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Mathematical Analysis of Sensitive Parameters on the
Dynamical Transmission of HIV-Malaria Co-infection

Asimiyu Olalekan Oladapo1,∗, Morufu Oyedunsi Olayiwola2, Kamilu Adewale Adedokun3,
Adedapo Ismaila Adedapo4, Joseph Adeleke Adedeji5, Kareem Oyeleye Kabiru6, and Akeem
Olanrewaju Yunus7

1,2,3,4,5,6,7 Department of Mathematical Sciences, Osun State University, PMB 4494, Osogbo , Nigeria

ABSTRACT. Malaria disease increases the mortality rate of HIV patients. In this work, a mathematical model in-
corporating an infected, undetected, and treated set of people was developed. The analysis showed that the model is
well-posed, the disease-free equilibrium for the model was obtained, and the basic reproduction number of the HIV-
malaria co-infection model was calculated. The 14 compartmental models were analyzed for stability, and it was
established that the disease-free equilibrium of each model and their co-infections were locally and globally asymptoti-
cally stable whenever the basic reproduction number was less than unity or endemic otherwise. Based on the sensitivity
analysis, the parameter that has the greatest impact is the contact rate; therefore, it is recommended for public health
policies aimed at reducing the burden of these diseases in co-endemic regions.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

The use of mathematical models enables us to address var-
ious physical phenomena, including crises in biology and epi-
demiology. Some of the applications found way back are in [1]
and [2]. Till date, researchers continue the rigorous applica-
tions of the models, and some recent studies like [3–6] are ex-
amples. Co-infection with HIV and malaria is common, particu-
larly in developing countries where malaria is already endemic.
Malaria caused about 438,000 deaths in 2015, and the HIV virus
claimed 11,310 lives [7]. The literature and development of math-
ematical epidemiology are well documented and can be found in
[8]. Two of the prevailing infections in sub-Saharan Africa are
malaria and HIV. Important results on the transmission dynam-
ics of malaria have only been revealed in the last decade; for
instance, see [9]. In their paper, a mathematical model is for-
mulated using a system of differential equations to understand
the co-dynamics of two diseases: HIV/AIDS and malaria. The en-
tire human population (ages 16–45) is divided into six compart-
ments, and the mosquito population into two. The model is an-
alyzed, and steady-state conditions are derived. It is shown that
the disease-free equilibrium is stable if the basic reproduction
number, R0, is less than unity. Sensitivity analysis and simula-
tion results prove that malaria makes people move faster from
HIV to AIDS and reduces their lifespan [10]. They proposed and
investigated a deterministic model for the co-infection of HIV and
malaria in a community.

The available literature reviewed did not consider the HIV
infected undetected group of people and the treated group.
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Hence, a new fourteen 14-compartmental model that incorpo-
rated these classes was formulated to gain insight into the trans-
mission dynamics of the spread of HIV-malaria co-infections. To
effectively control and stop the spread of HIV and malaria, it is
imperative to understand the dynamics of co-infection [11]. Re-
searchers can use mathematical models to examine the impacts
of various parameters on disease transmission and to forecast
the consequences of interventions like vaccination or treatment
plans. In the instance of HIV-malaria co-infection, identifying
sensitive variables that significantly influence disease transmis-
sion might direct the creation of focused interventions to lower
the burden of disease. As a result, this research on the mathe-
matical analysis of delicate parameters on the dynamical trans-
mission of HIV-malaria co-infection is very important for public
health and has the ability to influence decisions about measures
for disease control and prevention [12, 13]. To gain a better
knowledge of the disease’s transmission dynamics and control,
many models have been developed and studied using various
methodologies. These studies include the following [14–25].

The model of HIV-malaria co-infection was analyzed for
the positivity and boundedness of solutions, to determine if the
model was well-posed. The disease-free equilibria for the mod-
els were obtained. Also, the basic reproduction numbers for
the models were computed using the next-generation matrix
method. Moreover, the stability of the disease-free equilibria was
determined, and bifurcation analysis of the sub-models was car-
ried out using center manifold theory. Sensitivity analysis of the
basic reproduction numbers of HIV, malaria, and the full model
was examined, and optimal control analysis was carried out to
identify the best strategies for the control of the disease. Nu-
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merical simulation was carried out using Maple 17 software.

2. Methods
2.1. Model description and Formulation

In order to model the dynamics, the total homogeneous
mixing population at time t, denoted by N(t), is divided into
fourteen compartments: susceptible (S(t)) individuals, exposed
(EH(t)) individuals, HIV-infected undetected (IU (t)) individu-
als, HIV-infected detected (ID(t)) individuals, treated (TH(t))
individuals, recovered (RM (t)) individuals, latently HIV and
malaria (LH(t)) individuals, active HIV and malaria (AHM (t))
So that

N(t) = SH(t) + LH(t) + IU (t) + ID(t) + TH(t)

+ EM (t) + IM (t) + TM (t) +RM (t)

+ EHM (t) +AHM (t).

(1)

The total vector (mosquito) population at time t, denoted by
NV (t) is subdivided into susceptible mosquitoes (SV (t)), ex-
posed mosquitoes (EV (t)), and infected mosquitoes (IV (t)) so
that

NV (t) = SV (t) + EV (t) + IV (t). (2)

The susceptible humans are recruited into the population at the
constant rate πH . Susceptible individuals aquire HIV infection
following effective contact with HIV-infected individuals (at a rate
λH ) and acquire infection with malaria following effective with
infected mosquitoes (at a rate λM ) and also aquire HIV-malaria
co-infection following effective contact with HIV-infected indi-
viduals and infected mosquitoes (at a rate λHM ). The population
increases by recovered individuals who loss immunity (at a rate
ϕ1) and the natural death occurs in all human sub-population (at
a rate µ) decreases the population. The force of infection associ-
ated with HIV-infection, denoted by λH is given by;

λH=
βH(LH + ηUIU + ηDID + TH)

NH
(3)

In eq. (3) above βH represents the effective contact rate (contact
sufficient to result in HIV infection), ηU is a modification param-
eter comparing the individual transmissibility of undetected in-
fected individuals in relationship to latently infected. Also, ηD is
a modification parameter comparing transmissibility of infected
detected.

The rate of change of susceptible population is given by

dSH

dt
= πHλHSH − λMSH − µSH

+ φ1RM − λHMSH .
(4)

A fraction ε1 of the newly infected individuals are assumed to
show no disease symptoms initially. These individuals (known as
“slow progressor”) are moved to latently HIV class (LH). The re-
maining fraction (1− ε) move to infected undetected class (fast
progressor) IU . The population of latently infected class is fur-
ther increased by the individuals who are successfully treated (at
the rate ϕ2) and by fraction of individuals who are treated for ac-
tive HIV-malaria (at a rate (1 − ℓ)ϕ3), since malaria can only be
cured. The population decreases by progression to HIV-detected

class (at rate κH ) and natural death (at the rate µ).

dLH

dt
= ε1λHSH − (κH + µ)LH + φ2TH

+ (1− ℓ)ϕ3AHM .
(5)

The population of undetected infected individuals is increased by
the fraction of the newly infected individuals low immunity (at the
rate (1 − ε1)λH) and those that develop symptoms by latently
infected individual at the rate (1 − ω1)κH where ω1 is the frac-
tion of latently infected individuals who are not detected, ω1κH .
Furthermore, it decreases by the detection of the infection (at the
rate γUH), natural death (at the µ) and disease induced death (at
a rate δUH).

dIU
dt

= (1− ε1)λHSH + ω1κHLH

− (γUH + µ+ δUH)IU .
(6)

The population of detected infected individuals is increased by
a fraction latently infected individuals who are detected upon
showing symptoms (at the rate (1−ω1)κH ) also, the population
increases due to HIV exposed malaria individuals that are treated
(at the rate τ1), and by the detection rate of undetected individ-
uals (at the rate γUH ). The population is decreased by treatment
(at the rate τ1), natural death(at the rate µ) and disease induced
death (at a rate δDH ). Hence;

dID
dt

= (1− ω1)κHLH − (τ1 + µ+ δdH)ID

+ γUHIU + τ4EHT .
(7)

The population of treated HIV individuals is increased by those
that have recovered treatment from HIV detected infected in-
dividual at the rate (τ1) this population reduces by fraction of
treated individual that moved back to latently HIV individuals at
the rate (ϕ2) since treatment does not completely clears the bac-
teria and finally reduced by natural death rate (µ). Hence,

dTH

dt
=τ1ID−(φ2 + µ)TH (8)

the population of latent malaria and HIV is increased by infection,
which can acquired following effective contact with infectious in-
dividuals in the latent malaria and HIV (LTH), Active induced HIV
(ηUAHM ) or recovered malaria induced HIV

λHM=
βHM (EHM + ηAHMAHM )

NHM
(9)

Where βHM represents the effective contact rate.
The population of HIV exposedmalaria is generated by frac-

tion ε3 of the newly infected individuals with low immunity who
moved to HIV exposed malaria class. The remaining fraction are
moved to Active HIV-malaria class. The population decreases due
to progression to active HIV-malaria (at the rate κHM ) treatment
of the population (at the rate τ4), natural death ( at the rate µ)
and death due to the disease (at the rate δEHM ).

dEHM

dt
= ε3λHMSH − (KHM + µ+ δEHM )EHM

− τ4EHM ,
(10)
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the population of active HIV-malaria class contains the remaining
individuals with low immunity (at the rate 1− ε3) and those that
progresses fromHIV exposedmalaria class (at the rate κHM ). The
decreases by those that are successfully treated (at the rate ϕ3),
natural death (at the rate µ) and death due to disease (at the rate
δAHM ), hence

dAHM

dt
= (1− ε3)λHMSH +KHMEHM

− (φ3 + δAHM + µ)AHM ,
(11)

the population of exposed HIV and malaria is increased by in-
fection, which can be acquired following effective contact with
infectious individuals in expose HIV and malaria (EHM ), or active
HIV induced malaria (ηUAHM ) categories at a rate λ given by

λHM=
βHM (LHT + ηUAHM )

NHM
, (12)

where βHM represents the effective contact rate.The population
reduced by progression firm exposed stage to active stage at the
rate (κHM ) and by natural death rate.

A fraction ε2 of new infected individuals with low immunity
move to exposed class (EM ) and the remaining fraction (1− ε2)
move to the infected class (IM ). The exposed population de-
creases when individuals become infected (at the rate ρϕ3). The
exposed class decreases by progression to infected individuals (at
rate κM ), them who are treated at the rate τ2), natural death (at
the rate µ). Hence, we have,

dEM

dt
= ε3λMSH − (KM + µ)EM − τ4EM + ℓϕ3AHM . (13)

The population of individual infected with malaria is generated
by a fraction of the new infected individuals with low immunity
(at the rate 1 − ε2) and progression to infected individual from
the exposed class. The population decreases by treatment of the
infected individuals (at the rate τ3), those who are successfully
treated recovered (at the rate r), natural death (at the rate µ) and
disease induced death (at the rate δIM ). Therefore,

dIM
dt

= (1− ε2)λMSH +KMEM

− (τ3 + δIM + µ)IM

(14)

The population of treated class increases by treatment of de-
tected individuals (at the rate τ1), since, HIV has no cure, treated
individuals will move to latently infected class (at the rate ϕ2).
Furthermore, the population also decreases by natural death (at
the rate µ).

dTM

dt
=τ3 − (r + µ)TM . (15)

The recovered population is generated by treatment (at the rate
τ2 and τ3), of the exposed and infected class respectively and
those who are successfully treated and recovered (at the rate µ)
and those that loss immunity (at the rate ϕ1) hence

dR

dt
=τ2EM + rTM − (φ1 + µ)RM (16)

Susceptible mosquitoes (SV ) are generated at a constant rate
(recruitment πr) and acquire malaria infection following effective

contacts with human infected with malaria at a rate λV , where
the force of infection λV is given

λV =
βV b(IM + ηHMEHM + ηAHMAHM )

NH
, (17)

where ηHM and ηAHM are the modification parameters number
of human bites one mosquito has per unit time, βV is the trans-
mission probability from human to mosquito. Newly infected
mosquitoes move to exposed class and they are assumed to suf-
fer death (at the rate µV ). Hence,

dsV
dt

=πV − λV SV − µV SV (18)

The exposemosquitoes consist of newly infectedmosquitoes and
their population diminishes by progression into infected class (at
the rate σV ) and death of the mosquitoes (at the rate µV ) there-
fore.

dEV

dt
=λV SV − (σV + µV )EV (19)

The infected mosquitoes have those that progress from exposed
class and diminish by the death of the mosquitoes (at the rate
µV ), hence

dIV
dt

=σV EV − µV IV (20)

In summary, the above formulations and assumptions to-
gether give the following system of differential equations. By
following [10], we designed a new deterministic compartmental
model as follows.

dSH

dt
= πH − λHSH − λMSH − µSH

+ ϕ1RM − λHMSH ,

dLH

dt
= ε1λHSH − (KH + µ)LH + ϕ2TH

+ (1− ℓ)ϕ3AHM ,

dIU
dt

= (1− ε1)λHSH + ω1KHLH

− (γUH + µ+ δUH)IU ,

dID
dt

= (1− ω1)KHLH − (τ1 + µ+ δdH)ID

+ γUHIU + τ4EHT ,

dTH

dt
= τ1ID − (ϕ2 + µ)TH ,

dEM

dt
= ε2λMSH − (KM + µ)EM

− τ4EM + ℓϕ3AHM ,

dIM
dt

= (1− ε2)λMSH +KMEM (21)

− (τ3 + δIM + µ)IM ,

dTM

dt
= τ3IM − (r + µ)TM ,

dRM

dt
= τ2EM + rTM − (ϕ1 + µ)RM ,

dEHM

dt
= ε3λHMSH − (KHM + µ+ δEHM )EHM

− τ4EHM ,
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dAHM

dt
= (1− ε3)λHMSH +KHMEHM

− (ϕ3 + δAHM + µ)AHM ,

dSV

dt
= πV − λV SV − µV SV ,

dEV

dt
= λV SV − (σV + µV )EV ,

dIV
dt

= σV EV − µV IV ,

where

λE = βH

(
LH + ηDID + ηUIU + ηTTH

NH

)
,

λHM = βHM
(EHM + ηEMAHM )

NH
,

λM =
βMbIV
NV

,

λV =
βV b(IM + ηHMEHM + ηAHMAHM )

NH
.

2.2. Boundedness Solutions of the model
For the system (21) to be epidemiological meaningful, it

is important to prove that all solutions with non-negative initial
data will remain non-negative i.e. t ≥ 0.

Theorem 1. If SH(0), LH(0), IU (0), ID(0), TH(0), EM (0),
IM (0), TM (0), RM (0), EHM (0), IHM (0), SV (0), EV (0),
and IV (0) be non-negative, then the solutions SH , LH , IU , ID,
TH , EM , IM , TM , RM , EHM , AHM , SV , EV , and IV are
non-negative for all t > 0.

Proof. Consider the biologically- feasible regionΩ = ΩH×ΩV ⊂
R14

+ with

ΩH = {(SH , LH , IU , ID, TH , EM , IM , TM ,

EHM , AHM , RM ) ∈ R11
+ : NH ≤ πH

µ

}
, and

ΩV =

{
(SV , EV , IV ) ∈ R3

+ : NV ≤ πV

µV

}
,

is positively invariant. From this theorem, this can be concluded
that it is sufficient to consider the dynamics of (21) in Ω. In this
region, the model can be considered as being epidemiological
well-posed [26].

The total human population NH is calculated as:

NH = SH + LE + IU + ID + TH + EM + IM

+ TM + EHM +AHM +RM

Therefore upon simplifications obtain the following

dNH

dt
= πH − µ (SH + LH + IU + ID + TH

+EM + IM + TM + EHM +AHM +RM )

− (δUHIU + δDHID + δTTH + δIMIM

+δHMEHM + δAHMIHM ) .

(22)

If there is no death from HIV and malaria infections, eq. (22) be-
come

dNH

dt
≤ πH − µNH . (23)

After evaluating eq. (23) as time approaches infinity, obtain

NH(t) ≤ NH(0)e−µt +
πH

µ
,
(
1− e−µt

)
(24)

where NH(0) represents the value of total population of human
evaluated at the initial values of the respective variables.

Similarly, the rate of change of the total population of vec-
tors (mosquitoes) NV is calculated as:

NV = SV + EV + IV

Thus obtain

dNV

dt
= πV − µV (SV + EV + IV ) . (25)

Then,
dNV

dt
≤ πV − µV NV . (26)

After, solving eq. (25) and evaluating it as time tends to infinity,
obtain

NV (t) ≤ NV (0)e
−µV t +

πV

µV

(
1− e−µV t

)
, (27)

where NV (0) represents the value of total population of the
vectors (mosquitoes) evaluated at the initial values of the re-
spective variables. Thus as t → ∞, equations (27) become
lim
t→∞

NH(t) ≤ πH

µ and lim
t→∞

NV (t) ≤ πV

µV
if NH(0) ≤ πH

µ and

NV (0) ≤ πV

µV
. Therefore, all the solution set of (21) is bounded

in Ω.

2.3. Equilibrium analysis of HIV-Malaria co-infection model
The disease free equilibrium of eq. (21) is obtained by

equating all equations of the model to zero and then set LH =
IU = ID = TH = EM = IM = TM = RM =
EHM = AHM = EV = IV = 0. Then obtain: E0 =(

πH

µ , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, πV

µV
, 0, 0

)
.

2.4. The basic reproductive number of model of HIV-Malaria
co-infection

Following [27] principle of next generationmatrix, from the
above model equation, the non-negative matrix F (new infec-
tion terms) and the non-singular matrix V (i.e other transferring
terms) can be partition as follow

F =

[
F1 F2

F3 F4

]
, and V =

[
V1 V2

V3 V4

]
. (28)

where F1, F2, F3, F4 and V1, V2, V3, V4 are 6×6matrices. There-
fore, from the model equation the non-negative matrices F1 to
F4 (new infection term rate) are as follows.

F1 =


0 F 1

12 F 1
13 F 1

14 F 1
15 0

0 F 1
22 F 1

23 F 1
24 F 1

25 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
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Table 1. Definitions Of Parameters And Variables Used In The Model Formulation

Parameters and variables Definition
Sh Susceptible individuals
LH HIV Latently infected individuals
IU Undetected HIV individuals
ID Detected HIV individual
TH Treated HIV individuals
TM Treated malaria individuals
EM Malaria exposed individuals
IM Malaria infected individuals
RM Malaria recovered individuals
EHM HIV exposed malaria individuals
AHM Active HIV-malaria individuals
SV Susceptible vectors (mosquitoes)
EV Exposed vectors (mosquitoes)
IV Infected vectors (mosquitoes)
πh, πV Recruitment rate of human and vectors respectively
λH , λHM Forces of infection in HIV and HIV- malaria individuals
µ Human natural death rate
µV Death rate of vectors (mosquitoes)
τ1, τ2, τ3, τ4 Treatment rate for malaria exposed, infected, HIV-detected and HIV exposed malaria in-

dividuals
ε1, ε2, ε3 Fraction of individuals with low immunity, infected with HIV, malaria and HIV-malaria co-

infection
γUH Detection rate for undetected HIV
δEM , δIM Malaria induced death rate for classes EM and IM
δUH , δdH , δj , δEHM , δAHM HIV induced death rate for classes HU , HD, J, EHM andAHM respectively
κH , κM , κHM Progression rate for HIV, malaria and HIV-malaria
σ1, σ2 Isolation rate for classes LHandHDrespectively
βH , βHM Effective contact rate for HIV and HIV-malaria respectively
βM , βV Transmission probability from mosquito to human and human to mosquito respectively
ω1 Fraction of latently infected class that moves to HIV undetected class
σV Progression rate of vectors (mosquitoes)
ρ Fraction of active HIV-malaria that is treated which moves to malaria exposed class
ϕ2 Progression rate HIV treated class to latent class
ϕ3 Progression rate active HIV-malaria individual after treatment
R Recovery rate of malaria
A Number of mosquito bites per unit time
B Number of human bitten by mosquito per unit time
λM , λV Force of infection from mosquito to human and from human to mosquito respectively
ϕ Rate of loss of immunity

F2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 F 2

66

 ,

F3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , and

F4 =


0 0 0 0 0 F 4

16

0 F 4
22 F 4

23 0 0 0
0 F 4

32 F 4
33 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


where

F 1
12 = ε1βH , F 1

13 = ε1βHηU ,

F 1
14 = ε1βHηD, F 1

15 = ε1βHηT ,

F 1
22 = (1− ε1)βE , F 1

23 = (1− ε1)βHηU ,

F 1
24 = (1− ε1)βHηD, F 1

25 = (1− ε1)βHηT ,

F 2
66 = ε2βMbπHµV

µπV
, F 4

16 = (1−ε2)βMbπHµV

µπV
,

F 4
22 = ε3βHM , F 4

23 = ε3βHMηHM ,

F 4
32 = (1− ε3)βHM , F 4

33 = (1− ε3)βHMηHM .

Other transferring terms V1 to V4 are given as follows.

V1 =


V 1
11 0 0 −ϕ2 −V 1

15 0
−ω1κH V 1

22 0 0 0 0
−V 1

31 −γUH V 1
33 0 0 0

0 0 −τ1 V 1
44 0 0

−σ1 0 −σ2 0 V 1
55 0

0 0 0 0 0 V 1
66

 ,

V2 =


0 0 −V 2

13 0 0 0
0 0 0 0 0 0
0 −τ4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −ρϕ3 0 0 0

 ,

V3 =


0 0 0 0 0 −κM

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −τ2
0 0 0 0 0 0
0 0 0 0 0 0

 , and
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V4 =


V 4
11 0 0 0 0 0
0 V 4

22 0 0 0 0
0 −κHM V 4

33 0 0 0
−V 4

41 0 0 V 4
44 0 0

0 0 0 0 V 4
55 0

0 0 0 0 −σV µV

 ,

with

V 1
11 = κH + µ+ σ1, V 1

15 = (1− α)θ,

V 2
13 = (1− ρ)ϕ3, V 1

22 = γUH + µ+ δUH ,

V 1
31 = (1− ω1)κH , V 1

33 = τ1 + µ+ δDH + σ2,

V 1
44 = ϕ2 + µ, V 1

55 = µ+ θ,

V 1
66 = κM + µ+ τ2, V 4

11 = τ3 + r + δIM + µ,

V 4
22 = κHM + µ V 4

33 = ϕ3 + δAHM + µ,

+ δAHM + τ4, V 4
41 = τ3 + r,

V 4
44 = ϕ1 + µ, V 4

55 = σV + µV .

From the above matrix, V2 and V3 are singular matrices. Then
(F1V

−1
1 ) and (F4V

−1
4 ) will be considered for the calculation of

the reproduction number. Therefore, the reproduction number
R1 of the matrix F1V1 is

R1 =

βH



ε1a1a7a8ηDγUH + ε1a1a7a8ηT γUHτ1
−ε1a2a7ηDγUHσ1 − ε1a2ηT γUHσ1τ1
+ε1ηT γUHϕ2σ1τ1 − a4a5a7a8ε1ηD
−a4a5a7ε1ηT σ2 − a4a5a8ε1ηT τ1
−a4a6a7ε1ηT σ1 − a1a7a8ηDγUH

−a1a7ηT + γUHσ2 − a1a8ηT γUHτ1
+a2a7ηDγUHσ1 + a2ηT γUHσ1τ1
−ηJγUHϕ2σ1τ1 + ε1a1a6a7a8
−ε1a2 + a5a7σ2 − ε1a2a6a7σ1 − ε1a5a8ϕ2τ1
−a1a6a7a8 + a2a5a7σ2 + a2a5a7σ1 + a5a8ϕ2τ1
−ε1ω1 + κEa6a7a8 − ε1a7a8ηDγUHκHω1

−ε1a7ηT γUHκHω1σ2 − ε1a8ηT γUHκHω1τ1


(

a2a7γUHκHω1σ2 + a8γUHκHω1ϕ2τ1 − a1a4a6a7a8
+a2a4a5a7σ2 + a2a4a6a7σ1 + a4a5a8ϕ2τ1

)
The associated reproduction number R4 for F4V

−1
4 given by

ρ(F4V
−1
4 ), where is the spectral radius of the dominant eigen-

value of the next generation matrix (F4V
−1
4 ) is

R4 =

βHM ((ϕ3 + δAHM + µ)ε3 + (κHM + µ+ δAHM + τ4)ηHM

+ε3ηHMκHM − ε3ηHM (κHM + µ+ δAHM + τ4))

(κHM + µ+ δAHM + τ4)(ϕ3 + δAHM + µ)

So, that the basic reproduction number of the HIV- malaria co-
infection model is obtained to be

R(HM) = max {R1, R4} .

2.5. Sensitivity analysis of HIV-Malaria co-infection model
Sensitivity analysis was carried out to determine the

model’s robustness to parameter values. This helps identify the
parameters that have a high impact on the reproductive number.
Moreover, sensitivity indices help in developing efficient and ef-
fective intervention strategies for the control of HIV-malaria co-
infection in the community.

This was calculated using the normalized forward sensitiv-
ity method, which is defined as the ratio of the relative change
in RHM to the relative change in the parameter: ′P ′:

ZRHM

P =
∂RHM

∂P
× P

RHM

Table 2. Sensitivity values on the basic reproduction number
RHM of HIV-malaria co-infection model

Parameters Sensitivity indices
βHM 1.000000000
ε3 0.9907058877
ϕ3 0.5720364764
µ 0.4145191860
δAHM 0.02901634301
ηHM 0.01119409061
κHM 0.004653570032
τ4 0.0002042987416

Figure 1. Chart on sensitivity indices of basic reproduction
number of HIV-Malaria co-infection

3. Results and Discussion
3.1. Results

The analytical results of this study are illustrated by carry-
ing out numerical simulations of the models using parameter val-
ues in Table 3 with initial values SH(0) = 14000, LH(0) = 2000,
IU (0) = 200, ID(0) = 300, TH(0) = 350, EHM (0) = 700,
AHM (0) = 100, EM (0) = 2000, IM (0) = 9000, TM (0) = 180,
RM (0) = 7500, SV (0) = 900, EV (0) = 700, and IV (0) = 500.
The simulations are carried out with the help of MAPLE 17 soft-
ware and the results are given below

Figure 2. Graph showing disease free equilibrium point at
different time
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Table 3. Parameters values used for the numerical simulation

Parameters Values Sources
δIM 0.05 [28]
βHM 0.8 Estimated
κHM 0.093 Estimated
κM 0.071 [29]
βM 0.03 [30]
ε3 0.69 Estimated
ε2 0.6 Estimated
τ4 0.0069 [31].
τ3 0.0013 [32]
τ2 0.0018 Estimated
πV 400 Estimated
πH 1800 Estimated
µ 0.2 Estimated
µV 0.05 [33]
τ1 0.3143 [26]
ε1 0.92 [34]

γUH 0.2 Estimated
δHM 0.093 [10]
κH 0.2 [35]
σ2 0.6 [35]
σ1 0.712 [35]
βH 0.8 Estimated
βV 0.09 [36]
ω1 0.2 [35]
σV 0.1 [37]
ϕ2 0.02 [35]
ϕ3 0.28 [32]
r 0.02 [38]
b 0.4 [39]
θ 0.8 [35]

δUH 0.01 Estimated
δDH 0.008 Estimated
δAHM 0.014 [40]

ηU ,ηD ,ηT ,ηHM 0.01 Estimated

Figure 3. Graph shows the global stability of endemic point
at different time

3.2. Discussion

Figure 2 shows the disease-free equilibrium point of HIV-
malaria co-infection, as it shows that there is always someone
susceptible in the population while infected individuals tend to
zero. Also, Figure 3 shows the global stability of endemic, which
indicates that whatever the initial values, the system will con-
verge to the same point as time goes on. Figure 4 depicts the

Figure 4. Graph of behavior of total population with initial
value at different time

Figure 5. Graph of increasing the most positive sensitive
value which is HIV-malaria contact rate on total
population at different time

behavior of the HIV-malaria co-infection model, displaying the
dynamics with different times of susceptible, HIV latently, in-
fected undetected, infected detected, infected treated, isolated,
exposed malaria human, infected malaria human, HIV-malaria ex-
posed, HIV-malaria infected, susceptible vector, exposed vector,
and infected vector population.

In Figure 5, the susceptible population decreases initially
until the contact rate increases while the susceptible vector in-
creases and the co-infection trajectories increase. Also, the dy-
namics of their trajectories remain the same. As it shows in Fig-
ure 6, when the contact rate was eliminated from the entire co-
infection model, the susceptible population increased to its peak
but later dropped due to malaria endemicity in the population,
while the co-infection trajectories decreased and remained the
same.

4. Conclusion
This work presents a comprehensive mathematical analy-

sis of a model that incorporates the biological characteristics of
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Figure 6. Graph of eliminating the most positive sensitive
value which is HIV-malaria contact rate on total
population at different time

HIV and malaria diseases. The analysis confirms that the model
is well-posed, and the disease-free equilibrium for the model is
obtained. The basic reproduction number of the HIV-malaria co-
infection model is calculated, and the model stability is analyzed.
It is shown that the disease-free equilibrium of each model and
their co-infections are locally and globally asymptotically stable
when the basic reproduction number is less than unity or en-
demic otherwise. The sensitivity analysis of the basic reproduc-
tion number in Table 3 and Figure 6 indicates that controlling the
co-infection contact rate of HIV-malaria disease in the population
is crucial in controlling HIV-malaria co-infection.
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