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Abstract: The recognition of traffic signs is of great significance to intelligent driving and traffic
systems. Most current traffic sign recognition algorithms do not consider the impact of rainy weather.
The rain marks will obscure the recognition target in the image, which will lead to the performance
degradation of the algorithm, a problem that has yet to be solved. In order to improve the accuracy
of traffic sign recognition in rainy weather, we propose a rainy traffic sign recognition algorithm.
The algorithm in this paper includes two modules. First, we propose an image deraining algorithm
based on the Progressive multi-scale residual network (PMRNet), which uses a multi-scale residual
structure to extract features of different scales, so as to improve the utilization rate of the algorithm
for information, combined with the Convolutional long-short term memory (ConvLSTM) network
to enhance the algorithm’s ability to extract rain mark features. Second, we use the CoT-YOLOv5
algorithm to recognize traffic signs on the recovered images. In this paper, in order to improve
the performance of YOLOv5 (You-Only-Look-Once, YOLO), the 3 × 3 convolution in the feature
extraction module is replaced by the Contextual Transformer (CoT) module to make up for the
lack of global modeling capability of Convolutional Neural Network (CNN), thus improving the
recognition accuracy. The experimental results show that the deraining algorithm based on PMRNet
can effectively remove rain marks, and the evaluation indicators Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) are better than the other representative algorithms.
The mean Average Precision (mAP) of the CoT-YOLOv5 algorithm on the TT100k datasets reaches
92.1%, which is 5% higher than the original YOLOv5.
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1. Introduction

With the popularization of various means of transportation and the rapid development of the road
traffic system, the problem of traffic safety has become a severe challenge. The emergence of the
Intelligent Transportation System (ITS) [1] has alleviated this problem to some extent. As an important
component of Intelligent Transportation Systems, Traffic Sign Recognition (TSR) has been receiving
increasing attention. Especially in the context of intelligent driving systems, traffic sign recognition
technology can act in assisted driving [2], as well as automated driving of unmanned vehicles [3]. In
the process of vehicle driving, traffic sign recognition technology can be used to identify road traffic
signs in real time through intelligent devices. Based on this technology, the assisted driving system
can promptly give the driver the corresponding prompt or warning. The automatic driving system
can control the vehicle according to the recognition result to prevent traffic accidents. In addition,
traffic sign recognition technology can be used by road maintenance personnel to maintain and check
damaged and lost traffic signs [4], so as to improve road maintenance efficiency.

At present, the research on traffic sign recognition has made great progress. The main research
methods include traditional physical model-based traffic sign recognition methods and deep learning
algorithms. Among them, the method of feature extraction based on physical characteristics is an
early research method, and its basic idea is to recognize traffic signs by analyzing their features such
as color and shape. However, this approach may not work well for complex traffic signs and does
not meet the real time requirement in practical applications. Deep learning algorithms [5–7] are a
mainstream method in current traffic sign recognition research, and its main idea is to use convolutional
neural networks (CNNs) for feature extraction and recognition of traffic signs. By training with a large
amount of data, deep learning algorithms can automatically learn the optimal feature representation and
overcome the limitations of traditional algorithms to some extent. However, in practical applications,
there are many types of traffic signs, and there are differences in characteristics such as shape, color,
and size. This poses challenges to the design and optimization of traffic sign recognition algorithms.
We need to further improve the feature extraction capability of the network to meet the recognition
accuracy requirements of the algorithm.

In addition, most of the traffic sign recognition algorithms do not consider the effect of weather on
recognition accuracy. As a kind of weather we commonly see, pictures taken under rainy conditions
are often affected by rain marks. Especially in the case of heavy rain, the rain masks will occlude the
background scene, which will seriously degrade the visual quality of the captured image and degrade
the performance of subsequent image processing tasks. Typical image deraining application scenarios
include person tracking [8], object detection [9], semantic segmentation [10], and some other image
processing tasks [11, 12]. At present, the model-based image deraining methods mainly use the prior
information of rain marks to constrain the deraining model, and are solved by designing an
optimization algorithm to obtain a clean image. However, the generalization ability of this type of
algorithm is low, and there is a problem of incomplete removal of rain marks. Image rain methods
based on deep learning are becoming more and more popular. These methods exploit deep networks
to automatically extract hierarchical features. This method is able to simulate more complex
mappings from rainy images to clean background images. Although this type of algorithm can obtain
an improved deraining effect, there are still problems of insufficient feature extraction and too
complicated network design. Therefore, it is necessary to explore some new technologies and
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methods to study how to effectively recognize traffic signs under rainy weather conditions. For
example, preprocessing technology based on image enhancement and denoising, recognition method
based on multi-scale and multi-feature fusion, etc. These technologies can help the recognition
system obtain clearer images of traffic signs in rainy conditions, and improve the accuracy and
stability of recognition.

The contributions of this paper are summarized as follows:

• A two-stage solution was designed for traffic sign recognition in rainy weather conditions. First,
we proposed an image deraining algorithm to obtain clean images. Then, the optimized YOLOv5
was used for traffic sign recognition on the clean images.
• Regarding the image deraining module, we proposed a progressive multi-scale residual network

for image deraining. Our network utilizes multi-scale residual structures and employs skip
connections. Moreover, the proposed method works in a multi-stage manner, which can
significantly improve the deraining performance of images.
• We optimized the feature extraction module of YOLOv5 for traffic sign recognition. We replaced

the 3 × 3 convolution in the C3 module with the CoT module. This module enhances the global
feature representation while retaining the local feature extraction ability of the CNNs, thereby
improving the accuracy and robustness of the algorithm.

2. Related works

Traditional approaches mainly use a model-driven approach [13], which is particularly concerned
with adequately encoding the physical properties and a priori information of rain traces and background
images into an optimized model, and designing reasonable algorithms to solve these cases. In terms
of traditional model-driven deraining algorithms, Deng et al. [14] developed a global sparse model
for rain masks removal, which takes into account the inherent characteristics of rain streaks such as
directionality, structural knowledge, and background information. Wang et al. [15] proposed a rain
convolutional dictionary model (RCDNet) and utilized the proximal gradient descent technique to
design an iterative algorithm only containing simple operators for solving the model. These model-
based techniques still lack the adapting ability to rain marks and backgrounds with complexities, and
often require time-consuming iterative computations. Such algorithms often suffer from efficiency
problems in practical applications. Recently, deep learning techniques have been rapidly developed
in the field of image restoration and related techniques have been applied to image deraining tasks
[16]. This class of methods is a data-driven model that learns a nonlinear mapping from images with
rain to images without rain in an end-to-end manner. Li et al. [17] proposed a recurrent structure
network (RESCAN) combined with the channel attention mechanism to obtain multi-level features
of rain marks in different directions to remove rain. Ren et al. [18] designed a multi-stage deraining
network. Progressive recurrent network (PReNet) consists of a simple network model based on residual
networks, but each stage of this method uses only common residual blocks and cannot extract deeper
features. Zamir et al. [19] used encoder-decoder structure on the basis of a multi-stage to extract
more contextual information. Although the above methods can obtain an improved visual quality, the
restoration results will still leave either rain marks or local blur.

To solve these problems, we propose a two-stage rainy traffic sign recognition algorithm. Firstly,
this paper presents a progressive multi-scale residual deraining model in cases where the physical
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information of rain streaks is more complex, such as direction, shape, and density. Current single-
stage and single-scale convolutional network cannot completely remove the rain marks. We employ
a multi-stage network to address the incomplete removal of rain marks. Furthermore, a multi-scale
residual structure is adopted to extract features of rain marks and solve the problem of insufficient
image detail restoration. The Convolutional long-short term memory (ConvLSTM) [20] adopted in
each stage can capture the global information of the image to enhance our feature extraction ability.

Traditional traffic sign recognition algorithms mainly use image processing techniques to extract
and classify features such as color, shape, and edges of images [21]. However, traditional methods
still struggle to achieve the balance of real-time and accuracy that CNNs can achieve. In recent years
the use of convolutional neural networks for target detection and recognition has become a
mainstream approach. The method is mainly divided into two categories. The first one is a two-stage
target detection algorithm represented by the R-CNN series. This series of algorithms will first form a
region proposal and then process the region proposals to get the final result. The Faster R-CNN
algorithm truly implements an end-to-end computation, which uses Region Proposal Networks (RPN)
instead of Selective Search to generate region proposals. Li et al. [22] proposed a recognition
algorithm combining Faster R-CNN with an attention-guided context feature pyramid network
(AC-FPN) in order to improve the recognition accuracy of traffic signs. The Mask R-CNN algorithm
adds a segmentation head to Faster R-CNN to generate a mask for each candidate region. Tabernik et
al. [23] evaluated different traffic sign datasets using the Mask R-CNN algorithm. Although the
two-stage algorithm can obtain a better recognition accuracy, due to the computational complexity of
the algorithm itself, its recognition speed is slow and cannot meet the real-time requirements. The
second category is the single-stage target detection algorithm represented by YOLO [24] and Single
Shot MultiBox Detector (SSD) [25] algorithms. Wu et al. [26] combined SSD with Receptive Field
Module (RFM) and Path Aggregation Network (PAN) and applied it to the recognition of traffic signs,
but the SSD algorithm was not effective in detecting small targets. YOLOv3 [27] used darknet-53 as
the backbone network and used multiple scales for prediction to solve the problem of detection and
identification of multi-scale targets. YOLOv4 [28] uses Mosaic enhancements on top of the original
YOLO, and the backbone network uses CSPDarknet-53. YOLOv5 [29] innovatively uses the
structure of Focus, and combines the advantages of the previous version. It has advantages in
recognition speed and accuracy. Recently, Dosovitskiy et al. [30] applied the Transformer
method [31, 32] in the field of natural language processing to the field of computer vision for the first
time. Hunag et al. [33] proposed a novel Transformer-based Cross Reference Network (TCRN),
which fully exploits long-range context dependencies in both feature representation extraction and
cross-modal integration. This method makes up for the lack of global understanding of images in
CNNs-based methods. However, pure Transformer networks have high computational complexity and
slow training process.

To address the problems of the current algorithm, we choose YOLOv5 as the backbone network
for our traffic sign recognition. This algorithm not only makes up for the shortcomings of traditional
algorithms in real-time, but also maintains a better recognition accuracy. The current deep learning
algorithms based on CNNs suffer from inadequate feature extraction. This type of method does not
sufficiently consider the global modeling capability of the network. This can lead to poor robustness of
the algorithm. For this problem, we adopt a module combining traditional CNNs and Transformer. This
method enhances the global expressive ability of the network, and preserves the inference speed and
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local feature extraction ability of CNNs. Compared with the current method, the improved YOLOv5
achieves better performance in the recognition of traffic signs.

3. Our approach

3.1. Progressive multi-scale residual deraining algorithm

Usually the input of a rainy day image can be expressed as O ∈ RH×W , H and W denote the height
and width of the image, respectively. The rainy image model we often use is shown in Eq (3.1):

O = B + R (3.1)

where B and R denote the background layer and rain layer of the rainy day image, respectively. The
goal of progressive multi-scale residual-based image rain removal networks is to design a reasonable
network architecture to learn a nonlinear mapping function from an input rainy image image O to its
background layer B or residual rain layer R.

3.1.1. Progressive multi-scale residual network structure

The structure of the progressive multi-scale residual network is shown in Figure 1.The network
adopts T recursive stages, and requires multiple stages to share the same network parameters to
gradually remove rain marks in the image.

Figure 1. PMRNet model structure.

Each stage mainly consists of four parts:

1) The first layer lin is a convolutional layer with Relu activation function, which is used to receive
the input of the network.

2) The second layer is recursive layer lrec. We use a Convolutional LSTM network to capture the
global texture features recursively, so that we can obtain complementary and redundant
information in the spatial dimension to represent the target rain marks. All convolutions of
ConvLSTM have 32 input channels and 32 output channels.
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3) The third layer lmsrb consists of five multi-scale residual modules to extract deep-level features.
4) The last layer lout is a convolutional layer to output the result after image deraining. The size of

all convolutions in the network is 3 × 3, and the padding is 1 × 1.

The formulation of a progressive multi-scale residual network with t stages can be expressed as
Eq (3.2).

xt−0.5 = lin(xt−1, y),
vt = lrec(vt−1, xt−0.5),
xt = lout(lmsrb(vt))

(3.2)

Among them, lin, lout, lrec, and lmsrb of each stage remain unchanged, that is, the network parameters
are reused in different stages. lin takes the prediction xt−1 of the current stage and the rainy day image y
together as the input of the network. The addition of y can further improve the performance of network
deraining compared to just using it as an xt−1 input. lrec takes the output lin from the same stage, as well
as the state vt−1 of recurrent unit from the previous stage, as inputs for the current stage.

3.1.2. Multi-scale residual module

Both the ordinary residual module, as well as the densely connected residual structure [34], use only
a single size convolutional kernel, and as the network deepens the densely connected approach causes
the computational complexity to grow at a high growth rate. To address these drawbacks, we adopt
a multi-scale residual structure. Based on the residual structure, we introduce convolution kernels of
different sizes for adaptively detecting image features at different scales. Additionally, skip connections
are used between features at different scales so that the feature information can be shared and reused.
This helps to take full advantage of the local features of the image. In addition, the 1× 1 convolutional
layer at the end can be used as a bottleneck layer as a way to facilitate feature fusion and reduce the
computational complexity to ease the training. As shown in Figure 2, our multi-scale residual structure
consists of two parts: multi-scale feature fusion and local residual learning.

Figure 2. Structure diagram of multi-scale residual module.

Multi-scale feature fusion: we construct a two-bypass network and different bypass used different
convolutional kernel. In this way, the information between these bypass can be shared with each other
to be able to detect image features at different scales. The formula for this structure can be expressed
as Eq (3.3).
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X1 = ε(c1
3×3 ∗ fn−1 + b1),

Y1 = ε(c1
5×5 ∗ fn−1 + b1),

X2 = ε(c1
3×3 ∗ [X1,Y1] + b2),

Y2 = ε(c1
5×5 ∗ [X1,Y1] + b2),

X
′

= c1
1×1 ∗ [X2,Y2] + b3

(3.3)

where c and b represent the weight and bias, respectively, the superscript represents the number of
layers they are in, and the subscript represents the size of the convolution kernel used for that layer.
ε(x) represents the ReLU activation function and [X,Y] represents the skip connection operation.

Local residual learning: To make the network more efficient, we used residual learning for each
multi-scale module. We can formulate the multi-scale residual block (MSRB) as follows:

fn = X
′

+ fn−1 (3.4)

where fn and fn−1 represent the input and output of the multi-scale residual module, respectively. It
is worth mentioning that the local residual learning has a good improvement in network performance
while maintaining a low computational complexity.

3.1.3. Loss function

Mean square error (MSE) [35] is a commonly used loss when training networks, however, the
traditional MSE-based loss is not sufficient to express the human visual system’s intuitive perception
of a picture. In this paper, we adopt negative Structural Similarity Index Measure (SSIM) as the loss
function of our rain-removing network. The SSIM loss function takes into account luminance, contrast,
and structure metrics, which takes into account human visual perception. For a progressive multi-scale
residual network with one T stage, if we monitor the output xT of the final stage, the negative SSIM
loss can be expressed as:

L = −S S IM(xT ,GT ) (3.5)

where GT is the corresponding ground-truth clean image. To achieve better training results, we
supervise the intermediate results at each stage using SSIM loss, with the expression :

L =
T∑

t=1

λtS S IM(xT ,GT ) (3.6)

where λt is the tradeoff parameter for stage t. Of course, there are now many methods that use hybrid
loss functions, such as mixing MSE with SSIM. Complex loss functions have better performance and
can better supervise the learning process of the network; however, the more complex the loss function
is, the more difficult it is to tune the hyperparameters. We find that a single negative SSIM loss function
is sufficient to complete the training of our deraining network well.

3.2. Traffic sign recognition algorithm

The network structure diagram of YOLOv5 is shown in Figure 3, which is divided into three parts:
Backbone (backbone network), Neck (multi-scale feature fusion network), and Head (predictive
classifier).
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Backbone: This structure is the backbone part of the network and is used to extract recognition
features of images, including edge features, texture features, location information, etc. The backbone
network in YOLOv5 is mainly composed of the Focus layer, wrapped convolutional layer CBS, C3
layer, SPP layer, and other structures. The Focus layer uses a slicing operation to split the
high-resolution map into multiple low-resolution feature maps. The CBS module consists of
convolution, normalization and Leaky Relu activation functions. C3 networks aim to reduce the
model size to increase inference speed while maintaining accuracy. In addition, SPP modules refer to
spatial pyramid modules, which perform maximum pooling by different sized kernels and complete
fusion by concatenating features.

Neck: This structure is the fusion part of the network that mixes and combines the features and
passes them to the prediction layer. The combination of an FPN structure with top-down delivery
of strong semantic features in order to improve low-level feature ground propagation and a bottom-
up feature pyramid containing two PAN structures operates to enhance the network feature fusion.
The FPN structure that transfers strong semantic features from top to bottom is used to improve the
propagation of low-level features, and the bottom-up feature pyramid containing two PAN structures
is combined to enhance the ability of network feature fusion.

Prediction: This part is to predict and classify the corresponding category probabilities, target
confidence, and prediction frame coordinates on three scales of 20 × 20, 40 × 40, and 80 × 80 feature
maps using three 1 × 1 convolutional layers instead of fully connected layers.

In the output part, YOLOv5 uses GIoU [36] as the loss function, and also filters the target box by
non-maximum suppression NMS [37].

3.2.1. CoT-YOLOv5 algorithm

CNNs are widely used in a variety of tasks due to their powerful visual representation learning
capabilities. This structure of CNNs for local information modeling makes full use of spatial locality
and translational equilateralism. But again, by only being able to model local information, CNNs lack
the ability to model and perceive over long distances, which is important in many vision tasks.
YOLOv5 is an efficient target detection algorithm, but it still has some false and missed detection
problems for object detection in complex scenes. Transformer-style algorithms show strong global
modeling capabilities for visual tasks and can handle complex scene information and relationships
between objects very well. Combining it with YOLOv5 can help improve the accuracy of target
detection.

Therefore, in this paper we use a CoT (Contextual Transformer) module, which combines the
Transformer and CNNs. This module combines the dynamic context information aggregation of the
self-attention mechanism in Transformer and the static context information aggregation of CNNs. As
shown in Figure 3, we fuse the CoT modules into the backbone structure of the network. CoT3
represents the C3 module combined with CoT. The introduction of the CoT module can enhance the
robustness of the model and have better adaptability to some complex traffic scenes and noise data.
Additionally, the attention mechanism of the CoT module has some interpretability, which can better
understand the prediction results of the model.
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Figure 3. CoT-YOLOv5 network structure.

Figure 4. Contextual Transformer block.

The structure of the CoT module is shown in Figure 4, assuming that the input of an incoming
two-dimensional feature map X ∈ RH×W×C (H: height, W: width, C: number of channels). The
Key, Query, and Value can be defined as, K = X, Q = X, and V = XWV , respectively. Where WV

is the embedding matrix, we use a 1 × 1 convolution to make it relational mapping. First, a group
convolution is performed on K with a 3× 3 convolution to obtain K1 with local contextual information
representation, and this can be seen as a static modeling on the local information. Then, connect K1

and Q to obtain the attention matrix through two consecutive 1×1 convolutions (with ReLU activation
function W1 and W2 without activation function), the expression is as follows:

A = [K1,Q]W1W2 (3.7)

In order to obtain the dynamic context information of the input, the attention matrices A and V are
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multiplied, and the expression is as follows:

K2 = A ⊗ V (3.8)

where ⊗ represents the local matrix multiplication operation, and finally we fuse the local static context
information with the global dynamic context information to obtain the final output Y .

The special mechanism of the CoT module allows global modeling of the entire image and retains
the ability to model local information. This helps the model to better understand information such as
the relationships and positions of objects in the image. The multi-head attention mechanism in the
CoT module can extract multiple hierarchical representations of features and integrate these
representations to better extract target features in images. This is very important for object detection
tasks. Finally, using the residual connection technique with 1 × 1 convolution can avoid the gradient
disappearance and gradient explosion problems in deep networks, thus improving the training
efficiency and robustness of the model.

Figure 5. C3 module with a CoT block.

In order to improve the global expression ability of the backbone network, we replace all the 3 × 3
element convolutions in the C3 module with the CoT module, and the optimized C3 module structure
is shown in Figure 5. By fusing the CoT and C3 modules, the backbone network is able to extract more
target features from the images. Other basic modules in the C3 structure are composed of convolutional
layers, BN layers, and SiLU activation functions. This combination of multiple technologies can better
capture the relationship between targets and improve the accuracy of traffic sign recognition. Since
the number of input and output channels of the CoT module remains unchanged, this method can
improve the feature extraction capability of the backbone network without increasing the parameters.
It can effectively improve the accuracy and efficiency of traffic sign recognition, and also has good
interpretability, robustness and flexibility.

4. Experiment

4.1. Datasets

Deraining Datasets: For the image deraining part, we mainly used two benchmark datasets:
Rain100H and Rain800, both of which are artificial synthetic datasets. Rain100H [38] is a heavy rain
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datasets that contains five types of rain marks. The rain-free background images of the Rain800 [39]
datasets are from the UCID and BSD-500 datasets, and rain marks of different densities are added on
the background. These two datasets are often used as comparison datasets.

Traffic sign recognition datasets: For the traffic sign recognition part, we use the TT100K [40]
traffic sign datasets, which contains five different cities. The data set has too little data for some
categories, so the data is unbalanced. Full training will lead to overfitting, so we select 45 types of
traffic signs that meet the requirements for training, and we use 9150 images for training and 1120 for
testing.

Figure 6 shows the classification of TT100K traffic signs. The signs in yellow, red, and blue boxes
are warning, prohibition, and mandatory signs, respectively. Each traffic sign has a unique label.
Besides, in order to validate the actual traffic sign recognition scenario, we selected a part of TT100K
data assembled into 8000 images with rain marks and tested them based on our deraining model.The
CPU used in this experiment is Intel(R) Core(TM) i9-9820X CPU @ 3.30 GHz and the GPU is NVDIA
GeForce RTX 2080Ti.

Figure 6. TT100K traffic sign category.

4.2. Experiments of the deraining algorithm

Evaluation metrics. In this paper, we adopt the most common Peak Signal-to-Noise Ratio
(PSNR) [41] and Structural Similarity (SSIM) [42] as quantitative indicators of model performance.
SSIM evaluates the similarity of two images by brightness, contrast and structure, and the formula is
as follows:

S S IM(x, y) =
(2µxµy + 1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

xσ
2
y +C2)

(4.1)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12240–12262.



12251

where µ∗, σ2
∗, σxy are the mean,variance, and covariance of x, y respectively. C1,C2 are constants.

PSNR is mainly used to measure the image distortion or noise level, and the expression is as follows:

PS NR(x, y) = 10 × log10

(MAX2
1

MS E

)
(4.2)

MAX1 indicates the maximum value that represents the color of the image point and MS E is the mean
square error. PSNR is measured in dB, where the larger the value, the smaller the distortion.

Implementation details. To highlight the advantages of our model, we set the number of stages T
of PMRnet to 5. We use Adam as the model optimizer. We use SSIM loss to supervise the intermediate
results of each stage. The initial learning rate is set to 10−3 and the total number of training epochs is
set to 100.

We discuss the effect of loss functions on the deraining performance, including MSE loss, negative
SSIM loss, and MSE + SSIM hybrid loss functions. We have trained each of the above three loss
functions based on PMRNet. Table 1 lists their PSNR and SSIM values on Rain100H. It can be
seen that PMRNet-SSIM outperforms PMRNet-MSE in terms of SSIM as well as PSNR. We also
noticed that the two indicators of PMRNet-MSE+SSIM only increased slightly, but this method greatly
increased the burden of hyperparameter tuning. Therefore, a single negative SSIM loss function is
sufficient to train our model. In the following experiments, the negative SSIM loss is adopted as the
default value.

Table 1. Comparison of PMRNet with different loss functions.

Loss PMRNet-MSE PMRNet-SSIM PMRNet-MSE + SSIM

PSNR 27.53 28.76 28.73
SSIM 0.880 0.901 0.905

We give comparison images of the deraining effect of some other methods and our method on
the Rain100H and Rain800 datasets, where (a) is the input rain image, (b) is the deraining effect of
RESCAN, (c) is the deraining effect of MPRNet, (d) is the deraining effect of PreNet, and (e) is the
deraining effect of the method shown in this paper.

Table 2. Experimental results of Rain100H datasets.

Method SSIM/dB PSNR/dB

RESCAN [17] 0.795 26.45
PreNet [18] 0.881 27.61

MPRNet [19] 0.890 28.42
PMRNet (our) 0.901 28.76

It can be seen from Figure 7 that there will be more rain marks remaining in the results of RESCAN
on the Rain100H datasets, although MPRNet and PreNet can remove most of the rain marks, there will
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still be some unremoved rain and the loss of details. Additionally, it can be seen from Tables 2 and 3
that our method outperforms the other three methods in both SSIM and PSNR evaluation results on
Rain100H and Rain800 data.

Table 3. Experimental results of Rain800 datasets.

Method SSIM/dB PSNR/dB

RESCAN [17] 0.821 25.16
PreNet [18] 0.774 26.78

MPRNet [19] 0.851 27.51
PMRNet(our) 0.874 28.76

Figure 8 is the comparison effect on the Rain800 datasets. It can be seen that PreNet left more rain
marks on the Rain800, and did not remove most of the rain marks like the results on the Rain100H.
The optimal performance of our method on different types of datasets indicates that our method has
good robustness.

Input RESCAN PreNet MPRNet ours

Figure 7. Comparison results on the Rain100H datasets.
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Input RESCAN PreNet MPRNet ours

Figure 8. Comparison results on the Rain800 datasets.

To test the rain removal effect of PMRNet in a traffic sign recognition scenario, we tested the
synthetic rain datasets based on TT100K, and Figure 9 shows our test results. Additionally, two
common metrics were verified, SSIM reached 0.943 and PSNR reached 29.50, which shows that
PMRNet has a very good performance on our synthetic datasets.

Figure 9. PMRNet (our) test results on TT100K-rain datasets.
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Table 4. Comparison of PMRNet models with different stages.

Method PMRNet1 PMRNet2 PMRNet3 PMRNet4 PMRNet5 PMRNet6

PSNR/dB 21.38 26.92 28.16 29.26 29.50 29.49
SSIM/dB 0.842 0.920 0.937 0.940 0.943 0.943

Table 4 shows the SSIM and PSNR of the PMRNet model with stages T = 1, 2, 3, 4, 5, 6. PMRNet
leads to higher SSIM and PSNR as the number of stages grows. Both values will stop growing when
T = 5. Larger T also makes PRMNet more difficult to train, so T = 6 is the current optimal number of
stages.

4.3. Experiment of traffic sign recognition algorithm

Evaluation metrics. This part of the experiment uses average recall(AR), mean average precision
(mAP), number of model parameters, and recognition speed as evaluation metrics for model evaluation
results. The formulas of precision and recall are shown in Eqs (4.3) and (4.4).

precision =
T P

(T P + FP)′
(4.3)

recall =
T P

(T P + FN)′
(4.4)

where T P denotes the number of samples that are actually positive cases and predicted by the classifier
as positive cases, FP denotes the number of samples that are actually negative cases but predicted by
the classifier as positive cases, and FN denotes the number of samples that are actually positive cases
but predicted by the classifier as negative cases.

AP is used to evaluate the strengths and weaknesses of the model in each category. The region
enclosed by the accuracy and recall is called the PR curve. The result is calculated using the integral,
as shown in Eq (4.5).

AP(n) =
∫ 1

0
p(rn)drn (4.5)

where n denotes the category, rn denotes the recall belonging to category n, and p(rn) denotes the
precision in the PR curve corresponding to category n.

The mAP is the average of the AP values of all categories, which can reflect the detection
performance of the model on the whole dataset. The formula is shown in Eq (4.6).

mAP =
1
N

N∑
n=1

AP(n) (4.6)

where N represents all categories.
Implementation details. Since the image size in TT100K dataset is 2048 × 2048 pixels, which is

not conducive to training. Therefore, we set the input size to 640 × 640. Adam as a model optimizer.
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We supervise the training using the GIOU loss function, which is used to measure the degree of overlap
and proportional differences between the predicted and true frames. The batch size is set to 16 and the
momentum is 0.9. The initial learning rate is set to 10−3 and the total number of training epochs is set
to 150.

We selected 1000 images from the TT100K-rain for the ablation study. We first tested the different
methods on the dataset with rain marks. Then, we used two-stage method with PMRNet to perform
image deraining before traffic sign recognition.

Table 5. Results of ablation experiments on TT100K-rain datasets

Method Parameters/M AR mAP Speed/s

Yolov5 12.41 0.736 0.721 0.20
CoT-YOLOv5 12.46 0.793 0.787 0.025
PMR-Yolov5 14.01 0.831 0.871 0.022

PMR-CoT-Yolov5(our) 14.06 0.893 0.921 0.027

It can be seen from Table 5 that if the image does not go through PMRNet’s deraining operation,
the accuracy of the algorithm will drop significantly. This shows the importance of image deraining
operation. Additionally, because the structure of PMRNet is not complicated, the speed reduction of
the algorithm is still within an acceptable range. After adding the CoT module, the accuracy of the
algorithm has obvious advantages in both rainy images and clean images.

Figure 10. PMRNet-based recognition effect of CoT-YOLOv5.
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Figure 10 shows the experimental results of our PMR-CoT-YOLOv5 method. The first column is
the effect of not using PMRNet. It can be seen that due to the interference of rain marks, some traffic
sign recognition has not been recognized. The second column is the recognition effect of CoT-YOLOv5
after the deraining operation. It can be seen that all traffic sign recognition is accurately recognized.

We evaluated our CoT-YOLOv5 on the TT100K-rain after deraining and compared it to the original
YOLOv5. We use metrics including number of parameters, average recall AR, average precision mean
mAP, and single image processing speed to evaluate the performance, and the results are shown in
Table 6. From the results, the CoT-YOLOv5 improved mAP by 5% and AR by 6.2%, while the number
of parameters and the recognition speed of a single image increased only slightly. Although the speed
decreases by 0.005 s, it still meets our requirements for detection speed.

Table 6. Experimental results of TT100K-rain datasets.

Method Parameters/M AR mAP Speed/s

Faster R-CNN + ACFPN [22] 137.59 0.876 0.901 1.42
Mask R-CNN [23] 94.20 0.891 0.913 1.10

SSD [25] 29.49 0.813 0.837 0.012
SSD-RP [26] 30.69 0.841 0.858 0.019
YOLOv4 [28] 64.12 0.843 0.875 0.031
Yolov5 [29] 12.41 0.831 0.871 0.020

CoT-Yolov5(our) 12.46 0.893 0.921 0.025

Figure 11. Confusion matrix of 45 types of traffic signs.
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Figure 11 shows the confusion matrix obtained after testing the 45 categories of traffic signs we
have trained, where the horizontal axis of the confusion matrix represents the manually true labeled
categories and the vertical axis represents the predicted categories. The shade of the diagonal color
in the figure represents the probability value of true positives for this category. The depth of the
diagonal color in the figure represents the probability value of true positives of this category, that
is, the probability of being correctly classified as a positive sample. It can be seen that except for
individual categories that are lighter in color due to the less content in the data set, most categories
have better performance values between 0.8 and 1.0.

The actual traffic sign recognition effect of our method is shown in Figure 12, where (a) is a large-
sized traffic sign (b) is a small-sized traffic sign (c) is a sloping traffic sign. Our method can accurately
identify the target in all three cases. This shows that CoT-YOLOv5 has good precision as well as
robustness.

(a) (b) (c)

Figure 12. Traffic sign recognition effect of CoT-Yolov5.

5. Discussion

In the experiments of image deraining, our PMRNet algorithm outperforms other comparative
algorithms in both metrics SSIM and PSNR on the Rain100H and Rain800 datasets. This shows that
the multiscale residual module solves the problem of inadequate feature extraction from other
networks to some extent. As can be seen from Table 3, the multi-stage network can progressively
improve the deraining effect. This approach can effectively solve the residual problem of rain marks.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12240–12262.



12258

Therefore, our multi-scale residual module and multi-stage structure can effectively enhance the
removal of rain marks. Then, we tested it based on the TT100K-rain dataset, and it can be seen from
the results that the method can adapt to various backgrounds and rain marks, and has good
generalization ability.

Then, we combined with the deraining algorithm to carry out the experiment of traffic sign
recognition algorithm. As shown in Table 4, adding the CoT module YOLOv5 increases the accuracy
by 6.6 and 5% in the rain image and the image after PMRNet preprocessing, respectively. From the
results, we can see that the CoT module effectively enhances the feature extraction capability of
YOLOv5. Compared with the direct recognition of rain images, the recognition accuracy of the
CoT-YOLOv5 algorithm with PMRNet’s pre-processing rises by 13.4%. This shows that our
two-stage algorithm can effectively solve the problem of traffic sign recognition in rainy days. Then,
we conducted a comparative experiment with the current representative algorithm on the image after
deraining. Two-stage algorithms, such as Faster R-CNN + ACFPN, have higher accuracy, but are
slower. Single-stage algorithms, such as the SSD series, have obvious advantages in speed, but
recognition accuracy still needs to be improved. Our CoT-YOLOv5 algorithm has a clear advantage
in accuracy. The embedding of PMRNet and CoT increases our training cost to some extent, but the
structure of these two parts is not complicated. Therefore, the speed is only slightly decreased and
still meets the real-time requirement.

6. Conclusions

Rainy weather will seriously affect the quality of the captured images, resulting in the degradation
of the performance of the traffic sign recognition algorithm. In order to solve this problem, this paper
divides the algorithm into two parts:image deraining and traffic sign recognition. In the first part, a
deep learning-based progressive multiscale residual deraining network is proposed, which divides the
network into multiple stages by recursion as a way to reduce the residual degree of rain marks, and
uses multiscale residuals and ConvLSTM to enhance the representation of image features as a way to
obtain better rain removal results. In the second part, this paper performs the recognition of traffic signs
based on the recovered rain image, and in this part we use the improved YOLOv5 for the traffic sign
recognition task. In order to improve the recognition accuracy of the network, we replace the 3 × 3
convolution in the C3 module with the CoT module, which solves the problem that the traditional
CNN lacks the ability to model global information. The experimental results show that the method can
effectively improve the recognition accuracy.

The method proposed in this paper is applicable to rainy weather, and since rainfall may occur
simultaneously with other weather conditions (e.g., haze and snow), accumulating different situations
for multi-task learning to improve performance is also worth exploring in future research. Of course,
excluding the natural climate, traffic signs may also be obscured by buildings, trees and other objects
that cannot be recovered. How to reasonably design deep learning network models to recognize traffic
signs based on the characteristics of obscured traffic signs is also a problem that needs attention in
the future. It is also worth exploring how to embed recognition algorithms into in-vehicle systems.
Shi et al. [43] worked on automatic traffic sign recognition using video recorded by an in-vehicle
vehicle recorder. With the development of smart cars, our algorithms can be deployed on embedded
systems in some assisted driving systems and driverless systems that require low power consumption
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and high performance. Or algorithms could be deployed to run on a central processing unit to perform
recognition on images captured from a front-facing camera. In the future, we will focus more on how
to apply algorithms to various intelligent systems in a rational way.
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