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Abstract

The dissertation presents a novel kernel-based learning framework on probability measures
which has abundant real-world applications. In classical setup, it is assumed that the data are
points in a vector space that have been drawn independent and identically (i.i.d.) from some
unknown distribution. In many scenarios, however, representing these data as distributions over
such a vector space may be more preferable. For instance, when the measurement is noisy, we
may incorporate the uncertainty by treating the data themselves as distributions. This is often
the case for microarray data and astronomical data where the measurement process is imprecise.
In order to obtain reliable data, the measurement or the experiment has to be replicated which
is often costly and time consuming. Moreover, distributions not only embody individual data
points, but also contain information about their interactions which can be beneficial for struc-
tural learning in fields such as high-energy physics, cosmology, and causality. Lastly, classical
problems in statistics such as statistical estimation, hypothesis testing, and causal inference,
may be interpreted in a decision-theoretic sense as learning a function that maps empirical dis-
tributions to the desired statistics, which is in contrast to standard estimation based on “plug-in”
estimators. Rephrasing these problems in this way leads to novel approach for statistical in-
ference and statistical estimation. Hence, allowing learning algorithms to operate directly on
distributions prompts a wide range of future applications for machine learning.

To work with distributions, the key methodology adopted in this thesis is the kernel mean
embedding of distributions that represents each distribution as a function in a reproducing ker-
nel Hilbert space (RKHS). Successful applications of kernel mean embedding in the literature
suggest that it is a powerful representation of distributions. Due to the dependence on the kernel
function, it is adaptable to any domains and is eligible to the whole arsenal of kernel methods.
Moreover, we can model the distribution underlying the data without making any parametric
assumption. Finally, its simplicity eases theoretical analysis and lends itself to good computa-
tional efficiency. These characteristics render kernel mean embedding increasingly appealing in
the community compared to existing approaches based on density estimation, divergence mea-
sures, and information geometry, for example. In particular, the kernel mean embedding has
been applied successfully in two-sample testing, graphical model, and probabilistic inference.
On the other hand, this thesis will focus mainly on the predictive learning on distributions, i.e.,
when the observations are distributions and the goal is to make prediction about the previously
unseen distributions. More importantly, the thesis investigates kernel mean estimation which is
one of the most fundamental problems of kernel methods.

The dissertation begins with the introduction into foundation of kernel methods and litera-
ture review of applications of kernel mean embedding in the past few years. Then, it presents the
kernel mean estimation problem. A kernel mean is central to kernel methods in that it is used by
many classical algorithms such as kernel principal component analysis (PCA), and it also forms
the core inference step of modern kernel methods that rely on embedding probability distribu-
tions in RKHSs. A new class of estimators called kernel mean shrinkage estimators (KMSEs)
that improve upon the standard kernel mean estimator is proposed. Owing to the kernel mean
embedding and its estimators, the subsequent two chapters then present the learning framework
on probability measures. In these chapters, I argue that many problems in machine learning and
statistics can be formulated as a learning problem on distributions with some concrete examples
such as group anomaly detection and domain generalization problems. In particular, the thesis
provides an extension of well-known support vector machine (SVM) to a space of probability
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distributions which we call a support measure machine (SMM). The presented applications not
only demonstrate the benefits of the proposed framework, but also reveal its limitations which
could potentially lead to new research directions.

To conclude, I found that representing data as distributions and learning from them can im-
prove the performance of learning systems in certain applications. Probability distributions, as
opposed to data points, constitute high-level information about aggregate behavior of the data,
how the underlying process evolves over time and environments, or a complex concept that can-
not be described merely by individual points. Since most intelligent organisms have the ability
to recognize and exploit such information naturally, I believe that insights obtained from the
theoretical and experimental results in this thesis may shed light on future development of intel-
ligent machines, and most importantly, may provide clues on the true meaning of intelligence.
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Chapter 1
Introduction

I begin by giving a motivation of the thesis, its overview, and a brief outline of the subsequent
chapters.

1.1 Motivations

Machine learning (ML) has played an important role in computer science and artificial intelli-
gence as a mean to understand how to build a machine that is capable of learning, and in which
situations it may succeed or fail. The ultimate goal is to build an “intelligent” machine that
can learn from past experience, just like human naturally do. This endeavour has already led to
many successful applications of ML across different fields, ranging from astronomy and high-
energy physics to robotics and causal inference. In my opinion, a key to this success lies in its
multi-disciplinary nature that brings together collaborations from statisticians, neuroscientists,
psychologists, cognitive scientists, and many more.

Despite the success, we are still far from understanding what an intelligent machine is. I
have always been fascinated by what can be achieved through technology. The technological
revolution has made our lives different from our ancestors. Better living, reliable health-care,
and scientific discoveries are just tips of the iceberg. The capability of computers in performing
complex tasks such as the chess-playing robots whose ability exceeds that of the human world
champion and the IBM Watson that outperforms human competitors at Jeopardy has increased
exponentially. But, whether or not these machines are truly intelligent remains obscure. Un-
derstanding the meaning of intelligence has a great implication on what the intelligent systems
can or cannot accomplish, their impact on our life, and the danger they may pose to our future.
I believe one of the key ingredients to this understanding lie in their ability to learn and make

future prediction about the world.
Empirical risk minimization (ERM) is one of the most prevalent frameworks for studying

the statistical learning from empirical data (Vapnik 1992). Ultimately, we are interested in
finding the functional relationship between two random variables X and Y based only on the
empirical data. That is, given the independent and identically distributed (i.i.d.) random pairs
{(x1, y1), . . . , (xn, yn)} from some unknown distribution P(X,Y ) where xi ∈ X and yi ∈ Y ,
the ERM finds a function f : X → Y which minimizes

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)), f ∈ F (1.1)

for some function class F . For instance, visual object recognition is one of the most important
abilities we possess. In this case, xi may represent images of car and yi labels xi by the type of
car, e.g., Y = {sedan,truck,sportcar,minivan,etc}. From a collection of examples
(xi, yi), we want to find f that when applied to any image of car, returns its correct type. Since
in practice we do not have access to P(X,Y ), the empirical risk (1.1) is used as a surrogate to
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its population counterpart given by

R(f) =

∫
ℓ(y, f(x)) dP(x, y), f ∈ F . (1.2)

The function ℓ : Y × Y → R+ denotes a problem-specific loss function. For examples, if Y =
{0, 1}, we have a classification problem and a natural choice of ℓ is a 0-1 loss ℓ(yi, f(xi)) =
1f(xi)6=yi , whereas if Y = R, we have a regression problem and the common loss function is a
square loss ℓ(yi, f(xi)) = (f(xi)− yi)2.

In the past decades, several efforts have been devoted to a quest for sufficient and necessary
conditions under which certain problems are learnable using the ERM. This usually translates
into showing that a uniform convergence bound holds, i.e.,

Pn

{
sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣ > ε

}
≤ g(ε, n,F)

where g(ε, n,F) represents a function that depends on ε, n, and F , and vanishes as n → ∞.
This ensures that for any distribution P(X,Y ), there exists a finite number of training examples
n for which the learner can generalize well to the unseen test data given that both training and
test data are generated i.i.d. from the same distribution and the complexity of the function
class, e.g., Rademacher complexity and VC dimension, is bounded. Although no assumption
is generally made, prior knowledge about P(X,Y ) may be used to improve learning. See, e.g.,
Boucheron et al. (2005) for review. Moreover, another important line of research is exploratory
data analysis such as principal component analysis (PCA) in which one is interested in extracting
important properties of the underlying distribution P(X) from empirical data x1, . . . ,xn.

Unlike traditional setting, the primary objects of interest in this thesis are probability dis-

tributions Pi(x) over some input space X rather than data points xi themselves. The ultimate
goal is then to generalize and develop learning algorithms that operate directly on a space of
probability distributions. Interestingly, from a measure-theoretic point of view, many classical
settings can be viewed as learning from distributions, i.e., when the data points xi are replaced
by the Dirac measures δxi which puts mass only at points xi (cf. Figure 2.2). By enriching
this perspective, the thesis investigates the feature representation of probability distribution, its
empirical estimators, and general frameworks for learning on distributions based on such a rep-
resentation.

1.1.1 Why Learning on Probability Distributions?

There are, in fact, many reasons why learning on probability distributions is important.
Firstly, it can be very useful in domain adaptation and transfer learning (see, e.g., Ben-David

et al. (2010), Pan et al. (2011), Pan and Yang (2010), Blanchard et al. (2011a), Muandet et al.
(2013) and references therein). Several attempts have been made in generalizing the ERM to a
scenario where the training and test data come from different distributions. To learn successfully
in such a scenario, the algorithms need to understand how the distributions governing data gen-
erating processes change across time or domains. Moreover, the training data may be obtained
from distinct and heterogeneous distributions and the knowledge of the distribution of the test
data may not be available during the training time.

Secondly, probability distributions are good at modeling noisy/uncertain observations. Emerg-
ing technology allows us to collect a tremendous amount of data, which are usually noisy. Spe-
cialized technique is needed to deal with such data. For example, gene expression data are
often measured with high uncertainty. Replication, which can be costly, is required (Yang and
Speed 2002) to reduce such uncertainty. Similarly, the astronomical data are always subjected
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to uncertainty due to evolving nature of the objects and atmospheric disturbance. To reduce this
uncertainty, the measurement is often made several times to obtain the average values (Kirk-
patrick et al. 2011, Bovy et al. 2011, Ross et al. 2012).

Moreover, in the era of “big data”, it is imperative for the machine learning algorithms to
be able to extract high-level information contained in such data. Most of classical algorithms
only make use of information from individual data points, and often neglect their interactions.
In group anomaly detection, for instance, we are interested in the anomalous events that occur
in the aggregate levels (Chandola et al. 2009, Póczos et al. 2011, Xiong et al. 2011b;a, Muandet
and Schölkopf 2013, Guevara et al. 2014). That is, the behaviour of the group may exhibit
anomalous characteristic whereas none of the points in the group is anomalous (e.g., high-
energy physics). On the other hand, we may be interested in reducing the amount of data,
while preserving most of the information that is necessary for successful learning. For example,
we can summarize a set of data points by its average which throws away lots of information.
Representing a set of data points by the distribution can capture most of the information while
reducing the amount of computation required. The summary also help concealing sensitive
information about individual sample, i.e., privacy-preserving (Dwork 2008).

We can interpret many problems in statistics as learning problems on empirical probability
distributions. For example, a “statistical estimator” is essentially a function from an empirical
distribution to values of certain statistics such as parameter values, independence, conditional
independence, and causal relation (Lopez-Paz et al. 2015b). Statisticians often consider the
“plug-in” estimators whose form are known in advance (Lehmann and Casella 1998). In con-
trast, if training examples are available, learning such estimators allows one to impose weaker
assumptions about the underlying data-generating process and may lead to “better” estimators.
In many research areas, one is also interested in generalizing domain-general knowledge which
is domain-invariant as opposed to the domain-specific knowledge which is specific to input do-
main. Examples include theory of causality in cognitive science and psychology (Goodman
et al. 2011).

Most importantly, probability distributions constitute more complex concept and relation
intelligent entities may encounter in reality, and by studying learning problems on them I hope
to gain insights into the limitations of the current intelligent systems, and how to improve them.

1.1.2 Why Kernel Mean Representation?

Previous approaches based on kernel density estimation (Póczos et al. 2013, Oliva et al. 2014),
divergence measure (Póczos et al. 2011), generative model (Jebara et al. 2004b, Xiong et al.
2011a), information geometry (Amari 2010), for example, have been applied successfully for
learning and statistical inference from probability distributions. In contrast, this thesis focuses
on the kernel mean representation. There are multiple reasons why this representation is attrac-
tive for learning framework on distributions.

First of all, kernel mean representation is very simple. It is fully characterized by a transfor-
mation

P 7−→ Ex∼P[k(x, ·)] =: µP

where k : X ×X → R is a positive definite kernel function. As we can see, µP is simply a mean
vector in feature space associated with the kernel k. As a result, we do not need to deal with
distributions explicitly as many operations on P can be translated into operations on µP. The
kernel mean µP can be estimated consistently from the empirical data with provable guarantee.

Secondly, a certain class of kernel functions known as characteristic kernels ensures that the
kernel mean representation captures all necessary information about the distribution (Fukumizu
et al. 2004, Sriperumbudur et al. 2008; 2010). In other words, the map µ : P 7→ µP is injective
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which implies that ‖µP − µQ‖H = 0 if and only if P = Q. As a result, we can use the kernel
mean representation to define a metric over a space of probability distributions (Sriperumbudur
et al. 2010). A diverse choice of k also gives this representation more flexibility. Most machine
learning algorithms can be extended to a space of probability distributions by choosing appro-
priate kernels (or approximation) of this representation (Gómez-Chova et al. 2010, Muandet
et al. 2012, Guevara et al. 2014).

Next, basic operations on distributions can be performed by means of the inner product in
the feature space. For example, we have EP[f(x)] = 〈f,µP〉H for all f ∈ H . Likewise,
EY |x[g(Y ) |X = x] = 〈g,UY |x〉F for all g ∈ F where UY |x denotes the kernel mean embed-
ding of the conditional distribution P(Y |X = x). Consequently, the kernel mean representation
permits a probabilistic inference in a non-parametric fashion, e.g., kernel belief propagation
(Song et al. 2011a), kernel Monte Carlo filter (Kanagawa et al. 2013), and kernel Bayes’ rule
(Fukumizu et al. 2011).

In some applications such as testing for homogeneity from finite sample, the kernel mean
representation allows one to bypass an intermediate density estimation, which is known to be
difficult in high-dimensional setting (Wasserman 2006; Section 6.5). Moreover, the applica-
tions of kernel mean embedding can be extended straightforwardly to non-vectorial data such
as graphs, strings, and semi-groups (Gärtner 2003). Most of the previous approaches only work
in standard Euclidean space.

1.2 Thesis Overview and Contribution

The major contributions of this thesis can be summarized as follows:

• Overall, the thesis introduces learning frameworks when the inputs are not just points,
but probability distributions. The use of kernel mean embedding as a representation for
distribution allows us to generalize many of the classical algorithms and establishes in-
teresting relationships with existing frameworks. The thesis also investigates the kernel
mean estimation problem.

• The thesis gives a comprehensive review on both theory and practical applications of
Hilbert space embedding of probability distributions in the past years. To the best of my
knowledge, this is the first comprehensive review of research in this area.

• One of the most fundamental questions is how to estimate the kernel mean effectively and
efficiently from the sample, which is an essential step in the applications of kernel mean
embedding. The thesis investigates this question and shows that the standard kernel mean
estimator, i.e.,

µ̂P :=
1

n

n∑

i=1

k(xi, ·), xi ∼ P,

can be improved by the linear shrinkage estimator of the form µ̂α := αf∗ + (1 − α)µ̂P

for some α ∈ [0, 1] and f∗ ∈ H . Hence, we propose a new family of estimators called
kernel mean shrinkage estimator (KMSE) and provide several theoretical guarantees. By
taking the geometrical properties of RKHS into account, the thesis provide non-linear

extensions by mean of spectral filtering algorithms which are quite popular in the theory
of inverse problem and regularization. The proposed idea can also be used to estimate
other quantities such as covariance operators.

• The thesis provides a generalization of the ERM framework to a space of distributions.
That is, we observe i.i.d. sample (P1, y1), . . . , (Pn, yn) rather than (x1, y1), . . . , (xn, yn).
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We show that the resulting framework amounts to constructing a kernel-based learning
framework over a set of distributions when each of them is represented by the kernel
mean embedding. The proposed framework allows one to generalize several well-known
algorithms such as kernel ridge regression and Gaussian processes to a space of proba-
bility distributions. In particular, the thesis provides an extension of well-known support
vector machine (SVM) to a space of probability distributions which we call a support

measure machine (SMM) with theoretical insights and encouraging empirical results. In
addition, the thesis provides discussions regarding connections to classical learning algo-
rithms, possible extensions, and potential future directions.

• The proposed framework can also be applied in an unsupervised setting, especially for
exploratory data analysis. First, the thesis provides an analysis of the feature represen-
tation of distributions and illustrate this by performing PCA on distributions. Next, it
presents the algorithm for group anomaly detection called one-class support measure

machine (OCSMM) and provides an analysis on the connection to variable kernel den-
sity estimation (VKDE). Lastly, the thesis demonstrates the proposed framework on the
domain adaptation/generalization via the domain-invariant component analysis (DICA)
algorithm with learning-theoretic bound.

• Last but not least, I want to point out that learning from distributions has potential applica-
tions in statistics. Many problems in statistics such as hypothesis testing involve finding
a function of the empirical distribution to a certain set of outputs called statistic, e.g.,
{−1,+1} indicating whether or not to reject the null hypothesis. Conventional approach
is to use plug-in estimators. On a contrary, if training data is available, we may learn such
an estimator automatically from the data using the proposed frameworks. Preliminary re-
sults have demonstrated the effectiveness of this approach in real-world applications, e.g.,
see Szabó et al. (2015), Lopez-Paz et al. (2015b).

1.3 Outline of the Thesis

Figure 1.1 depicts a high-level outline of the thesis whose details can be described as follows.

Chapter 2: This chapter provides a brief literature review on the area of kernel methods and a
comprehensive review on kernel mean embedding of marginal and conditional distributions and
their applications. It also provides the discussions regarding the relationships between kernel
mean embeddings and other methods.

Chapter 3: This chapter addresses the kernel mean estimation problem and shows that the
standard empirical estimator of kernel mean can be improved by the shrinkage estimators. A
novel class of estimators called kernel mean shrinkage estimators (KMSEs) is proposed. Several
theoretical analyses including consistency and convergence rate of estimators are also provided.
Lastly, it provides extensive experimental results as evidence of the improvement of KMSEs
over standard kernel mean estimator.

Chapter 4: Owing to the kernel mean embedding and its estimators, this chapter presents a
supervised learning framework on probability distributions. It first discusses the distributional

risk minimization framework and present the representer theorem for probability distributions.
Next, the positive definite kernel functions for distributions based on the kernel mean embed-
dings are proposed including a support measure machine (SMM) which is a generalization of
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Chapter 1

Introduction
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Literature Review

Chapter 3

Kernel Mean Shrink-
age Estimators

Chapter 4

Supervised Learning
on Distributions

Chapter 5

Unsupervised Learning
on Distributions

Chapter 6

Conclusion and
Future Research

Part I

Part II

Part III

Figure 1.1: The outline of the thesis.

well-known support vector machine (SVM) to probability measures. I also discuss its connec-
tion to classical algorithms such as Parzen window classifiers. Both theoretical analysis and
empirical results are also provided.

Chapter 5: This chapter demonstrates the learning framework on distributions in an unsuper-
vised setting. First, an analysis of the proposed feature representation and empirical illustration
via PCA on distributions are provided. Then, the thesis presents two applications, namely, group
anomaly detection and domain adaptation/generalization.

Chapter 6: This chapter concludes the thesis and gives some suggestions for future research.

Z END OF CHAPTER 1 Y
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Chapter 2
Literature Review

2.1 Definitions & Notations

Table 2.1 summarizes the basic notations used throughout the thesis. I use capital letters to
denote random variables and lowercase letters to denote instantiations of random variables, e.g.,
X and x. I use a bold typeface to indicate vector and matrix (or operator) quantities, e.g., x and
X. When describing the data set, I denote the total number of data points by n, and the total
number of feature dimensions by d. The feature vector for the data point i is denoted by xi, and
individual feature values are denoted by xij .

The primary object of interest in this thesis is probability distribution. For a topological
input space X , I denote by P a probability measure over such a space where a Borel σ-algebra is
generated by the topology. I use ϕP to denote a characteristic function of P. Let P be a space of
all probability measures P. For a random variable X taking value in X , I denote the associated
probability distribution by P(X) and PX interchangeably. Given a pair of random variables X
and Y , I decompose P into PX , which consists of the marginal distribution P(X), and PY |X ,
which consists of posteriors P(Y |X).

For a topological space X , C(X ) (resp. Cb(X )) denotes the space of all continuous (resp.

bounded continuous) functions on X . For a locally compact Hausdorff space X , f ∈ C(X ) is
said to vanish at infinity if for every ǫ > 0 the set {x : |f(x)| ≥ ǫ} is compact. I denote the
class of all continuous functions on X which vanish at infinity by C0(X ). Denote by Pb(X )
(resp. P1

+(X )), the set of all finite Borel (resp. probability) measures defined on X .

2.2 Kernel Methods in Machine Learning

In this section, I introduce the kernel methods and the concept of reproducing kernel Hilbert
space (RKHS) which form the backbone of this thesis.

2.2.1 A Kernel Trick

A solution to many classical learning algorithms such as the perceptron (Rosenblatt 1958), sup-
port vector machine (SVM) (Cortes and Vapnik 1995), and principle component analysis (PCA)
(Pearson 1901, Hotelling 1933b) can be expressed entirely in terms of inner product 〈x,x′〉,
which is basically a similarity measure between x and x′. However, a linear function class
induced by this inner product is too restrictive for many real-world problems. Hence, kernel
methods aim to build more flexible and powerful learning algorithms by replacing 〈x,x′〉 with
some other, possibly non-linear, similarity measures.

The most natural extension of 〈x,x′〉 is to explicitly apply a non-linear transformation:

Φ : X −→ F
x 7−→ φ(x) (2.1)

7
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Table 2.1: Basic notations used throughout the thesis

Symbol Description

X ,Y,Z, . . . non-empty sets (input spaces)
X,Y,Z, . . . random variables taking values in X ,Y,Z, . . .
x, y, z, . . . instantiations of random variables X,Y,Z, . . .
v, vi a vector and its ith element
M a matrix

P a probability distribution
P̂ an empirical distribution
ϕP a characteristic function of P

k(x,x′) a real-valued positive definite kernel function on X × X
l(y,y′) a real-valued positive definite kernel function on Y × Y
φ(x), ϕ(y) a feature map associated to the kernel k and l, respectively
H ,F an RKHS associated to the kernel k and l, respectively

CXX a covariance operator on X
CXY a cross-covariance operator from X to Y
CXY |Z a conditional cross-covariance operator of X and Y given Z

into a high-dimensional feature space F and subsequently evaluate the inner product there, i.e.,

k(x,x′) := 〈φ(x), φ(x′)〉. (2.2)

I will refer to φ and k as a feature map and a kernel function, respectively. Likewise, we
can interpret k(x,x′) as a non-linear similarity measure between x and x′. Consequently, we
can obtain a non-linear extensions of the linear algorithms simply by substituting 〈x,x′〉 with
〈φ(x), φ(x′)〉. It is important to note that the learning algorithm remains the same: we only
change the space in which these algorithms operate. As (2.1) is non-linear, a linear algorithm in
the feature space F corresponds to the non-linear counterpart in the input space.

Let consider a particular example of φ when x ∈ R2, namely, a polynomial feature map
φ(x) = (x21, x

2
2,
√
2x1x2). Then, we have

〈φ(x), φ(x′)〉F = x21x
′2
1 + x22x

′2
2 + 2x1x2x

′
1x

′
2 = 〈x,x′〉2. (2.3)

In other words, the new similarity measure is just the square of the dot product in X . This result
also holds more generally for a d-degree polynomial, i.e., φ maps x ∈ RN to the vector φ(x)
whose entries are all possible dth degree ordered products of the entries of x. In that case, we
have k(x,x′) = 〈φ(x), φ(x′)〉F = 〈x,x′〉d. Thus, the complexity of the learning algorithm
is controlled by the complexity of φ and by increasing the degree d, one would expect that
resulting algorithm will become more complex. Additional examples of how to construct an
explicit feature map can be found in Schölkopf and Smola (2001; Chapter 2).

Unfortunately, evaluating k(x,x′) as above requires a two-step procedure: i) one construct
the feature maps φ(x) and φ(x′) explicitly, and ii) then evaluate 〈φ(x), φ(x′)〉F . These two
steps can be computational expensive if φ(x) lives in a high-dimensional feature space, e.g.,
when the degree d of the polynomial is large. Fortunately, (2.3) implies that there is an alterna-
tive way to evaluate 〈φ(x), φ(x′)〉F without resorting to constructing φ(x) explicitly if all we
need is an inner product 〈φ(x), φ(x′)〉F . That is, we can use k(x,x′) = 〈x,x′〉2 directly. This
is an essential aspect of kernel methods, often referred to as a kernel trick in machine learning
community.

8
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It turns out that there exists a general class of k which guarantee that there exists some
φ : X → F for which k(x,x′) = 〈φ(x), φ(x′)〉F as soon as k is positive definite (cf. Definition
2.1). Since the inner product 〈·, ·〉 is positive definite, it follows from (2.2) that k is positive
definite for any choice of explicit feature map φ.

Definition 2.1. A function k : X × X → R is a reproducing kernel if it is symmetric, i.e.,
k(x,y) = k(y,x), and positive definite:

n∑

i,j=1

cicjk(xi,xj) ≥ 0 (2.4)

for any n ∈ N and choice of x1, . . . ,xn ∈ X and c1, . . . , cn ∈ R.

Indeed a kernel function in the sense of Definition 2.1 associates to a space of functions
called reproducing kernel Hilbert space (RKHS) H , hence the name reproducing kernel (Aron-
szajn 1950). From this perspective, whenever we use the kernel k, we often think of a canonical

feature map

k : X → H ⊂ RX (2.5)

x 7→ k(x, ·) (2.6)

where RX denotes the vector space of functions from X to R. An inner product in H satisfies
the reproducing property

k(x,x′) = 〈k(x, ·), k(x′, ·)〉. (2.7)

Further detail of RKHS will be provided in Section 2.2.2. Note that although we do not need to
know φ(x) = k(x, ·) explicitly, it is possible to derive φ(·) directly from the kernel k (see, e.g.,
Schölkopf and Smola (2001) for concrete examples).

The kernel trick not only results in more powerful learning algorithms, but also allows do-
main experts to come up with domain-specific kernel functions which can be verified easily.
This leads to a number of kernel functions in various application domains (Genton 2002). In
machine learning, commonly used kernels include the Gaussian and Laplacian kernels

k(x,x′) = exp

(
−‖x− x′‖22

2σ2

)
, k(x,x′) = exp

(
−‖x− x′‖2

σ

)
, (2.8)

where σ > 0 is a bandwidth parameter. Compared to the Gaussian kernel, the Laplacian kernel
is less sensitive to changes in bandwidth parameter. These kernels belong to a class of kernel
functions called a radial basis function (RBF) kernel. Both kernels are translation invariant

which form an important class of kernel functions with essential properties, see, e.g., Theorem
2.2.1

The kernel trick applies not only to real-valued random variables, but also extend to multi-
variate random variables, structured data, functional data, and other domains on which positive
definite kernels may be defined. A review of several classes of kernel functions can be found
in Genton (2002). Hofmann et al. (2008) also provides a general review of kernel methods in
machine learning.

Another characterization of symmetric positive definite kernel k is the Mercer’s theorem
(Mercer 1909).

1The kernel k is said to be translation invariant if k(x,x′) = ϕ(x− x′) for some positive definite function ϕ.
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Theorem 2.1 (Mercer’s theorem). Suppose k is a continuous positive definite kernel on a com-

pact set X , and the integral operator Tk : L2(X )→ L2(X ) defined by

(Tkf)(·) =
∫

X
k(·,x)f(x) dx (2.9)

is positive definite, i.e., ∀f ∈ L2(X ),
∫

X
k(u,v)f(u)f(v) dudv ≥ 0. (2.10)

Then, there is an orthonormal basis {ψi} of L2(X ) consisting of eigenfunctions of Tk such that

the corresponding sequence of eigenvalues {λi} are non-negative. The eigenfunctions corre-

sponding to non-zero eigenvalues are continuous on X and k(u,v) has the representation

k(u,v) =
∞∑

i=1

λiψi(u)ψi(v) (2.11)

where the convergence is absolute and uniform.

The condition (2.10) is known as a Mercer’s condition and the kernel functions that satisfy
this condition is often referred to as Mercer’s kernels. It is important to note that Mercer’s
theorem characterizes a richer class of kernel functions than the notion of positive definiteness
considered previously. That is, while all Mercer’s kernels satisfy (2.2), the converse is not
necessarily true. Since we are interested in the feature map φ, throughout this thesis, we consider
the positive definite kernels that satisfy (2.2). Moreover, there is an intrinsic connection between
integral operator Tk, covariance operator CXX , and Gram matrix K (Rosasco et al. 2010) (see
also Section 2.2.4).

Steinwart and Scovel (2012) studied the Mercer’s theorem in general domains in which
compactness assumption on X may not be satisfied. There is also a connection between Mer-
cer’s theorem in functional analysis and Karhunen-Loève theorem in the theory of stochastic
processes (Rogers and Williams 2000a;b).

When the kernel k is translation invariant, i.e., k(x,x′) = ϕ(x − x′), x,x′ ∈ Rd, we can
characterize the kernel by Bochner’s theorem (Bochner 1933).

Theorem 2.2 (Bochner’s theorem). A kernel k(x,x′) = ϕ(x − x′) on Rd is positive definite if

and only if there exists a finite non-negative Borel measure Λ on Rd such that

ϕ(x− x′) =
∫
e
√
−1ω⊤(x−x′) dΛ(ω). (2.12)

In other words, Bochner’s theorem states that k is the inverse Fourier transform of Λ and the
translation-invariant kernels are the class of kernel functions that have non-negative Fourier
transform.

By virtue of Theorem 2.2, we can interpret the kernel k(x,x′) = ϕ(x − x′) in the Fourier
domain. That is, the measure Λ determines which frequency component occurs in the kernel
by putting non-negative power on each frequency ω. Note that we may normalize k such that
ϕ(0) = 1, in which case Λ will be a probability measure and k corresponds to its characteristic
function. For example, the measure Λ that corresponds to the Gaussian kernel k(x − x′) =
e−‖x−x′‖2/(2σ2) is a Gaussian distribution of the form (2π/σ2)−d/2e−σ

2‖ω‖2/2 dω. For Lapla-
cian kernel k(x,x′) = e−‖x−x′‖/σ, the corresponding measure is a Cauchy distribution, i.e.,
Λ(ω) =

∏
d

σ
π(1+ω2

d)
.

10
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As we will see later, Bochner’s theorem also allows us to characterize the kernel mean em-
bedding. Similarly, the measure Λ determines which frequency component of the characteristic
function of P occurs in the embedding µP. Hence, it follows from the uniqueness of the charac-
teristic function that if the support of Λ is the entire Rd, µP will uniquely determines P (Sripe-
rumbudur et al. 2008; 2010; 2011a). In the context of this thesis, I prefer to think about Λ as a
filter that selects certain properties when computing the similarity measure between probability
distributions 〈µP,µQ〉H w.r.t. a certain class of distributions P (more below).

Another promising application of Bochner’s theorem is a finite approximation of kernel
function. The feature map φ of many kernel functions such as the Gaussian kernel is infinite
dimensional. In which case, the construction of the Gram matrix K where Kij = k(xi,xj)
is required. Therefore, most kernel-based learning algorithms scale at least quadratically with
the sample size, which makes them prohibitive for large-scale problems. Rahimi and Recht
(2007) proposes to approximate the translation invariant kernel k by replacing the integral in
(2.12) with a finite sum based on a Monte Carlo sample ω ∼ Λ. The Johnson-Lindenstrauss
Lemma (Dasgupta and Gupta 2003, Blum 2005) ensures that this transformation will preserve
similarity between data points. See also Kar and Karnick (2012), Le et al. (2013), Pham and
Pagh (2013) and references therein for a generalization of this idea. Another common method
to approximate K is a low-rank approximation, see, e.g., Bach (2013) and references therein.

2.2.2 Reproducing Kernel Hilbert Space

A Reproducing kernel Hilbert space (RKHS) H is a Hilbert space where all evaluation func-
tionals in H are bounded and continuous. First, I give a definition of Hilbert space.

Definition 2.2. A Hilbert space is a real (or complex) inner product space that is also a complete

metric space w.r.t. the distance function induced by the inner product.

Well-known examples of Hilbert spaces include standard Euclidean space Rd with 〈x,y〉
the vector dot product of x and y, a space of square summable sequences ℓ2 of x = (x1, x2, . . .)
with an inner product 〈x,y〉 =

∑∞
i=1 xiyi such that the series

∑∞
n=1 |zn|2 converges, and

the space of square-integrable functions L2[a, b] with inner product 〈f, g〉 =
∫ b
a f(x)g(x) dx.

Hilbert spaces with their norm given by the inner product are examples of Banach spaces

(Ledoux and Talagrand 1991). A Hilbert space is always a Banach space, but the converse
need not hold because a Banach space may have a norm that is not given by an inner product,
e.g., the supremum norm. This thesis will deal mostly with the embedding of distributions in
the Hilbert space. Sriperumbudur et al. (2011b) has already extended the idea to a more general
Banach space.

We are now in a position to give a definition of a reproducing kernel Hilbert space.

Definition 2.3. A Hilbert space H is an RKHS if the evaluation functionals are bounded, i.e.,
if for all x ∈ X there exists some C > 0 such that

|Fx[f ]| = |f(x)| ≤ C‖f‖H , ∀f ∈H . (2.13)

Intuitively speaking, functions in the RKHS are smooth in the sense of (2.13). This smoothness
property ensures that the solution in RKHS obtained from learning algorithms will be well-
behaved, i.e., small ‖f − g‖H implies that f(x) and g(x) are close a.e.. For example, in
classification and regression problems, it is ensured that by minimizing the empirical risk on the
training data w.r.t. the functions in RKHS, we obtain a solution f̂ that is close to the true solution
f and also generalize well to unseen test data. This does not necessarily hold for functions in
Hilbert spaces. The space of square-integrable functions L2[a, b] does not have this property.

11



2.2. KERNEL METHODS IN MACHINE LEARNING

That is, it is very easy to find a function in L2[a, b] that attains zero risk on the training data, i.e.,
overfitting.

The next theorem provides a characterization of a bounded linear operator in H .

Theorem 2.3 (Riesz representation). If A : H → R is a bounded linear operator in a Hilbert

space H , there exists some gA ∈H such that

Af = 〈f, gA〉H , ∀f ∈H . (2.14)

The Riesz representation theorem will be used to prove a sufficient condition for the existence
of the kernel mean embedding in the Hilbert space (see Lemma 2.7). By the definition of
RKHS, the evaluation functional Fx[f ] = f(x) is a bounded linear operator in H . Therefore,
Riesz representation theorem ensures that for any x ∈ X we can find an element in H that
is a representer of the evaluation f(x). Proposition 2.4 states this result, which is called a
reproducing property.

Proposition 2.4 (reproducing property). For each x ∈ X , there exists a function kx ∈H such

that

Fx[f ] = 〈kx, f〉H = f(x). (2.15)

The function kx is called the reproducing kernel for the point x. Let k : X × X → R be
a two-variable function defined by k(x,y) := ky(x). Then, it follows from the reproducing
property that

k(x,y) = ky(x) = 〈kx, ky〉H = 〈φ(x), φ(y)〉H , (2.16)

where φ(x) := kx is the feature map φ : X →H . As mentioned earlier, we call φ a canonical

feature map associated with H essentially because when we apply the function k(x,y) in the
learning algorithms, the data points are implicitly represented by a function kx in the feature
space. As we will see later in Section 2.3, the kernel mean embedding is defined by means of
kx and can itself be viewed as a canonical feature map of the probability distribution.

The RKHS H is fully characterized by the reproducing kernel k. In fact, the RKHS
uniquely determines k, and vice versa, as stated in the following theorem which is due to Aron-
szajn (1950):

Theorem 2.5. For every positive definite function k(·, ·) on X × X there exits a unique RKHS,

and vice versa.

The sufficient and necessary conditions for a function k(·, ·) to be a reproducing kernel are given
in Definition 2.1. Detailed exposition of RKHS can be found in Schölkopf and Smola (2001),
Berlinet and Thomas-Agnan (2004), for example.

2.2.3 Learning with Kernels

In this section I review some well-known algorithms, namely principal component analysis,
support vector machine, ridge regression, and Gaussian process together with their kernelized
counterparts.

Kernel Principal Component Analysis (KPCA)

Principal component analysis (PCA) is an essential tool for modern data analysis (Hotelling
1933a, Jolliffe 1986). The PCA provides a powerful mathematical tool to unravel interesting,
sometimes hidden, structures that underlies a complex data set. The goal of PCA is to find a
meaningful basis that “best” explains a data set in terms of the variance. That is, given a data

12



CHAPTER 2. LITERATURE REVIEW

set D = {x1, . . . ,xn} where xi ∈ Rd, PCA looks for a principal component v1 in Rd such that
the variance of the projection

1

n

n∑

i=1


〈xi,v1〉 −

n∑

j=1

〈xj ,v1〉




2

is maximized. It is often assumed that the data set D is centered such that
∑n

i=1 xi = 0. PCA
assumes that all basis vectors {v1, . . . ,vp} are orthonormal, i.e., 〈vi,vj〉 = 0, i 6= j and
‖vi‖2 = 1. In other words, the projection matrix V = (v1, . . . ,vp)

⊤ is an orthonormal matrix.
Let define a n× d matrix X whose rows correspond to data points and columns correspond

to features (or variables). Then, the covariance matrix C can be expressed in terms of X as

C =
1

n
XX⊤. (2.17)

It is not difficult to show that the orthonormal basis {v1, . . . ,vp} coincides with the first p
eigenvectors of C with largest eigenvalues. The eigenvalues specify the amount of variance
captured by the corresponding eigenvectors. Consequently, the PCA finds the projection V by
solving the following eigendecomposition problem

CV = ΛV (2.18)

where Λ = diag(λ1, . . . , λd) is a diagonal matrix consisting of corresponding eigenvalues.
The standard PCA algorithm only gives a linear projection which can be very restrictive in

many applications. As described above, the most straightforward extension of PCA to deal with
non-linear relationship is to replace (2.17) with the covariance matrix in the feature space, i.e.,
each column of X now consists of the feature map φ(xi). However, for infinite dimensional
feature space, solving the eigenvalue problem (2.18) is no longer possible in practice.

Alternatively, one can resort to the well-known trick that conventional PCA can be refor-
mulated in such a way that the data vectors appear only in the form of the scalar product
(Schölkopf et al. 1998). That is, we decompose the dot product matrix X⊤X and left multi-
ply by the data matrix: X⊤XU = ΛU ⇔ (XX⊤)(XU) = Λ(XU). As a result, the PCA
can be performed using dot product matrix instead of covariance matrix. Let K be a Gram ma-
trix such that Kij = 〈φ(xi), φ(xj)〉. Substituting (2.17) with the feature map φ(xi) in (2.18),
then all solutions vk lie in the span of {φ(x1), . . . , φ(xn)}. That is, there exist coefficients
α = (α1, . . . , αn)

⊤ such that

vk =
n∑

i=1

αiφ(xi). (2.19)

Consequently, we can find eigenvector vk by solving the eigenvalue problem

nλα = Kα (2.20)

for nonzero eigenvalues. Additionally, we normalize the solution α belonging to nonzero eigen-
values by requiring that the corresponding vectors in H be normalized, i.e., (vk ·vk) = 1. This
translates into

1 =
m∑

i,j=1

αiαjKij = α ·Kα = λk(α ·α). (2.21)

Given a new data point x, the projected value of x onto the component vk can be computed
as
∑n

i=1 αi〈φ(xi), φ(x)〉. The time complexity of eigenvalue problem (2.20) depends only
on n, rather than the dimensionality d of the feature space. For large n, standard low-rank
approximations for K can be applied to reduce computational complexity.
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yi = −1
w
⊤
x− b = 1

w
⊤
x− b = −1

ξ

ξ

yi = +1

Figure 2.1: An illustration of the separating hyperplanes of the soft-margin SVM.

Support Vector Machines (SVM)

Support vector machine (SVM) is one of the most successful algorithms for classification. Given
a training data

D = {(xi, yi) |xi ∈ Rd, yi ∈ {+1,−1}}ni=1.

The objective of SVM is to find the maximum-margin hyperplane that separates the points
having yi = +1 from those having yi = −1.

In the following, I only give the detail of a soft-margin version of the SVM because it is
widely used in many applications. Other variants of SVM formulation can be found in Schölkopf
and Smola (2001). If the data in D are linearly separable2 , the idea of linear SVM is to select
two hyperplanes in a way that they separate the training data and there are no points between
them. In general, there could be an infinitely many of such hyperplanes. We call the distance be-
tween these two hyperplane “the margin”. Among all possible hyperplanes, the SVM selects the
ones to maximize this margin. Since these two hyperplanes can be described by the following
equations:

w · x− b = 1

w · x− b = −1,

it is straightforward to show that the margin is simply 2/‖w‖. Hence, maximizing margin is
equivalent to minimizing ‖w‖ w.r.t. the constraints that the training data are correctly classified.

Unfortunately, the assumption of linear separability does not hold for many real-world data.
As a result, it is impossible to find such a linear hyperplane that separates the data perfectly.
To relax this assumption and allow some errors to be made, the idea of soft-margin SVM is to
introduce non-negative slack variables, ξi, which measure the degree of mis-classification of the
classifier on the data point xi. The objective function of the soft-margin SVM then involves a
trade-off between a large margin and a small error penalty. The optimization problem of SVM

2Two point sets are said to be linearly separable in d-dimensional space if they can be separated by a hyperplane.
Mathematically, let X and X ′ be two sets of points in d-dimensional space. Then, X and X ′ are linearly separable
if there exists real number w1, w2, . . . , wd, k such that

∑d
i=1 wixi ≥ k for every point x ∈ X and

∑d
i=1 wix

′
i < k

for every point x′ ∈ X ′.
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can be formulated as follow:

minimize
w,ξ,b

{
1

2
‖w‖2 + C

n∑

i=1

ξi

}

subject to yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ n,

where the parameter C controls a trade-off between a large margin and a small error penalty.
Figure 2.1 illustrates the separating hyperplane of the soft-margin SVM. Using Lagrange mul-
tipliers, we can solve the problem above via the following saddle-point problem:

min
w,ξ,b

max
α,β

{
1

2
‖w‖2 + C

n∑

i=1

ξi −
n∑

i=1

αi[yi(w · xi − b)− 1 + ξi]−
n∑

i=1

βiξi

}

where α ≥ 0 and β ≥ 0. Consequently, we obtain the dual form of soft-margin SVM

maximize
α

n∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj〈xi,xj〉

subject to 0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0.

From the dual form of SVM, one can replace 〈xi,xj〉 directly with a non-linear similarity mea-
sure such as kernel function k(x,x′) to get a non-linear classifier.

Using the Karush–Kuhn–Tucker condition, the solution w can be expressed as a linear com-
bination of the training vectors

w =

n∑

i=1

αiyik(xi, ·).

The function value evaluated on a new sample x∗ can be computed by taking the inner product
in H between the weight vector w and the data feature map φ(x∗), i.e.,

f(x∗) = 〈w, φ(x∗)〉 =
n∑

i=1

αiyik(xi,x
∗).

Then, the classification of x∗ can be achieved by considering the sign of f(x∗), i.e., y∗ =
sign[f(x∗)] where sign[c] = 1 if c > 0 and -1 otherwise. Solving for an SVM solution amounts
to a quadratic program which can be solved efficiently using specialized implementations.

Kernel Ridge Regression (KRR) and Gaussian Process (GP)

Ridge regression and its kernelized counterpart is arguably one of the most elementary algorithm
for regression problem. Given a data set of labeled examples D = {(x1, y1), . . . , (xn, yn)}
where (xi, yi) ∈ Rd × R, the goal of regression is to find a function f : Rd → R which ap-
proximates well the conditional expectation E[Y |X = ·] where the expectation is taken over the
conditional distribution P(Y |X = ·). In practice, we consider the function f which minimize
the squared loss function

L(f) =
1

2

n∑

i=1

(yi − f(xi))2. (2.22)
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First, let consider a class of linear functions f(x) = w⊤x for some parameter vector w ∈ Rd,
in which case we can re-write (2.22) in terms of w as

L∗(w) =
1

2

n∑

i=1

(yi −w⊤xi)
2. (2.23)

Here, L∗(w) denotes the dual loss function. Taking a derivative of L∗(w) w.r.t. w and setting
it to zero yield a close-form solution for w, i.e.,

w = (XX⊤)−1Xy, (2.24)

where y = (y1, . . . , yn)
⊤. This algorithm is commonly known as a least square (LS) algorithm.

We can see from (2.24) that a problem may arise if XX⊤ does not have full rank. In other
words, the problem is underdetermined and solving for w becomes ill-posed, namely, a solution
may not exist, be unique, or does not change continuously with the initial condition.

To overcome this problem, one can resort to the regularized version of (2.23),

L∗
λ(w) =

1

2

n∑

i=1

(yi −w⊤xi)
2 +

λ

2
‖w‖2, (2.25)

where λ is a positive regularization parameter. Solving for w yields a well-known ridge regres-
sion (RR) algorithm:

w = (XX⊤ + λI)−1Xy. (2.26)

Clearly, (XX⊤ + λI) has full rank. Again, the LS and RR only consider a class of linear
functions. To extend ridge regression to approximate non-linear functions, we can directly
replace xi with feature map φ(xi) in (2.25) and (2.26). In this case, the dimensionality of w can
be much higher if not infinite. Alternatively, denoting Φ = (φ(x1), . . . , φ(xn))

⊤ we may resort
to the following identity

w = (ΦΦ⊤ + λId)
−1Φy = Φ(Φ⊤Φ+ λIn)

−1y = Φ(K+ λIn)
−1y =

n∑

i=1

αiφ(xi)

where we define α := (K+λIn)
−1y. Hence, given a test point x∗, we can evaluate the function

value by f(x∗) = 〈w, φ(x∗)〉 =
∑n

i=1 αik(xi,x∗).
I close this section by reviewing Gaussian processes (GPs), which can be viewed as a

Bayesian counterpart of least square and ridge regression algorithms. GPs extend multivari-
ate Gaussian distributions to infinite dimensional vectors, i.e., functions. Similar to least square
regression, the GPs can be obtained via Bayesian linear regression. That is, assuming noise
ε ∼ N (0, σ2), the linear regression model is

fw(x) = w⊤x, y = fw(x) + ε. (2.27)

Assuming a zero-mean Gaussian prior over parameters w with covariance Σp and applying
Bayes’ theorem yield a posterior distribution over w:

p(w|y,X) = N
(
w ;

1

σ2
A−1Xy,A−1

)
, A = Σ−1

p +
1

σ2
XX⊤. (2.28)

GP allows for a full posterior over a function class. Hence, the predictive distribution at the test
point x∗ can be obtained by marginalizing out the parameter w as

p(y∗|x∗,X,y) =

∫
fw(x∗)p(w|y,X) dw (2.29)
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= N
(
y∗ ;

1

σ2
x⊤
∗ A

−1Xy,x⊤
∗ A

−1x∗

)
. (2.30)

Like in linear least square, we may increase the expressiveness of the Bayesian linear regression
by considering a function of the form fw(x) = w⊤φ(x). Hence, the mean and the covariance
of predictive distribution become

m = Φ(x∗)
⊤ΣpΦ(K+ σ2I)−1y (2.31)

C = Φ(x∗)
⊤ΣpΦ(x∗)− Φ(x∗)

⊤ΣpΦ(K+ σ2I)−1Φ⊤ΣpΦ(x∗) (2.32)

where we used the same trick as in the case of KRR to derive the mean and matrix inversion
lemma to derive the covariance. See Rasmussen and Williams (2005; Chapter 2) for more detail.
Notice that we have defined k(x,x′) = φ(x)⊤Σpφ(x

′). Because the mean and covariance of
the predictive distribution can be written solely in terms of inner product φ(x)⊤Σpφ(x

′), this
algorithm also lends itself to the kernel trick.

The GP prior may be defined directly over the space of functions. That is, we assume that f
is drawn from the GP prior such that for all n and all x1, . . . ,xn ∈ X , (f(x1), . . . , f(xn))

⊤ ∼
N (0,Σ + σ2I) where the entry Σij specifies the covariance between f(xi) and f(xj) which
is usually specified by the kernel function, i.e., Σij = Cov(f(xi), f(xj)) = k(xi,xj). Given a
set of n training data point {xi, yi}ni=1, joint distribution of y and y∗ is

[
y

y∗

]
∼ N

(
0,

[
K k⊤

∗
k∗ k(x∗,x∗)

])
(2.33)

Since Gaussian distribution is close under marginalization, we have p(y∗|x∗,X,y) = N (k⊤
∗ (K+

σ2I)−1y, k(x∗,x∗)− k⊤
∗ (K+ σ2I)−1k∗) as in (2.31) and (2.32). Note that σ2 plays a similar

role as regularization parameter λ in kernel ridge regression.
There is a correspondence between weight-space view and function-space view of GP. For

any set of basis functions φ(x), the corresponding covariance function is k(x,x′) = φ(x)⊤Σpφ(x
′).

Conversely, for every covariance function k, there is a possibly infinite expansion in terms of
basis functions, i.e., k(x,x′) =

∑∞
i=1 λiφi(x)φi(x

′), due to Mercer’s theorem (cf. Theorem
2.1).

2.2.4 Cross-Covariance and Hilbert-Schmidt Operators

The covariance, cross-covariance, and Hilbert-Schmidt operators on RKHS are important con-
cepts for modern applications of Hilbert space embedding of distributions. In principle, they are
generalizations of covariance and cross-covariance matrices in Euclidean space to the infinite-
dimensional elements in RKHS. We give a brief review here; see Baker (1973), Fukumizu et al.
(2004) for further detail.

Cross-covariance operators were introduced in Baker (1970) and then treated more exten-
sively in Baker (1973). Let (X,Y ) be random variable taking values on X ×Y and (H , k) and
(F , l) be RKHS with measurable kernels on X and Y , respectively. We assume the integrability

EX [k(X,X)] ≤ ∞, EY [l(Y, Y )] ≤ ∞,

which ensures that H ⊂ L2(PX) and F ⊂ L2(PY ). The cross-covariance operator CYX :
H → F can be defined as

CYX := EYX [ϕ(Y )⊗ φ(X)]− µY ⊗ µX (2.34)

= µPYX
− µPY ⊗PX . (2.35)
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Alternatively, we may define an operator CYX as a unique bounded operator that satisfies

〈g,CYX f〉 = Cov[f(X), g(Y )]

for all f ∈ H and g ∈ F . These two equivalent definitions stem from the relations between
the covariance operator and mean element of the joint measure PXY (Baker 1973). If X = Y ,
we call CXX the covariance operator, which is self-adjoint and positive.

Given an i.i.d. sample (x1,y1), . . . , (xn,yn) on X × Y , an empirical estimate of CYX can
be obtained as

ĈYX =
1

n

n∑

i=1

{l(yi, ·)− µ̂Y } ⊗ {k(xi, ·)− µ̂X}

=
1

n
ΦHΨ⊤. (2.36)

where H = In − n−11n is the centering matrix with 1n an n × n matrix of ones, and Φ =
(φ(x1), . . . , φ(xn))

⊤, Ψ = (ϕ(y1), . . . , ϕ(yn))
⊤. The empirical covariance operator ĈXX can

be obtained in a similar way, i.e., ĈXX = 1
nΦHΦ⊤.

The following result due to Baker (1973) states that the cross-covariance operator can be
decomposed into the covariance of the marginals and the correlation.

Theorem 2.6. There exists a unique bounded operator VYX : H → F , ‖V‖ ≤ 1, such that

CYX = C
1/2
YY

VYXC
1/2
XX

, (2.37)

where R(VYX ) ⊂ R(CYY ) and N (VYX )⊥ ⊂ R(CXX ).

The operator VYX is often referred to as the normalized cross-covariance operator and has been
used as a basis for conditional dependence measure (Fukumizu et al. 2007; 2008). Compared
to CYX , VYX captures the same information about the dependence of X and Y , but with less
influence of the marginal distributions PX and PY .

The covariance operator serves as a basic building block in classical kernel-based methods
such as kernel PCA (Schölkopf et al. 1998, Zwald et al. 2004), kernel Fisher discriminant, and
kernel CCA (Fukumizu et al. 2007). More recent applications of covariance operator include
non-linear independence and conditional independence measures (Gretton et al. 2005b, Zhang
et al. 2008; 2011, Doran et al. 2014). It is known that the covariance operator and integral
operator defined in Theorem 2.1 are very much related (Hein and Bousquet 2004, Rosasco et al.
2010).

Hilbert-Schmidt Operators. Let H and F be separable Hilbert spaces and (hi)i∈I and
(fj)j∈J are orthonormal basis for H and F , respectively, where the index set I and J need
not be countable. A Hilbert-Schmidt operator is a bounded operator A : F → H whose
Hilbert-Schmidt norm

‖A‖2HS =
∑

j∈J
‖Afj‖2H =

∑

i∈I

∑

j∈J
|〈Afj , hi〉H |2 (2.38)

is finite. The Hilbert-Schmidt operators mapping from F to H form a Hilbert space HS(F ,H )
with inner product 〈A,B〉HS =

∑
j∈J〈Afj ,Bfj〉H . The Hilbert space of Hilbert-Schmidt op-

erators is beyond the scope of this thesis; see, e.g., Zwald et al. (2004) for further detail.
The cross-covariance operator CYX is in fact Hilbert-Schmidt. To see that, let first consider

a rank-one operator defined as the tensor product a ⊗ b from F to H where a ∈ F and
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x 7→ k(x, ·) δx 7→
∫
k(y, ·) dδx(y) P 7→

∫
k(x, ·) dP(x)

(a) data point (b) Dirac measure (c) probability measure

Figure 2.2: From data points to probability measures: (a) An illustration of typical application of ker-
nel as a high-dimensional feature map of individual data point. (b) A measure-theoretic view of high-
dimensional feature map. An embedding of data point into a high-dimensional feature space can be
equivalently viewed as an embedding of a Dirac measure assigning the mass 1 to each data point. (c)
Generalizing the Dirac measure point of view, we can generally extend the concept of high-dimensional
feature map to a class of probability measures.

b ∈ H , i.e., we have (b ⊗ a)f 7→ 〈f, a〉F b. It is not difficult to show using Parseval’s identity
that ‖a⊗ b‖2HS = ‖a‖2

F
‖b‖2

H
<∞. Thus, by definition this operator is Hilbert-Schmidt. Given

a Hilbert-Schmidt operator A ∈ HS(F ,H ), we can write the inner product between A and
a⊗ b as

〈A, a⊗ b〉HS = 〈a,Ab〉H (2.39)

If A is also a rank-one operator u ⊗ v where u ∈ F and v ∈ H , we have 〈u ⊗ v, a ⊗
b〉HS = 〈u, a〉F 〈v, b〉H . Hence, we can see that the cross-covariance operator CYX is the
unique element in HS(H ,F ) satisfying

〈CYX ,A〉HS = EXY [〈φ(X) ⊗ ϕ(Y ),A〉HS] . (2.40)

If follows from Jensen’s inequality and Cauchy-Schwarz inequality that

|EXY [〈φ(X) ⊗ ϕ(Y ),A〉HS] | ≤ EXY | [〈φ(X) ⊗ ϕ(Y ),A〉HS] |
≤ EXY [‖φ(X) ⊗ ϕ(Y )‖HS] ‖A‖HS.

Hence, by Riesz representation theorem, the cross-covariance operator exists if and only if
EXY [‖φ(X) ⊗ ϕ(Y )‖HS] < ∞, which is equivalent to ensuring EXY [

√
k(X,X)l(Y, Y )] <

∞. Setting A = f ⊗ g where f ∈H and g ∈ F yields the result in (2.34).
Recently, the Hilbert-Schmidt operators have received much attention in machine learning

community. For instance, Gretton et al. (2005a) uses a Hilbert-Schmidt norm of CYX as a mea-
sure of statistical dependence between random variables X and Y (see also Chwialkowski and
Gretton (2014) and Chwialkowski et al. (2014) for an extension to random processes). Quang
et al. (2014) proposes a Log-Hilbert-Schmidt metric between positive definite operators on a
Hilbert space, which is applied in particular to compute distance between covariance operators
in RKHS.

2.3 Kernel Mean Embedding of Marginal Distributions

This section presents the idea of Hilbert-space embedding of distributions by generalizing the
standard point of view of the kernel feature map of random sample to Dirac measures. Then, I
show how reproducing kernels can be used to represent probability measures in feature space. I
summarize this generalization in Figure 2.2.
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2.3.1 From Data Points to Probability Measures

We can generalize the concept of high-dimensional feature map of data points x ∈ X to mea-
sures on (X ,A) where A is a σ-algebra of subsets of X . The simplest example of measures is
the Dirac measure δx defined for x in X by

δx(A) =

{
1 if x ∈ A
0 if x /∈ A,

(2.41)

where A ∈ A. Since any measurable function f on X is integrable w.r.t. δx, we have
∫
f(t) dδx(t) = f(x). (2.42)

When f belongs to the Hilbert space H of functions on X with reproducing kernel k, we can
rewrite (2.42) using the reproducing property of H as

∫
f(t) dδx(t) =

∫
〈f, k(t, ·)〉dδx(t) =

〈
f,

∫
k(t, ·) dδx(t)

〉
= 〈f, k(x, ·)〉. (2.43)

Like in the case of input space X , the function
∫
k(t, ·) dδx(t) acts as a representer of the

measure δx in the Hilbert space. Also, it may be viewed as a representer of evaluation of the
following functional:

f 7−→
∫
f(t) dδx(t), (2.44)

namely, the expectation of f w.r.t. the Dirac measure δx. Although integrating f w.r.t. δx or
evaluating 〈f, k(x, ·)〉 give the same result f(x), i.e., value of f at the point x, the former gives
a measure-theoretic point of view of the latter (see also Figure 2.2). As a result, we can naturally
define a feature map from a space of Dirac measures to H as

δx 7−→
∫

X
k(y, ·) dδx(y). (2.45)

Intuitively speaking, the Dirac measure δx is a probability measure on (X ,A) assigning the
mass 1 to the set {x}. This implies that one can immediately extend any learning algorithm
that operates on a set of data points x1, . . . ,xn to a set of probability measures δx1 , . . . , δxn
(Muandet et al. 2012). However, as we can see in (2.43) this extension is not quite useful
in practice because both algorithms are in fact equivalent. It is therefore more interesting to
consider a non-trivial probability measure.

More generally, if x1, . . . ,xn are n distinct points in X and a1, . . . , an are n non-zero real
numbers, we may consider a linear combination

n∑

i=1

aiδxi (2.46)

of Dirac measures putting the mass ai at the point xi. This is known as a signed measure which
constitutes a class of measures with finite support. A measure of the form (2.46) is ubiquitous
in machine learning community, especially in Bayesian probabilistic inference (Adams 2009).
For example, if ai = 1/n for all i, we obtain an empirical measure associated with a sam-
ple x1, . . . ,xn. Donsker measure is obtained when ai is also a random variable (Berlinet and
Thomas-Agnan 2004). Lastly, if ai = 1 for all i, the measure of the form (2.46) represents an
instance of a point process on X which has numerous applications in Bayesian nonparametric
inference and neural coding (Dayan and Abbott 2005).
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Likewise, for any measurable function f we have
∫
f d

(
n∑

i=1

aiδxi

)
=

n∑

i=1

ai

∫
f dδxi =

n∑

i=1

aif(xi). (2.47)

This extends previous remark on Dirac measures to measures with finite support, and if f be-
longs to H , we obtain similar results as in the case of Dirac measure. That is, the mapping

n∑

i=1

aiδxi 7−→
n∑

i=1

aik(xi, ·) (2.48)

gives a representer in H of a measure with finite support. Furthermore, it is a representer of
expectation w.r.t. the measure, i.e., if µ =

∑n
i=1 aiδxi denotes the discrete measure, we have

for any f in H 〈
f,

n∑

i=1

aik(xi, ·)
〉

=
n∑

i=1

aif(xi) =

∫
f dµ. (2.49)

In particular, for any Hilbert space H of functions on X with reproducing kernel k, a linear
combination

∑n
i=1 aik(xi, ·) forms a dense subset of H . Here some readers may have concern

regarding the measurability of f . It is easy to show that any function in H is measurable
whenever k is measurable (see Schölkopf and Smola (2001) and Berlinet and Thomas-Agnan
(2004) for technical details).

Consequently, we define the representer in H of the measure P through the mapping

µ : P
1
+(X ) −→H , P 7−→

∫
k(x, ·) dP(x) (2.50)

which will be denoted by µP. This is essentially the kernel mean embedding we use throughout
the thesis. The set P1

+(X ) contains signed measures P for which the embedding µP exists and
belongs to H . The conditions under which this is the case will be discussed later. Theoretical
properties of µP will be described in Section 2.3.2.

Definition 2.4 (kernel mean embedding (Berlinet and Thomas-Agnan 2004, Smola et al. 2007)).
Suppose that a space P1

+(X ) consists of all Borel probability measures P on some input space

X . A kernel mean embedding of probability measures in P1
+(X ) into an RKHS H endowed

with a reproducing kernel k : X ×X → R is defined by a mapping

µ : P
1
+(X ) −→H , P 7−→

∫

X
k(x, ·) dP(x),

where the integral used is a Bochner integral.

In practice, we do not have access to the true distribution P, and thereby cannot com-
pute µP. Instead, we must rely entirely on the sample from this distribution. Given a sample
{x1, . . . ,xn}, the most common empirical estimate, denoted by µ̂P of the kernel mean µP is

µ̂P :=
1

n

n∑

i=1

k(xi, ·). (2.51)

Clearly, µ̂P is an unbiased estimator of µP, and by the law of large number, µ̂P converges to µP

as n → ∞. Sriperumbudur et al. (2012) provides a thorough discussion on several properties
of this estimator. In Chapter 3, I will discuss how to improve the estimation of µP by means of
shrinkage estimator.

In summary, under suitable assumptions on the kernel k, the Hilbert space embedding of dis-
tributions allows us to apply RKHS methods to probability measures. Throughout this section,
I restrict our attention to a space of marginal distributions P(X), and will provide an extension
to a space of conditional distribution P(Y |X) in Section 2.4.
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x

p(x) RKHS H

µP

µQ

P

Q

Figure 2.3: Embedding of marginal distributions: each distribution is mapped into an RKHS via an
expectation operation. It corresponds to a mean element in the RKHS.

2.3.2 Theoretical Properties

Next, I provide some theoretical properties of the kernel mean embedding. The following result
establishes sufficient conditions that guarantee the existence of µP.

Lemma 2.7 (Smola et al. (2007)). There exists µP ∈H if Ex∼P[
√
k(x,x)] <∞.

Proof. Let LP be a linear operator defined as LPf := Ex∼P[f(x)]. Under the assumption, LP

is bounded for all f ∈H , i.e.,

|LPf | = |Ex∼P[f(x)]|
(∗)
≤ Ex∼P[|f(x)|]
= Ex∼P[|〈f, k(x, ·)〉H |]
≤ Ex∼P

[√
k(x,x)‖f‖H

]
,

where we use Jensen’s inequality in (∗). Hence, by Riesz representation theorem (see, e.g.,
Theorem 2.3), there exists a µP ∈H such that LPf = 〈f,µP〉H . �

From the proof of Lemma 2.7, Ex∼P[f(x)] = 〈f,µP〉H for any f ∈ H . This equality can
essentially be viewed as a reproducing property of the expectation operation in the RKHS. That
is, it allows us to compute the expectation of a function f in the RKHS w.r.t. the distribution
P by means of an inner product between the function f and the embedding µP. This property
has proven useful in certain applications such as graphical model and probabilistic inference
that require an evaluation of expectation w.r.t. the model (Song et al. 2010a; 2011a, Boots et al.
2013, McCalman et al. 2013). It can be extended to conditional distribution (see Section 2.4).

The following result, which appears in Lopez-Paz et al. (2015b), is a slight modification
of Theorem 27 from Song (2008) which establishes the convergence of the empirical mean
embedding µ̂P to the embedding of its population counterpart µP in RKHS norm:3

Theorem 2.8. Assume that ‖f‖∞ ≤ 1 for all f ∈ H with ‖f‖H ≤ 1. Then with probability

at least 1− δ we have

‖µ̂P − µP‖H ≤ 2

√
Ex∼P[k(x,x)]

n
+

√
2 log 1

δ

n
. (2.52)

We can see that the convergence happens at a rate O(n−1/2). Generally, if we do not make any
prior assumption about P, this rate is known to be optimal.

It is important to understand what information of the distribution is retained by the kernel
mean embedding. For a linear kernel k(x,x′) = 〈x,x′〉, it is clear that µP becomes just the first

3The similar result is also given in Gretton et al. (2012a).
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moment of P, whereas for the polynomial kernel k(x,x′) = (〈x,x′〉+1)2 the mean map retains
both the first and the second moments of P. Below I provide some explicit examples which can
also be found in, e.g., Smola et al. (2007), Fukumizu et al. (2008), Sriperumbudur et al. (2010),
Gretton et al. (2012a), Schölkopf et al. (2015).

Example 2.1 (inhomogeneous polynomial kernel). Let consider the inhomogeneous polynomial

kernel k(x,x) = (〈x,x′〉+ 1)p, x,x′ ∈ Rd of degree p. Using

(〈x,y〉 + 1)p = 1 +

(
p

1

)
〈x,y〉 +

(
p

2

)
〈x,y〉2 +

(
p

3

)
〈x,y〉3 + · · ·

= 1 +

(
p

1

)
〈x,y〉 +

(
p

2

)
〈x(2),y(2)〉+

(
p

3

)
〈x(3),y(3)〉+ · · ·

where x(i) denotes the ith-order tensor product (Schölkopf and Smola 2001; Proposition 2.1),

the kernel mean embedding can be written explicitly as

µP(y) =

∫
(〈x,y〉 + 1)p dP(x)

= 1 +

(
p

1

)
〈mP(1),y〉 +

(
p

2

)
〈mP(2),y

(2)〉+
(
p

3

)
〈mP(3),y

(3)〉+ · · · ,

where mP(i) denotes the ith moment of the distribution P. That is, the embedding incorporate

up to the m-th moment of P. As we increase p, more information about P is stored in the kernel

mean embedding.

Example 2.2 (moment-generating function). Consider k(x,x′) = exp(〈x,x′〉). Hence, we can

write the kernel mean embedding as

µP = EX∼P

[
e〈X,·〉

]
,

which is essentially a moment-generating function of a random variable X with distribution P.

Example 2.3 (characteristic function). Consider the translation-invariant kernel k(x,y) =
ψ(x−y), x,y ∈ Rd where ψ is a positive definite function. Let ϕP be a characteristic function

of P. Bochner’s theorem (see Theorem 2.2) allows us to express the kernel mean embedding as

µP(y) =

∫
ψ(x− y) dP(x)

=

∫∫

Rd
exp

(
iω⊤(x− y)

)
dΛ(ω) dP(x)

=

∫∫

Rd
exp

(
iω⊤x

)
dP(x) exp

(
−iω⊤y

)
dΛ( dω)

=

∫

Rd
ϕP(ω) exp

(
−iω⊤y

)
dΛ(ω)

for some positive finite measure Λ (Sriperumbudur et al. 2010). It is not difficult to show that

for k(x,y) = ψ(x− y), we have 〈µP,µQ〉H = 〈ϕP, ϕQ〉L2(Rd,Λ) (see, e.g., Theorem 5.1).

Some authors might also consider explicitly the mean embedding of the sample X =
{x1, . . . ,xn}. I view this case as a special case of mean map of distribution when the dis-
tribution is an empirical distribution associated with the sample X. In which case, the mean
embedding takes the form of an empirical estimate µ̂P. Hence, the same line of reasoning can
be applied.
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2.3.3 Universal and Characteristic Kernels

The notion of universal kernels and characteristic kernels play crucial roles in kernel mean
embedding. The kernel k is said to be universal in the sense of Steinwart (2002) if the corre-
sponding RKHS H is dense in Cb(X ), a space of bounded continuous functions on X . That
is, for any f ∈ Cb(X ) there exists a function g ∈ H and ε > 0 such that ‖f − g‖∞ < ε.
This implies that in principle any kernel-based learning algorithms with universal kernels can
approximate any bounded continuous function f arbitrarily well. The universal kernel is essen-
tial for kernel mean embedding as it was shown that for a universal kernel k, ‖µP−µQ‖H = 0
if and only if P = Q, i.e., the map µ is injective (see Gretton et al. (2012a; Theorem 8) and
Cortes et al. (2008)). In other words, there is no information loss when mapping the distribution
into the Hilbert space. Examples of universal kernels on a compact domain are Gaussian and
Laplace kernels. On the discrete domain, the kernel k(x,x′) = 1{x=x′} is universal.

The characteristic kernel is defined as follows.

Definition 2.5. The kernel k is said to be characteristic if the map µ is injective. The RKHS H

is said to be characteristic if its reproducing kernel is characteristic.

The notion of characteristic kernel was first introduced in Fukumizu et al. (2008) being the
kernels that satisfy Definition 2.5. Fukumizu et al. (2008) also shows that Gaussian and Lapla-
cian kernels are characteristic on Rd. The properties of characteristic kernels were explored
further in Sriperumbudur et al. (2008; 2010; 2011a). In particular, Sriperumbudur et al. (2008)
shows that translation invariant kernel on Rd is characteristic if and only if the support of its
Fourier transform is the entire Rd. It follows immediately from Definition 2.5 that all universal
kernels are characteristic, e.g., Gaussian and Laplacian kernels, but not vice versa. That is, Defi-
nition 2.5 is not a sufficient condition for universal kernel. For the connection between universal
and characteristic kernels, see Sriperumbudur et al. (2011a).

The notion of characteristic kernel is crucial in certain applications such as two-sample test-
ing as it ensures that in the population limit we obtain the desired statistics. In practice, we
always incur an estimation error due to a finite sample. Moreover, there are many applica-
tion domains in which the kernel is not necessarily required to be characteristic. For example,
predictive learning on distributions (Muandet et al. 2012, Muandet and Schölkopf 2013, Oliva
et al. 2014, Szabó et al. 2015). In these applications, the notion of universal kernel is more
important (Christmann and Steinwart 2010; Example 1). It is sometimes more favourable to
interpret kernel k as a weight function which determines which frequency component occurs in
the embedding (see Example 2.3). A shape of the kernel k in the Fourier domain can be more
informative in these cases.

2.3.4 Maximum Mean Discrepancy and Its Applications

The kernel mean embedding has been used to define a metric for probability distributions which
is important for many problems in statistics and machine learning. Later, we will see that the
metric defined in terms of mean embeddings can be considered as a particular instance of an
integral probability metric (IPM) (Müller 1997). Given two probability measures P and Q on a
measurable space X , an IPM is defined as

γ[F ,P,Q] = sup
f∈F

{∫
f(x) dP(x)−

∫
f(y) dQ(y)

}
(2.53)

where F is a space of real-valued bounded measurable functions on X . The IPM are fully
characterized by the function class F . There is obviously a trade-off on the choice of F . That
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is, on one hand, the function class must be rich enough so that γ[F ,P,Q] vanishes if and only
if P = Q. On the other hand, the larger the function class F , the more difficult it is to estimate
γ[F ,P,Q]. Thus, F should be restrictive enough for the empirical estimate to converge quickly
(see, e.g., Sriperumbudur et al. (2012)).

For example, ifF is chosen to be a space of all bounded continuous functions onX , the IPM
is a metric over a space of probability distributions, as stated in the following theorem (Müller
1997).

Theorem 2.9. γ[Cb(X ),P,Q] = 0 if and only if P = Q.

Unfortunately, it is practically difficult to work with Cb(X ). A more restrictive function class
is often used. For instance, let FTV = {f | ‖f‖∞ ≤ 1} where ‖f‖∞ = supx∈X |f(x)|. Then,
γ[FTV,P,Q] = ‖P − Q‖1 is the total variation distance. If F = {1(∞,t]}, we get the Kol-

mogorov (or L∞) distance between distributions, which is the max norm of the difference be-
tween their cumulative distributions. If ‖f‖L := sup{|f(x) − f(y)|/d(x,y),x 6= y ∈ X}
is the Lipschitz semi-norm of a real-valued function f , setting F = {f | ‖f‖L ≤ 1} yields the
earthmover distance. In mathematics, this metric is known as Wasserstein (or L1) distance.

The maximum mean discrepancy (MMD) considers functions in the unit ball of RKHS,
i.e., F := {f | ‖f‖H ≤ 1}. In which case, the MMD can be expressed as the distance in H

between mean embeddings as shown in Borgwardt et al. (2006), Gretton et al. (2012a; Lemma
4). That is,

MMD[H ,P,Q] = sup
‖f‖H ≤1

{∫
f(x) dP(x)−

∫
f(y) dQ(y)

}

= sup
‖f‖H ≤1

{
〈f,
∫
k(x, ·) dP(x)〉 − 〈f,

∫
k(y, ·) dQ(y)〉

}

= sup
‖f‖H ≤1

{〈f,µP − µQ〉}

= ‖µP − µQ‖2H (2.54)

where we use the reproducing property of H and the linearity of the inner product, respectively.
Thus, we can express the MMD in terms of the associated kernel function k as

MMD[H ,P,Q] = EX,X̃ [k(X, X̃)]− 2EX,Y [k(X,Y )] + EY,Ỹ [k(Y, Ỹ )] (2.55)

where X, X̃ ∼ P and Y, Ỹ ∼ Q. It follows that MMD[H ,P,Q] = 0 if and only if H is
characteristic.

Given i.i.d. samples X = {x1, . . . ,x,} and Y = {y1, . . . ,yn} from P and Q, respectively,
a biased empirical estimate of MMD is obtained as

M̂MDb[H ,X,Y] := sup
‖f‖H ≤1


 1

m

m∑

i=1

f(xi)−
1

n

n∑

j=1

f(yj)


 . (2.56)

The empirical MMD can be expressed in terms of empirical mean embeddings as M̂MDb[F ,X, Y ] =
‖µ̂X − µ̂Y‖2H . Moreover, we can write an unbiased estimate of the MMD entirely in terms of
k as

M̂MDu[H ,X,Y] =
1

m(m− 1)

m∑

i=1

m∑

j 6=i
k(xi,xj) +

1

n(n− 1)

n∑

i=1

n∑

j 6=i
k(yi,yj)
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− 2

mn

m∑

i=1

n∑

j=1

k(xi,yj). (2.57)

Note that (2.57) is an unbiased estimate which is a sum of two U -statistics and a sample average
(Serfling 1981; Chapter 5). The biased counterpart M̂MDb[H ,X,Y] can be obtained using
V -statistics. The convergence of empirical MMD has been established in Gretton et al. (2012a;
Theorem 7).

A natural application of the MMD is two-sample testing: a statistical hypothesis test for
equality of two samples. In particular, we test the null hypothesis H0 : ‖µ(X) − µ(Y )‖H = 0
against the alternative hypothesis H1 : ‖µ(X)− µ(Y )‖H 6= 0. However, even if the two sam-
ples are drawn from the same distribution, the MMD criterion may still be non-zero due to the
finite sample. Gretton et al. (2012a) proposes two distribution-free tests based on large devia-
tion bounds (using Rademacher complexity and bound on U -statistics of Hoeffding (1948)) and
the third one based on the asymptotic distribution of the test statistics. The tests based on large
deviation bounds are generally more conservative than the latter as they does not characterize
the distribution of MMD explicitly. The MMD-based test can be viewed as a generalization of
Kolmogorov-Smirnov test to the multivariate case (Gretton et al. 2012a).

The MMD test has several advantages over existing methods proposed in the literature (An-
derson et al. 1994, Biau and Györfi 2005, Nguyen et al. 2007). First, the MMD test is distribution
free.4 The assumption on the parametric form of the underlying distribution is not needed. Fur-
thermore, like most of kernel-based tests, e.g., Harchaoui et al. (2007), the test can be applied
in structured domains like graphs and documents as soon as the positive definite kernel is well-
defined. Moreover, an availability of the asymptotic distribution of the test statistics allows for
an efficient computation without resorting to costly bootstrapping.

The MMD can be computed in quadratic timeO(n2d), which might prohibit its applications
in large-scale problems. In Gretton et al. (2012a), the authors also propose the linear time
statistics and test by using the subsampling of the term in (2.57), i.e., drawing pairs from X and
Y without replacement. This method reduces the time complexity of MMD from O(n2d) to
O(nd). However, the test has high variance due to loss of information. The B-test of Zaremba
et al. (2013) tradeoffs the computation and variance of the test by splitting two-sample sets
into corresponding subsets and then compute the exact MMD in each block while ignoring
between-block interactions withO(n3/2d) time complexity. Ji Zhao (2014) proposes an efficient
test called FastMMD which employs the random Fourier feature to transform the MMD test
with translation invariant kernel. The time complexity also reduces to O(nd). For spherically
invariant kernel, the cost reduces further to O(n log d) by using the Fastfood technique (Le et al.
2013). The disadvantage is that it is restricted to only translation invariant kernels. Another
popular approach to reducing the cost of evaluating the empirical MMD estimate is by using a
low-rank approximation of the Gram matrix.

As pointed out by some of the previous works, we may pose the problem of distribution
comparison as a binary classification (see, e.g., Gretton et al. (2012a; Remark 20) and Sripe-
rumbudur et al. (2009)). That is, any classifiers for which uniform convergence bounds can
be obtained such as neural network, support vector machine, and boosting, can be used for the
purpose of distribution comparison. The benefit of this interpretation is that there is a clear
definition of loss function which can be used for the purpose of parameter selection. A slightly
different interpretation is to look at this problem as a learning problem on probability distribu-
tions (Muandet et al. 2012, Muandet and Schölkopf 2013, Szabó et al. 2015). For example, the
goal of many hypothesis testing problems is to learn a function from an empirical distribution

4Note that even if a test is consistent, it is not possible to distinguish distributions with high probability at a given,
fixed sample size.
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P̂ to {0, 1} which, for example, indicates whether or not to reject the null hypothesis. If the
training examples (P̂1, y1), . . . , (P̂n, yn) are available, we can consider a hypothesis testing as
a machine learning problem on distributions.

Lastly, a commonly used kernel for MMD test on Rd is the Gaussian RBF kernel k(x,x′) =
exp(−‖x − x′‖2/2σ2) whose bandwidth parameter is chosen via the median heuristic: σ2 =
median{‖xi − xj‖2 : i, j = 1, . . . , n} (Schölkopf and Smola 2001). While this heuristic has
been shown to work well in many applications, it may run into trouble when the sample size
is small. In fact, it has been observed empirically that the median heuristic may not work well
when estimating the kernel mean from the small sample and there is room for improvement,
especially in the high-dimensional setting (Danafar et al. 2013, Muandet et al. 2014a;b, Reddi
et al. 2015). An alternative is to choose the kernel that maximizes the test statistic, which is
found to outperform the median heuristic empirically (Sriperumbudur et al. 2009). Gretton et al.
(2012b) proposes a criterion to choose a kernel for two-sample testing using MMD. The kernel
is chosen so as to maximize the test power, and minimize the probability of making a Type II
error. The proposed method corresponds to maximizing the Hodges and Lehmann asymptotic
relative efficiency (Hodges and Lehmann 1956). Despite these efforts, how to choose a good
kernel function on its own remains an open question.

The MMD has been applied extensively in many applications, namely, clustering (Jegelka
et al. 2009), density estimation (Song et al. 2007; 2008), (conditional) independence tests
(Fukumizu et al. 2008, Doran et al. 2014, Chwialkowski and Gretton 2014), causal discov-
ery (Sgouritsa et al. 2013, Chen et al. 2014, Schölkopf et al. 2015), covariate shift (Gretton et al.
2009a, Pan et al. 2011) and domain adaptation (Blanchard et al. 2011a, Muandet et al. 2013),
selection bias correction (Huang et al. 2007), herding (Chen et al. 2010, Huszar and Duvenaud
2012), and Markov chain Monte Carlo (Sejdinovic et al. 2014), etc.

2.3.5 Recovering Information from Mean Embeddings

In this section we discuss two closely related problems, namely, distributional pre-image prob-
lem5 (Kwok and Tsang 2004, Song et al. 2008, Kanagawa and Fukumizu 2014) and kernel
herding (Chen et al. 2010). We consider these two problems to be related because both of them
involve finding objects in the input space which correspond to specific kernel mean embedding
in the feature space.

The classical pre-image problem in kernel methods involves finding patterns in input space
that map to specific feature vectors in the feature space (Schölkopf and Smola 2001; Chap-
ter 18). Recovering a pre-image is considered necessary in some applications such as image
denoising using kernel PCA (Kwok and Tsang 2004, Kim et al. 2005) and visualizing the clus-
tering solutions of a kernel-based clustering algorithm (Dhillon et al. 2004, Jegelka et al. 2009).
Moreover, it can be used as a reduced set method to compress a kernel expansion (Schölkopf
and Smola 2001; Chapter 18). Schölkopf and Smola (2001; Proposition 18.1) shows that if the
pre-image exists and the kernel is an invertible function of 〈x,x′〉, the pre-image will be easy
to compute. Unfortunately, the exact pre-image typically does not exist, and the best one can
do is to approximate it. There is a fair amount of works on this topic and the interested readers
should consult Schölkopf and Smola (2001; Chapter 18) for further detail.

Likewise, in some applications of kernel mean embedding, it is important to recover the
meaningful information of an underlying distribution from an estimate of its embedding. In
state-space model, for example, we typically obtain a kernel mean estimate of the predictive
distribution from the algorithm (Song et al. 2009, Nishiyama et al. 2012, McCalman et al. 2013).

5I call this a distributional pre-image problem to distinguish it from the classical setting which does not involve
probability distributions.
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To obtain meaningful information, we need to extract the information of P from the estimate.
Unfortunately, in these applications we only have access to the estimate µ̂X which lives in a
high-dimensional feature space.

The idea is similar to the approximate pre-image problem. Let Pθ be an arbitrary distribution
parametrized by θ and µPθ

be its mean embedding in H . One can find Pθ by the following
minimization problem

θ∗ = argmin
θ∈Θ

‖µ̂X − µPθ
‖2

H
(2.58)

subject to appropriate constraints on the parameter vector θ. Note that if Pθ = δx for some
x ∈ X , the distributional pre-image problem (2.58) reduces to the classical pre-image problem.
The pre-image x can be viewed as a point estimate of the underlying distribution.

Another example is a mixture of Gaussians Pθ =
∑m

i=1 πiN (mi, σ
2
i I) where the parameter

θ consists of {π1, . . . , πm}, {m1, . . . ,mm}, and {σ1, . . . , σm}. It is required that
∑m

i=1 πi =
1 and σi ≥ 0. Let assume that µ̂X =

∑n
i=1 βiφ(xi) for some β ∈ Rn. In this case, the

optimization problem (2.58) reduces to

θ∗ = argmin
θ∈Θ

β⊤Kβ − 2β⊤Qπ + π⊤Rπ , (2.59)

where

Kij = k(xi,xj)

Qij =

∫
k(xi,x

′) dN (x′;mj , σ
2
j I)

Rij =

∫∫
k(x,x′) dN (x;mi, σ

2
i I) dN (x′;mj , σ

2
j I) .

Note that (2.59) is quadratic in π and is also convex in π as K, Q, and R are positive definite.
The integrals Qij and Rij can be evaluated in close-form for some kernels (see Song et al.
(2008; Table 1) and Muandet et al. (2012; Table 1)). Unfortunately, the problem is often non-
convex in both mi and σi, i = 1, . . . ,m. An derivative-free optimization is often used to find
these parameters. In practice, πi and {mi, σi} are solved alternately until convergence (see, e.g.,
Song et al. (2008), Chen et al. (2010)).

The reduced set problem is slightly more general than the pre-image problem because we
do not just look for single pre-images, but for expansions of several input vectors. Interestingly,
we may view the reduced set problem as a specific case of distributional pre-image problem.
To understand this, assume we are given a function g ∈ H as a linear combination of the
images of input points xi ∈ X , i.e., g =

∑n
i=1 αiφ(xi). The function g is exactly the kernel

mean embedding of the finite signed measure ν =
∑n

i=1 αiδxi whose supports are the points
x1, . . . ,xn. That is, g =

∫
φ(y) dν(y). Given the reduced set vector z1, . . . , zm where m≪ n,

the reduced set problem amounts to finding another finite signed measure µ =
∑m

j=1 βjφ(zj)
whose supports are z1, . . . , zm that approximates well the original measure ν. From the distri-
butional pre-image problem, the reduced set methods can be viewed as an approximation of a
finite signed measure by another signed measure whose supports are smaller.

Although it is possible to find a distributional pre-image, it is not clear what kind of infor-
mation of P this pre-image represents. Kanagawa and Fukumizu (2014) considers the recovery
of the information of a distribution from an estimate of the kernel mean when the Gaussian RBF
kernel on Euclidean space is used. Specifically, they show that under some situations we can
recover certain statistics of P, namely its moments and measures on intervals, from µ̂P, and that
the density of P can be estimated from µ̂P without any parametric assumption on P (Kanagawa
and Fukumizu 2014; Theorem 2). Moreover, they prove that the weighted average of function
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f in some Besov space converges to the expectation of f , i.e.,
∑

iwif(Xi) → EX∼P[f(X)]
(Kanagawa and Fukumizu 2014; Theorem 1). This result is a generalization of the known result
for functions in an RKHS.

Instead of finding a distributional pre-image of the mean embedding, another common ap-
plication is obtaining sample from the distribution or sampling. Chen et al. (2010) proposes a
kernel herding algorithm that extends herding algorithm (Welling 2009a;b, Welling and Chen
2010) to continuous spaces by using the kernel trick. Herding can be understood concisely as
a weakly chaotic non-linear dynamical system wt+1 = F (wt). In Chen et al. (2010), they
re-interpret herding as an infinite memory process in the state space x by marginalizing out
the parameter w, resulting in a mapping xt+1 = G(x1, . . . ,xt;w0). Under some technical
assumptions, herding can be seen to greedily minimize the squared error

E2T :=

∥∥∥∥∥µP −
1

T

T∑

t=1

φ(xt)

∥∥∥∥∥

2

H

= ‖µP − µ̂T ‖2H , (2.60)

where µ̂T denotes the empirical mean embedding obtained from herding. Following the result
of Welling (2009a), kernel herding is shown to decrease the error of expectations of functions
in the RKHS at a rate O(1/T ) as opposed to the random samples whose rate is O(1/

√
T ).

The fast rate is guaranteed even when herding is carried out with some error. This condition is
reminiscent of Boosting algorithm and perceptron cycling theorem (Chen et al. 2010; Corollary
2). The reason for fast convergence is due to negative autocorrelation, i.e., herding tends to find
samples in an unexplored high-density region. This kind of behaviour can also be observed in
Quasi Monte Carlo integration and Bayesian quadrature methods (Rasmussen and Ghahramani
2002).

Huszar and Duvenaud (2012) also investigates the kernel herding problem and suggests a
connection between herding and Bayesian quadrature. Bayesian quadrature (BQ) (Rasmussen
and Ghahramani 2002) estimates the integral Z =

∫
f(x)p(x) dx by putting a prior distribution

on f and then inferring a posterior distribution over f conditioned on the observed evaluations.
An estimate of Z can be obtained by a posterior expectation, for example. The sampling strategy
of BQ is to select the sample so as to minimize the posterior variance. Huszar and Duvenaud
(2012) shows that the posterior variance in BQ is equivalent to the criterion (2.60) minimized
when selecting samples in kernel herding. An advantage of Bayesian interpretation of herding
is that kernel parameters can be chosen by maximizing the marginal likelihood.

Herding can be problematic in high dimensional setting when optimizing over the new sam-
ple. Bach et al. (2012) also pointed out that the fast convergence rate is not guaranteed in an
infinite dimensional Hilbert space. To alleviate this issue, Bach et al. (2012) shows that the herd-
ing procedure of Welling (2009a) takes the form of a convex optimization algorithm in which
convergence results can be invoked. Lacoste-Julien et al. (2015) takes this interpretation and
proposes the Frank-Wolfe optimization algorithm for particle filtering.

2.3.6 Approximating the Kernel Mean Embedding

In many applications of kernel methods such as in genomics, astronomy, and social science,
the computational cost may be a critical issue, especially in the era of “big data”. Traditional
kernel-based algorithms become computationally prohibitive as the volume of data has exploded
because most existing algorithms scale at least quadratically with sample size. Likewise, the use
of kernel mean embedding has also suffered from this limitation due to two fundamental issues.
First, any estimators of the kernel mean involve the (weighted) sum of the feature map of the
sample. Second, for certain kernel functions such as Gaussian RBF kernel, the kernel mean
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lives in an infinite dimensional space. We can categorize previous attempts in approximating
the kernel mean into two basic approaches: 1) find a smaller subset of samples whose estimate
approximate well the original estimate of the kernel mean, 2) find a finite approximation of the
kernel mean directly.

The former has been studied extensively in the literature. For example, Cortes and Scott
(2014) considers the problem of approximating the kernel mean as a sparse linear combination
of the sample. The proposed algorithm relies on a subset selection problem using novel inco-
herence measure. The algorithm can be solved efficiently as an instance of the k-center problem

and has linear complexity in the sample size. Similarly, Grünewälder et al. (2012) proposes a
sparse approximation of the conditional mean embedding by relying on an interpretation of the
conditional mean as a regressor. Note that the same idea can be adopted to find a sparse approx-
imation of the standard kernel mean by imposing the sparsity-inducing norm on the coefficient
β, e.g., ‖β‖1 (Muandet et al. 2014a). An advantage of sparse representation is in applications
where the kernel mean is evaluated repeatedly, e.g., Kalman filter (Kanagawa et al. 2013, Mc-
Calman et al. 2013). The crucial drawback is that it requires solving an optimization to find an
optimal sub-sample, which may not be trivial optimization problems.

An alternative approach to kernel mean approximation is to find a finite representation of
the kernel mean directly. One of the most effective approaches depends on the random feature

map (Rahimi and Recht 2007). That is, instead of relying on the implicit feature map provided
by the kernel, the basic idea of random feature approximation is to explicitly map the data to a
low-dimensional Euclidean inner product space using a randomized feature map z : Rd → Rm

such that

k(x,y) = 〈φ(x), φ(y)〉H ≈ z(x)⊤z(y) (2.61)

where z(x) := W⊤x and wij ∼ p(w). If elements of W are drawn from appropriate distri-
bution p(w), the Johnson-Lindenstrauss Lemma (Dasgupta and Gupta 2003, Blum 2005) en-
sures that this transformation will preserve similarity between data points. In Rahimi and Recht
(2007), p(w) is chosen to be the Fourier transform of shift-invariant kernels k(x − y). Given a
feature map z, the finite approximation of the kernel mean can be obtained directly as

µ̃P =
1

n

n∑

i=1

z(xi) ∈ Rm. (2.62)

Since z(xi) ∈ Rm for all i, so does µ̃P. Hence, there is no need to store all the vector z(xi). In
addition to giving us a compact representation of kernel mean, these randomized feature maps
also accelerate the evaluation of the algorithms that use kernel mean embedding (see, e.g., Kar
and Karnick (2012), Le et al. (2013), Pham and Pagh (2013) and references therein for exten-
sions). Note that the approximation (2.62) is so general that it can be obtained as soon as one
know how to compute z(x). Other approaches such as low-rank approximation are also ap-
plicable. As we can see, the advantage of this approach is that given any finite approximation
of φ(x), it is easy to approximate the kernel mean. Moreover, the resulting approximation has
been shown to enjoy good empirical performance. The downside of this approach is that as
the approximation lives in the finite dimensional space, theoretical guarantee relating this ap-
proximation back to the infinite-dimensional counterpart may be difficult to obtain. Preliminary
result is given in Lopez-Paz et al. (2015b; Lemma 1). Also, the random features are limited to
only a certain class of kernel functions.
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Figure 2.4: From marginal distribution to conditional distribution: Unlike the embeddings discussed
in the previous chapter, the embedding of conditional distribution P(Y |X) is not a single element in the
RKHS. Instead, it may be viewed as a family of Hilbert space embeddings of the conditional distributions
P(Y |X = x) indexed by the conditioning variable X . In other words, the conditional mean embedding
can be viewed as an operator mapping from H to F . We will see later in §2.4.4 that there is a natural
interpretation in a vector-valued regression framework.

2.4 Kernel Mean Embedding of Conditional Distributions

In the previous chapter, I discuss the embedding of marginal distributions in RKHS and gives
comprehensive reviews on various applications. Throughout this section I will extend the lan-
guage of kernel mean embedding developed in the previous section to a conditional distribution

P(Y |X) and P(Y |X = x) for some x ∈ X (Song et al. 2009; 2013). Unlike the marginal distri-
bution P(X), the conditional distribution P(Y |X) captures the functional relationship between
X and Y . Hence, the conditional mean embedding extends the capability of kernel mean em-
bedding to model more complex dependency in various applications such as dynamical systems
(Song et al. 2009, Boots et al. 2013), Markov decision processes and reinforcement learning
(Grünewälder et al. 2012, Nishiyama et al. 2012, van Hoof et al. 2015), latent variable model
(Song et al. 2010b; 2011a;b), kernel Bayes rule (Fukumizu et al. 2011), and causal discovery
(Janzing et al. 2011, Sgouritsa et al. 2013, Chen et al. 2014). Figure 2.4 gives a schematic
illustration of conditional mean embedding.

2.4.1 From Marginal to Conditional

To better understand the distinction between the kernel mean embedding of marginal and condi-
tional distributions, and the problems that we may encounter in conditional mean embedding, I
briefly summarize the concept of marginal, joint, and conditional distributions. Detailed materi-
als should be widely available in most statistics textbooks, see, e.g., Wasserman (2010). Readers
already familiar with these concepts may wish to proceed directly to the definition of conditional
mean embedding.

Given two random variables X and Y , probabilities defined on them may be either marginal,
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joint, or conditional. Marginal probabilities P(X) and P(Y ) are the (unconditional) probabilities
of an event occurring. For example, if X denotes the level of cloudiness of the outside sky,
P(X) describes how likely it is for the outside sky to be cloudy. Joint probability P(X,Y )
is the probability of event X = x and Y = y occurring. If Y indicates whether or not it is
raining, the joint distribution P(X,Y ) explains the probability that it is both raining and cloudy
outside. As we can see, joint distributions allow us to reason about the relationship between
multiple events, which in this case are cloudiness and rain. Following the above definitions, one
may subsequently ask given that it is cloudy outside, i.e., X = cloudy, what is the probability
that it is also raining? Conditional distribution P(Y |X) governs such a question. Formally, the
conditional probability P(Y = y|X = x) is the probability of event Y = y occurring, given
that event X = x occurs. In other words, conditional probabilities allow us to reason about
causality.6

The basic relationships between marginal, joint, and conditional distributions can be illus-
trated via the following equations:

P(Y |X) =
P(X,Y )

P(X)
=

P(X|Y )P(Y )

P(X)
. (2.63)

As we can see in the first equation of (2.63), the conditional probability of Y given X is equal to
the joint probability of X and Y divided by the marginal of X. Marginal, joint, and conditional
distributions equipped with the formulation (2.63) provide the powerful language for statistical
inference in statistics and machine learning.

Conditional mean embedding. Let UY |X : H → F and UY |x ∈ F be conditional mean
embeddings of the conditional distribution P(Y |X) and P(Y |X = x), respectively, such that
they satisfy

UY |x = EY |x[ϕ(Y )|X = x] = UY |Xk(x, ·) (2.64)

EY |x[g(Y )|X = x] = 〈g,UY |x〉G , ∀g ∈HY . (2.65)

Note that UY |X is an operator from H to F , whereas UY |x is an element in F . As an inter-
pretation, condition (2.64) says that the conditional mean embedding of P(Y |X = x) should
corresponds to the conditional expectation of the feature map of Y given that X = x (as in
the marginal embedding). Moreover, the embedding operator UY |X represents the conditioning

operation that when applied to φ(x) ∈ H outputs the conditional mean embedding UY |x (see
also Figure 2.4). Condition (2.65) ensures the reproducing property of UY |x, i.e., it should be a
representer of conditional expectation in F w.r.t. P(Y |X = x) (as in the marginal embedding).

The following definition provides explicits form of UY |X and UY |x.

Definition 2.6 (Song et al. (2009; 2013)). Let CXX : H → H and CYX : H → F be

covariance operator on X and cross-covariance operator from X to Y , respective. Then, the

conditional mean embedding UY |X and UY |x are defined as

UY |X := CYXC−1
XX

(2.66)

UY |x := CYXC−1
XX

k(x, ·). (2.67)

6To be more precise, the fundamental question in causal inference/discovery from observational data is to identify
conditions under which P(Y | do(X = x)) is equal to P(Y |X = x) where do(X = x) denotes the operation of
setting the value of X to be equal to x (Pearl 2000). Under such conditions, one is allowed to make a causal claim
from the conditional distribution P(Y |X = x).
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Under the assumption that EY |X [g(Y )|X] ∈ H , Song et al. (2009) shows that the con-
ditional mean embedding given in Definition 2.6 satisfies both (2.64) and (2.65). This result
follows from Fukumizu et al. (2004; Theorem 2). One should also keep in mind that, unlike the
marginal mean embedding, the operator CYXC−1

XX
only acts as an approximation of the con-

ditional mean embedding UY |X in the continuous domain because the assumption that for all
g ∈ F , the conditional expectation EY |X [g(Y )|X] is an element of H may not hold in general
(Fukumizu et al. 2004, Song et al. 2009).7

Since the joint distribution P(X,Y ) is unknown in practice, we cannot compute CXX and
CYX directly. Instead, we must rely on the i.i.d. sample (x1,y1), . . . , (xn,yn) from P(X,Y ).
With an abuse of notation, let Φ := [ϕ(y1), . . . , ϕ(yn)]

⊤ and Υ := [φ(x1), . . . , φ(xn)]
⊤. We

define K = Υ⊤Υ and L = Φ⊤Φ as the corresponding Gram matrices. Then, the empirical
estimator of the conditional mean embedding is given by

ĈYX Ĉ−1
XX

k(x, ·) =
1

n
ΦΥ⊤

(
1

n
ΥΥ⊤ + λI

)−1

k(x, ·)

= ΦΥ⊤
(
ΥΥ⊤ + nλI

)−1
k(x, ·)

= Φ
(
Υ⊤Υ+ nλIn

)−1
Υ⊤k(x, ·)

= Φ (K+ nλIn)
−1

kx,

where I denotes the identity operator in H and kx := Υ⊤k(x, ·). The most important step of
the derivation uses the identity Υ⊤(ΥΥ⊤ + nλI)−1 = (Υ⊤Υ + nλIn)

−1Υ⊤. Since ĈXX is a
compact operator, we need a regularizer λI for the inverse of ĈXX to be well-posed. Another
possibility is to employ the spectral filtering algorithms, i.e., µ̂ = Φgλ(K)kx where gλ is a filter
function, as also suggested by Muandet et al. (2014b). That is, we can construct a wide class of
conditional mean estimators via different regularization strategies.

Theorem 2.10 gives a formal characterization on the empirical estimator of conditional mean
embedding.

Theorem 2.10 (Song et al. (2009)). The conditional mean embedding µ̂Y |x can be estimated as

µ̂Y |x = Φ(K+ nλIn)
−1kx. (2.68)

Interestingly, we may write (2.68) as µ̂Y |x = Φβ =
∑m

i=1 βiϕ(yi) where β := (K +
nλIn)

−1kx ∈ Rn. That is, it can be written in the same form as the embedding of marginal
distribution discussed previously, except that the values of coefficients β now depends on the
value of the conditioning variable X instead of being uniform (Song et al. 2009). It is important
to note that in this case the coefficient β need not be positive nor does it has to sum to one. In
some applications of conditional mean embedding such as state-space model and reinforcement
learning, however, one need to interpret β as probabilities, which is almost always not the
case for conditional embedding. In Song et al. (2009; Theorem 6), the rate of convergence is
Op((nλ)

−1/2 + λ1/2), suggesting that the conditional mean embeddings are harder to estimate
than the marginal embeddings, which converge at a rate Op(n−1/2).

2.4.2 Basic Operations on Kernel Mean Embedding

In this section I review basic operations in probabilistic inference and show how they can be
carried out in terms of kernel mean embeddings. Sum and product rules are elementary rules

7If X and Y are discrete random variables and the kernels are characteristic, EY |X [g(Y )|X] ∈ H .
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of probability. Unlike traditional recipe, the idea is to perform these operations directly on the
marginal and conditional embeddings to obtain a new element in the RKHS which corresponds
to the embedding of the resulting distribution. One of the advantages of this idea is that the
product and sum rules can be performed without making any parametric assumptions on the
distribution.

Formally, sum and product rules describing the relations between P(X), P(Y |X), and
P(X,Y ) are given as follow:

Sum rule: P(X) =
∑

Y

P(X,Y ) (2.69)

Product rule: P(X,Y ) = P(Y |X)P(X) (2.70)

Combining (2.69) and (2.70) yields a renowned Bayes’ rule: P(Y |X) = P(X|Y )P(Y )/P(X).
In the continuous case, the sum in (2.69) turns into an integral. Sum and product rules are very
fundamental in machine learning and statistics, so much so that nearly all of the probabilistic
inference and learning, no matter how complicate they are, amount to repeated application of
these two equations. Next, I will show how these two operations can be achieved as an algebraic
manipulation of the (conditional) mean embedding in the RKHS. These results are due to Song
et al. (2009).

Sum rule. Using the law of total expectation, we have µX = EXY [φ(X)] = EY [EX|Y [φ(X)|Y ]].
Plugging in the conditional mean embedding yields

µX = EY [UX|Y ϕ(Y )] = UX|Y EY [ϕ(Y )] = UX|Y µY . (2.71)

Product rule. Consider a tensor product of the joint feature map φ(X)⊗ ϕ(Y ). We can then
factor µXY = EXY [φ(X) ⊗ ϕ(Y )] according to the law of total expectation as

EY [EX|Y [φ(X)|Y ]⊗ ϕ(Y )] = UX|Y EY [ϕ(Y )⊗ ϕ(Y )]

EX [EY |X [ϕ(Y )|X] ⊗ φ(X)] = UY |XEX [φ(X) ⊗ φ(X)].

Let µ⊗
X := EX [φ(X) ⊗ φ(X)] and µ⊗

Y := EY [ϕ(Y )⊗ ϕ(Y )]. Then, we can write the product
rule in terms of kernel mean embeddings as

µXY = UX|Yµ
⊗
Y = UY |Xµ

⊗
X . (2.72)

On the one hand, both (2.71) and (2.72) do not require any parametric assumption on the
underlying distributions. On the other hand, these operations can practically be both statistically
difficult and computationally costly in some applications (more below).

Bayes’ rule. An extension of Bayes’ rule called kernel Bayes’ rule has been proposed in
Fukumizu et al. (2013) which provides a mathematical tool to obtain an embedding µP(θ|X) of
posterior P(θ|X) from the embeddings of prior Π(θ) and the likelihood P(X|θ). See Fukumizu
et al. (2013) for technical details.

Below I review some applications that employ the above operations on kernel mean embed-
ding.
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2.4.3 Graphical Models and Probabilistic Inference

Conditional mean embedding has enjoyed successful applications in graphical models and prob-
abilistic inference (Song et al. 2009; 2010a; 2011a;b; 2010b). Probabilistic graphical models are
ubiquitous in many fields including natural language processing, computational biology, com-
puter vision, and social science. Most of the traditional algorithms for inference often spec-
ifies explicitly the parametric distributions underlying the observations and then applies basic
operations such as sum, product, and Bayes rules on these distribution to obtain the posterior
distribution over desired quantities, e.g., parameters of the model. On the other hand, the philos-
ophy behind embedding-based algorithms is to represent distributions by their mean embedding
counterparts, and then to apply the operations given in Section 2.4.2 on these embeddings in-
stead. This method leads to several advantages over the classical approach. First, an inference
can be performed in a non-parametric fashion; one do not need a parametric assumption about
the underlying distribution as well as prior-posterior conjugacy. Second, most algorithms do
not require density estimation which is difficult in high-dimensional space (Wasserman 2006;
Section 6.5). Lastly, many models are only restricted to deal with discrete latent variables, e.g.,
a hidden Markov model (HMM) (Baum and Petrie 1966). The embedding approach allows for
(possibly structured) non-Gaussian continuous variables, which makes these models applicable
for a wider class of applications. Nevertheless, there are some disadvantages as well. First,
relying on the kernel function, the resulting algorithms are usually sensitive to the choice of
kernel and its parameters which needs to be chosen carefully. Second, the algorithms only have
access to the embedding of posterior distribution rather than the distribution itself. Hence, to
recover certain information such as the shape of the distribution, one need to resort to a pre-
image problem to obtain an estimate of the full posterior distribution (cf. Section 2.3.5 and
Song et al. (2008), Kanagawa and Fukumizu (2014), McCalman et al. (2013)) Lastly, the algo-
rithms can become computationally costly. Many approximation techniques such as low-rank
approximation is often used to speed up the computation time and to reduce memory storage.
See also Song et al. (2013) for a unified view of nonparametric inference in graphical models
with conditional mean embedding.

The conditional mean embedding was first introduced in Song et al. (2009) with appli-
cation in dynamical systems. In dynamical systems, one is interested in a joint distribution
P(s1, . . . , sT , o1, . . . , oT ) where st is the hidden state at timestep t and ot is the corresponding
observation. A common assumption is that a dynamical system follows a partially observable
Markov model under which the joint distribution factorizes as P(o1, s1)

∏
t P(ot|st)P(st|st−1).

Thus, the system is characterized by two important models, namely, a transition model P(st|st−1)
which describes the evolution of the system and the observation model P(ot|st) which cap-
tures the uncertainty of a noisy measurement process. Song et al. (2009) focuses on filter-

ing which aims to query the posterior distribution of state conditioned on all past observa-
tions, i.e., P(st+1|ht+1) where ht = (o1, . . . , ot). The distribution P(st+1|ht+1) can be ob-
tained in two steps. First, we update the distribution by P(st+1|ht) = Est|ht[P(st+1|st)|ht].
Then, we condition the distribution on a new observation ot+1 using Bayes rule to obtain
P(st+1|htot+1) ∝ P(ot+1|st+1)P(st+1|ht). Song et al. (2009) propose the exact updates for
prediction (Song et al. 2009; Theorem 7) and conditioning (Song et al. 2009; Theorem 8) which
can be formulated entirely in terms of kernel mean embeddings. Despite the exact updates, one
still need to estimate the conditional cross-covariance operator in each conditioning step, which
is both statistically difficult and computationally costly. This problem is alleviated by using
approximate inference under some simplifying assumptions (see Song et al. (2009; Theorem
9)). Empirically, although requiring labeled sequence of observations to perform filtering, it has
been shown to outperform standard Kalman filter which requires the exact knowledge of the
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dynamics. McCalman et al. (2013) also considers the filtering algorithm based on kernel mean
embedding, i.e., kernel Bayes rule (Fukumizu et al. 2011), to address the multi-modal nature of
posterior distribution in robotics.

As mentioned earlier, one of the advantages of mean embedding approach in graphical mod-
els is that it allows us to deal with (possibly structured) non-Gaussian continuous variables. For
example, Song et al. (2010a) extends spectral algorithm of Hsu et al. (2009) for learning tradi-
tional hidden Markov models (HMMs), which are restricted to discrete latent state and discrete
observations, to structured and non-Gaussian continuous distributions (see also Jaeger (2000)
for a formulation of discrete HMMs in terms of observation operator Oij = P(ht+1 = i|ht =
j)P(Xt = xt|ht = j)). In Hsu et al. (2009), HMM is learned by performing a singular value
decomposition (SVD) on a matrix of joint probabilities of past and future observations. Song
et al. (2010a) relies on the embeddings of the distributions over observations and latent states,
and then construct an operator that represents the joint probabilities in the feature space. The
advantage of spectral algorithm for learning HMMs is that there is no need to perform a lo-
cal search when finding the distribution of observation sequences, which usually leads to more
computationally efficient algorithms. Unlike in Song et al. (2009), the algorithm only requires
access to unlabeled sequence of observations.

A nonparametric representation of tree-structured graphical models was introduced in Song
et al. (2010b). Inference in this kind of graphical models relies mostly on message passing
algorithms. In case of discrete variable, or Gaussian distribution, the message passing can be
carried out efficiently using the sum-product algorithm. Minka (2001) proposes the expectation-
propagation (EP) algorithm which requires an estimation of only certain moments of the mes-
sages. Sudderth et al. (2010) considers messages as mixture of Gaussians. The drawback of
this method is that the number of mixture components grows exponentially as the message is
propagated. Ihler and McAllester (2009) considers a particle belief propagation (BP) where
the messages are expressed as a function of a distribution of particles at each node. Unlike
these algorithms, the embedding-based algorithm proposed in Song et al. (2010b) expresses the
message mts(s) between pairs of nodes as RKHS functions on which sum and product steps
can be performed using linear operation in RKHS to obtain a new message. In addition, Song
et al. (2010b) also proves the consistency of the conditional mean embedding estimator, i.e.,
‖ÛY |X − UY |X‖HS converges in probability under some reasonable assumptions (Song et al.
2010b; Theorem 1). The algorithm was applied in cross-lingual document retrieval and camera
orientation recovery from images. The idea has been used later for latent tree graphical mod-
els (Song et al. 2011b), which are often used for expressing hierarchical dependencies among
many variables in computer vision and natural language processing; and for belief propagation
algorithm (Pearl 1988, Song et al. 2011a) for pairwise Markov random fields.

Lastly, it is instructive to note that by assuming that the latent structure underlying the data-
generating process has a low-rank structure, e.g., latent tree, Song and Dai (2013) constructs
an improved estimator of kernel mean embedding for multivariate distribution using truncated
SVD (TSVD) algorithm.

2.4.4 Regression Perspectives

As illustrated in Figure 2.4, the conditional mean embedding has a natural interpretation as a
solution to vector-valued regression problem. This observation has been made in Zhang et al.
(2011) and later thoroughly in Grünewälder et al. (2012), which I review below.

Recall that the conditional mean embedding is defined via E[g(Y )|X = x] = 〈g, µ̂Y |x〉F .
That is, for every x ∈ X , µ̂Y |x is a function on Y and thereby defines a mapping from X
to F . Furthermore, the empirical estimator in (2.68) can be expressed as µ̂Y |x = Φ(K +
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nλIn)
−1kx, which already suggests that the conditional mean embedding is the solution to an

underlying regression problem. Given a sample (x1,y1), . . . , (xn,yn) ∈ X × F , a vector-
valued regression problem can be formulated as

Êλ(f) =
n∑

i=1

‖yi − f(xi)‖2F + λ‖f‖2HΓ
(2.73)

where F is a Hilbert space and HΓ denotes a RKHS of vector-valued functions from X to F

(see Micchelli and Pontil (2005) for more detail). Grünewälder et al. (2012) shows that µ̂Y |X
can be obtained as a minimizer of the optimization of the form (2.73).8

Following the analysis of Grünewälder et al. (2012), a natural optimization problem for the
conditional mean embedding is to find a function µ : X → F that minimizes the following
objective:

E [µ] = sup
‖g‖F≤1

EX
[
(EY [g(Y )|X]− 〈g,µ(X)〉F )2

]
(2.74)

Unfortunately, we cannot estimate E [µ] because we do not observe EY [g(Y )|X]. Grünewälder
et al. (2012) shows that E [µ] can be upper bounded by a surrogate loss function given by

Es[µ] = E(X,Y )

[
‖l(Y, ·) − µ(X)‖2F

]
, (2.75)

which can then be replaced by its empirical counterpart

Ês[µ] =
n∑

i=1

‖l(yi, ·)− µ(xi)‖2F + λ‖µ‖2HΓ
. (2.76)

The regularization term is added to provide a well-posed problem and prevent overfitting.
It follows from Micchelli and Pontil (2005; Theorem 4) that the solution to the above op-

timization problem can be written as µ̂ =
∑n

i=1 Γxici for some coefficients {ci}i≤n, ci ∈ F .
Note that the kernel Γ associated with HΓ is an operator-valued kernel (Álvarez et al. 2012).
Grünewälder et al. (2012) considers Γ(x,x′) = k(x,x′)Id where Id : F → F is the
identity map on F . Under this particular choice of kernel, ci =

∑
j≤nWij l(yi, ·) where

W = (K + λI)−1 and µ̂ =
∑n

i=1 Γxi(K + λI)−1l(yj , ·) which is exactly the embedding
in (2.68). It remains an interesting question whether one can also employ a more general kernel
Γ(x,x′) that is useful in practice.

The advantages of vector-valued regression interpretation of conditional mean embedding
are two-fold. First, since we have a well-defined loss function, we can use cross-validation pro-
cedure for parameter or model selection, e.g., λ. Second, it improves the performance analysis of
conditional mean embedding as one has access a rich theory of vector-valued regression (Mic-
chelli and Pontil 2005, Carmeli et al. 2006, Caponnetto and De Vito 2007, Caponnetto et al.
2008). In particular, by applying the convergence results of Caponnetto and De Vito (2007),
Grünewälder et al. (2012) derive minimax convergence rate which are O(log(n)/n) compared
to the state-of-the-art rates of O(n−1/4) of Song et al. (2009). However, it is important to note
that the analysis is done under the assumption that the RKHS F is finite dimensional.

Based on the new interpretation, Grünewälder et al. (2012) also derives a sparse formula-
tion of the conditional mean embedding. Moreover, one can construct different estimators of
conditional mean embedding by introducing new regularizer in (2.76) (see, e.g., Muandet et al.

8In fact, a regression view of conditional mean embedding has already been noted very briefly in Song et al.
(2009; Section 6) with connections to the solutions of Gaussian process regression (Rasmussen and Williams 2005)
and kernel dependency estimation (Cortes et al. 2005). Nevertheless, Grünewälder et al. (2012) gives a more rigorous
account of this perspective.
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(2014b; Table 1)) It may be of interest to investigate theoretical properties of these new esti-
mators. Lastly, it is instructive to point out that the regression interpretation of the conditional
mean embedding can be considered as an instance of a smooth operator framework proposed
later in Grünewälder et al. (2013).

2.5 Relationships between Mean Embedding and Other Methods

I conclude this chapter by discussing the relationships between kernel mean embedding and
other methods across different disciplines.

Kernel mean has played a fundamental role in most kernel algorithms since the beginning
of the field itself. Classical algorithms for classification and anomaly detection employed a
mean function in the RKHS as their building block. Shawe-Taylor and Cristianini (2004;
Chapter 4), for example, considers a simple classifier that classifies a data point x∗ by mea-
suring the RKHS distance between the class-conditional means µ̂{y=+1} := 1

n

∑
y=+1 φ(xi)

and µ̂{y=−1} := 1
m

∑
y=−1 φ(xi). This algorithm is commonly known as a Parzen window

classifier (Duda and Hart 1973). Likewise, anomaly detection algorithm can be obtained by
constructing a high-confident region around the kernel mean µ̂ := 1

n

∑n
i=1 φ(xi) and consider

points outside of this region as outliers. Although original works did not provide a link to the
embedding of distributions, one can naturally interpret µ̂{y=+1} and µ̂{y=−1} as kernel mean
embeddings of conditional distributions P(X|Y = +1) and P(X|Y = −1), respectively. Fur-
thermore, Sriperumbudur et al. (2009) links the distance between kernel means (its MMD) to
empirical risk minimization and large-margin principle in classification. Lastly, centering oper-
ation commonly used in many kernel algorithms involves an estimation of the mean function in
RKHS (Schölkopf and Smola 2001).

The energy distance and distance covariance are among important classes of statistics used
in two-sample and independence testing that have had a major impact in the statistics commu-
nity. Sejdinovic et al. (2012; 2013) shows that these statistics are in fact equivalent to distance
between embedding of distributions with specific choice of kernels. The energy distance be-
tween probability distributions P and Q as proposed in Székely and Rizzo (2004; 2005) is given
by

DE(P,Q) = 2EXY ‖X − Y ‖ − EXX′‖X −X ′‖ − EY Y ′‖Y − Y ′‖, (2.77)

where X,X ′ ∼ P and Y, Y ′ ∼ Q. The distance covariance was later introduced in Székely et al.
(2007), Székely and Rizzo (2009) for independence test as a weighted L2-distance between
characteristic functions of the joint and product distributions. The distance kernel is the kernel
obtained as k(z, z′) = ρ(z, z0) + ρ(z′, z0) − ρ(z, z′) where ρ is a semi-metric of negative
type.9 For the energy distance, the equivalence holds if the energy distances are computed with
semi-metric of negative type (Sejdinovic et al. 2012; Theorem 11). Fundamentally, the finding
is that the kernel-based and distance-based methods are equivalent if we allow “distance” ρ
that may not satisfy the triangle inequality. However, since distance kernels are continuous but
unbounded functions, one need to restrict the class of distributions for which kernel embeddings
are well-defined, i.e., to ensure that EXk(X,X) <∞.

Harmeling et al. (2013) establishes a link between Fourier optics and kernel mean embed-
ding from computer vision viewpoint. A simple imaging system can be described by the so-
called incoherent imaging equation

q(u) =

∫
f(u− ξ)p(ξ) dξ (2.78)

9A function ρ is said to be semi-metric if the “distance” function need not satisfy the triangle inequality. It is of
negative type if it is also negative definite (see Definition 2 and 3 in Sejdinovic et al. (2012)).
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where both q(u) and p(ξ) describe image intensities. The function f represents the impulse
response function, i.e., the point spread function (PSF), of the imaging system. In this case, the
image p(ξ) induces, up to normalization, a probability measure which represents the light distri-
bution of the object being imaged. The kernel f(u−ξ) in (2.78), which is shift-invariant, can be
interpreted physically as the point response of an optical system. Based on this interpretation,
Harmeling et al. (2013) asserts that the Fraunhofer diffraction is in fact a special case of ker-
nel mean embedding and that in theory an object p(ξ) with bounded support can be recovered
completely from its diffraction-limited image, using an argument from the injectivity of mean
embedding (Fukumizu et al. 2004, Sriperumbudur et al. 2008). In other words, the Fraunhofer
diffraction does not destroy any information. A simple approach to compute the inversion in
practice is also given in Harmeling et al. (2013).

The kernel mean embedding can also be understood probabilistically. Let consider the fol-
lowing example.10 Assume the data generating process x ∼ P and the GP model f ∼ GP(0,K)
where Kij = k(xi,xj). It follows that E[f(xi)] = 0 and E[f(xi)f(xj)] = k(xi,xj). Conse-
quently, we have

EP(x)GP(f)[f(x)f(·)] =
∫∫

f(x)f(·)GP(f)p(x) dxdf =

∫
k(x, ·)p(x) dx = µP.

In other words, the kernel mean can be viewed as an expected covariance of the functions
induced by the GP prior whose covariance function is k. Note that unlike what we have seen so
far the function f is drawn from a GP prior which is almost surely outside of Hk. It turns out that
this interpretation coincides with the one given in Shawe-Taylor and Dolia (2007). Specifically,
let H be a set of functions and Π be a probability distribution over H . Shawe-Taylor and Dolia
(2007) defines the distance between two distributions P and Q as

D(P,Q) := Ef∼Π(f) |EX [f(X)]− EY [f(Y )]| ,

where X ∼ P, Y ∼ Q. That is, we compute the average distance between P and Q w.r.t. the
distribution over test function f (see also Gretton et al. (2012a; Lemma 27, Section 7.5) for the
connection to MMD). Nevertheless, a fully Bayesian interpretation of kernel mean embedding
remains an open question.

2.6 Discussions

To conclude, the extensive literature review clearly indicates that kernel mean embedding of
distributions has made a tremendous impact in a wide range of disciplines including statistics,
control, causality, and computer vision. Moreover, it also demonstrates the potential of kernel
methods in giving rise to modern applications in machine learning community. Despite these
successes, there remain several open questions, some of which will be addressed in the following
chapters. Along the way, I will also provide suggestions for future research.

Z END OF CHAPTER 2 Y

10This example was obtained independently via personal communication with Zoubin Gharamani.

39



Chapter 3
Kernel Mean Shrinkage Estimators

It is apparent that most practical applications of kernel mean embedding must rely on its em-
pirical estimate µ̂P instead of µP. This chapter provides a thorough analysis of kernel mean
estimation problem, and proposes a novel class of estimators called kernel mean shrinkage esti-

mator (KMSE) which improve upon the standard empirical average.

3.1 Introduction

Recall that a kernel mean is defined w.r.t. a probability distribution P over a measurable space
X by

µP :=

∫

X
k(x, ·) dP(x) ∈H , (3.1)

where µP is a Bochner integral and H is a reproducing kernel Hilbert space (RKHS) endowed
with a reproducing kernel k : X × X → R that is measurable. Relying on an i.i.d sample
x1,x2, . . . ,xn from P, an estimate of the true kernel mean is the empirical average

µ̂P :=
1

n

n∑

i=1

k(xi, ·) . (3.2)

We refer to this estimator as a kernel mean estimator (KME). The contribution of this chapter is
to show that there exist estimators that can improve upon this standard estimator.

I will show that the empirical estimator in (3.2) is, in a certain sense, not optimal, i.e., there
exist “better" estimators (more below), and then propose simple estimators that outperform the
empirical estimator. While it is reasonable to argue that µ̂P is the “best” possible estimator of
µP if nothing is known about P (in fact µ̂P is minimax in the sense of van der Vaart (1998;
Theorem 25.21, Example 25.24)), we show that “better” estimators of µP can be constructed
if mild assumptions are made on P. This work is to some extent inspired by Stein’s seminal
work in 1955, which showed that the maximum likelihood estimator (MLE) of the mean, θ of a
multivariate Gaussian distribution N (θ, σ2I) is “inadmissible” (Stein 1955)—i.e., there exists a
better estimator—though it is minimax optimal. In particular, Stein showed that there exists an
estimator that always achieves smaller total mean squared error regardless of the true θ ∈ Rd,
when d ≥ 3. Perhaps the best known estimator of such kind is James-Stein estimator (James
and Stein 1961).

3.2 Estimation of the Mean of Multivariate Normal Distribution

I will first discuss the basic problem of estimating the mean vector of a multivariate normal
distribution (Stein 1955). I will also give an explicit form of James-Stein estimator (James and
Stein 1961), which serves as a motivation for our kernel mean estimators.
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3.2.1 Basic Setup

Our goal is to estimate from an observation x = (x1, . . . , xd)
⊤ ∈ Rd the mean vector µ =

(µ1, . . . , µd)
⊤ ∈ Rd of a d-dimensional normal distribution N (µ,C) with known covariance

matrix C = σ2I, under the loss function

L(µ, µ̂) = (µ̂− µ)⊤A(µ̂− µ) , (3.3)

where A is a positive definite matrix and µ̂ denotes an estimate of µ obtained from the observa-
tion x. Throughout I will focus only on the case of A = I such that the loss function becomes
a square loss L(µ, µ̂) = ‖µ̂−µ‖2. We measure the goodness of an estimator by the associated
risk function

R(µ, µ̂) := E[L(µ, µ̂)] = E‖µ̂− µ‖2, (3.4)

which in this case is a mean square error (MSE). An estimator µ̂ is said to be inadmissible if
there exists an estimator µ̃ such that E‖µ̃−µ‖2 ≤ E‖µ̂−µ‖2 for all µ and there exists at least
one µ for which the strict inequality holds. In which case, µ̃ is said to be better than µ̂. The
estimator µ̂ is admissible if there exists no better estimator.

Without any prior knowledge about µ, the most natural estimator of µ is the observation
itself, i.e.,

µ̂ML(x) = x. (3.5)

It is known that µ̂ML is a maximum likelihood, minimum variance unbiased, invariant, and min-
imax estimator for µ (Lehmann and Casella 1998). Nevertheless, as will be shown below, this
estimator is inadmissible in the sense that there exist other estimators whose risk is everywhere
smaller than the risk of µ̂ML. It is not difficult to show that the risk of µ̂ML is constant, i.e.,
R(µ, µ̂ML) = dσ2, regardless of µ.

3.2.2 James-Stein Estimator

James and Stein (1961) proposed an estimator of the mean of a multivariate normal distribution
that is better in mean squared error than the sample mean. The estimator is given by

µ̂JS(x) =

(
1− (d− 2)σ2

‖x‖2
)
x. (3.6)

To show that James-Stein estimator is uniformly better than the standard maximum likelihood
estimator, I first provide a renowned Stein’s lemma (see Appendix C.1 for the proof).

Lemma 3.1 (Stein’s lemma). Let X be a standard normally distributed random variable and

g : R→ R be an absolutely continuous function such that E|g′(X)| <∞. Then,

E[g′(X)] = E[Xg(X)]. (3.7)

By virtue of Lemma 3.1, we are now in a position to show that µ̂JS(x) is better than µ̂ML(x).

Theorem 3.2. The James-Stein estimator µ̂JS dominates the ML estimator µ̂ML everywhere in

terms of MSE. i.e., for all µ ∈ Rd, d > 2,

E‖µ̂JS − µ‖2 ≤ E‖µ̂ML − µ‖2, (3.8)

where the strict inequality holds for at least one µ.
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Proof of Theorem 3.2. Let µ̂g := µ̂+ g(µ̂) for some smooth function g. Then, we have

E[‖µ̂g − µ‖2] = E[‖µ̂+ g(µ̂)− µ‖2]
= E[‖µ̂− µ‖2] + 2E[(µ̂− µ)⊤g(µ̂)] + E[‖g(µ̂)‖2]
(∗)
= E[‖µ̂− µ‖2] + 2σ2E[divg(µ̂)] + E[‖g(µ̂)‖2]
= E[‖µ̂− µ‖2] + E

[
‖g(µ̂)‖2 + 2σ2divg(µ̂)

]
(3.9)

where we use Lemma 3.1 to obtain (∗). This is known as Stein’s identity. The second term of
the rhs of (3.9) no longer depends on µ.

Recall that for James-Stein estimator, we have

µ̂JS =

(
1− cσ2

‖µ̂‖2
)
µ̂ = µ̂− cσ2

‖µ̂‖2 µ̂, and g(µ̂) = − cσ2

‖µ̂‖2 µ̂ .

This gives

‖g(µ̂)‖2 =
c2σ4

‖µ̂‖2 , and divg(µ̂) = −cdσ
2 + 2cσ2

‖µ̂‖2 .

Putting everything together gives

E[‖µ̂JS − µ‖2] = E[‖µ̂− µ‖2] + E
[
‖g(µ̂)‖2 + 2σ2divg(µ̂)

]

= dσ2 + E

[
cσ4(c− 2(d− 2))

‖µ̂‖2
]

Consequently, for any c ∈ (0, 2(d − 2)), it follows that

E[‖µ̂JS − µ‖2] ≤ E[‖µ̂− µ‖2] .

This concludes the proof. �

Interestingly, the James-Stein estimator is itself inadmissible, and there exists a wide class of
estimators that outperform the MLE, see, e.g., Berger (1976). Ultimately, Stein’s result suggests
that one can construct estimators better than the usual empirical estimator if the relevant param-
eters are estimated jointly and if the definition of risk ultimately looks at all of these parameters
(or coordinates) together. This finding is quite remarkable as it is counter-intuitive as to why
joint estimation should yield better estimators when all parameters are mutually independent
(Efron and Morris 1977). Although the Stein phenomenon has been extensively studied in the
statistics community, it has not received much attention in the machine learning community.

The James-Stein estimator is a special case of a larger class of estimators known as shrinkage

estimators (Gruber 1998). In its most general form, the shrinkage estimator is a combination
of a model with low bias and high variance, and a model with high bias but low variance. For
example, one might consider the following estimator:

µ̂shrink , λµ̃+ (1− λ)µ̂ML,

where λ ∈ [0, 1], µ̂ML denotes the usual maximum likelihood estimate of µ, and µ̃ is an arbi-
trary point in the input space. In the case of James-Stein estimator, we have µ̃ = 0. Our proposal
of shrinkage estimator to estimate µP will rely on the same principle. However, our work differs
fundamentally from the Stein’s seminal works and those along this line in two aspects. First,
our setting is “non-parametric” in the sense that we do not assume any parametric form for the
distribution, whereas most of traditional works focus on some specific distributions, e.g., the
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Gaussian distribution. The non-parametric setting is very important in most applications of ker-
nel means because it allows us to perform statistical inference without making any assumption
on the parametric form of the true distribution P. Second, our setting involves a “non-linear
feature map” into a high-dimensional space. For example, if we use the Gaussian RBF kernel,
the mean function µP lives in an infinite-dimensional space. As a result, higher moments of the
distribution come into play and therefore one cannot adopt Stein’s setting straightforwardly as
it involves only the first moment. A direct generalization of James-Stein estimator to infinite-
dimensional Hilbert space has been considered, for example, in Berger and Wolpert (1983),
Mandelbaum and Shepp (1987), Privault and Réveillac (2008). In those works, the parameter to
be estimated is assumed to be the mean of a Gaussian measure on the Hilbert space from which
samples are drawn. In contrast, our setting involves samples that are drawn from P defined on
an arbitrary measurable space, and not from a Gaussian measure defined on a Hilbert space.

3.3 Improving Kernel Mean Estimation via Shrinkage

3.3.1 Our Setup

We assume throughout the paper that we observe a sample x1,x2, . . . ,xn ∈ X of size n drawn
independently and identically (i.i.d.) from some unknown distribution P over a measurable
space X . Denote by µ and µ̂ the true kernel mean (3.1) and its empirical estimate (3.2) respec-
tively. We remove the subscript for ease of notation, but we will use µP (resp. µ̂P) and µ (resp.
µ̂) interchangeably. We measure the quality of an estimator µ̃ ∈ H of µ by the risk function,
R : H ×H → R, R(µ, µ̃) = E‖µ− µ̃‖2

H
, where E denotes the expectation over the choice

of random sample of size n drawn i.i.d. from the distribution P. When µ̃ = µ̂, for the ease of
notation, we will use ∆ to denote R(µ, µ̂), which can be rewritten as

∆ = E‖µ̂− µ‖2H =
1

n
(Exk(x,x) − Ex,x̃k(x, x̃)) , (3.10)

where Ex,x̃[k(x, x̃)] , Ex∼P[Ex̃∼P[k(x, x̃)]] with x and x̃ being independent copies.
Instead of µ̂, in this chapter we propose and investigate the following kernel mean estimator

µ̂α , αf∗ + (1− α)µ̂ (3.11)

where α ≥ 0 and f∗ is a fixed, but arbitrary function in H . Basically, it is a shrinkage estimator
that shrinks the empirical estimator toward a function f∗ by an amount specified by α. The
choice of f∗ can be arbitrary, but we will assume that f∗ is chosen independent of the sample.
If α = 0, the estimator µ̂α reduces to the empirical estimator µ̂. We denote by ∆α the risk of
the shrinkage estimator in (3.11), i.e., ∆α , R(µ, µ̂α).

The following theorem asserts that the shrinkage estimator µ̂α achieves smaller risk than
that of the empirical estimator µ̂ given an appropriate choice of α, regardless of the function f∗.

Theorem 3.3. For all distributions P and kernel k satisfying
∫
k(x,x) dP(x) < ∞, ∆α < ∆

if and only if

α ∈
(
0,

2∆

∆+ ‖f∗ − µ‖2
H

)
. (3.12)

In particular, argminα∈R(∆α −∆) is unique and is given by α∗ ,
∆

∆+‖f∗−µ‖2
H

.

Proof of Theorem 3.3. Note that

∆α = E‖µ̂α − µ‖2H = ‖E[µ̂α]− µ‖2
H

+ E ‖µ̂α − Eµ̂α‖2H = ‖Bias(µ̂α)‖2H +Var(µ̂α),
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where
Bias(µ̂α) = E[µ̂α]− µ = E[αf∗ + (1− α)µ̂]− µ = α(f∗ − µ)

and
Var(µ̂α) = (1− α)2E ‖µ̂− µ‖2

H
= (1− α)2∆.

Therefore,
∆α = α2 ‖f∗ − µ‖2

H
+ (1− α)2∆, (3.13)

i.e., ∆α − ∆ = α2
[
∆+ ‖f∗ − µ‖2

H

]
− 2α∆. This is clearly negative if and only if (3.12)

holds and is uniquely minimized at α∗ ,
∆

∆+‖f∗−µ‖2
H

. �

Remark 3.1. The following observations follow immediately from Theorem 3.3:

(i) The shrinkage estimator always improves upon the standard one regardless of the direc-

tion of shrinkage, as specified by the choice of f∗. In other words, there exists a wide

class of kernel mean estimators that achieve smaller risk than the standard one.

(ii) The range of α depends on the choice of f∗. The further f∗ is from µ, the smaller the

range of α becomes. Thus, the shrinkage gets smaller if f∗ is chosen such that it is far

from the true kernel mean. This effect is akin to James-Stein estimator.

(iii) From (3.12), since 0 < α < 2, i.e., 0 < (1 − α)2 < 1, it follows that Var(µ̂α) <
Var(µ̂) = ∆, i.e., the shrinkage estimator always improves upon the empirical estimator

in terms of the variance. Further improvement can be gained by reducing the bias by

incorporating the prior knowledge about the location of µ via f∗. This implies that we

can potentially gain “twice” by adopting the shrinkage estimator: by reducing variance

of the estimator and by incorporating prior knowledge in choosing f∗ such that it is close

to the true kernel mean.

While Theorem 3.3 shows µ̂ to be inadmissible by providing a family of estimators that are
better than µ̂, the result is not useful as all these estimators require the knowledge of µ (which is
the parameter of interest) through the range of α given in (3.12). In Section 3.3.2, we investigate
Theorem 3.3 and show that µ̂α can be constructed under some weak assumptions on P, without
requiring the knowledge of µ.

From (3.12), the existence of positive α is guaranteed if and only if the risk of the empirical
estimator is non-zero. Under some assumptions on k, the following result shows that ∆ = 0 if
and only if the distribution P is a Dirac distribution, i.e., the distribution P is a point mass. This
result ensures, in many non-trivial cases, a non-empty range of α for which ∆α −∆ < 0.

Proposition 3.4. Let k(x,y) = ψ(x − y), x,y ∈ Rd be a characteristic kernel where ψ ∈
Cb(R

d) is positive definite. Then ∆ = 0 if and only if P = δx for some x ∈ Rd.

Proof of Proposition 3.4. ( ⇒ ) If P = δx for some x ∈ X , then µ̂ = µ = k(·,x) and thus
∆ = 0.
( ⇐ ) Suppose ∆ = 0. It follows from (3.10) that

∫∫
(k(x,x) − k(x,y)) dP(x) dP(y) = 0.

Since k is translation invariant, this reduces to
∫∫

(ψ(0) − ψ(x− y)) dP(x) dP(y) = 0.

By invoking Bochner’s theorem, which states that ψ is the Fourier transform of a non-negative
finite Borel measure Λ, i.e., ψ(x) =

∫
e−ix

⊤ω dΛ(ω), x ∈ Rd, we obtain (see (16) in the proof
of Proposition 5 in Sriperumbudur et al. (2011a))

∫∫
ψ(x− y) dP(x) dP(y) =

∫
|ϕP(ω)|2 dΛ(ω),
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thereby yielding ∫
(|ϕP(ω)|2 − 1) dΛ(ω) = 0, (3.14)

where ϕP is the characteristic function of P. Note that ϕP is uniformly continuous and |ϕP| ≤ 1.
Since k is characteristic, Theorem 9 in Sriperumbudur et al. (2010) implies that supp(Λ) = Rd,
using which in (3.14) yields |ϕP(ω)| = 1 for all ω ∈ Rd. Since ϕP is positive definite on Rd, it
follows from Sasvári (2013; Lemma 1.5.1) that ϕP(ω) = e

√
−1ω⊤x for some x ∈ Rd and thus

P = δx. �

Positive-part Shrinkage Estimator

Similar to James-Stein estimator, we can show that the positive-part version of µ̂α also outper-
forms µ̂, where the positive-part estimator is defined by

µ̂+
α := αf∗ + (1− α)+µ̂ (3.15)

with (a)+ := a if a > 0 and zero otherwise. (3.15) can be rewritten as

µ̂+
α =

{
αf∗ + (1− α)µ̂, 0 ≤ α ≤ 1

αf∗ 1 < α < 2.
(3.16)

Let ∆+
α , E‖µ̂+

α − µ‖2
H

be the risk of the positive-part estimator. Then, the following result
shows that ∆+

α ≤ ∆α, given that α satisfies (3.12).

Proposition 3.5. For any α satisfying (3.12), we have that ∆+
α ≤ ∆α < ∆.

Proof of Proposition 3.5. According to (3.16), we decompose the proof into two parts. First, if
0 ≤ α ≤ 1, µ̂α and µ̂+

α behave exactly the same. Thus, ∆+
α = ∆α. On the other hand, when

1 < α < 2, the bias-variance decomposition of these estimators yields

∆α = α2‖f∗ − µ‖2H + (1− α)2E‖µ̂− µ‖2H and ∆+
α = α2‖f∗ − µ‖2H .

It is easy to see that ∆+
α < ∆α when 1 < α < 2. This concludes the proof. �

Proposition 3.5 implies that, when estimating α, it is better to restrict the value of α to be
smaller than 1, although it can be greater than 1, as suggested by Theorem 3.3. The reason is
that if 0 ≤ α ≤ 1, the bias is an increasing function of α, whereas the variance is a decreasing
function of α. On the other hand, if α > 1, both bias and variance become increasing functions
of α. We will see later in Section 3.4 that µ̂α and µ̂+

α can be obtained naturally as a solution to
a regularized regression problem.

3.3.2 Consequences of Theorem 3.3

As mentioned before, while Theorem 3.3 is interesting from the perspective of showing that
the shrinkage estimator, µ̂α performs better—in the mean squared sense—than the empirical
estimator, it unfortunately relies on the fact that µP (i.e., the object of interest) is known, which
makes µ̂α uninteresting. Instead of knowing µP, which requires the knowledge of P, in this
section, we show that a shrinkage estimator can be constructed that performs better than the
empirical estimator, uniformly over a class of probability distributions. To this end, we introduce
the notion of an oracle upper bound.
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Let P be a class of probability distributions P defined on a measurable space X . We define
an oracle upper bound as

Uk,P , inf
P∈P

2∆

∆+ ‖f∗ − µ‖2
H

.

It follows immediately from Theorem 3.3 and the definition of Uk,P that if Uk,P 6= 0, then for
any α ∈ (0, Uk,P), ∆α −∆ < 0 holds “uniformly” for all P ∈P .

Note that by virtue of Proposition 3.4, the class P cannot contain the Dirac measure δx
(for any x ∈ Rd) if the kernel k is translation invariant and characteristic on Rd. Below we
give concrete examples of P for which Uk,P 6= 0 so that the above uniformity statement
holds. In particular, we will show (see Theorem 3.6) that for X = Rd, if a non-trivial bound on
the L2-norm of the characteristic function of P is known, it is possible to construct shrinkage
estimators that are better (in mean squared error) than the empirical average. In such a case,
unlike in Theorem 3.3, α does not depend on the individual distribution P, but only on an upper
bound associated with a class P .

Theorem 3.6. Let k(x,y) = ψ(x− y) 6= 0, x,y ∈ Rd with ψ ∈ Cb(Rd) ∩ L1(Rd) and ψ is a

positive definite function. For a given constant A ∈ (0, 1), let Aψ := A(2π)d/2ψ(0)
‖ψ‖L1

and

Pk,A ,
{
P ∈M1

+(R
d) : ‖φP‖L2 ≤

√
Aψ

}
,

where φP denotes the characteristic function of P. Then for all P ∈Pk,A, ∆α < ∆ if

α ∈


0,

2(1−A)
1 + (n− 1)A+

n‖f∗‖2
H

ψ(0) + 2n
√
A‖f∗‖H√
ψ(0)


 .

Proof of Theorem 3.6. By Theorem 3.3, we have that

∆α < ∆, ∀ α ∈
(
0,

2∆

∆+ ‖f∗ − µ‖2
H

)
. (3.17)

Consider

∆

∆+ ‖f∗ − µ‖2
H

=
Exk(x,x) − Ex,x̃k(x, x̃)

Exk(x,x) − Ex,x̃k(x, x̃) + n‖f∗ − µ‖2
H

=
1− Ex,x̃k(x,x̃)

Exk(x,x)

1 + (n− 1)
Ex,x̃k(x,x̃)
Exk(x,x)

+ n‖f∗‖2
Exk(x,x)

− 2n〈f∗,µ〉H
Exk(x,x)

≥
1− Ex,x̃k(x,x̃)

Exk(x,x)

1 + (n− 1)
Ex,x̃k(x,x̃)
Exk(x,x)

+ n‖f∗‖2
Exk(x,x)

+
2n‖f∗‖

√
Ex,x̃k(x,x̃)

Exk(x,x)

. (3.18)

Note that

Ex,x̃k(x, x̃) =

∫ ∫
ψ(x− y) dP(x) dP(y)

(∗)
=

∫
|ϕP(ω)|2ψ∧(ω) dω

≤ sup
ω∈Rd

ψ∧(ω)‖ϕP‖2L2
≤ (2π)−d/2‖ψ‖L1‖ϕP‖2L2

, (3.19)
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where ψ∧ is the Fourier transform of ψ and (∗) follows by invoking Bochner’s theorem, which
states that ψ is the Fourier transform of a non-negative finite Borel measure with density (2π)−d/2ψ∧,
i.e., ψ(x) = (2π)−d/2

∫
e−ix

⊤ωψ∧(ω) dω, x ∈ Rd (see (16) in the proof of Proposition 5 in
Sriperumbudur et al. (2011a)). As Exk(x,x) = ψ(0), we have that

Ex,x̃k(x, x̃)

Exk(x,x)
≤ A‖ϕP‖2L2

Aψ

and therefore for any P ∈ Pk,A, Ex,x̃k(x,x̃)
Exk(x,x)

≤ A. Using this in (3.18) and combining it with
(3.17) yields the result. �

Remark 3.2. We provide some discussion regarding Theorem 3.6.

(i) Theorem 3.6 shows that for any P ∈ Pk,A, it is possible to construct a shrinkage esti-

mator that dominates the empirical estimator, i.e., the shrinkage estimator has a strictly

smaller risk than that of the empirical estimator.

(ii) Suppose that P has a density, denoted by p, w.r.t. the Lebesgue measure and ϕP ∈ L2(Rd).
By Plancherel’s theorem, p ∈ L2(Rd) as ‖p‖L2 = ‖ϕP‖L2 , which means that Pk,A

includes distributions with square integrable densities (note that in general not every p is

square integrable). Since ‖ϕP‖2L2
≤ ‖ϕP‖L1 , it is easy to check that

{
P ∈M1

+(R
d) : ‖φP‖L1 ≤ A(2π)d/2ψ(0)

‖ψ‖L1

}
⊂Pk,A,

which means the bounded densities belong to Pk,A as ϕP ∈ L1(Rd) implies that P has a

density, p ∈ C0(R
d). Moreover, it is easy to check that larger the value of A, larger is the

class Pk,A and smaller is the range of α for which ∆α < ∆ and vice-versa.

In the following, we present some concrete examples to elucidate Theorem 3.6.

Example 3.1 (Gaussian kernel and Gaussian distribution). Define

N ,

{
P ∈M1

+(R
d)
∣∣∣ dP(x) = 1

(2πσ2)d/2
e−

‖x−θ‖22
2σ2 dx, θ ∈ Rd, σ > 0

}
,

where ψ(x) = e−‖x‖22/2τ2 , x ∈ Rd and τ > 0. For P ∈ N , it is easy to verify that

ϕP(ω) = e
√
−1θ⊤ω− 1

2
σ2‖ω‖22 , ω ∈ Rd and ‖ϕP‖2L2

=

∫
e−σ

2‖ω‖22 dω = (π/σ2)d/2.

Also, ‖ψ‖L1 = (2πτ2)d/2. Therefore, for Pk,A , {P ∈ N : σ2 ≥ πτ2/A2/d}, assuming

f∗ = 0, we obtain the result in Theorem 3.6, i.e., the result in Theorem 3.6 holds for all Gaussian

distributions that are smoother (having larger variance) than that of the kernel.

Example 3.2 (Linear kernel). Suppose f∗ = 0 and k(x,y) = x⊤y. Let ϑ and Σ represent the

mean vector and covariance matrix of a distribution P defined on Rd. Then it is easy to check

that
Ex,x̃k(x,x̃)
Exk(x,x)

=
‖ϑ‖22

trace(Σ)+‖ϑ‖22
and therefore for a given A ∈ (0, 1), define

Pk,A ,

{
P ∈M1

+(R
d)
∣∣∣ ‖ϑ‖

2
2

trace(Σ)
≤ A

1−A

}
.
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From (3.17) and (3.18), it is clear that for any P ∈ Pk,A, ∆α < ∆ if α ∈
(
0, 2(1−A)

1+(n−1)A

]
.

Note that this choice of kernel yields the setting similar to classical James-Stein estimation. In

James-Stein estimation, P ∈ N (see Example 3.1 for the definition of N ) and ϑ is estimated

as (1 − α̃)ϑ̂—which improves upon ϑ̂—where α̃ depends on the sample (xi)
n
i=1 and ϑ̂ is the

sample mean. In our case, for all P ∈Pk,A =
{
P ∈N : ‖ϑ‖2 ≤ σ

√
dA
1−A

}
, ∆α < ∆ if α ∈

(
0, 2(1−A)

1+(n−1)A

]
. In addition, in contrast to the James-stein estimator which improves upon the

empirical estimator (i.e., sample mean) for only d ≥ 3, we note here that the proposed estimator

improves for any d as long as P ∈ Pk,A. On the other hand, the proposed estimator requires

some knowledge about the distribution (particularly a bound on ‖ϑ‖2), which the James-Stein

estimator does not (see Section 3.3.5 for more details).

Example 3.3 (Exponential family). If the probability distribution P belongs to an exponential

family, its probability density function can be expressed in the form

pθ(x) = exp
(
B(x) + θ⊤T (x)− Z(θ)

)

whose squared L2 norm is given by

‖pθ‖2L2
=

∫
p(x)2 dx.

The above integral does not in general have a closed-form solution, unless B(x) and T (x) obey

certain conditions. Specifically, if 2B(x) = B(ηx) for some η and T is linear in x (Jebara

et al. 2004a), we have

∫
p(x)2 dx =

∫
exp

(
2B(x) + 2θ⊤T (x)− 2Z(θ)

)
dx

=
1

η

∫
exp

(
B(ηx) +

2

η
θ⊤T (ηx) − 2Z(θ)

)
d(ηx)

=
1

η
exp (−2Z(θ))

∫
exp

(
B(ηx) +

2

η
θ⊤T (ηx)

)
d(ηx)

=
1

η
exp (−2Z(θ)) exp

(
Z

(
2θ

η

))
.

Thus, we obtain

‖pθ‖2L2
=

1

η
exp

(
Z

(
2θ

η

)
− 2Z(θ)

)
.

Consequently, Theorem 3.6 holds if

Pk,A =



pθ

∣∣∣Z
(
2θ

η

)
− 2Z(θ) ≤ log


η
√
A(2π)d/2ψ(0)

‖ψ‖L1





 .

Example 3.3 allows one to write the condition in Theorem 3.6 in term of the log partition
function Z(θ). It is well known that much of the structure of exponential models can be derived
from the log partition function, see, e.g., Wainwright and Jordan (2008). Many probabilistic
models such as Gaussian MRFs, Gaussian mixture model, and Latent Dirichlet Allocation can
be expressed in exponential family form.
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B

√

|ψ(0)|

k(x, ·) µP

k(x, ·)

µP

Figure 3.1: A 2D visualization of the ball of radius ψ(0) in the RKHS. For stationary kernels, the feature
map φ(x) always lie on this ball. As a result, all the kernel means µP will lie inside the ball. Moreover, if
k(x,y) > 0 for all x,y ∈ X , all the feature maps φ(x) lie in the same quadrant. Thus, the kernel means
µP will always lie inside the ball segment.

3.3.3 Where to Shrink?

As discussed earlier, the choice of f∗ may seem arbitrary, but in principle it should be chosen
in such a way that it is close to the true µP. In general, without any assumption on the kernel, it
follows from the strict convexity of ‖ · ‖2

H
and Jensen’s inequality that

EPn

[
‖µ̂‖2H

]
> ‖EPn [µ̂] ‖2H = ‖µ‖2H ,

which suggests that the true kernel mean µwill typically lie closer to the origin than the estimate
µ̂. One should therefore shrink the ordinary estimator toward the origin. Below I provide a
geometrical illustration as to why the origin point may be reasonable for shrinkage in RKHS.

Stationary Kernels

An interesting property of this class of kernels is that for any x ∈ X , we have

k(x,x) = 〈φ(x), φ(x)〉H = ψ(x− x) = ψ(0),

which implies that ‖φ(x)‖2
H

= ψ(0) for all x ∈ X . That is, all the feature maps φ(x) lie on
the ball B of radius

√
|ψ(0)| centered at the origin in the RKHS. Consequently, we have for any

distribution P that

‖µP‖H =

∥∥∥∥
∫

X
φ(x) dP(x)

∥∥∥∥
H

≤
∫

X
‖φ(x)‖H dP(x) =

√
|ψ(0)|.

In other words, the kernel means µP will always lie inside the ball B. It will lie on the ball if and
only if P = δx for some x ∈ X . Furthermore, if k(x,y) > 0 for all x,y ∈ X , all the feature
maps φ(x) lie in the same quadrant. Thus, the kernel means µP will always lie inside the ball
segment. These two cases are illustrated in Figure 3.1.

Non-stationary Kernels

Although it might be difficult in general to infer the choice of f∗ from this class of kernels, there
are particular families of non-stationary kernels that are closely related to the stationary kernels.
For example, consider the separable non-stationary kernels k(x,y) = k1(x)k2(y) where k1 and
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k2 are stationary kernels evaluated at the examples x and y, respectively. Knowing the forms
of functions k1 and k2 could facilitate in deriving the form of µP. Another interesting class of
non-stationary kernels is the class of reducible kernels. A kernel k is said to be reducible if there
exists a bijective deformation φ such that k(x,y) = ψ(φ(x) − φ(y)) where ψ is a stationary
kernel. As a result, the property of stationary kernel discussed earlier applies immediately to
this class of kernel functions. For more detailed account on different classes of kernel functions,
see e.g., Genton (2002) and Rasmussen and Williams (2005; Chapter 4).

Motivated by the discussion above, I will focus on the case when f∗ = 0 throughout this
chapter and defer a more general class of f∗ as an open problem for future works.

3.3.4 Data-Dependent Shrinkage Parameter

The discussion so far showed that the shrinkage estimator in (3.11) performs better than the
empirical estimator if the data generating distribution satisfies a certain mild condition (see
Theorem 3.6; Examples 3.1 and 3.2). However, since this condition is usually not checkable
in practice, the shrinkage estimator lacks applicability. In this section, we present a completely
data driven shrinkage estimator by estimating the shrinkage parameter α from data so that the
estimator does not require any knowledge of the data generating distribution.

Since the maximal difference between ∆α and ∆ occurs at α∗ (see the proof of Theo-
rem 3.3), given an i.i.d. sample X = {x1,x2, . . . ,xn} from P, we propose to estimate µ using
µ̂α̃ = (1− α̃)µ̂ (i.e., assuming f∗ = 0) where α̃ is an estimator of α∗ = ∆/(∆+‖µ‖2

H
) given

by

α̃ =
∆̂

∆̂ + ‖µ̂‖2
H

, (3.20)

with ∆̂ and µ̂ being the empirical versions of ∆ and µ, respectively (see Theorem 3.7 for
precise definitions). The following result shows that α̃ is a n

√
n-consistent estimator of α∗ and

‖µ̂α̃ − µ‖H concentrates around ‖µ̂α∗ − µ‖H . In addition, we show that

∆α∗ ≤ ∆α̃ ≤ ∆α∗ +O(n−3/2) as n→∞,

which means the performance of µ̂α̃ is similar to that of the best estimator (in mean squared
sense) of the form µ̂α. In what follows, we will call the estimator µ̂α̃ an empirical-bound

kernel mean shrinkage estimator (B-KMSE).

Theorem 3.7. Suppose n ≥ 2 and f∗ = 0. Let k be a continuous kernel on a separable

topological space X . Define

∆̂ ,
Êk(x,x) − Êk(x, x̃)

n
and ‖µ̂‖2H ,

1

n2

n∑

i,j=1

k(xi,xj)

where Êk(x,x) , 1
n

∑n
i=1 k(xi,xi) and Êk(x, x̃) , 1

n(n−1)

∑n
i 6=j k(xi,xj) are the empirical

estimators of Exk(x,x) and Ex,x̃k(x, x̃), respectively. Assume there exist finite constants κ1 >
0, κ2 > 0, σ1 > 0 and σ2 > 0 such that

E‖k(·,x) − µ‖mH ≤
m!

2
σ21κ

m−2
1 , ∀m ≥ 2. (3.21)

and

E|k(x,x) − Exk(x,x)|m ≤
m!

2
σ22κ

m−2
2 , ∀m ≥ 2. (3.22)
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Then

|α̃− α∗| = OP(n
−3/2) and

∣∣∣‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H
∣∣∣ = OP(n

−3/2)

as n→∞. In particular,

min
α

E‖µ̂α − µ‖2H ≤ E‖µ̂α̃ − µ‖2H ≤ min
α

E‖µ̂α − µ‖2H +O(n−3/2) (3.23)

as n→∞.

Before we prove Theorem 3.7, we present Bernstein’s inequality in separable Hilbert spaces,
quoted from Yurinsky (1995; Theorem 3.3.4), which will be used to prove Theorem 3.7.

Theorem 3.8 (Bernstein’s inequality). Let (Ω,A, P ) be a probability space, H be a separable

Hilbert space, B > 0 and θ > 0. Furthermore, let ξ1, . . . , ξn : Ω → H be zero mean

independent random variables satisfying

n∑

i=1

E‖ξi‖mH ≤
m!

2
θ2Bm−2. (3.24)

Then for any τ > 0,

Pn

{
(ξ1, . . . , ξn) :

∥∥∥∥∥
n∑

i=1

ξi

∥∥∥∥∥
H

≥ 2Bτ +
√
2θ2τ

}
≤ 2e−τ .

Proof of Theorem 3.7. Consider

α̃− α∗ =
∆̂

∆̂ + ‖µ̂‖2
H

− ∆

∆+ ‖µ‖2
H

=
∆̂‖µ‖2

H
−∆‖µ̂‖2

H

(∆̂ + ‖µ̂‖2
H
)(∆ + ‖µ‖2

H
)

=
∆̂(‖µ‖2

H
− ‖µ̂‖2

H
)

(∆ + ‖µ‖2
H
)(∆̂ + ‖µ̂‖2

H
)
+

(∆̂−∆)‖µ̂‖2
H

(∆ + ‖µ‖2
H
)(∆̂ + ‖µ̂‖2

H
)

=
α̃(‖µ‖2

H
− ‖µ̂‖2

H
)

(∆ + ‖µ‖2
H
)

+
(∆̂ −∆)(1 − α̃)
(∆ + ‖µ‖2

H
)
.

Rearranging α̃, we obtain

α̃− α∗ =
α∗(‖µ‖2H − ‖µ̂‖2H ) + (1− α∗)(∆̂ −∆)

∆̂ + ‖µ̂‖2
H

.

Therefore,

|α̃− α∗| ≤
α∗|‖µ‖2H − ‖µ̂‖2H |+ (1 + α∗)|∆̂ −∆|

(∆ + ‖µ‖2
H
)− (‖µ‖2

H
− ‖µ̂‖2

H
) + (∆̂−∆)

, (3.25)

where it is easy to verify that

|∆̂−∆| ≤ |Ex,x̃k(x, x̃)− Êk(x, x̃)|
n

+
|Êk(x,x)− Exk(x,x)|

n
. (3.26)

In the following we obtain bounds on |Êk(x,x) − Exk(x,x)|, |Ex,x̃k(x, x̃) − Êk(x, x̃)| and
|‖µ‖2

H
− ‖µ̂‖2

H
| when the kernel satisfies (3.21) and (3.22).
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Bound on |Êk(x,x) − Exk(x,x)|: Since k is a continuous kernel on a separable topological
space X , it follows from Lemma 4.33 of Steinwart and Christmann (2008) that H is separable.
By defining ξi , k(xi,xi)−Exk(x,x), it follows from (3.22) that θ =

√
nσ2 and B = κ2 and

so by Theorem 3.8, for any τ > 0, with probability at least 1− 2e−τ ,

|Êk(x,x) − Exk(x,x)| ≤
√

2σ22τ

n
+

2κ2τ

n
. (3.27)

Bound on ‖µ̂ − µ‖H : By defining ξi , k(·,xi) − µ and using (3.21), we have θ =
√
nσ1

and B = κ1. Therefore, by Theorem 3.8, for any τ > 0, with probability at least 1− 2e−τ ,

‖µ̂− µ‖H ≤
√

2σ21τ

n
+

2κ1τ

n
. (3.28)

Bound on |‖µ̂‖2
H
− ‖µ‖2

H
|: Since

∣∣‖µ̂‖2H − ‖µ‖2H
∣∣ ≤ (‖µ̂‖H + ‖µ‖H )‖µ̂ − µ‖H ≤ (‖µ̂− µ‖H + 2‖µ‖H )‖µ̂ − µ‖H ,

it follows from (3.28) that for any τ > 0, with probability at least 1− 2e−τ ,

∣∣‖µ̂‖2H − ‖µ‖2H
∣∣ ≤ D1

√
τ

n
+D2

(τ
n

)
+D3

(τ
n

)3/2
+D4

( τ
n

)2
, (3.29)

where (Di)
4
i=1 are positive constants that depend only on σ21 , κ and ‖µ‖H , and not on n and τ .

Bound on |Êk(x, x̃)− Ex,x̃k(x, x̃)|: Since

Êk(x, x̃)− Ex,x̃k(x, x̃)

=
n2(‖µ̂‖2

H
− ‖µ‖2

H
) + n(Exk(x,x) − Êk(x,x)) + n(‖µ‖2

H
− Exk(x,x))

n(n− 1)
, (3.30)

it follows from (3.27) and (3.29) that for any τ > 0, with probability at least 1− 4e−τ ,

|Êk(x, x̃)− Ex,x̃k(x, x̃)| ≤ F1

√
τ

n
+ F2

(τ
n

)
+ F3

(τ
n

)3/2
+ F4

( τ
n

)2
+
F5

n

≤ F ′
1

√
1 + τ

n
+ F ′

2

(
1 + τ

n

)
+ F ′

3

(
1 + τ

n

)3/2

+F ′
4

(
1 + τ

n

)2

, (3.31)

where (Fi)
5
i=1 and (F ′

i )
4
i=1 are positive constants that do not depend on n and τ .

Bound on |α̃−α∗|: Using (3.27) and (3.31) in (3.26), for any τ > 0, with probability at least
1− 4e−τ ,

|∆̂−∆| ≤ F ′′
1

n

√
1 + τ

n
+
F ′′
2

n

(
1 + τ

n

)
+
F ′′
3

n

(
1 + τ

n

)3/2

+
F ′′
4

n

(
1 + τ

n

)2

,
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using which in (3.25) along with (3.29), we obtain that for any τ > 0, with probability at least
1− 4e−τ ,

|α̃− α∗| ≤
∑4

i=1

(
Gi1α∗ +

Gi2
n (1 + α∗)

) (
1+τ
n

)i/2
∣∣∣θn −

∑4
i=1

(
Gi1 +

Gi2
n

) (
1+τ
n

)i/2∣∣∣
, (3.32)

where θn , ∆+ ‖µ‖2
H

and (Gi1)
4
i=1, (Gi2)4i=1 are positive constants that do not depend on n

and τ . Since α∗ =
∆

∆+‖µ‖2
H

=
Exk(x,x)−Ex,x̃k(x,x̃)

Exk(x,x)+(n−1)Ex,x̃k(x,x̃)
= O(n−1) and θn =

Exk(x,x)+(n−1)‖µ‖2
H

n =

O(1) as n→∞, it follows from (3.32) that |α̃− α∗| = OP(n
−3/2) as n→∞.

Bound on |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H |: Using (3.28) and (3.32) in

|‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H | ≤ ‖µ̂α̃ − µ̂α∗‖H ≤ |α̃− α∗|‖µ̂− µ‖H + |α̃− α∗|‖µ‖H ,

for any τ > 0, with probability at least 1− 4e−τ , we have

|‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H | ≤
∑6

i=1

(
G′
i1α∗ +

G′
i2
n (1 + α∗)

) (
1+τ
n

)i/2
∣∣∣θn −

∑4
i=1

(
Gi1 +

Gi2
n

) (
1+τ
n

)i/2∣∣∣
, (3.33)

where (G′
i1)

6
i=1 and (G′

i2)
6
i=1 are positive constants that do not depend on n and τ . From (3.33),

it is easy to see that |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H | = OP(n
−3/2) as n→∞.

Bound on E‖µ̂α̃ − µ‖2
H
− E‖µ̂α∗ − µ‖2

H
: Since

‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H ≤ (‖µ̂α̃ − µ‖H + ‖µ̂α∗ − µ‖H ) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H |
≤ 2(‖µ̂‖H + ‖µ‖H ) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H |
≤ 2(‖µ̂ − µ‖H + 2‖µ‖H ) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H | ,

for any τ > 0, with probability at least 1− 4e−τ ,

‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H ≤
∑8

i=1

(
G′′
i1α∗ +

G′′
i2
n (1 + α∗)

) (
1+τ
n

)i/2
∣∣∣θn −

∑4
i=1

(
Gi1 +

Gi2
n

) (
1+τ
n

)i/2∣∣∣
,

≤
∑8

i=1

(
G′′
i1α∗ +

G′′
i2
n (1 + α∗)

) (
1+τ
n

)i/2
∣∣∣θn −

∑4
i=1

(
Gi1 +

Gi2
n

) (
1
n

)i/2∣∣∣
,

≤





γn
φn

√
1+τ
n , 0 < τ ≤ n− 1

γn
φn

(
1+τ
n

)4
, τ ≥ n− 1

,

where γn , H1α∗ + H2
n (1 + α∗), φn ,

∣∣∣θn −
∑4

i=1

(
Gi1 +

Gi2
n

) (
1
n

)i/2∣∣∣ and (Hi)
2
i=1 are

positive constants that do not depend on n and τ . In other words,

P
(
‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H > ǫ

)
≤





4 exp

(
1− n

(
ǫφn
γn

)2)
, γn

φn
√
n
≤ ǫ ≤ γn

φn

4 exp

(
1− n

(
ǫφn
γn

)1/4)
, ǫ ≥ γn

φn

.
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Therefore,

E‖µ̂α̃ − µ‖2H − E‖µ̂α∗ − µ‖2H =

∫ ∞

0
P
(
‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H > ǫ

)
dǫ

≤ γn
φn
√
n
+ 4

∫ γn
φn

γn
φn

√
n

exp

(
1− n

(
ǫφn
γn

)2
)

dǫ

+4

∫ ∞

γn
φn

exp

(
1− n

(
ǫφn
γn

)1/4
)

dǫ

=
γn

φn
√
n
+

2γn
φn
√
n

∫ n−1

0

e−t√
t+ 1

dt

+
16eγn
n4φn

∫ ∞

n
t3e−t dt.

Since
∫ n−1
0

e−t√
t+1

dt ≤
∫∞
0 e−t dt = 1 and

∫∞
n t3e−t dt ≤

∫∞
0 t3e−t dt = 6, we have

E‖µ̂α̃ − µ‖2H − E‖µ̂α∗ − µ‖2H ≤
3γn
φn
√
n
+

96eγn
n4φn

.

The claim in (3.23) follows by noting that γn = O(n−1) and φn = O(1) as n→∞. �

Remark 3.3. Based on Theorem 3.7, we make the following observations.

(i) µ̂α̃ is a
√
n-consistent estimator of µ. This follows from

‖µ̂α̃ − µ‖H ≤ ‖µ̂α∗ − µ‖H +OP(n
−3/2)

≤ (1− α∗)‖µ̂− µ‖H + α∗‖µ‖H +OP(n
−3/2)

with α∗ =
∆

∆+‖µ‖2
H

=
Exk(x,x)−Ex,x̃k(x,x̃)

Exk(x,x)+(n−1)Ex,x̃k(x,x̃)
= O(n−1) as n→∞. Using (3.28), we

obtain ‖µ̂α̃ − µ‖H = OP(n
−1/2) as n →∞, which implies that µ̂α̃ is a

√
n-consistent

estimator of µ.

(ii) (3.23) shows that ∆α̃ ≤ ∆α∗ + O(n−3/2) where ∆α∗ < ∆ (see Theorem 3.3) and

therefore for any P satisfying (3.21) and (3.22), ∆α̃ < ∆+O(n−3/2) as n→∞.

(iii) Suppose the kernel is bounded, i.e., supx,y∈X |k(x,y)| ≤ κ < ∞. Then it is easy to

verify that (3.21) and (3.22) hold with σ1 =
√
κ, κ1 = 2

√
κ, σ2 = κ and κ2 = 2κ and

therefore the claims in Theorem 3.7 hold for bounded kernels.

(iv) For k(x,y) = x⊤y, we have

E‖k(·,x) − µ‖mH = E
(
‖k(·,x) − µ‖2H

)m/2
= E

(
‖x− Exx‖22

)m/2
= E‖x− Exx‖m2

and

E|k(x,x) − Exk(x,x)|m = E|‖x‖22 − Ex‖x‖22|m.
The conditions in (3.21) and (3.22) hold for P ∈ N where N is defined in Example 3.1.

With P ∈ N and k(x,y) = x⊤y, the problem of estimating µ reduces to estimating

θ, for which we have presented a James-Stein-like estimator, µ̂α̃ that satisfies the oracle

inequality in (3.23).

(v) While the moment conditions in (3.21) and (3.22) are obviously satisfied by bounded

kernels, for unbounded kernels, these conditions are quite stringent as they require all the

higher moments to exist. These conditions can be weakened and the proof of Theorem 3.7

can be carried out using Chebyshev inequality instead of Bernstein’s inequality but at the

cost of a slow rate in (3.23).
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3.3.5 Connection to James-Stein Estimator

In this section, we explore the connection of our proposed estimator in (3.11) to the James-
Stein estimator. Recall that Stein’s setting deals with estimating the mean of the Gaussian
distribution N (θ, σ2Id), which can be viewed as a special case of kernel mean estimation
when we restrict to the class of distributions P , {N (θ, σ2Id) |θ ∈ Rd} and a linear ker-
nel k(x,y) = x⊤y, x,y ∈ Rd (see Example 3.2) assuming f∗ = 0. In this case, it is easy to
verify that ∆ = dσ2/n and ∆α < ∆ for

α ∈
(
0,

2dσ2

dσ2 + n‖θ‖2
)
.

Let us assume that n = 1, in which case, we obtain ∆α < ∆ for α ∈
(
0, 2dσ2

Ex‖x‖2
)

as Ex‖x‖2 =

‖θ‖2 + dσ2. Note that the choice of α is dependent on P through Ex‖x‖2 which is not known
in practice. To this end, we replace it with the empirical version ‖x‖2 that depends only on the
sample x. For an arbitrary constant c ∈ (0, 2d), the shrinkage estimator (assuming f∗ = 0) can
thus be written as

µ̂α = (1− α)µ̂ =

(
1− cσ2

‖x‖2
)
x = x− cσ2x

‖x‖2

which is exactly the James-Stein estimator. This particular way of estimating the shrinkage
parameter α has an intriguing consequence, as shown in Stein’s seminal works (Stein 1955,
James and Stein 1961), that the shrinkage estimator µ̂α can be shown to dominate the maximum
likelihood estimator µ̂ uniformly over all θ.

While it is compelling to see that there is seemingly a fundamental principle underlying both
these settings, this connection also reveals crucial difference between our approach and classical
setting of Stein—notably, original James-Stein estimator improves upon the sample mean even
when the empirical norm of x is in the denominator (see µ̂α above).

3.4 Regression Perspective

In Section 3.3, I have shown that James-Stein-like shrinkage estimator (see (3.11)) improves
upon the empirical estimator in estimating the kernel mean. In this section, I provide a regression
perspective to shrinkage estimation. The starting point of the connection between regression and
shrinkage estimation is the observation that the kernel mean µP and its empirical estimate µ̂P

can be obtained as minimizers of the following risk functionals,

E(g) :=
∫

X
‖k(·,x) − g‖2

H
dP(x) and Ê(g) := 1

n

n∑

i=1

‖k(·,xi)− g‖2H ,

respectively (Kim and Scott 2012). Given these formulations, it is natural to ask if minimizing
the regularized version of Ê(g) will give a “better” estimator. While this question is interesting,
it has to be noted that in principle, there is really no need to consider a regularized formulation
as the problem of minimizing Ê is not ill-posed, unlike in function estimation or regression
problems. To investigate this question, we will consider the minimization of the following
regularized empirical risk functional,

Êλ(g) , Ê(g) + λΩ(‖g‖H ) =
1

n

n∑

i=1

‖k(·,xi)− g‖2H + λΩ(‖g‖H ), (3.34)
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where Ω : R+ → R+ denotes a monotonically increasing function and λ > 0 is the regu-
larization parameter. By representer theorem (Schölkopf et al. 2001a), any function g ∈ H

that is a minimizer of (3.34) lies in a subspace spanned by {k(·,x1), . . . , k(·,xn)}, i.e., g =∑n
j=1 βjk(·,xj) for some β , [β1, . . . , βn]

⊤ ∈ Rn. Hence, by setting Ω(‖g‖H ) = ‖g‖2
H

, we
can rewrite (3.34) in terms of β as

Ê(g) + λΩ(‖g‖H ) = β⊤Kβ − 2β⊤K1n + λβ⊤Kβ + c, (3.35)

where Kij = k(xi,xj), c is a constant that does not depend on β, and 1n = [1/n, 1/n, . . . , 1/n]⊤.
Differentiating (3.35) w.r.t. β and setting it to zero yields an optimal weight vector β =(

1
1+λ

)
1n and so the minimizer of (3.34) is given by

µ̂λ =
1

1 + λ
µ̂ =

(
1− λ

1 + λ

)
µ̂ , (1− α)µ̂, (3.36)

which is nothing but the shrinkage estimator in (3.11) with α = λ
1+λ and f∗ = 0. This provides

a nice relation between shrinkage estimation and regularized risk minimization, wherein the
regularization helps in shrinking the estimator µ̂ towards zero although it is not required from
the point of view of ill-posedness. In particular, since 0 < 1 − α < 1, µ̂λ corresponds to a
positive-part estimator proposed in Section 3.3.1 when f∗ = 0.

Note that µ̂λ is a consistent estimator of µ as λ→ 0 and n→∞, which follows from

‖µ̂λ − µ‖H ≤
1

1 + λ
‖µ̂− µ‖H +

λ

1 + λ
‖µ‖H ≤ OP(n

−1/2) +O(λ).

In particular λ = τn−1/2 (for some constant τ > 0) yields the slowest possible rate for λ → 0
such that the best possible rate of n−1/2 is obtained for ‖µ̂λ − µ‖H → 0 as n → ∞. In
addition, following the idea in Theorem 3.6, it is easy to show that E‖µ̂λ − µ‖2

H
< ∆ if

τ ∈
(
0, 2

√
n∆

‖µ‖2
H

−∆

)
. Note that µ̂λ is not useful in practice as λ is not known a priori. However,

by choosing

λ =
∆̂

‖µ̂‖2
H

,

it is easy to verify (see Theorem 3.7 and Remark 3.3) that

E‖µ̂λ − µ‖2H < E‖µ̂− µ‖2H +O(n−3/2) (3.37)

as n→∞. Owing to the connection of µ̂λ to a regression problem, in the following, we present
an alternate data-dependent choice of λ obtained from leave-one-out cross validation (LOOCV)
that also satisfies (3.37), and we refer to the corresponding estimator as regularized kernel mean

shrinkage estimator (R-KMSE).
To this end, for a given shrinkage parameter λ, denote by µ̂

(−i)
λ as the kernel mean estimated

from {xj}nj=1\{xi}. We will measure the quality of µ̂(−i)
λ by how well it approximates k(·,xi)

with the overall quality being quantified by the cross-validation score,

LOOCV (λ) =
1

n

n∑

i=1

∥∥∥k(·,xi)− µ̂
(−i)
λ

∥∥∥
2

H

. (3.38)

The LOOCV formulation in (3.38) differs from the one used in regression, wherein instead
of measuring the deviation of the prediction made by the function on the omitted observation,
we measure the deviation between the feature map of the omitted observation and the function
itself. The following result shows that the shrinkage parameter in µ̂λ (see (3.36)) can be obtained
analytically by minimizing (3.38) and requires O(n2) operations to compute.
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Proposition 3.9. Let n ≥ 2, ρ := 1
n2

∑n
i,j=1 k(xi,xj) and ̺ := 1

n

∑n
i=1 k(xi,xi). Assuming

nρ > ̺, the unique minimizer of LOOCV (λ) is given by

λr =
n(̺− ρ)

(n− 1)(nρ− ̺) . (3.39)

Proof of Proposition 3.9. Define α , λ
λ+1 and φ(xi) , k(·,xi). Note that

LOOCV (λ) ,
1

n

n∑

i=1

∥∥∥∥∥∥
(1− α)
n− 1

∑

j 6=i
φ(xj)− φ(xi)

∥∥∥∥∥∥

2

H

=
1

n

n∑

i=1

∥∥∥∥
n(1− α)
n− 1

µ̂− 1− α
n− 1

φ(xi)− φ(xi)
∥∥∥∥
2

H

=

∥∥∥∥
n(1− α)
n− 1

µ̂

∥∥∥∥
2

H

− 2

n

〈
n∑

i=1

n− α
n− 1

φ(xi),
n(1− α)
n− 1

µ̂

〉

H

+
1

n

n∑

i=1

∥∥∥∥
n− α
n− 1

φ(xi)

∥∥∥∥
2

H

=

(
n2(1− α)2
(n− 1)2

− 2n(n− α)(1 − α)
(n − 1)2

)
‖µ̂‖2H

+
(n− α)2
n(n− 1)2

n∑

i=1

k(xi,xi)

=
1

(n− 1)2
{
α2(n2ρ− 2nρ+ ̺) + 2nα(ρ− ̺) + n2(̺− ρ)

}

=:
F (α)

(n− 1)2
.

Since d
dλLOOCV (λ) = (n−1)−2 d

dαF (α)
dα
dλ = (n−1)−2(1+λ)−2 d

dαF (α), equating it zero
yields (3.39). It is easy to show that the second derivative of LOOCV (λ) is positive implying
that LOOCV (λ) is strictly convex and so λr is unique. �

It is instructive to compare

αr =
λr

λr + 1
=

̺− ρ
(n− 2)ρ+ ̺/n

(3.40)

to the one in (3.20), where the latter can be shown to be ̺−ρ
̺+(n−2)ρ , by noting that Êk(x,x) = ̺

and Êk(x, x̃) = nρ−̺
n−1 (in Theorem 3.7, we employ the U -statistic estimator of Ex,x̃k(x, x̃),

whereas ρ in Proposition 3.9 can be seen as a V -statistic counterpart). This means αr obtained
from LOOCV will be relatively larger than the one obtained from (3.20). Like in Theorem 3.7,
the requirement that n ≥ 2 in Theorem 3.9 stems from the fact that at least two data points are
needed to evaluate the LOOCV score. Note that nρ > ̺ if and only if Êk(x, x̃) > 0, which is
guaranteed if the kernel is positive valued. We refer to µ̂λr as R-KMSE, whose

√
n-consistency

is established by the following result, which also shows that µ̂λr satisfies (3.37).

Theorem 3.10. Let n ≥ 2, nρ > ̺ where ρ and ̺ are defined in Proposition 3.9 and k satisfies

the assumptions in Theorem 3.7. Then ‖µ̂λr − µ‖H = OP(n
−1/2),

min
α

E‖µ̂α − µ‖2H ≤ E‖µ̂λr − µ‖2H ≤ min
α

E‖µ̂α − µ‖2H +O(n−3/2) (3.41)
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where µ̂α = (1− α)µ̂ and therefore

E‖µ̂λr − µ‖2H < E‖µ̂− µ‖2H +O(n−3/2) (3.42)

as n→∞.

Proof of Theorem 3.10. Since µ̂λr =
µ̂

1+λr
= (1−αr)µ̂, we have ‖µ̂λr −µ‖H ≤ αr‖µ̂‖H +

‖µ̂− µ‖H . Note that

αr =
n(̺− ρ)

n(n− 2)ρ+ ̺
=

n∆̂

∆̂ + (n− 1)‖µ̂‖2
H

=
Êk(x,x) − Êk(x, x̃)

Êk(x,x) + (n− 2)Êk(x, x̃)
,

where ∆̂, ‖µ̂‖2
H

, Êk(x,x) and Êk(x, x̃) are defined in Theorem 3.7. Consider |αr − α∗| ≤
|αr − α̃| + |α̃ − α∗| where α̃ is defined in (3.20). From Theorem 3.7, we have |α̃ − α∗| =
OP(n

−3/2) as n→∞ and

αr − α̃ =
Êk(x,x)− Êk(x, x̃)

Êk(x,x) + (n − 2)Êk(x, x̃)
− Êk(x,x) − Êk(x, x̃)

2Êk(x,x) + (n − 2)Êk(x, x̃)

=
α̃Êk(x,x)

Êk(x,x) + (n − 2)Êk(x, x̃)
= (α̃− α∗)β + α∗β,

where β , Êk(x,x)

Êk(x,x)+(n−2)Êk(x,x̃)
. Therefore, |αr − α̃| ≤ |α̃ − α∗||β| + α∗|β|, where α∗ =

O(n−1) as n → ∞, which follows from Remark 3.3(i). Since |Êk(x,x) − Exk(x,x)| =
OP(n

−1/2) and |Êk(x, x̃) − Ex,x̃k(x, x̃)| = OP(n
−1/2), which follow from (3.27) and (3.31)

respectively, we have |β| = OP(n
−1) as n → ∞. Combining the above, we have |αr − α̃| =

OP(n
−2), thereby yielding |αr − α∗| = OP(n

−3/2). Proceeding as in Theorem 3.7, we have

|‖µ̂λr − µ‖H − ‖µ̂α∗ − µ‖H | ≤ ‖µ̂λr −µα∗‖H ≤ |αr −α∗|‖µ̂−µ‖H + |αr −α∗|‖µ‖H ,

which from the above follows that |‖µ̂λr − µ‖H − ‖µ̂α∗ − µ‖H | = OP(n
−3/2) as n → ∞.

By arguing as in Remark 3.3(i), it is easy to show that µ̂λr is a
√
n-consistent estimator of µ.

(3.41) follows by carrying out the analysis as in the proof of Theorem 3.7 verbatim by replacing
α̃ with αr, while (3.42) follows by appealing to Remark 3.3(ii). �

3.4.1 Shrinkage via Spectral Filtering

Consider the following regularized risk minimization problem

arg infF∈H ⊗H Ex∼P ‖k(x, ·) − F[k(x, ·)]‖2
H

+ λ‖F‖2HS, (3.43)

where the minimization is carried over the space of Hilbert-Schmidt operators, F on H with
‖F‖HS being the Hilbert-Schmidt norm of F. As an interpretation, we are finding a smooth
operator F that maps k(x, ·) to itself (see Grünewälder et al. (2013) for more details on this
smooth operator framework). It is not difficult to show that the solution to (3.43) is given
F = CXX (CXX + λI)−1 where CXX =

∫
k(·,x) ⊗ k(·,x) dP(x) is a covariance operator

defined on H (see, e.g., Grünewälder et al. (2012)). Consequently, let us define

µλ = Fµ = CXX (CXX + λI)−1µ,

which is an approximation to µ as it can be shown that ‖µλ − µ‖H → 0 as λ → 0 (see the
proof of Theorem 3.13). Given an i.i.d. sample x1, . . . ,xn from P, the empirical counterpart of
(3.43) is given by

arg min
F∈H ⊗H

1

n

n∑

i=1

‖k(xi, ·)− F[k(xi, ·)]‖2H + λ‖F‖2HS (3.44)
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resulting in
µ̌λ := Fµ̂ = ĈXX (ĈXX + λI)−1µ̂ (3.45)

where ĈXX is the empirical covariance operator on H given by

ĈXX =
1

n

n∑

i=1

k(·,xi)⊗ k(·,xi).

Unlike µ̂λ in (3.36), µ̌λ shrinks µ̂ differently in each coordinate by taking the eigenspectrum
of ĈXX into account (see Proposition 3.11) and so we refer to it as the spectral kernel mean

shrinkage estimator (S-KMSE).

Proposition 3.11. Let {(γi, φi)}ni=1 be eigenvalue and eigenfunction pairs of ĈXX . Then

µ̌λ =
n∑

i=1

γi
γi + λ

〈µ̂, φi〉H φi.

Proof of Proposition 3.11. Since ĈXX is a compact self-adjoint operator on H , by Hilbert-
Schmidt theorem (Reed and Simon 1972; Theorems VI.16, VI.17), we have that ĈXX =∑n

i=1 γi〈φi, ·〉H φi. The result follows by using this in (3.45). �

As shown in Proposition 3.11, the effect of S-KMSE is to reduce the contribution of high fre-
quency components of µ̂ (i.e., contribution of µ̂ along the directions corresponding to smaller
γi) when µ̂ is expanded in terms of the eigenfunctions of the empirical covariance operator,
which are nothing but the kernel PCA basis (see Rasmussen and Williams (2005; Section 4.3)).
This means, similar to R-KMSE, S-KMSE also shrinks µ̂ towards zero, however, the difference
being that while R-KMSE shrinks equally in all coordinates, S-KMSE controls the amount of
shrinkage by the information contained in each coordinate. In particular, S-KMSE takes into
account more information about the kernel by allowing for different amount of shrinkage in
each coordinate direction according to the value of γi, wherein the shrinkage is small in the
coordinates whose γi are large. Moreover, Proposition 3.11 reveals that the effect of shrink-
age is akin to spectral filtering (Bauer et al. 2007)—which in our case corresponds to Tikhonov
regularization—wherein S-KMSE filters out the high-frequency components of the spectral rep-
resentation of the kernel mean.

The following result presents an alternate representation for µ̌λ, using which we relate the
smooth operator formulation in (3.44) to the regularization formulation in (3.34).

Proposition 3.12. Define Φ , [k(x1, ·), . . . , k(xn, ·)] and 1n , [1/n, . . . , 1/n]⊤. Then

µ̌λ = ĈXX (ĈXX + λI)−1µ̂ = Φ(K+ nλI)−1K1n,

where K is the Gram matrix, I is an identity operator on H and I is an n× n identity matrix.

Proof of Proposition 3.12. Consider

(ĈXX + λI)Φ(K+ nλI)−1K1n = (ĈXXΦ+ λΦ)(K+ nλI)−1K1n. (3.46)

Note that ĈXXΦ = [ĈXXk(·,x1), . . . , ĈXX k(·,xn)] where for any i ∈ {1, . . . , n},

ĈXXk(·,xi) =
1

n

n∑

j=1

k(·,xj)k(xi,xj) =
1

n
Φk⊤

i
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with ki being the ith row of K. Therefore ĈXXΦ = 1
nΦK. Using this in (3.46), we have

(ĈXX + λI)Φ(K+ nλI)−1K1n = (n−1ΦK+ λΦ)(K+ nλI)−1K1n

= Φ(n−1K+ λI)(K+ nλI)−1K1n

=
1

n
ΦK1n = ĈXXΦ1n = ĈXX µ̂.

Multiplying to the left on both sides by (ĈXX + λI)−1, we obtain Φ(K + nλI)−1K1n =
(ĈXX+λI)−1ĈXX µ̂ and the result follows by noting that (ĈXX+λI)−1ĈXX = ĈXX (ĈXX+
λI)−1. �

From Proposition 3.12, it is clear that

µ̌λ =
1√
n

n∑

j=1

(βs)jk(·,xj) (3.47)

where βs ,
√
n(K + nλI)−1K1n. Given the form of µ̌λ in (3.47), it is easy to verify that βs

is the minimizer of (3.34) when Êλ is minimized over {g = 1√
n

∑n
j=1(β)jk(·,xj) : β ∈ Rn}

with Ω(‖g‖H ) , ‖β‖22.
The following result establishes the consistency of S-KMSE, µ̌λ. We provide a discussion

about its convergence rate in Remark 3.4(ii).

Theorem 3.13. Suppose X is a Polish space that is also locally compact Hausdorff. Let k be a

continuous kernel on X that is c0-universal, i.e., k(·,x) ∈ C0(X ), ∀x ∈ X and

∫ ∫
k(x,y) dµ(x) dµ(y) > 0, ∀µ ∈Mb(X )\{0}.

Then ‖µ̌λ − µ‖H → 0 as λ
√
n→∞, λ→ 0 and n→∞.

Proof of Theorem 3.13. By Proposition 3.12, we have µ̌λ = (ĈXX + λI)−1ĈXX µ̂. Define
µλ , (CXX+λI)−1CXXµ. Let us consider the decomposition µ̌λ−µ = (µ̌λ−µλ)+(µλ−µ)
with

µ̌λ − µλ = (ĈXX + λI)−1(ĈXX µ̂− ĈXXµλ − λµλ)
(∗)
= (ĈXX + λI)−1(ĈXX µ̂− ĈXXµλ −CXXµ+CXXµλ)

= (ĈXX + λI)−1ĈXX (µ̂− µ)− (ĈXX + λI)−1ĈXX (µλ − µ)

+(ĈXX + λI)−1CXX (µλ − µ),

where we used λµλ = CXXµ−CXXµλ in (∗). By defining A(λ) , ‖µλ − µ‖H , we have

‖µ̌λ − µ‖H ≤ ‖(ĈXX + λI)−1ĈXX (µ̂− µ)‖H + ‖(ĈXX + λI)−1ĈXX (µλ − µ)‖H
+‖(ĈXX + λI)−1CXX (µλ − µ)‖H +A(λ)

≤ ‖(ĈXX + λI)−1ĈXX ‖ (‖µ̂− µ‖H +A(λ))
+‖(ĈXX + λI)−1CXX ‖A(λ) +A(λ), (3.48)

where for any bounded linear operator B, ‖B‖ denotes its operator norm. We now bound
‖(ĈXX + λI)−1CXX ‖ as follows. It is easy to show that

(ĈXX + λI)−1CXX =
(
I − (CXX + λI)−1(CXX − ĈXX )

)−1
(CXX + λI)−1CXX
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=




∞∑

j=0

(
(CXX + λI)−1(CXX − ĈXX )

)j

 (CXX + λI)−1CXX ,

where the last line denotes the Neumann series and therefore

‖(ĈXX + λI)−1CXX ‖ ≤
∞∑

j=0

∥∥∥(CXX + λI)−1(CXX − ĈXX )
∥∥∥
j
‖(CXX + λI)−1CXX ‖

≤
∞∑

j=0

∥∥∥(CXX + λI)−1(CXX − ĈXX )
∥∥∥
j

HS
,

where we used ‖(CXX +λI)−1CXX ‖ ≤ 1 and the fact that CXX and ĈXX are Hilbert-Schmidt
operators on H as ‖CXX ‖HS ≤ κ < ∞ and ‖ĈXX ‖HS ≤ κ < ∞ with κ being the bound on
the kernel. Define η : X → HS(H ), η(x) = (CXX + λI)−1(CXX − Σx), where HS(H )
is the space of Hilbert-Schmidt operators on H and Σx := k(·,x) ⊗ k(·,x). Observe that
E 1
n

∑n
i=1 η(xi) = 0. Also, for all i ∈ {1, . . . , n}, ‖η(xi)‖HS ≤ ‖(CXX + λI)−1‖‖CXX −

Σx‖HS ≤ 2κ
λ and E‖η(xi)‖2HS ≤ 4κ2

λ2
. Therefore, by Bernstein’s inequality (see Theorem 3.8),

for any τ > 0, with probability at least 1− 2e−τ over the choice of {xi}ni=1,

‖(CXX + λI)−1(CXX − ĈXX )‖HS ≤
κ
√
2τ

λ
√
n

+
2κτ

λn
≤ κ
√
2τ (
√
2τ + 1)

λ
√
n

.

For λ ≥ κ
√
8τ(

√
2τ+1)√
n

, we obtain that ‖(CXX + λI)−1(CXX − ĈXX )‖HS ≤ 1
2 and therefore

‖(ĈXX + λI)−1CXX ‖ ≤ 2. Using this along with ‖(ĈXX + λI)−1ĈXX ‖ ≤ 1 and (3.28) in

(3.48), we obtain that for any τ > 0 and λ ≥ κ
√
8τ(

√
2τ+1)√
n

, with probability at least 1 − 2e−τ

over the choice of {xi}ni=1,

‖µ̌λ − µ‖H ≤
√
2κτ + 4τ

√
κ√

n
+ 4A(λ). (3.49)

We now analyze A(λ). To this end, we make two observations.

1. Since k is continuous and X is Polish, H is separable (Steinwart and Christmann 2008;
Lemma 4.33).

2. Since k is c0-universal, ν 7→
∫
k(·,x) dν(x), ν ∈ Mb(X ) is injective, which implies

CXX f =
∫
k(·,x)f(x) dP(x) = 0 ⇒ f = 0, i.e., CXX has a trivial null-space, mean-

ing that R(CXX ) = H .

Based on these observations along with the fact that CXX is compact (as it is Hilbert-Schmidt),
it follows from Sriperumbudur et al. (2013; Proposition A.2) thatA(λ)→ 0 as λ→ 0, therefore
yielding the consistency of µ̌λ. �

Remark 3.4. The following observations follow from Theorem 3.13 in comparison to R-KMSE.

(i) The kernel being c0-universal is critical for the universal consistency of S-KMSE (i.e., S-

KMSE is consistent for any P). This condition ensures that CXX has a trivial null space,

without which the consistency of S-KMSE is guaranteed if µ ∈ R(CXX ) (i.e., requires

the knowledge of P) whereas no such assumption on k or P is required for the consistency

of R-KMSE.
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(ii) A convergence rate for ‖µ̌λ − µ‖H can be obtained by bounding A(λ) in (3.49) where

A(λ) = ‖(CXX + λI)−1CXXµ − µ‖H . The classical approach to bound A(λ) is to

assume µ ∈ R(CXX ), i.e., range space of CXX , which then yieldsA(λ) ≤ ‖C−1
XX

µ‖H λ
(see Sriperumbudur et al. (2013; Proposition A.2)), thereby obtaining ‖µ̌λ − µ‖H =
OP(n

−1/2) for λ = cn−1/2 with c > 0 being a constant independent of n. However, it can

be shown that µ never lies inR(CXX ). To this end, suppose µ ∈ R(CXX ), i.e., ∃ g ∈H

such that µ = CXX g =
∫
k(·,x)g(x) dP(x), which implies

∫
k(·,x)(g(x)−1) dP(x) =

0. Define dµ1(x) , g(x) dP(x). It is obvious that µ1,P ∈ Mb(X ). Since k is c0-

universal, we therefore have µ1 = P which implies g = 1, i.e., 1 ∈ H , yielding a

contradiction as the assumption k(·,x) ∈ C0(X ) ensures that 1 /∈ H . Hence µ /∈
R(CXX ) and so the above argument cannot be used to bound A(λ). On the other hand,

if 1 ∈ H is assumed in place of k being c0-universal, then the above argument can

be used (as there exists g ∈ H such that µ = CXX g) to show that ‖µ̌λ − µ‖H =
OP(n

−1/2), however, compromising on the universal consistency of µ̌λ. This is because if

1 ∈H , then CXX may have a non-trivial null space and therefore the consistency of µ̌λ
is achieved if µ ∈ R(CXX ) (see Sriperumbudur et al. (2013; Proposition A.2)). Owing

to these issues, may be one should explore a different technique (than the one presented in

the proof of Theorem 3.13) to obtain consistency and convergence rate for ‖µ̌λ − µ‖H .

Note that the estimator µ̌λ requires the knowledge of the shrinkage or regularization param-
eter, λ. Similar to R-KMSE, below, we present a data dependent approach to select λ using
leave-one-out cross validation. While the shrinkage parameter for R-KMSE can be obtained in
a simple closed form (see Proposition 3.9), we will see below that finding the corresponding
parameter for S-KMSE is more involved. Evaluating the score function (i.e., (3.38)) naïvely

requires one to solve for µ̂(−i)
λ explicitly for every i, which is computationally expensive. The

following result provides an alternate expression for the score, which can be evaluated more
efficiently.1

Proposition 3.14. The LOOCV score of S-KMSE is given by

LOOCV (λ) =
1

n
tr
(
(K+ λnI)

−1K(K+ λnI)
−1Aλ

)
− 2

n
tr
(
(K+ λnI)

−1Bλ

)

+
1

n

n∑

i=1

k(xi,xi),

where λn , (n − 1)λ, Aλ , 1
(n−1)2

∑n
i=1 ci,λc

⊤
i,λ, Bλ , 1

n−1

∑n
i=1 ci,λk

⊤
i , di,λ , k⊤

i (K +

λnI)
−1ei,

ci,λ , K1− ki − eik
⊤
i 1+ eik(xi,xi) +

eik
⊤
i (K+ λnI)

−1K1

1− di,λ
− eik

⊤
i (K+ λnI)

−1ki

1− di,λ

−eik
⊤
i (K+ λnI)

−1eik
⊤
i 1

1− di,λ
+

eik
⊤
i (K+ λnI)

−1eik(xi,xi)

1− di,λ
,

ki is the ith column of K, 1 , (1, . . . , 1)⊤ and ei , (0, 0, . . . , 1, . . . , 0)⊤ with 1 being in the

ith position. Here tr(A) denotes the trace of a square matrix A.

Proof of Proposition 3.14. From Proposition 3.12, we have µ̌(−i)
λ = (Ĉ

(−i)
XX

+λI)−1Ĉ
(−i)
XX

µ̂(−i)

where Ĉ
(−i)
XX

, 1
n−1

∑
j 6=i k(·,xj) ⊗ k(·,xj) and µ̂(−i) , 1

n−1

∑
j 6=i k(·,xj). Define a ,

1An alternative–more efficient–formulation of LOOCV for S-KMSE is given in Appendix B.
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k(·,xi). It is easy to verify that

Ĉ
(−i)
XX

=
n

n− 1

(
ĈXX −

a⊗ a

n

)
and µ̂(−i) =

n

n− 1

(
µ̂− a

n

)
.

Therefore,

µ̌
(−i)
λ =

n

n− 1

(
(ĈXX + λ′nI)−

a⊗ a

n

)−1(
ĈXX −

a⊗ a

n

)(
µ̂− a

n

)
,

which after using Sherman-Morrison formula reduces to

µ̌
(−i)
λ =

n

n− 1

(
(ĈXX + λ′nI)

−1 +
(ĈXX + λ′nI)

−1(a⊗ a)(ĈXX + λ′nI)
−1

n− 〈a, (ĈXX + λ′nI)−1a〉H

)

(
ĈXX −

a⊗ a

n

)(
µ̂− a

n

)
,

where λ′n , n−1
n λ. Using the idea in the proof of Proposition 3.12, the following can be proved:

(i) (ĈXX + λ′nI)
−1ĈXX µ̂ = n−1Φ(K+ λnI)

−1K1.

(ii) (ĈXX + λ′nI)
−1ĈXXa = Φ(K+ λnI)

−1ki.

(iii) (ĈXX + λ′nI)
−1a = nΦ(K+ λnI)

−1ei.

Based on the above, it is easy to show that

(iv) (ĈXX + λ′nI)
−1(a⊗ a)µ̂ = (ĈXX + λ′nI)

−1a〈a, µ̂〉H = Φ(K+ λnI)
−1eik

⊤
i 1.

(v) (ĈXX + λ′nI)
−1(a⊗ a)a = (ĈXX + λ′nI)

−1a〈a,a〉H = nΦ(K+ λnI)
−1eik(xi,xi).

(vi) (ĈXX +λ′nI)
−1(a⊗a)(ĈXX +λ′nI)

−1ĈXX µ̂ = Φ(K+λnI)
−1eik

⊤
i (K+λnI)

−1K1.

(vii) (ĈXX +λ′nI)
−1(a⊗a)(ĈXX +λ′nI)

−1ĈXXa = nΦ(K+λnI)
−1eik

⊤
i (K+λnI)

−1ki.

(viii) (ĈXX+λ′nI)
−1(a⊗a)(ĈXX+λ′nI)

−1(a⊗a)µ̂ = nΦ(K+λnI)
−1eik

⊤
i (K+λnI)

−1eik
⊤
i 1.

(ix) (ĈXX + λ′nI)
−1(a ⊗ a)(ĈXX + λ′nI)

−1(a ⊗ a)a = n2Φ(K + λnI)
−1eik

⊤
i (K +

λnI)
−1eik(xi,xi).

(x) 〈a, (ĈXX + λ′nI)
−1a〉H = nk⊤

i (K+ λnI)
−1ei.

Using the above in µ̌
(−i)
λ , we obtain

µ̌
(−i)
λ =

1

n− 1
Φ(K+ λnI)

−1ci,λ.

Substituting the above in (3.38) yields the result. �

Unlike R-KMSE, a closed form expression for the minimizer of LOOCV (λ) in Proposi-
tion 3.14 is not possible and so proving the consistency of S-KMSE along with results similar to
those in Theorem 3.10 are highly non-trivial. Hence, we are not able to provide any theoretical
comparison of µ̌λ (with λ being chosen as a minimizer of LOOCV (λ) in Proposition 3.14) with
µ̂. However, in the following section, we provide an empirical comparison through simulations
where we show that the S-KMSE outperforms the empirical estimator.
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X ∼ N (θ, I)

θ̂ML = X
.

θ

target X ∼ N (θ,Σ)

θ̂ML = X
.

θ

target

Figure 3.2: Geometric explanation of a shrinkage estimator when estimating a mean of a Gaussian
distribution. For isotropic Gaussian, the level sets of the joint density of θ̂ML = X are hyperspheres.
In this case, shrinkage has the same effect regardless of the direction. Shaded area represents those
estimates that get closer to θ after shrinkage. For anisotropic Gaussian, the level sets are concentric
ellipsoids, which makes the effect dependent on the direction of shrinkage.

3.4.2 Other Filtering Functions

As pointed out earlier, the effect of shrinkage achieved by S-KMSE is akin to spectral filtering.
In this section, I provide extensions of S-KMSE using different filter functions. First, let us
return to the shrinkage estimator µ̂α considered in Section 3.3, i.e.,

µ̂α = αf∗ + (1− α)µ̂P = α
∑

i

〈f∗, ei〉ei + (1− α)
∑

i

〈µ̂P, ei〉ei,

where (ei)i∈N are the countable orthonormal basis (ONB) of H —countable ONB exist since
H is separable which follows from X being separable and k being continuous (Steinwart and
Christmann 2008; Lemma 4.33). This estimator can be generalized by considering the shrinkage
estimator

µ̂α :=
∑

i

αi〈f∗, ei〉ei +
∑

i

(1− αi)〈µ̂P, ei〉ei

where α := (α1, α2, . . .) ∈ R∞ is a sequence of shrinkage parameters. If ∆α := EP‖µ̂α −
µP‖2 is the risk of this estimator, the following theorem gives an optimality condition on α for
which ∆α < ∆ (see Appendix C.2 for the proof).

Theorem 3.15. For some ONB (ei)i, ∆α −∆ =
∑

i(∆α,i − ∆i) where ∆α,i and ∆i denote

the risk of the ith component of µ̂α and µ̂P, respectively. Then, ∆α,i −∆i < 0 if

0 < αi <
2∆i

∆i + (f∗i − µi)2
, (3.50)

where f∗i and µi denote the Fourier coefficients of f∗ and µP, respectively.

The condition in (3.50) is a component-wise version of the condition given in Theorem 3.3
(see also Muandet et al. (2014a; Theorem 1)) for a class of estimators µ̂α := αf∗ + (1 −
α)µ̂P which may be expressed here by assuming that we have a constant shrinkage parameter
αi = α for all i. Clearly, as the optimal range of αi may vary across coordinates, the class of
estimators in Muandet et al. (2014a) does not allow us to adjust αi accordingly. To understand
why this property is important, let us consider the problem of estimating the mean of Gaussian
distribution illustrated in Figure 3.2. For correlated random variable X ∼ N (θ,Σ), a natural
choice of basis is the set of orthonormal eigenvectors which diagonalize the covariance matrix
Σ of X. Clearly, the optimal range of αi depends on the corresponding eigenvalues. Allowing
for different basis (ei)i and shrinkage parameter αi opens up a wide range of strategies that can
be used to construct “better” estimators.

A natural strategy under this representation is as follows: i) we specify the ONB (ei)i
and project µ̂P onto this basis. ii) we shrink each µ̂i independently according to a pre-defined
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shrinkage rule. iii) the shrinkage estimate is reconstructed as a superposition of the resulting
components. In other words, an ideal shrinkage estimator can be defined formally as a non-
linear mapping:

µ̂P −→
∑

i

h(αi)〈f∗, ei〉ei +
∑

i

(1− h(αi))〈µ̂P, ei〉ei (3.51)

where h : R → R is a shrinkage rule. Since we make no reference to any particular basis
(ei)i, nor to any particular shrinkage rule h, a wide range of strategies can be adopted here. For
example, we can view whitening as a special case in which f∗ is the data average 1

n

∑n
i=1 xi and

1 − h(αi) = 1/
√
αi where αi and ei are the ith eigenvalue and eigenvector of the covariance

matrix, respectively.
Inspired by Theorem 3.15, we adopt the spectral filtering approach as one of the strategies

to construct the estimators of the form (3.51). To this end, owing to the regularization inter-
pretation, we consider estimators of the form

∑n
i=1 βik(xi, ·) for some β ∈ Rn—looking for

such an estimator is equivalent to learning a signed measure that is supported on (xi)
n
i=1. Since∑n

i=1 βik(xi, ·) is a minimizer of (3.44), β should satisfy Kβ = K1n. Here the solution is
trivially β = 1n, i.e., the coefficients of the standard estimator µ̂P if K is invertible. Since
K−1 may not exist and even if it exists, the computation of it can be numerically unstable, the
idea of spectral filtering—this is quite popular in the theory of inverse problems (Engl et al.
1996) and has been used in kernel least squares (Vito et al. 2005)—is to replace K−1 by some
regularized matrices gλ(K) that approximates K−1 as λ goes to zero. Note that unlike in stan-
dard formulation of kernel mean estimation, the regularization is quite important here (i.e., the
case of estimators of the form

∑n
i=1 βik(xi, ·)) without which the the linear system is under

determined. Therefore, we propose the following class of estimators:

µ̂λ :=

n∑

i=1

βik(xi, ·) with β(λ) := gλ(K)K1n, (3.52)

where gλ(·) is a filter function and λ is referred to as a shrinkage parameter. The matrix-valued
function gλ(K) can be described by a scalar function gλ : [0, κ2] → R on the spectrum of K.
That is, if K = UDU⊤ is the eigen-decomposition of K where D = diag(γ̃1, . . . , γ̃n), we
have gλ(D) = diag(gλ(γ̃1), . . . , gλ(γ̃n)) and gλ(K) = Ugλ(D)U⊤. For example, the scalar
filter function of Tikhonov regularization is gλ(γ) = 1/(γ + λ). In the sequel, I will also refer
to this class of estimators as Spectral-KMSE. As we will see later, the estimator µ̌P presented
previously belongs to this class.

Similar to Proposition 3.11, the following proposition expresses µ̂λ in terms of the eigen-
functions of ĈXX and the filter function gλ (the proof, which is similar to that of Proposition
3.11, is given in Appendix C.3).

Proposition 3.16. Let (γi, φi) be eigenvalue and eigenfunction pairs of the empirical covari-

ance operator ĈXX . The Spectral-KMSE satisfies µ̂λ =
∑n

i=1 gλ(γi)γi〈µ̂, φi〉φi, .

By virtue of Proposition 3.16, if we choose 1 − h(γ) := gλ(γ)γ, the Spectral-KMSE is in-
deed in the form of (3.51) when f∗ = 0 and (ei)i is the kernel PCA (KPCA) basis, with the filter
function gλ determining the shrinkage rule. Since by definition gλ(γi) approaches the function
1/γi as λ goes to 0, the function gλ(γi)γi approaches 1 (no shrinkage). As the value of λ in-
creases, we have more shrinkage because the value of gλ(γi)γi deviates from 1, and the behavior
of this deviation depends on the filter function gλ. For example, we can see that Proposition 3.16
generalizes Proposition 3.11 (Theorem 2 in Muandet et al. (2014a)) where the filter function is
gλ(K) = (K + nλI)−1, i.e., g(γ) = 1/(γ + λ). That is, we have gλ(γi)γi = γi/(γi + λ),
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Table 3.1: Update equations for β and corresponding filter functions.

Algorithm Update Equation (a := K1n −Kβt−1) Filter Function

L2 Boosting βt ← βt−1 + ηa g(γ) = η
∑t−1

i=1(1− ηγ)i
Acc. L2 Boosting βt ← βt−1 + ωt(β

t−1 − βt−2) + κt
n a g(γ) = pt(γ)

Iterated Tikhonov (K+ nλI)βi = 1n + nλβi−1 g(γ) = (γ+λ)t−γt
λ(γ+λ)t

Truncated SVD None g(γ) = γ−1
1{γ≥λ}
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Figure 3.3: Plot of g(γ)γ.

implying that the effect of shrinkage is relatively larger in the low-variance direction. In the
following, we discuss well-known examples of spectral filtering algorithms obtained by various
choices of gλ. Update equations for β(λ) and corresponding filter functions are summarized in
Table 3.1. Figure 3.3 illustrates the behavior of these filter functions.

L2 Boosting. This algorithm, also known as gradient descent or Landweber iteration, finds a
weight β by performing a gradient descent iteratively. Thus, we can interpret early stopping

as shrinkage and the reciprocal of iteration number as shrinkage parameter, i.e., λ ≈ 1/t. The
step-size η does not play any role for shrinkage (Vito et al. 2006), so we use the fixed step-size
η = 1/κ2 throughout.

Accelerated L2 Boosting. This algorithm, also known as ν-method, uses an accelerated gra-
dient descent step, which is faster than L2 Boosting because we only need

√
t iterations to

get the same solution as the L2 Boosting would get after t iterations. Consequently, we have
λ ≈ 1/t2.

Iterated Tikhonov. This algorithm can be viewed as a combination of Tikhonov regulariza-
tion and gradient descent. Both parameters λ and t play the role of shrinkage parameter.

Truncated Singular Value Decomposition. This algorithm can be interpreted as a projection
onto the first principal components of the KPCA basis. Hence, we may interpret dimensionality

reduction as shrinkage and the size of reduced dimension as shrinkage parameter. This approach
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has been used in Song and Dai (2013) to improve the kernel mean estimation under the low-rank
assumption.

Most of the above spectral filtering algorithms allow one to compute the coefficients β

without explicitly computing the eigen-decomposition of K, as we can see in Table 3.1, and
some of which may have no natural interpretation in terms of regularized risk minimization
considered previously. Lastly, an initialization of β corresponds to the target of shrinkage. In
what follows, I assume that β0 = 0 throughout.

3.4.3 Theoretical Properties of Spectral-KMSE

It is of interest to study the consistency and convergence rate of µ̂λ. Our main goal here is
to derive convergence rates for a broad class of algorithms given a set of sufficient conditions
on the filter function gλ. We believe that for some algorithms it is possible to derive the best
achievable bounds, which requires ad-hoc proofs for each algorithm. To this end, we provide a
set of conditions any admissible filter function, gλ must satisfy.

Definition 3.1. A family of filter functions gλ : [0, κ2]→ R, 0 < λ ≤ κ2 is said to be admissible

if there exists finite positive constants B, C , D, and η0 (all independent of λ) such that

(C1) supγ∈[0,κ2] |γgλ(γ)| ≤ B,

(C2) supγ∈[0,κ2] |rλ(γ)| ≤ C ,

(C3) supγ∈[0,κ2] |rλ(γ)|γη ≤ Dλη, ∀ η ∈ (0, η0] hold, where rλ(γ) := 1− γgλ(γ).

These conditions are quite standard in the theory of inverse problems (Engl et al. 1996,
Gerfo et al. 2008). The constant η0 is called the qualification of gλ and is a crucial factor that
determines the rate of convergence in inverse problems. As we will see below, that the rate of
convergence of µ̂λ depends on two factors: (a) smoothness of µP which is usually unknown
as it depends on the unknown P and (b) qualification of gλ which determines how well the
smoothness of µP is captured by the spectral filter, gλ.

Theorem 3.17. Suppose gλ is admissible in the sense of Definition 3.1. Let κ = supx∈X
√
k(x,x).

If µP ∈ R(Cβ
XX

) for some β > 0, then for any δ > 0, with probability at least 1− 3e−δ ,

‖µ̂λ−µP‖ ≤
2κB + κB

√
2δ√

n
+Dλmin{β,η0}‖C−β

XX
µP‖+Cτ

(2
√
2κ2
√
δ)min{1,β}

nmin{1/2,β/2} ‖C−β
XX

µP‖,

whereR(A) denotes the range space ofA and τ is some universal constant that does not depend

on λ and n. Therefore,

‖µ̂λ − µP‖ = OP

(
n−min{1/2,β/2}

)
with λ = o

(
n
−min{1/2,β/2}

min{β,η0}

)
.

Theorem 3.17 shows that the convergence rate depends on the smoothness of µP which is
imposed through the range space condition that µP ∈ R(Cβ

XX
) for some β > 0. Note that this

is in contrast to the estimator in Section 3.3 which does not require any smoothness assumptions
on µP. It can be shown that the smoothness of µP increases with increase in β. This means,
irrespective of the smoothness of µP for β > 1, the best possible convergence rate is n−1/2

which matches with that of KMSE in Section 3.3. While the qualification η0 does not seem
to directly affect the rates, it controls the rate at which λ converges to zero. For example, if
gλ(γ) = 1/(γ + λ) which corresponds to Tikhonov regularization, it can be shown that η0 = 1
which means for β > 1, λ = o(n−1/2) implying that λ cannot decay to zero slower than n−1/2.
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Ideally, one would require a larger η0 (preferably infinity which is the case with truncated SVD)
so that the convergence of λ to zero can be made arbitrarily slow if β is large. This way, both β
and η0 control the behavior of the estimator.

In fact, Theorem 3.17 provides a choice for λ to construct the Spectral-KMSE. However,
this choice of λ depends on β which is not known in practice (although η0 is known as it is deter-
mined by the choice of gλ). Therefore, λ is usually learnt from data through cross-validation or
through Lepski’s method (Lepski et al. 1997) for which guarantees similar to the one presented
in Theorem 3.17 can be provided. However, irrespective of the data-dependent/independent
choice for λ, checking for the admissibility of Spectral-KMSE is very difficult and we intend to
consider it in future work.

3.5 Sparse Approximation

The regression perspective of kernel mean estimation allows us to construct diverse estimators
of kernel mean by imposing different regularizers. Assume that µ̂ =

∑n
i=1 βjφ(xi) for some

β ∈ Rn. An interesting choice of regularizer is the ell1-norm of β, which in addition to
shrinkage also induces the sparsity on β. Hence, the sparse KME can be formulated as follow:

min
β∈Rn

1

2n

n∑

i=1

∥∥∥∥∥∥
k(xi, ·)−

n∑

j=1

βjk(xj , ·)

∥∥∥∥∥∥

2

H

+ λ‖β‖1, (3.53)

where ‖β‖1 =
∑

i |βi|. It is important to note that this formulation is fundamentally different
from the standard lasso formulation (Tibshirani 1996). That is, we essentially performs a sample

selection, whereas the lasso (and most of its extensions) often performs a variable selection.

Despite the difference, it is possible to adopt a lasso software package in our problem. First,
recall that the solution of the standard KME can be obtained by solving the systems of linear
equations Kβ = K1n. Letting y = K1n, the sparse KME formulation can then be rewritten in
the standard form as

min
β∈Rn

1

2n
‖Kβ − y‖22 + λ‖β‖1. (3.54)

That is, the matrix K acts as a design matrix and y is a regression target. Consequently, several
solvers for lasso can be used to learn the sparse KME.

The sparse representation of the kernel mean is useful in some applications of kernel mean
embedding such as reinforcement learning and the state-space model because the kernel mean
has to be applied repeatedly (Kanagawa et al. 2013, McCalman et al. 2013). In Grünewälder
et al. (2012), the sparse conditional mean embedding has been proposed using the regression
formulation of the conditional kernel mean. Additionally, the proposed sparse kernel mean can
be applied in applications where one need to find a summary of the dataset, e.g., choosing pivot
points in Nyström method, data summarization and squashing, etc. I will consider this in greater
detail in future works.

As a demonstration I perform a simple simulation using the sparse approximation of kernel
mean. Figure 3.4 depicts the average losses of the KME and its approximations using subsam-
pling, LASSO, and elastic net. Clearly, the estimators obtained from minimizing (3.54) using
LASSO and elastic net provides a much better approximation than the subsampling method at
the same level of sparsity.
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Figure 3.4: The comparison between the KME and its sparse approximations obtained from (3.54).

3.6 Probabilistic View

This section presents the probabilistic account of the kernel mean estimator and shrinkage. We
will see that while the S-KMSE can be viewed as a posterior mean obtained from the product
of a prior and a data-dependent likelihood, the R-KMSE cannot. First, recall the primal form of
loss functional:

E(g) , 1

n

n∑

i=1

‖φ(xi)− g‖2H , g ∈H . (3.55)

Estimating g directly using (3.55) can be difficult as the RKHS H is usually high-dimensional,
if not infinite. By representer theorem, we have g =

∑n
i=1 βiφ(xi) for some β ∈ Rn. As a

result, we can transform Equation (3.55) into its dual form

E∗(β) , 1

n

n∑

i=1

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

H

, β ∈ Rn. (3.56)

Consequently, the estimation of g is amount to estimating the weight vector β. Simple calcula-
tion gives the dual form (3.56) in term of the kernel matrix K as

E∗(β) = β⊤Kβ − 2β⊤K1n +
1

n
trace(K) . (3.57)

The standard kernel mean estimator

µ̂P =
1

n

n∑

i=1

φ(xi) =
1

n

n∑

i=1

k(xi, ·)

can be obtained as a minimizer of the primal form (3.55) and the corresponding value of β,
i.e., β = 1n, is a minimizer of the dual form (3.56). We assume that the kernel matrix K is
invertible.

It is straightforward to see that the dual form (3.57) is quadratic in β, which implies that
the same solution can be obtained by minimizing a negative log-likelihood of some Gaussian
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distribution over β. That is, let N (β;ν,Σ) be the Gaussian distribution over β with mean ν

and covariance matrix Σ. Consequently, we have

E ′(β) , − lnN (β;1n,K
−1)

= − ln

[
1√

(2π)n|K−1|
exp

(
−1

2
(β − 1n)

⊤K(β − 1n)

)]

= ln
√

(2π)n|K−1|+ 1

2
(β − 1n)

⊤K(β − 1n)

= ln
√

(2π)n|K−1|+ 1

2
1nK1n +

1

2
β⊤Kβ − β⊤K1n

=
1

2
β⊤Kβ − β⊤K1n + const,

where const denotes constant terms that do not depend on β. It is easy to see that E∗(β) and
E ′(β) have the same minimizer, i.e., β = 1n. If the Gram matrix K is strictly positive-definite,
the minimizer is unique.

As a result, the weight vector β of the standard kernel mean estimator can be considered
as a maximum-likelihood estimate of the probability distribution N (β;1n,K

−1), which differs
from the likelihood in the usual sense, i.e., the probability density of the observations given the
parameters. Instead, it specifies the probability density of the weight vector β. In the following
we will denote N (β;1n,K

−1) by PX to emphasize its dependence on the data.
Despite being different from the standard likelihood, the distribution PX may still be in-

terpreted as a data-dependent belief over possible values of β. Following standard Bayesian
formalism, one may want to specify alternative belief over the values of β. For example,

PM , N (β;0,Σ).

Combining PX and PM yields

Q , PX · PM = N (β;1n,K
−1) · N (β;0,Σ)

∝ exp

(
−1

2
(β − 1n)

⊤K(β − 1n)

)
exp

(
−1

2
β⊤Σβ

)

∝ exp

(
−1

2
(β − β̄)(K+Σ−1)(β − β̄)

)

where β̄ = (K+Σ−1)−1K1n and this is recognized as the form of Gaussian with mean β̄ and
covariance matrix A−1

β ∼ N (β; β̄,A−1)

where A = K+Σ−1. By imposing different prior PM on β, we would obtain different mean
β̄ and covariance matrix A−1. For example, if Σ = σ2I where σ2 specifies the uncertainty of
our belief, we have

β̄ = (K+ σ−2I)−1K1n

which corresponds to the S-KMSE if we set nλ = σ−2. Alternatively, one may consider the
covariance matrix Σ = σ2K−1 which reflects covariance structure obtained from the observa-
tions. In which case, we have

β̄ = (K+ σ−2K)−1K1n =
1

1 + σ−2
K−1K1n =

1

1 + σ−2
1n

which corresponds to the R-KMSE if we set λ = σ−2.
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In other words, if we think of PX as a likelihood, then it encodes the dependence of β on
the observations x through the Gram matrix K. For S-KMSE, the prior PM is independent of
the observations, whereas the “prior” of R-KMSE is data-dependent - it is a function of the x.
Hence, S-KMSE can be written as the product of a prior and a data-dependent likelihood as
in the standard Bayesian formalism, but R-KMSE cannot. Thus, it is different from standard
Bayesian formalism (Rasmussen and Williams 2005; Chapter 2.1). Moreover, the variance term
σ2 plays similar role to the regularization parameter λ. That is, the more we are uncertain about
the alternative value of β, the less we should shrink toward it.

3.7 Experimental Results

In this section, we empirically compare the proposed shrinkage estimators to the standard esti-
mator of the kernel mean on both synthetic and real-world datasets. Specifically, we consider
the following estimators: i) empirical/standard kernel mean estimator (KME), ii) KMSE whose
parameter is obtained via empirical bound (B-KMSE), iii) regularized KMSE whose parameter
is obtained via Proposition 3.9 (R-KMSE), and iv) spectral KMSE whose parameter is obtained
via Proposition 3.14 (S-KMSE).

3.7.1 Synthetic Data

Given the true data-generating distribution P and the i.i.d. sample X = {x1,x2, . . . ,xn} from
P, we evaluate different estimators using the loss function

L(β,X,P) ,

∥∥∥∥∥
n∑

i=1

βik(xi, ·)− Ex∼P[k(x, ·)]
∥∥∥∥∥

2

H

, (3.58)

where β is the weight vector associated with different estimators. Then, we can estimate the risk
of the estimator by averaging overm independent copies ofX, i.e., R̂ = 1

m

∑m
j=1 L(βj ,Xj ,P).

To allow for an exact calculation of L(β,X,P), we consider P to be a mixture-of-Gaussians
distribution and k being one of the following kernel functions: i) linear kernel k(x,x′) =
x⊤x′, ii) polynomial degree-2 kernel k(x,x′) = (x⊤x′ + 1)2, iii) polynomial degree-3 kernel
k(x,x′) = (x⊤x′ + 1)3 and iv) Gaussian RBF kernel k(x,x′) = exp

(
−‖x− x′‖2/2σ2

)
.

We refer to them as LIN, POLY2, POLY3, and RBF, respectively. The analytic forms of
Ex∼P[k(x, ·)] for Gaussian distribution are given in Song et al. (2008) and Muandet et al.
(2012). Unless otherwise stated, we set the bandwidth parameter of the Gaussian kernel as
σ2 = median

{
‖xi − xj‖2 : i, j = 1, . . . , n

}
, i.e., the median heuristic.

Gaussian Distribution

We begin our empirical studies by considering the simplest case in which the distribution P is
a Gaussian distribution N (µ, I) on Rd where d = 1, 2, 3 and k is a linear kernel. In this case,
the problem of kernel mean estimation reduces to just estimating the mean µ of the Gaussian
distribution N (µ, I). We consider only shrinkage estimators of form µ̂α = αf∗+(1−α)µ̂. The
true mean µ of the distribution is chosen to be 1, (1, 0)⊤, and (1, 0, 0)⊤ , respectively. Figure 3.5
depicts the comparison between the standard estimator and the shrinkage estimator, µ̂α when
the target f∗ is the origin. We can clearly see that even in this simple case, an improvement
can be gained by applying a small shrinkage. Furthermore, the improvement becomes more
substantial as we increase the dimensionality of the underlying space. Figure 3.6 illustrates
similar results when f∗ 6= 0 but f∗ ∈ {2, (2, 0)⊤, (2, 0, 0)⊤}. Interestingly, we can still observe
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Figure 3.5: The comparison between standard estimator, µ̂ and shrinkage estimator, µ̂α (with f∗ = 0)
of the mean of the Gaussian distributionN (µ,Σ) on Rd where d = 1, 2, 3.
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Figure 3.6: The risk comparison between standard estimator, µ̂ and shrinkage estimator, µ̂α (with f∗ ∈
{2, (2, 0)⊤, (2, 0, 0)⊤}) of the mean of the Gaussian distributionN (µ,Σ) on Rd where d = 1, 2, 3.

similar improvement, which demonstrates that the choice of target f∗ can be arbitrary when no
prior knowledge about µP is available.

Mixture of Gaussians Distributions

To simulate a more realistic case, let y be a sample from P ,
∑4

i=1 πiN (θi,Σi). In the
following experiments, the sample x is generated from the following generative process:

x = y + ε, θij ∼ U(−10, 10), Σi ∼ W(2× Id, 7), ε ∼ N (0, 0.2 × Id),

where U(a, b) and W(Σ0, df) represent the uniform distribution and Wishart distribution, re-
spectively. We set π = (0.05, 0.3, 0.4, 0.25)⊤ . The choice of parameters here is quite arbitrary;
we have experimented using various parameter settings and the results are similar to those pre-
sented here.

Figure 3.7a depicts the comparison between the standard kernel mean estimator and the
shrinkage estimator, µ̂α when the kernel k is the Gaussian RBF kernel. For shrinkage estimator
µ̂α, we consider f∗ = C × k(x, ·) where C is a scaling factor and each element of x is a
realization of uniform random variable on (0, 1). That is, we allow the target f∗ to change
depending on the value of C . As the absolute value of C increases, the target function f∗ will
move further away from the origin. The shrinkage parameter α is determined using the empirical
bound, i.e., α̃ = ∆̂/(∆̂ + ‖f∗ − µ̂‖2

H
). As we can see in Figure 3.7a, the results reveal how

important the choice of f∗ is. That is, we may get substantial improvement over the empirical
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Figure 3.7: (a) The risk comparison between µ̂ (KME) and µ̂α̃ (KMSE) where α̃ = ∆̂/(∆̂ + ‖f∗ −
µ̂‖2

H
). We consider when f∗ = C × k(x, ·) where x is drawn uniformly from a pre-specified range and

C is a scaling factor. (b) The probability of improvement and the risk difference as a function of shrinkage
parameter α averaged over 1,000 iterations. As the value of α increases, we get more improvement in
term of the risk, whereas the probability of improvement decreases as a function of α.

estimator if appropriate prior knowledge is incorporated through f∗, which in this case suggests
that f∗ should lie close to the origin. We intend to investigate the topic of prior knowledge in
more detail in our future work.

Previous comparisons between standard estimator and shrinkage estimator is based entirely
on the notion of a risk, which is in fact not useful in practice as we only observe a single copy
of sample from the probability distribution. Instead, one should also look at the probability that,
given a single copy of sample, the shrinkage estimator outperforms the standard one in term of
a loss. To this end, we conduct an experiment comparing the standard estimator and shrinkage
estimator using the Gaussian RBF kernel. In addition to the risk comparison, we also compare
the probability that the shrinkage estimator gives smaller loss than that of the standard estimator.
To be more precise, the probability is defined as a proportion of the samples drawn from the same
distribution whose shrinkage loss is smaller than the loss of the standard estimator. Figure 3.7b
illustrates the risk difference (∆α −∆) and the probability of improvement (i.e., the fraction of
times ∆α < ∆) as a function of shrinkage parameter α. In this case, the value of α is specified as
a proportion of empirical upper bound 2∆̂/(∆̂+‖µ̂‖2

H
). The results suggest that the shrinkage

parameter α controls the trade-off between the amount of improvement in terms of risk and
the probability that the shrinkage estimator will improve upon the standard one. However, this
trade-off only holds up to a certain value of α. As α becomes too large, both the probability of
improvement and the amount of improvement itself decrease, which coincides with the intuition
given for the positive-part shrinkage estimators (cf. Section 3.3.1).

Shrinkage Estimators via Leave-One-Out Cross-Validation

In addition to the empirical upper bound, one can alternatively compute the shrinkage parameter
using leave-one-out cross-validation proposed in Section 3.4. Our goal here is to compare the
B-KMSE, R-KMSE and S-KMSE on synthetic data when the shrinkage parameter λ is chosen
via leave-one-out cross-validation procedure. Note that the only difference between B-KMSE
and R-KMSE is the way we compute the shrinkage parameter.

Figure 3.8 shows the empirical risk of different estimators using different kernels as we
increase the value of shrinkage parameter λ (note that R-KMSE and S-KMSE in Figure 3.8
refer to those in (3.36) and (3.45) respectively). Here we scale the shrinkage parameter by the
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Figure 3.8: The average loss of KME (left), R-KMSE (middle) and S-KMSE (right) estimators with
different values of shrinkage parameter. We repeat the experiments over 30 different distributions with
n = 10 and d = 30.

smallest non-zero eigenvalue γ0 of the kernel matrix K. In general, we find that R-KMSE and
S-KMSE outperforms KME. Nevertheless, as the shrinkage parameter λ becomes large, there
is a tendency that the specific shrinkage estimate might actually perform worse than the KME,
e.g., see LIN kernel and outliers in Figure 3.8. The result also supports our previous observa-
tion regarding Figure 3.7b, which suggests that it is very important to choose the parameter λ
appropriately.

To demonstrate the leave-one-out cross-validation procedure, we conduct similar experi-
ments in which the parameter λ is chosen by the proposed LOOCV procedure. Figure 3.9
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Figure 3.9: The percentage of improvement compared to KME over 30 different distributions of B-
KMSE, R-KMSE and S-KMSE with varying sample size (n) and dimension (d). For B-KMSE, we
calculate α using (3.20), whereas R-KMSE and S-KMSE use LOOCV to choose λ.

depicts the percentage of improvement (w.r.t. the empirical risk of the KME2) as we vary the
sample size and dimension of the data. Clearly, B-KMSE, R-KMSE and S-KMSE outper-
form the standard estimator. Moreover, both R-KMSE and S-KMSE tend to outperform the B-
KMSE. We can also see that the performance of S-KMSE depends on the choice of kernel. This
makes sense intuitively because S-KMSE also incorporates the eigen-spectrum of K, whereas
R-KMSE does not. The effects of both sample size and data dimensionality are also transparent
from Figure 3.9. While it is intuitive to see that the improvement gets smaller with increase in
sample size, it is a bit surprising to see that we can gain much more in high-dimensional input
space, especially when the kernel function is non-linear, because the estimation happens in the
feature space associated with the kernel function rather than in the input space. Lastly, we note
that the improvement is more substantial in the “large d, small n” paradigm.

3.7.2 Real Data

To evaluate the proposed estimators on real-world data, we consider several benchmark appli-
cations, namely, classification via Parzen window classifier, density estimation via kernel mean
matching (Song et al. 2008), and discriminative learning on distributions (Muandet et al. 2012,
Muandet and Schölkopf 2013). For some of these tasks we employ datasets from the UCI repos-
itories. We use only real-valued features, each of which is normalized to have zero mean and
unit variance.

2If we denote the loss of KME and KMSE as ℓKME and ℓKMSE, respectively, the percentage of improvement is
calculated as 100× (ℓKME − ℓKMSE)/ℓKME.
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Table 3.2: The classification error rate of Parzen window classifier via different kernel mean estima-
tors. The boldface represents the result whose difference from the baseline, i.e., KME, is statistically
significant.

Dataset
Classification Error Rate

KME B-KMSE R-KMSE S-KMSE

Climate Model 0.0348±0.0118 0.0348±0.0118 0.0348±0.0118 0.0348±0.0118
Ionosphere 0.2873±0.0343 0.2768±0.0359 0.2749±0.0341 0.2800±0.0367
Parkinsons 0.1318±0.0441 0.1250±0.0366 0.1157±0.0395 0.1309±0.0396

Pima 0.2951±0.0462 0.2921±0.0442 0.2937±0.0458 0.2943±0.0471
SPECTF 0.2583±0.0829 0.2597±0.0817 0.2263±0.0626 0.2417±0.0651

Iris 0.1079±0.0379 0.1071±0.0389 0.1055±0.0389 0.1040±0.0383
Wine 0.1301±0.0381 0.1183±0.0445 0.1161±0.0414 0.1183±0.0431

Parzen Window Classifiers

One of the oldest and best-known classification algorithms is the Parzen window classifier (?).
It is easy to implement and is one of the powerful non-linear supervised learning techniques.
Suppose we have data points from two classes, namely, positive class and negative class. For
positive class, we observe X , {x1,x2, . . . ,xn} ⊂ X , while for negative class we have Y ,
{y1,y2, . . . ,ym} ⊂ X . The Parzen window classifier is given by

f(z) = sgn


 1

n

n∑

i=1

k(z,xi)−
1

m

m∑

j=1

k(z,yj) + b


 = sgn (µ̂X(z)− µ̂Y(z) + b) , (3.59)

where b is a bias term given by b = 1
2(‖µ̂Y‖2H − ‖µ̂X‖2H ). This algorithm is often referred to

as the lazy algorithm as it does not require training.

In brief, the classifier (3.59) assigns the data point z to the class whose empirical kernel
mean µ̂ is closer to the feature map k(z, ·) of the data point in the RKHS. On the other hand,
we may view the empirical kernel mean µ̂X , 1

n

∑n
i=1 k(xi, ·) (resp. µ̂Y , 1

m

∑m
j=1 k(yj , ·))

as a standard empirical estimate, i.e., KME, of the true kernel mean representation of the class-
conditional distribution P(X|Y = +1) (resp. P(X|Y = −1)). Given the improvement of
shrinkage estimators over the empirical estimator of kernel mean, it is natural to expect that the
performance of Parzen window classifier can be improved by employing shrinkage estimators
of the true mean representation.

Our goal in this experiment is to compare the performance of Parzen window classifier using
different kernel mean estimators. That is, we replace µ̂X and µ̂Y by their shrinkage counterparts
and evaluate the resulting classifiers across several datasets taken from the UCI machine learn-
ing repository. In this experiment, we only consider the Gaussian RBF kernel whose bandwidth
parameter is chosen by cross-validation procedure over a uniform grid σ ∈ [0.1, 2]. We use
30% of each dataset as a test set and the rest as a training set. We employ a simple pairwise
coupling and majority vote for multi-class classification. We repeat the experiments 100 times
and perform the paired-sample t-test on the results at 5% significance level. Table 3.2 reports
the classification error rates of the Parzen window classifiers with different kernel mean esti-
mators. Although the improvement is not substantial, we can see that the shrinkage estimators
consistently give better performance than the standard estimator.
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Density Estimation

We perform density estimation via kernel mean matching (Song et al. 2008), wherein we fit the
density Q =

∑m
j=1 πjN (θj ,σ

2
j I) to each dataset by the following minimization problem:

min
π,θ,σ

‖µ̂− µQ‖2H subject to
m∑

j=1

πj = 1, πj ≥ 0 . (3.60)

The empirical mean map µ̂ is obtained from samples using different estimators, whereas µQ is
the kernel mean embedding of the density Q. Unlike experiments in Song et al. (2008), our goal
is to compare different estimators of µP (where P is the true data distribution), by replacing µ̂ in
(3.60) with different shrinkage estimators. A better estimate of µP should lead to better density
estimation, as measured by the negative log-likelihood of Q on the test set, which we choose to
be 30% of the dataset. For each dataset, we set the number of mixture components m to be 10.
The model is initialized by running 50 random initializations using the k-means algorithm and
returning the best. We repeat the experiments 30 times and perform the paired sign test on the
results at 5% significance level.3

The average negative log-likelihood of the model Q, optimized via different estimators, is
reported in Table 3.3. In most cases, both R-KMSE and S-KMSE consistently achieve smaller
negative log-likelihood when compared to KME. B-KMSE also tends to outperform the KME.
However, in few cases the KMSEs achieve larger negative log-likelihood, especially when we
use linear and degree-2 polynomial kernels. This highlight the potential of our estimators in a
non-linear setting.

Discriminative Learning on Probability Distributions

The last experiment involves the discriminative learning on a collection of probability distri-
butions via the kernel mean representation. A positive semi-definite kernel between distri-
butions can be defined via their kernel mean embeddings. That is, given a training sample
(P̂1, y1), . . . , (P̂m, ym) ∈ P × {−1,+1} where P̂i :=

1
ni

∑ni
p=1 δxip and xip ∼ Pi, the linear

kernel between two distributions is approximated by

〈µ̂Pi , µ̂Pj 〉H =

〈
ni∑

p=1

βipφ(x
i
p),

nj∑

q=1

βjqφ(x
j
q)

〉

H

=

ni∑

p=1

nj∑

q=1

βipβ
j
qk(x

i
p,x

j
q),

where the weight vectors βi and βj come from the kernel mean estimates of µPi and µPj , re-
spectively. The non-linear kernel can then be defined accordingly, e.g., κ(Pi,Pj) = exp(‖µ̂Pi−
µ̂Pj‖2H /2σ2). Our goal in this experiment is to investigate if the shrinkage estimators of the ker-
nel mean improve the performance of discriminative learning on distributions. To this end, we
conduct experiments on natural scene categorization using support measure machine (SMM)
(Muandet et al. 2012) and group anomaly detection on a high-energy physics dataset using
one-class SMM (OCSMM) (Muandet and Schölkopf 2013). We use both linear and non-linear
kernels where the Gaussian RBF kernel is employed as an embedding kernel (Muandet et al.
2012). All hyper-parameters are chosen by 10-fold cross-validation.4 For our unsupervised
problem, we repeat the experiments using several parameter settings and report the best results.
Table 3.4 reports the classification accuracy of SMM and the area under ROC curve (AUC) of

3The paired sign test is a nonparametric test that can be used to examine whether two paired samples have the
same distribution. In our case, we compare B-KMSE, R-KMSE and S-KMSE against KME.

4In principle one can incorporate the shrinkage parameter into the cross-validation procedure. In this work we
are only interested in the value of λ returned by the proposed LOOCV procedure.
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(b) runtime vs. sample size
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Figure 3.10: (a) For iterative algorithms, the number of iterations acts as shrinkage parameter. (b) The
iterative algorithms such as Landweber and accelerated Landweber are more efficient than the S-KMSE.
(c) A percentage of improvement w.r.t. the KME, i.e., 100 × (R − Rλ)/R where R and Rλ denote
the approximated risk of KME and KMSE, respectively. Most Spectral-KMSE algorithms outperform
R-KMSE which does not take into account the geometric information of the RKHS.

OCSMM using different kernel mean estimators. All shrinkage estimators consistently lead to
better performance on both SMM and OCSMM when compared to KME.

In summary, the proposed shrinkage estimators outperform the standard KME. While B-
KMSE and R-KMSE are very competitive compared to KME, S-KMSE tends to outperform
both B-KMSE and R-KMSE, however, sometimes leading to poor estimates depending on the
dataset and the kernel function.

3.7.3 Comparison of Filter Functions

The main objective of our empirical studies in this section is to compare different filter functions
for the Spectral-KMSE.

Synthetic data. Given the i.i.d. sample X = {x1,x2, . . . ,xn} from P where xi ∈ Rd, we
evaluate different estimators using the loss function (3.58). The risk of the estimator is sub-
sequently approximated by averaging over m independent copies of X. In this experiment,
we set n = 50, d = 20, and m = 1000. Throughout, we use the Gaussian RBF kernel
k(x,x′) = exp(−‖x − x′‖2/2σ2) whose bandwidth parameter is calculated using the median
heuristic. To allow for an analytic calculation of the loss L(β,X,P), we assume that the distri-
bution P is a d-dimensional mixture of Gaussians. Specifically, the data are generated as follows:
x ∼∑4

i=1 πiN (θi,Σi) + ε, θij ∼ U(−10, 10),Σi ∼ W(3 × Id, 7), ε ∼ N (0, 0.2 × Id) where
U(a, b) andW(Σ0, df) are the uniform distribution and Wishart distribution, respectively. We
set π = [0.05, 0.3, 0.4, 0.25].

A natural approach for choosing λ is cross-validation procedure, which can be performed ef-
ficiently for the iterative methods such as Landweber and accelerated Landweber. For these two
algorithms, we evaluate the leave-one-out score and select βt at the iteration t that minimizes
this score (see, e.g., Figure 3.10a). Note that these methods have the built-in property of com-
puting the whole regularization path efficiently. Since each iteration of the iterated Tikhonov is
in fact equivalent to the S-KMSE, we assume t = 3 for simplicity and use the efficient LOOCV
procedure proposed earlier to find λ at each iteration. Lastly, the truncation limit of TSVD
can be identified efficiently by mean of generalized cross-validation (GCV) procedure (Golub
et al. 1979). To allow for an efficient calculation of GCV score, we resort to the alternative loss
function L(β) := ‖Kβ −K1n‖22.
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Table 3.3: Average negative log-likelihood of the modelQ on test points over 30 randomizations. The boldface represents the result whose difference from the baseline,
i.e., KME, is statistically significant.

Dataset
LIN POLY2 POLY3 RBF

KME B-KMSE R-KMSE S-KMSE KME B-KMSE R-KMSE S-KMSE KME B-KMSE R-KMSE S-KMSE KME B-KMSE R-KMSE S-KMSE

1. ionosphere 39.878 40.038 39.859 39.823 34.651 34.352 34.390 34.009 35.943 35.575 35.543 34.617 41.601 40.976 40.817 41.229
2. sonar 72.240 72.044 72.198 72.157 100.420 99.573 97.844 97.783 72.294 71.933 72.003 71.835 98.540 95.815 93.458 93.010

3. Australian 18.277 18.280 18.294 18.293 18.357 18.381 18.391 18.429 18.611 18.463 18.466 18.495 19.428 19.325 19.418 19.393
4. specft 57.444 57.2808 57.218 57.224 67.018 66.979 66.431 66.391 59.585 58.969 60.006 60.616 65.674 65.138 65.039 64.699

5. wdbc 31.801 31.759 31.776 31.781 32.421 32.310 32.373 32.316 31.183 31.167 31.127 31.110 36.471 36.453 36.335 35.898
6. wine 16.019 16.000 16.039 16.009 17.070 16.920 16.886 16.960 16.393 16.300 16.309 16.202 17.569 17.546 17.498 17.498
7. satimage 25.258 25.317 25.219 25.186 24.214 24.111 24.132 24.259 25.284 25.276 25.239 25.263 23.741 23.753 23.728 24.384

8. segment 18.326 17.868 18.055 18.124 18.571 18.292 18.277 18.631 19.642 19.549 19.404 19.628 21.946 21.598 21.580 21.822

9. vehicle 16.633 16.519 16.521 16.499 16.096 15.998 16.031 16.041 16.288 16.278 16.281 16.263 18.260 18.056 18.119 17.911

10. svmguide2 27.298 27.273 27.281 27.276 27.812 28.030 27.985 27.975 28.014 28.177 28.321 28.250 28.132 28.122 28.119 28.020
11. vowel 12.632 12.626 12.629 12.656 12.532 12.471 12.479 12.472 13.069 13.061 13.056 13.054 13.526 13.486 13.462 13.453

12. housing 14.637 14.441 14.469 14.296 15.543 15.467 15.414 15.390 15.592 15.543 15.509 15.408 16.487 16.239 16.424 16.019

13. bodyfat 17.527 17.362 17.348 17.396 17.386 17.358 17.356 17.329 16.418 16.393 16.305 16.194 17.875 17.652 17.607 17.651

14. abalone 5.706 5.665 5.708 5.722 7.281 7.116 7.185 7.025 5.864 5.847 5.853 5.832 6.068 6.039 6.049 5.910
15. glass 9.245 9.211 9.198 9.217 8.571 8.473 8.457 8.414 9.050 8.991 9.012 8.737 9.606 9.605 9.575 9.573

Table 3.4: The classification accuracy of SMM and the area under ROC curve (AUC) of OCSMM using different estimators to construct the kernel on distributions.

Estimator
Linear Kernel Non-linear Kernel

SMM OCSMM SMM OCSMM
KME 0.5432 0.6955 0.6017 0.9085
B-KMSE 0.5455 0.6964 0.6106 0.9088
R-KMSE 0.5521 0.6970 0.6303 0.9105
S-KMSE 0.5606 0.6970 0.6412 0.9063
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3.8. DISCUSSIONS

Figure 3.10 reveals interesting aspects of the Spectral-KMSE. Firstly, as we can see in Figure
3.10a, the number of iterations acts as shrinkage parameter whose optimal value can be attained
within just a few iterations. Moreover, these methods do not suffer from “over-shrinking” be-
cause λ→ 0 as t→∞. In other words, if the chosen t happens to be too large, the worst we can
get is the standard empirical estimator. Secondly, Figure 3.10b demonstrates that both Landwe-
ber and accelerated Landweber are more computationally efficient than the S-KMSE. Lastly,
Figure 3.10c suggests that the improvement of shrinkage estimators becomes increasingly re-
markable in a high-dimensional setting. Interestingly, we can observe that most Spectral-KMSE
algorithms outperform the R-KMSE, which supports our hypothesis on the importance of the
geometric information of RKHS mentioned in Section 3.4.2. In addition, although the TSVD
still gain from shrinkage, the improvement is smaller than other algorithms. This highlights the
importance of filter functions and associated parameters.

Real data. We apply Spectral-KMSE to the density estimation problem via kernel mean
matching (Song et al. 2008). The datasets were taken from the UCI repository5 and pre-
processed by standardizing each feature. Then, we fit a mixture modelQ =

∑r
j=1 πjN (θj , σ

2
j I)

to the pre-processed dataset X := {xi}ni=1 by minimizing ‖µQ− µ̂X‖2 subject to the constraint∑r
j=1 πj = 1. Here µQ is the mean embedding of the mixture model Q and µ̂X is the empirical

mean embedding obtained from X. Based on different estimators of µX , we evaluate the resul-
tant model Q by the negative log-likelihood score on the test data. The parameters (πj,θj , σ

2
j )

are initialized by the best one obtained from the K-means algorithm with 50 initializations.
Throughout, we set r = 5 and use 25% of each dataset as a test set.

Table 3.5: The average negative log-likelihood evaluated on the test set. The results are obtained from
30 repetitions of the experiment. The boldface represents the statistically significant results.

Dataset KME R-KMSE S-KMSE Landweber Acc Land Iter Tik TSVD

ionosphere 36.1769 36.1402 36.1622 36.1204 36.1554 36.1334 36.1442
glass 10.7855 10.7403 10.7448 10.7099 10.7541 10.9078 10.7791
bodyfat 18.1964 18.1158 18.1810 18.1607 18.1941 18.1267 18.1061
housing 14.3016 14.2195 14.0409 14.2499 14.1983 14.2868 14.3129

vowel 13.9253 13.8426 13.8817 13.8337 14.1368 13.8633 13.8375
svmguide2 28.1091 28.0546 27.9640 28.1052 27.9693 28.0417 28.1128
vehicle 18.5295 18.3693 18.2547 18.4873 18.3124 18.4128 18.3910
wine 16.7668 16.7548 16.7457 16.7596 16.6790 16.6954 16.5719

wdbc 35.1916 35.1814 35.0023 35.1402 35.1366 35.1881 35.1850

Table 3.5 reports the results on real data. In general, the mixture model Q obtained from
the proposed shrinkage estimators tend to achieve lower negative log-likelihood score than that
obtained from the standard empirical estimator. Moreover, we can observe that the relative
performance of different filter functions vary across datasets, suggesting that, in addition to po-
tential gain from shrinkage, incorporating prior knowledge through the choice of filter function
could lead to further improvement.

3.8 Discussions

Motivated by the classical James-Stein phenomenon, we proposed a shrinkage estimator for
the kernel mean µ in an RKHS H and showed they improve upon the empirical estima-
tor µ̂ in the mean squared sense. We showed the proposed shrinkage estimator µ̃ (with the

5http://archive.ics.uci.edu/ml/
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CHAPTER 3. KERNEL MEAN SHRINKAGE ESTIMATORS

shrinkage parameter being learned from data) to be
√
n-consistent and satisfies E‖µ̃−µ‖2

H
<

E‖µ̂−µ‖2
H

+O(n−3/2) as n→∞. We also provided a regularization interpretation to shrink-
age estimation, using which we also presented two shrinkage estimators, namely regularized
shrinkage estimator and spectral shrinkage estimator, wherein the first one is closely related to
µ̃ while the latter exploits the spectral decay of the covariance operator in H . We showed
through numerical experiments that the proposed estimators outperform the empirical estimator
in various scenarios. Most importantly, the shrinkage estimators not only provide more accurate
estimation, but also lead to superior performance on many real-world applications.

In this chapter, while we focused mainly on an estimation of the mean function in RKHS, it
is quite straightforward to extend the shrinkage idea to estimate covariance (and cross-covariance)
operators and tensors in RKHS. The key observation is that the covariance operator can be
viewed as a mean function in a tensor RKHS. Covariance operators in RKHS are ubiquitous
in many machine learning algorithms such as kernel PCA, kernel FDA, and kernel CCA. To
this end, we carried out a preliminary investigation on extending the shrinkage idea to esti-
mate covariance (and cross-covariance) operators and present below some numerical results
that demonstrate the performance of the corresponding shrinkage estimator.

Let (H , k) and (F , l) be RKHS of functions on measurable spaces X and Y , with repro-
ducing kernels k and l, respectively. We consider a random vector (X,Y ) : Ω → X × Y with
distribution PXY . The marginal distributions of X and Y are denoted by PX and PY , respec-
tively. If EXk(X,X) < ∞ and EY l(Y, Y ) < ∞, then there exists a unique cross-covariance

operator CYX : H → F such that

〈g,CYX f〉F = EXY [(f(X)− EX [f(X)])(g(Y )− EY [g(Y )])] = Cov(f(X), g(Y ))

holds for all f ∈H and g ∈ F (see Fukumizu et al. (2004)). If X is equal to Y , we obtain the
self-adjoint operator CXX called the covariance operator. Given an i.i.d sample ((xi,yi))

n
i=1

from PXY , we can write the empirical cross-covariance operator ĈYX as

ĈYX ,
1

n

n∑

i=1

φ(xi)⊗ ϕ(yi)− µ̂X ⊗ µ̂Y (3.61)

where µ̂X = 1
n

∑n
i=1 φ(xi), µ̂Y = 1

n

∑n
i=1 ϕ(yi), φ(xi) := k(·,xi) and ϕ(yi) := l(·,yi). Let

φ̃ and ϕ̃ be the centered version of the feature map φ and ϕ defined as φ̃(x) = φ(x) − µ̂X and
ϕ̃(y) = ϕ(y) − µ̂Y , respectively. Then, the empirical cross-covariance operator in (3.61) can
be rewritten as

ĈYX =
1

n

n∑

i=1

φ̃(xi)⊗ ϕ̃(yi),

and therefore a shrinkage estimator of CYX (e.g., an equivalent of B-KMSE) can be constructed
based on the ideas presented in this paper. We will call this estimator a covariance-operator

shrinkage estimator (COSE). The same trick can be easily generalized to tensors of higher
order, which have been previously used, for example, in Song et al. (2011b).

In our empirical studies, we perform KPCA using different estimates of the mean and co-
variance operators. We compare the reconstruction error Eproj(z) = ‖φ(z) − Pφ(z)‖2 on test
samples where P is the projection constructed from the first 20 principal components. We use
a Gaussian RBF kernel for all datasets and compare 5 different scenarios: i) standard KPCA
ii) shrinkage centering with R-KMSE iii) shrinkage centering with S-KMSE iv) KPCA with
R-COSE v) KPCA with S-COSE. Given the similarity between B-KMSE and R-KMSE, we
omit the B-KMSE in this experiment for ease of analysis. To perform KPCA on shrinkage co-
variance operator, we solve the generalized eigenvalue problem KcBKcV = KcVD where
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Figure 3.11: The average reconstruction error of KPCA on hold-out test samples over 100 repetitions.
KME represents the standard approach, whereas R-KMSE and S-KMSE use shrinkage means to perform
centering. R-COSE and S-COSE directly use the shrinkage estimate of the covariance operator.

B = diag(β) and Kc is the centered Gram matrix. The weight vector β is obtained from
shrinkage estimators using the kernel matrix Kc ◦Kc where ◦ denotes the Hadamard product.
We use 30% of the dataset as a test set.

Figure 3.11 illustrates the results of KPCA. Clearly, R-COSE and S-COSE consistently
outperform all the other estimators. Although we observe an improvement of R-KMSE and
S-KMSE over KME, it is very small compared to that of R-COSE and S-COSE. Intuitively,
this makes sense as changing the mean point or shifting data does not change the covariance
structure considerably, so it will not significantly affect the reconstruction error. In summary,
the results are very encouraging and we intend to pursue this aspect further in our future works.

Z END OF CHAPTER 3 Y
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Chapter 4
Supervised Learning on Distributions

Owing to kernel mean embedding of distributions and its estimators presented in previous chap-
ter, this chapter generalizes the standard supervised learning framework on points to probability
measures and provides theoretical insights. I will also discuss connections to existing frame-
works. Lastly, I will give some suggestions for future research.

4.1 Introduction

Discriminative learning algorithms are typically trained from large collections of vectorial train-
ing examples. In many classical learning problems, however, it is arguably more appropriate to
represent training data not as individual data points, but as probability distributions. There are,
in fact, multiple reasons why probability distributions may be preferable.

Firstly, uncertain or missing data naturally arises in many applications. For example, gene
expression data obtained from the microarray experiments are known to be very noisy due to
various sources of variabilities (Yang and Speed 2002). In order to reduce uncertainty, and to
allow for estimates of confidence levels, experiments are often replicated. Unfortunately, the
feasibility of replicating the microarray experiments is often inhibited by cost constraints, as
well as the amount of available mRNA. To cope with experimental uncertainty given a limited
amount of data, it is natural to represent each array as a probability distribution that has been
designed to approximate the variability of gene expressions across slides.

Likewise, it may impossible or very difficult to make an exact measurement of certain prop-
erties of the objects such as spectra of celestrial objects. Hence, one has to rely on the mea-
surement possessing substantial and heterogenous uncertainty. For instance, SDSS-III’s Baryon
Oscillation Spectroscopic Survey (BOSS) aims to obtain spectra for about 160,000 quasars in
the 2.2 ≤ z ≤ 3.5 redshift range, which are important tools for studying the intervening inter-
galactic medium and the angular diameter distance of the universe. Unfortunately, quasar target
selection in this redshift range possesses several challenges mainly because of stella loci con-
tamination and substantial photometric uncertainties. Incorporating the photometric uncertainty
has been shown to improve the efficiency of the quasar target selection (Kirkpatrick et al. 2011,
Bovy et al. 2011, Ross et al. 2012). Probability distributions are natural representation of the
uncertain data.

Secondly, many application domains call for methods that can deal with complex structured
data such as DNA sequences, text documents, and graphs. While many available methods rely
on kernels defined over such structured data, it is often easier to capture the structure of complex
objects with generative models than directly with kernels. For example, in natural language
processing, a text document is often modeled as a distribution over topics comprising of words
in a dictionary (Blei et al. 2001). In bioinformatics, hidden Markov models (HMMs) are often
employed as the basis for methods used in biological sequence analysis. Thus, learning directly
from distributions defined by such generative models alleviates the complexity in designing the
kernels and can also give a new insight into the structure of data.
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Probability distributions may be equally appropriate given an abundance of training data.
In data-rich disciplines such as neuroinformatics, climate informatics, and astronomy, a high
throughput experiment can easily generate a huge amount of data, leading to significant com-
putational challenges in both time and space. Instead of scaling up one’s learning algorithms,
one can scale down one’s dataset by constructing a smaller collection of distributions which
represents groups of similar samples. Besides computational efficiency, aggregate statistics can
potentially incorporate higher-level information that represents the collective behavior of multi-
ple data points.

4.2 Related Works

Several attempts have previously been made to learn from distributions by creating positive
definite kernels on probability measures. In Jebara et al. (2004b), the probability product kernel
(PPK) was proposed as a generalized inner product between two input objects, which is in fact
closely related to well-known kernels such as the Bhattacharyya kernel (Bhattacharyya 1943)
and the exponential symmetrized Kullback-Leibler (KL) divergence (Moreno et al. 2004). In
Hein and Bousquet (2005), an extension of a two-parameter family of Hilbertian metrics of
Topsøe was used to define Hilbertian kernels on probability measures. In Cuturi et al. (2005),
the semi-group kernels were designed for objects with additive semi-group structure such as
positive measures. Recently, Martins et al. (2009) introduced nonextensive information theoretic
kernels on probability measures based on new Jensen-Shannon-type divergences. Although
these kernels have proven successful in many applications, they are designed specifically for
certain properties of distributions and application domains. Moreover, there has been no attempt
in making a connection to the kernels on corresponding input spaces.

The kernel function K(P,Q) = 〈µP,µQ〉H considered in this thesis is in fact a special
case of the Hilbertian metric (Hein and Bousquet 2005), with the associated kernel K(P,Q) =
Ex∼P,x̃∼Q[k(x, x̃)], and a generative mean map kernel (GMMK) proposed by Mehta and Gray
(2010). In the GMMK, the kernel between two objects x and y is defined via p̂x and p̂y, which
are estimated probabilistic models of x and y, respectively. That is, a probabilistic model p̂x is
learned for each example and used as a surrogate to construct the kernel between those examples.
The idea of surrogate kernels has also been adopted by the PPK (Jebara et al. 2004b). In this
case, we have Kρ(p, p

′) =
∫
X p(x)

ρp′(x)ρ dx, which has been shown to be a special case of
GMMK when ρ = 1 (Mehta and Gray 2010). Consequently, GMMK, PPK with ρ = 1, and
linear kernel 〈µP,µQ〉H are equivalent when the embedding kernel is k(x,x′) = δ(x − x′).
More recently, the empirical kernel between distributions was employed in an unsupervised
way for multi-task learning to generalize to a previously unseen task (Blanchard et al. 2011a). In
contrast, we treat the probability distributions in a supervised way (cf. the regularized functional
(4.10)) and the kernel is not restricted to only the empirical kernel.

The use of expected kernels in dealing with the uncertainty in the input data has a connection
to robust SVMs. For instance, a generalized form of the SVM in Shivaswamy et al. (2006)
incorporates the probabilistic uncertainty into the maximization of the margin. This results in
a second-order cone programming (SOCP) that generalizes the standard SVM. In SOCP, one
needs to specify the parameter τi that reflects the probability of correctly classifying the ith
training example. In the context of this chapter, we may represent data point xi by a distribution
N (xi, σ

2
i I). Therefore, the parameter τi is closely related to the parameter σi, which specifies

the variance of the distribution centered at the ith example. Anderson and Gupta (2011) showed
the equivalence between SVMs using expected kernels and SOCP when τi = 0. When τi > 0,
the mean and covariance of missing kernel entries have to be estimated explicitly, making the
SOCP more involved for nonlinear kernels. Although achieving comparable performance to
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the standard SVM with expected kernels, the SOCP requires a more computationally extensive
SOCP solver, as opposed to simple quadratic programming (QP).

A major drawback of the previous works is that they usually impose a strong parametric as-

sumption on the form of probability distribution. As we will see, the kernel mean representation
allows one to learn directly from distributions without making such an assumption. For exam-
ple, Szabó et al. (2015) has recently studied the nonparametric distributions regression problem
based on kernel mean embedding (Smola et al. 2007) and the kernel ridge regression algorithm
(cf. Section 2.2.3). They establish the consistency and convergence rate of the resulting algo-
rithm whose challenge arises from the two-stage sampling: a meta distribution generates i.i.d.
sample of distributions from which i.i.d observations have been generated. As a result, in prac-
tice we only observe samples from the distributions rather than the distributions themselves.
The theoretical analysis uses the results of Caponnetto and De Vito (2007) who provides error
bounds for regularized least-squares algorithm in standard setting.

In addition to the mean embedding approach, another line of research employs kernel den-
sity estimation (KDE) to perform regression on distributions with consistency guarantee (under
the assumption that the true regressor is Hölder continuous, and the meta distribution have fi-
nite doubling dimension (Kpotufe 2011)) (Póczos et al. 2013, Oliva et al. 2014). In this case
the covariates are nonparametric continuous distributions on Rd and the output are real-valued.
Oliva et al. (2013) also considers the case when the output is also distribution. The basic idea
is to approximate the density function by KDE and then apply kernels on top of it. Unlike the
mean embedding approach, the kernels used are classical smoothing kernels and not the repro-
ducing kernel. Although the parametric assumption is not needed, drawbacks of the KDE-based
approach are that the convergence rate is slow in high-dimensional space and it is not applicable
to learning over structured data such as documents, graphs, and permutations. The use of kernel
mean embedding allows us to deal with any kind of data as long as the positive definite kernel
on such data is well-defined.

4.3 Learning with Empirical Risk Minimization

I will first give a basic idea of empirical risk minimization (ERM) for supervised learning (Vap-
nik 1992) and then generalize it to a space of probability distributions. For simplicity, I will
focus on binary classification problem, although many of the main features can be generalized
to multiclass classification and regression problem.

The problem of learning is to choose from a given set of functions F the one that minimizes a
pre-specified risk functional. We assume that there is a joint probability distribution P(x, y) over
X and Y . Let ℓ : Y × Y → R+ be an arbitrary loss function which measures the discrepancy
between the true response y and the response f(x) provided by the learning machine. Our goal
is to find f ∈ F that minimizes the risk functional

R(f) =

∫
ℓ(y, f(x)) dP(x, y) (4.1)

We denote by f∗ a function for which (4.1) is minimal. Since P(x, y) is unknown in practice,
we cannot evaluate (4.1). Based on a training set of n i.i.d. observations (x1, y1), . . . , (xn, yn)
distributed according to some unknown distribution P(X,Y ), the ERM aims to minimize

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)). (4.2)

The principle of ERM states that the learning algorithm should choose f̂ which minimizes the
empirical risk: f̂ = argminf∈F R̂(f).
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4.4. DISTRIBUTIONAL RISK MINIMIZATION

A loss function commonly used in the theory of classification is the 0-1 loss function:
ℓ(y, ŷ) = 1{y 6=ŷ} where 1 is an indicator function. In practice, it is difficult to optimize with 0-1
loss as it is an NP-hard problem, so several surrogate losses have been proposed. For instance,
common loss functions include hinge loss ℓ(y, ŷ) = max(0, 1+yŷ) used in SVM, the exponen-

tial loss ℓ(y, ŷ) = exp(−yŷ) used in AdaBoost, and the logistic loss ℓ(y, ŷ) = log2(1 + e−yŷ)
used in logistic regression. A typical loss function for regression is a square loss ℓ(y, ŷ) =
(y − ŷ)2.

Note that one can rewrite (4.2) as follows:

R̂(f) =

∫
ℓ(y, f(x)) dP̂n(x, y), (4.3)

where P̂n(x, y) := 1
n

∑n
i=1 δ(xi,yi) represents an empirical distribution contructed from the

sample. Owing to this observation, Chapelle et al. (2000) proposes a vicinal risk minimization

(VRM) framework in which the Dirac measure δ(xi,yi) is replaced by a more general probability
distribution. On the other hand, the approach proposed in this chapter extends the ERM in a
different way.

4.4 Distributional Risk Minimization

Given a non-empty set X , let P denote the set of all probability measures P on a measurable
space (X ,A), where A is a σ-algebra of subsets of X . The goal of distributional risk mini-

mization (DRM) is to learn a function h : P → Y given a set of example pairs {(Pi, yi)}ni=1,
where Pi ∈ P and yi ∈ Y . In other words, we consider a supervised setting in which input
training examples are probability distributions. Throughout this chaper, I focus on the binary
classification problem, i.e., Y = {+1,−1}.

For a function class F , the DRM minimizes the following loss functional

R̂(f) = ℓ (P1, y1,EP1 [f ], . . . ,Pn, yn,EPn [f ]) + Ω (‖f‖F ) (4.4)

where ℓ(·) is the loss functional and Ω(·) is a monotonically increasing regularization functional.
One example of (4.4) is when ℓ (P1, y1,EP1 [f ], . . . ,Pn, yn,EPn [f ]) =

∑n
i=1 ℓ(yi,EPi [f ]). Note

that if we substitute the distributions Pi in (4.4) by Dirac measures δxi , it follows that Eδxi [f ] =
f(xi), and the DRM consequently reduces to ERM on the i.i.d. sample (x1, y1), . . . , (xn, yn).

On the one hand, the minimization problem (4.4) is different from minimizing the functional

EP1 . . .EPnℓ(x1, y1, f(x1), . . . ,xn, yn, f(xn)) + Ω(‖f‖F ) (4.5)

for the special case of the additive loss ℓ, which is similar to the VRM proposed in Chapelle
et al. (2000). Therefore, the solution of our regularization problem is different from what one
would get in the limit by training on an infinitely many points sampled from P1, . . . ,Pm. On
the other hand, it is also different from minimizing the functional

ℓ(m1, y1, f(m1), . . . ,mn, yn, f(mn)) + Ω(‖f‖F ) (4.6)

where we substitute each distribution Pi by its mean mi = Ex∼Pi[x]. In a sense, our framework
is something in between.

Next I argue that when a function class F in (4.4) is chosen to be an RKHS, the correspond-
ing problem amounts to learning on distributions when each of them is represented by the kernel
mean embedding.
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4.4.1 Hilbert Space Representation of Distributions

In order to learn from distributions, we use kernel mean embedding as a feature representation
of distribution. It not only preserves necessary information of individual distributions, but also
permits efficient computations. Briefly, let H denote an RKHS of functions f : X → R,
endowed with a reproducing kernel k : X ×X → R. The mean map from P into H is defined
as

µ : P →H , P 7−→
∫

X
k(x, ·) dP(x) . (4.7)

We assume that k(x, ·) is bounded for any x ∈ X . It can be shown that, if k is characteristic, the
map (4.7) is injective, i.e., all the information about the distribution is preserved (Sriperumbudur
et al. 2010). For any P, letting µP = µ(P), we have the reproducing property

EP[f ] = 〈µP, f〉H , ∀f ∈H . (4.8)

That is, we can see the mean embedding µP as a feature map associated with the kernel K :
P×P → R, defined as K(P,Q) = 〈µP,µQ〉H . Since supx ‖k(x, ·)‖H <∞, it also follows
that

K(P,Q) =

∫∫
〈k(x, ·), k(z, ·)〉H dP(x) dQ(z)

=

∫∫
k(x, z) dP(x) dQ(z), (4.9)

where the second equality follows from the reproducing property of H . It is immediate that K
is a p.d. kernel on P .

4.4.2 Representer Theorem for Distributions

The following theorem shows that optimal solutions of a suitable class of regularization prob-
lems involving distributions can be expressed as a finite linear combination of mean embeddings.

Theorem 4.1. Given training examples (Pi, yi) ∈ P × R, i = 1, . . . ,m, a strictly monotoni-

cally increasing function Ω : [0,+∞)→ R, and a loss function ℓ : (P ×R2)m → R∪{+∞},
any f ∈ H minimizing the regularized risk functional

ℓ (P1, y1,EP1 [f ], . . . ,Pm, ym,EPm [f ]) + Ω (‖f‖H ) (4.10)

admits a representation of the form

f =

m∑

i=1

αiµPi

for some αi ∈ R, i = 1, . . . ,m.

Proof. By virtue of Proposition 2 in Sriperumbudur et al. (2010), the linear functional EP[·] are
bounded for all P ∈P . Then, given P1,P2, ...,Pm, any f ∈ H can be decomposed as

f = fµ + f⊥

where fµ ∈ H lives in the span of µPi , i.e., fµ =
∑m

i=1 αiµPi and f⊥ ∈ H satisfying, for all
j, 〈f⊥,µPj 〉 = 0. Hence, for all j, we have

EPj [f ] = EPj [fµ + f⊥] = 〈fµ + f⊥,µPj 〉 = 〈fµ,µPj 〉+ 〈f⊥,µPj 〉 = 〈fµ,µPj 〉
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which is independent of f⊥. As a result, the loss functional ℓ in (4.10) does not depend on
f⊥. For the regularization functional Ω, since f⊥ is orthogonal to

∑m
i=1 αiµPi and Ω is strictly

monotonically increasing, we have

Ω(‖f‖) = Ω(‖fµ + f⊥‖) = Ω(
√
‖fµ‖2 + ‖f⊥‖2) ≥ Ω(‖fµ‖)

with equality if and only if f⊥ = 0 and thus f = fµ. Consequently, any minimizer must take
the form f =

∑m
i=1 αiµPi =

∑m
i=1 αiEPi [k(x, ·)]. �

Theorem 4.1 clearly indicates how each distribution contributes to the minimizer of (4.10).
Roughly speaking, the coefficients αi controls the contribution of the distributions through the
mean embeddings µPi . Furthermore, if we restrict P to a class of Dirac measures δx on X and
consider the training set {(δxi , yi)}mi=1, the functional (4.10) reduces to the usual regularization
functional (Schölkopf et al. 2001a) and the solution reduces to f =

∑m
i=1 αik(xi, ·). There-

fore, the standard representer theorem is recovered as a particular case (see also Dinuzzo and
Schölkopf (2012) for more general results on representer theorem).

4.5 Support Measure Machines

This subsection extends SVMs to deal with probability distributions, leading to support measure

machines (SMMs). In its general form, an SMM amounts to solving an SVM problem with the
expected kernel K(P,Q) = Ex∼P,z∼Q[k(x, z)]. This kernel can be computed in closed-form
for certain classes of distributions and kernels k. Examples are given in Table 4.1.

Alternatively, one can approximate the kernel K(P,Q) by the empirical estimate:

Kemp(P̂n, Q̂m) =
1

n ·m
n∑

i=1

m∑

j=1

k(xi, zj) (4.11)

where P̂n and Q̂m are empirical distributions of P and Q given random samples {xi}ni=1 and
{zj}mj=1, respectively. A finite sample of size m from a distribution P suffices (with high prob-

ability) to compute an approximation within an error of O(m− 1
2 ). Instead, if the sample set is

sufficiently large, one may choose to approximate the true distribution by simpler probabilistic
models, e.g., a mixture of Gaussians model, and choose a kernel k whose expected value admits
an analytic form. Storing only the parameters of probabilistic models may save some space
compared to storing all data points.

Note that the standard SVM feature map φ(x) is usually nonlinear in x, whereas µP is linear

in P. Thus, for an SMM, the first level kernel k is used to obtain a vectorial representation of the
measures, and the second level kernel K allows for a nonlinear algorithm on distributions. For
clarity, we will refer to k and K as the embedding kernel and the level-2 kernel, respectively.
Table 4.2 gives some examples of level-2 kernels that can be applied in this framework.

4.5.1 Kernels on Probability Distributions

As the map (4.7) is linear in P , optimizing the functional (4.10) amounts to finding a function
in H that approximate well functions from P to R in the function class

F , {P→
∫

X
g dP |P ∈P, g ∈ Cb(X )}

where Cb(X ) is a class of bounded continuous functions on X . Since δx ∈ P for any x ∈ X ,
it follows that Cb(X ) ⊂ F ⊂ Cb(P) where Cb(P) is a class of bounded continuous functions
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Table 4.1: The analytic forms of expected kernels for different choices of kernels and distributions.

Distributions Embedding kernel k(x,y) K(Pi,Pj) = 〈µPi ,µPj 〉H
P(m;Σ) 〈x,y〉 mT

i mj + δij tr Σi

N (m;Σ) exp(−γ
2‖x− y‖2) exp(−1

2 (mi −mj)
T(Σi +Σj + γ−1I)−1(mi −mj))

/|γΣi + γΣj + I| 12
N (m;Σ) (〈x,y〉 + 1)2 (〈mi,mj〉+ 1)2 + tr ΣiΣj +mT

i Σjmi +mT

j Σimj

N (m;Σ) (〈x,y〉 + 1)3 (〈mi,mj〉+ 1)3 + 6mT

i ΣiΣjmj

+3(〈mi,mj〉+ 1)(tr ΣiΣj +mT

i Σjmi +mT

j Σimj)

on P endowed with the topology of weak convergence and the associated Borel σ-algebra. The
following lemma states the relation between the RKHS H induced by the kernel k and the
function class F .

Lemma 4.2. Assuming that X is compact, the RKHS H induced by a kernel k is dense in F if

k is universal, i.e., for every function F ∈ F and every ε > 0 there exists a function g ∈ H

with supP∈P |F (P)−
∫
g dP| ≤ ε.

Proof. Assume that k is universal. Then, for every function f ∈ Cb(X ) and every ε > 0 there
exists a function g ∈H induced by k with supx∈X |f(x)−g(x)| ≤ ε (Steinwart 2002). Hence,
by linearity of F , for every F ∈ F and every ε > 0 there exists a function h ∈ H such that
supP∈P |F (P)−

∫
hdP| ≤ ε. �

Nonlinear kernels on P can be defined in an analogous way to nonlinear kernels on X ,
by treating mean embeddings µP of P ∈ P as its feature representation. First, assume that
the map (4.7) is injective and let 〈·, ·〉P be an inner product on P . By linearity, we have
〈P,Q〉P = 〈µP,µQ〉H (cf. Berlinet and Thomas-Agnan (2004) for more details). Then, the
nonlinear kernels on P can be defined as

K(P,Q) = κ(µP,µQ) = 〈ψ(µP), ψ(µQ)〉G

where κ is a positive definite kernel and G denotes the correspond RKHS of functions from H

to R. As a result, many standard nonlinear kernels on X can be used to define nonlinear kernels
on P as long as the kernel evaluation depends entirely on the inner product 〈µP,µQ〉H , e.g.,
K(P,Q) = (〈µP,µQ〉H + c)d (see Table 4.2 for more examples). Although requiring more
computational effort, their practical use is simple and flexible. Specifically, the notion of p.d.
kernels on distributions proposed in this work is so generic that standard kernel functions can
be reused to derive kernels on distributions that are different from many other kernel functions
proposed specifically for certain distributions.

It has been recently proved that the Gaussian RBF kernel given byK(P,Q) = exp(−γ
2‖µP−

µQ‖2H ), ∀P,Q ∈P is universal w.r.t Cb(P) given that X is compact and the map µ is injec-
tive (Christmann and Steinwart 2010). Despite its success in real-world applications, the theory
of kernel-based classifiers beyond the input space X ⊂ Rd, as also mentioned by Christmann
and Steinwart (2010), is still incomplete. It is therefore of theoretical interest to consider more
general classes of universal kernels on probability distributions.

4.5.2 Flexible Support Vector Machines

It turns out that, for certain choices of distributions P, the linear SMM trained using {(Pi, yi)}mi=1

is equivalent to an SVM trained using some samples {(xi, yi)}mi=1 with an appropriate choice
of kernel function.
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Table 4.2: Examples of some well-known kernel functions that can be used as inducing kernels.

Kernel Function The Level-2 Kernel K(P,Q)

Gaussian kernel exp
(
−0.5γ‖µP − µQ‖2

)

Exponential kernel exp

(
−‖µP − µQ‖

2σ2

)

Laplacian kernel exp

(
−‖µP − µQ‖

σ

)

Hyperbolic Tangent kernel tanh(α〈µP,µQ〉H + c)

Rational Quadratic kernel 1− ‖µP − µQ‖2
‖µP − µQ‖2 + c

Multiquadratic kernel
√
‖µP − µQ‖2 + c

Inverse multiquadric kernel
1√

‖µP − µQ‖2 + c

Circular kernel
2

π
arccos

(
−‖µP − µQ‖2

σ

)
− 2

π

‖µP − µQ‖
σ

√
1−

(‖µP − µQ‖
σ

)2

if ‖µP − µQ‖ < σ, zero otherwise.

Spherical kernel 1− 3

2

‖µP − µQ‖
σ

+
1

2

(‖µP − µQ‖
σ

)3

if ‖µP − µQ‖ < σ, zero otherwise.

Wave kernel
θ

‖µP − µQ‖
sin

(‖µP − µQ‖
θ

)

Power kernel −‖µP − µQ‖d
Log kernel − log

(
‖µP − µQ‖d + 1

)

Cauchy kernel
1

1 +
‖µP − µQ‖2

σ

Generalized T-student kernel
1

1 + ‖µP − µQ‖d

Lemma 4.3. Let k(x, z) be a bounded positive definite kernel on a measure space such that∫∫
k(x, z)2 dxdz < ∞, and g(x, x̃) be a square integrable function such that

∫
g(x, x̃) dx̃ <

∞ for all x. Given a sample {(Pi, yi)}mi=1 where each Pi is assumed to have a density given

by g(xi,x), the linear SMM is equivalent to the SVM on the training sample {(xi, yi)}mi=1 with

kernel

Kg(x, z) =

∫∫
k(x̃, z̃)g(x, x̃)g(z, z̃) dx̃dz̃.

Proof. For a training sample {(xi, yi)}mi=1, the SVM with kernel Kg minimizes

ℓ({xi, yi, f(xi) + b}mi=1) + λ‖f‖2HKg
.

By the representer theorem, f(x) =
∑m

i=1 αiKg(x,xj) with some αi ∈ R, hence this is equiv-
alent to

ℓ({xi, yi,
m∑

j=1

αjKg(xi,xj) + b}mi=1) + λ

m∑

i,j=1

αiαjKg(xi,xj) .

Next, consider the kernel mean of the probability measure g(xi,x) dx given by µi =
∫
k(·, x̃)g(xi, x̃) dx̃

and note that 〈µi, f〉Hk
=
∫
f(x̃)g(xi, x̃) dx̃ for any f ∈Hk. The linear SMM with loss ℓ and

kernel k minimizes

ℓ({Pi, yi, 〈µi, f〉Hk
+ b}mi=1) + λ‖f‖2Hk

.
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By Theorem 4.1, each minimizer f admits a representation of the form

f =
m∑

j=1

αjµj =
m∑

j=1

αj

∫
k(·, x̃)g(xj , x̃) dx̃ .

Thus, for this f we have

〈µi, f〉Hk
=

m∑

j=1

αj

∫∫
k(z̃, x̃)g(xi, x̃)g(xj , z̃) dx̃ dz̃ =

m∑

j=1

αjKg(xi,xj)

and

‖f‖2Hk
=

m∑

i,j=1

αiαj〈µi,µj〉 =
m∑

i,j=1

αiαjKg(xi,xj)

, as above. This completes the proof. �

Note that the important assumption for this equivalence is that the distributions Pi differ only
in their location in the parameter space. This need not be the case in all possible applications of
SMMs. Furthermore, we have Kg(x, z) =

〈∫
k(x̃, ·)g(x, x̃) dx̃,

∫
k(z̃, ·)g(z, z̃) dz̃

〉
H

. Thus,
it is clear that the feature map of x depends not only on the kernel k, but also on the density
g(x, x̃). Consequently, by virtue of Lemma 4.3, the kernel Kg allows the SVM to place different
kernels at each data point. We call this algorithm a flexible SVM (Flex-SVM).

Consider the linear SMM with Gaussian distributions N (x1;σ
2
1 · I), . . . ,N (xm;σ

2
m · I) and

Gaussian RBF kernel kσ2 with bandwidth parameter σ. The convolution theorem of Gaussian
distributions implies that this SMM is equivalent to a flexible SVM that places a data-dependent
kernel kσ2+2σ2i

(xi, ·) on training example xi, i.e., a Gaussian RBF kernel with larger bandwidth.

4.5.3 A Unifying View: SVM and Parzen Window Classifier

Although having been introduced independently, the proposed framework has an intrinsic con-
nection to two well-known existing learning algorithms, namely a support vector machine (SVM)
and Parzen window classifier (PWC).

Regularization on Distributions. Recall that a regularization problem on probability dis-
tributions can be formulated as follow. Given training examples (Pi, yi) ∈ P × R, i =
1, . . . ,m, a strictly monotonically increasing function Ω : [0,+∞) → R, and a loss function
ℓ : (P ×R2)m → R ∪ {+∞}, we find f ∈H such that the regularization functional

ℓ (P1, y1,EP1 [f ], . . . ,Pm, ym,EPm [f ]) + Ω (‖f‖H ) (4.12)

is minimized where H is an RKHS with a reproducing kernel k. By representer theorem on
distributions, any solution f admits a representation of the form f =

∑m
i=1 αiEx∼Pi[k(x, ·)]

for some α ∈ Rm. Given training examples (x1, y1), (x2, y2), . . . , (xn, yn) ∈ X × {+1,−1},
we will show that both SVM and PWC can be recovered as a solution to the regularization
functional (4.12).

Support Vector Machines. The connection between SVM and SMM is quite straightforward.
In this case, we replace each training sample xi by a Dirac measure δxi centered at that sample.
Note that this reparameterization does not alter the problem as the map xi 7→ k(xi, ·) and
δxi 7→

∫
k(x, ·)δxi (x) are equivalent. Replacing Pi in (4.10) by δxi yields

ℓH (x1, y1, f(x1), . . . ,xm, ym, f(xm)) + Ω (‖f‖H )
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which corresponds to the SVM (Schölkopf and Smola 2001). In summary, the SVM treats every
samples as a probability distribution that captures the local information of the sample.

Parzen Window Classifiers. As opposed to the SVM, the PWC approaches the problem from
a completely opposite direction. In general, it begins by estimating the class conditional distri-
bution

P(x|y) = 1

|{i|yi = y}|
∑

i,yi=y

k(x,xi)

and by Bayes rule the posterior can be computed by

P(y|x) =
∑

i,yi=y
k(x,xi)∑n

i=1 k(x,xi)
. (4.13)

Consequently, for binary classification problem, the estimated class conditional P(·|y = +1)
and P(·|y = −1) can be seen as class-specific mean functions in H , i.e.,

M+ =
1

|{i|yi = +1}|
∑

yi=+1

k(xi, ·), M− =
1

|{i|yi = −1}|
∑

yi=−1

k(xi, ·)

where M+ = P(·|y = +1) and M− = P(·|y = −1). Hence, the classification function based
on the posterior (4.13) can be equivalently written as

f(x) = sign(〈x,M+〉H − 〈x,M−〉H ) (4.14)

It is not difficult to see that for a positive semi-definite kernel k the mean functions M+ andM−

are two distinct functions in the RKHS H . As a result, the classification function (4.14) can
be obtained by solving a classification problem on training examples (M+,+1) and (M−,−1),
which is exactly equivalent to minimizing

ℓH(P̂+,+1,E
P̂+

[f ], P̂−,−1,EP̂−
[f ]) + Ω (‖f‖H )

As opposed to the SVM, the PWC treats class conditional distributions as training samples,
emphasizing more on the global information of the training data.

Intuitively, we may consider both SVM and PWC as the extreme ends of the spectrum of
learning algorithms: one that look locally at the training data and another one that consider its
global properties. Consequently, It is natural to ask what constitute various learning algorithms
along this spectrum?

From the distributional point of view, these two learning algorithms employ different learn-
ing strategy. Roughly speaking, the SVM performs a learning at the most fine-grained level
for the best accuracy at the expense of training time. On the other hand, the Parzen window
classifier trade-off the accuracy with the training time (no training time) in order to obtain the
solution very quickly. These two learning approaches are also different in term of estimation
time. A good learning strategy therefore should trade-off these quantities.

4.5.4 Extensions to Other Algorithms

Algorithmically, one of the advantages of the proposed framework is that other algorithms can
be generalized as long as those algorithms rely only on the evaluation of the kernel between
probability distributions. Algorithms reviewed in Section 2.2.3 such as kernel ridge regression
and Gaussian process can be generalized to a space of probability distributions. For example,
Szabó et al. (2015) studies the regression problem on distributions using kernel ridge regression.
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One may also consider (5.22) as a covariance kernel for GP regression and classification which
allows for uncertain inputs. That is, we may consider the following covariance function

Cov(f(P), f(Q)) := 〈µP,µQ〉H =

∫∫
k(x,y) dP(x) dQ(y) .

The kernel mean representation is in general infinite dimensional when the RKHS associ-
ated with the kernel has infinite dimension, e.g., Gaussian RBF kernel. Nevertheless, we may
resort to a finite dimensional RKHS. In which case the mean embedding becomes a finite di-
mensional object which we can think of as a feature vector representing the distribution. As
a result, we can apply any learning algorithm on this representation. However, for infinite di-
mensional RKHS, most algorithms need to operate in their dual forms which can be prohibitive
for large-scale problems. In this case, one may resort to a finite approximation of the kernel
means (cf. Section 2.3.6) which then allows the algorithms to work in their primal form. The
approximation also allows for a wider class of learning algorithms on distributions, e.g., ensem-
ble algorithms, random forest, etc. For instance, Lopez-Paz et al. (2015a) and Lopez-Paz et al.
(2015b) approximates the kernel mean representation using the random Fourier feature (Rahimi
and Recht 2007) and then apply random forest classifiers on these approximations.

4.6 Theoretical Analysis

This section presents key theoretical aspects of the proposed framework, which reveal important
connection between kernel-based learning algorithms on the space of distributions and on the
input space on which they are defined.

4.6.1 Risk Deviation Bound

Given a training sample {(Pi, yi)}mi=1 drawn i.i.d. from some unknown probability distribution
P on P × Y , a loss function ℓ : R × R → R, and a function class F , the goal of statistical
learning is to find the function f ∈ F that minimizes the expected risk functional

R(f) =
∫

P

∫

X
ℓ(y, f(x)) dP(x) dP(P, y). (4.15)

Since P is unknown, the empirical risk

R̂(f) = 1

m

m∑

i=1

∫

X
ℓ(yi, f(x)) dPi(x) (4.16)

based on the training sample is considered instead. Furthermore, the risk functional can be sim-
plified further by considering 1

m·n
∑m

i=1

∑
xij∼Pi

ℓ(yi, f(xij)) based on n samples xij drawn
from each Pi.

Our framework, on the other hand, alleviates the problem by minimizing the risk functional

Rµ(f) =
∫

P

ℓ(y,EP[f(x)]) dP(P, y) (4.17)

for f ∈H with corresponding empirical risk functional

R̂µ(f) = 1

m

m∑

i=1

ℓ(yi,EPi [f(x)]) (4.18)
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(cf. the discussion at the end of Section 4.4). It is often easier to optimize R̂µ(f) as the expecta-
tion can be computed exactly for certain choices of Pi and H . Moreover, for universal H , this
simplification preserves all information of the distributions. Nevertheless, there is still a loss of
information due to the loss function ℓ.

Due to the i.i.d. assumption, the analysis of the difference between R and Rµ can be
simplified w.l.o.g. to the analysis of the difference between EP[ℓ(y, f(x))] and ℓ(y,EP[f(x)])
for a particular distribution P ∈ P . The theorem below provides a bound on the difference
between EP[ℓ(y, f(x))] and ℓ(y,EP[f(x)]).

Theorem 4.4. Given an arbitrary probability distribution P with variance σ2, a Lipschitz con-

tinuous function f : R→ R with constant Cf , an arbitrary loss function ℓ : R×R→ R that is

Lipschitz continuous in the second argument with constant Cℓ, it follows that

|Ex∼P[ℓ(y, f(x))] − ℓ(y,Ex∼P[f(x)])| ≤ 2CℓCfσ

for any y ∈ R.

Proof. Assume that x is distributed according to P. Let mX be the mean of X in Rd. Thus, we
have

|EP[ℓ(y, f(x))]− ℓ(y,EP[f(x)])| ≤
∫
|ℓ(y, f(x̃))− ℓ(y,EP[f(x)])|dP(x̃)

≤ Cℓ

∫
|f(x̃)− EP[f(x)]|dP(x̃)

≤ Cℓ

∫
|f(x̃)− f(mX)|dP(x̃)

︸ ︷︷ ︸
A

+Cℓ|f(mX)− EP[f(x)]|︸ ︷︷ ︸
B

.

Control of (A). The first term is upper bounded by

Cℓ

∫
Cf‖x̃−mX‖dP(x̃) ≤ CℓCfσ , (4.19)

where the last inequality is given by EP[‖x̃ −mX‖] ≤
√

EP[‖x̃−mX‖2] = σ.

Control of (B). Similarly, the second term is upper bounded by

Cℓ

∣∣∣∣
∫
f(mX)− f(x̃)

∣∣∣∣ dP(x̃) ≤ Cℓ
∫
Cf‖mX − x̃‖dP(x̃) ≤ CℓCfσ . (4.20)

Combining (4.19) and (4.20) yields

|EP[ℓ(y, f(x))] − ℓ(y,EP[f(x)])| ≤ 2CℓCfσ ,

thus completing the proof. �

Theorem 4.4 indicates that if the random variable x is concentrated around its mean and the
function f and ℓ are well-behaved, i.e., Lipschitz continuous, then the loss deviation |EP[ℓ(y, f(x))]−
ℓ(y,EP[f(x)])| will be small. As a result, if this holds for any distribution Pi in the training set
{(Pi, yi)}mi=1, the true risk deviation |R −Rµ| is also expected to be small.
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4.6.2 Rademacher Complexity and Generalization Bound

In this section, I outline some well-known results in learning theory and then give a generaliza-
tion bound based on Rademacher complexity of linear SMM.

Definition 4.1. (Rademacher complexity). Let F be a class of functions f : X → R and

S = {x1, ...,xn} be a set of samples drawn from some unknown distribution P on X . The

empirical Rademacher complexity of F is

R̂n(F) = E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

σif(xi)

∣∣∣∣∣ | x1, ...,xn

]
,

where σi are i.i.d. uniform random variables on±1. The Rademacher complexity ofF is defined

as

Rn(F) = E[R̂n(F)] = E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

σif(xi)

∣∣∣∣∣

]
.

The Rademacher complexity is quite popular in learning theory as a characterization of the
richness of the function class F . Intuitively, it measures how well correlated the function in F
is to the random noise on a sample S. The following lemma shows the relation between Rn(F)
and R̂n(F).

Lemma 4.5. Let F be a class of functions mapping from X to [0, 1] and a sample S =
{x1, ...,xm}. Then, with probability at least 1− δ,

Rn(F) ≤ R̂n(F) + 2

√
ln 1/δ

2n
.

Lemma 4.6 and Theorem 4.7 provide an upper bound of uniform convergence in expectation and
generalization bounds for a function class F in term of its Rademacher complexity, respectively.

Lemma 4.6 (Koltchinskii and Panchenko (2002)).

E

[
sup
f∈F

∣∣∣∣∣Ef −
1

n

n∑

i=1

f(xi)

∣∣∣∣∣

]
≤ 2Rn(F).

Theorem 4.7 (Bartlett and Mendelson (2003)). Let δ ∈ (0, 1) and F be a class of functions

mapping X to [0, 1]. Then with probability at least 1− δ, all f ∈ F satisfy

Ef(x) ≤ Enf(x) + 2Rn(F) +
√

ln 1/δ

2n
.

By virtue of Lemma 4.5, we also have with probability at least 1− δ

Ef(x) ≤ Enf(x) + 2R̂n(F) + 5

√
ln 2/δ

2n
.

In most cases, however, we are interested in the composition the loss function ℓ : Y ×
Y → R and the hypothesis f ∈ F , e.g., ℓ(y, f(x)) = (f(x) − y)2. Deriving a complexity
measure of the function ℓ ◦ f can be involved especially for non-linear loss function. Ledoux-
Talagrand contraction, given in Lemma 4.8, allows us to bound the Rademacher complexity of
such functions in terms of the Rademacher complexity of F .
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4.6. THEORETICAL ANALYSIS

Lemma 4.8 (Ledoux-Talagrand contraction). If A : R → R is Lipschitz with constant L and

satisfies A(0) = 0, then R̂n(A ◦ F) ≤ 2LR̂n(F).

We are now in a position to derive the Rademacher complexity of linear SMM and the
corresponding generalization bound.

Lemma 4.9. Let H be an RKHS with reproducing kernel k : X × X → R, P be a set

of probability measures on X , S = (P1, ...,Pn) be a sample drawn i.i.d. according to some

distribution Q on P . Given a positive constant b and a class of real-valued functions

Fb =
{
g : P → R

∣∣w ∈H , ‖w‖H ≤ b s.t. g(P) = 〈µP,w〉H
}
,

the Rademacher complexity of Fb is given by

Rn(Fb) ≤
b√
n

√
EP∼QEx∼P[k(x,x)].

Proof of Lemma 4.9. Let S = {P1, ...,Pn} be a set of samples drawn from a distribution Q on
P , and σi be i.i.d. uniform random variable on ±1. Consequently, we have

Rn(Fb) = EQEσ

[
sup
g∈Fb

∣∣∣∣∣
1

n

n∑

i=1

σig(Pi)

∣∣∣∣∣

]

= EQEσ

[
sup

‖w‖≤b

∣∣∣∣∣

〈
w,

1

n

n∑

i=1

σiEx∼Pi [k(x, ·)]
〉∣∣∣∣∣

]

≤ b

n
EQEσ







n∑

i,j=1

σiσjExi∼Pi,xj∼Pj [k(xi,xj)]




1
2




≤ b

n
EQ



(

n∑

i=1

Ex∼Pi [k(x,x)]

) 1
2




≤ b√
n

(
1

n

n∑

i=1

EQEPi [k(x,x)]

) 1
2

=
b√
n

√
EP∼QEx∼P[k(x,x)].

This completes the proof. �

As an interpretation, Lemma 4.9 considers a linear SMM in an RKHS-ball of radius b. The
result suggests that Rn(Fb) is bounded by a finite constant as long as supx∈X k(x,x) < ∞
and the bound vanishes as n → ∞. Furthermore, using the results from Table 4.1 and a prior
knowledge on Q, one can derive an analytic form of Ex∼P[k(x,x)].

Theorem 4.10. Let S = {(P1, y1), ..., (Pn, yn)} be i.i.d. sample drawn according to some

distribution over P × {−1,+1}. For any h(P) = sign(f(P)) for f ∈ Fb, with probability at

least 1− δ over the samples of size n,

Pr(h(P) 6= y) ≤ P̂r(h(Pi) 6= yi) + 2b

√
EP∼QEx∼P[k(x,x)]

n
+

√
ln 1/δ

2n
.
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Proof of Theorem 4.10. Consider the hypothesis h(P) = sign(g(P)) ∈ {−1, 1} and the loss
function ℓ(P, y, h(P)) = Θ(−yg(P)) where Θ is the Heavyside function,

Θ(a) =

{
1 if a ≥ 0

0 otherwise.

Consequently, Pr(y 6= sign(g(P))) = E[Θ(−yg(P))]. Since η := (1 − yg(P))+ ≥ Θ(−yg(P))
and η(·) is Lipschitz with constant 1, we have

Pr(y 6= sign(g(P))) = E[Θ(−yg(P))] ≤ E[(1− yg(P))+] .
Moreover, σiyg(P) is symmetric around 0, so that yg(P) has the same distribution and Rn(Y Fb) =
Rn(Fb). Furthermore, η̃(·) = η(·) − 1 is Lipschitz with constant 1 and satisfies η̃(0) = 0.
Lemma 4.8 implies

Rn(η̃(Y Fb)) ≤ 2Rn(Y Fb) = 2Rn(Fb)
By Theorem 4.7 and Lemma 4.9, with probability at least 1− δ,

Pr(h(P) 6= y)− 1 ≤ En[(1− yh(P))+ − 1] + 2Rn(η̃(Y F)) +
√

ln 1/δ

2n

= P̂r(h(Pi) 6= yi) + 2b

√
EP∼QEx∼P[k(x,x)]

n
+

√
ln 1/δ

2n
.

This completes the proof. �

The generalization bound in Theorem 4.10 resembles the standard result in learning theory
except the second term on the r.h.s. which characterizes the Rademacher complexity of Fb over
the space of probability distributions.

It is worth mentioning that similar result can be obtained in term of other complexity mea-
sures. For instance, we may consider a fat-shattering dimension of Bartlett and Shawe-Taylor
(1999). Let consider the function class Fr = {µP 7→ 〈w,µP〉 : ‖w‖H ≤ 1, ‖µP‖H ≤ r}.
It is not difficult to show that fatFr(γ) ≤ (r/γ)2 where fatFr(γ) denotes the fat-shattering
dimension of Fr which depends on the margin γ. It follows from Bartlett and Shawe-Taylor
(1999) that there is a constant c such that w.p. 1 − δ over n independent examples S , if
h = sign(f) ∈ sign(Fr) has margin at least γ on all the examples in S , then the error of
h is no more than (c/n)((r2/γ2) log2 n + log(1/δ)). Moreover, w.p. 1 − δ, every classifier

h ∈ sign(Fr) has error no more than s/n+
√

(c/n)((r2/γ2) log2 n+ log(1/δ)) where s is the
number of laballed examples in S with margin less than γ. Unlike Rademacher complexity, the
fat-shattering bounds also incorporate label information.

A more thorough analysis of distributional learning can be found in more recent works
such as Lopez-Paz et al. (2015b) for classification setting and Szabó et al. (2015) for regression
setting. In those works, the basic assumption is that we only have access to the sample sets
(X1, y1), . . . , (Xn, yn) where Xi = {xi1, . . . ,xini}, xij ∼ Pi.

4.7 Experimental Results

In the experiments, we primarily consider three different learning algorithms: i) SVM is con-
sidered as a baseline algorithm. ii) Augmented SVM (ASVM) is an SVM trained on augmented
samples drawn according to the distributions {Pi}mi=1. The same number of examples are drawn
from each distribution. iii) SMM is distribution-based method that can be applied directly on
the distributions.1

1We used the LIBSVM implementation.
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Table 4.3: Accuracies (%) of SMM on synthetic data with different combinations of embedding and
level-2 kernels.

Embedding kernels

LIN POLY2 POLY3 RBF URBF

L
ev

el
-2

k
er

n
el

s LIN 85.20±2.20 81.04±3.11 81.10±2.76 87.74±2.19 85.39±2.56
POLY 83.95±2.11 81.34±1.21 82.66±1.75 88.06±1.73 86.84±1.51
RBF 87.80±1.96 73.12±3.29 78.28±2.19 89.65±1.37 86.86±1.88

4.7.1 Synthetic Data

Firstly, we conducted a basic experiment that illustrates a fundamental difference between SVM,
ASVM, and SMM. A binary classification problem of 7 Gaussian distributions with different
means and covariances was considered. We trained the SVM using only the means of the dis-
tributions, ASVM with 30 virtual examples generated from each distribution, and SMM using
distributions as training examples. A Gaussian RBF kernel with γ = 0.25 was used for all
algorithms.

Figure 4.1a shows the resulting decision boundaries. Having been trained only on means
of the distributions, the SVM classifier tends to overemphasize the regions with high densities
and underrepresent the lower density regions. In contrast, the ASVM is more expensive and
sensitive to outliers, especially when learning on heavy-tailed distributions. The SMM treats
each distribution as a training example and implicitly incorporates properties of the distributions,
i.e., means and covariances, into the classifier. Note that the SVM can be trained to achieve a
similar result to the SMM by choosing an appropriate value for γ (cf. Lemma 4.3). Nevertheless,
this becomes more difficult if the training distributions are, for example, nonisotropic and have
different covariance matrices.

Secondly, we evaluate the performance of the SMM for different combinations of embed-
ding and level-2 kernels. Two classes of synthetic Gaussian distributions on R10 were generated.
The mean parameters of the positive and negative distributions are normally distributed with
means m+ = (1, . . . , 1) and m− = (2, . . . , 2) and identical covariance matrix Σ = 0.5 · I10,
respectively. The covariance matrix for each distribution is generated according to two Wishart
distributions with covariance matrices given by Σ+ = 0.6 · I10 and Σ− = 1.2 · I10 with 10
degrees of freedom. The training set consists of 500 distributions from the positive class and
500 distributions from the negative class. The test set consists of 200 distributions with the same
class proportion.

The kernels used in the experiment include linear kernel (LIN), polynomial kernel of de-
gree 2 (POLY2), polynomial kernel of degree 3 (POLY3), unnormalized Gaussian RBF kernel
(RBF), and normalized Gaussian RBF kernel (NRBF). To fix parameter values of both ker-
nel functions and SMM, 10-fold cross-validation (10-CV) is performed on a parameter grid,
C ∈ {2−3, 2−2, . . . , 27} for SMM, bandwidth parameter γ ∈ {10−3, 10−2, . . . , 102} for Gaus-
sian RBF kernels, and degree parameter d ∈ {2, 3, 4, 5, 6} for polynomial kernels. The average
accuracy and ±1 standard deviation for all kernel combinations over 30 repetitions are reported
in Table 4.3. Moreover, we also investigate the sensitivity of kernel parameters for two kernel
combinations: RBF-RBF and POLY-RBF. In this case, we consider the bandwidth parameter
γ = {10−3, 10−2, . . . , 103} for Gaussian RBF kernels and degree parameter d = {2, 3, . . . , 8}
for polynomial kernels. Figure 4.1b depicts the accuracy values and average accuracies for
considered kernel functions.

Table 4.3 indicates that both embedding and level-2 kernels are important for the perfor-
mance of the classifier. The embedding kernels tend to have more impact on the predictive
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(a) decision boundaries.
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Figure 4.1: (a) The decision boundaries of SVM, ASVM, and SMM. (b) the heatmap plots of average
accuracies of SMM over 30 experiments using POLY-RBF (center) and RBF-RBF (right) kernel combi-
nations with the plots of average accuracies at different parameter values (left).
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Figure 4.2: The performance of SVM, ASVM, and SMM algorithms on handwritten digits constructed
using three basic transformations.

performance compared to the level-2 kernels. This conclusion also coincides with the results
depicted in Figure 4.1b.
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Figure 4.3: Relative computational cost of ASVM and SMM (baseline: SMM with 2000 virtual exam-
ples).

4.7.2 Handwritten Digit Recognition

In this section, the proposed framework is applied to distributions over equivalence classes of
images that are invariant to basic transformations, namely, scaling, translation, and rotation.
We consider the handwritten digits obtained from the USPS dataset. For each 16 × 16 image,
the distribution over the equivalence class of the transformations is determined by a prior on
parameters associated with such transformations. Scaling and translation are parametrized by
the scale factors (sx, sy) and displacements (tx, ty) along the x and y axes, respectively. The
rotation is parametrized by an angle θ. We adopt Gaussian distributions as prior distributions,
including N ([1, 1], 0.1 ·I2),N ([0, 0], 5 ·I2), andN (0;π). For each image, the virtual examples
are obtained by sampling parameter values from the distribution and applying the transformation
accordingly.

Experiments are categorized into simple and difficult binary classification tasks. The former
consists of classifying digit 1 against digit 8 and digit 3 against digit 4. The latter considers
classifying digit 3 against digit 8 and digit 6 against digit 9. The initial dataset for each task
is constructed by randomly selecting 100 examples from each class. Then, for each example
in the initial dataset, we generate 10, 20, and 30 virtual examples using the aforementioned
transformations to construct virtual data sets consisting of 2,000, 4,000, and 6,000 examples,
respectively. One third of examples in the initial dataset are used as a test set. The original
examples are excluded from the virtual datasets. The virtual examples are normalized such that
their feature values are in [0, 1]. Then, to reduce computational cost, principle component anal-
ysis (PCA) is performed to reduce the dimensionality to 16. We compare the SVM on the initial
dataset, the ASVM on the virtual datasets, and the SMM. For SVM and ASVM, the Gaussian
RBF kernel is used. For SMM, we employ the empirical kernel (4.11) with Gaussian RBF
kernel as a base kernel. The parameters of the algorithms are fixed by 10-CV over parameters
C ∈ {2−3, 2−2, . . . , 27} and γ ∈ {0.01, 0.1, 1}.

The results depicted in Figure 4.2 clearly demonstrate the benefits of learning directly from
the equivalence classes of digits under basic transformations.2 In most cases, the SMM outper-
forms both the SVM and the ASVM as the number of virtual examples increases. Moreover,
Figure 4.3 shows the benefit of the SMM over the ASVM in term of computational cost.3

2While the reported results were obtained using virtual examples with Gaussian parameter distributions (Sec.
4.7.2), we got similar results using uniform distributions.

3The evaluation was made on a 64-bit desktop computer with Intel R© Core
TM

2 Duo CPU E8400 at 3.00GHz×2
and 4GB of memory.
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Figure 4.4: Accuracies of four different techniques for natural scene categorization.

4.7.3 Natural Scene Categorization

This section illustrates benefits of the nonlinear kernels between distributions for learning natu-
ral scene categories in which the bag-of-word (BoW) representation is used to represent images
in the dataset. Each image is represented as a collection of local patches, each being a codeword
from a large vocabulary of codewords called codebook. Standard BoW representations encode
each image as a histogram that enumerates the occurrence probability of local patches detected
in the image w.r.t. those in the codebook. On the other hand, our setting represents each image
as a distribution over these codewords. Thus, images of different scenes tends to generate dis-
tinct set of patches. Based on this representation, both the histogram and the local patches can
be used in our framework.

We use the dataset presented in Fei-fei (2005). According to their results, most errors occurs
among the four indoor categories (830 images), namely, bedroom (174 images), living room
(289 images), kitchen (151 images), and office (216 images). Therefore, we will focus on
these four categories. For each category, we split the dataset randomly into two separate sets of
images, 100 for training and the rest for testing.

A codebook is formed from the training images of all categories. Firstly, interesting key-
points in the image are randomly detected. Local patches are then generated accordingly. After
patch detection, each patch is transformed into a 128-dim SIFT vector (Lowe 1999). Given the
collection of detected patches, K-means clustering is performed over all local patches. Code-
words are then defined as the centers of the learned clusters. Then, each patch in an image is
mapped to a codeword and the image can be represented by the histogram of the codewords. In
addition, we also have anM×128 matrix of SIFT vectors whereM is the number of codewords.

We compare the performance of a Probabilistic Latent Semantic Analysis (pLSA) with the
standard BoW representation, SVM, linear SMM (LSMM), and nonlinear SMM (NLSMM).
For SMM, we use the empirical embedding kernel with Gaussian RBF base kernel k:

K(hi,hj) =

M∑

r=1

M∑

s=1

hi(cr)hj(cs)k(cr, cs)

where hi is the histogram of the ith image and cr is the rth SIFT vector. A Gaussian RBF kernel
is also used as the level-2 kernel for nonlinear SMM. For the SVM, we adopt a Gaussian RBF
kernel with χ2-distance between the histograms (Vedaldi et al. 2009), i.e.,

K(hi,hj) = exp
(
−γχ2(hi,hj)

)
where χ2(hi,hj) =

M∑

r=1

(hi(cr)− hj(cr))2
hi(cr) + hj(cr)

.

The parameters of the algorithms are fixed by 10-CV over parameters C ∈ {2−3, 2−2, . . . , 27}
and γ ∈ {0.01, 0.1, 1}. For NLSMM, we use the best γ of LSMM in the base kernel and perform
10-CV to choose γ parameter only for the level-2 kernel. To deal with multiple categories, we
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adopt the pairwise approach and voting scheme to categorize test images. The results in Figure
4.4 illustrate the benefit of the distribution-based framework. Understanding the context of a
complex scene is challenging. Employing distribution-based methods provides an elegant way
of utilizing higher-order statistics in natural images that could not be captured by traditional
sample-based methods.

4.8 Discussions

This chapter proposes a method for kernel-based discriminative learning on probability distri-
butions. The trick is to embed distributions into an RKHS, resulting in a simple and efficient
learning algorithm on distributions. A family of linear and nonlinear kernels on distributions
allows one to flexibly choose the kernel function that is suitable for the problems at hand. Our
analyses provide insights into the relations between distribution-based methods and traditional
sample-based methods, particularly the flexible SVM that allows the SVM to place different
kernels on each training example. The experimental results illustrate the benefits of learning
from a pool of distributions, compared to a pool of examples, both on synthetic and real-world
data.

Z END OF CHAPTER 4 Y
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Chapter 5
Unsupervised Learning on Distributions

An equally important setting for machine learning is when label information are not available
and we only observe unlabeled samples from distributions. In this chapter, I present an unsu-
pervised learning framework on distributions.

5.1 Introduction

A technological advances have allowed many emerging scientific disciplines such as population
genetics, flow cytometry, and astronomy to easily produce a tremendous amount of data. How-
ever, it is often the case that the acquisition of these data are subjected to different variations.
For example, flow cytometry data obtained from different patients is expected to undergo bio-
logical variations. Likewise, in population genetics, populations of organisms are categorized
according to their spatial distribution. In addition to the investigation of within-group variabil-
ity, e.g., random genetic variability, one may be interested in examining the divergence between
groups in accordance with the underlying distributions, which may reveal collective behaviors
of the data, e.g., structured genetic variability. Consequently, there is a need for exploratory tool
that is able to use data to access the properties of corresponding distributions.

Figure 5.1 illustrates the hierarchical data generating process that we typically encounter in
practice. We are interested in using the sample P1, . . . ,Pℓ to unravel and study the properties
of the distribution P∗. Unfortunately, we only observe the samples X1, . . . ,Xℓ where Xi =

{x(i)
1 , . . . ,x

(i)
ni } and x

(i)
j ∼ Pi. As a result, we must rely only on the sample set {X1, . . . ,Xℓ}.

Throughout this chapter, I argue that by using the kernel mean embedding constructed from Xi

as a representation of distribution Pi, we are able to make an inference on the properties of P∗

to some extent. I demonstrate this aspect empirically via PCA on distributions, and then present
some concrete applications as well as accompanying theoretical insights.

5.2 Distributional Principal Component Analysis

Principal component analysis (PCA) was first proposed by Pearson (1901) and its modern in-
stantiation was later formalized by Hotelling (1933b). Since then, it has become an essential
tool for multivariate data analysis and unsupervised dimensionality reduction (Jolliffe 1986,
Burges 2010). The goal of PCA is to find a set of orthogonal components that best explains
the variance of the observations. It can be shown mathematically that variance of the projected
observations is maximized when these orthogonal components are the eigenvectors of covari-
ance matrix between the observations (see e.g., Section 2.2.3 and Jolliffe (1986) for a detailed
treatment of PCA). Probabilistic PCA (Tipping and Bishop 1999) provides an alternative view
of PCA as a maximum likelihood estimation that yields better interpretability. The success of
PCA has encouraged many specialized extensions of PCA in many fields. For instance, robust
PCA (De la Torre and Black 2001) was proposed to deal with outliers and becomes popular
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P∗ Pi Xk

k = 1, . . . , ni

i = 1, . . . , ℓ

Figure 5.1: The graphical model describing the generative process of the framework considered in this
work. The observations are sample sets whose members are drawn according to the the random distribu-
tions.

especially in computer vision (Torre and Black 2003). Functional PCA (Shang 2011, van der
Linde 2008) was developed particularly for functional data such as time series (Ingrassia and
Costanzo 2005) and functional magnetic resonance imaging (fMRI) (Viviani et al. 2005), and
has become an essential tool in functional data analysis (FDA) (Ramsay and Silverman 2005).
One of the disadvantages of PCA is that it can only discover the linear subspace. To deal with
nonlinear features, nonlinear extensions of PCA have been introduced (Kramer 1991, Lawrence
2005, Scholz et al. 2005). In particular, Schölkopf et al. (1998) used the kernel trick for nonlin-
ear PCA in which nonlinear features need not be computed explicitly. This advantage also leads
to several specialized extension of kernel PCA (KPCA), including robust KPCA (Nguyen and
la Torre 2009, Huang et al. 2009) and missing data in KPCA (Sanguinetti and Lawrence 2006).

In many situations, the data naturally fall into one of the multiple categories. In these cases,
linear discriminant analysis (LDA) is often adopted (Fisher 1936, McLachlan 1992). The goal
of LDA is to determine which variables discriminate between two or more naturally occurring
groups. It is similar to PCA in the sense that both looks for linear combinations of variables that
best explain the data. Unlike PCA, LDA is a supervised technique which also takes class mem-
berships into account. Mathematically speaking, LDA finds a linear subspace which maximizes
the between-class scattering of projected data, while minimizing their within-class scattering.
For binary categories, LDA often relies on the assumption that class conditional probability
density functions are both normally distributed and class covariances are identical, i.e., ho-
moscedastic assumption. In multiclass LDA, the sample covariance of the class means is used
to measure between-class scattering. Therefore, most higher-order statistics, e.g., class covari-
ance and tensors, arising from the collective behaviors of the data are neglected by LDA. We, on
the other hand, aim to incorporate these higher-order statistics by mean of PCA on probability
distributions. I call it a distributional PCA (DPCA) which amounts to solving KPCA with in-
ner product 〈µP,µQ〉H . In addition to an exploratory aspect, understanding the consequences
of DPCA will offer a new spectrum of algorithms in machine learning for multi-source learn-
ing (patient-hospital), domain adaptation (finding a low-dimensional subspace of domains), and
multi-task or transfer learning.

5.2.1 Analysis of Kernel Mean Representation

In exploratory data analysis, it is important to understand what kind of information is captured
by the proposed representation. To simplify the analysis, I will focus on a family of shift-

invariant kernels k(x,x′) = ψ(x− x′). By Bochner’s theorem (Theorem 2.2), we know that ψ
is a Fourier transform of a finite nonnegative Borel measure Λ on Rd. I assume that the measure
dΛ(ω) can be represented by a density Ψ̂(ω) dω. The function Ψ̂(ω) is called the spectrum and
can be computed as the inverse Fourier transform of ψ(x) given by

Ψ̂(ω) =
1

(2π)d

∫

Rd
ei〈x,ω〉ψ(x) dx
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If the kernel k is properly scaled, Bochner’s theorem guarantees that its Fourier transform is a
proper probability distribution.

The following theorem related the kernel 〈µP,µQ〉H to the inner product between their
characteristic functions ϕP and ϕQ in L2(Rd,Λ).

Theorem 5.1. Let P denote the set of all Borel probability measures on Rd and k : Rd×Rd →
R be a bounded, measurable, and shift-invariant kernel endowed with a reproducing kernel

Hilbert space (RKHS) H . For any P,Q ∈ P whose characteristic functions are ϕP and ϕQ,

respectively, the following equality holds:

K(P,Q) = 〈µP,µQ〉H = 〈ϕP, ϕQ〉L2(Rd,Λ) (5.1)

for some finite nonnegative Borel measure Λ on Rd.

Proof of Theorem 5.1. Since k is bounded, Ex∼P[k(x, ·)] < ∞ and is well-defined for any
P ∈P . Then, by definition, we have

〈µP,µQ〉H =

∫∫
k(x,x′) dP(x) dQ(x′)

Thus, it is trivial that K : P ×P → R is a positive semidefinite kernel on P . Since k is
shift-invariant, it follows from Bochner’s theorem (cf. Theorem 2.2) that,
∫∫

k(x,x′) dP(x) dQ(x′) =

∫∫
ψ(x− x′) dP(x) dQ(x′)

=

∫∫∫
e−i〈x−x′,ω〉 dΛ(ω) dP(x) dQ(x′)

=

∫∫∫
e−i〈x,ω〉 · ei〈x′,ω〉 dΛ(ω) dP(x) dQ(x′)

=

∫∫∫
e−i〈x,ω〉 · ei〈x′,ω〉 dP(x) dQ(x′) dΛ(ω)

=

∫ [∫
e−i〈x,ω〉 dP(x)

]
·
[∫

ei〈x
′,ω〉 dQ(x′)

]
dΛ(ω)

=

∫
ϕP(ω) · ϕQ(ω) dΛ(ω)

= 〈ϕP, ϕQ〉L2(Rd,Λ)

thus completing the proof. �

Theorem 5.1 implies that K(P,Q) = 〈µP,µQ〉H can be equivalently written as the L2-
inner product between the characteristic functions of P and Q w.r.t. the nonnegative finite Borel
measure Λ which is the Fourier transform of ψ. Strictly speaking, the kernel K(P,Q) is the
generalization of the Hermitian inner product w.r.t. a measure Λ such that the integral matters
only on sets with positive measure.

If supp(Λ) is Rd, then the integral is defined everywhere and there is no loss of information.
As a result, the map (4.7) is injective (Sriperumbudur et al. 2008; 2010). On the other hand,
we may consider the non-characteristic kernel functions. In such cases, L2 space consists of
equivalence classes of characteristic functions. Two characteristic functions represent the same
L2 function if the set where they differ has measure zero. Consequently, it is possible for DPCA
to completely neglect certain properties of the distributions by choosing the appropriate kernel
k accordingly. Moreover, instead of working with individual probability distributions, we can

105



5.2. DISTRIBUTIONAL PRINCIPAL COMPONENT ANALYSIS

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Figure 5.2: (a) The synthetic Gaussian distributions with identical mean and varying covariance matrices.
b the sample drawn according to the synthetic Gaussian distributions.

Figure 5.3: The projection of data onto the first three principal components. Each point and its color in
the plot corresponds to the distribution shown in Figure 5.2a.

deal with the equivalence classes of probability distributions whose characteristic functions are
the same on the set where Λ has positive measure.

To illustrate this, I conduct a simple experiment which involves principal component anal-
ysis on distributions. Figure 5.2 depicts synthetic data. The data set consists of 24 zero-mean
Gaussian distributions whose covariance matrices are different as illustrated in Figure 5.2a. The
samples from these distributions are depicted in Figure 5.2b. Based on these samples, I then
perform the KPCA using the inner product 〈µ̂P, µ̂Q〉H with Gaussian RBF kernel. The results
are shown in Figure 5.3 and 5.4 using different bandwidth parameter σ. As we can see, the
results reflect the similarity between distributions observed in Figure 5.2a.
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Figure 5.4: Same as Figure 5.3, but visualize the projection on the first three principal components
simultaneously.

In the subsequent sections, I present some concrete examples of unsupervised learning al-
gorithms on distributions.

5.3 One-Class Support Measure Machines

Anomaly detection is one of the most important tools in all data-driven scientific disciplines.
Data that do not conform to the expected behaviors often bear some interesting characteristics
and can help domain experts better understand the problem at hand. However, in the era of data
explosion, the anomaly may appear not only in the data themselves, but also as a result of their
interactions. The main objective of this paper is to investigate the latter type of anomalies. To
be consistent with the previous works (Póczos et al. 2011, Xiong et al. 2011b;a), we will refer to
this problem as a group anomaly detection, as opposed to a traditional point anomaly detection.

Like traditional point anomaly detection, the group anomaly detection refers to a problem of
finding patterns in groups of data that do not conform to expected behaviors (Póczos et al. 2011,
Xiong et al. 2011b;a). That is, an ultimate goal is to detect interesting aggregate behaviors of
data points among several groups. In principle, anomalous groups may consist of individually
anomalous points, which are relatively easy to detect. On the other hand, anomalous groups of
relatively normal points, whose behavior as a group is unusual, is much more difficult to detect.
In this work, we are interested in the latter type of group anomalies. Figure 5.5 illustrates this
scenario.

Group anomaly detection may shed light in a wide range of applications. For example, a
Sloan Digital Sky Survey (SDSS) has produced a tremendous amount of astronomical data. It is
therefore very crucial to detect rare objects such as stars, galaxies, or quasars that might lead to a
scientific discovery. In addition to individual celestial objects, investigating groups of them may
help astronomers understand the universe on larger scales. For instance, the anomalous group of
galaxies, which is the smallest aggregates of galaxies, may reveal interesting phenomena, e.g.,
the gravitational interactions of galaxies.

Likewise, a new physical phenomena in high energy particle physics such as Higgs boson
appear as a tiny excesses of certain types of collision events among a vast background of known
physics in particle detectors (Bhat 2011, Vatanen et al. 2012). Investigating each collision event
individually is no longer sufficient as the individual events may not be anomalies by themselves,
but their occurrence together as a group is anomalous. Hence, we need a powerful algorithm to
detect such a rare and highly structured anomaly.

Lastly, the algorithm proposed in this paper can be applied to point anomaly detection with
substantial and heterogeneous uncertainties. For example, it is often costly and time-consuming
to obtain the full spectra of astronomical objects. Instead, relatively noisier measurements are
usually made. In addition, the estimated uncertainty which represents the uncertainty one would
obtain from multiple observations is also available. Incorporating these uncertainties has been
shown to improve the performance of the learning systems (Kirkpatrick et al. 2011, Bovy et al.
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Figure 5.5: An illustration of two types of group anomalies. An anomalous group may be a group of
anomalous samples which is easy to detect (unfilled points). In this paper, we are interested in detecting
anomalous groups of normal samples (filled points) which is more difficult to detect because of the
higher-order statistics. Note that group anomaly we are interested in can only be observed in the space
of distributions.

2011, Ross et al. 2012).
The anomaly detection has been intensively studied (Chandola et al. (2009) and references

therein). However, few attempts have been made on developing successful group anomaly de-
tection algorithms. For example, a straightforward approach is to define a set of features for
each group and apply standard point anomaly detection (Chan and Mahoney 2005). Despite its
simplicity, this approach requires a specific domain knowledge to construct appropriate sets of
features. Another possibility is to first identify the individually anomalous points and then find
their aggregations (Das et al. 2008). Again, this approach relies only on the detection of anoma-
lous points and thus cannot find the anomalous groups in which their members are perfectly
normal. Successful group anomaly detectors should be able to incorporate the higher-order
statistics of the groups.

Recently, a family of hierarchical probabilistic models based on a Latent Dirichlet Alloca-
tion (LDA) (Blei et al. 2001) has been proposed to cope with both types of group anomalies
(Xiong et al. 2011b;a). In these models, the data points in each group are assumed to be one
of the K different types and generated by a mixture of K Gaussian distributions. Although the
distributions over these K types can vary across M groups, they share common generator. The
groups that have small probabilities under the model are marked as anomalies using scoring
criteria defined as a combination of a point-based anomaly score and a group-based anomaly
score. The Flexible Genre Model (FGM) recently extends this idea to model more complex
group structures (Xiong et al. 2011a).

Instead of employing a generative approach, we propose a simple and efficient discrimina-
tive way of detecting group anomaly. In this work, M groups of data points are represented by
a set of M probability distributions assumed to be i.i.d. realization of some unknown distribu-
tion P . In practice, only i.i.d samples from these distributions are observed. Hence, we can
treat group anomaly detection as detecting the anomalous distributions based on their empirical
samples. To allow for a practical algorithm, the distributions are mapped into the RKHS using
the kernel mean embedding. By working directly with the distributions, the higher-order infor-
mation arising from the aggregate behaviors of the data points can be incorporated efficiently.

5.3.1 Quantile Estimation on Probability Distributions

Let X denote a non-empty input space with associated σ-algebra A, P denote the probability
distribution on (X ,A), and P denote the set of all probability distributions on (X ,A). The
space P is endowed with the topology of weak convergence and the associated Borel σ-algebra.

We assume that there exists a distribution P on P , where P1, . . . ,Pℓ are i.i.d. realizations
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from P, and the sample Si is made of ni i.i.d. samples distributed according to the distribution

Pi. In this work, we observe ℓ samples Si = {x(i)
k }1≤k≤ni for i = 1, . . . , ℓ. For each sample Si,

P̂i =
1
ni

∑ni
j=1 δx(i)

j

is the associated empirical distribution of Pi.

In this section, we formulate a group anomaly detection problem as learning quantile func-
tion q : P → R to estimate the support of P. Let C be a class of measurable subsets of P and
λ be a real-valued function defined on C, the quantile function w.r.t. (P, C, λ) is

q(β) = inf{λ(C) : P(C) ≥ β,C ∈ C} ,

where 0 < β ≤ 1. In this paper, we consider when λ is Lebesgue measure, in which case C(β)
is the minimum volume C ∈ C that contains at least a fraction β of the probability mass of P.
Thus, the function q can be used to test if any test distribution Pt is anomalous w.r.t. the training
distributions.

Rather than estimating C(β) in the space of distributions directly, we first map the distri-
butions into a feature space via a positive semi-definite kernel k. Our class C is then implicitly
defined as the set of half-spaces in the feature space. Specifically, Cw = {P | fw(P) ≥ ρ}
where (w, ρ) are respectively a weight vector and an offset parametrizing a hyperplane in the
feature space associated with the kernel k. The optimal (w, ρ) is obtained by minimizing a
regularizer which controls the smoothness of the estimated function describing C .

5.3.2 OCSMM Formulation

Our approach is in line with previous attempts in group anomaly detection that find a set of
appropriate features for each group. On the one hand, however, the mean embedding approach
captures all necessary information about the groups without relying heavily on a specific domain
knowledge. On the other hand, it is flexible to choose the feature representation that is suitable
to the problem at hand via the choice of the kernel k.

Using the mean embedding representation (4.7), the primal optimization problem for one-
class SMM can be subsequently formulated in an analogous way to the one-class SVM (Schölkopf
et al. 2001b) as follow:

minimize
w,b,ξ,ρ

1

2
〈w,w〉H − ρ+

1

νℓ

ℓ∑

i=1

ξi (5.2a)

subject to 〈w,µPi〉H ≥ ρ− ξi, ξi ≥ 0 (5.2b)

where ξi denote slack variables and ν ∈ (0, 1] is a trade-off parameter corresponding to an
expected fraction of outliers within the feature space. The trade-off ν is an upper bound on
the fraction of outliers and lower bound on the fraction of support measures (Schölkopf et al.
2001b).

The trade-off parameter ν plays an important role in group anomaly detection. Small ν
implies that anomalous groups are rare compared to the normal groups. Too small ν leads to
some anomalous groups being rejected. On the other hand, large ν implies that anomalous
groups are common. Too large ν leads to some normal groups being accepted as anomaly.
As group anomaly is subtle, one need to choose ν very carefully to reduce the effort in the
interpretation of the results.

By introducing Lagrange multipliers α, we have w =
∑ℓ

i=1 αiµPi =
∑ℓ

i=1 αiEPi[k(x, ·)]
and the dual form of (5.2) can be written as

minimize
α

1

2

ℓ∑

i=1

ℓ∑

j=1

αiαj〈µPi ,µPj 〉H (5.3a)
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subject to 0 ≤ αi ≤
1

νℓ
,

ℓ∑

i=1

αi = 1 . (5.3b)

Note that the dual form is a quadratic programming and depends on the inner product 〈µPi ,µPj 〉H .
Given that we can compute 〈µPi ,µPj 〉H , we can employ the standard QP solvers to solve (5.3).

From (5.3), we can see that µP is a feature map associated with the kernel K : P ×P →
R, defined as K(Pi,Pj) = 〈µPi ,µPj 〉H . It follows from Fubini’s theorem and reproducing
property of H that

〈µPi ,µPj 〉H =

∫∫
〈k(x, ·), k(y, ·)〉H dPi(x) dPj(y)

=

∫∫
k(x,y) dPi(x) dPj(y) . (5.4)

Hence, K is a positive definite kernel on P . Given the sample sets S1, . . . , Sℓ, one can estimate
(5.10) by

K(P̂i, P̂j) =
1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k ,x

(j)
l ) (5.5)

where x
(i)
k ∈ Si, x

(j)
l ∈ Sj , and ni is the number of samples in Si for i = 1, . . . , ℓ.

Previous works in kernel-based anomaly detection have shown that the Gaussian RBF kernel
is more suitable than some other kernels such as polynomial kernels (Hoffmann 2007). Thus we
will focus primarily on the Gaussian RBF kernel given by

kσ(x,x
′) = exp

(
−‖x− x′‖2

2σ2

)
, x,x′ ∈ X (5.6)

where σ > 0 is a bandwidth parameter. In the sequel, we denote the RKHS associated with ker-
nel kσ by Hσ. Also, let φ : X →Hσ be a feature map such that kσ(x,x′) = 〈φ(x), φ(x′)〉Hσ .

In group anomaly detection, we always observe the i.i.d. samples from the distribution un-
derlying the group. Thus, it is natural to use the empirical kernel (5.5). However, one may relax
this assumption and apply the kernel (5.10) directly. For instance, if we have a Gaussian distri-
bution Pi = N (mi,Σi) and a Gaussian RBF kernel kσ , we can compute the kernel analytically
by

K(Pi,Pj) =
exp

(
−1

2(mi −mj)
TB−1(mi −mj)

)

| 1
σ2
Σi +

1
σ2
Σj + I| 12

(5.7)

where B = Σi+Σj + σ2I. This kernel is particularly useful when one want to incorporate the
point-wise uncertainty of the observation into the learning algorithm (Muandet et al. 2012).

5.3.3 Geometric Interpretation

For translation-invariant kernel, k(x,x) is constant for all x ∈ X . That is, ‖φ(x)‖H = τ for
some constant ρ. This implies that all of the images φ(x) lie on the sphere in the feature space
(cf. Figure 5.6a). Consequently, the following inequality holds

‖µP‖H =

∥∥∥∥
∫
k(x, ·) dP(x)

∥∥∥∥
H

≤
∫
‖k(x, ·)‖H dP(x) = τ ,

which shows that all mean embeddings lie inside the sphere (cf. Figure 5.6a). As a result, we
can establish the existence and uniqueness of the separating hyperplane w in (5.2) through the
following theorem.
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Figure 5.6: (a) The two dimensional representation of the RKHS of Gaussian RBF kernels. Since the
kernels depend only on x−x′, k(x,x) is constant. Therefore, all feature maps φ(x) (black dots) lie on a
sphere in feature space. Hence, for any probability distribution P, its mean embedding µP always lies in
the convex hull of the feature maps, which in this case, forms a segment of the sphere. (b) In general, the
solution of OCSMM is different from the minimum enclosing sphere. (c) Three dimensional sphere in
the feature space. For the Gaussian RBF kernel, the kernel mean embeddings of all distributions always
lie inside the segment of the sphere. In addition, the angle between any pair of mean embeddings is
always greater than zero. Consequently, the mean embeddings can be scaled, e.g., to lie on the sphere,
and the map is still injective.

Theorem 5.2. There exists a unique separating hyperplane w as a solution to (5.2) that sepa-

rates µP1 ,µP2 , . . . ,µPℓ from the origin.

Proof. Due to the separability of the feature maps φ(x), the convex hull of the mean embeddings
µP1 ,µP2 , . . . ,µPℓ does not contain the origin. The existence and uniqueness of the hyperplane
then follows from the supporting hyperplane theorem (Schölkopf and Smola 2001). �

By Theorem 5.2, the OCSMM is a simple generalization of OCSVM to the space of prob-
ability distributions. Furthermore, the straightforward generalization will allow for a direct
application of an efficient learning algorithm as well as existing theoretical results.

There is a well-known connection between the solution of OCSVM with translation invari-
ant kernels and the center of the minimum enclosing sphere (MES) (Tax and Duin 1999; 2004).
Intuitively, this is not the case for OCSMM, even when the kernel k is translation-invariant, as
illustrated in Figure 5.6b. Fortunately, the connection between OCSMM and MES can be made
precise by applying the spherical normalization

〈µP,µQ〉H 7−→
〈µP,µQ〉H√

〈µP,µP〉H 〈µQ,µQ〉H
(5.8)

After the normalization, ‖µP‖H = 1 for all P ∈ P . That is, all mean embeddings lie on
the unit sphere in the feature space. Consequently, the OCSMM and MES are equivalent after
the normalization.

Given the equivalence between OCSMM and MES, it is natural to ask if the spherical nor-
malization (5.8) preserves the injectivity of the Hilbert space embedding. In other words, is
there an information loss after the normalization? The following theorem answers this question
for kernel k that satisfies some reasonable assumptions.

Theorem 5.3. Assume that k is characteristic and the samples are linearly independent in the

feature space H . Then, the spherical normalization preserves the injectivity of the mapping

µ : P →H .
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Proof. Let us assume the normalization does not preserve the injectivity of the mapping. Thus,
there exist two distinct probability distributions P and Q for which

µP = µQ∫
k(x, ·) dP(x) =

∫
k(x, ·) dQ(x)

∫
k(x, ·) d(P −Q)(x) = 0 .

As P 6= Q, the last equality holds if and only if there exists x ∈ X for which k(x, ·) are linearly
dependent, which contradicts the assumption. Consequently, the spherical normalization must
preserve the injectivity of the mapping. �

The Gaussian RBF kernel satisfies the assumption given in Theorem 5.3 as the kernel matrix
will be full-rank and thereby the samples are linearly independent in the feature space. Figure
5.6c depicts an effect of the spherical normalization.

It is important to note that the spherical normalization does not necessarily improve the
performance of the OCSMM. It ensures that all the information about the distributions are pre-
served.

5.3.4 OCSMM and Kernel Density Estimation

In this section we make a connection between the OCSMM and kernel density estimation
(KDE). First, we give a definition of the KDE. Let x1,x2, . . . ,xn be an i.i.d. samples from
some distribution F with unknown density f , the KDE of f is defined as

f̂(y) =
1

nh

n∑

i=1

k

(
y − xi

h

)
(5.9)

For f̂ to be a density, we require that the kernel satisfies k(·, ·) ≥ 0 and
∫
k(x, ·) dx = 1, which

includes, for example, the Gaussian kernel, the multivariate Student kernel, and the Laplacian
kernel.

When ν = 1, it is well-known that, under some technical assumptions, the OCSVM cor-
responds exactly to the KDE (Schölkopf et al. 2001b). That is, the solution w of (5.2) can be
written as a uniform sum over training samples similar to (5.9). Moreover, setting ν < 1 yields
a sparse representation where the summand consists of only support vectors of the OCSVM.

Interestingly, we can make a similar correspondence between the KDE and the OCSMM. It
follows from Lemma 4.3 (cf. Muandet et al. (2012; Lemma 4)) that for certain classes of train-
ing probability distributions, the OCSMM on these distributions corresponds to the OCSVM
on some training samples equipped with an appropriate kernel function. To understand this
connection, consider the OCSMM with the Gaussian RBF kernel kσ and isotropic Gaussian
distributions N (m1;σ

2
1),N (m2;σ

2
2), . . . ,N (mn;σ

2
n).

1 We analyze this scenario under two
conditions:

(C1) Identical bandwidth. If σi = σj for all 1 ≤ i, j ≤ n, the OCSMM is equivalent to the
OCSVM on the training samples m1,m2, . . . ,mn with Gaussian RBF kernel kσ2+σ2i (cf. the
kernel (5.7)). Hence, the OCSMM corresponds to the OCSVM on the means of the distributions
with kernel of larger bandwidth.

1We adopt the Gaussian distributions here for the sake of simplicity. More general statement for non-Gaussian
distributions follows straightforwardly.
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(C2) Variable bandwidth. Similarly, if σi 6= σj for some 1 ≤ i, j ≤ n, the OCSMM is
equivalent to the OCSVM on the training samples m1,m2, . . . ,mn with Gaussian RBF ker-
nel kσ2+σ2i . Note that the kernel bandwidth may be different at each training samples. Thus,
OCSMM in this case corresponds to the OCSVM with variable bandwidth parameters.

On the one hand, the above scenario allows the OCSVM to cope with noisy/uncertain inputs,
leading to more robust point anomaly detection algorithm. That is, we can treat the means as
the measurements and the covariances as the measurement uncertainties (cf. Section 5.3.5). On
the other hand, one can also interpret the OCSMM when ν = 1 as a generalization of traditional
KDE, where we have a data-dependent bandwidth at each data point. This type of KDE is known
in the statistics as variable kernel density estimators (VKDEs) (Breiman et al. 1977, Abramson
1982, Terrell and Scott 1992). For ν < 1, the OCSMM gives a sparse representation of the
VKDE.

Formally, the VKDE is characterized by (5.9) with an adaptive bandwidth h(xi). For exam-
ple, the bandwidth is adapted to be larger where the data are less dense, with the aim to reduce
the bias. There are basically two different views of VKDE. The first is known as a balloon

estimator (Terrell and Scott 1992). Essentially, its bandwidth may depend only on the point at
which the estimate is taken, i.e., the bandwidth in (5.9) may be written as h(y). The second type
of VKDE is a sample smoothing estimator (Terrell and Scott 1992). As opposed to the balloon
estimator, it is a mixture of individually scaled kernels centered at each observation, i.e., the
bandwidth is h(xi). The advantage of balloon estimator is that it has a straightforward asymp-
totic analysis, but the final estimator may not be a density. The sample smoothing estimator is a
density if k is a density, but exhibits non-locality.

Both types of the VKDEs may be seen from the OCSMM point of view. Firstly, under the
condition (C1), the balloon estimator can be recovered by considering different test distribution
Pt = N (mt;σt). As σt → 0, one obtain the standard KDE on mt. Similarly, the OCSMM
under the condition (C2) with Pt = δmt gives the sample smoothing estimator. Interestingly,
the OCSMM under the condition (C2) with Pt = N (mt;σt) results in a combination of these
two types of the VKDEs.

In summary, we show that many variants of KDE can be seen as solutions to the regulariza-
tion functional (5.2), and thereby provides an insight into a connection between large-margin
approach and kernel density estimation.

5.3.5 Experimental Results

We firstly illustrate a fundamental difference between point and group anomaly detection prob-
lems. Then, we demonstrate an advantage of OCSMM on uncertain data when the noise is
observed explicitly. Lastly, we compare the OCSMM with existing group anomaly detection
techniques, namely, K-nearest neighbor (KNN) based anomaly detection (Zhao and Saligrama
2009) with NP-L2 divergence and NP-Renyi divergence (Póczos et al. 2011), and Multinomial
Genre Model (MGM) (Xiong et al. 2011b) on Sloan Digital Sky Survey (SDSS) dataset and
High Energy Particle Physics dataset.

Model Selection and Setup. One of the long-standing problems of one-class algorithms is
model selection. Since no labeled data is available during training, we cannot perform cross val-
idation. To encourage a fair comparison of different algorithms in our experiments, we will try
out different parameter settings and report the best performance of each algorithm. We believe
this simple approach should serve its purpose at reflecting the relative performance of different
algorithms. We will employ the Gaussian RBF kernel (5.6) throughout the experiments. For

the OCSVM and the OCSMM, the bandwidth parameter σ2 is fixed at median{‖x(i)
k − x

(j)
l ‖2}
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One-Class Support Vector Machine

One-Class Support Measure Machine

(a) OCSVM vs OCSMM (b) The results of the OCSMM on the mixture of Gaussian dataset

Figure 5.7: (a) The results of group anomaly detection on synthetic data obtained from the OCSVM and
the OCSMM. Blue dashed ovals represent the normal groups, whereas red ovals represent the detected
anomalous groups. The OCSVM is only able to detect the anomalous groups that are spatially far from
the rest in the dataset, whereas the OCSMM also takes into account other higher-order statistics and
therefore can also detect anomalous groups which possess distinctive properties. (b) The results of the
OCSMM on the synthetic data of the mixture of Gaussian. The shaded boxes represent the anomalous
groups that have different mixing proportion to the rest of the dataset. The OCSMM is able to detects the
anomalous groups although they look reasonably normal and cannot be easily distinguished from other
groups in the data set based only on an inspection.

for all i, j, k, l where x
(i)
k denotes the k-th data point in the i-th group, and we consider ν =

(0.1, 0.2, . . . , 0.9). The OCSVM treats group means as training samples. For synthetic ex-
periments with OCSMM, we use the empirical kernel (5.5), whereas the non-linear kernel
K(Pi,Pj) = exp(‖µPi − µPj‖2H /2γ2) will be used for real data where we set γ = σ. Our ex-
periments suggest that these choices of parameters usually work well in practice. For KNN-L2

and KNN-Renyi (α=0.99), we consider when there are 3,5,7,9, and 11 nearest neighbors. For
MGM, we follow the same experimental setup as in Xiong et al. (2011b).

Synthetic Data

To illustrate the difference between point anomaly and group anomaly, we represent the group
of data points by the 2-dimensional Gaussian distribution. We generate 20 normal groups with
the covariance Σ = [0.01, 0.008; 0.008, 0.01]. The means of these groups are drawn uniformly
from [0, 1]. Then, we generate 2 anomalous groups of Gaussian distributions whose covariances
are rotated by 60 degree from the covariance Σ. Furthermore, we perturb one of the normal
groups to make it relatively far from the rest of the dataset to introduce an additional degree of
anomaly (cf. Figure 5.7a). Lastly, we generate 100 samples from each of these distributions to
form the training set.

For the OCSVM, we represent each group by its empirical average. Since the expected
proportion of outliers in the dataset is approximately 10%, we use ν = 0.1 accordingly for both
OCSVM and OCSMM. Figure 5.7a depicts the result which demonstrates that the OCSMM can
detect anomalous aggregate patterns undetected by the OCSVM.

Then, we conduct similar experiment as that in Xiong et al. (2011b). That is, the groups are
represented as a mixture of four 2-dimensional Gaussian distributions. The means of the mix-
ture components are [−1,−1], [1,−1], [0, 1], [1, 1] and the covariances are all Σ = 0.15 × I2,
where I2 denotes the 2D identity matrix. Then, we design two types of normal groups, which
are specified by two mixing proportions [0.22, 0.64, 0.03, 0.11] and [0.22, 0.03, 0.64, 0.11], re-
spectively. To generate a normal group, we first decide with probability [0.48, 0.52] which
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mixing proportion will be used. Then, the data points are generated from mixture of Gaus-
sian using the specified mixing proportion. The mixing proportion of the anomalous group is
[0.61, 0.1, 0.06, 0.23].

We generated 47 normal groups with ni ∼ Poisson(300) instances in each group. Note that
the individual samples in each group are perfectly normal compared to other samples. To test
the performance of our technique, we inject the group anomalies, where the individual points
are normal, but they together as a group look anomalous. In this anomalous group the individual
points are samples from one of theK = 4 normal topics, but the mixing proportion was different
from both of the normal mixing proportions. We inject 3 anomalous groups into the data set.
The OCSMM is trained using the same setting as in the previous experiment. The results are
depicted in Figure 5.7b.

Noisy Data

The OCSMM may be adopted to learn from data points whose uncertainties are observed ex-
plicitly. To illustrate this claim, we generate samples from the unit circle using x = cos θ + ε
and y = sin θ+ εwhere θ ∼ (−π, π] and ε is a zero-mean isotropic Gaussian noise N (0, 0.05).
A different point-wise Gaussian noise N (0, ωi) where ωi ∈ (0.2, 0.3) is further added to each
point to simulate the random measurement corruption. In this experiment, we assume that ωi is
available during training. This situation is often encountered in many applications such as as-
tronomy and computational biology. Both OCSVM and OCSMM are trained on the corrupted
data. As opposed to the OCSVM that considers only the observed data points, the OCSMM also
uses ωi for every point via the kernel (5.7). Then, we consider a slightly more complicate data
generated by x = r · cos(θ) and y = r · sin(θ) where r = sin(4θ)+ 2 and θ ∈ (0, 2π]. The data
used in both examples are illustrated in Figure 5.8.

As illustrated by Figure 5.8, the density function estimated by the OCSMM is relatively
less susceptible to the additional corruption than that estimated by the OCSVM, and tends to
estimate the true density more accurately. This is not surprising because we also take into
account an additional information about the uncertainty. However, this experiment suggests
that when dealing with uncertain data, it might be beneficial to also estimate the uncertainty,
as commonly performed in astronomy, and incorporate it into the model. This scenario has not
been fully investigated in AI and machine learning communities. Our framework provides one
possible way to deal with such a scenario.

Sloan Digital Sky Survey

Sloan Digital Sky Survey (SDSS)2 consists of a series of massive spectroscopic surveys of the
distant universe, the milky way galaxies, and extrasolar planetary systems. The SDSS datasets
contain images and spectra of more than 930,000 galaxies and more than 120,000 quasars.

In this experiment, we are interested in identifying anomalous groups of galaxies, as previ-
ously studied in Póczos et al. (2011) and Xiong et al. (2011b;a). To replicate the experiments
conducted in Xiong et al. (2011b), we use the same dataset which consists of 505 spatial clusters
of galaxies. Each of which contains about 10-15 galaxies. The data were preprocessed by PCA
to reduce the 1000-dimensional features to 4-dimensional vectors.

To evaluate the performance of different algorithms to detect group anomaly, we consider ar-
tificially random injections. Each anomalous group is constructed by randomly selecting galax-
ies. There are 50 anomalous groups of galaxies in total. Note that although these groups of

2See http://www.sdss.org for the detail of the surveys.
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uncorrupted data corrupted data one-class SVM one-class SMM

uncorrupted data corrupted data one-class SVM one-class SMM

Figure 5.8: The density functions estimated by the OCSVM and the OCSMM using the corrupted data.

KNN-L2 KNN-Renyi MGM OCSVM OCSMM

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 P
re

ci
si

on

KNN-L2 KNN-Renyi MGM OCSVM OCSMM

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
U

C

Figure 5.9: The average precision (AP) and area under the ROC curve (AUC) of different group anomaly
detection algorithms on the SDSS dataset.

galaxies contain usual galaxies, their aggregations are anomalous due to the way the groups are
constructed.

The average precision (AP) and area under the ROC curve (AUC) from 10 random repeti-
tions are shown in Figure 5.9. Based on the average precision, KNN-L2, MGM, and OCSMM
achieve similar results on this dataset and KNN-Renyi outperforms all other algorithms. On the
other hand, the OCSMM and KNN-Renyi achieve highest AUC scores on this dataset. More-
over, it is clear that point anomaly detection using the OCSVM fails to detect group anomalies.

High Energy Particle Physics

In this section, we demonstrate our group anomaly detection algorithm in high energy particle
physics, which is largely the study of fundamental particles, e.g., neutrinos, and their interac-
tions. Essentially, all particles and their dynamics can be described by a quantum field theory
called the Standard Model. Hence, given massive datasets from high-energy physics experi-
ments, one is interested in discovering deviations from known Standard Model physics.

Searching for the Higgs boson, for example, has recently received much attention in particle
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Figure 5.10: The ROC of different group anomaly detection algorithms on the Higgs boson datasets with
various Higgs masses mH .

Table 5.1: The AUC scores for different settings shown in Figure 5.10.

mH KNN-L2 KNN-Renyi MGM OCSVM OCSMM

100 GeV 0.6835 0.6655 0.6350 0.5125 0.7085

115 GeV 0.5645 0.6783 0.5860 0.5263 0.7305

135 GeV 0.8190 0.7925 0.7630 0.4958 0.7950
150 GeV 0.6713 0.6027 0.6165 0.5862 0.7200

physics and machine learning communities (see e.g., Bhat (2011), Vatanen et al. (2012) and
references therein). A new physical phenomena usually manifest themselves as tiny excesses of
certain types of collision events among a vast background of known physics in particle detectors.

Anomalies occur as a cluster among the background data. The background data distribution
contaminated by these anomalies will therefore be different from the true background distribu-
tion. It is very difficult to detect this difference in general because the contamination can be
considerably small. In this experiment, we consider similar condition as in Vatanen et al. (2012)
and generate data using the standard HEP Monte Carlo generators such as PYTHIA3. In partic-
ular, we consider a Monte Carlo simulated events where the Higgs is produced in association
with the W boson and decays into two bottom quarks.

The data vector consists of 5 variables (px, py, pz, e,m) corresponding to different charac-
teristics of the topology of a collision event. The variables px, py, pz, e represents the momentum
four-vector in units of GeV with c = 1. The variable m is the particle mass in the same unit.
The signal looks slightly different for different Higgs masses mH , which is an unknown free
parameter in the Standard Model. In this experiment, we consider mH = 100, 115, 135, and
150 GeV. We generate 120 groups of collision events, 100 of which contain only background
signals, whereas the rest also contain the Higgs boson collision events. For each group, the num-
ber of observable particles ranges from 200 to 500 particles. The goal is to detect the anomalous
groups of signals which might contain the Higgs boson without prior knowledge of mH .

Figure 5.10 depicts the ROC of different group anomaly detection algorithms. The associ-
ated AUC scores for different settings are reported in Table 5.1. The OCSMM and KNN-based
group anomaly detection algorithms tend to achieve competitive performance and outperform
the MGM algorithm. Moreover, it is clear that traditional point anomaly detection algorithm
fails to detect high-level anomalous structures.

3http://home.thep.lu.se/∼torbjorn/Pythia.html
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5.3.6 Discussions

To conclude, we propose a simple and efficient algorithm for detecting group anomalies called
one-class support measure machine (OCSMM). To handle aggregate behaviors of data points,
groups are represented as probability distributions which account for higher-order information
arising from those behaviors. The set of distributions are represented as mean functions in the
RKHS via the kernel mean embedding. We also extend the relationship between the OCSVM
and the KDE to the OCSMM in the context of variable kernel density estimation, bridging
the gap between large-margin approach and kernel density estimation. We demonstrate the
proposed algorithm on both synthetic and real-world datasets, which achieve competitive results
compared to existing group anomaly detection techniques.

It is vital to note the differences between the OCSMM and hierarchical probabilistic mod-
els such as MGM and FGM. Firstly, the probabilistic models assume that data are generated
according to some parametric distributions, i.e., mixture of Gaussian, whereas the OCSMM is
nonparametric in the sense that no assumption is made about the distributions. It is therefore
applicable to a wider range of applications. Secondly, the probabilistic models follow a bottom-
up approach. That is, detecting group-based anomalies requires point-based anomaly detection.
Thus, the performance also depends on how well anomalous points can be detected. Further-
more, it is computational expensive and may not be suitable for large-scale datasets. On the
other hand, the OCSMM adopts the top-down approach by detecting the group-based anoma-
lies directly. If one is interested in finding anomalous points, this can be done subsequently
in a group-wise manner. As a result, the top-down approach is generally less computational
expensive and can be used efficiently for online applications and large-scale datasets.

5.4 Domain Generalization

Domain generalization considers how to take knowledge acquired from an arbitrary number of
related domains, and apply it to previously unseen domains. To illustrate the problem, consider
an example taken from Blanchard et al. (2011b) which studied automatic gating of flow cytom-
etry data. For each of N patients, a set of ni cells are obtained from peripheral blood samples
using a flow cytometer. The cells are then labeled by an expert into different subpopulations,
e.g., as a lymphocyte or not. Correctly identifying cell subpopulations is vital for diagnosing
the health of patients. However, manual gating is very time consuming. To automate gating,
we need to construct a classifier that generalizes well to previously unseen patients, where the
distribution of cell types may differ dramatically from the training data.

Unfortunately, we cannot apply standard machine learning techniques directly because the
data violates the basic assumption that training data and test data come from the same dis-
tribution. Moreover, the training set consists of heterogeneous samples from several distribu-
tions, i.e., gated cells from several patients. In this case, the data exhibits covariate (or dataset)
shift (Widmer and Kurat 1996, Quionero-Candela et al. 2009, Bickel et al. 2009): although the
marginal distributions PX on cell attributes vary due to biological or technical variations, the
functional relationship P(Y |X) across different domains is largely stable (cell type is a stable
function of a cell’s chemical attributes).

A considerable effort has been made in domain adaptation and transfer learning to remedy
this problem, see Pan and Yang (2010), Ben-David et al. (2010) and references therein. Given a
test domain, e.g., a cell population from a new patient, the idea of domain adaptation is to adapt
a classifier trained on the training domain, e.g., a cell population from another patient, such that
the generalization error on the test domain is minimized. The main drawback of this approach
is that one has to repeat this process for every new patient, which can be time-consuming –
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Figure 5.11: A simplified schematic diagram of the domain generalization framework. A major differ-
ence between our framework and most previous work in domain adaptation is that we do not observe the
test domains during training time. See text for detailed description on how the data are generated.

especially in medical diagnosis where time is a valuable asset. In this work, across-domain
information, which may be more informative than the domain-specific information, is extracted
from the training data and used to generalize the classifier to new patients without retraining.

Overview. The goal of (supervised) domain generalization is to estimate a functional rela-
tionship that handles changes in the marginal P(X) or conditional P(Y |X) well, see Figure
5.11. We assume that the conditional probability P(Y |X) is stable or varies smoothly with
the marginal P(X). Even if the conditional is stable, learning algorithms may still suffer from
model misspecification due to variation in the marginal P(X). That is, if the learning algorithm
cannot find a solution that perfectly captures the functional relationship between X and Y then
its approximate solution will be sensitive to changes in P(X).

In this paper, we introduce Domain Invariant Component Analysis (DICA), a kernel-based
algorithm that finds a transformation of the data that (i) minimizes the difference between
marginal distributions PX of domains as much as possible while (ii) preserving the functional
relationship P(Y |X).

The novelty of this work is twofold. First, DICA extracts invariants: features that transfer
across domains. It not only minimizes the divergence between marginal distributions P(X),
but also preserves the functional relationship encoded in the posterior P(Y |X). The resulting
learning algorithm is very simple. Second, while prior work in domain adaptation focused
on using data from many different domains to specifically improve the performance on the
target task, which is observed during the training time (the classifier is adapted to the specific
target task), we assume access to abundant training data and are interested in the generalization
ability of the invariant subspace to previously unseen domains (the classifier generalizes to new
domains without retraining).

Moreover, we show that DICA generalizes or is closely related to many well-known dimen-
sion reduction algorithms including kernel principal component analysis (KPCA) (Schölkopf
et al. 1998, Fukumizu et al. 2004), transfer component analysis (TCA) (Pan et al. 2011), and
covariance operator inverse regression (COIR) (Kim and Pavlovic 2011).

Related work. Domain generalization is a form of transfer learning, which applies expertise
acquired in source domains to improve learning of target domains (cf. Pan and Yang (2010)
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and references therein). Most previous work assumes the availability of the target domain to
which the knowledge will be transferred. In contrast, domain generalization focuses on the
generalization ability on previously unseen domains. That is, the test data comes from domains
that are not available during training.

Recently, Blanchard et al. (2011b) proposed an augmented SVM that incorporates empirical
marginal distributions into the kernel. A detailed error analysis showed universal consistency of
the approach. We apply methods from Blanchard et al. (2011b) to derive theoretical guarantees
on the finite sample performance of DICA.

Learning a shared subspace is a common approach in settings where there is distribution
mismatch. For example, a typical approach in multitask learning is to uncover a joint (latent)
feature/subspace that benefits tasks individually (Argyriou et al. 2007, Gu and Zhou 2009, Pas-
sos et al. 2012). A similar idea has been adopted in domain adaptation, where the learned
subspace reduces mismatch between source and target domains (Gretton et al. 2009b, Pan et al.
2011). Although these approaches have proven successful in various applications, no previous
work has fully investigated the generalization ability of a subspace to unseen domains.

5.4.1 Distributional (Co-)Variance

First, we define the distributional variance, which measures the dissimilarity across domains.
We decompose P into PX , which generates the marginal distribution PX , and PY |X , which
generates posteriors PY |X . The data generating process begins by generating the marginal PX
according to PX . Conditioned on PX , it then generate conditional PY |X according to PY |X .
The data point (x,y) is generated according to PX and PY |X , respectively. Given set of dis-
tributions P = {P1,P2 . . . ,PN} drawn according to PX , define N ×N Gram matrix G with
entries

Gij := 〈µPi ,µPj 〉H =

∫∫
k(x, z) dPi(x) dPj(z), (5.10)

for i, j = 1, . . . , N . Note that Gij is the inner product between kernel mean embeddings of
Pi and Pj in H . Based on (5.10), we define the distributional variance, which estimates the
variance of the distribution PX :

Definition 5.1. Introduce probability distribution P on H with P(µPi) =
1
N and center G to

obtain the covariance operator of P, denoted as Σ := G − 1NG − G1N + 1NG1N . The

distributional variance is

VH (P) := 1

N
tr(Σ) =

1

N
tr(G)− 1

N2

N∑

i,j=1

Gij . (5.11)

The following theorem shows that the distributional variance is suitable as a measure of
divergence between domains.

Theorem 5.4. Let P̄ = 1
N

∑N
i=1 P

i. If k is a characteristic kernel, then VH (P) = 1
N

∑N
i=1 ‖µPi−

µP̄‖2H = 0 if and only if P1 = P2 = · · · = PN .

To estimate VH (P) from N sample sets S = {Si}Ni=1 drawn from P1, . . . ,PN , we define
block kernel and coefficient matrices

K =




K1,1 · · · K1,N
...

. . .
...

KN,1 · · · KN,N


 ∈ Rn×n, Q =




Q1,1 · · · Q1,N
...

. . .
...

QN,1 · · · QN,N


 ∈ Rn×n ,
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where n =
∑N

i=1 ni and [Ki,j]k,l = k(x
(i)
k ,x

(j)
l ) is the Gram matrix evaluated between the

sample Si and Sj . Following (5.11), elements of the coefficient matrix Qi,j ∈ Rni×nj equal
(N − 1)/(N2n2i ) if i = j, and −1/(N2ninj) otherwise. Hence, the empirical distributional
variance is

V̂H (S) = 1

N
tr(Σ̂) = tr(KQ) . (5.12)

Theorem 5.5. The empirical estimator V̂H (S) = 1
N tr(Σ̂) = tr(KQ) obtained from Gram

matrix

Ĝij :=
1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k ,x

(j)
l )

is a consistent estimator of VH (P).

5.4.2 Domain-Invariant Component Analysis

Let X denote a nonempty input space and Y an arbitrary output space. We define a domain to
be a joint distribution PXY on X ×Y , and let PX×Y denote the set of all domains. Let PX and
PY|X denote the set of probability distributions PX on X and PY |X on Y given X respectively.

We assume domains are sampled from probability distribution P on PX×Y which has a
bounded second moment, i.e., the variance is well-defined. Domains are not observed directly.

Instead, we observe N samples S = {Si}Ni=1, where Si = {(x(i)
k ,y

(i)
k )}nik=1 is sampled from

PiXY and each P1
XY , . . . ,P

N
XY is sampled from P . Since in general PiXY 6= P

j
XY , the samples

in S are not i.i.d. Let P̂i denote empirical distribution associated with each sample Si. For
brevity, we use P and PX interchangeably to denote the marginal distribution.

Let H and F denote RKHS on X and Y with kernels k : X ×X → R and l : Y ×Y → R,
respectively. Associated with H and F are mappings x → φ(x) ∈ H and y → ϕ(y) ∈ F

induced by the kernels k(·, ·) and l(·, ·). Without loss of generality, we assume the feature maps
of X and Y have zero means, i.e.,

∑n
k=1 φ(xk) = 0 =

∑n
k=1 ϕ(yk). Let CXX , CYY , CXY ,

and CYX be the covariance operators in and between the RKHS of X and Y .

Objective. Using the samples S , our goal is to produce an estimate f : PX × X → R that
generalizes well to test samples St = {x(t)

k }ntk=1 drawn according to some unknown distribution
Pt ∈ PX (Blanchard et al. 2011b). Since the performance of f depends in part on how dissimilar
the test distribution Pt is from those in the training samples, we propose to preprocess the data to
actively reduce the dissimilarity between domains. Intuitively, we want to find transformation B
in H that (i) minimizes the distance between empirical distributions of the transformed samples
B(Si) and (ii) preserves the functional relationship between X and Y , i.e., Y ⊥⊥ X | B(X). We
formulate an optimization problem capturing these constraints below.

DICA finds an orthogonal transform B onto a low-dimensional subspace (m≪ n) that min-
imizes the distributional variance VH (S) between samples from S , i.e.the dissimilarity across

domains. Simultaneously, we require that B preserves the functional relationship between X
and Y , i.e.Y ⊥⊥ X | B(X).

Minimizing distributional variance. To simplify notation, we “flatten” {(x(i)
k ,y

(i)
k )nik=1}Ni=1

to {(xk,yk)}nk=1 where n =
∑N

i=1 ni. Let βk =
∑n

i=1 β
i
kφ(xi) = Φxβk be the kth basis

function of B where Φx = [φ(x1), φ(x2), . . . , φ(xn)] and βk are n-dimensional coefficient
vectors. Let B = [β1,β2, . . . ,βm] and Φ̃x denote the projection of Φx onto βk, i.e., Φ̃x =
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β⊤
k Φx = β⊤

k Φ
⊤
xΦx = β⊤

k K. The kernel on the B-projection of X is

K̃ := Φ̃⊤
x Φ̃x = KBB⊤K . (5.13)

After applying transformation B, the empirical distributional variance between sample distribu-
tions is

V̂H (BS) = tr(K̃Q) = tr(B⊤KQKB) . (5.14)

Preserving the functional relationship. The central subspace C is the minimal subspace that
captures the functional relationship between X and Y , i.e., Y ⊥⊥ X|C⊤X. Note that in this
work we generalize a linear transformation C⊤X to nonlinear one B(X). To find the central
subspace we use the inverse regression framework, (Li 1991):

Theorem 5.6. If there exists a central subspace C = [c1, . . . , cm] satisfying Y ⊥⊥ X|C⊤X,

and for any a ∈ Rd, E[a⊤X|C⊤X] is linear in {c⊤i X}mi=1, then E[X|Y ] ⊂ span{CXX ci}mi=1.

It follows that the bases C of the central subspace coincide with the m largest eigenvectors
of V(E[X|Y ]) premultiplied by C−1

XX
. Thus, the basis c is the solution to the eigenvalue problem

V(E[X|Y ])CXX c = γCXX c. Alternatively, for each ck one may solve

max
ck∈Rd

c⊤k C
−1
XX

V(E[X|Y ])CXX ck

c⊤k ck

under the condition that ck is chosen to not be in the span of the previously chosen ck. In our
case, x is mapped to φ(x) ∈ H induced by the kernel k and B has nonlinear basis functions
ck ∈H , k = 1, . . . ,m. This nonlinear extension implies that E[X|Y ] lies on a function space
spanned by {CXX ck}mk=1, which coincide with the eigenfunctions of the operator V(E[X|Y ])
(Wu 2008, Kim and Pavlovic 2011). Since we always work in H , we drop φ from the notation
below.

To avoid slicing the output space explicitly (Li 1991, Wu 2008), we exploit its kernel struc-
ture when estimating the covariance of the inverse regressor. The following result from Kim and
Pavlovic (2011) states that, under a mild assumption, V(E[X|Y ]) can be expressed in terms of
covariance operators:

Theorem 5.7. If for all f ∈ H , there exists g ∈ F such that E[f(X)|y] = g(y) for almost

every y, then

V(E[X|Y ]) = CXYC−1
YY

CYX . (5.15)

Let Φy = [ϕ(y1), . . . , ϕ(yn)] and L = Φ⊤
yΦy. The covariance of inverse regressor (5.15)

is estimated from the samples S as V̂(E[X|Y ]) = ĈXY Ĉ−1
YY

ĈYX = 1
nΦxL(L + nεIn)

−1Φ⊤
x

where ĈXY = 1
nΦxΦ

⊤
y and ĈYY = 1

nΦyΦ
⊤
y . Assuming inverses Ĉ−1

YY
and Ĉ−1

XX
exist, a

straightforward computation (see Appendix C.8) shows

β⊤
k Σ̂

−1
xx V̂(E[X|Y ])Σ̂xxβk =

1

n
β⊤
k L(L+ nεI)−1K2βk

β⊤
k βk = β⊤

k Kβk, (5.16)

where ε smoothes the affinity structure of the output space Y , thus acting as a kernel regularizer.
Since we are interested in the projection of φ(x) onto the basis functions βk, we formulate the
optimization in terms of βk. For a new test sample xt, the projection onto basis function βk is
ktβk, where kt = [k(x1,xt), . . . , k(xn,xt)].
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The optimization problem. Combining (5.14) and (5.16), DICA finds B = [β1,β2, . . . ,βm]
that solves

max
B∈Rn×m

1
ntr
(
B⊤L(L+ nεIn)

−1K2B
)

tr (B⊤KQKB+BKB)
(5.17)

The numerator requires that B aligns with the bases of the central subspace. The denom-
inator forces both dissimilarity across domains and the complexity of B to be small, thereby
tightening generalization bounds, see §3.4.3. Rewriting (5.17) as a constrained optimization
(see Appendix C.9) yields Lagrangian

L =
1

n
tr
(
B⊤L(L+ nεIn)

−1K2B
)

− tr
((

B⊤KQKB+BKB− Im

)
Γ
)
, (5.18)

where Γ is a diagonal matrix containing the Lagrange multipliers. Setting the derivative of
(5.18) w.r.t. B to zero yields the generalized eigenvalue problem:

1

n
L(L+ nεIn)

−1K2B = (KQK+K)BΓ . (5.19)

Transformation B corresponds to them leading eigenvectors of the generalized eigenvalue prob-
lem (5.19).4

The inverse regression framework based on covariance operators has two benefits. First, it
avoids explicitly slicing the output space, which makes it suitable for high-dimensional output.
Second, it allows for structured outputs on which explicit slicing may be impossible, e.g., trees
and sequences. Since our framework is based entirely on kernels, it is applicable to any type of
input and output variables, as long as the corresponding kernels can be defined.

Unsupervised DICA

In some application domains, such as image denoising, information about the target may not
be available. We therefore derive an unsupervised version of DICA. Instead of preserving the
central subspace, unsupervised DICA (UDICA) maximizes the variance of X in the feature
space, which is estimated as 1

ntr(B
⊤K2B). Thus, UDICA solves

max
B∈Rn×m

1
ntr(B

⊤K2B)

tr(B⊤KQKB+B⊤KB)
. (5.20)

Similar to DICA, the solution of (5.20) is obtained by solving the generalized eigenvalue prob-
lem

1

n
K2B = (KQK+K)BΓ . (5.21)

UDICA is a special case of DICA where L = 1
nI and ε → 0. Algorithm 1 summarizes super-

vised and unsupervised domain-invariant component analysis.

5.4.3 Relations to Other Methods

The DICA and UDICA algorithms generalize many well-known dimension reduction tech-
niques. In the supervised setting, if dataset S contains samples drawn from a single distri-
bution PXY then we have KQK = 0. Substituting α := KB gives the eigenvalue problem

4In practice, it is more numerically stable to solve the generalized eigenvalue problem 1
n
L(L+nεIn)

−1K2B =
(KQK+K+ λI)BΓ, where λ is a small constant.
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Algorithm 1 Domain-Invariant Component Analysis

Input: Parameters λ, ε, and m≪ n.

Sample S = {Si = {(x(i)
k ,y

(i)
k )}nik=1}Ni=1.

Output: Projection Bn×m and kernel K̃n×n.

1: Calculate gram matrix [Kij ]kl = k(x
(i)
k ,x

(j)
l ) and [Lij ]kl = l(y

(i)
k ,y

(j)
l ).

2: Supervised: C = L(L+ nεI)−1K2.
3: Unsupervised: C = K2.
4: Solve 1

nCB = (KQK+K+ λI)BΓ for B.

5: Output B and K̃← KBB⊤K.
6: The test kernel K̃t ← KtBB⊤K where Kt

nt×n is the joint kernel between test and training
data.

1
nL(L + nεI)−1Kα = KαΓ, which corresponds to covariance operator inverse regression
(COIR) (Kim and Pavlovic 2011).

If there is only a single distribution then unsupervised DICA reduces to KPCA since KQK =
0 and finding B requires solving the eigensystem KB = BΓ which recovers KPCA (Schölkopf
et al. 1998). If there are two domains, source PS and target PT , then UDICA is closely related
– though not identical to – Transfer Component Analysis (Pan et al. 2011). This follows from
the observation that VH ({PS ,PT }) = ‖µPS − µPT ‖2, see proof of Theorem 5.4.

5.4.4 A Learning-Theoretic Bound

We bound the generalization error of a classifier trained after DICA-preprocessing. The main
complication is that samples are not identically distributed. We adapt an approach to this prob-
lem developed in Blanchard et al. (2011b) to prove a generalization bound that applies after
transforming the empirical sample using B. Recall that B = ΦxB.

Define kernel k̄ on P × X as k̄((P,x), (P′,x′)) := kP(P,P′) · kX (x,x′). Here, kX is
the kernel on HX and the kernel on distributions is kP(P,P′) := κ(µP,µP′) where κ is a
positive definite kernel (Christmann and Steinwart 2010, Muandet et al. 2012). Let ΨP denote
the corresponding feature map.

Theorem 5.8. Under reasonable technical assumptions, see Supplementary, it holds with prob-

ability at least 1− δ that,

sup
‖f‖H ≤1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ c1
1

N
tr(B⊺KQKB) + tr(B⊤KB)

(
c2
N(log 1

δ + 2 logN)

n
+
c3 log

1
δ + c4

N

)
.

The LHS is the difference between the training error and expected error (w.r.t. the distribu-
tion on domains P∗) after applying B.

The first term in the bound, involving tr(B⊺KQKB), quantifies the distributional variance
after applying the transform: the higher the distributional variance, the worse the guarantee,
tying in with analogous results in Ben-David et al. (2007; 2010). The second term in the bound
depends on the size of the distortion tr(B⊺KB) introduced by B: the more complicated the
transform, the worse the guarantee.

The bound reveals a tradeoff between reducing the distributional variance and the complex-
ity or size of the transform used to do so. The denominator of (5.17) is a sum of these terms, so
that DICA tightens the bound in Theorem 5.8.
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KPCA COIR

UDICA DICA

Figure 5.12: Projections of a synthetic dataset onto the first two eigenvectors obtained from the KPCA,
UDICA, COIR, and DICA. The colors of data points corresponds to the output values. The shaded
boxes depict the projection of training data, whereas the unshaded boxes show projections of unseen test
datasets. The feature representations learnt by UDICA and DICA are more stable across test domains
than those learnt by KPCA and COIR.

Preserving the functional relationship (i.e.central subspace) by maximizing the numerator in
(5.17) should reduce the empirical risk E

P̂
ℓ(f(X̃ijB), Yi). However, a rigorous demonstration

has yet to be found.

5.4.5 Experimental Results

We illustrate the difference between the proposed algorithms and their single-domain counter-
parts using a synthetic dataset. Furthermore, we evaluate DICA in two tasks: a classification
task on flow cytometry data and a regression task for Parkinson’s telemonitoring.

Toy Experiments

We generate 10 collections of ni ∼ Poisson(200) data points. The data in each collection is
generated according to a five-dimensional zero-mean Gaussian distribution. For each collection,
the covariance of the distribution is generated from Wishart distribution W(0.2 × I5, 10). This
step is to simulate different marginal distributions. The output value is y = sign(b⊤1 x + ǫ1) ·
log(|b⊤2 x + c + ǫ2|), where b1, b2 are the weight vectors, c is a constant, and ǫ1, ǫ2 ∼ N (0, 1).
Note that b1 and b2 form a low-dimensional subspace that captures the functional relationship
between X and Y . We then apply the KPCA, UDICA, COIR, and DICA algorithms on the
dataset with Gaussian RBF kernels for both X and Y with bandwidth parameters σx = σy = 1,
λ = 0.1, and ε = 10−4.

Fig. 5.12 shows projections of the training and three previously unseen test datasets onto the
first two eigenvectors. The subspaces obtained from UDICA and DICA are more stable than for
KPCA and COIR. In particular, COIR shows a substantial difference between training and test
data, suggesting overfitting.

Gating of Flow Cytometry Data

Graft-versus-host disease (GvHD) occurs in allogeneic hematopoietic stem cell transplant re-
cipients when donor-immune cells in the graft recognize the recipient as “foreign” and initiate
an attack on the skin, gut, liver, and other tissues. It is a significant clinical problem in the field
of allogeneic blood and marrow transplantation. The GvHD dataset (Brinkman et al. 2007) con-
sists of weekly peripheral blood samples obtained from 31 patients following allogenic blood
and marrow transplant. The goal of gating is to identify CD3+CD4+CD8β+ cells, which were
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Table 5.2: Average accuracies over 30 random subsamples of GvHD datasets. Pooling SVM applies
standard kernel function on the pooled data from multiple domains, whereas distributional SVM also
considers similarity between domains using kernel (5.22). With sufficiently many samples, DICA out-
performs other methods in both pooling and distributional settings. The performance of pooling SVM
and distributional SVM are comparable in this case.

Methods
Pooling SVM Distributional SVM

ni = 100 ni = 500 ni = 1000 ni = 100 ni = 500 ni = 1000

Input 91.68±.91 92.11±1.14 93.57±.77 91.53±.76 92.81±.93 92.41±.98
KPCA 91.65±.93 92.06±1.15 93.59±.77 91.83±.60 90.86±1.98 92.61±1.12
COIR 91.71±.88 92.00±1.05 92.57±.97 91.42±.95 91.54±1.14 92.61±.89
UDICA 91.20±.81 92.21±.19 93.02±.77 91.51±.79 91.74±1.08 93.02±.77
DICA 91.37±.91 92.71±.82 94.16±.73 91.51±.89 93.42±.73 93.33±.86

found to have a high correlation with the development of GvHD (Brinkman et al. 2007). We ex-
pect to find a subspace of cells that is consistent to the biological variation between patients, and
is indicative of the GvHD development. For each patient, we select a dataset that contains suffi-
cient numbers of the target cell populations. As a result, we omit one patient due to insufficient
data. The corresponding flow cytometry datasets from 30 patients have sample sizes ranging
from 1,000 to 10,000, and the proportion of the CD3+CD4+CD8β+ cells in each dataset ranges
from 10% to 30%, depending on the development of the GvHD.

To evaluate the performance of the proposed algorithms, we took data from N = 10 pa-
tients for training, and the remaining 20 patients for testing. We subsample the training sets
and test sets to have 100, 500, and 1,000 data points (cells) each. We compare the SVM classi-
fiers under two settings, namely, a pooling SVM and a distributional SVM. The pooling SVM
disregards the inter-patient variation by combining all datasets from different patients, whereas
the distributional SVM also takes the inter-patient variation into account via the kernel function
(Blanchard et al. 2011b)

K(x̃
(i)
k , x̃

(j)
l ) = k1(P

i,Pj) · k2(x(i)
k ,x

(j)
l ) (5.22)

where x̃
(i)
k = (Pi,x

(i)
k ) and k1 is the kernel on distributions. We use the kernels k1(Pi,Pj) =

exp
(
−‖µPi − µPj‖2H /2σ21

)
and k2(x

(i)
k ,x

(j)
l ) = exp(−‖x(i)

k − x
(j)
l ‖2/2σ22), where µPi is

computed using k2. For pooling SVM, the kernel k1(Pi,Pj) is constant for any i and j. More-

over, we use the output kernel l(y(i)
k ,y

(j)
l ) = δ(y

(i)
k ,y

(j)
l ) where δ(a, b) is 1 if a = b, and

0 otherwise. We compare the performance of the SVMs trained on the preprocessed datasets
using the KPCA, COIR, UDICA, and DICA algorithms. It is important to note that we are not
defining another kernel on top of the preprocessed data. That is, the kernel k2 for KPCA, COIR,
UDICA, and DICA is exactly (5.13). We perform 10-fold cross validation on the parameter
grids to optimize for accuracy.

Table 5.2 reports average accuracies and their standard deviation over 30 repetitions of the
experiments. For sufficiently large number of samples, DICA outperforms other approaches.
The pooling SVM and distributional SVM achieve comparable accuracies. Figure 5.13 depicts
the leave-one-out accuracies of different approaches evaluated on each subject in the dataset.
Average leave-one-out accuracies are reported in Table 5.3. The distributional SVM outper-
forms the pooling SVM in this setting, possibly because of the relatively large number of train-
ing subjects, i.e., 29 subjects. Using the invariant features learnt by DICA also gives higher
accuracies than other approaches.

126



CHAPTER 5. UNSUPERVISED LEARNING ON DISTRIBUTIONS

Table 5.3: The average leave-one-out accuracies over 30 subjects on GvHD data. The distributional
SVM outperforms the pooling SVM. DICA improves classifier accuracy.

Methods Pooling Distributional

Input 92.03±8.21 93.19±7.20
KPCA 91.99±9.02 93.11±6.83
COIR 92.40±8.63 92.92±8.20
UDICA 92.51±5.09 92.74±5.01
DICA 92.72±6.41 94.80±3.81
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Figure 5.13: The leave-one-out accuracy of different methods evaluated on each subject in the GvHD
dataset. The top figure depicts the pooling setting, whereas the bottom figure depicts the distributional
setting.

Parkinson’s Telemonitoring

To evaluate DICA in a regression setting, we apply it to a Parkinson’s telemonitoring dataset5.
The dataset consists of biomedical voice measurements from 42 people with early-stage Parkin-

5
http://archive.ics.uci.edu/ml/datasets/Parkinson’s+Telemonitoring127
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Table 5.4: Root mean square error (RMSE) of the independent Gaussian Process regression (GPR)
applied to the Parkinson’s telemonitoring dataset. DICA outperforms other approaches in both settings;
and the distributional SVM outperforms the pooling SVM.

Methods
Pooling GP Regression Distributional GP Regression

motor score total score motor score total score
LLS 8.82 ± 0.77 11.80 ± 1.54 8.82 ± 0.77 11.80 ± 1.54
Input 9.58 ± 1.06 12.67 ± 1.40 8.57 ± 0.77 11.50 ± 1.56
KPCA 8.54 ± 0.89 11.20 ± 1.47 8.50 ± 0.87 11.22 ± 1.49
UDICA 8.67 ± 0.83 11.36 ± 1.43 8.75 ± 0.97 11.55 ± 1.52
COIR 9.25 ± 0.75 12.41 ± 1.63 9.23 ± 0.90 11.97 ± 2.09
DICA 8.40 ± 0.76 11.05 ± 1.50 8.35 ± 0.82 10.02 ± 1.01
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Figure 5.14: The root mean square error (RMSE) of motor and total UPDRS scores predicted by GP
regression after different preprocessing methods on Parkinson’s telemonitoring dataset. The top and
middle rows depicts the pooling and distributional settings; the bottom row compares the two settings.
Results of linear least square (LLS) are given as a baseline.

son’s disease recruited for a six-month trial of a telemonitoring device for remote symptom
progression monitoring. The aim is to predict the clinician’s motor and total UPDRS scoring
of Parkinson’s disease symptoms from 16 voice measures. There are around 200 recordings per
patient.

We adopt the same experimental settings as in §5.4.5, except that we employ two indepen-
dent Gaussian Process (GP) regression to predict motor and total UPDRS scores. For COIR and

DICA, we consider the output kernel l(y(i)
k ,y

(j)
l ) = exp(−‖y(i)

k −y
(j)
l ‖2/2σ23) to fully account

for the affinity structure of the output variable. We set σ3 to be the median of motor and total
UPDRS scores. The voice measurements from 30 patients are used for training and the rest for
testing.

Fig. 5.14 depicts the results. DICA consistently, though not statistically significantly, out-
performs other approaches, see Table 5.4. Inter-patient (i.e., across domain) variation worsens
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prediction accuracy on new patients. Reducing this variation with DICA improves the accu-
racy on new patients. Moreover, incorporating the inter-subject variation via distributional GP
regression further improves the generalization ability, see Fig. 5.14.

5.4.6 Discussions

To conclude, we proposed a simple algorithm called Domain-Invariant Component Analysis
(DICA) for learning an invariant transformation of the data which has proven significant for do-
main generalization both theoretically and empirically. Theorem 5.8 shows the generalization
error on previously unseen domains grows with the distributional variance. We also showed that
DICA generalizes KPCA and COIR, and is closely related to TCA. Finally, experimental results
on both synthetic and real-world datasets show DICA performs well in practice. Interestingly,
the results also suggest that the distributional SVM, which takes into account inter-domain vari-
ation, outperforms the pooling SVM which ignores it.

The motivating assumption in this work is that the functional relationship is stable or varies
smoothly across domains. This is a reasonable assumption for automatic gating of flow cytom-
etry data because the inter-subject variation of cell population makes it impossible for domain
expert to apply the same gating on all subjects, and similarly makes sense for Parkinson’s tele-
monitoring data. Nevertheless, the assumption does not hold in many applications where the
conditional distributions are substantially different. It remains unclear how to develop tech-
niques that generalize to previously unseen domains in these scenarios.

DICA can be adapted to novel applications by equipping the optimization problem with
appropriate constraints. For example, one can formulate a semi-supervised extension of DICA
by forcing the invariant basis functions to lie on a manifold or preserve a neighborhood structure.
Moreover, by incorporating the distributional variance as a regularizer in the objective function,
the invariant features and classifier can be optimized simultaneously.

Z END OF CHAPTER 5 Y
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Chapter 6
Conclusions and Future Research

The thesis introduces kernel-based frameworks for learning when the inputs are not just points,
but probability measures. As demonstrated in this thesis, many real-world problems can in fact
be viewed as learning problems on probability distributions. Probability distributions, as op-
posed to data points, constitute information at a higher level such as aggregate behavior of data
points, how the underlying process evolves over time and domains, and a complex concept that
cannot be described merely by data points. Most intelligent organisms have the ability to rec-
ognize and exploit such information naturally. Therefore, learning successfully on distributions
can potentially shed light on future development of intelligent machines, and most importantly,
may provide clues on the true meaning of intelligence.

The use of kernel mean embedding as a basic representation allows us to generalize many
of the classical algorithms and establishes connections to existing frameworks. Through a com-
prehensive review in Chapter 2, it is evident that kernel mean embedding is a powerful repre-
sentation of distributions. The dependence on kernel function makes it a flexible representation
that can be adapted to any domains. It also permits one to model the underlying distribution
without making any parametric assumption. Finally, its simplicity eases theoretical analysis
and lends itself to better computational efficiency. These characteristics render kernel mean
embedding increasingly appealing in the community compared to existing approaches based on
density estimation, divergence measures, and information geometry, for example. Nevertheless,
the review not only demonstrates the success of kernel mean embedding, but also reveals some
limitations which could potentially lead to new research directions. Some of which have been
investigated in this thesis. To the best of my knowledge, this is the first comprehensive review
in this research area.

Kernel mean estimation is an essential step in modern applications of kernel mean embed-
ding as well as many classical kernel-based algorithms. Chapter 3 shows that the standard kernel
mean estimator can be improved, in particular, by the so-called shrinkage estimator. Motivated
by James-Stein estimator, we propose a new family of estimators called kernel mean shrinkage

estimators (KMSEs) which enjoy both theoretical guarantees and encouraging empirical results.
Unlike James-Stein estimator, we provide some extensions using spectral filtering algorithms
which are quite popular in the theory of inverse problems and regularization. This allows the
estimators to take the geometrical property of the Hilbert space into account. Interestingly, the
proposed idea can also be used to estimate other quantities such as (cross-) covariance operators
which have been used in a wide range of applications. Our finding also provides a crucial clue
to estimation in a “large d, small n” paradigm for RKHS when prior knowledge is not available.
Last but not least, I believe this may eventually lead to a better understanding of the fundamental
relationship between Tikhonov regularization and Stein shrinkage estimation in RKHS.

Chapter 4 provides a generalization of the empirical risk minimization (ERM) to a space
of probability measures, i.e., when we observe a sample (P1, y1), . . . , (Pn, yn) rather than
(x1, y1), . . . , (xn, yn). I provide a representer theorem for distributions and show that the re-
sulting framework amounts to constructing a kernel-based learning framework over a set of
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distributions, each of which is represented by the kernel mean embedding. In particular, this
chapter provides an extension of well-known support vector machine (SVM) to a space of prob-
ability distributions which we call a support measure machine (SMM). Connections to classical
learning algorithms, possible extensions, and potential future directions are also discussed in
this chapter. Chapter 5 then demonstrates the proposed framework in unsupervised setting, i.e.,
when we only observe a sample P1, . . . ,Pn. As mentioned earlier, representing data as proba-
bility distributions often leads to better performance compared to classical setting.

Last but not least, it has been pointed out that learning from distributions has potential ap-
plications in statistics. Many problems in statistics such as hypothesis testing involve finding a
function of the empirical distribution to a certain set of outputs called statistic, e.g., {−1,+1}
indicating whether or not to reject the null hypothesis. Conventional approach is to use plug-in

estimators. On a contrary, if training data is available, we may learn such an estimator automat-
ically from the data using the proposed frameworks. Preliminary results have demonstrated the
effectiveness of this approach in real-world applications, e.g., see Szabó et al. (2015), Lopez-Paz
et al. (2015b).

Despite the success of kernel mean embedding, in my opinion, there are several open ques-
tions and possibilities for future research directions:

Kernel Choice and Interpretability. A kernel choice problem remains an ultimate open prob-
lem in kernel methods that is inherited by the kernel mean embedding. Despite some efforts to
resolve this issue, e.g., Gretton et al. (2012b), the kernel choice problem remains a key chal-
lenge. It is widely agreed that problem-specific knowledge should be taken into account when
choosing the best kernel, but in some application domains, it may not be clear how to incorpo-
rate such knowledge. Moreover, it is also not easy to interpret the kernel mean representation
and the true meaning of features remain obscure.

Bayesian Interpretation. What is a Bayesian interpretation of the kernel mean embedding?
Having an elegant interpretation could potentially lead to several extensions of the previous
works along the line of Bayesian inference.

Scalability. In the era of “big data”, it is imparative that modern learning algorithms are able
to deal with increasingly complex and large-scale data. Recently, there has been a growing
interest in developing large-scale kernel learning, which is probably inspired by the lack of
theoretical insight of a deep neural network despite its success in various application domains.
The advances along this direction will benefit the development of algorithms using kernel mean
embedding.

High-dimensional Inference. In Chapter 3, we observe that the improvement of shrinkage
estimator tends to increase as the data dimensionality increases. What is an underlying explana-
tion? Kernel-based methods are known to be less prone to the curse of dimensionality compared
to classical approaches such as density estimation, but little is known about underlying theoreti-
cal insight. Are we being too optimistic about learning with kernels in high-dimensional space?
I believe this is one of the promising research directions in the kernel community.

Invariant Representation. Many statistical properties of a probability distribution are invari-
ant to the input space on which it is defined. For example, independence implies p(x,y) =
p(x)p(y) regardless of X and Y . Therefore, there is a need to develop an invariant representa-
tion for distributions which will allow us to deal with such distributions simultaneously across
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different domains. This kind of knowledge is known as the domain-general knowledge in cog-
nitive science (Goodman et al. 2011).

Causality. Causal inference involves the investigation of how the distribution of outcome
changes as we intervene on some other variable. Can we develop the specific framework for
causal inference using kernel mean embeddding? There have been some recent works in this
direction (Zhang et al. 2011, Sgouritsa et al. 2013, Chen et al. 2014, Lopez-Paz et al. 2015b),
but it remains a challenging problem. For example, Lopez-Paz et al. (2015b) considers bivariate
causal inference as a classification task on the joint distributions of cause and effect variables.
In potential outcome framework, the causal effect is defined as the difference between the dis-
tributions of outcome under control and treatment populations. Due to the fundamental problem

of causal inference, either one of them would never be observed in practice. Can we use the
kernel mean embedding to represent the counterfactual distribution?

Z END OF CHAPTER 6 Y
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Appendix A
Oracle Inequalities for Kernel Mean
Estimation

In this appendix, I provide an alternative way of computing the shrinkage parameter α of the
shrinkage estimator µ̂α = αf∗ + (1 − α)µ̂ using an idea of unbiased estimator of the risk
(Lehmann and Casella 1998; Chapter 5). To ease the analysis, I assume throughout that f∗ = 0.

Recall that for some unknown distribution P, our goal is to find an estimate µ̂α that min-
imizes the risk R(µ, µ̂α). Hence, an optimal value of α can be obtained as a solution to the
following minimization problem:

α∗ := argmin
α
R(µ, µ̂α).

As a result, we may view µ̂α∗ as an oracle estimator that outputs the best linear estimate of
the true kernel mean. Since the underlying distribution P is unknown, the oracle value µ̂α∗ is
not an estimator and cannot be computed in practice. Based on the sample, we are interested in
constructing a data-dependent estimator whose risk would converge to the risk of the oracle. To
this end, we will first rely on the following assumption:

Assumption 1. The risk of the standard kernel mean estimator µ̂ is known and is given by

∆ = EP

[
‖µ̂− µ‖2

H

]
.

Assumption 1 is a weaker form of that in Theorem 3.3 that the true kernel mean µ is known.
That is, knowing only ∆ is not sufficient to estimate the oracle value α∗. In other words, we are
restricting the class of distributions that we are considering. For example, in Stein’s setting it
is assumed that X ∼ N (θ, σ2I) where σ is known. Consequently, the risk ∆ is constant (see
Example A.1 below). Note that in addition our setting involves a non-linear kernel k and for
a certain class of distributions and kernels, we can compute ∆ analytically (see Example A.2).
Later, we will relax this assumption.

Next, we employ the idea of unbiased estimation of ∆α. First, we observe that

‖µ̂α − µ‖2H = (1− α)2‖µ̂‖2H − 2(1 − α)〈µ̂,µ〉H + ‖µ‖2H .

We then define a loss function

J (α) := (1− α)2‖µ̂‖2H − 2(1 − α)(‖µ̂‖2H −∆),

which under Assumption 1 is independent of the true µ. It is easy to show that

EP[J (α)] = EP

[
‖µ̂α − µ‖2H

]
− ‖µ‖2H = R(µ, µ̂α)− ‖µ‖2H .

In other words, J (α) is an unbiased estimator of the risk R(µ, µ̂α) up to the additive term
‖µ‖2

H
that is independent of α. Consequently, the minimizer of J (α) should be close to the

minimizer in α of R(µ, µ̂α), i.e., α∗. Since J (α) does not depend on µ, we can define the
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data-dependent shrinkage parameter as α̃ , argminα J (α) and the corresponding estimator
µ̂α̃ = (1− α̃)µ̂.

The minimum of the risk among all estimators of the form (1− α)µ̂ is equal to

min
α

EP

[
‖µ̂α − µ‖2H

]
= min

α

[
(1− α)2∆+ α2‖µ‖2H

]
=

∆‖µ‖2
H

∆+ ‖µ‖2
H

,

and the value of oracle α that achieves this minimum is

α∗ =
∆

∆+ ‖µ‖2
H

.

Likewise, the unbiased estimator of the risk has the form J (α) = (α2− 1)‖µ̂‖2
H

+(2− 2α)∆
and the minimizer of this expression is

α̃ =
∆

‖µ̂‖2
H

. (A.1)

Note that (A.1) is slightly different from (3.20). Under Assumption 1, the shrinkage parameter
computed from (A.1) does not depend on the true µ whatsoever and can be obtained directly
from the sample. Below we give the oracle inequality of the shrinkage estimator obtained via
(A.1).

Theorem A.1. Under Assumption 1, the oracle inequality

EP

[
‖µ̂α̃ − µ‖2H

]
≤ min

α
EP

[
‖µ̂α − µ‖2H

]
+ 2∆EP

[
∆− 〈µ̂− µ, µ̂〉H

‖µ̂‖2
H

]

holds for all distributions P and kernel k.

Proof. It is not difficult to show that

EP

[
‖µ̂α̃ − µ‖2H

]
= ∆+∆2EP

[
1

‖µ̂‖2
H

]
− 2∆EP

[〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]

= ∆−∆2EP

[
1

‖µ̂‖2
H

]
+ 2∆2EP

[
1

‖µ̂‖2
H

]
− 2∆EP

[〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]
.

By Jensen’s inequality,

EP

[
1

‖µ̂‖2
H

]
≥ 1

EP[‖µ̂‖2H ]
=

1

∆ + ‖µ‖2
H

.

Consequently,

EP

[
‖µ̂α̃ − µ‖2H

]
≤ ∆− ∆2

∆+ ‖µ‖2
H

+ 2∆2EP

[
1

‖µ̂‖2
H

]
− 2∆EP

[〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]

=
∆‖µ‖2

H

∆+ ‖µ‖2
H

+ 2∆EP

[
∆− 〈µ̂− µ, µ̂〉H

‖µ̂‖2
H

]
.

The oracle inequality follows from the fact that minα EP[‖µ̂α − µ‖2
H
] =

∆‖µ‖2
H

∆+‖µ‖2
H

. This

completes the proof. �

Theorem A.1 shows that the risk of estimator obtained via (A.1) is equal to the minimal
risk of the oracle estimator up to a summand that does not depend on α. Next, we address the
question of how to estimate ∆. As mentioned earlier, we can compute ∆ analytically for a
certain class of distributions and kernels. We give some concrete examples below.
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Example A.1. Consider a class of Gaussian distributions N (θ, σ2Id) where θ ∈ Rd and a

linear kernel k(x,y) = 〈x,y〉. In this case we have

∆ = EP

[
‖µ̂− µ‖2H

]
= dσ2,

which only requires the knowledge of the variance σ2 (or trace(Σ) for more general covariance

structure) of the distribution.

Example A.2. Consider a class of Gaussian distributions N (θ,Σ) and the Gaussian RBF

kernel k(x,y) = exp(−0.5γ‖x − y‖2). Recall that

∆ = EP

[
‖µ̂− µ‖2H

]
=

1

n
(Exk(x,x) − Ex,x̃k(x, x̃)),

where x̃ is an independent copy of x. We have that Exk(x,x) = exp(0) = 1 and it is not

difficult to show that (Muandet et al. 2012; Table 1)

Ex,x̃k(x, x̃) =

〈∫

X
k(x, ·) dN (x;θ,Σ),

∫

X
k(x̃, ·) dN (x̃;θ,Σ)

〉

H

=
1√

|2γΣ+ I|
.

As a result, we get

∆ =
1

n

(
1− 1√

|2γΣ + I|

)
.

Similarly, this only requires the knowledge of the covariance matrix Σ associated to the class

of distributions.

Unfortunately, the use of shrinkage estimator under Assumption 1 is quite restrictive. In
general, the knowledge of the risk ∆ may not be available at all and we only have access to the
sample. In that case, we can relax Assumption 1 and resort to the unbiased estimate ∆̂ obtained
from the sample. The empirical loss function can be defined accordingly as

Ĵ (α) , (1− α)2‖µ̂‖2H − 2(1− α)(‖µ̂‖2H − ∆̂).

It follows that EP[Ĵ (α)] = EP[J (α)] = R(µ, µ̂α)− ‖µ‖2H . Hence, Ĵ (α) is also an unbiased
estimator of the risk R(µ, µ̂α) up to a summand that does not depend on α. Moreover, Ĵ (α)−
J (α) = 2(1 − α)(∆̂ − ∆), suggesting that the quality of an estimate Ĵ (α) depends on how
well one can estimate ∆̂. We showed in the proof of Proposition 3.7 that |∆̂ −∆| goes to zero
sufficiently fast.

The following theorem, which is similar to Theorem A.1, gives the oracle inequality when
the empirical version of the risk ∆ is used to construct the shrinkage estimator. Assumption 1
is not needed here.

Theorem A.2. Suppose that the kernel k satisfies supx∈X k(x,x) ≤ R. Define

α̃ , argmin
α
Ĵ (α) = ∆̂

‖µ̂‖2
H

and Rn ,
R

n
.

Then, the oracle inequality

EP

[
‖µ̂α̃ − µ‖2H

]
≤ min

α
EP

[
‖µ̂α − µ‖2H

]
+

∆2 −R2
n

∆+ ‖µ‖2
H

+ 2EP

[
R2
n − ∆̂〈µ̂− µ, µ̂〉H

‖µ̂‖2
H

]

holds for all distributions P.
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Proof. First, it is not difficult to see that

∆̂ =
1

n
(Êxk(x,x) − Êx,x̃k(x, x̃)) ≤

R

n
=: Rn.

Thus, we have

EP

[
‖µ̂α̃ − µ‖2H

]
= ∆+ EP

[
∆̂2

‖µ̂‖2
H

]
− 2EP

[
∆̂〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]

≤ ∆+R2
nE

[
1

‖µ̂‖2
H

]
− 2E

[
∆̂〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]

= ∆−R2
nEP

[
1

‖µ̂‖2
H

]
+ 2R2

nEP

[
1

‖µ̂‖2
H

]
− 2EP

[
∆̂〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]
,

where the inequality follows from ∆̂ ≤ Rn. By Jensen’s inequality,

EP

[
1

‖µ̂‖2
H

]
≥ 1

EP[‖µ̂‖2H ]
=

1

∆ + ‖µ‖2
H

.

Consequently,

EP

[
‖µ̂α̃ − µ‖2H

]
≤ ∆− R2

n

∆+ ‖µ‖2
H

+ 2R2
nEP

[
1

‖µ̂‖2
H

]
− 2EP

[
∆̂〈µ̂− µ, µ̂〉H
‖µ̂‖2

H

]

=
∆‖µ‖2

H

∆+ ‖µ‖2
H

+
∆2 −R2

n

∆+ ‖µ‖2
H

+ 2EP

[
R2
n − ∆̂〈µ̂− µ, µ̂〉H

‖µ̂‖2
H

]
.

The oracle inequality follows from the fact that minα E[‖µ̂α − µ‖2
H
] =

∆‖µ‖2
H

∆+‖µ‖2
H

. This com-

pletes the proof. �

In summary, Theorem A.1 and A.2 basically show that the risk of shrinkage estimator ob-
tained via (A.1) is close to that of the oracle estimator up to a residual term that does not depend
on α and vanishes as n → ∞. One of the future works in this direction is to understand how
fast this residual term goes to zero compared to the risk of oracle estimator.
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Appendix B
Leave-One-Out Cross Validation Score

Here I propose an alternative approach for computing the shrinkage parameter for S-KMSE. In

this case, we consider a slightly different leave-one-out estimator µ̂
(−i)
λ =

∑n
j=1 β

(−i)
j φ(xj)

where

β(−i) = arg min
β∈Rn

∑

j 6=i

∥∥∥∥∥φ(xj)−
n∑

k=1

βkφ(xi)

∥∥∥∥∥

2

H

+ λ‖β‖2.

By adopting an approach similar to the one presented in P. J. Green (1994; Lemma 3.1) for the
ridge regression problem, we can simplify the score so that it can be evaluated efficiently. First,
we show that the leave-one-out solution β(−i) can be obtained via the standard formulation with
modified target vector.

Lemma B.1. For fixed λ and i, let β(−i) denote the vector with components β
(−i)
j for j 6= i.

Define a vector Φ∗ := [φ(x1), . . . , φ(xi−1), µ̂
(−i)
λ , φ(xi+1), . . . , φ(xn)]

⊤ and a matrix B∗
ml :=

〈φ(xm),Φ∗
l 〉H where φ(xi) := k(·,xi). Then β(−i) = (K+ λI)−1B∗1n.

Proof of Lemma B.1. For any vector β,

n∑

j=1

∥∥∥∥∥Φ
∗
j −

n∑

k=1

βkφ(xk)

∥∥∥∥∥

2

H

+ λ‖β‖2 ≥
∑

j 6=i

∥∥∥∥∥Φ
∗
j −

n∑

k=1

βkφ(xk)

∥∥∥∥∥

2

H

+ λ‖β‖2

≥
∑

j 6=i

∥∥∥∥∥Φ
∗
j −

n∑

k=1

β
(−i)
k φ(xk)

∥∥∥∥∥

2

H

+ λ‖β(−i)‖2

=

n∑

j=1

∥∥∥∥∥Φ
∗
j −

n∑

k=1

β
(−i)
k φ(xk)

∥∥∥∥∥

2

H

+ λ‖β(−i)‖2

by the definition of β(−i) and the fact that Φ∗
i = µ̂

(−i)
λ . It follows that β(−i) is the minimizer of∑

j ‖Φ∗
j −

∑
k βkφ(xk)‖2H + λ‖β‖2 so that β(−i) = (K+ λI)−1B∗1n, as required. �

As we can see, the resulting formulation of β(−i) in Lemma B.1 depends on the leave-one-

out solution µ̂
(−i)
λ which in turn requires a knowledge of β(−i). As a result, we cannot use this

formulation to compute β(−i) in practice. However, it will be used as an intermediate step for
deriving the LOOCV score in the following proposition.

Proposition B.2. The LOOCV score of S-KMSE defined above is given by

LOOCV (λ) =
1

n

n∑

i=1

(Kβ − ki)
⊤Cλ(Kβ − ki)

where β = (K+λI)−1K1n is the weight vector computed on {xi}ni=1 with shrinkage parameter

λ, Cλ , (K− 1
nK(K+ λI)−1K)−1K(K− 1

nK(K+ λI)−1K)−1 and ki is the ith column of

K.
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Proof of Proposition B.2. Let A := (K + λI)−1. By virtue of Lemma B.1, we can write an

expression for the deleted residual φ(xi)− µ̂
(−i)
λ as

µ̂
(−i)
λ − φ(xi) =

n∑

j=1

β
(−i)
j φ(xj)− φ(xi)

=
1

n

n∑

j=1

n∑

m=1

{AB∗}jm φ(xj)− φ(xi)

=
1

n

n∑

j=1

∑

m6=i
{AK}jm φ(xj) +

1

n

n∑

j=1

n∑

l=1

AjlB
∗
liφ(xj)− φ(xi)

=
1

n

n∑

j=1

∑

m6=i
{AK}jm φ(xj) +

1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)− φ(xi)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi)

− 1

n

n∑

j=1

{AK}ji φ(xj) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi)

− 1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), φ(xi)〉φ(xj) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ − φ(xi)〉φ(xj)

= µ̂λ − φ(xi) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ − φ(xi)〉φ(xj).

Denote the deleted residual µ̂(−i)
λ − φ(xi) by ∆

(−i)
λ . Then, the above equation can be rewritten

as

∆
(−i)
λ = µ̂λ − φ(xi) +

1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl),∆(−i)
λ 〉φ(xj). (B.1)

Since ∆
(−i)
λ lies in H , we may decompose it as ∆

(−i)
λ =

∑n
k=1 ξkφ(xk) + h⊥ for some

ξ ∈ Rn where h⊥ is orthogonal to the span of {φ(xk)}nk=1. Substituting this back into (B.1)
and rearranging terms yields

n∑

k=1

ξkφ(xk) + h⊥ = µ̂λ − φ(xi) +
1

n

n∑

j=1

{AKξ}j φ(xj).

By taking the inner product on both sides of the equation w.r.t. the samples φ(x1), . . . , φ(xn),
the optimal ξ can be obtained by solving the system of equations Kξ = β⊤K−ki+

1
nKAKξ

whose solution is ξ = (K− 1
nKAK)−1(β⊤K−ki) where ki denotes the ith column of matrix

K. Consequently, the leave-one-out cross-validation score for the sample xi can be computed
by ∥∥∥∆(−i)

λ

∥∥∥
2

H

= ξ⊤Kξ = (β⊤K− ki)
⊤Cλ(β

⊤K− ki)
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where Cλ = (K − 1
nKAK)−1K(K − 1

nKAK)−1. Lastly, the score over the full dataset can

be obtained by averaging ‖∆(−i)
λ ‖2

H
over all i. This concludes the proof. �

We can see that the LOOCV score in Proposition B.2 depends only on the non-leave-one-out
solution βλ, which can be obtained as a by-product of the algorithm.
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Appendix C
Proofs

This section contains supplementary proofs of results presented in the thesis.

C.1 Proof of Lemma 3.1

Proof. This is the standard proof of Stein’s lemma (Stein 1972). Let X be a random variable
distributed according to a standard normal distribution and g be an absolutely continuous func-
tion. Then, we have

E[g′(X)] =
1√
2π

∫ ∞

−∞
g′(x)e−

x2

2 dx

(∗)
=

1√
2π

{∫ ∞

0
g′(x) dx

∫ ∞

x
ye−

y2

2 dy −
∫ 0

−∞
g′(x) dx

∫ x

−∞
ye−

y2

2 dy

}

=
1√
2π

{∫ ∞

0
ye−

y2

2 dy

∫ y

0
g′(x) dx−

∫ 0

−∞
ye−

y2

2 dy

∫ 0

y
g′(x) dx

}

=
1√
2π

{∫ ∞

0
(g(x) − g(0))ye− y2

2 dy +

∫ 0

−∞
(g(y) − g(0))ye− y2

2 dy

}

=
1√
2π

∫ ∞

−∞
yg(y)e−

y2

2 dy

= E[Xg(X)],

where we invoked the Fubini’s theorem in (∗). �

C.2 Proof of Theorem 3.15

Proof. Since (ei)i is an orthonormal basis in H , we have for any P and f∗ ∈H

µP =

∞∑

i=1

µiei, µ̂P =

∞∑

i=1

µ̂iei, and f∗ =
∞∑

i=1

f∗i ei,

where µi := 〈µP, ei〉, µ̂i := 〈µ̂P, ei〉, and f∗i := 〈f∗, ei〉. If follows from the Parseval’s identity
that

∆ = EP‖µ̂− µ‖2 = EP

[ ∞∑

i=1

(µ̂i − µi)2
]
=:

∞∑

i=1

∆i

∆α = EP‖µ̂α − µ‖2 = EP

[ ∞∑

i=1

(αif
∗
i + (1− αi)µ̂i − µi)2

]
=:

∞∑

i=1

∆α,i.
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C.3. PROOF OF PROPOSITION 3.16

Note that the problem has not changed and we are merely looking at it from a different perspec-
tive. To estimate µP, we may just as well estimate its Fourier coefficient sequence µi with µ̂i.
Based on above decomposition, we may write the risk difference ∆α−∆ as

∑∞
i=1(∆α,i−∆i).

We can thus ask under which conditions on α = (αi) for which ∆α,i −∆i < 0 uniformly over
all i.

For each coordinate i, we have

∆α,i −∆i = EP

[
(αif

∗
i + (1− αi)µ̂i − µi)2

]
− EP

[
(µ̂i − µi)2

]

= EP[α
2
i f

2
i + 2αif

∗
i (1− αi)µ̂i + (1− αi)2µ̂2i

−2αif∗i µi − 2(1− αi)µ̂iµi + µ2i ]− EP[µ̂
2
i − 2µ̂iµi + µ2i ]

= α2
i f

2
i + 2αif

∗
i EP[µ̂i]− 2α2

i f
∗
i EP[µ̂i] + (1 − αi)2EP[µ̂

2
i ]

−2αif∗i µi − 2(1− αi)EP[µ̂i]µi + µ2i − EP[µ̂
2
i ] + 2µiEP[µ̂i]− µ2i

= α2
i f

2
i − 2α2

i f
∗
i µi + (1− αi)2EP[µ̂

2
i ]− 2(1 − αi)µ2i + 2µ2i − EP[µ̂

2
i ]

= α2
i f

2
i − 2α2

i f
∗
i µi + (α2

i − 2αi)EP[µ̂
2
i ] + 2αiµ

2
i .

Next, we substitute EP[µ̂
2
i ] = EP[(µ̂i − µi + µi)

2] = ∆i + µ2i into the last equation to obtain

∆α,i −∆i = α2
i f

2
i − 2α2

i f
∗
i µi + α2

i (∆i + µ2i )− 2αi(∆i + µ2i ) + 2αiµ
2
i

= α2
i f

2
i − 2α2

i f
∗
i µi + α2

i∆i + α2
iµ

2
i − 2αi∆i

= α2
i (f

2
i − 2f∗i µi +∆i + µ2i )− 2αi∆i

= α2
i (∆i + (f∗i − µi)2)− 2αi∆i

which is negative if αi satisfies

0 < αi <
2∆i

∆i + (f∗i − µi)2
.

This completes the proof. �

C.3 Proof of Proposition 3.16

Proof. Let K = UDU⊤ be an eigen-decomposition of K where U = [u1,u2, . . . ,un] consists
of orthogonal eigenvectors of K such that U⊤U = I and D = diag(γ1, γ2 . . . , γn) consists of
corresponding eigenvalues. As a result, the coefficients β(λ) can be written as

β(λ) = gλ(K)K1n = Ugλ(D)U⊤K1n =

n∑

i=1

uigλ(γi)u
⊤
i K1n. (C.1)

Using K1n = [〈µ̂, k(x1, ·)〉, . . . , 〈µ̂, k(xn, ·)〉]⊤, we can rewrite (C.1) as

β(λ) =
n∑

i=1

uigλ(γi)
n∑

j=1

uij〈µ̂, k(xj , ·)〉

=

n∑

i=1

√
γiuigλ(γi)

〈
µ̂,

1√
γi

n∑

j=1

uijk(xj , ·)
〉
,

where uij is the jth component of ui. Next, we invoke the relation between the eigenvectors of
the matrix K and the eigenfunctions of the empirical covariance operator ĈXX in H . That is, it
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is known that the ith eigenfunction of ĈXX can be expressed as φi = (1/
√
γi)
∑n

j=1 uijk(xj , ·)
(Schölkopf et al. 1999). Consequently,

〈
µ̂,

1√
γi

n∑

j=1

uijk(xj , ·)
〉

= 〈µ̂, φi〉

and we can write the Spectral-KMSE as

µ̂λ =

n∑

j=1

[
n∑

i=1

uij
√
γigλ(γi)〈µ̂, φi〉

]

j

k(xj , ·)

=

n∑

i=1

√
γigλ(γi)〈µ̂, φi〉

n∑

j=1

uijk(xj , ·)

=

n∑

i=1

gλ(γi)γi〈µ̂, φi〉φi.

This completes the proof. �

C.4 Proof of Theorem 3.17

Proof. Consider the following decomposition

µ̂λ − µP = ĈXX gλ(ĈXX )µ̂P − µP

= ĈXX gλ(ĈXX )(µ̂P − µP) + ĈXX gλ(ĈXX )µP − µP

= ĈXX gλ(ĈXX )(µ̂P − µP) + (ĈXX gλ(ĈXX )− I)Ĉβ
XX

h

+(ĈXX gλ(ĈXX )− I)(Cβ
XX
− Ĉ

β
XX

)h

where we used the fact that there exists h ∈ H such that µP = C
β
XX

h as we assumed that

µP ∈ R(Cβ
XX

) for some β > 0. Therefore

‖µ̂λ − µP‖ ≤ ‖ĈXX gλ(ĈXX )‖op‖µ̂P − µP‖
+‖(ĈXX gλ(ĈXX )− I)Ĉβ

XX
‖op‖h‖

+‖ĈXX gλ(ĈXX )− I‖op‖Cβ
XX
− Ĉ

β
XX
‖op‖h‖

where we used the fact that ‖Ab‖ ≤ ‖A‖op‖b‖ with A : H → H being a bounded operator,
b ∈H and ‖ · ‖op denoting the operator norm defined as ‖A‖op := sup{‖Ab‖ : ‖b‖ = 1}.

By (C1), (C2) and (C3) in Definition 3.1, we have ‖ĈXX gλ(ĈXX )‖op ≤ B, ‖ĈXX gλ(ĈXX )−
I‖op ≤ C , and ‖(ĈXX gλ(ĈXX ) − I)Ĉβ

XX
‖op ≤ Dλmin{β,η0}, respectively. Denoting ‖h‖ =

‖C−β
XX

µP‖, we therefore have

‖µ̂λ−µP‖ ≤ B‖µ̂P−µP‖+Dλmin{β,η0}‖C−β
XX

µP‖+C‖Cβ
XX
− Ĉ

β
XX
‖op‖C−β

XX
µP‖. (C.2)

For 0 ≤ β ≤ 1, it follows from Theorem 1 in Bauer et al. (2007) that there exists a constant τ1
such that

‖Cβ
XX
− Ĉ

β
XX
‖op ≤ τ1‖CXX − ĈXX ‖βop ≤ τ1‖CXX − ĈXX ‖βHS.

On the other hand, since α 7→ αβ is Lipschitz on [0, κ2] for β ≥ 1, the following lemma yields
that

‖Cβ
XX
− Ĉ

β
XX
‖op ≤ ‖Cβ

XX
− Ĉ

β
XX
‖HS ≤ τ2‖CXX − ĈXX ‖HS
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where τ2 is the Lipschitz constant of α 7→ αβ on [0, κ2]. In other words,

‖Cβ
XX
− Ĉ

β
XX
‖op ≤ max{τ1, τ2}‖CXX − ĈXX ‖min{1,β}

HS . (C.3)

Lemma C.1 (Contributed by Anreas Maurer, see Lemma 5 in Vito et al. (2012)). Suppose A and

B are self-adjoint Hilbert-Schmidt operators on a separable Hilbert space H with spectrum

contained in the interval [a, b], and let (σi)i∈I and (τj)j∈J be the eigenvalues of A and B,

respectively. Given a function r : [a, b]→ R, if there exists a finite constant L such that

|r(σi)− r(τj)| ≤ L|σi − τj|, ∀ i ∈ I, j ∈ J,

then

‖r(A)− r(B)‖HS ≤ L‖A−B‖HS.

Using (C.3) in (C.2), we have

‖µ̂λ−µP‖ ≤ B‖µ̂P−µP‖+Dλmin{β,η0}‖C−β
XX

µP‖+Cτ‖CXX − ĈXX‖min{1,β}
HS ‖C−β

XX
µP‖,
(C.4)

where τ := max{τ1, τ2}. We now obtain bounds on ‖µ̂P − µP‖ and ‖CXX − ĈXX ‖HS using
the following results.

Lemma C.2 (Gretton et al. (2012a)). Suppose that κ = supx∈X
√
k(x,x). For any δ > 0, the

following inequality holds with probability at least 1− e−δ

‖µ̂P − µP‖ ≤
2κ+ κ

√
2δ√

n
.

Lemma C.3 (e.g., see Theorem 7 in Rosasco et al. (2010)). Let κ := supx∈X
√
k(x,x). For

n ∈ N and any δ > 0, the following inequality holds with probability at least 1− 2e−δ:

∥∥∥ĈXX −CXX

∥∥∥
HS
≤ 2
√
2κ2
√
δ√

n
.

Using Lemmas C.2 and C.3 in (C.4), for any δ > 0, with probability 1− 3e−δ , we obtain

‖µ̂λ−µP‖ ≤
2κB + κB

√
2δ√

n
+Dλmin{β,η0}‖C−β

XX
µP‖+Cτ

(2
√
2κ2
√
δ)min{1,β}

nmin{1/2,β/2} ‖C−β
XX

µP‖.

This completes the proof. �

C.5 Proof of Theorem 5.4

Lemma C.4. Given a set of distributions P = {P1,P2 . . . ,PN}, the distributional variance of

P is

VH (P) = 1

N

N∑

i=1

‖µPi − µP̄‖2H

where µP̄ = 1
N

∑N
i=1µPi and P̄ = 1

N

∑N
i=1 Pi.
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Proof. Let P̄ be the probability distribution defined as 1
N

∑N
i=1 Pi, i.e., P̄(x) = 1

N

∑N
i=1 Pi(x).

It follows from the linearity of the expectation that µP̄ = 1
N

∑N
i=1 µPi . For brevity, we will

denote 〈·, ·〉H by 〈·, ·〉. Then, expanding (5.11) gives

VH (P) =
1

N
tr(Σ) =

1

N
tr(G)− 1

N2

N∑

i,j=1

Gij

=
1

N

N∑

i=1

〈µPi ,µPi〉 −
1

N2

N∑

i,j=1

〈µPi ,µPj 〉

=
1

N




N∑

i=1

〈µPi ,µPi〉 −
2

N

N∑

i,j=1

〈µPi ,µPj 〉+
1

N

N∑

i,j=1

〈µPi ,µPj 〉




=
1

N




N∑

i=1

〈µPi ,µPi〉 − 2

N∑

i=1

〈
µPi ,

1

N

N∑

j=1

µPj

〉
+N

〈
1

N

N∑

i=1

µPi ,
1

N

N∑

j=1

µPj

〉


=
1

N

[
N∑

i=1

〈µPi ,µPi〉 − 2

N∑

i=1

〈µPi ,µP̄〉+N〈µP̄,µP̄〉
]

=
1

N

N∑

i=1

(
〈µPi ,µPi〉 − 2 · 〈µPi ,µP̄〉+ 〈µP̄,µP̄〉

)

=
1

N

N∑

i=1

‖µPi − µP̄‖2H ,

which completes the proof. �

Next, I give a proof of Theorem 5.4.

Proof of Theorem 5.4. Since k is characteristic, ‖µP − µQ‖2H is a metric and is zero iff P =
Q for any distributions P and Q (Sriperumbudur et al. 2010). By Lemma C.4, VH (P) =
1
N

∑N
i=1 ‖µPi −µP̄‖2H . Thus, ‖µPi −µP̄‖2H = 0 iff Pi = P̄. Consequently, if VH (P) is zero,

this implies that Pi = P̄ for all i, meaning that P1 = · · · = Pℓ. Conversely, if P1 = · · · = Pℓ,
then ‖µPi − µP̄‖2H = 0 is zero for all i and thereby VH (P) = 1

N

∑N
i=1 ‖µPi − µP̄‖2H is

zero. �

C.6 Proof of Theorem 5.5

Proof. Recall that

VH (P) = 1

N
tr(G)− 1

N2

N∑

i,j=1

Gij and V̂H (S) = 1

N
tr(Ĝ)− 1

N2

N∑

i,j=1

Ĝij

where

Gij = 〈µPi ,µPj 〉H =

∫∫
k(x, z) dPi(x) dPj(z)

Ĝij = 〈µ̂Pi , µ̂Pj 〉H =
1

ninj

ni∑

k=1

nj∑

l=1

k(x
(i)
k ,x

(j)
l )
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By Theorem 15 in Altun and Smola (2006), we have a fast convergence of µ̂P to µP. Con-
sequently, we have Ĝ → G, which implies that V̂H (S) → VH (P). Hence, V̂H (S) is a
consistent estimator of VH (P). �

C.7 Proof of Theorem 5.8

We consider a scenario where distributions Pi are drawn according to P∗ with probability µi.
Introduce shorthand X̃ij for (P(i),Xij) for a distribution on PX and a corresponding random
variable on X .

The quantity of interest is the difference between the expected and empirical loss of a clas-
sifier f : PX × X → Y under loss function ℓ : Y × Y → R+.

Assumptions. The loss function ℓ : R × Y → R+ is φℓ-Lipschitz in its first variable and
bounded by Uℓ. The kernel kX is bounded by UX . Assume that all distributions in P∗ are
mapped into a ball of size UP by ΨP . Finally, since kP is a is a square exponential, there is a
constant LP such that

‖ΦP(v) − ΦP(w)‖ ≤ LP‖v −w‖ for all v,w.

Recall that N is the number of sampled domains, ni is the number of samples in domain i,
and n =

∑N
i=1 ni is the total number of samples. The proof assumes ni = nj for all i, j.

Lemma C.5. Recall that Φx = [φ(x1), . . . , φ(xn)]. The composition xt 7→ kt · B, where

kt = [k(x1,xt), . . . , k(xn,xt)], can therefore be rewritten as φ(xt) · B = φ(xt) · Φx ·B.

Proof. The proof modifies the approach taken in Blanchard et al. (2011b) to handle the prepro-
cessing via transform B, and the fact that we work with squared errors. Parts of the proof that
pass through largely unchanged are omitted.

We repeatedly apply the inequality |a + b|2 ≤ 2|a|2 + 2|b|2. However, we only incur the
multiplication-by-2 penalty once since |a1 + · · ·+ an|2 ≤ 2|a1|2 + · · ·+ 2|an|2.

Decompose

sup
‖f‖H ≤1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− EPiℓ(f(X̃ijB), Yi)

∣∣∣
2

+ sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣EPiℓ(f(X̃ijB), Yi)− E
P̂i
ℓ(f(X̃ijB), Yi)

∣∣∣
2

+ sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣EP̂i
ℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

= (A) + (B) + (C) .

Control of (C):

(C) = sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣EP̂i
ℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ φ2ℓ sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣EP̂i
f(X̃ijB)− E

P̂
f(X̃ijB)

∣∣∣
2
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= φ2ℓ ·
2

N

N∑

i=1

∥∥∥ΨP(P̂i)⊗ µ
P̂i
B −ΨP(P̂)⊗ µ

P̂
B
∥∥∥
2

Note that ‖ΨP(µ(P))‖2 ≤ LP · ‖µP‖2 ≤ LPUP . Therefore,

(C) ≤ φ2ℓLPUP

2

N

N∑

i=1

∥∥µ
P̂i
B − µ

P̂
B
∥∥2 .

By the proof of Theorem 5.4 and since Φ⊤
x B = KB, we have

(C) ≤ 2φ2ℓLPUP

1

N
tr(KBB⊺KL).

Control of (B): Similarly,

(B) = sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣EPiℓ(f(X̃ijB), Yi)− E
P̂i
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ 2φ2ℓLPUP ·
1

N

N∑

i=1

∥∥µPiB − µP̂iB
∥∥2

≤ 2φ2ℓLPUP · ‖B‖2HS ·
1

N

N∑

i=1

∥∥µPi − µP̂i
∥∥2

Here we follow the strategy applied by Blanchard et al. (2011b) to control their term (I) in
Theorem 5.1. Assume ni = nj for all i, j and recall n =

∑N
i=1 ni so ni = n/N for all i.

By Hoeffding’s inequality in Hilbert space, with probability greater than 1− δ the following
inequality holds

∥∥∥∥∥∥
1

ni

ni∑

j=1

µ(X̂ij)− EP(i)µ(Xij)

∥∥∥∥∥∥

2

≤ 9UX
N · log 2δ−1

n
.

Applying the union bound obtains

(Ib) ≤ 18φ2ℓLPUPUX · ‖B‖2HS ·
N · (log δ−1 + 2 logN)

n
.

Control of (A):

(A) = sup
‖f‖H ≤1

2

N

N∑

i=1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− EPiℓ(f(X̃ijB), Yi)

∣∣∣
2

Following the strategy used by Blanchard et al. (2011b) to control (II) in Theorem 5.1, we obtain

(A) ≤ c3
φ2ℓU

2
XUP + Uℓ log δ

−1

N
· ‖B‖2HS.

End of proof: We have that K is invertible since ĈXX is assumed to be invertible. It follows
that the trace tr(B⊤KB) defines a norm which coincides with the Hilbert-Schmidt norm ‖B‖2HS.
Combining the three inequalities above concludes the proof. �
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C.8 Derivation of Equation (5.16)

DICA employs the covariance of inverse regressor V(E[φ(X)|Y ]), which can be written in
terms of covariance operators. Let H and F be the RKHSes of X and Y endowed with
reproducing kernels k and l, respectively. Let CXX , CYY , CXY , and CYX be the covariance
operators in and between the corresponding RKHSes of X and Y . We define the conditional
covariance operator of X given Y , denoted by Σxx|y, as

Σxx|y , CXX −CXYC−1
YY

CYX . (C.5)

The following theorem from Fukumizu et al. (2004) states that, under mild conditions, Σxx|y
equals the expected conditional variance of φ(X) given Y .

Theorem C.6. For any f ∈ H , if there exists g ∈ F such that E[f(X)|Y ] = g(Y ) for almost

every Y , then Σxx|y = E[V(φ(X)|Y )].

Using the E-V -V -E identity1, the covariance V(E[φ(X)|Y ]) can be expressed in terms of
the conditional covariance operators as follow:

V(E[φ(X)|Y ]) = V(φ(X)) − E[V(φ(X)|Y )], (C.6)

assuming that the inverse regressor E[f(x)|y] is a smooth function of y for any f ∈H .
By virtue of Theorem C.6, the second term in the r.h.s. of (C.6) is Σxx|y. Since V(φ(X)) =

Cov(φ(x), φ(x)) = CXX , it follows from (C.5) that the covariance of the inverse regression
V(E[φ(X)]|Y ) can be expressed as

V(E[φ(X)|Y ]) = CXYC−1
YY

CYX . (C.7)

The covariance (C.7) can be estimated from finite samples (x1,y1), . . . , (xn,yn) by V̂(E[φ(X)|Y ]) =
ĈXY Ĉ−1

YY
ĈYX where ĈXY = 1

nΦxΦ
⊤
y and Φx = [φ(x1), . . . , φ(xn)] and Φy = [ϕ(y1), . . . , ϕ(yn)].

LetK and L denote the kernel matrices computed over samples {x1,x2, . . . ,xn} and {y1,y2, . . . ,yn},
respectively. We have

V̂(E[φ(X)|Y ]) =

(
1

n
ΦxΦ

⊤
y

)(
1

n
(ΦyΦ

⊤
y + nεI)

)−1( 1

n
ΦyΦ

⊤
x

)

=
1

n
ΦxΦ

⊤
y Φy

(
Φ⊤
y Φy + nεIn

)−1
Φ⊤
x

=
1

n
ΦxL (L+ nεIn)

−1Φ⊤
x (C.8)

where L = Φ⊤
y Φy and I is the identity operator. The second equation is obtained by applying

the fact that (ΦyΦ⊤
y + nεI)Φy = Φy(Φ

⊤
y Φy + nεIn).

Finally, using ĈXX = 1
nΦxΦ

⊤
x and recalling that K = Φ⊤

xΦx, we obtain

β⊤
k Ĉ

−1
XX

V̂(E[X|Y ])ĈXXβk = β⊤
k

(
1

n
ΦxΦ

⊤
x

)−1( 1

n
ΦxL (L+ nεIn)

−1 Φ⊤
x

)(
1

n
ΦxΦ

⊤
x

)
βk

=
1

n
β⊤
k Φ

⊤
x

(
ΦxΦ

⊤
x

)−1
ΦxL (L+ nεIn)

−1 Φ⊤
x

(
ΦxΦ

⊤
x

)
Φxβk

=
1

n
β⊤
k Φ

⊤
xΦx

(
Φ⊤
xΦx

)−1
L (L+ nεIn)

−1 Φ⊤
x

(
ΦxΦ

⊤
x

)
Φxβk

1V(X) = E[V(X|Y )] + V(E[X|Y ]) for any X,Y .
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=
1

n
β⊤
k L(L+ nεI)−1K2βk

and
β⊤
k βk = β⊤

k Φ
⊤
xΦxβk = β⊤

k Kβk

as desired.

C.9 Derivation of Lagrangian (5.18)

Observe that optimization

max
B∈Rn×m

tr
(
B⊤XB

)

tr (B⊤YB)
(C.9)

is invariant to rescaling B 7→ α ·B. Optimization (C.9) is therefore equivalent to

max
B∈Rn×m

tr
(
B⊤XB

)

subject to: tr
(
B⊤YB

)
= 1,

which yields Lagrangian

L = tr
(
B⊤XB

)
− tr

((
B⊤YB− I

)
Γ
)
. (C.10)

Z END OF APPENDIX Y
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