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Abstract: This paper addresses the issue of artificial visual inspection being overly reliant on subjec-
tive experience and the difficulty for the human eye to accurately identify dense and non-significant
defects. To solve this problem, we have implemented an automatic object detection algorithm based on
an improved version of YOLOv5.First, we use the K-means++ clustering algorithm to automatically
calculate the Anchor of the model to reduce the effect of the close location of the initial clustering
centers on the clustering of the sample data.Second, we add the Coordinate Attention (CA) attention
mechanism to the model to allow the model to better capture and understand important features in the
images. Then, we add a new detection layer with a downsampling multiplier of 4 to the Neck network
to improve the precision of the model. Finally, we use the lightweight network MobileNetV3 instead
of YOLOv5’s backbone network to reduce the model detection time overhead.Our model achieves
85.87% mAP, which is 6.44% better than the YOLOv5 network, and the detection time for a single
image is only 54ms, which is 50% faster than the YOLOv5 network. After testing, we have proven that
our proposed algorithm can quickly and accurately detect the condition of bearing appearance defects,
improving detection efficiency and reducing costs.
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1. Introduction

Bearings are essential components of freight trains during operation, and their working environment
demands them to have three characteristics: high-speed rotation, high pressure, and low fault toler-
ance. Defects can appear on the bearing surface during production due to improper assembly, poor
lubrication, and improper storage. The condition of the bearings determines the safety of the train, so
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maintenance personnel must regularly overhaul the train’s bearings and carry out corresponding main-
tenance treatments according to the types of defects. Currently, industrial production primarily relies
on manual visual inspections to detect bearing surface defects, which places too much emphasis on
the inspector’s experience. The variety of defects and their manifestations, along with non-significant
defects, increases the difficulty of inspectors’ detection, and the inspection workshop’s environment is
not conducive to extended periods of inspector work.

Several researchers have proposed methods for detecting defects on bearing surfaces. L. Eren and
A. Karahoca [1] improved the bearing defect detection procedure by wavelet transform and Radial Ba-
sis Function (RBF) neural network. Kankar and Sharma [2] used Artificial Neural Network (ANN) and
Support Vector Machine(SVM) to detect defects on the bearing surface from the perspective of bearing
vibration signals. Tastimur and Karakose [3] used a deep learning framework in the visual task of bear-
ing defect detection to complete automatic detection of four types of bearing defects. Senanayaka and
Khang [4] proposed a fault diagnosis method based on convolutional neural network pattern recogni-
tion, which can effectively detect not only single faults but also multiple faults simultaneously. Sobie
and Freitas [5] applied proven statistical feature-based methods to convolutional neural networks to im-
prove the accuracy of mechanical fault detection. Sadoughi and Hu [6] used bearings and their physical
knowledge of bearings and their fault features as input to a deep neural network to propose a convolu-
tional neural network (PCNN) based on physical characteristics for simultaneous detection of multiple
bearings. Kim and Lee [7] applied deep learning models to detect ball bearing faults under complex
conditions and obtained very high accuracy. Bapir and Aydin [8] used variational modal decomposi-
tion and convolutional neural network to complete the feature extraction and classification of bearing
surface defects. Kone and Yatsugi [9] proposed an adaptively tuned convolutional neural network for
the detection of multiple scratches defects on bearing surfaces. Chen and Yu [10] improved the Faster
R-CNN model for fabric defect detection by embedding Gabor kernels and using a two-stage training
method based on Genetic Algorithm and back-propagation. Luo and Yang [11] proposed a decoupled
two-stage object detection framework for FPCB surface defect detection that achieved state-of-the-art
accuracy. Zhang and Ma [12] proposed and evaluated a sparse regular diagnosis algorithm for feature
enhancement in planetary gearbox fault diagnosis.

The detection model needs to implement the classification and localization of the target defects to
obtain statistical information about the class and location of the bearing defects. YOLO is one of the
most important target detection models, offering advantages in terms of accuracy and speed. In this
paper, we propose an improved YOLOv5 model for bearing surface target defect detection. Due to
the curvature and texture of the bearing surface, detection presents certain challenges. In addition, we
found that the target defect area only accounts for 0.03% of the bearing surface area, yet our model
still achieved an mAP of 85.87%. To support our research, we formed a private dataset called “SKF-
KS2022”. In practical applications, our model performs well. The detection time for a single image is
only 54 ms, which can meet the requirements of real-time detection in industrial applications.

2. Dataset

The dataset is composed of two parts. One part is a unified image collection of bearing defects that
was created using industrial cameras with the help of engineers from the factory inspection center, and
is from freight train service station. The other part of the data is publicly available from the "Severstal:
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Steel Defect Detection" competition on the Kaggle website, and is the steel surface defects dataset. In
total, there are 1406 images with a resolution of 2048 × 2048. Due to the limited data collected, only
50 images of the remaining 17 defect types were accumulated. Therefore, the main types of defects
studied were identified as scratch, corrosion, peeling, and rolling skin. Figure 1 shows the four types
of targets.

Figure 1. 4 types of defective targets.

3. Method

3.1. YOLOv5 model

The YOLO series [13] is a regression-based target detection algorithm that creatively combines
the Region of Interest (RoI) module and detection phases into one to improve the detection speed.
YOLOv5 model mainly consists of Backbone, Neck and Head. The structure of YOLOv5 is shown in
Figure 2.
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Figure 2. The structure of YOLOv5.

3.2. Prior box

The prior box is a box of different sizes and aspect ratios preset on the image in advance to help the
model learn the location and size of the target more easily, and the reasonable setting of the Anchor
greatly affects the performance of the final model. The K-means++ algorithm [14] uses an "additive"
strategy to select the initial clustering centers, maximizing the distance between them. This strategy
ensures that the model achieves the highest prior frame and improves detection accuracy.

The steps of the K-means++ algorithm are as follows [15]:

Algorithm 1: K-means++ clustering algorithm

Input: Dataset X={x1, x2, ..., xn}, n is the number of data

Output: Cluster center points {c1, c2, ..., ck}, k is the number of center points

Algorithm steps:

1) Randomly select one point from the dataset as the initial clustering center point c1;

2) Calculate the minimum distance D(x) between each sample and the currently existing cluster center;

3)Take one new center ci, choosing x ∈ X with maximum probability P(x) =
D(x)2∑

x∈X D(x)2;

4) Repeat step 2). Until k cluster centers are selected;

5) Clustering is done according to the classical K-means algorithm, until convergence.
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3.3. Adding the attention mechanism module

Since the same type of defect manifests itself in various ways and the data contains both densely
detected targets and non-significantly detected targets. For this reason, we introduce the Coordinate
Attention(CA) [16]. It allows the network to extract regions of interest, resist the interference of
confusing information and focus on the key information of valid targets.

CA is a type of attention mechanism that can be used to enhance the feature representation capabil-
ities of mobile networks. It takes intermediate features as input and outputs enhanced features of the
same size. CA focuses on both channel and spatial attention attention attention mechanisms. It first
aggregates feature maps along the vertical and horizontal directions, respectively, into two separate
feature maps with directionality. This transformation allows the attention module to capture long-term
dependencies along one spatial direction and to preserve precise location information along the other
spatial direction. The CA structure [16] is shown in Figure 3.
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Figure 3. CA structure.

In Figure 4, we can see the model’s structure with the newly added CA attention mechanism. This
feature is incorporated after the SPPF module to improve the model’s semantic perception capabilities.
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Figure 5. Network structure after adding new detection layer.

3.4. Adding new detection module

To improve the model’s detection accuracy and reduce the miss detection rate for small defects,
we added a detection head for small target detection based on increased attention. The detection layer
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responsible for detecting small targets in the YOLOv5 model is obtained by downsampling the original
image by a factor of 8. However, excessive downsampling results in an excessive area of pixel points
on the output feature map, making it difficult to retain feature information for smaller target defects. To
address this, we construct a detection layer for small targets by splicing the feature map of the shallow
network with the feature map of the deep network. The size of the new detection layer will be 4 times
the size of the input image for downsampling, and the size of the feature map of the detection layer
will be expanded to 512 × 512. See Figure 5 for the improved structure, where the red box indicates
the newly added detection module calculation process is illustrated in Figure 6.

N × DK × DK × C 

Convolution Kernel
Din × Din × C 

Feature Map

DG × DG × N 

Feature Map

Figure 6. Standard convolution process.

3.5. Lightweight network

In real-world scenarios, the model needs to perform defect inference and analysis within a specific
timeframe. YOLOv5’s backbone network employs numerous C3 modules and standard convolutional
modules for feature extraction. The feature extraction of the standard convolutional layer is completed
in the same step as the feature combination, and the standard convolutional.

The number of parameters generated by the standard convolution process is Eq (3.1), where DK

represents the kernel size in the convolution operation, DG represents the size of the output feature
map, C represents the number of channels in the input feature map, and N represents the number of
convolution kernels.

DG × DG × Dk × Dk ×C × N (3.1)

MobileNetV3 [17] uses depth-separable convolution, which combines channel-by-channel con-
volution for feature extraction with point-by-point 1 × 1 convolution kernels for feature map up-
dimensioning. This is illustrated in Figure 7.
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The number of covariates generated by the degree-separable convolution process is Eq (3.2). The
comparison of the number of covariates between the two convolution methods is Eq (3.3). If the
convolution kernel size of the backbone network is 3 × 3, the computational effort using the depth-
separable convolution is about 1/8 to 1/9 of that of the standard convolution. We use MobileNetV3
lightweight network to replace the backbone network of YOLOv5, which can reduce the computation
and the model inference time.

DG × DG × Dk × Dk ×C + DG × DG × 1 × 1 × N ×C (3.2)
DG × DG × Dk × Dk ×C + DG × DG × 1 × 1 × N ×C

DG × DG × Dk × Dk ×C × N
=

1
N

+
1

Dk
2 (3.3)

Figure 8 shows the overall structure of the model after replacing the backbone network.
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Figure 8. Schematic diagram of our improved model.
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4. Experiments

4.1. Data augmentation

Due to the insufficient number of samples, morphological processes such as contrast enhancement,
left-right flip, and random image Gaussian blur were performed on the collected data, with the effect
shown in Figure 9, to produce similar but different sample data and expand the size of the dataset.

Figure 9. Morphological treatment effect.

The original image contains 350 images of rolled skin defects, 357 images of peeling defects, 348
images of corrosion defects, and 351 images of abrasion defects, for a total of 1406 images. The
number of images increased to 4900 after data enhancement, and Figure 10 shows the change of the
number of each target.
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Figure 10. Number of samples in each category after data augmentation.
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The training set, validation set, and test set are divided according to the ratio of 6:2:2, as shown in
Table 1.

Table 1. Statistics of image dataset.

Train Validation Test Total
2940 980 980 4900

4.2. Experiment configuration and evaluation index

We use Ubuntu 18.04 as the operating system, a GTX TITAN V 8G as the GPU, and PyTorch 1.13.0
as the deep learning framework. During training, the batch size was 4, the iterations epoch was 100,
and the learning rate was 10−3.

The evaluation metrics used in the experiments were precision, recall, average precision (AP), mAP,
speed and leakage rate. The precision (P) and recall (R) are as follows.

P =
T P

T P + FP
, (4.1)

R =
T P

T P + FN
, (4.2)

where TP is the number of samples that were positive and also correctly classified as positive. FP is
the number of samples that were negative but incorrectly classified as positive. FN is the number of
samples that were positive but classified as negative.

After obtaining P and R for each category, the precision-recall (P-R) curve can be displayed. AP is
represented by the P-R curve and the area surrounded by coordinates, and mAP is the average of the
AP values for all categories. AP and mAP are calculated as follows.

AP =

∫ 1

0
PR dR, (4.3)

mAP =
1
N

N∑
k=1

AP(k), (4.4)

where N represents the total number of categories, and represents the AP of the category K.
The model detection speed is the average time for each image tested by the model. First, all the time

consumed by each model to predict all the test set images was counted. Then the average time required
for each image prediction was calculated based on the number of test set images. It is important to
note that the time we calculated includes the time consumed by the pre-processing, inference, and
post-processing processes for each image.

Leakage rate of the model is the ratio of the number of undetected targets to the total number of
actual targets.

4.3. Experimental results

4.3.1. YOLOv5

Table 2 shows the results of the network model comparison experiments. Faster R-CNN has the
highest accuracy, but it requires the most time overhead. The detection accuracy of YOLOv5 and
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YOLOv7 is comparable, but YOLOv7 consumes more memory than YOLOv5 during detection. This
drawback is particularly significant in resource-constrained environments. Considering both the accu-
racy of the model and the detection speed, we selected YOLOv5 as the original model for this study
for subsequent experiments.

Table 2. Comparison experiments.

Model Accuracy % Speed (ms)
Faster R-CNN [18] 83.73 264
SSD [19] 80.71 242
RetinaNet [20] 82.92 216
YOLOv3 [21] 78.85 103
YOLOv5 79.03 71
YOLOv6 [22] 76.14 78
YOLOv7 [23] 78.94 81
YOLOv8 [24] 81.15 96

4.3.2. K-means++

The default clustering algorithm of YOLOv5 is the K-means algorithm, and Figure 11 shows the
results of the K-means and K-means++ clustering algorithms for clustering the same defective sample
data.

The results from Figure 11(b) show that the K-means algorithm is sensitive to the initialization
of the central cluster, and Figure 11(c) shows that the K-means++ algorithm can better complete the
clustering of the sample data when the initial cluster centers are close together.

(a) Sample Data (b) K-means Clustering results (c) K-means++ Clustering results

Figure 11. Comparison of clustering results.

Figure 12 shows the comparison of the loss function curves of the YOLOv5 model taking the two
clustering methods. Taking the K-means algorithm has been in a large oscillation state without showing
a convergence trend, while taking the K-means++ clustering algorithm starts to converge slowly and
stabilizes at 58 epochs.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12341–12359.
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Figure 12. Loss curve comparison.

Comparison of Table 3 shows that the mAP value of the model improved by 0.4% after using the
K-means++ algorithm.

Table 3. Comparison of models adopting clustering algorithms.

Method mAP@0.5/%
YOLOv5 79.03
YOLOv5+K-means++ 79.43

Table 4. Comparison of models with added attention mechanisms.

Method mAP@0.5/%
YOLOv5+K-means++ 79.43
YOLOv5+K-means++ +SE 81.74
YOLOv5+K-means++ +CA 84.42

4.3.3. Adding the attention mechanism module

To enhance the model’s performance, the Squeeze-and-Excitation (SE) module and the CA module
are incorporated. A comparison of the loss function curves of the model with the addition of these two
attention mechanisms is illustrated in Figure 13. The network loss function is minimized by adding
CA module.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12341–12359.



12353

Figure 13. Loss curve comparison.

Figure 14. Detection effect of small targets.

Table 4 shows the comparative results of the models with the addition of the two attention mech-
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anisms. Adding the attention mechanism can improve the detection precision of the network model,
and the highest mAP is obtained after adding CA attention.

Figure 14 shows the detection effect of the model on target defects after adding the attention mech-
anism. For the same data, the model with the original model and the model after using the K-means++

clustering algorithm were consistent in detecting the target defects, and 13 target defects were detected.
After adding SE attention, the model detected 14 target defects. After adding CA attention, the model
detected 15 target defects. Compared with that without adding the attention mechanism, the detection
effect of the model is improved, but the model still misses non-significant target defects and dense
target defects seriously.

Although adding the CA attention module is as unsatisfactory as adding the SE attention module for
small target detection, the CA loss function is the smallest and the mAP value is the highest; therefore,
the CA attention module is chosen to be added to the improved model.

4.3.4. Adding detection module

A comparison of the loss function curves of the model before and after adding the new detection
layer is shown in Figure 15. The improved model converges slower, but the oscillation frequency is
relatively smaller and the loss values are lower.

Figure 15. Loss curve comparison.

As seen in Table 5, the mAP value of the our network with the addition of the new detection layer
increased by 2.29%, and also deepened the network depth, leading to an increase in the computation
of the improved model and an increase in the detection time of a single image from 117 ms to 231 ms.
Although this scheme can increase the detection accuracy of small targets, the complexity of the net-
work leads to a decrease in the inference speed to the extent that it is impossible to real-time detection
problem. Follow-up experiments were conducted to lighten the model to improve the inference speed
of the model.
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Table 5. Comparison of models with the addition of new detection layers.

Method mAP@0.5/% Speed (ms)
YOLOv5+K-means++ +CA 84.42 149
YOLOv5+K-means++ +CA+New detection layer 86.71 231

4.3.5. Lightweight network

Figure 16 shows the change of the loss function of each model during the training process. The loss
value of the model after replacing the backbone network is higher than before the improvement, which
is due to the fact that the MobileNetV3 module drastically reduces the number of parameters during
the operation, resulting in a decrease in the ability of the model to represent the features.

Figure 16. Loss curve comparison.

According to Table 6, the mAP value of our final model is reduced by 0.84% compared to the
model before the improvement, and the detection precision is reduced. However, the detection speed
of a single image is reduced from 231 ms to 54 ms.

Table 6. Comparison of model performance using different methods.

Method mAP@0.5/% Speed (ms)
YOLOv5+K-means++ +CA 84.42 149
YOLOv5+K-means++ +CA+New detection layer 86.71 231
Ours 85.87 54

Figure 17 shows the detection effect of the model for target defect detection after the introduction of
the lightweight network. The left shows the model before the introduction of the lightweight network,
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which detected 20 target defects. On the right is our model with 18 target defects detected. When
four different improvement methods are gradually added, our model can substantially improve the
detection efficiency of the model within a reasonable sacrifice of detection accuracy. This detection
effect is consistent with the results in Table 6.

Figure 17. Detection effect of small targets.

4.4. Training effect analysis

Figure 18 shows the comparison between our model and the original network YOLOv5 to detect the
target defects. Our model can detect the defects missed by the original model and does not mistakenly
detect the stitching traces of the images as scratch-like defects with higher detection accuracy.

Figure 18. Overall detection effect comparison.

Figure 19. Non-significant defect detection effect comparison.
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Figure 19 shows the comparison of detection results on non-significant defects. Our model has
higher detection accuracy and more precise localization for small-sized target defects.

The comparison in Table 7 shows that the mAP value of our model increased from 79.43% to
85.87%, an increase of 6.44%. The leakage rate for 4 types of defects detection is reduced by 1.34%.
The detection time of a single image is shortened from 71 ms to 54 ms, a reduction of 17 ms. The
single image detection speed of our model is improved by 30%.

Table 7. Comparison of detection of improved models.

Method Leakage rate% mAP@0.5/% Speed (ms)
YOLOv5+K-means++ 8.12 79.43 71
Ours 6.78 85.87 54

5. Conclusions

The experimental results of our model for bearing surface defect detection show that it can auto-
matically extract the target features in complex images, significantly improve the detection of non-
significant defect targets, and the detection speed and accuracy of detection can meet the requirements
of actual production, which can quickly and accurately detect the condition of bearing appearance
defects, improve detection efficiency and reduce costs.
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