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SUMMARY

MYC is dysregulated in >50% of cancers, but direct targeting of MYC has been clinically unsuccessful. Tar-
geting downstream MYC effector pathways represents an attractive alternative. MYC regulates alternative
mRNA splicing, but the mechanistic links between MYC and the splicing machinery in cancer remain under-
explored. Here, we identify a network of co-expressed splicing factors (SF-modules) in MYC-active breast
tumors. Of these, one is a pan-cancer SF-module correlating with MYC activity across 33 tumor types. In
mammary cell models, MYC activation leads to co-upregulation of pan-cancer module SFs and to changes
in >4,000 splicing events. In breast cancer organoids, co-overexpression of the pan-cancer SF-module
induces MYC-regulated splicing events and increases organoid size and invasiveness, while knockdown
decreases organoid size. Finally, we uncover a MYC-activity pan-cancer splicing signature correlating with
survival across tumor types. Our findings provide insight into the mechanisms of MYC-regulated splicing
and for the development of therapeutics for MYC-driven tumors.

INTRODUCTION

Alternative RNA splicing (AS) is a key step in gene expression

regulation, contributing to transcriptomic and proteomic diver-

sity by controlling exon inclusion in distinct transcript isoforms.

Disruption of AS in cancer, through mutation and/or altered

expression of splicing factors (SFs), affects cancer hallmarks.1

Mutations in spliceosome components are common in hemato-

logical malignancies, whereas solid tumors, including breast,

often exhibit changes in SF copy number and/or expression.2

SFs directly bind pre-mRNA targets and regulate AS in a concen-

tration-dependent manner,3 and SF expression changes as low

as 2-fold are linked with cancer.2,4 Therefore, defining the mech-

anisms of SF-level regulation in normal and cancer cells is crucial

for understanding SF-mediated transformation and the develop-

ment of splicing-targeted therapies.4,5

Several SFs are directly regulated by the oncogenic transcrip-

tion factor MYC.6–9 MYC dysregulation occurs in >50% of tu-

mors and is associated with poor clinical outcome10–12; yet

direct targeting of MYC has proven clinically difficult due to the

lack of a small-molecule binding site.13–15 Alternative ap-

proaches, including modulating MYC transcription, translation,

protein stability, or activity, show preclinical promise, but there

are no FDA-approved MYC-targeting therapies.12 Elucidating

the molecular mechanisms linking MYC with AS offers opportu-

nities to target the MYC effector pathway.

MYC is frequently upregulated in the aggressive and difficult-

to-treat basal-like and triple-negative breast cancer subtypes.16

In breast cancer models, MYC-induced upregulation of the indi-

vidual SFs SRSF1, TRA2b, and BUD31 is necessary for MYC-

driven tumorigenesis.6–8,17 Although disrupted SF expression

is often observed in human breast tumors, the full extent of SF

alterations and their consequences are only beginning to be un-

raveled. Altering the expression of a single SF can be sufficient to

promote breast tumor formation or metastasis7,18–21; however,

not all SFs overexpressed in breast tumors are sufficient, alone,

to drive oncogenesis in breast cancer models.7

AS of a given isoform results from positive and negative regu-

lation by multiple SFs.22 Thus, SFs may act together in tumori-

genesis or tumor maintenance. Indeed, alterations in multiple

SFs are often observed in the same tumor, yet most studies

investigate individual SFs.7,18,20,23–27 Further, previous studies

focused on a limited number of MYC-dependent tumor types

and did not investigate if MYC-regulated SFs are tumor type spe-

cific or shared. Therefore, although SF co-regulation has been

postulated to drive cancer progression,28,29 experimental

demonstration of SFs functioning as a coordinated network of

MYC effectors, and whether SFs have synergistic, cooperative,

or even antagonistic effects, is lacking.

Here, we implement a classifier to score MYC activity

and define an AS signature of MYC-active breast tumors. We

identify >150 MYC-regulated SFs co-expressed as modules.
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One pan-cancer module correlates with MYC activity across 33

tumor types, and its expression is controlled by MYC activation

in mammary cells. Co-overexpression of SFs from the pan-can-

cer module leads to increased cell invasiveness in breast cancer

models and induces MYC-regulated AS events, while SF knock-

down reduces breast cancer organoid size. Finally, we uncover a

pan-cancer AS signature of MYC-active tumors that correlates

with patient survival.

RESULTS

MYC-active human breast tumors display a distinct AS
signature
We first characterized the AS landscape in breast tumors with

high vs. low MYC activity using RNA-sequencing (RNA-seq)

data from 1,073 TCGA breast tumors (Table S1A).30,31 We eval-

uated MYC activity rather than mRNA expression because the

MYC protein requires binding partners to regulate transcrip-

tion,32 and its stability can be altered post-translationally.33

MYC mRNA expression was significantly higher in adjacent

normal tissue compared with breast tumors (Figure S1A), high-

lighting that MYC expression is not an adequate proxy for

MYC’s function. We adapted a rank-based scoring method34,

with each sample scored based on the expression of 200 known

MYC target genes35 (see STAR Methods). Samples with the

highest activity score had on average the highest expression of

MYC target genes, andMYC activity was higher in breast tumors

compared with adjacent normal tissues (Figure S1B).

We classified MYC activity across breast tumor subtypes.

Basal tumors, of which 77% are classified as triple negative,36

had the highest MYC activity (Figure S1C). High levels of MYC

protein andMYC-driven pathways in basal tumors vs. other sub-

types have been observed in other cohorts,37,38 further vali-

dating our classifier. We defined 78 MYC-active and 74 MYC-

inactive breast tumors as those with a MYC-activity Z score

of >1.5 and <�1.5, respectively (Figures 1A and S1D and

Table S1B). Of the MYC-active tumors, 72% were basal-like,

15% luminal B, 10% Her2+, and 3% luminal A subtype

(Figure S1E).

We characterized AS profiles in MYC-active vs. MYC-inactive

TCGA breast tumors using an in-house cloud-operated compu-

tational pipeline incorporating STAR for transcript assembly,39

StringTie for reference-guided transcriptome reconstruction to

identify novel AS isoforms,40 and rMATS for AS quantification41

(Figure S1F) (see STAR Methods). AS quantification at the event

level used both exon body and junction reads, deriving for each

AS event a percentage spliced in (PSI) value measuring reads

supporting exon inclusion vs. all reads.41 We identified 2,030 dif-

ferential AS events between MYC-active and MYC-inactive

breast tumors with at least 10% PSI change and false discovery

rate (FDR) < 0.05 (Figure 1B and Table S1C). Cassette alternative

(CA) exons were the most common AS event type, followed by

mutually exclusive exons (MXEs), retained introns (RIs), and

alternative 50 or 30 splice sites (A50/30SSs). Principal-component

analysis (PCA) of the top variable AS events clustered tumors

based onMYC activity (Figure S1G). These 2,030 AS events pro-

vide an AS signature that definesMYC-active tumors (Figure 1C).

Gene ontology of the spliced genes revealed an enrichment in

RNA splicing and processing, breast cancer, epithelial-to-

mesenchymal transition (EMT), and chemotaxis (Figures 1D

and 1E). We compared matched breast tumors and adjacent

normal tissues, identifying 1,287 differential AS events (Fig-

ure S1H and Table S1D), of which 346 overlapped with MYC-

active breast tumors (Figure S1I), accounting for 17% of MYC-

active AS events. Thus, a small subset of the AS events detected

in MYC-active breast tumors are associated with changes in AS

between normal and tumoral cell states, while others are more

likely associated with a more aggressive MYC-driven state.

Further, we identified 842 differential AS events between basal

and non-basal breast tumors (Figure S1J and Table S1E), of

which 499 overlapped with MYC-active breast tumors (Fig-

ure S1K), accounting for 25% of MYC-active AS events. In addi-

tion, comparing basal with non-basal MYC-active tumors re-

vealed 672 AS events (Figure S1L and Table S1F), of which

341 overlapped with MYC-active breast tumors (Figure S1M),

accounting for 17% of MYC-active AS events.

MYC-active tumors exhibit AS changes in known cancer

genes, such as skipping of a CA exon in the HRAS oncogene

(Figure 1F). This AS event produces a longer HRAS p21 tumori-

genic isoform instead of the truncated HRAS p19 isoform, which

may act as a tumor suppressor.42–44 This shift from p19 to p21

may contribute to MYC oncogenicity and is associated with

MYC expression in prostate cancer.45 Another AS event was de-

tected in BAG6, which is involved in apoptosis and ubiquitin-

mediated metabolism.46 MYC-active tumors display increased

skipping of exon 24 (Figure 1F) leading to a BAG6 isoform that

lacks the protein domain required to keep newly synthesized

proteins unfolded and protect cells frommisfolded protein accu-

mulation.46 Other spliced genes are involved in cellular organiza-

tion (EHBP1), transcriptional regulation or chromatin remodeling

(NCOR1, KAT2A), membrane trafficking and cell survival

(RAB25), and RNA processing (PUM2, ARGLU1, NXF1) (Fig-

ure 1F). While some AS events are predicted to disrupt exons en-

coding known protein domains leading to protein isoforms with

potentially distinct biological functions (HRAS, BAG6, NCOR1,

PUM2, KAT2A), others introduce a premature termination codon

and are predicted to decrease protein levels (RAB25, ARGLU1,

NXF1). Some AS events do not disrupt the reading frame or

Figure 1. MYC-active breast tumors exhibit a unique AS signature

(A) TCGA breast tumors were classified by MYC activity, calculated using MYC target expression. MYC-active and MYC-inactive tumors were defined by a Z

score >1.5 and <�1.5, respectively.

(B) AS events in MYC-active vs. MYC-inactive breast tumors (DPSI > |10%|, FDR < 0.05).

(C) Hierarchical clustering of AS events in MYC-active and MYC-inactive breast tumors. Rows represent PSI normalized across samples per AS event.

(D and E) Gene ontology analysis using GO gene sets (D) and MSigDB signatures (E) for MYC-active spliced genes.

(F) PSI for AS events in MYC-active vs. MYC-inactive breast tumors (median ± interquartile range; t test, ****p < 0.0001, ***p < 0.001). Gene name and event types

are indicated. See also Figure S1 and Table S1.
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any known domain (EHBP1), and therefore their functional roles

are more challenging to predict.

SF co-expressionmodules correlatewithMYCactivity in
breast tumors
To identify SFs regulating the above AS events, we performed

differential gene expression analysis in MYC-active vs. MYC-

inactive TCGA breast tumors and looked for changes in SF

levels, using a list of 334 RNA binding proteins (RBPs) with an an-

notated role in AS.47–54 We identified 140 upregulated and 23

downregulated SFs in MYC-active breast tumors (Figure 2A

and Table S2A). This represents a large fraction of the >300

known SFs,47–49,54 highlighting MYC’s role as a regulator of

AS in cancer. Only 56 of the SFs differentially expressed in

MYC-active breast tumors were also differentially expressed in

breast tumors vs. adjacent matched normal tissue (Tables S2B

and S2C).

To define whether SFs function as a coordinated network

regulated by MYC, we performed weighted gene correlation

network analysis (WGCNA), which uses hierarchical clustering

and co-expression networks to identify modules of co-ex-

pressed genes.58,59 WGCNA identified 18 groups of co-ex-

pressed splicing factors (SF-modules), ranging in size from 5 to

26 genes, in TCGA breast tumors (Figures 2B and 2C and

Table S2D). Modules are generated using expression profiles

across all samples, and therefore genes in different modules

are less correlated than thosewithinmodules. For each SF-mod-

ule we designated ‘‘hub’’ genes based on module membership

correlation, a parameter of similarity in expression of a gene

compared with the others in the module. All but modules 17

and 18 were more highly expressed in MYC-active tumors (Fig-

ure S2A). We next evaluated the correlation between SF-module

expression and MYC activity. Expression of SF-modules 1–6

was positively correlated with MYC activity, while module 18

was negatively correlated (Figure 2B). The first three SF-modules

displayed stronger correlation with MYC activity than any of four

SFs directly regulated by MYC, i.e., TRA2b, SRSF1, HNRNPA1,

and PRMT56–9 (Tables S2D and S2F).

To assess whether SF-module genes are direct targets of

MYC, we mapped MYC chromatin immunoprecipitation

sequencing (ChIP-seq) binding peaks in their promoter regions

using ENCODE data from human mammary MCF-10A

cells.47,55,56 More than 70% of SFs in modules 1–5 and 18 dis-

played changes in gene expression in MYC-active tumors and

contained MYC binding peaks, suggesting they are direct tar-

gets of MYC (Figure 2C and Table S2D).

We next assessed the preservation and correlation of SF-

module expression with MYC activity in 2,969 tumors from the

Sweden Cancerome Analysis Network Breast (SCAN-B)

cohort.60 Validating the TCGA results, SCAN-B basal-like tumors

had higher MYC activity scores than less aggressive subtypes

(Figure S2B). We then used NetRep to perform permutation tests

to evaluate the preservation of TCGA co-expression modules in

the SCAN-B cohort57 (see STAR methods). All but one of the 18

TCGA SF-modules were preserved across SCAN-B tumors. Of

these, 10 TCGA modules strongly correlated with MYC activity

in the SCAN-B cohort (Figures S2C and S2D). In particular, SF-

modules 1–6 were preserved and correlated with MYC activity

in both cohorts (Figures 2D and S2E and Table S2E), suggesting

MYC regulates their expression in breast cancer. We also

repeated WGCNA analysis on SCAN-B tumors, revealing 23

SF-co-expression modules, ranging in size from 5 to 41 genes

(Figure S2F). Of these, 11 SCAN-Bmodules positively correlated

with MYC activity (r > 0.5) (Figure S2F). We found shared genes

between 15 SCAN-B SF-modules and TCGA SF-modules, and

several modules specific to either TCGA or SCAN-B (Fig-

ure S2G). Importantly, SRSF2, SRSF3, and SRSF7, the hub

genes of TCGA SF-module 3, were found in SCAN-B module 1

(Figure S2G), demonstrating their co-expression across multiple

cohorts.

In sum, MYC activity correlates with the expression of SF-

modules, the majority of which are directly bound by MYC, and

might regulate AS in MYC-active breast tumors.

SF-module pan-cancer preservation and correlation
with MYC activity
We next assessed whether these MYC-regulated SF-modules

were preserved in other TCGA tumor types, focusing on

TCGA-derived SF-modules 1–6, which strongly correlated with

MYC activity in both breast cancer cohorts. Themost preserved,

SF-module 3, was found across all 32 tested tumor types,

and the least preserved, SF-module 6, in 23 other cancers

(Figures 2D and S2H). All six SF-modules maintained a strong

correlation with MYC activity in tumor types in which they were

significantly preserved (Figure 2E), suggesting MYC regulates

these modules across tumor types. The hub genes of pan-can-

cer SF-module 3, SRSF2, SRSF3, and SRSF7, are members of

the SR protein family, a group of SFs often dysregulated in tu-

mors.2,7,19,61–65 These SFs are each significantly upregulated in

MYC-active tumors in both TCGA and SCAN-B breast cohorts

(Figures 2F and S2I) and contain ChIP-seq MYC binding peaks

(Table S2B).

MYCactivation inducesASchanges andupregulates the
pan-cancer SF-module in mammary cells
We next aimed to experimentally validate that the SF-modules

preserved across cancers and AS events detected in TCGA tu-

mors are regulated by MYC. To study the effects of MYC activa-

tion in a controlled inducible model, we used non-transformed

human mammary epithelial MCF-10A cells expressing MYC

fused to a portion of the estrogen receptor (MYC-ER).66,67 Addi-

tion of 4-hydroxytamoxifen (4-OHT) promotes translocation of

the MYC-ER protein into the nucleus and induces transcription

of MYC target genes. We assessed MYC activation by

measuring the protein levels of the MYC targets SRSF1 and

TRA2b over time (Figures S3A and S3B).7,18 Based on these re-

sults, we performed RNA-seq on 3D-grown MCF-10A MYC-ER

cells at 0, 8, and 24 h after MYC activation. To control for

4-OHT-induced effects, cells lacking the MYC-ER protein were

treated with 4-OHT. Based on gene expression, samples clus-

tered by MYC-activation time point, whereas 4-OHT had minor

effects in control cells (Figure S3C). MYC activation was

confirmed using the expression of known MYC target genes35

(Figure S3D).

MYC activation altered the expression of specific SFs in MCF-

10A cells, including 138 and 119 upregulated SFs at 8 and 24 h,
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respectively, and 28 and 21 downregulated SFs (Figures 3A and

3B, Tables S3A and S3B). One hundred twenty-one SFs were

differentially expressed in the same direction at 8 and 24 h (Fig-

ure S3E). Eighty-seven SFs were differentially expressed in

MYC-active MCF-10A cells and tumors in the same direction

(Figure 3C). At least 50% of genes in TCGA SF modules 1–6,

the modules most associated with MYC activity, were upregu-

lated in MYC-active MCF-10A cells, and the majority contained

MYC ChIP-seq promoter peaks in MCF-10A cells (Figure 3D).

Conversely, <50% of genes in SF-modules 12–17, the modules

with weaker correlation with MYC activity, were upregulated in

MYC-active MCF-10A cells. Module 18, which was anti-corre-

lated with MYC activity in TCGA tumors, had 65% genes down-

regulated. Thus, we saw a remarkable overlap in SFs associated

Figure 2. SF co-expression modules correlate with MYC activity in breast tumors and across multiple cancer types

(A) SF differential expression in MYC-active vs. MYC-inactive TCGA breast tumors (log2FoldChange > |0.5|; FDR < 0.05).

(B) Correlation of SF-module expression with MYC activity in TCGA breast tumors.

(C) Gene number per SF-module, including differentially expressed (DE) genes in MYC-active tumors and genes with MYC promoter binding peaks in MCF-10A

ChIP-seq data.23,47,55,56

(D) Preservation of the top six breast SF-modules across TCGA tumor types using NetRep.57

(E) Correlation co-efficient of the top six breast SF-modules with MYC activity across TCGA tumor types.

(F) Expression of pan-cancer SF-module hub genes inMYC-active vs. MYC-inactive TCGA breast tumors (median ± interquartile range; t test, ****p < 0.0001). See

also Figure S2 and Table S2.
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with MYC activity between our in vitro model and TCGA breast

tumors. Given the pan-cancer preservation and correlation of

SF-module 3 with MYC activity, we further investigated whether

these SFs are directly induced by MYC and regulate AS in a

cooperativemanner. Pan-cancer SF-module 3 hub genes exhibit

MYC ChIP-seq promoter binding peaks (Figure S3F and

Table S2B), and their expression increases after MYC activation

in MCF-10A cells (Figure 3E).

We performed differential AS analysis comparing MYC-active

(8 or 24 h) with inactive (0 h) MCF-10A MYC-ER cells. We iden-

tified >9,000 AS events after 8 h of MYC activation and >8,000

AS events after 24 h, with R10% DPSI and FDR < 0.05 cutoffs

(Figure 3F, Tables S3C and S3D). Approximately 40% of the

AS events detected at 8 h were detected at 24 h, the majority

of which changed in the same direction (i.e., included or

excluded) (Figures 3G and S3G, Tables S3E and S3H). Most

MYC-induced AS events were CA events, followed by RI and

MXE. Spliced genes at 8 or 24 h of MYC activation were enriched

in RNA processing and cancer-related pathways (Figures S3H–

S3K). Finally, 706 AS events were detected in both MYC-active

MCF-10A cells at 8 or 24 h and MYC-active breast tumors

(Tables S3F–S3H), including 278 events detected in all three

datasets, of which >80% changed in the same direction

(Figure 3H).

We validated by RT-PCR 17 AS events in MCF-10A MYC-ER

cells (Figures 3I and S3L) affecting genes involved in cancer-

related processes, e.g., cellular organization (EHBP1), transcrip-

tional regulation or chromatin remodeling (NCOR1, KAT2A), traf-

ficking and survival (RAB25, TEPSIN), RNA processing (PUM2,

ARGLU1, NXF1), signal transduction (APLP2, FAM126A,

HPS1), metabolism (BTN2A1, LSR), cell cycle (CENPX), or auto-

phagy (WDR45). Of these, nine were also detected in TCGA

MYC-active breast tumors (Figure 1F), including skipping of

HRAS CA exon.

Pan-cancer SF-module hub genes control AS of MYC-
regulated exons
We next determined which MYC-regulated AS events detected

in both MYC-active MCF-10A cells and TCGA breast tumors

are directly regulated by pan-cancer SF-module hub genes

SRSF2, SRSF3, and SRSF7. Although SR proteins evolved

from a common ancestor, exhibit motif similarities, and

share some targets, they also regulate distinct sets of AS

events.3,7,49,68 Using RBPmap,69 we mapped known SRSF2,

SRSF3, and SRSF7 bindingmotifs23,50,69–72 (see STARmethods)

in CA exons spliced at 8 or 24 h in MYC-active MCF10A cells.

SRSF2 or SRSF3 motifs within the CA exon correlated with an

increased probability of exon inclusion or skipping, in a posi-

tion-dependent manner. SRSF7 motifs in the upstream and

downstream introns within 50 nt of the CA exon, but not in the

CA itself, correlated with an increased probability of exon inclu-

sion or skipping, in a position-dependent manner (Figures S3M

and S3N).

We thenmapped SRSF2, SRSF3, and SRSF7 bindingmotifs in

six of the validated MYC-regulated AS events, revealing that all

exhibit motifs in either the CA exon or the surrounding introns

(Figures 4A–4C and S4A). We found evidence of overlapping

and non-overlapping motifs for each event, suggesting that

SRSF2, SRSF3, and SRSF7 regulate AS of these exons by bind-

ing simultaneously, by competing at overlapping motifs, or by a

combination of both. To experimentally define cooperative or

antagonistic effects, we co-transfected one, two, or all three

SF-encoding plasmids (Figures 4D–4F, S4B, and S4C). We un-

covered AS events regulated in the same direction by multiple

SFs, e.g., in HRAS. Expression of SRSF2 alone decreased

HRAS exon inclusion, while SRSF3 had a milder effect, and

SRSF7 had no effect vs. control (Figure 4D). Co-expression of

SRSF2 together with SRFS7 promotedmore skipping than either

SF alone, while SRSF2 and SRSF3 together had no stronger ef-

fect than either SF alone. Co-expression of all three SFs led to

the strongest HRAS exon skipping. Conversely, SR proteins

can also regulate AS events in opposite directions, e.g., in

BAG6 and EHBP1 (Figures 4E and 4F). While SRSF3 expression

decreased BAG6 exon inclusion, SRSF2 or SRSF7 increased in-

clusion vs. control (Figure 4E). Co-expression of SRSF3 and

SRSF7 decreased exon skipping vs. SRSF3 alone. In the case

of EHBP1, exon inclusion was positively regulated by SRSF7

and negatively by SRSF3, while SRSF2 had no effect vs. control

(Figure 4F). Co-expression of SRSF3 and SRFS7 decreased

exon inclusion vs. SRSF3 alone (Figure 4F). These results

demonstrate that SR proteins can cooperate to regulate specific

AS events, e.g., SRSF2 and SRSF3 in HRAS, or compete, e.g.,

SRSF3 and SRSF7 in BAG6 and EHBP1.

We mapped cis elements regulating HRAS AS using CRISPR-

guided artificial SFs (CASFx), which leverage the RNA-targeting

activity of catalytically inactive RfxCas13d (dCasRx) fused to an

arginine/serine rich (RS) domain, which confers AS activity73,74

(Figures S4D and S4E). We designed overlapping 22-nt-long

guide RNAs (gRNAs) that target CASFx to HRAS exon 5 and

the surrounding introns (Figure S4F). First, using a catalytically

Figure 3. MYC activation induces changes in SF expression and AS in human mammary epithelial cells

(A and B) SF differential expression in MCF-10A MYC-ER cells at 8 h (A) or 24 h (B) vs. 0 h after MYC activation (n = 3; log2FoldChange > |0.5|; FDR < 0.05).

(C) Differentially expressed (DE) SFs shared across MYC-active MCF-10A cells and TCGA breast tumors (log2FoldChange > |0.5|; FDR < 0.05).

(D) Gene number per SF-module inMYC-activeMCF-10A, including DE genes and genes withMYC promoter binding peaks inMCF-10AChIP-seq data.23,47,55,56

(E) mRNA expression (qPCR) of pan-cancer SF-module hub genes in MYC-active MCF-10A cells, normalized to 0 h and GAPDH (n = 3; mean ± SD; two-way

ANOVA; ***p < 0.001, ****p < 0.0001).

(F) AS events in MYC-active MCF-10A cells (n = 3; |DPSI| R 10%; FDR < 0.05).

(G) Hierarchical clustering of AS events in MYC-active MCF-10A cells (n = 3/condition; |DPSI| R 10%; FDR < 0.05). Rows represent PSI normalized across

samples per AS event.

(H) Overlapping AS events in MYC-active MCF-10A cells and TCGA breast tumors (|DPSI| R 10%; FDR < 0.05).

(I) RT-PCR validation of MYC-regulated AS events in MYC-active MCF-10A cells. Representative gels show isoform structures with AS quantified as PSI from

RT-PCR (n = 3; mean ± SD; t test, *p < 0.05, **p < 0.01, ****p < 0.0001, n.s., not significant). Gene names and event types are indicated. See also Figure S3 and

Table S3.
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inactive dCasRx without an RS domain, we demonstrated that

exon 5 and upstream intron 4 contain regulatory elements that,

when blocked, increased exon skipping (gRNAs i2–i4, e1–e4,

and i6), whereas the downstream intron 5 contains regulatory

elements that, when blocked, increased inclusion (gRNAs i6,

i10) (Figures S4F and S4G). Using dCASRx-SRSF2, SRSF3, or

SRSF7, we compared their positional effects within the HRAS

exon and surrounding introns. Binding of SRSF2 at position

e3, e6, or i6 increased exon skipping vs. dCasRx alone

(Figures S4F and S4G). Conversely, binding of SRSF3 at position

e1 or e2 decreased exon skipping, whereas binding in the down-

stream intron (gRNAs i5, i6, i7, i10) increased skipping

(Figures S4F and S4G). Finally, binding of SRSF7 within the CA

exon (gRNAs e3, e6) has similar effects on skipping compared

with SRSF2, whereas its binding within the downstream intron

(gRNAs i5, i6, i7) has similar effects compared with SRSF3

(Figures S4F and S4G). In sum, our analysis uncovers splicing

cis regulatory elements within the HRAS exon that act as nega-

tive regulators, and elements in the downstream intron that act

as positive regulators, revealing distinct positional effects for

SRSF2, SRSF3, and SRSF7.

Finally, we determined if MYC-regulated AS events are

controlled by MYC-regulated pan-cancer SF-module 3 in estab-

lished breast cancer cells. Using RNA-seq data from the Cancer

Cell Line Encyclopedia (CCLE),75 we ranked breast cancer cell

lines by MYC activity and selected MDA-MB231 cells as a repre-

sentative MYC-active triple-negative breast cancer cell line (Fig-

ure S5A). We generated stable cell lines expressing a tetracy-

cline-regulated transactivator (rTTA3), along with doxycycline

(DOX)-inducible shRNAs targeting each of the SF-module 3

Figure 4. MYC-regulated AS events display binding motifs for and are regulated by pan-cancer SF-module hub genes

(A–C) Predicted binding motifs for SRSF2, SRSF3, and SRSF7 in spliced sequences (boxed) and surrounding introns (100 bp) of MYC-regulated AS events.

(D–F) MYC-regulated AS events in HEK293 cells transfected with the coding sequence of one, two, or three SFs, or control plasmids, measured by RT-PCR.

Representative gels show isoform structures with AS quantified as PSI from RT-PCR (n = 3; mean ± SD; t test, *p < 0.05, **p < 0.001, ***p < 0.0001). See also

Figures S4 and S5.
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hub genes (Figures S5B and S5C). We evaluated the effects of

SF knockdown (KD) in MDA-MB231 cells on AS of MYC targets

previously identified in breast tumors. KD of SRSF3, but not

SRSF2 or SRSF7, increased BAG6 exon inclusion (Figure S5D),

thus mimicking the effects of lowMYC activity detected in TCGA

tumors and MCF-10A cells and promoting the reverse pattern

observed in SRSF3-overexpressing cells. Reduced EHBP1

exon inclusion, as detected in MYC-inactive cells and tumors,

was triggered by SRSF7 KD, while SRSF3 KD increased exon in-

clusion of EHBP1 (Figure S5D). SRSF2 or SRSF3 KD decreased

NCOR1 exon inclusion, while SRSF7 KD promoted exon inclu-

sion (Figure S5D). Finally, SRSF2 or SRSF7 KD promoted

PUM2 exon inclusion, while SRSF3 KD promoted skipping (Fig-

ure S5D). None of the KDs significantly affected HRAS splicing,

which at baseline is mostly skipped in these established cancer

cells (Figure S5D).

Together, our data from SF overexpression and KD suggest

that MYC-associated AS events are regulated by pan-cancer

SF-module hub genes. Their effects on targets are dependent

on the expression level of individual SFs as well as their coordi-

nated ability to regulate AS.

Pan-cancer SF-module hub genes control breast cancer
organoid growth and invasiveness
We next evaluated the effect of SF KD in 3D-grownMDA-MB231

cells. KD of either SRSF3 or SRSF7 significantly decreased both

the size of organoids and the presence of invasive cellular pro-

jections (Figure 5A), with the shRNA targeting SRSF3 exhibiting

the strongest phenotype. In addition, both SRSF3 and SRSF7

KD slightly decreased cell proliferation, while SRSF2 had no ef-

fect (Figure S5E). SRSF2 KD had minimal effects on measured

cellular phenotypes, possibly due to a milder KD efficiency (Fig-

ure S5B). Overall, KD of either SRSF3 or SRSF7mimicked the ef-

fect of MYC KD (Figures 5A and S5E). Validating these findings

using a second shRNA per target revealed an shRNA dose-

dependent effect on organoid size (Figures S5B, S5C, and S5F).

We next assayed the functional consequences of overex-

pressing all three hub SFs together in a representative MYC-

inactive breast cancer cell line, HCC1806 (Figure S5A). We over-

expressed: (1) the coding sequences for all three SFs, i.e.,

SRSF2, SRSF3, and SRSF7 (33SR); (2) the corresponding three

empty vector controls (33CTL); or (3) the coding sequence of

MYC (MYC-OE). The 33SRcell line exhibitedR1.5-fold increase

in expression of each of the SF transcripts (Figure S6A), which is

within the levels of SF overexpression in MYC-active breast

tumors (Figures 2F and S2I, Table S2A) and MCF-10A cells

(Figure 3E).

We characterized the phenotypes of 33SR cells in 2D and 3D

cultures. Co-overexpression of SRSF2, SRSF3, and SRSF7 did

not confer any proliferative advantage to HCC1806 cells in 2D

(Figure S6B). In fact, 33SR cells grew slower than 33CTL, which

could reflect cell stress from overexpressing three SFs. Howev-

er, 33SR and MYC-OE were more invasive than 33CTL cells in

cell migration assays in 2D (Figure S6C). The 33SR andMYC-OE

cells exhibited changes in cell morphology, including increased

appearance of actin-rich filopodia (Figure S6D), consistent with

increased migration. In 3D growth assays, 33SR and MYC-OE

cells formed larger and less round organoids vs. 33CTRL (Fig-

ure 5B). Since the 33SR HCC1806 cell line was generated using

successive infections of plasmids, we evaluated the effects of

each sequential SF and found that each increased the invasive

phenotype compared with control, suggesting that SRSF2,

SRSF3, and SRSF7 cooperate to increase invasion of cancer

organoids (Figures S6E and S6F). Finally, in 3D invasion assays,

33SR HCC1806 formed more invasive structures vs. 33CTL

organoids (Figure S6G).

To evaluate how each SF-module hub gene contributes to

MYC-induced phenotypes, we generated MYC-OE HCC1806

cells that stably express rTTA3 along with DOX-inducible

shRNAs targeting the two SFs that affected cellular phenotypes

in MDA-MB231 cells (Figure S6H). KD of either SRSF3 or SRSF7

led to an�40% decrease in the size of MYC-OE HCC1806 orga-

noids (Figure 5C). Despite a significant but modest (<10%) in-

crease in organoid roundness, KD of either SRSF3 or SRSF7

alone was not sufficient to revert the organoids to the same

round morphology as MYC-inactive parental HCC1806 (Fig-

ure 5B). In sum, our findings demonstrate that pan-cancer

SF-module hub genes are sufficient to cooperatively promote

cell invasion in MYC-inactive cells and required for maintenance

of invasiveness in MYC-active cells.

Co-expression of pan-cancer SF-module hub genes
leads to AS changes in breast cancer cells
We performed RNA-seq and differential AS analysis on 33SR,

33CTL, and MYC-OE HCC1806 cells (Figure S7A). In concor-

dance with increased cell migration and invasion, 33SR and

MYC-OE cells increased expression of the mesenchymal

marker vimentin and EMT-inducing transcription factors

TWIST1, TWIST2, and SNAI1 (Figures S7B–S7D). At the AS

level, we identified 5,696 AS events in 33SR HCC1806 cells,

and 7,058 in MYC-OE, vs. 33CTL (Figures 6A and 6B and

Tables S4A–S4B). We found that 1,353 AS events were differ-

entially spliced in both 33SR-OE and MYC-OE cells, of which

94% (p < 2.2 3 10�16) changed in the same direction,

Figure 5. Pan-cancer SF-module hub genes control breast cancer organoid size and invasiveness

(A) Representative images of 3D-grown MDA-MB231-rTTA3 cells expressing DOX-inducible shRNA targeting SRSF2, SRSF3, SRSF7, MYC, or control (CTL)

stained with calcein (scale bars, 1 mm) and total organoid area quantified at day 9 (n = 3, 25 fields/replicate; mean ± SD; t test, *p < 0.05, **p < 0.01, ***p < 0.0001;

n.s., not significant). Insets show a zoomed-in view of representative organoids morphology.

(B) Representative images of 3D-grown 33CTL, 33SR, and MYC-OE HCC1806 organoids at days 5 and 9 stained with calcein (scale bars, 500 mm) and total

organoid area (n = 3, 15 fields/replicate; mean ± SD; t test, *p < 0.05, ***p < 0.001) and roundness (n = 3, 15 fields/replicate; median; t test, **p < 0.01,

****p < 0.0001) quantified at day 9.

(C) Representative images of 3D-grown MYC-OE-rTTA3 HCC1806 organoids expressing DOX-inducible shRNA targeting SRSF3, SRSF7, or CTL stained with

calcein (scale bars, 500 mm), and total organoid area (n = 2–3, 25 fields/replicate; mean ± SD; t test, *p < 0.05, ***p < 0.001; n.s., not significant) and roundness

(n = 2–3, 25 fields/replicate; median; t test, *p < 0.05, ****p < 0.0001) quantified at day 9. See also Figures S5 and S6.
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representing 24% of AS events in 33SR-OE and 19% in MYC-

OE cells (Figures 6C and 6F, Tables S4C and S4L). In addition,

1,861 differentially spliced genes were shared between

33SR-OE and MYC-OE cells (p < 2.2 3 10�16), representing

60% of spliced genes in 33SR-OE and 50% in MYC-OE cells

(Table S4M). These overlaps suggest that SRSF2, SRSF3, and

SRSF7 regulate a significant subset of AS events downstream

of MYC in HCC1806 cells. Spliced genes were enriched in

similar cancer-associated pathways in 33SR and MYC-OE

(Figures 6D, 6E, S7E, and S7F). We validated five AS events

by RT-PCR (Figure S7I), including skipping of exon 11a in

ENAH, which regulates actin polymerization and cell motility.

Decreased inclusion of exon 11a is detected in HCC1806

33SR and MYC-OE and has been associated with mesen-

chymal markers and invasion.76 We also validated an AS

event in PUM2 (Figure S7I), additionally detected in MYC-

active MCF-10A cells and TCGA breast tumors. PUM2 is an

RBP implicated in stemness of breast cancer cells and migra-

tion in glioblastoma.77,78

We investigated the overlap of AS events between 33SR or

MYC-OE HCC1806 cells and MYC-active breast TCGA tumors.

One hundred thirty-one differential AS events were detected

in both 33SR cells and MYC-active breast tumors

(p < 2.2 3 10�16), 73% of which changed in the same direction

(Figure 6F, Tables S4D and S4L). In comparison, 183 AS events

were detected in both MYC-OE cells and MYC-active breast tu-

mors (p = 4.43 10�16), of which 58%changed in the same direc-

tion (Figure 6F, Tables S4E andS4L). Forty AS eventswere differ-

entially spliced in all three datasets (Figures 6F and S7G and

Table S4F), suggesting that MYC-regulated AS events detected

in breast tumors and cell lines are in part controlled by changes in

SRSF2, SRSF3, and SRSF7 levels.

Figure 6. Overexpression of pan-cancer SF-module hub genes together leads to changes in MYC-regulated AS events

(A and B) AS events in 33SR (A) or MYC-OE (B) vs. 33CTL HCC1806 cells (n = 3/condition; DPSI R |10%|; FDR < 0.05).

(C) Overlapping AS events in 33SR and MYC-OE vs. 33CTL HCC1806 cells.

(D and E) Gene ontology analysis using MSigDB signatures for spliced genes in 33SR (D) and MYC-OE (E) HCC1806 cells.

(F–H) Overlapping AS events in 33SR cells andMYC-OE HCC1806 cells and in MYC-active TCGA breast tumors (F) or MYC-active MCF-10A cells (G and H). See

also Figures S7 and S8 and Table S4.
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We assessed AS event overlap between HCC1806 and MYC-

active MCF-10A cells, identifying 592 AS events shared between

33SR HCC1806 and MYC-ER 8 h MCF-10A cells, of which 38%

changed in the same direction (p = 2.9 3 10�1) (Figure 6G,

Tables S4G and S4L), and 683 shared between 33SR

HCC1806 and MYC-ER 24 h MCF-10A cells, of which 30%

changed in the same direction (p = 2.2 3 10�1) (Figure 6H,

Tables S4J and S4L). In comparison, 737 AS events overlapped

betweenMYC-OE HCC1806 andMYC-ER 8 hMCF-10A cells, of

which 60% changed in the same direction (p < 2.23 10�16) (Fig-

ure 6G, Tables S4H and S4L), and 727 overlapped between

MYC-OE HCC1806 and MYC-ER 24 h MCF-10A cells, of which

64% changed in the same direction (p < 2.23 10�16) (Figure 6H,

Tables S4H and S4L). One hundred thirty-four AS events were

common between all three datasets (Figures 6G and S7H and

Table S4I), suggesting overlapping roles for MYC in non-trans-

formed and cancer mammary cells.

To elucidate howSR proteins act individually on AS regulation,

we performed RNA-seq and AS analysis on HCC1806 cells ex-

pressing SRSF2, SRSF3, or SRSF7 alone, uncovering >5,000

AS events regulated by each (Figure S8A and Tables S4N–

S4P). We compared cells expressing each SF with one another

and with 33SR cells. We found that 1,396 AS events from

SRSF3-OE cells were shared in the same direction with

SRSF2-OE (p < 2.2 3 10�16), and 1,075 with SRSF7-OE

(p < 2.2 3 10�16), and 1,200 AS events were shared between

SRSF3- and SRSF7-OE (p < 2.2 3 10�16) (Table S4Q). In

addition, 1,636 spliced genes overlapped between SRSF2-

and SRSF3-OE (p < 2.2 3 10�16), 1,571 between SRSF2- and

SRSF7-OE (p < 2.2 3 10�16), and 1,685 between SRSF2- and

SRSF7-OE (p < 2.23 10�16) (Table S4R). A number of AS events

regulated in the same direction by 33SR were found in SRSF2-

OE (360, p < 2.23 10�16), SRSF3-OE (421, p < 2.23 10�16), and

SRSF7-OE (227, p < 2.23 10�16) (Table S4Q). Overlaps at the AS

event level were 4%–7%, and 43%–53% at the spliced gene

level (Table S4R).

To determine how these SFs act alone or together, we map-

ped their binding motifs in CA exons included or skipped in

SRSF2-OE, SRSF3-OE, SRSF7-OE, 33SR, or MYC-OE (Fig-

ure S8E). SRSF2 or SRSF3 motifs within the CA exon, and

SRSF7 motifs in the upstream and downstream introns but not

in the CA exon itself, correlated with an increased probability

of exon inclusion or skipping, in a position-dependent manner

across all conditions (Figure S8E). These findings suggest that

SRSF2, SRSF3, and SRSF7 regulate a significant subset of

shared AS events or AS events in a set of unique genes down-

stream of MYC.

Pan-cancer AS signature of MYC activity
We investigated if MYC-regulated AS events are limited to breast

tumors, profiling AS events correlated with MYC activity across

32 additional TCGA tumor types. We quantified AS events be-

tween MYC-active and MYC-inactive tumors per tumor type

(Table S5), ranging from 218 AS events for uveal melanoma to

2,549 for testicular germ cell tumors (Figure 7A and Table S5).

We first focused on AS events associated with MYC activity in

breast tumors and validated in our cell models. For example,

skipping of HRAS exon 5 was significant (FDR < 0.05) across

25 tumor types but exhibited varying DPSI magnitudes

(Figure 7B).

We filtered for shared AS events detected in R25% of all

MYC-active tumors at |DPSI| R 10% and FDR < 0.05 cutoffs

(Figure S9A). These spliced genes were enriched in pathways

involved in RNA splicing and processing (Figure S9B). To further

identify AS changes shared by most tumors, we focused on 23

tumor types that had RNA-seq data for R15 samples in both

MYC-active and MYC-inactive groups. We identified 34 pan-

cancer AS events differentially spliced in R75% of MYC-active

tumors that were enriched for decreased RI events (Figure 7C).

Spliced genes included cancer-associated kinases (MKNK2),

genes implicated in RNA processing (ARGLU1, CIRBP,

SNRNP70, NXF1, DDX17, RSRP1, HNRNPH1, THOC1),

transcriptional regulation or chromatin remodeling (ARGLU1,

TAZ, INO80E, HMGN1, KAT2A, TAF1D, ZGPAT), translational

regulation (EEF1D), autophagy (WDR45), or metabolism

(HEXD, SOD2, ORMDL1) (Figures 7C and S9C). Pan-cancer AS

events in ARGLU1, NXF1, KAT2A, and WDR45 were validated

by RT-PCR in MYC-active MCF-10A cells (Figures 3I and S3L).

All 34 pan-cancer AS events contained binding motifs for

SRSF2,SRSF3, and/or SRSF7 (Figure 7D), with themajority con-

taining motifs for all three.

Finally, patients with the pan-cancer AS signature had worse

overall survival79 compared with patients without the signature

across multiple tumor types (Figure 7E and Table S5). These

34 AS events represent a pan-cancer MYC-active signature of

potential clinical utility and indicate shared splicing regulatory

networks across tumor types.

DISCUSSION

Previous studies have shown that MYC regulates individual SFs

that cooperate with MYC to promote tumorigenesis,6,8,18 and

that MYC is associated with expression of certain CA or RI

events in prostate, lymphoma, and breast cancers.8,17,45 How-

ever, a global understanding of how, and to what extent, MYC

regulates AS has been missing. This study provides a compre-

hensive view of MYC-regulated AS across 33 tumor types.

We identified 18 SF co-expression modules in two indepen-

dent breast cancer cohorts, six of which highly correlated with

MYC activity and were preserved in other tumor types. We vali-

dated MYC-induced co-expression of SFs in multiple cell

models. We demonstrated that SFs SRSF2, SRSF3, and

SRSF7 are co-expressed hub genes of a pan-cancer module in

MYC-active human cancers. This pan-cancer SF-module

controls cell invasion and induces expression of a subset of

MYC-regulated spliced isoforms, including some implicated in in-

vasion (e.g., ENAH, PUM2).76,77 Our findings suggest that coordi-

nated expression of SRSF2, SRSF3, and SRSF7 plays a role in

MYC-driven tumorigenesis. SRSF2, SRSF3, and SRSF7 have

been implicated in cancer individually and are upregulated in

several tumor types.2,7 SRSF2 is commonly mutated in hemato-

poietic malignancies and is upregulated in breast and liver can-

cers.7,61 SRSF3 is a putative oncogene upregulated in breast,

brain, ovarian, stomach, bladder, colon, and liver cancers.2,19,62

SRSF7 has been implicated in lung and colon cancer.2,64,65 Over-

expression of SRSF2 or SRSF3 individually in non-transformed
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mammary epithelial cells did not result in an oncogenic pheno-

type,7 suggesting their co-expression is required to promote

tumor formation and maintenance.

Several SFs previously associated with MYC clustered in SF-

modules. BUD31 and hnRNPA19,17 were found in SF-modules 4

and 5, respectively, suggesting these modules are important for

MYC oncogenesis. PRMT5, a known MYC target, was not found

in breast SF-modules, suggesting its role may be specific to lym-

phomas.8 Several SF-modules were highly preserved only in

certain tumor types, suggesting tumor-specific biological roles.

Module preservation per se does not establish that its expres-

sion is regulated by MYC; we thus examined MYC activity corre-

lation with module expression across tumors. While four SF-

modules with the highest correlation with MYC activity in breast

tumors maintained high correlation in most tumor types, SF-

modules 4 and 6 showed variable correlation across tumors.

Thus, some SF-modules may be important for MYC-driven

oncogenesis in multiple tumor types and others may be

controlled by MYC in a more tumor-type-specific manner.

Indeed, MYC has tissue-specific roles and inactivation of MYC

in different tumor types has varying outcomes.11,80

While most SF-modules positively correlated with MYC activ-

ity in TCGA breast tumors, SF-module 18 had a negative corre-

lation, and genes in this module were downregulated in MYC-

active MCF-10A. Although MYC is commonly thought of as a

transcription activator, MYC can induce transcriptional repres-

sion of select genes.80 Two of the top genes in SF-module 18

are CLK1 and CLK4, part of the CDC2-like family of kinases

phosphorylating SR-proteins.81 CLK inhibitors are under investi-

gation as cancer therapeutics, andMYC amplification is associ-

ated with sensitivity to CLK inhibitors.82

Co-expression of pan-cancer SF-module 3 hub genes has an

impact on a subset of AS events also detected in MYC-active tu-

mors and cell models. We and others have shown that SRSF2,

SRSF3, and SRSF7 have both distinct and overlapping AS tar-

gets, yet prior studies examined the effects of an individual

SF.3,7,49,68 We demonstrate that co-expression of these three

SFs influences MYC-driven AS via a combination of mecha-

nisms. First, each SF has distinct AS targets, resulting in expres-

sion of different isoforms that together might promote tumor in-

vasion. Second, SFs share targets to promote either skipping or

inclusion of the same exon; this cooperation could lead to even

higher levels of an oncogenic isoform. This could occur by mul-

tiple SFs binding the same transcript, increasing the likelihood of

splicing that exon, or increased SF expression could mean more

SF is present to bind and promote AS. Third, SFs have opposing

effects on shared AS targets, as an SF could outcompete

another by differences in affinity or number and/or location of

binding sites. Our study showcases examples of MYC-regulated

AS events that fall into these distinct categories, suggesting

complex regulatory consequences of SF co-expression. Howev-

er, the precise AS events required to drive tumorigenesis remain

to be determined. Although modulation of a single AS event is

unlikely to affect all MYC-activation phenotypes, the contribution

of individual AS events and their combinatorial effects should be

further investigated. Finally, SR proteins exhibit splicing-inde-

pendent functions,83–88 and we acknowledge that their roles in

other RNA-processing steps may influence the phenotype of

MYC-active tumors.

While our data suggest that MYC-driven expression of SR pro-

teins promotes tumor formation and maintenance, they also

point to a relationship between MYC activity or SR expression

with known cancer-associated copy number alterations ormuta-

tions. In TCGA breast tumors, SRSF2 expression significantly

correlated with ERBB2 copy number and TP53 mutations,

SRSF3 with PIK3CA copy number and TP53 mutations, and

SRSF7 with TP53 mutations (Tables S2G and S2H). In addition,

MYC activity correlated with increased copy number of ERBB2

or PIK3CA and with TP53 mutations (Tables S2G and S2H).

While we demonstrated MYC-driven expression of SRFS2,

SRSF3, and SRSF7, these genes may also be activated and

function independent of MYC, and be regulated by additional

post-transcriptional mechanisms. Indeed, these SFs are ex-

pressed in a variety of tumors, and each is classified as essential

by the Cancer Dependency Map project.89 Further, our findings

suggest that these SFs are not MYC dependent per se, as, if they

were, onewould expect no associated phenotypes when the SF-

module is expressed inMYC-inactive HCC1806 cells, contrary to

our findings. Our results point to the fact that higher activity of

MYC in tumors leads to higher levels of the SF-module, which

in turn regulates downstream AS events that have an impact

on protumorigenic phenotypes.

We identified a MYC-active AS signature shared across >75%

of 23 tumor types, providing a pan-cancer tumor classifier of

MYC status that could be used to predict prognosis and identify

patients likely to benefit from AS-modulating therapies. MYC

status is typically classified based on MYC copy number and/

or expression, but these do not reflect MYC activity because

they do not consider MYC regulators.32,33 Thus, an AS signature

measuring MYC activity may be superior for classifying tumors,

for prognosis, and/or for predicting treatment responses. The

use of prognostic AS signatures was proposed for several indi-

vidual tumor types,90–92 but remains to be implemented more

broadly in the clinic.

Since MYC itself cannot be easily targeted, targeting down-

stream SFs or their targets represents an attractive strategy for

Figure 7. Pan-cancer AS signature correlates with MYC activity and worse patient survival

(A) AS events in MYC-active vs. MYC-inactive TCGA tumors (DPSI > |10%|, FDR < 0.05), across tumor types (see Table S2E).

(B) PSI of HRAS AS event in MYC-active vs. MYC-inactive tumors, shown per tumor type (median ± interquartile range). DPSI (MYC-active vs. MYC-inactive) by

tumor type is shown via heatmap; asterisks indicate significant changes, FDR < 0.05.

(C)DPSI of 34 pan-cancer AS events inMYC-active vs. MYC-inactive tumors across 75%of 23 TCGA tumor types (n > 15/group). Event type and gene name, and

their frequency, are shown.

(D) Frequency per 100 bp of predicted binding motifs for SRSF2, SRSF3, or SRSF7 in pan-cancer MYC-regulated AS events, in upstream, spliced, and

downstream sequences. Individual motifs are scored and summed by SF.

(E) Overall survival with or without the pan-cancer MYC AS event signature shown by tumor type (log-rank test p values). See also Figure S9 and Table S5.
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MYC-active tumors. Yet, it may not be enough to target individ-

ual SFs, but necessary to consider how genes cooperate. In

particular, the degree towhich the genes in pan-cancer SF-mod-

ule 3 must be modulated to provide therapeutic benefit remains

to be determined. SFs are being investigated as therapeutic tar-

gets in preclinical or clinical trials testing small molecules that

target the splicing machinery,1 directly inhibit specific SFs,8 or

target SF stability.93 Further, SF activity and localization are often

controlled by phosphorylation,94 and inhibition of upstream ki-

nases to diminish activity of oncogenic SFs95–99 should be tested

in MYC-driven tumors. Finally, RNA-based approaches to

modulate the expression of SR proteins have revealed a thera-

peutic window for targeting SFs in cancer without notable

toxicity in normal cells.74 MYC-active tumors are especially sus-

ceptible to AS inhibition, for example, using spliceosomal or

PRMT5 inhibitors or SF-targeting shRNAs8,17,82,100,101; yet it re-

mains to be determined whether these treatments affect MYC-

regulated AS and SFs and whether such effects are a cause

for, or a correlate of, selective sensitivity. If so, should clinical tri-

als characterize MYC activity and MYC-regulated AS profiles in

tumors prior to treatment? Such questions will be important to

address for other emerging AS-modulating therapies in MYC-

driven tumors.

Limitations of the study
Between datasets, some AS events changed in opposing direc-

tions or were not detected under some conditions, possibly due

to technical and biological differences. Differences between

RNA-seq datasets, particularly smaller libraries, shorter read

length, and lower quality of TCGA data (�30–40 million 50 bp

reads) vs. cell models (>100 million 150 bp reads), limit detecting

events in low-expressed genes. Tumor genomic and transcrip-

tomic heterogeneity renders detecting recurring AS events

across samples difficult. MCF-10A cells are non-transformed

mammary cells and some non-overlapping effects of MYC in es-

tablished tumors are expected. A subset of the AS events spe-

cific to MCF-10A or TCGA tumors may reflect early vs. sustained

MYC activation, respectively, similar to MYC-induced gene

expression differences in tumor initiation vs. regression.102

HCC1806 are MYC-inactive cells harboring additional mutations

that may influence MYC activity; elevated baseline expression of

certain isoformswas unaffected byMYC activation. Overexpres-

sion levels in cell lines are comparable to those in MYC-active

breast tumors, but SF-module 3 overexpression in HCC1806 is

milder than in MCF-10A, likely due to higher expression of mul-

tiple SFs being toxic to cancer cells. Our study was not designed

to assess the extent to which the role of SF-modules is MYC

dependent. While we uncover several SF-modules activated

downstream of MYC, mechanisms other than MYC likely regu-

late these SFs in other cell types. However, this in no way under-

mines our conclusion that these SFs represent a real vulnerability

in MYC-active tumors.

We found a high proportion of MXE AS events. Although

we used stringent parameters to minimize false positives, a sub-

set of MXE events may be CA events. However, our findings

are consistent with studies showing increased MXEs in cancer

vs. normal cells/tissues using rMATS,45,103,104 MISO, or

SUPPA.105–110 Long-read RNA-seq of tumors reveals expres-

sion of full-length transcripts containing MXEs, many unanno-

tated in reference transcriptomes,111,112 supporting the exis-

tence of MXE switches in tumors.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-SRSF1 mouse CSHL antibody facility Ak96322

Anti-SRSF3 rabbit MBLI #RN080PW

Anti-SRSF7 rabbit MBLI #RN079PW

Anti-TRA2B rabbit Abcam #Ab31353; RRID: AB_778565

Anti-Beta-Catenin rabbit ThermoFisher #71-2700; RRID: AB_2533982

Anti-alpha-Tubulin mouse GenScript #A01410

Anti-beta-Actin mouse GenScript #A00702

Anti-c-MYC rabbit Cell Signaling #18583; RRID: AB_2895543

Phalloidin-A647 ThermoFisher #A22287; RRID: AB_2620155

Alexa Fluor 568 anti-mouse Invitrogen #A-11031; RRID: AB_144696

Alexa Fluor 488 anti-rabbit Invitrogen #A-11034; RRID: AB_2576217

IRDye 800CW Goat anti-Rabbit IgG (H + L) Li-Cor #926-32211; RRID: AB_621843

IRDye 680 Goat anti-Mouse IgG (H + L) Li-Cor #926-68070; RRID: AB_10956588

Chemicals, peptides, and recombinant proteins

Hoechst Invitrogen #62249

Calcein, AM Invitrogen #C3099

Matrigel Growth Factor Reduced Phenol-

free

BD/Corning #356238

SYBRSafe Invitrogen #S33102

Superscript III reverse transcriptase Invitrogen #18080044

Trypsin-EDTA 0.25% Gibco #25200056

Critical commercial assays

RNAeasy kit Qiagen #74106

Lipofectamine 2000 Invitrogen #11668019

Phusion flash high fidelity master mix Thermo Fisher #F548L

Phusion hot start II DNA polymerase Thermo Fisher #F549L

iTaq Universal SYBR green Supermix BioRad #1725122

TrueSeq stranded mRNA kit with polyA

selection

Illumina #20020594

Cell Recovery Solution BD/Corning #354253

Deposited data

RNA-seq MCF-10A MYC-ER This paper GSE181968

RNA-seq HCC1806 This paper GSE181956

Code for mRNA splicing analysis pipeline This paper https://doi.org/10.5281/zenodo.7186962

Experimental models: Cell lines

MCF-10A Muthuswamy lab (BIDMC) N/A

MCF-10A MYC-ER Muthuswamy lab (BIDMC) N/A

HEK293T ATCC CRL-3216

293GPG Muthuswamy lab (BIDMC) N/A

HCC1806 Liu Lab (JAX) N/A

MDA-MB231 GFP-luciferase rTTA3-Puro Park et al. 7 N/A

Recombinant DNA

pBABE-Puromycin AdGene #1764

pWZL-Hygromycin Lowe Lab (MSKCC) N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pWZL-MYC-Hygro Lowe Lab (MSKCC) N/A

PWZL-T7-SRSF2-Hygro Park et al. 7 N/A

pBABE-T7-SRSF3-Puro This paper N/A

PWZL-HA-SRSF7-PuroG418 This paper N/A

TRMPV-Neo Zuber et al. 113 N/A

TRMPV-Neo shRNA control (Park et al.)7 N/A

TRMPV-Neo shRNA SRSF2 This paper N/A

TRMPV-Neo shRNA SRSF3 This paper N/A

TRMPV-Neo shRNA SRSF7 This paper N/A

pCI-neo Krainer Lab (CSHL) Hua et al.114

pCI-neo-HA-empty vector Leclair et al. 74 N/A

pCI-neo-HA-SRSF2 Leclair et al. 74 N/A

pCI-neo-HA-SRSF3 Leclair et al. 74 N/A

pCI-neo-HA-SRSF7 Leclair et al. 74 N/A

pMAX-dCasRx Leclair et al. 74 N/A

pMAX-dCasRx-SRSF2-RS-C Leclair et al. 74 N/A

pMAX-dCasRx-SRSF3-RS-C Leclair et al. 74 N/A

pMAX-dCasRx-SRSF7-RS-C Leclair et al.74 N/A

pCR8-Cas13d-DR-gRNA-CTL Addgene #118645

Oligonucleotides

RT-PCR primer sequences IDT See Table S6

SLIC cloning primers IDT See Table S6

gRNA sequences IDT See Table S6

Software and algorithms

STAR (v.2.7.3a) Dobin et al. 39 https://github.com/alexdobin/STAR

Stringtie (v.2.0.6) Pertea et al. 40 https://ccb.jhu.edu/software/stringtie/

Trimmomatic (v.039) Bolger et al. 115 http://www.usadellab.org/cms/?

page=trimmomatic

DESeq2 Love et al. 116 N/A

rMATS (v.4.0.2) Shen et al.41; Phillips et al.45 https://github.com/Xinglab/rmats-turbo

splicing-pipelines-nf v1.0 This paper https://github.com/

TheJacksonLaboratory/

splicing-pipelines-nf

WGCNA Langfelder et al.58 N/A

NetRep Ritchie et al.57 https://github.com/sritchie73/NetRep

RStudio N/A N/A

GraphPad Prism GraphPad N/A

Harmony High-Content Imaging and

Analysis Software

Perkin Elmer N/A

ImageJ Digital Image Processing Software Schneider et al.117 https://imagej.nih.gov/ij/

RBPmap Paz et al.69 http://rbpmap.technion.ac.il/

Photoshop and Illustrator CC2019 Adobe N/A

TCGAbiolinks Colaprico et al.118;

Mounir et al.119; Silva et al.120
N/A

ChemiDoc MP Imaging System BioRad N/A

QuantStudio Real-Time software ThermoFisger N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Olga Anczukow (olga.

anczukow@jax.org).

Materials availability
Plasmid and cell lines generated are available from the lead contact without restrictions with reasonable compensation by requestor

for its processing and shipping.

Data and code availability
d RNA-sequencing data for MCF-10A MYC-ER and HCC1806 cells have been deposited on GEO as GSE181968 and

GSE181956 and are publicly available as of the date of this publication. Raw image data is available on Mendeley and are pub-

licly available as of the date of this publication: https://doi.org/10.17632/ggxxghn2mb.1.

d All original code has been deposited on GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cell lines
MCF-10A and MCF-10A MYC-ER cells were a gift from Senthil K. Muthuswamy (Beth Israel Deaconess Medical Center) and were

maintained in DMEM/F12 (Gibco) supplemented with 5% horse serum (GIBCO), 1% penicillin streptomycin (Sigma), 20 ng/mL

EGF (Peprotech), 2 ug/mL hydrocortisone 0.5 ug/mL (Sigma), 100 ng/mL cholera toxin (Sigma), and 10 ug/mL insulin (Sigma).121

HCC1806 cells, a gift from Edison Liu (Jackson Laboratory), were maintained in DMEM (Gibco) supplemented with 15% FBS and

1% penicillin streptomycin (Sigma). HEK293T cells (ATCC), were maintained in DMEM (Gibco) supplemented with 10% FBS, 1%

penicillin streptomycin (Sigma). MDA-MB231 GFP-luciferase rTTA3-puro7 were maintained in DMEM (Gibco) supplemented with

20% FBS, 1% penicillin streptomycin (Sigma). All cell lines were grown at 37�C under a humidified atmosphere with 5% CO2. Cells

routinely tested negative for mycoplasma using the MycoAlertTM Mycoplasma Detection Kit (Lonza). Cell aliquots from early pas-

sages were used.

METHOD DETAILS

Plasmids
The pBABE-T7-SRSF3-Puro plasmid was previously described.7 The pWZL-T7-SRSF2-Puro plasmid was created by subcloning T7-

SRSF2 cDNA from a pWZL-T7-SRSF2-Hygro7 into a pBABE-Puro plasmid (a gift from S. Lowe, Memorial Sloan Kettering Cancer

Center) using sequence and ligation independent cloning (SLIC). The pWZL-G418 plasmid was created by replacing the hygromycin

resistance DNA sequence in pWZL-Hygro (a gift from S. Lowe, Memorial Sloan Kettering Cancer Center) by G418 resistance DNA

sequence from TRMP-Neo.113 The PWZL-HA-SRSF7-G418 plasmid was created by subcloning HA-SRSF7 cDNA from the pCI-neo-

HA-SRSF7 plasmid74 into the pWZL-G418 plasmid using SLIC. The pBABE-HA-MYC-Hygro used here was a gift from S. Lowe (Me-

morial Sloan Kettering Cancer Center). Corresponding empty vector plasmids, pBABE-Puro, pWZL-Hygro, and PWZL-G418 were

used as control. SLIC cloning primers are shown in Table S6A.

The pCI-neo-HA-SR-CDS plasmids were previously described,74 and contain the coding sequence (CDS) of each human SR pro-

tein along with an sequence encoding the HA-tag cloned into a pCI-neo mammalian expression plasmid.114

Short hairpins targeting SR proteins were designed using SplashRNA122 and subcloned into a TRMPV-Neo plasmids113 as previ-

ously described.7 shRNA sequences are shown in Table S6D.

CASFx plasmids (pMAX-dCasRx-SR) were previously described,74 and contain the dCasRx domain fused to the RS domain of

human SRSF2, SRSF3, or SRSF7. CasRx-gRNA plasmids (pCR8-gRNA) were previously described.74 Spacer sequences were or-

dered as forward and reverse DNA oligos (IDT), containing a 50AAAC or 50AAAA overhang sequence respectively (Table S6E). 20pmol

of forward and reverse oligos were annealed in 1x annealing buffer (10mM TRIS pH8.0, 50nM NaCl, 1mM EDTA). Annealed oligos

were ligated into BbsI digested pCR8-Cas13d-DR-ccdB directly 30 of the Cas13d Direct Repeat (DR).

All vectors and inserts were verified and authenticated by Sanger sequencing (Eton Bioscience).

Generating stable cell lines
HCC1806 expressing T7-tagged SRSF2, T7-tagged SRSF3, and HA-tagged SRSF7 cDNA, alone or in combination, as well as cor-

responding empty vector controls and HA-tagged MYC, were generated by retroviral transduction as described7,18 via successive

rounds of infection and selection. Virus was produced by transfection 15 ug of plasmid in 293GPG cells (a gift from S. Muthuswamy,
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BIDMC) using Lipofectamine 3000 (Invitrogen) per manufacturer instructions, along with helper packaging plasmids. Virus collected

after transfection was concentrated by adding 0.09x PBS, 0.3M NaCl and 8.5% PEG6000, the solution was gently mixed at 4�C
overnight, and the viral concentrate was spun for 15 min at 7000g and the supernatant gently removed. Viral particles were resus-

pended with appropriate volume of OptiMem (Invitrogen) and either immediately used or frozen at �80C. Stable cells were selected

using 1–2 mg/mL puromycin (Gibco), 30–50 mg/mL hygromycin (Invitrogen), or 500 mg/mL Geneticin (G418) (GoldBio) until non-in-

fected control cells were all dead. Cell lines were then maintained in media supplemented with 0.5 mg/mL puromycin, 15 mg/mL

hygromycin and 500 mg/mL Geneticin (G418) to reduce excessive antibiotic stress on the cell lines.

MDA-MB231-luciferase-GFP-rTTA3 and HCC1806-MYC -rTTA3 lines expressing SF and control-shRNA-TRMPV-Neo were

generated as retroviral transduction and selection as described.7 Multiple shRNAs were tested for each target, and the most efficient

RNA was selected. shRNA sequences are shown in Table S6C.

SR protein co-expression in HEK293T cells
HEK293T cells were reverse transfected in 24 well plates at a seeding density of 600,000 cells/mL using Lipofectamine 3000 (Invi-

trogen) according to manufacturer’s instructions. At the time of transfection 750ng of total plasmid was diluted into 100uL OptiMem

(Invitrogen). For individual SR protein transfections this included 250 ng of pCI-neo-HA-SR with 500ng of pCI-neo-HA-empty vector,

double SR protein transfections included 250ng of each SR encoding plasmid with 250ng of the control plasmid, triple SR protein

transfections included 250ng of each SR encoding plasmid, and the control well was 750ng of HA-empty vector. 48h after transfec-

tion the cells were collected by lifting with 2mM EDTA in PBS.

CASFx transfections and gRNAs screen
24h prior to transfection HEK293T cells were seeded into a 12 well plate at 400,000 cells per well. 1000ng of Cas effector plasmid

(pMAX-CASFx-SR) and 1000ng of gRNA plasmid (pCR8-gRNA) were transfected using lipofectamine 3000 (Invitrogen) as per man-

ufacturer’s protocol. Cells were collected 48h after transfection by lifting with 2mM EDTA in PBS and analyzed by RT-PCR for HRAS

splicing. gRNA sequences are shown in Table S6E.

2D transwell migration assays
HCC1806 cells were starved in serum-free media for 4h before seeding 200,000 cells in serum free media on top of an 8- mm PET

membrane transwell (BD-Biosciences) in a 24-well format and allowed to migrate into the lower compartment containing media sup-

plemented with 15% of FBS for 24 hours. After 24h the cells on the top of the filter were removed by scraping with a Q-tip and re-

maining cells under the filter were fixed using 5% Formalin (Sigma), then permeabilized with 0.5% Triton X-100 (Sigma) and stained

with DAPI (Invitrogen). DAPI-positive cells were imaged using Zoe Fluorescent Cell Imager (Bio-Rad).

2D cell proliferation assays
HCC1806 or MDA-MB231cells were plated in 96-well plate at 5,000 cells per well. For MDA-MB231 cells media was supplemented

with 2 mg/mL of doxycycline (Sigma) or mock. Cell number was inferred via luminescence measurement using the Cell Titer Glo

(Promega) assay per manufacturer instructions at day 1, 3, 5 and 7 for HCC1806, or day 1, 2, 3, 4 for MDA-MB231, using a Synergy

H1 microplate reader and imager. For each sample, relative luminescence was normalized to luminescence on day 1, for 3–4 biolog-

ical replicates at each timepoint.

3D cell culture assays and imaging
For 3D culture assays, MCF-10A andMCF-10AMYC-ER cells were seeded at a density of 10,000 cells per well in triplicate on a 4-well

glass chamber slide coated with Matrigel Growth Factor Reduced (BD Biosciences) as described.35,121 Media was replaced at 72h.

Starting on day 3, cells were treatedwith 1mM4-hydroxy tamoxifen (4-OHT) (Sigma) for 48h, 24h, 16h, 8h, 4h, or 0h, prior to collection.

All samples were collected at the same time on day 5.

For 3D-culture assays, HCC1806 cells were seeded at a density of 15,000 cells per well in a 48-well tissue culture plate coated with

125mL of Matrigel Growth Factor Reduced (BD Biosciences). Media was replaced every 72h and growth was monitored for 9 days.

For HCC1806-MYC-OE-rTTA3-shRNA cells, media was supplemented with 2 mg/mL of doxycycline (Sigma) or mock. At days 5 or 9,

organoids were treated for 15 minutes with Calcein AM (1mM final concentration, Invitrogen) and Hoechst (1x final concentration, In-

vitrogen) diluted in 1x PBS, and multiple fields and z-stacks were imaged for each well using the Opera Phenix High-Content

Screening System (PerkinElmer). Maximal projection was used to reconstruct representative Z-stack fluorescent confocal images

of 15 fields with >20 Z-stack images spaced every 55 mm using the Harmony High-Content Imaging and Analysis Software

(PerkinElmer). Maximal projection of all imaged fields and z-stacks was analyzed using ImageJ digital processing software

(https://imagej.nih.gov/ij/)117 to calculate organoid area, only structures with a total area bigger than 700 mm2 were considered in

the analysis. All assays were performed in triplicates.

For 3D invasion assays, 15,000 HCC1806 cells were seeded on a 1:1 mix of collagen:matrigel (to reach a final concentration of

Collagen of 1.6 mg/mL and pH was adjusted to be at �7.6) in a 48-well tissue culture plate. Media was replaced every 3–4 days.

At day 9 organoids were treated for 15 minutes with Calcein AM (1mM final concentration, Invitrogen) in DMEM and multiple fields

and z-stacks were imaged on the Opera-Phenix High-Content Screening System (PerkinElmer). Maximal projection was used to
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reconstruct representative Z-stack fluorescent confocal images of 15 fields with >20 Z-stack images spaced every 55 mm using the

Harmony High-Content Imaging and Analysis Software (PerkinElmer). All assays were performed in triplicates.

For 3D culture assays, MDA-MB231-rTTA3-shRNA cells were seeded at a density of 7,000 cells per well in triplicate for control and

DOX-treated lines, on a 48-well plate coated with Matrigel Growth Factor Reduced (BD Biosciences). Media was replaced every 72h

and supplemented with 2 mg/mL of doxycycline (ADD) or mock, and growth was monitored for 9 days. On day 9, organoids were

treated for 15 minutes with 1mM final Calcein AM (Invitrogen) diluted in growth media. Multiple fields and z-stacks were

imaged for each well using the Opera Phenix High-Content Screening System (PerkinElmer). Maximal projection was used to recon-

struct representative Z-stack fluorescent confocal images of 25 fields with >30 Z-stack images spaced every 55 mm using the Har-

mony High-Content Imaging and Analysis Software (PerkinElmer). Maximal projection of all imaged fields and z-stacks was analyzed

using ImageJ digital processing software (https://imagej.nih.gov/ij/) to calculate organoid area. All assays were performed in

triplicates.

2D confocal imaging
HCC-1806 control, 3xSR, andMYC-OE cell lines were plated onto coverslips at low density. 24h later cells were fixed using 4%para-

formaldehyde (Sigma), permeabilized, and stained with 5ug/mL of anti-b-catenin antibody (ThermoFisher) overnight at 4�C. Samples

were then counterstained with 4 ug/mL Alexa-488 secondary antibody (Invitrogen), as well as 0.005 U/ul Alexa647-conjugated phal-

loidin (ThermoFisher), and 1 ug/mL DAPI (Invitrogen), andmounted onto slides using Prolong Gold Antifade reagent (Invitrogen). High

resolution images were acquired using the 60x objective of an Dragonfly confocal microscope (Andor). Images represent the

maximum intensity projection of an approximately 10 mm Z-stack encompassing the entirety of the cell. All post-acquisition image

adjustments were made using ImageJ (https://imagej.nih.gov/ij/).

RNA extraction
3D-grown MCF-10A cells were washed with PBS (1X) and the Matrigel was dissolved by incubating slides at 4�C in Cell Recovery

Solution (BD Biosciences). 2D-grown HEK293T, HCC1806, or MDA-MB231 cells were harvested by scraping adherent cells in

PBS once �90% confluence was reached. Total RNA was extracted using the RNeasy kit (Qiagen) including DNase I treatment

per manufacturer instructions.

RNA-sequencing
Barcoded RNA libraries were prepared starting with 1ug for MCF-10A and 500ng for HCC1806 cell lines of total RNA using the

TrueSeq stranded mRNA kit with polyA selection (Illumina), and quantified using a Bioanalyzer DNA 1000 chip (Agilent). Libraries

were sequenced as 150bp paired-end reads at 100–200 million reads per library on an Illumina HiSeq (MCF-10A) or NextSeq

(HCC1806) instrument. For MCF-10A, equal amounts of 3 libraries were pooled per lane. For HCC1806, equal amounts of 18 libraries

were pooled per lane. At least 3 independent biological samples were sequenced for each experimental condition, and run on sepa-

rate lanes whenever feasible.

Quantitative RT-PCR analysis
Total RNA from 3D-grown MCF-10A cells or 2D-grown MDA-MB231 or HCC1806 cells was extracted as described above. 1ug of

total RNA was reverse-transcribed using Superscript III reverse transcriptase (Invitrogen). qPCR was used to amplify endogenous

transcripts with SF specific primers (Table S6B) using cDNA corresponding to 5–20ng of total RNA. qPCR was performed with

iTaqUniversal SYBR green Supermix (Bio-Rad) in 384-well plates (Life Technologies) using a ViiA7 Real-Time PCR system (Life Tech-

nologies) per manufacturer instructions and analyzed with QuantStudio Real-Time software. SF-expression was normalized to

housekeeping gene GAPDH.

Semi-quantitative RT-PCR analysis
Total RNA from 3D-grown MCF-10A cells was extracted as described above. 1ug of total RNA was reverse-transcribed using Su-

perscript III reverse transcriptase (Invitrogen). Semi-quantitative PCR was used to amplify endogenous transcripts with with SF spe-

cific primers (Table S6B) using cDNA corresponding to 5–20ng of total RNA. Optimal PCR conditions were defined for each primer

pair by testing amplification from 26–30 cycles to select semi-quantitative conditions. PCR products were separated by 2% agarose

gel stained with SYBRSafe (Invitrogen), and bands were quantified with a ChemiDoc MP Imaging System (Bio-Rad). SF-expression

was normalized to housekeeping gene GAPDH.

RT-PCR splicing event validation
Total RNA from 3D-grown MCF-10A cells or 2D-grown HEK293T, MDA-MB231, or HCC1806 cells, was extracted as described

above. 1ug of total RNA was reverse-transcribed using Superscript III reverse transcriptase (Invitrogen). Semi-quantitative PCR

was used to amplify endogenous transcripts with primers that amplify both the included and skipped isoforms (Table S6C) using

cDNA corresponding to 5–20ng of total RNA. Optimal PCR conditions were defined for each primer pair by testing amplification

from 26–30 cycles to select semi-quantitative conditions. PCR products were separated by 2% agarose gel stained with

SYBRSafe (Invitrogen), and bands were quantified with a ChemiDoc MP Imaging System (Bio-Rad). The ratio of each isoform
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was first normalized to the sum of the different isoforms, and changes were then expressed as the fold increase compared to the

levels obtained for cells or organoids expressing the control vector.

Western blot analysis
3D-grownMCF-10A and MCF-10AMYC-ER cells were washed with PBS (1X) and the Matrigel was dissolved by incubating slides at

4�C in Cell Recovery Solution (BD Biosciences). 2D-grown MDA-MB231 rTTA3 lines and HCC1806-MYC rTTA3 cells were washed

with 1xPBS.Cells were lysed in Laemmli buffer (50 mM Tris-HCl pH 6.2, 5% (v/v) b-mercaptoethanol, 10% (v/v) glycerol, 3% (w/v)

SDS). Equal amounts of total protein were loaded on a stain-free 12% SDS-polyacrylamide gel (Biorad), transferred onto a nitrocel-

lulose membrane (Millipore) and blocked in 5% (w/v) milk in Tween 20-TBST (50 mM Tris pH 7.5, 150 mM NaCl, 0.05% (v/v) Tween

20). Blots were incubated with TRA2b (Abcam), SRSF1 (CSHL), SRSF3 (MBL), SRSF7 (MBL), c-MYC (Cell Signaling), Actin

(GenScript), Tubulin (GenScript) or b-catenin (ThermoFisher) primary antibodies. IR-Dye 680 anti-mouse or IR-Dye 800 anti-rabbit

immunoglobulin G (IgG) secondary antibodies (LI-COR) were used for infrared detection and quantification with a ChemiDoc MP Im-

aging System (Bio-rad).

Differential splicing analysis
Paired-end readswere preprocessed by trimming of low-quality regions by Trimmomatic (v. 0.39).115 Readswere thenmapped to the

human reference genome using STAR in 2-passmode (v.2.7.3a)39 with theGencodeGRCh38 v.32 reference transcript annotation.123

To include novel exons and introns in our analysis, we performed an annotation-guided transcriptome reconstruction andmerged the

resulting transcriptome (GTF) from each sample into one comprehensive transcript annotation using Stringtie (v.2.0.6)40. We utilized

an in-house pipeline that implemented rMATS (v.4.0.2)41 to detect splicing events using both splice junction read counts and alter-

natively spliced exon body counts (https://github.com/TheJacksonLaboratory/splicing-pipelines-nf v1.0). For each event, a percent

spliced in (PSI) score was calculated. A DPSI is calculated for each event to compare the change in inclusion between MYC active

and MYC inactive samples, such that a positive DPSI indicates increased inclusion in MYC active tumors whereas a negative DPSI

indicates increased skipping. Differentially spliced events (DSEs) were filtered based on the following: i) DPSI = |mean PSIcase – mean

PSIcontrol |R0.1; and ii) FDR%0.05; and iii) at least 5 reads (averaged across biological replicates) detected in both the control and

case that support either exon skipping or exon inclusion, i.e., (inclusion count R5 in either control OR case) AND (skipping count

R5 in either control OR case).

To account for any 4-OHT-induced splicing in MCF-10A MYC-ER samples, we compared MCF-10A and MCF-10A MYC-ER dif-

ferential splicing events at each time point, i.e., MCF-10A 8h vs. MCF-10A MYC-ER 8h. 4-OHT induced differential splicing events

were removed from downstream analysis if theymet the following conditions: i) significant in both samples, and ii) had aDPSI with the

same sign indicating a change in the same direction.

Differential gene expression analysis
Preprocessing of reads and mapping steps were performed as described above using only the Gencode GRCh38 v.32 reference

transcript annotation. A gene-level count matrix was generated using GTF files from Stringtie. Differential gene expression was per-

formed using DESeq2.116 Geneswith <10 total reads across samples were removed. AWald test was used to calculate p-values, and

Benjamini-Hochberg procedure was used to calculate corrected p-values. Differential genes were selected based on corrected

p-value<0.05 and log2 fold change >0.5 or <-0.5. SF genes were defined using a curated list of 324 proteins with an annotated

role in RNA splicing regulation collected from published literature and GO term annotations47–54

To account for 4-OHT induced changes in expression in MCF-10A MYC-ER samples, genes that were significantly differentially

expressed in the same direction in both MCF-10A control and MCF-10A MYC-ER sample were removed from further analysis.

TCGA data gene expression and splicing analysis
Tumor and corresponding normal tissue samples were downloaded as bam files from the NCI Genomic Data Commons and pro-

cessed on the used Lifebit’s Google Cloud Platform. Sample IDs are listed in Tables S1 and S5. Differential gene expression and

splicing analysis were performed as described above. For the gene expression analysis of TCGA breast tumors vs. paired adjacent

normal breast tissues, we used gene counts for the 108 paired samples and performed differential gene expression analysis as

described above.

SF protein motif analysis
SR protein RNA binding motifs were compiled from literature and from the RBPmap default list69: SRSF2 motif#1 CCNG,23 SRSF2

motif#2GGNG,23 SRSF2motif#3GGAGWD,124 SRSF2motif#4WGCAGN,70 SRSF2motif#5UCCAG70; SRSF3motif#1CCAGNC,71

SRSF3 motif#2 NCAGCA,71 SRSF3 motif#3WCWWC,69 SRSF3 motif#4 CUCKUCY69; SRSF7 motif#1 ACGACG,125 SRSF7 motif#2

ACGAGAGAY,69 SRSF7 motif#3WGGACRA,69 SRSF7 motif#4 HYGAYY.72 Motifs were mapped to alternative exons and either sur-

rounding 100 nt or upstream and downstream exons using the RBPmap webtool (http://rbpmap.technion.ac.il/) with default strin-

gency and conservation filter cutoffs. The resulting motifs were visualized in the UCSC genome browser.

To generate positional maps, we mapped SRSF2, SRSF3, or SRSF7 motifs using RBPmap in significant CA events from rMATS

that were either included (DPSIR10%, FDR%0.05) or skipped (DPSI%�10%, FDR%0.05) in case vs. control. As background, we
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randomly selected CA events detected by rMATS but not significantly different between case and control (�1%%DPSI%1%), with

the background CA events being twice the number of significant CA events. We focused on cassette exons since these represent the

majority of AS events detected in each dataset, and also because SR proteins are known to directly regulate exon inclusion of

cassette exons. Motif density for each position was then calculated. Because the biological significance of motif density values is

not intuitive to interpret and background motif densities vary by motif and dataset, we further calculated Bayesian probabilities by

subtracting background motif density from motif density in significantly included or skipped CA events. Bayesian probabilities for

included and skipped events were quantified by comparing motif density of significant events to the background dataset. Probabil-

ities were then plotted for each nucleotide position as an aggregate of all CA events mapped across a meta-transcript with the CA

exon and upstream/downstream exons as well as surrounding intron (see coordinates specified below) with a cutoff of 0.5 consid-

ered enrichment of motifs above the background dataset. For CA events, motifs were mapped from �50nt to -2nt and +2nt to 200nt

from the end of exon 1, -200nt to -2nt and +2nt to +50nt from the start of exon 2, -50nt to -2nt and +2nt to +200nt from the end of exon

2, and -200nt to -2nt and +2nt to +50nt from the start of exon 3. For events with coordinates less than 100nt, half of the sequence was

used as an input.

Gene ontology enrichment
Gene enrichment was performed using the clusterProfiler package.126 For AS enrichment analysis, we generated a gene list with all

genes that contained a significant differential AS event detected using the reference GTF.

Chromatin precipitation sequencing analysis
Peaks from ENCODE MYC ChIP-seq data from MCF-10A cells (ENCFF013XMV)47,55 were annotated using the ChIPseeker R pack-

age,127 with promoters defined as being within 1000 bp of the transcription start site.

MYC-activity scoring in tumor samples
We implemented a MYC activity scoring system adapted from Jung et al.34 Each sample is assigned a MYC activity score based on

the expression of 200 knownMYC target genes in the ‘Hallmark MYC TARGETS V1’’ in the Molecular Signature Database,35 which is

compiled from previous studies. The expression of the genes from Hallmark MYC TARGETS V1 signature correlated with MYC pro-

tein measured by reverse phase protein array (RPA) in cancer cell lines grown in 2D (p = 4.8E-7).35 This scoring system was used to

classify TCGA samples and for breast tumors from The SwedenCancerome Analysis Network Breast Initiative (SCAN-B; GSE96058).

Gene expression (normalized counts for TCGA samples and FPKM from SCAN-B tumors) were obtained, and all samples in each

dataset were ranked based on their expression of MYC target genes in ascending order. The sum of all rank values (rank sum)

was calculated for each sample and we then divided the rank sums by the average rank sum for the entire dataset. In order to

compare TCGA normal breast with tumor samples, we classified all 1186 samples (113 normal adjacent, 1073 tumor) together. In

order to classify MYC-active and -inactive TCGA tumors, normal adjacent samples were removed and MYC-activity scores were

re-calculated. We then calculated MYC-activity z-scores for all tumors and MYC-active tumors were classified by having a z-score

>1.5 whereas MYC-inactive tumors by z-score <-1.5. SCAN-B tumors were classified in the same manner. Since the number of tu-

mors in other TCGA datasets ismuch less than that in breast, the threshold values forMYC-active z-scores were >1.2 and <-1.2 for all

other TCGA tumor types, with the exception of CHOL which had a threshold of ±1.

Weighted gene correlation network analysis (WGCNA)
SF co-expression analysis in TCGA and SCAN-B breast tumors was performed with the WGCNA R package58,59 using log2 trans-

formed gene expression normalized counts for 334 SFs. We used a signed network construction and a soft-thresholding power

of 14, per WGCNA guidelines. To detect co-expression modules, we utilized the blockwiseModules function with a biweight mid-cor-

relation, per WGCNA. Module eigengenes (1st principal component) were calculated for each module and were used to calculate

module membership (MM). MM is defined as the correlation of the module eigengene with gene expression profile and represents

how close a gene is to that module. MM can be used to identify top genes, or hub genes, within a given module. For our analysis,

we defined top genes for each module by having a MM>0.75.

Co-expressed SF-module preservation analysis
Module preservation was determined for TCGA tumors and for breast tumors from the Sweden Cancerome Analysis Network Breast

Initiative (SCAN-B, GSE96058). Gene expression data (FPKM) for 33 tumor types was obtained from TCGAbiolinks.118–120 To eval-

uate preservation of the BRCA modules in other datasets, we utilized the R package NetRep.57 NetRep was specifically designed to

assess preservation of WGCNA-derived modules in another dataset. This is the preferred method for module analysis rather than re-

running WGCNA because the statistics used to determine preservation take into account multiple factors. We first generated adja-

cency matrices as well as correlation matrices based on FPKM data for all 334 SFs, and utilized the modulePreservation function.

Since our modules were considered small, some of which had fewer than 10 nodes or genes, we only considered four parameters

to determine if the module was significantly preserved as per NetRep guidelines: average edge weight (avg.weight) - how connected

the genes in each module are to each other, module coherence (coherence) - the amount of variance in the module, average node

contribution (avg.contrib) - the degree to which a gene contributes to the module, and average correlation coefficient (avg.cor) - how
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tightly correlated themodule is on average. Amodule was classified as preserved if three out of four preservation statistics reached a

threshold p-value % 0.01.

Survival analysis
Splicing inclusion values (PSI) for each of the 34 pan-cancer AS events were obtained as described above for each TCGA tumor type,

and all samples in each dataset were ranked based on their PSI values. The sumof all rank valueswas calculated for each sample and

we then divided the rank sums by the average rank sum for the entire dataset. We then calculated splicing z-scores for all tumors and

tumors were classified based on their levels of inclusion of the signature using a z-score threshold >1.2. Survival data from TCGAwas

retrieved from79 and Kaplan-Meier survival curves were plotted using R packages survival and survminer.

Mutation and copy number analysis
Copy number variation and single nucleotide variation data for TCGA breast tumors were downloaded from the TCGAbiolinks data-

base.118–120 We used MYC activity scores derived as described above along with mutation or copy number data to determine the

numbers of MYC active and inactive tumors with or without a mutation or copy number alteration in known oncogenes including

ERBB2, TP53, BRCA1/2, and PIK3CA. Additionally, we ranked all TCGA breast tumors by expression of either SRSF2, SRSF3, or

SRSF7 and classified tumors as high or low based on expression z-score >1.5 or <-1.5. We then used MYC-activity scores to cate-

gorize tumors by expression of SRSF2, SRSF3, or SRSF7 and compared SR protein expression to copy number or mutation status.

Fisher exact tests were used to evaluate statistical significance. Benjamini Hochberg method was used to calculate corrected

p-values.

Graphs and figures
Plots were generated using Microsoft Excel and R. Figures were generated using Adobe CC 2019 Illustrator and Photoshop software

in compliance with the Nature Publishing Group policy concerning image integrity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Where appropriate, the data are presented as themean±s.d., as indicated. Data points were compared using an unpaired two-tailed,

Student t-test or two-tailed Mann-Whitney test, as indicated in the legends. For quantification of proliferation and apoptosis markers,

a two-tailed Fisher test was used. p-values are indicated in the figure legends.

ADDITIONAL RESOURCES

RNA-sequencing data has been deposited on GEO as GSE181968 for MCF-10A MYC-ER experiments, and GSE181956 for

HCC1806 experiments.

RNA-sequencing data from TCGA tumors (The Cancer Genome Atlas Network, 2012) is available via ISB-CGC cloud. Sample IDs

are listed in Tables S1 and S5.

ChIP-seq datasets (ENCFF013XMV) are available from https://www.encodeproject.org/.

Gene expression data for breast tumors from the Sweden Cancerome Analysis Network Breast Initiative is available on GEO

(SCAN-B, GSE96058).

Our splicing analysis pipeline v1.0 is available on https://github.com/TheJacksonLaboratory/splicing-pipelines-nf.
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