb|scsd, qk ∈ Q. The following splits
will never lead to a phylogeny Tn that displays qk and should be forbidden:

1. sd splits inner edge ex if ex covers sc and exactly one of {sa, sb}
2. sd splits inner edge ex if ∃ inner edge ey, such that ey covers exactly one out

of {ex, sc} and exactly one out of {sa, sb}
3. sd splits inner edge ex if ex covers either exactly all or none of {sa, sb, sc}

and ∃ inner edge ey, such that ey covers sc and exactly one of {sa, sb}

Proof. We have to consider all four cases:
The cases 1 and 2 are done analogously to the cases 1 and 2 from Theorem 5.7.

Case 3: Assume sd splits the inner edge ex which covers {sa, sb, sc}. Furthermore
assume @ inner edge ey, such that ey covers sc and exactly one out of {sa, sb}.
With the split inner edge rule (see Figure 5.5(b)) we know that ex will not cover
sd. Thus, an inner edge which displays qk has to be in the set of inner edges
that are covered by ex. Since ey cannot cover sd, it violates the topology qk. By
Theorem 5.5 we know that qk cannot be displayed, falsifying the assumption. The
other subcases are done analogously.

The corresponding pruned inner edge split rule which incorporates Theorem 5.8
is

((ρ(ex, sc) ∧ ρ(ex, sa) ∧ ¬ρ(ex, sb)) ∨
(ρ(ex, sc) ∧ ¬ρ(ex, sa) ∧ ρ(ex, sb))

→ ¬ι(sd, ex)

∀x, k : qk = sasb|scsd ∈ Q with a, b, c < d, 1 ≤ x ≤ d− 4

((ϕ(ey, ex) ∧ ρ(ey, sa) ∧ ¬ρ(ey, sb) ∧ ¬ρ(ey, sc)) ∨
(ϕ(ey, ex) ∧ ¬ρ(ey, sa) ∧ ρ(ey, sb) ∧ ¬ρ(ey, sc)) ∨
(¬ϕ(ey, ex) ∧ ρ(ey, sa) ∧ ¬ρ(ey, sb) ∧ ρ(ey, sc)) ∨
(¬ϕ(ey, ex) ∧ ¬ρ(ey, sa) ∧ ρ(ey, sb) ∧ ρ(ey, sc)))

→ ¬ι(sd, ex)

∀y, x, k : qk = sasb|scsd ∈ Q with a, b, c < d, 1 ≤ x, y ≤ d− 4

86 Solving MQC

((ρ(ex, sa) ∧ ρ(ex, sb) ∧ ρ(ex, sc) ∧ ρ(ey, sa) ∧ ¬ρ(ey, sb) ∧ ρ(ey, sc)) ∨
(ρ(ex, sa) ∧ ρ(ex, sb) ∧ ρ(ex, sc) ∧ ¬ρ(ey, sa) ∧ ρ(ey, sb) ∧ ρ(ey, sc)) ∨

(¬ρ(ex, sa) ∧ ¬ρ(ex, sb) ∧ ¬ρ(ex, sc) ∧ ρ(ey, sa) ∧ ¬ρ(ey, sb) ∧ ρ(ey, sc)) ∨
(¬ρ(ex, sa) ∧ ¬ρ(ex, sb) ∧ ¬ρ(ex, sc) ∧ ¬ρ(ey, sa) ∧ ρ(ey, sb) ∧ ρ(ey, sc)))

→ ¬ι(sd, ex)

∀y, x, k : qk = sasb|scsd ∈ Q with a, b, c < d, 1 ≤ x, y ≤ d− 4

Theorem 5.9. (Correctness) Let Q = {q1, q2, . . . , qk} be a set of topologies on the
set of taxa S = {s1, . . . , sn}. Then, there exists a phylogeny Tn which displays all
topologies qi ∈ Q if and only if Fs(Q) is satisfiable.

Proof. Follows directly from the correctness of F(Q).

5.5 Solving MQC

To solve the Maximum Quartet Consistency (MQC) problem we use the concept of
a Minimal Correction Set (MCS). Recall that an MCS is a subset of an infeasible
constraint set (SAT formula) whose removal from that formula results in a satisfi-
able set of constraints. Thus, the removal “corrects” the infeasibility. MCSes are
minimal in the sense that any proper subset does not have that correcting property.

Definition 5.10 (Minimal Correction Set (MCS)). A subset M ⊂ C is an MCS if
C \M is satisfiable and ∀ci ∈M : C \ (M \ {ci}) is unsatisfiable.

There are several algorithms available that enumerate all MCSes of a SAT
formula, e.g. MCSls [99], picoMCS [111] or CAMUS [91]. We are only interested in the
smallest MCS of all MCSes. For this purpose we will use CAMUS and an upgraded
version of picoMCS.

We want to recall here the basic idea of CAMUS (see Section 4.3.2). CAMUS is
known as a complete MUS enumerator, that works in two phases. The first phase
computes all MCSes in a “top-down” search through the power set lattice of a
constraint set by searching level-by-level (a level contains all subsets of a particular
size). In the second phase, the MUSes will be computed by a hitting set approach.
We will neglect the whole second part of the computation and the majority of the
first phase, since we are only interested in the smallest possible MCS. Since CAMUS

computes the MCSes in its first phase in sorted fashion, starting with the smallest
MCSes, we can abort the whole computation after the first MCS is reported by the
algorithm.

To be able to report the MCSes in a sorted fashion, CAMUS introduces a second
layer of variables and clauses to the original formula. The variables in this second
layer are so-called selector variables. Every constraint Ci in the formula F will be
extended by a new selector variable si, thus C ′i = Ci ∪ {si}. Since these selector
variables are only present in its corresponding extended clause, they can be used
to implicitly delete the clause C ′i from F by assigning si to true. Assigning si
to false would restore the “old” clause Ci and its satisfiability. Adding new

Using SAT to reconstruct phylogenies 87

cardinality constraints to the second layer, that only work on selector variables
enables CAMUS to search for MCSes in ascending order.

This approach of CAMUS was implemented by us into picoMCS to force the solver
into finding the MCSes in ascending order. By doing so, we can abort the compu-
tation of further MCSes after the first MCS is found again, since we know, that all
further MCSes have to have at least the same size as the first reported MCS.

Recall that an MCS can also be defined as the complement of a Maximal
Satisfiable Subset (MSS):

Definition 5.11 (Maximal Satisfiable Subset (MSS)). A subset M ⊆ F is an MSS
⇔ M is satisfiable and ∀c ∈ (F \M) : M ∪ c is unsatisfiable.

The problem of finding the MSS with the highest cardinality is also known as
the maximum satisfiability problem (MaxSAT). Clearly, any MaxSAT solution is
an MSS, but the converse does not necessarily hold.
MaxSAT, as well as MCS, can be lifted to so-called group SAT instances, where
constraints are modeled as a set or group of clauses, leading to group MaxSAT
(gMaxSAT) [73] and group MCS (gMCS).

Definition 5.12 (group SAT instance). A group SAT instance is an explicitly
partitioned CNF formula F = D∪⋃G∈G G with G = {G1, . . . , Gk}, D and each Gi

disjoint sets of clauses.

D is the default group (often denoted as being group G0). In gMCS and
gMaxSAT this group has to be considered specifically. Whereas G0 is not allowed
to be part of any correction set, the clauses of this group have to be satisfied in
gMaxSAT, leading to a partial gMaxSAT instance.

Definition 5.13 (group Minimal Correction Set (gMCS)). A subset gM ⊆ G of a
group SAT instance F is a gMCS if D ∪ (G \ gM) is satisfiable and ∀Gi ∈ gM :
D ∪ (G \ (gM \ {Gi}) is unsatisfiable.

Definition 5.14 ((partial) group MaxSAT). Given a group SAT instance F , group
MaxSAT (gMaxSAT) is the problem of finding a variable assignment that satisfies
D (hard constraints) and minimizes the amount of unsatisfied groups Gi ∈ G. If D
is non-empty the problem is called partial gMaxSAT.

Solving MQC requires the usage of a group SAT instance. The corresponding
(grouped) SAT formula will be created as follows. Any input topology qi ∈ Q
causes the addition of a set of clauses to the formula due to the displayed quartet
rule. For every topology qi this set will form a distinct group Gi. All other clauses
of the formula, that were added due to the other rules to F(Q), will be the so-called
phylogeny-construction group D = G0.

Note, that the groups Gi : i > 0 contain only a single clause. In that case a
partial gMaxSAT instance can be also interpreted as a “normal” partial MaxSAT
instance, where the soft clauses are not grouped together. The same holds for the
extended formula Fv(Q). In that case, only the unit clauses, that are added via
the new displayed quartet rule are soft clauses, all other clauses of Fv(Q) are hard.

88 Practical Results

Any formula, that incorporates the second extension (pruned leaf edge split rule
and pruned inner edge split rule) for a topology qi has to be considered to be a
grouped instance, since the clauses that are added by these two rules have to added
to the groups Gi.

5.6 Practical Results

This section analyzes the results obtained from running the existing ASP solu-
tion [150], the most efficient PBO models [104] as well as gMaxSAT and gMCS
approaches based on the SAT encoding for QC described in this work. First, the
experimental setup is described, followed by the analysis of the experimental results
for the sets of instances.

The instances were obtained from [150] and correspond to a set of artificially
generated instances. For a set of n taxa the authors generate a phylogeny by recur-
sively joining randomly selected subtrees. The subtrees are selected from a set that
initially contained the one-node subtrees corresponding to the given taxa. When
two subtrees are joined they are replaced in the set by the generated subtree. This
procedure continues until the set contains only one tree: a phylogeny on n taxa.
From that phylogeny the set of

(
n
4

)
quartet topologies are derived. To introduce

potential errors p% of the topologies are altered. Note that this process guarantees
an upper bound on the number of quartet errors in the dataset of p

100

(
n
4

)
. Since

some combinations of topology alterations might result in a new compatible set of
quartet topologies the number of quartet errors can be less than the number of
alterations. The possible error percentages p are 0%, 1%, 2%, 5%, 10%, 15%, 20%,
25%, and 30%. 10 different datasets for each pair (n, p) build one test set. We
report the average runtime to solve the 10 instances for every pair (n, p).

The encoders/solvers used in the experiments can be divided in three categories,
(i) phy+ASP solver, (ii) PBO encoder+PBO solver, and (iii) SAT-based
solver.

(i) phy+ASP solver. phy is an encoder of the MQC problem into an answer
set program (ASP) from [150]. The approach of using phy with an ASP solver
is known to be the best for error percentages of 5% to 15%. phy receives the
number of taxa n, the maximum number of allowed quartet errors errmax

and the topologies Q as an input.

The ASP solver smodels[130] that is known to be particular efficient for this
encoding is executed to check the feasibility to build an topology Tn given
that at most errmax topologies qi ∈ Q are not displayed in Tn.

Since the latest smodels version (v2.36) is from May 2009 we tested the
very common ASP solver clasp [58] (v3.1.0) as well to ensure that the
ASP approach is solved by a solver that incorporates the latest algorithmic
improvements of the ASP community.

(ii) PBO encodings+PBO solver. This combination is the best approach in
the literature for error percentages above 20%. It is characterized by first

Using SAT to reconstruct phylogenies 89

using one of the encoders described in [104] to obtain a pseudo boolean opti-
mization (PBO) file which is given to a PBO solver. For these experiments we
use the most efficient PBO encodings bin and bin-sc [104] and the minisat+
solver (v1.0) [48] that proved to be most efficient for these encodings.

(iii) SAT+gMCS/gMaxSAT solver. This approach uses the SAT encoding
for the QC problem presented in section 5.4 to create a group SAT instance
as described in Section 5.5.

The gMCS solvers of our choice are CAMUS and picoMCS. CAMUS is started with
the parameter -l 2 to ensure that the computation aborts after the first MCS
which does not contain the phylogeny-construction group D = G0 is found.
PicoMCS uses selector-variables to determine which groups are present in the
current MCS. We upgraded picoMCS, such that it uses additional constraints
over these selector variables to find the smallest MCS. The gMaxSAT ap-
proach uses the >-encoding [73] for encoding groups since it proved to be
the most effective for our purpose. As MaxSAT solvers we chose the solvers
that were particular effective for a set of application instances in the partial
MaxSAT track of the MaxSAT evaluation 2014 : eva500a [108], mscg [78] and
qMaxSAT [87].

The results were obtained on quad-core CPUs with 2.83 GHz and 8 GB RAM [1].

5.6.1 Comparison of SAT approaches and formulations

The average runtime of the gMCS and the gMaxSAT approaches for all possible
solvers on the test set with 10 taxa is shown in Table 5.2. The best formulation
for nearly all combinations is Fv(Q). Only for the solver picoMCS the formulation
Fs

v (Q) was better for 7 out of 9 error percentages.
It is obvious that the basic SAT formulation F(Q) without any additional

clauses to prune the search space is the worst for every solver and all gMaxSAT
approaches are far better than the gMCS approaches. Even with using the basic
encoding F(Q) all instances could be solved by every MaxSAT solver. However, it
is nearly two orders of magnitude slower than the best encoding.

The redundant clauses which were added to Fv(Q) improve the performance
of all solvers significantly by helping to detect conflicts earlier in the search space.
The positive effect of the redundant clauses that were added to Fs(Q) is much less.

The best overall solver is qmaxsat which needs approximately only one third of
the runtime of the other two MaxSAT solvers for error percentages of more than
20%.

5.6.2 Comparison to PBO and ASP

Table 5.3 shows the average runtime of state-of-the-art approaches and the best for-
mulation of the gMCS and gMaxSAT approaches for the set of artificial instances on
10 taxa. The behavior of the state-of-the-art approaches is similar to the published
results [104]. The PBO approaches beat the ASP solvers for an error percentage
of 30%. However, PBO does not outperform ASP for 20% and 25% as previously
stated.

90 Practical Results

0
%

1
%

2
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

CAMUS
F

(Q
)

1
.5

0
5

2
.4

2
2

5
.3

3
0

4
7
.6

4
4

3
4
1
.7

7
1

1
0
8
4
.6

8
9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

F
v
(Q

)
1
.0
1
1

1
.1
1
9

1
.2
9
7

1
.3
9
8

2
.4
2
4

6
.3
0
9

3
8
.2
6
5

2
1
0
.8
7
0

(2
)
1
2
9
0
.9
5
7

F
s
(Q

)
2
.0

8
8

2
.5

7
7

3
.7

9
2

(1
)

7
.2

7
6

(6
)

3
0
3
.8

9
3

(9
)

1
6
2
5
.0

8
7

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

F
sv
(Q

)
1
.9

4
7

2
.3

9
0

2
.8

9
6

1
4
.6

7
9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

picomcs

F
(Q

)
0
.7

6
8

1
8
.6

0
5

9
.6

5
7

7
4
.1

3
3

9
4
0
.3

9
2

(9
)

1
5
9
4
.8

3
6

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

F
v
(Q

)
0
.6
0
9

1
.5
6
3

4
.6

2
8

1
2
.8

2
9

3
9
.0

2
1

1
5
9
.8

8
0

3
5
2
.3

6
0

(1
)

8
8
2
.6

7
9

>
1
8
0
0

F
s
(Q

)
1
.1

8
5

3
.6

6
8

4
.5

1
8

1
5
.3

3
0

2
8
0
.5

5
2

(3
)

1
0
4
4
.0

5
6

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

F
sv
(Q

)
0
.9

2
9

2
.6

5
1

2
.4
1
9

4
.3
9
7

3
1
.0
7
9

5
4
.9
4
0

2
2
3
.7
6
5

(1
)
7
9
2
.2
4
9

(8
)
8
2
9
.9
7
4

eva500a

F
(Q

)
0
.6

5
6

3
.9

1
6

6
.0

8
6

1
6
.5

1
6

3
9
.8

3
2

8
1
.4

9
6

1
4
5
.2

8
4

3
0
4
.8

3
1

9
2
2
.7

3
0

F
v
(Q

)
0
.5
8
6

0
.6
1
0

0
.6
4
7

0
.8
9
7

1
.4
5
3

1
.9
8
9

3
.7
2
6

7
.0
5
9

1
7
.8
2
2

F
s
(Q

)
1
.0

2
2

1
.3

9
5

1
.7

4
0

3
.6

8
2

8
.6

3
1

1
6
.4

8
2

3
6
.7

8
1

7
8
.8

3
0

2
2
0
.3

6
9

F
sv
(Q

)
1
.1

7
0

1
.4

1
7

1
.6

0
9

2
.1

6
9

3
.4

6
0

4
.7

4
9

7
.1

6
6

1
0
.3

7
5

2
0
.1

1
4

mscg

F
(Q

)
0
.5

6
5

1
.2

5
8

2
.3

9
6

1
4
.8

3
2

6
2
.4

3
9

1
5
7
.5

2
6

3
7
6
.0

5
8

6
8
7
.4

0
1

1
1
7
8
.2

8
1

F
v
(Q

)
0
.5
0
0

0
.5
3
8

0
.5
7
4

0
.6
4
6

0
.9
7
9

1
.6
1
0

3
.6
2
5

7
.0
7
8

1
6
.3
7
3

F
s
(Q

)
1
.1

9
6

1
.2

1
0

1
.2

3
2

1
.7

1
8

7
.2

2
1

1
5
.4

0
8

4
9
.9

7
1

1
3
0
.6

3
5

3
2
1
.0

0
7

F
sv
(Q

)
1
.2

4
2

1
.2

4
9

1
.3

9
1

1
.5

4
9

2
.2

3
5

3
.7

8
9

7
.1

8
9

1
2
.0

7
1

2
4
.4

2
7

qmaxsat

F
(Q

)
4
.9

8
1

5
.6

4
7

4
.1

1
4

1
3
.4

7
7

2
7
.8

3
6

5
9
.4

7
6

1
4
1
.0

3
1

1
8
6
.9

0
2

3
8
1
.1

0
0

F
v
(Q

)
0
.5
3
1

0
.5
7
6

0
.5
7
6

0
.6
4
4

0
.7
3
9

0
.9
1
2

1
.2
6
7

2
.6
0
8

5
.1
5
1

F
s
(Q

)
2
.1

1
9

2
.1

3
9

1
.9

3
3

3
.1

4
2

4
.7

5
9

8
.3

1
6

2
1
.4

0
7

5
3
.3

3
0

1
2
9
.4

5
3

F
sv
(Q

)
1
.3

4
9

1
.5

0
4

1
.3

7
4

1
.6

4
5

1
.9

6
0

2
.4

2
9

2
.8

0
5

5
.6

4
6

8
.7

7
3

T
a
b
le

5
.2
.

A
v
era

g
e

ru
n
tim

e
fo

r
a
ll

S
A

T
-b

a
sed

a
p
p
ro

a
ch

es
o
n

a
ll

p
o
ssib

le
S
A

T
fo

rm
u
la

tio
n
s

in
seco

n
d
s

fo
r

th
e

a
rtifi

cia
l

in
sta

n
ces

w
ith

1
0

ta
x
a
.

F
ig

u
res

in
p
a
ren

th
eses

d
en

o
te

th
e

n
u
m

b
er

(o
u
t

o
f

1
0
)

o
f

in
sta

n
ces

w
h
ich

ra
n

in
to

th
e

tim
eo

u
t

o
f

1
8
0
0

seco
n
d
s.

B
o
lt

va
lu

es
m

a
rk

th
e

b
est

a
p
p
ro

a
ch

fo
r

th
is

p
a
rticu

la
r

co
m

b
in

a
tio

n
o
f

erro
r

p
ercen

ta
g
e

a
n
d

so
lv

er.

Using SAT to reconstruct phylogenies 91

The performance of both ASP solvers is very similar for error percentages of
15% and less, but it is remarkable that the smodels solver outperforms clasp for
larger error percentages considerably. The higher the error rate, the larger the
difference of the performance of both solvers, culminating in a difference of more
than one order of magnitude. In contrast to that, both PBO encodings show no
significant difference from each other.

The gMCS approach with CAMUS as a solver does provide a competitive ap-
proach for error percentages of 20% and 25% in comparison to clasp, and for error
percentages between 5% and 15% in comparison to the PBO encodings. The ex-
tended picoMCS solver is considerably slower than CAMUS by at least one order of
magnitude for error percentages of 5% and more.

It is remarkable that all solvers used in the SAT+gMaxSAT approach were able
to beat the PBO and ASP approaches for error percentages of 15% and more. For
error percentages of 20% and more the difference between the best MaxSAT solver
qMaxSAT and the best ASP and PBO approaches is approximately one order of
magnitude.

For the benchmark set covering 15 taxa the results are even more convincing
(see Table 5.4). The gMaxSAT approach was the best approach for any error
percentage. For error percentages of less than 2% the solver mscg is the best. For
higher percentages the solver qMaxSAT performed better than all others. However,
not a single instance for an error percentage of 20% or more could be solved by any
approach.

Another significant difference can be observed when analyzing the single ap-
proaches in more detail. In contrast to the instances with 10 taxa the behavior
of the two ASP solvers, as well as the performance of both PBO encodings for in-
stances with 15 taxa show a significant difference. The ASP solver clasp is able to
outperform smodels considerably for all error percentages of 1% and more for the
instances with more taxa. A similar behavior can be seen by the PBO encodings
as the pbo-bin-sc is able to solve three more instances for an error percentage of
2%.

A strange behavior is shown by the gMCS approach. The extended picoMCS

solver is significantly better than CAMUS for an error percentage of 0% and 5%,
but is much worse for the error percentages of 1% and 2%. The results for the
MaxSAT solvers eva500a and mscg show a similar behavior. Whereas mscg clearly
outperforms eva500a for error percentages up to 10%, the results flip for 15%. In
that case eva500a is able to solve 5 more instances than mscg.

5.6.3 Comparison to available MaxSAT approaches

Table 5.6 shows the runtime for the available MaxSAT instances from the bench-
mark set of the MaxSAT-evaluation2 for all three used solvers and the runtime
of the best SAT formulation based on the split encoding which was introduced in
this chapter. The MaxSAT instances from the benchmark set of the MaxSAT-
evaluation were created by translating the pseudo boolean optimization problems
into SAT [104].

2http://maxsat.ia.udl.cat/introduction/

92 Practical Results

0
%

1
%

2
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

p
h
y
+
sm

o
d
e
ls

0
.2
2
0

0
.2
6
6

0
.2
9
0

0
.5

4
8

1
.7

2
5

2
.9

5
1

1
0
.4

9
0

3
4
.6

7
5

7
3
.1

0
7

p
h
y
+
c
la
sp

0
.4

0
8

0
.4

3
7

0
.4

3
8

0
.4
9
1

1
.1

6
9

2
.6

5
2

5
2
.5

3
4

3
1
1
.7

0
7

(1
)

1
1
3
6
.0

2
4

p
b
o
-b

in
+
m

in
isa

t+
0
.9

1
7

0
.9

9
8

0
.9

1
7

2
.4

6
0

7
.8

0
9

1
3
.4

0
7

1
9
.6

2
9

3
8
.3

2
9

6
0
.0

8
6

p
b
o
-b

in
-sc

+
m

in
isa

t+
0
.8

2
1

0
.9

1
9

0
.9

4
6

2
.3

2
8

7
.1

3
4

1
2
.4

6
5

2
0
.7

5
4

3
5
.2

6
5

5
8
.5

4
9

sa
t+

C
A
M

U
S

(F
v
(Q

))
1
.0

1
1

1
.1

1
9

1
.2

9
7

1
.3

9
8

2
.4

2
4

6
.3

0
9

3
8
.2

6
5

2
1
0
.8

7
0

(2
)

1
2
9
0
.9

5
7

sa
t+

p
ic
o
M

C
S

(F
sv
(Q

))
0
.9

2
9

2
.6

5
1

2
.4

1
9

4
.3

9
7

3
1
.0

7
9

5
4
.9

4
0

2
2
3
.7

6
5

(1
)

7
9
2
.2

4
9

(8
)

8
2
9
.9

7
4

sa
t+

e
v
a
5
0
0
a

(F
v
(Q

))
0
.5

8
6

0
.6

1
0

0
.6

4
7

0
.8

9
7

1
.4

5
3

1
.9

8
9

3
.7

2
6

7
.0

5
9

1
7
.8

2
2

sa
t+

m
sc

g
(F

v
(Q

))
0
.5

0
0

0
.5

3
8

0
.5

7
4

0
.6

4
6

0
.9

7
9

1
.6

1
0

3
.6

2
5

7
.0

7
8

1
6
.3

7
3

sa
t+

q
M

a
x
S
A
T

(F
v
(Q

))
0
.5

3
1

0
.5

7
6

0
.5

7
6

0
.6

4
4

0
.7
3
9

0
.9
1
2

1
.2
6
7

2
.6
0
8

5
.1
5
1

T
a
b
le

5
.3
.

A
v
era

g
e

ru
n
tim

e
in

seco
n
d
s

fo
r

th
e

a
rtifi

cia
l

in
sta

n
ces

w
ith

1
0

ta
x
a
.

F
ig

u
res

in
p
a
ren

th
eses

d
en

o
te

th
e

n
u
m

b
er

(o
u
t

o
f

1
0
)

o
f

in
sta

n
ces

w
h
ich

ra
n

in
to

th
e

tim
eo

u
t

o
f

1
8
0
0

seco
n
d
s.

B
o
lt

va
lu

es
m

a
rk

th
e

b
est

a
p
p
ro

a
ch

fo
r

th
is

p
a
rticu

la
r

erro
r

p
ercen

ta
g
e.

0
%

1
%

2
%

5
%

1
0
%

1
5
%

2
0
%

p
h
y
+
sm

o
d
e
ls

2
.5

7
8

1
4
.6

9
1

7
7
.5

6
3

(3
)

7
2
6
.1

8
2

(3
)

9
5
0
.3

0
3

(6
)

1
0
2
7
.7

9
2

>
1
8
0
0

p
h
y
+
c
la
sp

3
.6

8
2

7
.9

9
5

3
1
.9

0
9

3
7
6
.9

8
0

(2
)

5
2
2
.0

9
0

(6
)

8
6
5
.7

6
5

>
1
8
0
0

p
b
o
-b

in
+
m

in
isa

t+
5
9
.6

5
0

4
3
.9

3
1

(4
)

9
3
8
.2

9
7

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

p
b
o
-b

in
-sc

+
m

in
isa

t+
1
7
.9

9
0

5
0
.4

7
7

(1
)

5
3
0
.2

6
9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

sa
t+

C
A
M

U
S

(F
v
(Q

))
7
.0

5
5

1
8
.1

6
8

3
4
.7

0
7

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

sa
t+

p
ic
o
M

C
S

(F
sv
(Q

))
1
9
.6

8
5

(1
)

8
8
8
.5

6
6

(2
)

9
8
8
.0

0
9

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

>
1
8
0
0

sa
t+

e
v
a
5
0
0
a

(F
v
(Q

))
2
.5

9
8

1
6
.7

6
6

4
4
.1

9
5

1
2
4
.3

6
8

5
0
0
.4

2
5

(5
)

1
3
5
3
.7

7
9

>
1
8
0
0

sa
t+

m
sc

g
(F

v
(Q

))
2
.5
6
1

3
.2
2
2

4
.8
4
4

3
3
.9

8
1

3
4
0
.1

1
3

>
1
8
0
0

>
1
8
0
0

sa
t+

q
M

a
x
S
A
T

(F
v
(Q

))
4
.2

7
6

5
.2

7
8

6
.9

3
5

2
3
.2
7
6

3
2
4
.6
2
8

(1
)
9
6
6
.2
4
2

>
1
8
0
0

T
a
b
le

5
.4
.

A
v
era

g
e

ru
n
tim

e
in

seco
n
d
s

fo
r

th
e

a
rtifi

cia
l

in
sta

n
ces

w
ith

1
5

ta
x
a
.

F
ig

u
res

in
p
a
ren

th
eses

d
en

o
te

th
e

n
u
m

b
er

(o
u
t

o
f

1
0
)

o
f

in
sta

n
ces

w
h
ich

ra
n

in
to

th
e

tim
eo

u
t

o
f

1
8
0
0

seco
n
d
s.

B
o
lt

va
lu

es
m

a
rk

th
e

b
est

a
p
p
ro

a
ch

fo
r

th
is

p
a
rticu

la
r

erro
r

p
ercen

ta
g
e.

Using SAT to reconstruct phylogenies 93

For the eva500a solver the results are very balanced. Whereas the novel split
encoding leads to a smaller runtime for 18 out of 28 instances covering 10 taxa, the
pbo-maxsat translation had a smaller runtime for all 10 instances covering 15 taxa.

Table 5.5. The instances
of inaccurate optimal values
of the linear pbo-maxsat en-
coding.

instance opt res
n10-tree1-10p 21 20
n10-tree1-20p 42 41
n10-tree3-05p 10 9
n10-tree3-15p 31 30
n10-tree3-25p 52 48
n10-tree4-05p 10 9
n10-tree4-20p 42 41
n10-tree4-30p 63 62
n10-tree5-15p 31 29

For the other two MaxSAT solvers mscg and
qMaxSAT the split encoding offers a better runtime in
all but 2 instances (for qMaxSAT.) The difference of the
runtime between the two approaches is often more than
one order of magnitude. However, the gap between
the PBO translation and the split encoding is signifi-
cantly less for 15 taxa, but that is to be expected, since
the split encoding is particular effective for higher er-
ror percentages (see Section 5.6.2) and the instances
available for 15 taxa have a very low error percentage
of 1%.

Please note that we detected a possible error in the
linear encoding (“n”) for the pbo-maxsat approach.
For 9 different instances (see Table 5.5) the reported
optimal value (“res”) differs from the optimal value
(“opt”) that were reported by all other approaches. We mark the runtime that
resulted in a report of inaccurate values in Table 5.6 with a gray color.

5.7 Summary

Encoding problems from Bioinformatics as satisfiability problems was successfully
established by Lynce and Marques-Silva with their work on haplotype inference [94]
and by Bonet and St. John [25].

In this chapter we present a novel approach to solve Maximum Quartet Consis-
tency by encoding Quartet Compatibility as a satisfiability problem. The Quartet
Compatibility problem describes, whether it is possible to construct a big evolution-
ary tree (phylogeny) that maintains the evolutionary relations which were given in
smaller input trees. Since many of these problems are unsatisfiable the Maximum
Quartet Consistency is more interesting in practice. It searches for a phylogeny that
maintains the maximum number of evolutionary relations from the input data.

We describe the possibilities of using group Minimal Correction Set (MCS) and
group MaxSAT techniques to tackle this problem. Due to the fact that finding a
single MCS or a MaxSAT solution itself requires several calls of a SAT solver on
one particular instance the SAT encoding has to be especially efficient to be able to
cope with the state-of-the-art approaches answer set programming (ASP) or pseudo
boolean optimization (PBO).

By adding redundant information to the basic SAT formulation we were able
to boost the performance of state-of-the-art MaxSAT solvers on our formulation,
such that the MaxSAT approach was considerably faster than any of the ASP and
PBO approaches for complete input sets for 10 taxa with 10% error percentage and
more, and for complete input sets for 15 taxa with any error percentage.

Moreover, we compared the existing MaxSAT instances that were created by

94 Summary
e
v
a
5
0
0
a

m
sc
g

q
m
a
x
sa

t

in
sta

n
c
e

p
b
o
-m

a
x
sa

t
sp

lit
p
b
o
-m

a
x
sa

t
sp

lit
p
b
o
-m

a
x
sa

t
sp

lit

n
1
0
-tre

e
1
-1
0
p

1
.4
7
7

n
1
.4

3
0

F
v
(Q

)
1
5
.4
8
1

n
0
.5

8
9

F
v
(Q

)
1
3
.3
1
4

n
0
.6

1
2

F
v
(Q

)
n
1
0
-tre

e
1
-1
5
p

1
.6

0
8

n
lo
g

1
.7
6
8

F
v
(Q

)
2
0
.4
8
2

n
lo
g

1
.0

1
3

F
v
(Q

)
1
8
.7
4
4

n
lo
g

0
.4

1
4

F
v
(Q

)
n
1
0
-tre

e
1
-2
0
p

1
2
.1
6
3

n
2
.7

3
7

F
v
(Q

)
9
1
.9
5
3

n
2
.9

6
7

F
v
(Q

)
5
3
.7
7
9

n
2
.4

9
2

F
sv
(Q

)
n
1
0
-tre

e
1
-2
5
p

4
.7

6
6

n
lo
g

6
.6
6
4

F
v
(Q

)
6
8
.9
7
7

n
lo
g

5
.4

0
4

F
v
(Q

)
4
8
.1
7
5

n
lo
g

2
.3

6
5

F
sv
(Q

)
n
1
0
-tre

e
1
-3
0
p

5
5
.3
5
9

n
1
5
.7

0
9

F
v
(Q

)
2
9
7
.8
8
1

n
1
7
.8

7
0

F
sv
(Q

)
2
1
2
.6
8
9

n
8
.9

7
8

F
sv
(Q

)
n
1
0
-tre

e
2
-1
0
p

0
.8

2
1

n
lo
g

0
.9
1
8

F
v
(Q

)
6
.4
3
4

n
lo
g

0
.3

5
1

F
v
(Q

)
4
.3
0
6

n
lo
g

0
.1

3
8

F
v
(Q

)
n
1
0
-tre

e
2
-1
5
p

6
.9
9
2

n
1
.4

9
4

F
v
(Q

)
3
8
.4
0
2

n
2
.3

0
2

F
v
(Q

)
2
8
.3
0
5

n
0
.6

1
8

F
v
(Q

)
n
1
0
-tre

e
2
-2
0
p

3
.1

7
0

n
lo
g

5
.5
0
4

F
v
(Q

)
5
2
.9
4
8

n
lo
g

3
.4

5
0

F
v
(Q

)
2
8
.8
0
8

n
lo
g

0
.7

7
5

F
v
(Q

)
n
1
0
-tre

e
2
-2
5
p

2
4
.3
3
3

n
9
.4

9
8

F
v
(Q

)
6
3
.2
8
1

n
1
2
.8

7
8

F
sv
(Q

)
5
8
.7
4
4

n
2
.8

2
3

F
v
(Q

)
n
1
0
-tre

e
2
-3
0
p

1
4
.5

8
6

n
lo
g

2
2
.6
7
8

F
v
(Q

)
1
2
4
.6
6
6

n
lo
g

1
8
.4

5
2

F
v
(Q

)
5
6
.7
8
0

n
lo
g

5
.9

3
9

F
v
(Q

)
n
1
0
-tre

e
3
-0
5
p

1
.6
1
2

n
0
.6

7
4

F
v
(Q

)
1
.9
3
5

n
0
.1

3
5

F
nv
(Q

)
2
.1
7
6

n
0
.2

2
4

F
v
(Q

)
n
1
0
-tre

e
3
-1
0
p

0
.7

9
9

n
lo
g

1
.0
2
1

F
v
(Q

)
4
.1
9
7

n
lo
g

0
.3

0
5

F
v
(Q

)
2
.0
7
4

n
lo
g

0
.1

6
8

F
v
(Q

)
n
1
0
-tre

e
3
-1
5
p

4
.9
4
3

n
2
.9

0
0

F
v
(Q

)
3
6
.2
5
8

n
1
.9

1
9

F
v
(Q

)
2
5
.2
0
2

n
0
.3

6
9

F
v
(Q

)
n
1
0
-tre

e
3
-2
0
p

2
.9

1
7

n
lo
g

3
.8
2
1

F
v
(Q

)
4
7
.0
5
2

n
lo
g

3
.5

7
3

F
v
(Q

)
1
9
.5
9
9

n
lo
g

0
.9

7
9

F
v
(Q

)
n
1
0
-tre

e
3
-2
5
p

3
7
.3
6
2

n
1
2
.6

7
4

F
v
(Q

)
6
4
.3
6
4

n
1
1
.8

7
8

F
sv
(Q

)
8
0
.4
5
2

n
5
.9

8
1

F
v
(Q

)
n
1
0
-tre

e
3
-3
0
p

1
6
.8

1
6

n
lo
g

2
0
.9
2
0

F
sv
(Q

)
9
6
.5
3
1

n
lo
g

1
9
.9

7
0

F
v
(Q

)
1
2
2
.6
4
1

n
lo
g

3
.2

9
4

F
v
(Q

)
n
1
0
-tre

e
4
-0
5
p

0
.5

8
9

n
lo
g

0
.7
4
3

F
v
(Q

)
0
.7
2
2

n
lo
g

0
.1

5
2

F
v
(Q

)
0
.4
0
8

n
lo
g

0
.1

3
9

F
v
(Q

)
n
1
0
-tre

e
4
-1
0
p

4
.1
1
3

n
1
.8

3
2

F
v
(Q

)
9
.2
0
1

n
0
.5

8
2

F
v
(Q

)
1
2
.6
9
7

n
0
.4

5
1

F
v
(Q

)
n
1
0
-tre

e
4
-1
5
p

2
.1

1
2

n
lo
g

2
.3
5
5

F
v
(Q

)
1
4
.2
8
5

n
lo
g

0
.8

1
5

F
v
(Q

)
6
.9
3
0

n
lo
g

0
.8

1
0

F
v
(Q

)
n
1
0
-tre

e
4
-2
0
p

2
1
.5
8
3

n
5
.3

5
9

F
v
(Q

)
7
6
.1
9
7

n
4
.3

3
3

F
sv
(Q

)
6
2
.6
0
8

n
0
.8

0
4

F
v
(Q

)
n
1
0
-tre

e
4
-2
5
p

6
.3
4
7

n
lo
g

5
.8

1
4

F
v
(Q

)
6
5
.5
4
6

n
lo
g

6
.6

0
3

F
v
(Q

)
2
7
.3
7
1

n
lo
g

1
.1

8
6

F
v
(Q

)
n
1
0
-tre

e
4
-3
0
p

7
6
.5
6
1

n
1
9
.6

3
8

F
v
(Q

)
3
2
2
.6
8
4

n
2
9
.4

4
9

F
sv
(Q

)
1
5
2
.7
1
5

n
7
.3

1
0

F
v
(Q

)
n
1
0
-tre

e
5
-0
5
p

0
.6
4
1

n
lo
g

0
.4

3
0

F
v
(Q

)
0
.6
9
0

n
lo
g

0
.1

4
2

F
v
(Q

)
0
.6
8
0

n
lo
g

0
.3

0
1

F
v
(Q

)
n
1
0
-tre

e
5
-1
0
p

2
.1
2
8

n
lo
g

0
.6

6
7

F
v
(Q

)
4
.6
2
2

n
lo
g

0
.2

5
5

F
v
(Q

)
1
.8
8
2

n
lo
g

0
.1

9
4

F
v
(Q

)
n
1
0
-tre

e
5
-1
5
p

9
.3
3
6

n
2
.4

6
5

F
v
(Q

)
2
7
.9
5
8

n
1
.6

3
3

F
v
(Q

)
2
9
.1
3
5

n
0
.5

4
8

F
v
(Q

)
n
1
0
-tre

e
5
-2
0
p

5
.5
3
2

n
lo
g

2
.6

5
8

F
v
(Q

)
1
6
.4
3
2

n
lo
g

2
.0

4
9

F
v
(Q

)
1
6
.3
0
0

n
lo
g

0
.7

5
6

F
v
(Q

)
n
1
0
-tre

e
5
-2
5
p

4
3
.7
7
7

n
1
2
.1

9
3

F
v
(Q

)
1
9
2
.3
9
1

n
9
.0

6
4

F
v
(Q

)
1
0
0
.2
7
3

n
4
.3

4
3

F
v
(Q

)
n
1
0
-tre

e
5
-3
0
p

2
5
.7
5
1

n
lo
g

1
8
.3

8
4

F
sv
(Q

)
1
0
2
.4
9
4

n
lo
g

1
2
.7

9
8

F
v
(Q

)
5
9
.5
9
4

n
lo
g

3
.7

2
0

F
v
(Q

)

n
1
5
-tre

e
1
-0
1
p

5
.4

4
2

n
lo
g

2
9
.7
7
6

F
v
(Q

)
1
6
.6
8
7

n
lo
g

1
.5

7
4

F
v
(Q

)
7
.3
9
3

n
lo
g

1
.8

1
6

F
v
(Q

)
n
1
5
-tre

e
2
-0
1
p

1
3
.9

4
8

n
lo
g

2
7
.9
9
5

F
v
(Q

)
2
3
.3
3
9

n
lo
g

1
.5

6
5

F
v
(Q

)
1
4
.6
2
7

n
lo
g

4
.4

6
2

F
v
(Q

)
n
1
5
-tre

e
3
-0
1
p

5
.8

3
7

n
lo
g

2
3
.0
1
1

F
v
(Q

)
4
4
.6
8
5

n
lo
g

1
.6

9
0

F
v
(Q

)
1
7
.8
3
9

n
lo
g

2
.7

5
2

F
v
(Q

)
n
1
5
-tre

e
4
-0
1
p

6
.2

8
5

n
lo
g

1
0
.7
0
1

F
v
(Q

)
3
2
.2
4
2

n
lo
g

1
.6

5
3

F
v
(Q

)
1
5
.6
2
9

n
lo
g

1
0
.9

1
2

F
v
(Q

)
n
1
5
-tre

e
5
-0
1
p

6
.5

0
9

n
lo
g

1
0
.2
2
9

F
v
(Q

)
1
7
.1
8
5

n
lo
g

1
.2

8
7

F
v
(Q

)
7
.3

6
8

n
lo
g

8
.6
6
8

F
v
(Q

)
n
1
5
-tre

e
6
-0
1
p

6
.5

5
9

n
lo
g

2
3
.3
7
3

F
v
(Q

)
2
2
.6
3
8

n
lo
g

2
.2

3
0

F
v
(Q

)
1
1
.8
8
4

n
lo
g

8
.9

9
9

F
v
(Q

)
n
1
5
-tre

e
7
-0
1
p

5
.2

5
1

n
lo
g

2
3
.2
8
5

F
v
(Q

)
2
0
.8
4
4

n
lo
g

1
.9

8
8

F
v
(Q

)
1
3
.4
3
7

n
lo
g

6
.1

7
4

F
v
(Q

)
n
1
5
-tre

e
8
-0
1
p

4
.2

5
0

n
lo
g

1
8
.2
4
5

F
v
(Q

)
7
.2
9
1

n
lo
g

1
.6

0
8

F
v
(Q

)
1
0
.5
1
7

n
lo
g

4
.1

0
3

F
v
(Q

)
n
1
5
-tre

e
9
-0
1
p

3
.7

3
2

n
lo
g

1
8
.3
3
0

F
v
(Q

)
9
.7
3
3

n
lo
g

2
.1

7
0

F
v
(Q

)
1
3
.1
8
1

n
lo
g

5
.7

7
8

F
v
(Q

)
n
1
5
-tre

e
1
0
-0
1
p

2
.9

8
3

n
lo
g

1
3
.4
3
2

F
v
(Q

)
2
.1
8
8

n
lo
g

1
.4

1
3

F
v
(Q

)
5
.1

4
3

n
lo
g

6
.6
5
8

F
v
(Q

)

T
a
b
le

5
.6
.

C
o
m

p
a
riso

n
o
f

M
a
x
S
A

T
-a

p
p
ro

a
ch

es
fo

r
ea

ch
o
f

th
e

th
ree

u
sed

so
lv

ers.
W

e
rep

o
rt

th
e

b
est

ru
n
tim

e
to

g
eth

er
w

ith
th

e
u
sed

en
co

d
in

g
fo

r
ev

ery
so

lv
er.

B
o
lt

va
lu

es
d
en

o
te

th
e

b
est

va
lu

e
fo

r
a

p
a
rticu

la
r

so
lv

er.
U

n
d
erlin

ed
va

lu
es

d
en

o
te

th
e

b
est

a
p
p
ro

a
ch

fo
r

th
a
t

p
a
rticu

la
r

in
sta

n
ce

fo
r

a
ll

so
lv

ers.

Using SAT to reconstruct phylogenies 95

translating the PBO encodings into SAT encodings with the novel SAT formulation.
The results have shown that the fastest solution was always obtained by using our
SAT formulation for every problem.

However, all results show that the available approaches lose their usability when
the number of taxa (in combination with the error percentage) rises. The possi-
bilties to overcome this problem will be discussed in Chapter 7, where the work of
this thesis is concluded.

6 Using SAT to

embed graphs in books

6.1 Introduction

Embedding graphs in books is a fundamental issue in graph theory that has re-
ceived considerable attention (see, e.g., [21, 114] for an overview). In a book em-
bedding [113] the vertices of a graph are restricted to a line, referred to as the
spine of the book, and the edges are drawn at different half-planes delimited by the
spine, called pages of the book. The task is to find a so-called linear order of the
vertices along the spine and an assignment of the edges of the graph to the pages
of the book, so that no two edges of the same page cross (see Figure 6.1b). The
book thickness or page number of a graph is the smallest number of pages that are
required by any book embedding of the graph.

Problems on book embeddings are mainly classified into two categories based
on whether the graph to be embedded is planar or not. For non-planar graphs it is
known that there exist graphs on n vertices that have book thickness Θ(n), e.g., the
book thickness of the complete graph Kn is dn/2e [15]. Sublinear book thickness
have, e.g., graphs with subquadratic number of edges [98], subquadratic genus [97]
or sublinear treewidth [46]. Constant book thickness have, e.g., all minor-closed
graphs [23] or the k-trees for fixed k [56]. Another class of non-planar graphs
that was recently proved to have constant book thickness is the class of 1-planar
graphs [6]. Note that 1-planar graphs are not necessarily closed under minors [109].

For planar graphs a remarkable result is due to Yannakakis who back in 1986
proved that any planar graph can be embedded in a book with four pages [152].
However, more restricted subclasses of planar graphs allow embeddings in books
with fewer pages. Bernhart and Kainen [15] showed that the graphs which can be
embedded in single-page books are the outerplanar graphs while the graphs which
can be embedded in books with two pages are the subhamiltonian ones.

It is known that not all planar graphs are subhamiltonian and the corresponding
decision problem whether a maximal planar graph is Hamiltonian (and therefore
two-page book embeddable) is NP-complete [147]. However, several subclasses

97

98 Introduction

of planar graphs are known to be either Hamiltonian or subhamiltonian, e.g., 4-
connected planar graphs [110], planar graphs without separating triangles [81],
Halin graphs [34], planar 2-trees [30], or planar graphs of maximum degree 3 or
4 [71, 7].

A well-known non-Hamiltonian graph is the Goldner-Harary one [62]. This
particular graph, however is a planar 3-tree and hence 3-page book embeddable [70].
To the best of our knowledge there is no planar graph given in the literature whose
page number is four. In other words it is not yet known whether the upper bound
of four pages of Yannakakis [152] is tight for planar graphs or not.

Our contribution

We suggest an alternative approach to the problem of determining whether a graph
can be embedded in a book of a certain number of pages without imposing any fur-
ther restrictions on the graph’s structure like planarity or simplicity. We propose a
formulation of the problem as a SAT formula which can be useful in practice. Apart
from their independent theoretical interest book embeddings find applications in
several contexts, such as VLSI design, fault-tolerant processing, sorting networks
and parallel matrix multiplication, see e.g., [30, 72, 120, 137]. It turns out that
our formulation is of a simple nature, quite intuitive and easy-to-implement, but
simultaneously robust enough to solve non-trivial instances of the problem in rea-
sonable amount of time (e.g., within 20 minutes we can test whether a maximal
planar graphs with up to 400 vertices is 3-page book embeddable), as we will see
in our experimental study.

Note that SAT formulations are not so common in graph drawing. A few notable
exceptions are [18, 28, 55]. In our context of particular interest is the work of Biedl
et al. [18] who proposed ILP and SAT formulations for several grid-based graph
problems (including pathwidth, bandwidth, optimum st-orientation and visibility
representation). Of course, their general formulation can be easily extended to solve
our problem as well. However, from the authors’ experimental evaluation (and we
could also confirm it) it follows that their approach is limited to solve relatively
small instances within reasonable time, e.g., within 20 minutes one can cope with
graphs whose size in vertices and edges does not exceed 100.

A list of hypotheses

When we started working on this project we placed several hypotheses that we
wanted to prove or disprove. So, before we proceed with the description of our
formulation, we first list and then discuss the most important ones:

H1: There is a (maximal) planar graph whose book thickness is four.

H2: There is a 1-planar graph whose book thickness is (at least) four.

H3: There is a (maximal) planar graph which cannot be embedded in a book of
three pages, if the subgraphs embedded at each page must be acyclic.

H4: There is a maximal planar graph, say Ga, which in any of its book embeddings
on three pages has at least one face whose edges are on the same page.

Using SAT to embed graphs in books 99

1

2 3

4

5

6 7

8

(a)

1 2 345 67 8

(b)

Figure 6.1. (a) An optimal 1-planar graph whose underlying planar structure (solid
drawn) is the cube graph. (b) A corresponding embedding in a book with 4 pages.
Observe that the fourth page contains just a single edge (dotted drawn).

H5: There is a maximal planar graph, say Gc, which in any of its book embeddings
on three pages has a face, say f∗c , whose edges cannot be on the same page.

Summary and discussion

Clearly, our ultimate goal was to find a planar graph supporting Hypothesis 1.
During our extensive practical analysis we tested several hundreds maximal planar
graphs (both randomly created and crafted), but we did not manage to find one
supporting Hypothesis 1. We also tested a specific graph with roughly 600 vertices
out of the family of planar graphs that Yannakakis proposed to require page number
four, but it turned out to be 3-page book embeddable for this particular size.

On the positive side, we proved that the weakest version of Hypothesis 2 holds.
In particular, we managed to find a relatively small 1-planar graph whose book
thickness is exactly four (see Figure 6.1). To the best of our knowledge this is the
first (non-trivial) lower bound on the book thickness of 1-planar graphs. Recall that
a 1-planar graph on n vertices is said to be optimal, if it has exactly 4n− 8 edges
which is the maximum possible [24]. By a work of Suzuki [136], who described how
one can generate all optimal 1-planar graphs, it follows that the graph of Figure 6.1
is the smallest optimal 1-planar graph.

We were surprised that we did not succeed in proving that Hypothesis 3 holds.
Note that it is very natural to try to embed a tree-structured subgraph at each
of the available pages of the book, if one seeks to prove that indeed all planar
graphs can be embedded in books of three pages. For example, Heath [70] who
constructively proved that all planar 3-trees fit into books with three pages used
exactly this approach: the subgraphs embedded at each of the three pages of the
book are acyclic, one of them is a tree and the other two are forests, each consisting
of two trees.

Note that we managed to prove a weaker version of Hypothesis 3 according to
which the input maximal planar graph has n vertices and cannot be embedded in
a book with three pages so that: (i) the subgraph assigned to each of the three
pages is a tree on n − 1 vertices and, additionally, (ii) the three vertices that are
not spanned by the three trees are pairwise adjacent forming a face fo of the graph,

100 Introduction

say w.l.o.g. its outerface. The graph supporting this weaker hypothesis is given
in Figure 6.2 and shows that it is not always possible to construct a 3-page book
embedding based on a Schnyder decomposition into three trees regardless of the
linear order underneath. We refer the reader to Section 6.2.1 for further information
regarding the SAT formulation we used to identify the graph. Note that we tried to
modify this special graph in various ways, but we could not confirm Hypothesis 3
in full generality.

1

16

2
3 4

5

6
7 8

9

15

10

1112 13

14

Figure 6.2. A maximal planar graph on 16 vertices supporting a weaker version of
Hypothesis 3.

From our experimental evaluation (see Section 6.3) we quickly observed that
the practical limitation of testing the book-embedability of maximal planar graphs
on 3 pages with our SAT formulation (that we will shortly present in Section 6.2)
lies at around 600 to 700 vertices. Larger graphs lead to instance sizes which excess
several gigabytes of random access memory. Hypotheses 4 and 5 in conjunction
describe an approach that could potentially overcome this bottleneck. To see this
assume that the two planar graphs, denoted by Ga and Gc in Hypotheses 4 and 5
respectively, exist (note however, that we did not succeed in finding them). If for
each face fa of Ga we create a copy of graph Gc and identify each of the vertices
of face f∗c of Gc with one of the vertices of face fa of Ga, then we will obtain a
(drastically larger) planar graph which is not 3-page book-embeddable. This is be-
cause Ga must contain at least one face whose edges are on the same page, while in
the same time face f∗c would require at least one of them not to be at the same page.

In the next section we introduce the details of our SAT formulation for the Book
Embedding problem, and show how this basic formulation can be extended straight-
forwardly to investigate the mentioned hypotheses. In Section 6.3 the experimental
setting is described. Due to the fact that the Book Embedding problem was not

Using SAT to embed graphs in books 101

tackled by SAT before, we are required to create benchmark sets that model the
possible inputs properly. We show how to generate different benchmark sets based
on the Hypotheses 1 to 5 we want to prove or disprove for particular graph classes.

6.2 SAT Formulation

Let G = (V,E), with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, be a graph for
which we seek to decide whether it can be embedded in a book with p ≥ 2 pages.
In the following we describe a logic formula F(G, p) that will solve this problem
by encoding it as a SAT instance. Recall that any SAT problem can be described
in conjunctive normal form (CNF) which is a conjunction of clauses; each clause
being a disjunction of (possibly negated) literals. We will define F(G, p) by its
set of variables and a corresponding set of rules. The rules will ensure the proper
assignment of the variables and will be given in propositional logic which can be
converted into CNF clauses straightforwardly [115].

The variables of F(G, p) should model a book embedding of G in a book with
p pages, if it exists. Thus, we use variables σ(vi, vj) for each pair of vertices
vi, vj ∈ V to determine whether vertex vi precedes vertex vj along the spine,
meaning that vertex vi is to the left of vertex vj . If that is the case the assignment
is σ(vi, vj) = true. In this so-called relative encoding the variables encode a relative
order between the vertices. Clearly, asymmetry has to hold for these variables which
is ensured by the following rule:

σ(vi, vj)↔ ¬σ(vj , vi)

With this asymmetry rule variables σ(vi, vj) can be defined only for i < j. The
other literals σ(vi, vj) with i > j can be replaced by ¬σ(vj , vi). This results in a
significantly smaller formula which is easier to be solved by a SAT solver [144]. The
following transitivity rule for the σ-relation ensures a proper order of the vertices
along the spine:

σ(vi, vj) ∧ σ(vj , vk)→ σ(vi, vk) ∀ pairwise distinct vi, vj , vk ∈ V

The search space of possible satisfying assignments can be reduced by choosing a
particular vertex as the first vertex along the spine and even further by choosing
exactly one other pairwise order, e.g., that v2 is to the left of v3. These choices can
be easily encoded by the direction rules:

σ(v1, vi) ∀vi ∈ V with i > 1

σ(v2, v3)

Note that the direction rules are represented by unit clauses that fix σ(v1, vi)
for i > 1 and σ(v2, v3) to be true. Via unit propagation (that is a basic operation
performed by all SAT solvers [47]) other constraints may become simpler or even
already satisfied.

So far we have managed to encode the linear order of the vertices along the
spine. To encode the assignment of the edges to the pages of the book we introduce

102 SAT Formulation

a variable φq(ei) for every edge ei ∈ E and every possible page 1 ≤ q ≤ p. Thereby
φq(ei) = true means that the edge ei is assigned to the q-th page of the book. Of
course, every edge has to be assigned to (at least) one page which is ensured by the
page assignment rule:

φ1(ei) ∨ φ2(ei) ∨ . . . ∨ φp(ei) ∀ei ∈ E

We can again reduce the search space by the fixed page assignment rule that fixes
a single edge on a particular page, e.g., edge e1 ∈ E to page 1:

φ1(e1)

Next we describe how to forbid crossings among edges of the same page. We first
introduce a variable χ(ei, ej) for each pair of edges ei, ej ∈ E which describes
whether ei and ej are assigned to the same page. ei, ej ∈ E are assigned to the
same page, if they are both assigned to one of the available pages which is ensured
by the same page rule:

((φ1(ei) ∧ φ1(ej)) ∨ . . . ∨ (φk(ei) ∧ φk(ej)))→ χ(ei, ej) ∀ei, ej ∈ E

To ensure planarity it is enough to ensure that two edges which are assigned to
the same page do not cross. So, if (vi, vj), (vk, v`) ∈ E are two edges of G, such
that vertices vi, vj , vk and v` are pairwise different. This can be ensured by the
following planarity rule:

χ((vi, vj), (vk, v`)) →
¬(σ(vi, vk) ∧ σ(vk, vj) ∧ σ(vj , v`)) ∧¬(σ(vi, v`) ∧ σ(v`, vj) ∧ σ(vj , vk))

∧¬(σ(vj , vk) ∧ σ(vk, vi) ∧ σ(vi, v`)) ∧¬(σ(vj , v`) ∧ σ(v`, vi) ∧ σ(vi, vk))
∧¬(σ(vk, vi) ∧ σ(vi, v`) ∧ σ(v`, vj)) ∧¬(σ(vk, vj) ∧ σ(vj , v`) ∧ σ(v`, vi))
∧¬(σ(v`, vi) ∧ σ(vi, vk) ∧ σ(vk, vj)) ∧¬(σ(v`, vj) ∧ σ(vj , vk) ∧ σ(vk, vi))

Theorem 6.1. Let G = (V,E) be a graph and p ∈ N. Then G admits a book
embedding on p pages, if and only if, F(G, p) is satisfiable. In addition F(G, p) has
O(n2 +m2 + pm) variables and O(n3 +m2) clauses.

Proof. The number of σ-, φ- and χ-variables are O(n2), O(m2) and O(pm) respec-
tively, which implies that F(G, p) has O(n2 + m2 + pm) variables. The number
of clauses of F(G, p) is dominated by the number of transitivity, same-page and
planarity rules, which yield in total O(n3 +m2) clauses. So, to prove this theorem
it remains to show that: (i) a book embedding on p pages yields a satisfying
assignment of F(G, p) and (ii) a satisfying assignment of F(G, p) yields a book
embedding on p pages.

(i) From an embedding to an assignment: Assume that G has a book em-
bedding E(G, p) on p pages. From E(G, p) we obtain an order of the vertices along
the spine and an assignment of the edges to the pages. We define an assignment
(σ̂, φ̂, χ̂) to the σ-, φ- and χ-variables of F(G, p) consistent with the intended mean-
ing of the variables:

• σ̂(vi, vj) = true, if and only if vi is before vj along the spine

Using SAT to embed graphs in books 103

• φ̂q(ei) = true, if and only if ei is assigned to the q-th page

• χ̂(ei, ej) = true, if and only if ei and ej are assigned to the same page

To prove that assignment (σ̂, φ̂, χ̂) satisfies F(G, p) we consider all rules of F(G, p):

• The transitivity and asymmetry rules are satisfied by (σ̂, φ̂, χ̂), since σ̂ is a
complete order over the vertices of G (by definition of the assignment).

• The direction rules are also satisfied, since we can assume w.l.o.g. that in
E(G, p) vertex v1 ∈ V is the first vertex along the spine and v2 is to the left
of v3. Note that if this is not the case then we can circularly-shift the vertices
of G along the spine and potentially mirror E(G, p) and obtain an equivalent
embedding which has the aforementioned properties; see e.g., [152].

• The page assignment rule is trivially satisfied by the definition of the assign-
ment and the fact that E(G, p) was given.

• The fixed page assignment rule can be satisfied as well, since we can assume
w.l.o.g. that the first page of E(G, p) is the page where edge e1 ∈ E is assigned
to.

• The same page rule is trivially satisfied due to the definition of the assignment.

• It remains to show that all planarity rules are satisfied. For the sake of
contradiction assume that the assignment (σ̂, φ̂, χ̂) violates a planarity rule
for some pair of edges (vi, vj) and (vk, v`). We know that χ̂((vi, vj), (vk, v`)) =
true and w.l.o.g. assume further σ̂(vi, vk) = σ̂(vk, vj) = σ̂(vj , v`) = true.
Hence, in E(G, p) we have that vk is between vi and vj , while v` is not between
vi and vj . Thus, (vi, vj) and (vk, v`) are on the same page and cross in E(G, p)
which is a clear contradiction.

(ii) From an assignment to an embedding: Let (σ̂, φ̂, χ̂) be a satisfying
assignment to F(G, p). Let ξ : V 7→ {1, . . . , n} be a function which maps each

vertex v ∈ V to a position along the spine. Based on the assignment (σ̂, φ̂, χ̂), ξ
can be defined as follows:

ξ(vi) = 1 + |{vj : σ(vj , vi) = true, 1 ≤ j ≤ n, j 6= i}|

Since (σ̂, φ̂, χ̂) satisfies the asymmetry and transitivity rules, it follows that all
positions assigned to the vertices of G are pairwise different. Therefore, a proper
global ordering is obtained. Since by the page assignment rule, every edge of G is
assigned to at least one page we only have to show that each page is crossing-free.
Assume for the sake of contradiction that (vi, vj) and (vk, v`) are two edges of G
that are assigned to the same page and cross. In this case one of the following
relationships must hold:

R.1: min{ξ(vi), ξ(vj)} < min{ξ(vk), ξ(v`)} < max{ξ(vi), ξ(vj)} < max{ξ(vk), ξ(v`)}

R.2: min{ξ(vk), ξ(v`)} < min{ξ(vi), ξ(vj)} < max{ξ(vk), ξ(v`)} < max{ξ(vi), ξ(vj)}
However, neither R.1 nor R.2 is possible, since both configurations do not comply

with the planarity rule of (σ̂, φ̂, χ̂). Therefore, each page is crossing-free, as desired.

104 SAT Formulation

So far, we have described a SAT formulation that tests, whether a given graph
G = (V,E) admits an embedding in a book with p ≥ 2 pages. Of course, this
formulation can be extended with additional variables and rules. In the following
we will introduce three different extensions, which encode Hypotheses 3, 4 and 5.
Finally we discuss in Section 6.2.4 a fourth extension which seeks for embeddings
in a fixed number of pages with minimum number of edges on the last page. This
variant is useful, e.g., in order to determine how many edges must be removed from
a p-page book embeddable graph in order to become (p−1)-page book embeddable
which is clearly an NP-hard problem.

6.2.1 A variant to check Hypothesis 3

In this subsection, we present a SAT formulation to check Hypothesis 3. Recall that
we seek to check whether a maximal planar graph G can be embedded in p = 3
pages, so that the subgraph assigned to each of the three pages is an acyclic graph.
In the following we will extend formula F(G, 3) with new variables and rules to
encode the additional requirement. We denote by Ff (G, 3) the resulting formula.

Let N (v) be the set of vertices adjacent to v ∈ V . For every edge (vi, vj) ∈ E
the variable πq(vi, vj) describes whether vertex vi is the parent of vertex vj in the
forest of page q ∈ {1, 2, 3}. Variable πq(vj , vi) is defined symmetrically. We ensure
that exactly one of the two variables is true when the edge (vi, vj) is assigned to
page q, and both of the variables are false when the edge (vi, vj) is not assigned
to page q by the parent rules:

φq((vi, vj)) → (πq(vi, vj) ∧ ¬πq(vj , vi)) ∨ (¬πq(vi, vj) ∧ πq(vj , vi))

¬φq((vi, vj)) → (¬πq(vi, vj) ∧ ¬πq(vj , vi))

We also have to ensure that every vertex vi ∈ V has at most one parent vertex in
the forest of page q which can be done via the single parent rule:

(¬πq(vk, vi) ∨ ¬πq(v`, vi)), ∀vk, v` ∈ N (vi) : vk 6= v`

To ensure acyclicity we use variables αq(vi, vj) that describe whether vertex vi is
an ancestor of vj in the forest of page q. We know that whenever for an edge
(vi, vj) ∈ E vertex vi is the parent of vertex vj on page q that vi is the ancestor for
vj on that page as well which results in the parent ancestor rule:

πq(vi, vj)→ αq(vi, vj)

Clearly, transitivity as well as antisymmetry has to hold for the ancestor relation-
ship:

(αq(vi, vj) ∧ αq(vj , vk))→ αq(vi, vk) ∀ pairwise distinct vi, vj , vk ∈ V
αq(vi, vj)→ ¬αq(vj , vi) ∀ pairwise distinct vi, vj ∈ V

Theorem 6.2. Let G = (V,E) be a (maximal) planar graph. Then G admits a
book embedding on three pages, so that the subgraph assigned to each of the three
pages is a forest, if and only if Ff (G, 3) is satisfiable.

Using SAT to embed graphs in books 105

Proof. We use the same technique as in the proof of Theorem 6.1. Consider an
embedding E(G, 3) in three pages yield by our formulation. We claim that the
subgraphs embedded at each page are acyclic. For contradiction assume that there
is a cycle Cq on page q. If we direct each edge of Cq from the child to the parent
vertex then all edges of Cq must have the same orientation, that is either clockwise
or counterclockwise along Cq (otherwise there is a vertex of Cq that has two par-
ents, deviating the single parent rule). The transitivity of the ancestor relationship
implies that the antisymmetry property is deviated along Cq which is a contradic-
tion. Hence, the subgraphs embedded at each page of E(G, 3) are indeed acyclic.
Following similar arguments as in the second part of the proof of Theorem 6.1 we
can easily prove that a satisfying assignment of Ff (G, 3) yields a book embedding
on 3 pages in which the subgraph assigned to each page is a forest which completes
the proof.

Note that Ff (G, 3) has asymptotically the same number of variables and clauses
as F(G, 3). Also note that our formulation can be easily adjusted to check whether
the subgraph assigned to each page is a tree (which will be denoted by Ft(G, 3)).
In this scenario we employ an additional variable ρq(vi) for each vertex vi ∈ V that
describes whether vi is the root of the tree of page q ∈ {1, 2, 3}. Vertex vi is the
root of the tree of page q if and only if it has no parent and (at least) one child at
page q, which can be ensured via the following root rule:

(
∧

vj∈N (vi)

¬πq(vj , vi)) ∧ (
∨

vk∈N (vi)

πq(vi, vk))↔ ρq(vi)

We ensure that there are not two or more roots on the same page q via the single
root rule:

(¬ρq(vi) ∨ ¬ρq(vj)), ∀vi, vj ∈ V ; i 6= j

Theorem 6.3. Let G = (V,E) be a (maximal) planar graph. Then G admits a
book embedding on three pages, so that the subgraph assigned to each of the three
pages is a tree, if and only if Ft(G, 3) is satisfiable.

Proof. Consider an embedding E(G, 3) in three pages yield by our formulation. We
claim that the subgraphs embedded at each page are three trees. For contradiction
assume that there is a forest Fq on page q. By acyclicity we know that at least
two vertices on page q have no father, but at least one child, forcing them to be a
root on page q via the root rule which contradicts the single root rule. Hence, the
subgraphs embedded at each page of E(G, 3) are indeed trees. Following similar
arguments as in the second part of the proof of Theorem 6.1 we can easily prove
that a satisfying assignment of Ft(G, 3) yields a book embedding on 3 pages in
which the subgraph assigned to each page is a tree which completes the proof.

Further extensions to test a weaker version of Hypothesis 3

The weaker version of Hypothesis 3 shall test whether it is not always possible to
construct a 3-page book embedding based on a Schnyder decomposition into three
trees (regardless of the linear order underneath). For this purpose it is required
that (i) the subgraph assigned to each of the three pages is not only a tree, but

106 SAT Formulation

a tree on n− 1 vertices and additionally, (ii) that the three vertices which are not
spanned by the three trees are pairwise adjacent forming a face f∗ of the graph.

Since we search for book embeddings in which every subgraph assigned to each
of the three pages is a tree we will use Ft(G, 3) as a base and extend it by the
following two rules to obtain Fs(G, 3). Via the fixed root rule we set each of the
three vertices from the face f∗ as the root of one of the three pages. Assume that
the three vertices of f∗ are vi, vj , vk:

(ρ1(vi) ∧ ρ2(vj) ∧ ρ3(vk))

Additionally we have to ensure that each of the three vertices (vi, vj , vk) of f∗ is not
spanned by one of the three trees. For this purpose we define I(v) to be the set of
edges incident to v ∈ V . The page assignment rule from F(G, 3) which is therefore
also still present in Ff (G, 3) and Ft(G, 3)) will be replaced by the following new
forbid page assignment rule.∧

e∈I(vi)
¬φ2(e) ∧

∧
e∈I(vj)

¬φ3(e) ∧
∧

e∈I(vk)
¬φ1(e)

This rule unsures that all incident edges of vi are either on the first page where vi
is the root, or on the third page, but not on the second page. Analogously none of
the incident edges of vj are on the third page, and none of the incident edges of vk
are on the first page.

Theorem 6.4. Let G = (V,E) be a (maximal) planar graph. Then G admits a
book embedding on three pages, so that (i) the subgraph assigned to each of the three
pages is not only a tree, but a tree on n− 1 vertices and additionally, (ii) that the
three vertices, that are not spanned by the three trees are pairwise adjacent forming
a face f∗ of the graph, if and only if Fs(G, 3) is satisfiable.

Proof. Directly follows from the validity of Ft(G, 3).

6.2.2 A variant to check Hypothesis 4

Assume that Ga = (Va, Ea) is a maximal planar graph that is embeddable in a
book with 3 pages. Let ∆(Ga) = {f1, f2, . . . , f2|Va|−4} be the set of (triangular)
faces of Ga. In the following we describe an extension to the formula F(Ga, 3) that
forbids the so-called unicolored faces. These are faces whose edges are assigned to
the same page of the book. We denote the resulting formula by Fa(Ga, 3).

In comparison to our previous approaches we are not searching for a single book
embedding for which an additional property must hold, but rather we have to test
whether all possible book embeddings have this property. We will use the same
page variables already present in F(Ga, 3) to ensure this property via the forbid
unicolored face rule:

(¬χ(ei, ej) ∨ ¬χ(ei, ek)) ∀f = {ei, ej , ek} ∈ ∆(Ga)

Theorem 6.5. Fa(Ga, 3) is unsatisfiable, if and only if for every possible book
embedding E(Ga, 3) there exists a unicolored face fi ∈ ∆(Ga), i = 1, . . . , 2|Va| − 4.

Proof. Directly follows from the validity of F(Ga, 3).

Using SAT to embed graphs in books 107

6.2.3 A variant to check Hypothesis 5

Assume that Gc = (Vc, Ec) is a maximal planar graph that is embeddable in a book
with 3 pages and let ∆(Gc) be the set of (triangular) faces of Gc. To check whether
a particular face f∗ = {ei, ej , ek} ∈ ∆(Gc) cannot be unicolored in any possible
book embedding of Gc we use the already present same page variables of F(Gc, 3)
again:

(χ(ei, ej) ∧ χ(ei, ek)), f∗ = {ei, ej , ek} ∈ ∆(Gc)

The addition of the force unicolored face rule to the formula F(Gc, 3) yields a new
formula which we denote by Fc(Gc; f

∗, 3). By the following theorem it follows that
in order to check Hypothesis 5 one has to check 2|Vc|−4 different formulas; one for
each face of Gc.

Theorem 6.6. Fc(Gc; f
∗, 3) is unsatisfiable, if and only if there exists no book

embedding of Gc with f∗ being unicolored.

Proof. Directly follows from the validity of F(Gc, 3).

6.2.4 Finding “difficult” graphs

This variant aims in computing graph embeddings in books with p ≥ 2 pages which
contain the minimum number of edges on the p-th page. In other words, one can
use this variant to determine how many edges must be removed from a p-page
book embeddable graph, in order to become (p− 1)-page book embeddable1. The
motivation of this approach comes from the search for unsolvable graph instances,
say for planar graphs that cannot be embedded in three pages. To construct such
a graph we want to take a “difficult” graph and modify it appropriately to make it
impossible for 3-page book embedding. A way to define the difficulty of a graph is
by its number of edges at the last page. We minimize the number of edges on the
last page and if a graph has many edges on the last page then it is considered to
be a difficult one.

To tackle this variant of the problem we will use partial MaxSAT [102]. Partial
MaxSAT sits between the classic SAT problem and the MaxSAT problem. Recall
that MaxSAT seeks to maximize the number of satisfied clauses of a given formula.
Partial MaxSAT combines SAT and MaxSAT by having certain clauses marked as
soft or relaxable and the others as hard or non-relaxable. Given a certain number
of soft and hard clauses the objective is to find a variable assignment that satisfies
all hard clauses together with the maximum number of soft clauses.

We employ partial MaxSAT to minimize the number of edges of the p-th page
of a p-page book embeddable graph G as follows. Our base is formula F(G, p− 1).
The clauses added due to the page assignment rule are the only soft clauses of
F(G, p−1). All other clauses are hard and must be satisfied. Partial MaxSAT will
maximize the number of edges assigned to the first p − 1 pages, such that these
edges do not cross. All we have to ensure is that the remaining edges (that are

1Clearly, this is an NP-hard problem, since it can be easily reduced to the problem of deter-
mining whether a maximal planar graph is Hamiltonian.

108 Practical Results

inevitably at the p-th page) do not cross. To achieve this we have to ensure that
two edges which are not assigned to the first p − 1 pages must be identified as on
the same page (recall that for this purpose we have already defined the χ-variables)
which can be done by the following on last page rule:

(¬φ1(ei) ∧ . . . ∧ ¬φp−1(ei) ∧ ¬φ1(ej) ∧ . . . ∧ ¬φp−1(ej))→ χ(ei, ej) ∀ei, ej ∈ E

All clauses implied by this rule are hard. These clauses together with the already
present forbid crossing rule of F(G, p−1) ensure that all edges assigned to the p-th
page of the book will not cross as well.

Note that even if there exist several algorithms and solvers to tackle partial
MaxSAT (see e.g., [53, 87]) in practice we realized that this particular variant is of
limited impact, since it is time demanding even for relatively small graphs, as we
will see in the following experimental section.

6.3 Practical Results

In this section we present an experimental evaluation of our SAT formulation. We
ran our experiments on a Linux machine with four cores at 2.5 GHz and 8 GB of
RAM. The implementation that creates the SAT instances was done in Java. For
solving the SAT instances we used the SApperloT solver [88]. This solver is as
fast as the well-known minisat [47] solver for smaller graphs, but it considerably
outperforms minisat for increasing instance sizes. The runtime we report consists
of both the time to create the instance and the time to solve it. Note that the
time to create the SAT instance for small graphs is neglectable. For large graphs,
however, that step can take a few minutes.

6.3.1 Established benchmark sets

Since the Rome and the North graphs are popular test sets for planar and nearly
planar graphs we also used them as test sets for our experiment (cf. http://www.
graphdrawing.org). The Rome graphs are 11534 graphs; 3281 of them are planar
and 8253 are non-planar. Their average density is 0.069, where the density of a
graph G = (V,E) is 2|E|/(|V |(|V |−1)). The number of vertices of the Rome graphs
range from 10 to 110. The corresponding number of edges range from 9 to 158.

It is eye-catching that all planar Rome graphs are 2-page book embeddable (see
Table 6.1). The non-planar ones on the other hand are 3-page embeddable. But
since the Rome graphs are very sparse this result was more or less expected. Note
that 99% of the planar Rome graphs (that is, 3248 out of 3282) are solved within
2 seconds. For the non-planar Rome graphs, the same ratio (that is, 8169 out of
8253) is achieved after 6.25 seconds.

As a second benchmark set we used the North graphs which are 1277 directed
acyclic graphs (obtained from http://www.graphdrawing.org); 854 of them are
planar and 423 are non-planar. The number of vertices of the North graphs range
from 10 to 100. The corresponding number of edges range from 9 to 241. On
average these graphs are nearly twice as dense as the Rome graphs; their average
density is 0.13. Again all planar graphs were 2-page book embeddable (see also

Using SAT to embed graphs in books 109

Table 6.1. Overview of the results for the established benchmark sets.

planar nonplanar

Graph class # p = 2 # p = 3 p = 4 p = 5 see
below

Rome 3281 3281 8253 8253 0 0
North 854 854 423 329 25 8 61

Table 6.1). The runtime to compute the corresponding embedding for the vast
majority of the planar North graphs was rather small. In particular 97.5% of them
(that is, 833 out of 854 graphs) were solved within 3 seconds, with the maximum
runtime being 9.4 seconds.

For the non-planar North graphs which are more dense than the non-planar
Rome graphs we could determine the page number of 344 out of 423 graphs within
the time limit of 1200 seconds. We also observed that for these graphs finding
a 3-page book embedding is much faster than proving that such an embedding
does not exist (see Figure 6.3b). For the remaining 79 graphs we increased the
time limit to 3 hours and managed to get at least some partial results: (i) for 18
graphs we computed their exact page number (see also Table 6.1), (ii) 27 graphs
fit in four pages, but we were not able to determine whether they could fit in
three pages, (iii) 32 graphs did not fit in three pages (and 6 out of them did not
even fit in four pages), but we did not manage to determine their page number.
Nevertheless, all non-planar North graphs could fit into 8 pages and since the focus
of this chapter is on planar and 1-planar graphs, we did not further investigated
the book embeddability of these graphs.

10 60 110 160 210 260
0.1

1

10

100

planar 2 pages

nonplanar 3 pages

n+m

tim
e

(s
ec

.)

(a)

0 50 100 150 200 250 300
0.1

1

10

100

1000

unsat sat

n+m

tim
e

(s
ec

.)

(b)

Figure 6.3. (a) Rome graphs: Runtime to compute either 2-page embeddings for planar
Rome graphs (green) or 3-page embeddings for non-planar Rome graphs (red). (b) Non-
planar North graphs: The time needed either to compute 3-page embeddings (green) or
to prove that no 3-page embedding exist (red).

110 Practical Results

6.3.2 Crafted graphs

To prove Hypothesis 1 we also crafted several maximal planar graphs with at least
500 vertices each which we tested for 3-page book embeddability. To avoid testing
Hamiltonian graphs we adopted a two-step approach that was inspired by the graph
class that Yannakakis proposed as candidate to require four pages. In the first step,
we randomly chose a triangulated planar (not necessarily non-Hamiltonian) graph
as the base for the second step. In the second step we augmented the base graph by
specific operations to make it non-Hamiltonian (and therefore at least not 2-page
embeddable). Examples of these operations are:

(i) stellate a face f , that is, introduce a new vertex and connect it to all vertices
of f ,

(ii) replace a triangular face by an octahedron,

(iii) embed a non-Hamiltonian (maximal) planar graph Gf to a face f by identi-
fying the vertices of f with the vertices of a particular face of Gf ,

(iv) add a non-Hamiltonian (maximal) planar graph Gf into a face f , connect the
vertices of f with the vertices of a particular face of Gf (w.l.o.g. the outer
face fo) in an octahedronic fashion (see Figure 6.4).

f

Gf

Figure 6.4. Add a non-Hamiltonian (maximal) planar graph Gf into a face f in a
octahedronic fashion.

In practice we observed that these simple operations most of the times yield non-
Hamiltonian planar graphs (mainly because of the presence of several separating
triangles). The graphs that we crafted and tested with this approach were all
maximal planar with at least 500 and at most 700 vertices. The runtime to check
each instance was ranging from a couple of hours to at most a couple of days. Of
course, we also tested a specific graph with roughly 600 vertices out of Yannakakis’
graph class, but it turned out to be 3-page book embeddable (for this particular
size).

6.3.3 Finding “difficult” graphs

The operations (iii) and (iv) from above yield non-Hamiltonian graphs. Since our
goal was to find a planar graph that requires 4 pages we used the partial MaxSAT
approach from Section 6.2.4 to find “difficult” graphs. These are graphs for which
the minimum number of edges on the third page is as high as possible. By com-
bining these graphs via the operations (iii) and (iv) we would be able to create

Using SAT to embed graphs in books 111

larger graphs, that are required to have a large number of edges on the third page,
increasing the possibility that this third page is non-planar.

Figure 6.5. The black substructure is the well-known Goldner-Harary graph, which is
the only maximal planar graph with 11 vertices (out of 1249 [26]), that requires 3 pages.
Adding the blue (red, respectively) vertex and edges leads to the only two maximal planar
graphs with 12 vertices (out of 7595 [26]), that require 3 pages.

In our search for small graphs that have a high minimum number of edges on
the last page we tested all isomorphic maximal planar graphs for n ∈ {11, . . . , 16}.
The Goldner-Harary graph is the only maximal planar graph with 11 vertices which
requires 3 pages (and therefore at least one edge on the third page). For 12 vertices
there exist only 2 graphs that require 3 pages (both have at least one edge on
the third page). Both of these graphs can be created by stellating one out of
two particular faces of the Goldner-Harary graph (see Figure 6.5). With increasing
graph size the number of non-Hamiltonian graphs rises rapidly (see Table 6.2). The
smallest graph that requires at least two edges on the third page has 14 vertices,
and among all tested maximal planar graphs with at most 16 vertices, not a single
one needed to have 3 edges on the third page.

overview min. edges on page 3

n # [26] non-Ham. 1 2 3

11 1, 249 1 1 0 0
12 7, 595 2 2 0 0
13 49, 566 30 30 0 0
14 339, 722 239 237 2 0
15 2, 406, 841 2, 369 2, 361 8 0
16 17, 490, 241 37, 348 37, 119 229 0

Table 6.2. The minimum number of edges on the third page for maximal planar graphs
with at most 16 vertices.

Due to the size of the search space and the fact that the runtime of the partial
MaxSAT approach increases rapidly with increasing graph size we were not able to
test any further complete set of maximal planar graphs for larger n.

For n = 5 (n = 6, respectively), the graphs G′ created by stellating every face
are the only maximal planar graphs with n′ = 11 (n′ = 14, respectively) vertices
that require one (two, respectively) edges to be embedded on the third page.

112 Practical Results

11 14 17 20
1

10

100

1000

10000

n'
tim

e
(s

ec
.)

Figure 6.6. The runtime to compute the minimum number of edges on the third page
for stellated maximal planar graphs. The horizontal line marks the average runtime for
a given size of the graph, whereas the two end points of the vertical lines denote the
minimum and maximum runtime. Every graph was tested three times.

As already mentioned, the partial MaxSAT approach reaches its practical limit
already for graphs with more than 20 vertices. We created, based on all maximal
planar graphs for n ∈ {5, . . . , 8}, the stellated graphs G′ of size n′ ∈ {11, 14, 17, 20}
and computed the minimum amount of edges on the third page three times for every
G′. For graphs larger than 14 vertices the average runtime for a single instance
increased by one order of magnitude in comparison to the next smaller group of
graphs (see Figure 6.6). While the average runtime for graphs of size n′ = 14 was
2.64 seconds the average runtime increased to 31.93 seconds for n′ = 17 and to
435.54 seconds for the stellated maximal planar graphs with n′ = 20 vertices.

6.3.4 1-planar graphs

To check Hypothesis 2 for more than four pages we initially generated all 2,098,675
planar triconnected quadrangulations with 25 vertices and minimum degree three
using the tool plantri [26]. By augmenting every face with two crossing edges,
the generated quadrangulations yield optimal 1-planar graphs. Our experiments
showed that all tested optimal 1-planar graphs required four pages. The runtime
distribution is shown in Figure 6.7a. Computing a 4-page embedding was always
fast: For 99.06% of the graphs the solver found a solution within 4.7 seconds. The
maximum runtime for a single instance was 186 seconds. Proving that no 3-page
embedding existed was harder. In less than 5 minutes 94.4% of the instances could
be solved. However, for very few instances this could take up to two hours.

To obtain a better understanding of the connection between the runtime of our
approach and the size of the graphs we randomly created 8312 optimal 1-planar
graphs of different sizes varying from 50 to 155 vertices. Starting from the cube
graph (see Figure 6.1) we iteratively applied one of the two operations described
by Suzuki [136] in order to generate all optimal 1-planar graphs, until we reached
the desired size of the graph. The runtime to compute 4-page embeddings for
these graphs is shown in Figure 6.7b. For nearly all graphs up to 100 vertices a 4-
page embedding could be computed within two minutes. However, with increasing
vertex-count the amount of graphs that could take up to several hours of CPU time

Using SAT to embed graphs in books 113

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

0
10
20
30
40
50
60
70
80
90

100

unsat 3 pages

sat 4 pages

time (sec)

so
lv

ed
 in

st
an

ce
s

(%
)

(a)

240 310 380 450 520 590 660 730
n+m

tim
e

(s
ec

)

0.1

1

10

10

10

10

3

4

2

(b)

Figure 6.7. (a) The runtime for maximal 1-planar graphs with 25 vertices. The red curve
shows the runtime to prove that no 3-page embedding exist; the green curve shows the
runtime to compute 4-page embeddings. (b) The runtime to compute 4-page embeddings
for randomized optimal 1-planar graphs.

to compute an embedding on four pages rises rapidly.

6.3.5 Phase transition

To further investigate the runtime behavior of our SAT approach we created random
optimal 1-planar graphs of different sizes with the method described before. Let
G be an optimal 1-planar graph that is created at random with the method we
described earlier in this chapter. We denote Gi the subgraph of G that is obtained
by removing i randomly selected edges of G. For every (large enough) graph G
there exists a z, such that Gz is 3-page embeddable and Gz−1 is not. These are
the instances considered to be hard.

We are interested in this phase transition (see Figure 6.8). We created more
than 200 graphs of varying sizes (n = 16, . . . , 21), grouped the instances according
to their z-value and computed the average runtime of each group. As expected, the
runtime increases from G1 towards Gz−1 and decreases afterwards. At some point
the runtime is mainly dominated by the time used to parse the graph and create
the SAT instance. Hence, sparse graphs that are far away from the phase transition
can be embedded very fast. It is significantly harder to prove that a graph Gz−1 is
not embeddable on 3 pages than computing a 3-page book embedding for Gz.

Another interesting observation can be done when comparing the runtime of
graphs with the same amount of vertices, but different z-value. The dashed curves
are always above the continuous curves in the unsatisfiable area of the diagram
(that is located left of the gray line). This indicates, that it is harder to find a
proof for nonembeddability for sparser graphs. On the first look that may seem
counter-intuitive, since the search space for sparse graphs is smaller than for their
dense counterparts, but could be explained by the idea that the denser the graph
is the more possibilities to find a counter example exist.

114 Summary

9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
1

10

100

1000

16 (3)

16 (4)

17 (5)

17 (6)

20 (7)

20 (8)

21 (8)

21 (9)

#edges - z

tim
e

(s
ec

.)

Figure 6.8. Runtime of the SAT approach for generated subgraphs of optimal 1-planar
graphs to test whether the graph is 3-page book embeddable.

6.3.6 Randomized planar graphs

To check Hypotheses 3-5 we generated a large set of random maximal planar graphs
as follows. We applied Delaunay triangulation [42] on a set of randomly created
points within a triangular region. To avoid Hamiltonian graphs we simply stellated
every face of the produced Delaunay triangulations. Our results are summarized
in the following. Note that none of the tested graphs corroborate Hypotheses 3-5.

- For Hypothesis 3 we tested 15040 maximal planar graphs of varying number of
vertices between 25 and 80. The SAT approach was able to solve 70.78% of the
instances (that is, 10646 out of 15040) within 3 minutes and 76.37% (that is,
11487 out of 15040) of the instances within 20 minutes, which was the time limit
of the computation.

- For Hypothesis 4 we tested 7174 maximal planar graphs of varying number of
vertices between 59 and 125. The SAT approach was able to solve 92.75% of the
instances (that is, 6621 out of 7174) within 10 minutes and 99% of the instances
within an hour. The maximum time that was needed to solve a single instance
was 5 hours and 6 minutes.

- For Hypothesis 5 we managed to test 277284 maximal planar graphs of varying
number n of vertices between 59 and 95. Every single instance, each containing
2n− 4 different SAT formulas, required only few seconds to be tested.

6.4 Summary

In this chapter we approached the problem of determining whether a graph can be
embedded in a book of a certain number of pages from a SAT solving perspective.

Using SAT to embed graphs in books 115

We presented a novel SAT formulation for the Book Embedding problem which
is of a simple nature, quite intuitive and easy-to-implement, but simultaneously
robust enough to solve non-trivial instances of the problem in a reasonable amount
of time. It is possible to solve large planar graphs of up to 700 nodes within a
few hours of computation time. However, around the optimal solution, where the
problem switches from unsatisfiable to satisfiable, we observe the well-known phase
transitional behavior for SAT problems [27].

The SAT formulation is designed in a very modular way. It can be separated
in three main parts: (i) the creation of a complete order of the vertices of the
input graph which represents the position of each vertex on the spine of the book,
(ii) the assignment of all edges to one of the available possible pages, (iii) ensuring
the property of non-crossing edges on each of the p pages.

Because of this modularity it is very easy to formulate SAT encodings that
differ in one or more aspects from the original Book Embedding formulation. For
example, it is quite easy to modify the original formulation so to allow up to a
maximum number of crossing on any page, or require that a single edge is embedded
on more than one page. Motivated by the Hypotheses 3, 4 and 5 we have shown how
to extend the basic SAT formulation by inserting new constraints to incorporate
the additional requirements.

Unfortunately, we were able neither to find a planar graph that requires 4 pages,
nor to find a 1-planar graph that requires more than 4 pages. However, we were
able to find a relatively small 1-planar graph whose book thickness is exactly four
and thus, prove the first (non-trivial) lower bound on the book thickness of 1-planar
graphs.

We will get back to the possibility of applying SAT techniques to problems from
the field of graph theory and graph drawing in Chapter 7, where the work of this
thesis is concluded. We will also give some ideas and directions for future research
regarding the usage of SAT to solve other interesting problems in graph theory in
general, and for the Book Embedding problem specifically.

7 Conclusion

This thesis can be divided into main parts. The first part focuses on minimal un-
satisfiable subsets, and specifically on the enumeration of them. We elaborated an
interactive approach to extract different MUSes, and used the developed methodolo-
gies for the interactive extraction to improve the automatic enumeration of MUSes.
The second part of the thesis introduces two novel applications for SAT. The first
problem stems from Bioinformatics and searches for an evolutionary tree. The
second applications is based in the field of graph theory and graph drawing.

Results of the thesis

The motivating idea for the work presented in Chapter 3 was to turn deletion-based
MUS extraction into an interactive process, with the goal of allowing experts to
use their domain knowledge while looking for good explanations of infeasibilities.
Different MUSes for one instance often overlap in a core region, which is satisfiable
itself but has to be “enlarged” by only a few other constraints from the formula
to construct an MUS. Due to this, the user could have to detect the same core re-
gion for different MUSes in an interactive process multiple times. To overcome this
problem we developed a scheme for learning and retrieving the information that can
be gained from successful and unsuccessful reduction attempts for a maximum of
information reuse during interactive search space exploration. The so-called meta
instance over selector variables can store the information about all encountered crit-
ical clauses, and can be used to retrieve the clauses which are implied to be critical
in some US by solving this meta instance with assumptions. By grouping selector
variables into blocks it was possible not only to compress the meta instance in a sig-
nificant way, but also to introduce the methodical foundations for the next chapter.

The ideas of an extended meta instance and a generalization of the blocks were
incorporated into state-of-the-art MUS enumeration algorithms in Chapter 4. The
development of an identification procedure for a set of clauses that exhibit the block
property aided new techniques to improve the MUS extraction. In addition, we put
the focus on the computation of an often undesired by-product of MUS enumera-
tion algorithms, the minimal correction sets (MCSes). By using a meta instance
extensively we showed how to benefit from these additional MCSes and were able to
speed up a single MUS extraction by reducing the search space. Combining all these

117

118

techniques enabled us to outperform state-of-the-art MUS enumeration algorithms.

In Chapter 5 we moved away from the enumeration of MUSes and developed a
novel approach to solve Maximum Quartet Consistency by encoding Quartet Com-
patibility as a satisfiability problem. The encoding is based on the split operation,
that creates iteratively a phylogeny covering all the taxa from the input. However,
the first version of the encoding was not efficient enough, since the conflicts were
detected at a very low level in the DPLL search tree. We elaborated two differ-
ent extensions, that tackle this problem and introduce redundant clauses to allow
the SAT solver the deduction of conflicts at a higher level of the search tree. The
practical analysis showed that we outperform all available ASP, PBO and MaxSAT
approaches.

The second new SAT formulation we developed during this work solves the Book
Embedding problem. The formulation is of a simple nature, intuitive and easy-to-
implement, but simultaneously robust enough to solve non-trivial instances of the
problem in a reasonable amount of time. We proved a first (non-trivial) lower bound
on the book thickness of 1-planar graphs by finding a relatively small 1-planar
graph whose book thickness is exactly four. Given the modular structure of our
SAT formulation it can easily be extended to incorporate additional requirements
of the embedding. We have shown different extensions to the basic formulation
and were able to find a proof, that it is not always possible to construct a 3-page
book embedding for planar graphs that are based on a Schnyder decomposition
into three trees, regardless of the linear order of the vertices on the spine.

Directions for future work

There are several possibilities for future research on the different topics studied in
this thesis, some of which we present here:

The interactive MUS extraction paradigm introduced in Chapter 3 is far away
from being fully explored. Some interesting ideas are:

• Incorporate the insertion-based MUS extraction to the interactive MUS ex-
traction paradigm. This extension would require a completely different ap-
proach to the interactive extraction, since the Algorithm 2.4 detects only
one critical clause in each iteration. A successful insertion attempt does not
lead necessarily to the addition of the clause to the MUS, since only the last
successful insertion attempt of one iteration adds one clause to the MUS.

• Extend the interactive paradigm to the hybrid MUS extraction algorithm.
The hybrid approach selects a single clause in each iteration and tests, whether
that clause is critical or not. Since this is analogous to the deletion-based al-
gorithm, no further issues have to be considered.

• The already mentioned possibilities in using the meta instance to impose
additional properties on the encountered USes (see Section 3.5) should be
implemented.

Conclusion 119

Future research directions for the usage of the block property, which was intro-
duced in Chapter 4, are for example the following.

• Explore the possibilities to use the block information directly within any
MSS/MCS oracle.

• Incorporate sophisticated data structures into the algorithms that use the
block property to detect more MCSes.

• Prove the block property without the current problems to be able to extract
MUSes by a single call of an MUS enumerator.

• Develop novel quality measures of MUSes. At the moment, the number of
MUSes seems to be the natural measure when assessing partial MUS enu-
meration techniques, but finding one MUS of superb quality with respect to
the application may be better than finding many MUSes of poor quality with
respect to the application.

Since the split encoding, that we introduced in Chapter 5 to solve the Maximum
Quartet Consistency problem, reaches its practical limit for approximately 20 taxa
some interesting directions are:

• In its current version, the split encoding is particular efficient for small binary
phylogenies. Can the split encoding be generalized to be similarly efficient
for a general tree?

• Develop a SAT formulation that solves the Quartet Compatibility problem on
an incomplete set of quartet topologies for a higher number of taxa (n ≥ 100)
efficiently.

• Evolutionary trees are more and more replaced by evolutionary networks. Can
the split encoding be modified, such that it incorporates network structures?

Since we did not prove (or disprove) any of the Hypotheses we stated for the
Book Embedding problem in Chapter 6, they remain open problems. Additional
possible research directions are:

• Develop a SAT formulation for other “one-dimensional” and grid-based prob-
lems (like pathwidth, bandwidth, optimal st-orientation, visibility represen-
tation, and feedback arc set) based on the relative encoding used also for the
Book Embedding problem.

• Reduce the number of clauses that are used within the Book Embedding
formulation to be able to solve denser graphs and a higher number of pages.

• Explore the possibility to use an iterative SAT solving approach, that adds
the edges of a graph in a particular sequence. By adding the edges not all
at once, the SAT solver solves embeds subgraphs, and is able to reuse the
information he gained for subgraphs for the next iterations.

References

[1] bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative,
funded by the Ministry for Education and Research (Bundesministerium fuer
Bildung und Forschung) and the Ministry for Science, Research and Arts
Baden-Wuerttemberg (Ministerium fuer Wissenschaft, Forschung und Kunst
Baden-Wuerttemberg).

[2] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Reveal: A formal
verification tool for verilog designs. In Logic for Programming, Artificial
Intelligence, and Reasoning - LPAR 2008 - 15th International Conference,
volume 5330 of LNCS, pages 343–352. Springer, 2008.

[3] Alessandro Armando and Luca Compagna. Automatic SAT-Compilation of
Protocol Insecurity Problems via Reduction to Planning. In Formal Tech-
niques for Networked and Distributed Systems - FORTE 2002, pages 210–225,
2002.

[4] James Bailey and Peter J. Stuckey. Discovery of Minimal Unsatisfiable Sub-
sets of Constraints Using Hitting Set Dualization. In Practical Aspects of
Declarative Languages - PADL 2005 - 7th International Symposium, volume
3350 of LNCS, pages 174–186. Springer, 2005.

[5] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing
and Solving Over-Determined Constraint Satisfaction Problems. In 13th In-
ternational Joint Conference on Artificial Intelligence - IJCAI 1993, pages
276–281. Morgan Kaufmann, 1993.

[6] Michael A. Bekos, Till Bruckdorfer, Michael Kaufmann, and Chrysanthi N.
Raftopoulou. 1-Planar Graphs have Constant Book Thickness. In Algorithms
- ESA 2015 - 23rd Annual European Symposium, volume 9294 of LNCS, pages
130–141. Springer, 2015.

[7] Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-
Page Book Embeddings of 4-Planar Graphs. In Theoretical Aspects of Com-
puter Science - STACS 2014 - 31st International Symposium, volume 25 of
LIPIcs, pages 137–148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2014.

121

122 References

[8] Anton Belov, Marijn Heule, and João Marques-Silva. MUS Extraction Using
Clausal Proofs. In Theory and Applications of Satisfiability Testing - SAT
2014 - 17th International Conference, volume 8561 of LNCS, pages 48–57.
Springer, 2014.

[9] Anton Belov, Inês Lynce, and João Marques-Silva. Towards efficient MUS
extraction. AI Communications, 25(2):97–116, 2012.

[10] Anton Belov and João Marques-Silva. Accelerating MUS extraction with
recursive model rotation. In Formal Methods in Computer-Aided Design -
FMCAD 2011 - 11th International Conference, pages 37–40. FMCAD Inc.,
2011.

[11] Anton Belov and João Marques-Silva. MUSer2: An Efficient MUS Extractor.
Journal on Satisfiability, Boolean Modeling and Computation, 8(3/4):123–
128, 2012.

[12] Amir Ben-Dor, Benny Chor, Dan Graur, Ron Ophir, and Dan Pelleg. From
four-taxon trees to phylogenies (preliminary report): the case of mammalian
evolution. In Research in Computational Molecular Biology - RECOMB’98 -
Second Annual International Conference, pages 9–19. ACM, 1998.

[13] Yael Ben-Haim, Alexander Ivrii, Oded Margalit, and Arie Matsliah. Perfect
hashing and CNF encodings of cardinality constraints. In Theory and Appli-
cations of Satisfiability Testing - SAT 2012 - 15th International Conference,
volume 7317 of LNCS, pages 397–409. Springer, 2012.

[14] Claude Berge. The theory of graphs and its applications. Methuen, 1962.

[15] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal
of Combinatorial Theory, Series B, 27(3):320–331, 1979.

[16] Vincent Berry and Olivier Gascuel. Inferring evolutionary trees with strong
combinatorial evidence. Theoretical Computer Science, 240(2):271–298, 2000.

[17] Vincent Berry, Tao Jiang, Paul E. Kearney, Ming Li, and Todd Wareham.
Quartet Cleaning: Improved Algorithms and Simulations. In 7th Annual
European Symposium on Algorithms - ESA ’99, volume 1643 of LNCS, pages
313–324. Springer, 1999.

[18] Therese C. Biedl, Thomas Bläsius, Benjamin Niedermann, Martin
Nöllenburg, Roman Prutkin, and Ignaz Rutter. Using ILP/SAT to Deter-
mine Pathwidth, Visibility Representations, and other Grid-Based Graph
Drawings. In Graph Drawing - GD 2013 - 21st International Symposium,
volume 8242 of LNCS, pages 460–471. Springer, 2013.

[19] Armin Biere, Edmund M. Clarke, and Yunshan Zhu. Combining Local and
Global Model Checking. Electronic Notes in Theoretical Computer Science,
23(2):34–45, 1999.

References 123

[20] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2009.

[21] Tomasz Bilski. Optimum embedding of complete graphs in books. Discrete
Mathematics, 182(1-3):21–28, 1998.

[22] Elazar Birnbaum and Eliezer L. Lozinskii. Consistent subsets of inconsistent
systems: structure and behaviour. Journal of Experimental and Theoretical
Artificial Intelligence, 15(1):25–46, 2003.

[23] Robin L. Blankenship. Book Embeddings of Graphs. Phd thesis, Louisiana
State University, 2003.

[24] R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale Graphen.
Mathematische Nachrichten, 117(1):323–339, 1984.

[25] Maria Luisa Bonet and Katherine St. John. Efficiently calculating evolution-
ary tree measures using SAT. In Theory and Applications of Satisfiability
Testing - SAT 2009 - 12th International Conference, volume 5584 of LNCS,
pages 4–17. Springer, 2009.

[26] Gunnar Brinkmann, Sam Greenberg, Catherine S. Greenhill, Brendan D.
McKay, Robin Thomas, and Paul Wollan. Generation of simple quadrangu-
lations of the sphere. Discrete Mathematics, 305(1-3):33–54, 2005.

[27] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really
hard problems are. In AI, pages 331–340. Morgan Kaufmann, 1991.

[28] Markus Chimani, Petra Mutzel, and Immanuel M. Bomze. A New Approach
to Exact Crossing Minimization. In Algorithms - ESA 2008 - 16th Annual
European Symposium, volume 5193 of LNCS, pages 284–296. Springer, 2008.

[29] John W. Chinneck and Erik W. Dravnieks. Locating Minimal Infeasible Con-
straint Sets in Linear Programs. INFORMS Journal on Computing, 3(2):157–
168, 1991.

[30] Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Em-
bedding Graphs in Books: A Layout Problem with Applications to VLSI
Design. SIAM Journal on Algebraic and Discrete Methods, 8(1):33–58, 1987.

[31] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking
ANSI-C Programs. In Tools and Algorithms for the Construction and Anal-
ysis of Systems - TACAS 2004 - 10th International Conference, volume 2988
of LNCS, pages 168–176. Springer, 2004.

[32] Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–
158, New York, NY, USA, 1971. ACM.

124 References

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009.

[34] Gérard Cornuéjols, Denis Naddef, and William R. Pulleyblank. Halin
graphs and the Travelling Salesman Problem. Mathematical Programming,
26(3):287–294, 1983.

[35] James M. Crawford and Andrew B. Baker. Experimental Results on the
Application of Satisfiability Algorithms to Scheduling Problems. In Twelfth
National Conference on Artificial Intelligence (Vol. 2), AAAI’94, pages 1092–
1097. American Association for Artificial Intelligence, 1994.

[36] Martin Davis, George Logemann, and Donald W. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[37] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification
Theory. Journal of the ACM, 7(3):201–215, 1960.

[38] Hidde de Jong and Michel Page. Search for Steady States of Piecewise-Linear
Differential Equation Models of Genetic Regulatory Networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 5(2):208–222,
2008.

[39] Johan de Kleer and Brian C. Williams. Diagnosing Multiple Faults. Artificial
Intelligence, 32(1):97–130, 1987.

[40] Maria J. Garćıa de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding
all minimal unsatisfiable subsets. In 5th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, pages 32–43.
ACM, 2003.

[41] J. L. de Siqueira N. and Jean-Francois Puget. Explanation-Based General-
isation of Failures. In 8th European Conference on Artificial Intelligence -
ECAI 88, pages 339–344. Pitmann Publishing, 1988.

[42] Boris N. Delaunay. Sur la sphère vide. Bulletin of Academy of Sciences of
the USSR, (6):793–800, 1934.

[43] Johannes Dellert. Interactive Extraction of Minimal Unsatisfiable Cores En-
hanced by Metalearning. Diplomarbeit, Universität Tübingen, 2013.

[44] Johannes Dellert, Kilian Evang, and Frank Richter. Kahina: A Hybrid Trace-
Based and Chart-Based Debugging System for Grammar Engineering. In
ESSLLI 2013 Workshop on High-level Methodologies for Grammar Engineer-
ing - HMGE 2013, 2013.

[45] Johannes Dellert, Christian Zielke, and Michael Kaufmann. MUStICCa:
MUS Extraction with Interactive Choice of Candidates. In Theory and Appli-
cations of Satisfiability Testing - SAT 2013 - 16th International Conference,
volume 7962 of LNCS, pages 408–414. Springer, 2013.

References 125

[46] Vida Dujmovic and David R. Wood. Graph Treewidth and Geometric Thick-
ness Parameters. Discrete & Computational Geometry, 37(4):641–670, 2007.

[47] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and
Applications of Satisfiability Testing - SAT 2003 - 6th International Confer-
ence, volume 2919 of LNCS, pages 502–518. Springer, 2003.

[48] Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-
4):1–26, 2006.

[49] Péter L. Erdös, Michael Anthony Steel, László A. Székely, and Tandy
Warnow. A Few Logs Suffice to Build (almost) All Trees: Part II. Theo-
retical Computer Science, 221(1-2):77–118, 1999.

[50] Péter L. Erdös, Mike A. Steel, László A. Székely, and Tandy Warnow. Con-
structing Big Trees from Short Sequences. In 24th International Colloquium
on Automata, Languages and Programming - ICALP’97, volume 1256 of
LNCS, pages 827–837. Springer, 1997.

[51] Paolo Ferraris and Enrico Giunchiglia. Planning as Satisfiability in Nonde-
terministic Domains. In Seventeenth National Conference on Artificial In-
telligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, AAAI 2000, IAAI 2000, pages 748–753, 2000.

[52] L.R. Foulds and R.L. Graham. The steiner problem in phylogeny is np-
complete. Advances in Applied Mathematics, 3(1):43 – 49, 1982.

[53] Zhaohui Fu and Sharad Malik. On Solving the Partial MAX-SAT Problem.
In Theory and Applications of Satisfiability Testing - SAT 2006 - 9th Inter-
national Conference, volume 4121 of LNCS, pages 252–265. Springer, 2006.

[54] Oliver Gableske. An Ising Model Inspired Extension of the Product-Based
MP Framework for SAT. In Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, volume 8561 of LNCS, pages
367–383. Springer, 2014.

[55] Graeme Gange, Peter J. Stuckey, and Kim Marriott. Optimal k -Level Pla-
narization and Crossing Minimization. In Graph Drawing - GD 2010 - 18th
International Symposium, volume 6502 of LNCS, pages 238–249. Springer,
2010.

[56] Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is o(k).
Discrete Applied Mathematics, 109(3):215–221, 2001.

[57] Rafael M. Gasca, Carmelo Del Valle, Maŕıa Teresa Gómez López, and Rafael
Ceballos. NMUS: Structural Analysis for Improving the Derivation of All
MUSes in Overconstrained Numeric CSPs. In 12th Conference of the Spanish
Association for Artificial Intelligence - CAEPIA 2007, volume 4788 of LNCS,
pages 160–169. Springer, 2007.

126 References

[58] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp : A Conflict-Driven Answer Set Solver. In Logic Programming and
Nonmonotonic Reasoning - LPNMR 2007 - 9th International Conference,
volume 4483 of LNCS, pages 260–265. Springer, 2007.

[59] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven
answer set solving: From theory to practice. Artificial Intelligence, 187:52–89,
2012.

[60] Enrico Giunchiglia, Alessandro Massarotto, and Roberto Sebastiani. Act, and
the Rest Will Follow: Exploiting Determinism in Planning as Satisfiability. In
Fifteenth National Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, pages
948–953, 1998.

[61] Evguenii I. Goldberg, Mukul R. Prasad, and Robert K. Brayton. Using SAT
for combinational equivalence checking. In Design, Automation and Test in
Europe - DATE 2001, pages 114–121. ACM, 2001.

[62] A. Goldner and Frank Harary. Note on a smallest nonhamiltonian maxi-
mal planar graph. Bulletin of the Malaysian Mathematical Sciences Society,
6(1):41–42, 1975.

[63] Jens Gramm and Rolf Niedermeier. A fixed-parameter algorithm for min-
imum quartet inconsistency. Journal of Computer and System Sciences,
67(4):723–741, 2003.

[64] Harvey J. Greenberg and Frederic H. Murphy. Approaches to Diagnosing
Infeasible Linear Programs. INFORMS Journal on Computing, 3(3):253–261,
1991.

[65] Éric Grégoire, Bertrand Mazure, and Cédric Piette. Using local search to find
MSSes and MUSes. European Journal of Operational Research, 199(3):640–
646, 2009.

[66] Stefan Grünewald, Peter J. Humphries, and Charles Semple. Quartet Com-
patibility and the Quartet Graph. Electronic Journal of Combinatorics, 15(1),
2008.

[67] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algo-
rithms for the Satisfiability (SAT) Problem: A Survey. In DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, volume 35, pages
19–152. American Mathematical Society, 1996.

[68] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[69] Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by CS-trees
with mark set in diagnosis from first principles. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, 29(2):281–286, 1999.

References 127

[70] Lenwood S. Heath. Embedding Planar Graphs in Seven Pages. In Foundations
of Computer Science - FOCS 84 - 25th Annual Symposium, pages 74–83.
IEEE Computer Society, 1984.

[71] Lenwood S. Heath. Algorithms for Embedding Graphs in Books. Phd thesis,
University of North Carolina, 1985.

[72] Lenwood S. Heath, Frank Thomson Leighton, and Arnold L. Rosenberg.
Comparing Queues and Stacks as Mechanisms for Laying out Graphs. SIAM
Journal on Discrete Mathematics, 5(3):398–412, 1992.

[73] Federico Heras, António Morgado, and João Marques-Silva. An Empirical
Study of Encodings for Group MaxSAT. In Advances in Artificial Intelligence
- AI 2012 - 25th Canadian Conference, volume 7310 of LNCS, pages 85–96.
Springer, 2012.

[74] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations &
Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[75] Aimin Hou. A Theory of Measurement in Diagnosis from First Principles.
Artificial Intelligence, 65(2):281–328, 1994.

[76] Anthony Hunter and Sébastien Konieczny. On the measure of conflicts: Shap-
ley inconsistency values. Artificial Intelligence, 174(14):1007–1026, 2010.

[77] Daniel H. Huson, Scott Nettles, and Tandy Warnow. Disk-Covering, a Fast-
Converging Method for Phylogenetic Tree Reconstruction. Journal of Com-
putational Biology, 6(3/4):369–386, 1999.

[78] Alexey Ignatiev, António Morgado, Vasco M. Manquinho, Inês Lynce, and
João Marques-Silva. Progression in Maximum Satisfiability. In 21st European
Conference on Artificial Intelligence - ECAI 2014, volume 263 of Frontiers
in Artificial Intelligence and Applications, pages 453–458. IOS Press, 2014.

[79] Tao Jiang, Paul E. Kearney, and Ming Li. Orchestrating Quartets: Approx-
imation and Data Correction. In Foundations of Computer Science - FOCS
’98 - 39th Annual Symposium, pages 416–425. IEEE Computer Society, 1998.

[80] Ulrich Junker. QUICKXPLAIN: Preferred Explanations and Relaxations for
Over-Constrained Problems. In Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial In-
telligence, pages 167–172. AAAI Press / The MIT Press, 2004.

[81] Paul C. Kainen and Shannon Overbay. Extension of a theorem of Whitney.
Applied Mathematics Letters, 20(7):835–837, 2007.

[82] Henry Kautz and Bart Selman. Planning As Satisfiability. In 10th European
Conference on Artificial Intelligence, ECAI ’92, pages 359–363. John Wiley
& Sons, Inc., 1992.

128 References

[83] Dimitris J. Kavvadias and Elias C. Stavropoulos. An Efficient Algorithm for
the Transversal Hypergraph Generation. Journal of Graph Algorithms and
Applications, 9(2):239–264, 2005.

[84] Vlado Keselj and Nick Cercone. A formal approach to subgrammar extraction
for NLP. Mathematical and Computer Modelling, 45(3-4):394–403, 2007.

[85] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244:1093–1096, 1979.

[86] V. Klee and G. J. Minty. How Good is the Simplex Algorithm? In Inequalities
III, pages 159–175. Academic Press Inc., 1972.

[87] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa.
QMaxSat: A Partial Max-SAT Solver. Journal on Satisfiability, Boolean
Modeling and Computation, 8(1/2):95–100, 2012.

[88] Stephan Kottler. Description of the SApperloT, SArTagnan and MoUsSaka
solvers for the SAT-competition 2011, 2011.

[89] Mark H. Liffiton and Ammar Malik. Enumerating Infeasibility: Finding
Multiple MUSes Quickly. In Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems - CPAIOR
2013 - 10th International Conference, volume 7874 of LNCS, pages 160–175.
Springer, 2013.

[90] Mark H. Liffiton, Michael D. Moffitt, Martha E. Pollack, and Karem A.
Sakallah. Identifying conflicts in overconstrained temporal problems. In Nine-
teenth International Joint Conference on Artificial Intelligence - IJCAI 2005,
pages 205–211. Professional Book Center, 2005.

[91] Mark H. Liffiton and Karem A. Sakallah. Algorithms for Computing Mini-
mal Unsatisfiable Subsets of Constraints. Journal of Automated Reasoning,
40(1):1–33, 2008.

[92] Mark H. Liffiton and Karem A. Sakallah. Generalizing Core-Guided Max-
SAT. In Theory and Applications of Satisfiability Testing - SAT 2009 - 12th
International Conference, volume 5584 of LNCS, pages 481–494. Springer,
2009.

[93] Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic
program by SAT solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[94] Inês Lynce and João Marques-Silva. Haplotype Inference with Boolean Satis-
fiability. International Journal on Artificial Intelligence Tools, 17(2):355–387,
2008.

[95] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem. In International
Symposium on Artificial Intelligence and Mathematics - ISAIM 2006, 2006.

References 129

[96] Inês Lynce and João P. Marques Silva. On Computing Minimum Unsatisfiable
Cores. In Theory and Applications of Satisfiability Testing - SAT 2004 - 7th
International Conference, volume 3542 of LNCS, pages 305–310. Springer,
2004.

[97] Seth M. Malitz. Genus g graphs have pagenumber O(
√
q). Journal of Algo-

rithms, 17(1):85–109, 1994.

[98] Seth M. Malitz. Graphs with E edges have pagenumber o(sqrt(e)). Journal
of Algorithms, 17(1):71–84, 1994.

[99] João Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, and
Anton Belov. On Computing Minimal Correction Subsets. In 23rd Interna-
tional Joint Conference on Artificial Intelligence - IJCAI 2013. IJCAI/AAAI,
2013.

[100] João Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over
monotone predicates in boolean formulae. In Computer Aided Verification
- CAV 2013 - 25th International Conference, volume 8044 of LNCS, pages
592–607. Springer, 2013.

[101] Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Problem.
Journal of Automated Reasoning, 24(1/2):165–203, 2000.

[102] Shuichi Miyazaki, Kazuo Iwama, and Yahiko Kambayashi. Database Queries
as Combinatorial Optimization Problems. In Cooperative Database Systems
for Advanced Applications - CODAS 1996 - 1st International Symposium,
pages 477–483. World Scientific, 1996.

[103] A. Morgado and J. Marques-Silva. A Pseudo-Boolean Solution to the Max-
imum Quartet Consistency Problem. In WCB08 - Workshop on Constraint
Based Methods for Bioinformatics, France, 2008.

[104] António Morgado and João Marques-Silva. Combinatorial Optimization So-
lutions for the Maximum Quartet Consistency Problem. Fundamenta Infor-
maticae, 102(3-4):363–389, 2010.

[105] Matthias Müller-Hannemann and Stefan Schirra, editors. Algorithm Engi-
neering: Bridging the Gap between Algorithm Theory and Practice [outcome
of a Dagstuhl Seminar], volume 5971 of LNCS. Springer, 2010.

[106] Alexander Nadel. Boosting minimal unsatisfiable core extraction. In For-
mal Methods in Computer-Aided Design - FMCAD 2010 - 10th International
Conference, pages 221–229. IEEE, 2010.

[107] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Efficient MUS ex-
traction with resolution. In Formal Methods in Computer-Aided Design -
FMCAD 2013, pages 197–200. IEEE, 2013.

[108] Nina Narodytska and Fahiem Bacchus. Maximum Satisfiability Using Core-
Guided MaxSAT Resolution. In Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, pages 2717–2723. AAAI Press, 2014.

130 References

[109] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Struc-
tures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer,
2012.

[110] Takao Nishizeki and Norishige Chiba. Planar graphs : theory and algorithms.
Annals of discrete mathematics. North-Holland, 1988.

[111] Alexander Nöhrer, Armin Biere, and Alexander Egyed. Managing SAT in-
consistencies with HUMUS. In Variability Modelling of Software-Intensive -
VAMOS 2012 - Sixth International Workshop, pages 83–91. ACM, 2012.

[112] Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah, and
Igor L. Markov. AMUSE: a minimally-unsatisfiable subformula extractor. In
Design Automation Conference - DAC 2004, pages 518–523. ACM, 2004.

[113] L.T. Ollmann. On the book thicknesses of various graphs. In Combinatorics,
Graph Theory, and Computing - CGTC 73 - 4th Southeaster Conference,
page 459. Utilitas Mathematica Publ. Inc, 1973.

[114] Shannon Overbay. Graphs with Small Book Thickness. The Missouri Journal
of Mathematical Sciences, 19(2):121–130, 2007.

[115] David A. Plaisted and Steven Greenbaum. A Structure-Preserving Clause
Form Translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[116] Alessandro Previti and João Marques-Silva. Partial MUS Enumeration. In
Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press,
2013.

[117] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, 32(1):57–95, 1987.

[118] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965.

[119] Sébastien Roch. A Short Proof that Phylogenetic Tree Reconstruction by
Maximum Likelihood Is Hard. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 3(1):92–94, 2006.

[120] Arnold L. Rosenberg. The Diogenes Approach to Testable Fault-Tolerant
Arrays of Processors. IEEE Transactions on Computers, 32(10):902–910,
1983.

[121] Peter Sanders. Algorithm Engineering - An Attempt at a Definition. In
Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of
His 60th Birthday, volume 5760 of LNCS, pages 321–340. Springer, 2009.

[122] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann
Pitassi. Combining Component Caching and Clause Learning for Effective
Model Counting. In Theory and Applications of Satisfiability Testing - SAT
2004 - 7th International Conference, 2004.

References 131

[123] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van Harme-
len. Debugging incoherent terminologies. Journal of Automated Reasoning,
39(3):317–349, 2007.

[124] Charles Semple and Mike A. Steel. A characterization for a set of partial
partitions to define an X -tree. Discrete Mathematics, 247(1-3):169–186, 2002.

[125] João P. Marques Silva. The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms. In 9th Portuguese Conference on Artificial Intel-
ligence: Progress in Artificial Intelligence, EPIA ’99, pages 62–74. Springer,
1999.

[126] João P. Marques Silva. Minimal unsatisfiability: Models, algorithms and
applications (invited paper). In 40th IEEE International Symposium on
Multiple-Valued Logic - ISMVL 2010, pages 9–14. IEEE Computer Society,
2010.

[127] João P. Marques Silva and Inês Lynce. On Improving MUS Extraction Algo-
rithms. In Theory and Applications of Satisfiability Testing - SAT 2011 - 14th
International Conference, volume 6695 of LNCS, pages 159–173. Springer,
2011.

[128] João P. Marques Silva and Karem A. Sakallah. Boolean satisfiability in elec-
tronic design automation. In DAC, pages 675–680, 2000.

[129] Helmut Simonis. Sudoku as a Constraint Problem. In The Fifth Workshop on
Modeling and Reformulating Constraint Satisfaction Problems, pages 13–27,
2006.

[130] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and imple-
menting the stable model semantics. Artificial Intelligence, 138(1-2):181–234,
2002.

[131] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming - CP
2005 - 11th International Conference, volume 3709 of LNCS, pages 827–831.
Springer, 2005.

[132] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the
validation of automotive product configuration data. AI EDAM, 17(1):75–97,
2003.

[133] Michael Steel. The complexity of reconstructing trees from qualitative char-
acters and subtrees. Journal of Classification, 9(1):91–116, 1992.

[134] G. Stertenbrink and J.C. Meyrignac. 100 Sudoku problems
(http://magictour.free.fr/top100), 2005.

[135] Harold S. Stone. Introduction to computer organization and data structures.
McGraw-Hill computer science series. McGraw-Hill, New York, Maidenhead,
1972. Title page imprint: London.

132 References

[136] Yusuke Suzuki. Optimal 1-planar graphs which triangulate other surfaces.
Discrete Mathematics, 310(1):6–11, 2010.

[137] Robert Endre Tarjan. Sorting Using Networks of Queues and Stacks. Journal
of the ACM, 19(2):341–346, 1972.

[138] Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding Minimal
Unsatisfiable Cores of Declarative Specifications. In Formal Methods - FM
2008 - 15th International Symposium, volume 5014 of LNCS, pages 326–341.
Springer, 2008.

[139] Emina Torlak, Mandana Vaziri, and Julian Dolby. Memsat: checking ax-
iomatic specifications of memory models. In Programming Language Design
and Implementation - PLDI 2010, pages 341–350. ACM, 2010.

[140] J.N.M. van Loon. Irreducibly inconsistent systems of linear inequalities. Eu-
ropean Journal of Operational Research, 8(3):283 – 288, 1981.

[141] Hans van Maaren and Siert Wieringa. Finding Guaranteed MUSesFast. In
Hans Kleine Bning and Xishun Zhao, editors, Theory and Applications of
Satisfiability Testing - SAT 2008 - 11th International Conference, volume
4996 of LNCS, pages 291–304. Springer, 2008.

[142] Miroslav N. Velev. Using Rewriting Rules and Positive Equality to Formally
Verify Wide-Issue Out-of-Order Microprocessors with a Reorder Buffer. In
Design, Automation and Test in Europe - DATE 2002 - Conference and Ex-
position, pages 28–35. IEEE Computer Society, 2002.

[143] Miroslav N. Velev and Randal E. Bryant. Effective use of Boolean satisfiability
procedures in the formal verification of superscalar and VLIW microproces-
sors. Journal of Symbolic Computation, 35(2):73–106, 2003.

[144] Miroslav N. Velev and Ping Gao. Efficient SAT Techniques for Relative
Encoding of Permutations with Constraints. In Advances in Artificial Intelli-
gence - AI 2009 - 22nd Australasian Joint Conference, volume 5866 of LNCS,
pages 517–527. Springer, 2009.

[145] Wei Wei and Bart Selman. A New Approach to Model Counting. In The-
ory and Applications of Satisfiability Testing - SAT 2005 - 8th International
Conference, volume 3569 of LNCS, pages 324–339. Springer, 2005.

[146] Siert Wieringa. Understanding, Improving and Parallelizing MUS Finding
Using Model Rotation. In Principles and Practice of Constraint Programming
- CP 2012 - 18th International Conference, volume 7514 of LNCS, pages 672–
687. Springer, 2012.

[147] Avi Wigderson. The Complexity of the Hamiltonian Circuit Problem for Max-
imal Planar Graphs. Technical Report TR-298, EECS Department, Princeton
University, 1982.

[148] Gang Wu, Ming-Yang Kao, Guohui Lin, and Jia-Huai You. Reconstruct-
ing phylogenies from noisy quartets in polynomial time with a high success
probability. Algorithms for Molecular Biology, 3, 2008.

[149] Gang Wu, Jia-Huai You, and Guohui Lin. A Lookahead Branch-and-Bound
Algorithm for the Maximum Quartet Consistency Problem. In 5th Interna-
tional Workshop Algorithms in Bioinformatics - WABI 2005, volume 3692 of
LNCS, pages 65–76. Springer, 2005.

[150] Gang Wu, Jia-Huai You, and Guohui Lin. Quartet-Based Phylogeny Re-
construction with Answer Set Programming. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 4(1):139–152, 2007.

[151] Guohui Xiao and Yue Ma. Inconsistency measurement based on variables
in minimal unsatisfiable subsets. In 20th European Conference on Artificial
Intelligence - ECAI 2012, volume 242 of Frontiers in Artificial Intelligence
and Applications, pages 864–869. IOS Press, 2012.

[152] M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer
and System Sciences, 38(1):36–67, 1989.

Author’s Publications

[153] Michael A. Bekos, Michael Kaufmann, and Christian Zielke. The Book Em-
bedding Problem from a SAT-Solving Perspective. In Graph Drawing - GD
2015 - 24th International Symposium, to appear, 2015.

[154] Johannes Dellert, Christian Zielke, and Michael Kaufmann. MUStICCa:
MUS Extraction with Interactive Choice of Candidates. In Theory and Appli-
cations of Satisfiability Testing - SAT 2013 - 16th International Conference,
volume 7962 of LNCS, pages 408–414. Springer, 2013.

[155] Stephan Kottler, Christian Zielke, Paul Seitz, and Michael Kaufmann. Co-
PAn: Exploring Recurring Patterns in Conflict Analysis of CDCL SAT
Solvers - (Tool Presentation). In Theory and Applications of Satisfiability
Testing - SAT 2012 - 15th International Conference, volume 7317 of LNCS,
pages 449–455. Springer, 2012.

[156] Christian Zielke and Michael Kaufmann. A New Approach to Partial MUS
Enumeration. In Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, volume 9340 of LNCS, pages 387–404.
Springer, 2015.

133

List of Figures

1.1 (a) A typical Sudoku puzzle. (b) The solution for the same puzzle,
black numbers were added due to reasoning. 2

1.2 Methodological structure of algorithm engineering 4

3.1 Screenshot of MUStICCa’s default user interface. 22
3.2 c2 is critical in {c2, c3, c4} . 24
3.3 propagated criticality . 24

4.1 Hasse diagram of the power set lattice for a formula of four constraints 35
4.2 The colored Hasse diagram of our running example, the unsatisfiable

(satisfiable, respectively) region is marked red (green, respectively).
Furthermore the MUSes and MSSes are marked with a box in their
respective color. 36

4.3 Illustration of the first phase of the CAMUS algorithm on our running
example F . The levels are explored one-by-one from top to bottom. 38

4.4 A possible intermediate state of map after finding the MUS {c3, c4} as
the first MUS. The maximal models are corresponding to the subsets
{c1, c2, c3} and {c1, c2, c4}. 48

4.5 Cactus plot of the total runtime to complete the MUS enumeration
for each algorithm . 51

4.6 Reverse cactus plots of the number of computed MUSes and MCSes
within the time and memory limits for each algorithm 52

4.7 Comparing MARCO (all opt) to eMUS (a) and MARCO+ (b): number of
MUSes found within time limits of 3600 seconds. Each point declares
one out of the 207 instances . 61

4.8 Reverse cactus plots of the number of computed MUSes and MCSes
within the time limits for each possible combination of the extensions
and the variant of MARCO that was the best overall (“MARCO (all opt)”) 62

4.9 log2 of the relative number of MUSes on x-axis and of MCSes on y-
axis; together with the amount of points (instances) for every quad-
rant in the plane and on the axes for MARCO+ (black) and MARCO+m

(red) in comparison to MARCO (all opt) 63
4.10 The number of found MUSes (top) and MCSes (bottom) for the in-

stance dlx2 aa.cnf during the execution of all extensions and MARCO

(all opt) . 66

134

List of Figures 135

4.11 The number of SAT solver calls needed within every shrink method
for all extensions. The numbers for the MUSes number 4 - 17 are
significantly smaller for all extensions with activated moreMCS
option (m). 66

4.12 The number of SAT solver calls needed within every shrink method
for all extensions. 68

5.1 the three different topologies ab|cd, ac|bd and ad|bc for a quartet
{a, b, c, d} . 72

5.2 An example for a phylogeny and a displayed topology. 73

5.3 An ultrametric phylogeny. 74

5.4 (a) The three possibilities to construct T4 by splitting an one of the
three leaf edges of T3. (b) The five possibilities to construct T5 by
splitting either the inner edge or one of the four leaf edge of T4. . . . 77

5.5 (a) The phylogeny Ti after splitting leaf edge ek. (b) The phylogeny
Ti after splitting inner edge ej . 78

5.6 The main algorithm engineering cycle. 82

6.1 (a) An optimal 1-planar graph whose underlying planar structure
(solid drawn) is the cube graph. (b) A corresponding embedding in
a book with 4 pages. Observe that the fourth page contains just a
single edge (dotted drawn). 99

6.2 A maximal planar graph on 16 vertices supporting a weaker version
of Hypothesis 3. 100

6.3 (a) Rome graphs: Runtime to compute either 2-page embeddings for
planar Rome graphs (green) or 3-page embeddings for non-planar
Rome graphs (red). (b) Non-planar North graphs: The time needed
either to compute 3-page embeddings (green) or to prove that no
3-page embedding exist (red). 109

6.4 Add a non-Hamiltonian (maximal) planar graph Gf into a face f in
a octahedronic fashion. 110

6.5 The black substructure is the well-known Goldner-Harary graph,
which is the only maximal planar graph with 11 vertices (out of
1249 [26]), that requires 3 pages. Adding the blue (red, respectively)
vertex and edges leads to the only two maximal planar graphs with
12 vertices (out of 7595 [26]), that require 3 pages. 111

6.6 The runtime to compute the minimum number of edges on the third
page for stellated maximal planar graphs. The horizontal line marks
the average runtime for a given size of the graph, whereas the two
end points of the vertical lines denote the minimum and maximum
runtime. Every graph was tested three times. 112

6.7 (a) The runtime for maximal 1-planar graphs with 25 vertices. The
red curve shows the runtime to prove that no 3-page embedding exist;
the green curve shows the runtime to compute 4-page embeddings.
(b) The runtime to compute 4-page embeddings for randomized op-
timal 1-planar graphs. 113

136 List of Figures

6.8 Runtime of the SAT approach for generated subgraphs of optimal
1-planar graphs to test whether the graph is 3-page book embeddable.114

List of Tables

3.1 The number of clauses and literals of the original and compressed
meta instance. For every input 3 reduction agents executed a series
of reduction steps until detecting an MUS. 27

4.1 The sum of the additional expected workload for all possible exten-
sions in comparison to MARCO (all opt), the best value is marked bolt. 64

4.2 complete enumerated instances: the numbers of MUSes and MCSes
together with the minimum and maximum runtime (in seconds) for
any of the extensions . 65

5.1 The ultrametric matrix M for the example shown in Figure 5.3. . . . 75
5.2 Average runtime for all SAT-based approaches on all possible SAT

formulations in seconds for the artificial instances with 10 taxa. Fig-
ures in parentheses denote the number (out of 10) of instances which
ran into the timeout of 1800 seconds. Bolt values mark the best ap-
proach for this particular combination of error percentage and solver. 90

5.3 Average runtime in seconds for the artificial instances with 10 taxa.
Figures in parentheses denote the number (out of 10) of instances
which ran into the timeout of 1800 seconds. Bolt values mark the
best approach for this particular error percentage. 92

5.4 Average runtime in seconds for the artificial instances with 15 taxa.
Figures in parentheses denote the number (out of 10) of instances
which ran into the timeout of 1800 seconds. Bolt values mark the
best approach for this particular error percentage. 92

5.5 The instances of inaccurate optimal values of the linear pbo-maxsat
encoding. 93

5.6 Comparison of MaxSAT-approaches for each of the three used solvers.
We report the best runtime together with the used encoding for every
solver. Bolt values denote the best value for a particular solver. Un-
derlined values denote the best approach for that particular instance
for all solvers. 94

6.1 Overview of the results for the established benchmark sets. 109
6.2 The minimum number of edges on the third page for maximal planar

graphs with at most 16 vertices. 111

137

List of Algorithms

2.1 A deletion-based MUS extraction algorithm using selector variables. 13
2.2 A deletion-based MUS extraction algorithm using selector variables

and clause set refinement. 14
2.3 The recursive model rotation routine. 15
2.4 An insertion-based MUS extraction algorithm. 16
2.5 A hybrid MUS extraction approach that incorporates the ideas from

deletion and insertion-based approaches. 17
4.1 The shrink method . 43
4.2 The grow method . 43
4.3 The basic MARCO algorithm . 44
4.4 The MARCO algorithm using maximal models 49
4.5 The splitblocks routine . 55
4.6 The moreMCS routine . 58

138

